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Precoded Integer-Forcing Universally Achieves the
MIMO Capacity to Within a Constant Gap

Or Ordentlich and Uri Erez,Member, IEEE

Abstract—An open-loop single-user multiple-input multiple-
output communication scheme is considered where a transmitter,
equipped with multiple antennas, encodes the data into indepen-
dent streams all taken from the same linear code. The coded
streams are then linearly precoded using the encoding matrix
of a perfect linear dispersion space-time code. At the receiver
side, integer-forcing equalization is applied, followed by standard
single-stream decoding. It is shown that this communication
architecture achieves the capacity of any Gaussian multiple-input
multiple-output channel up to a gap that depends only on the
number of transmit antennas.

I. I NTRODUCTION

The Gaussian Multiple-Input Multiple-Output (MIMO)
channel has been the focus of extensive research efforts since
the pioneering works of Foschini [1], Foschini and Gans
[2], and Telatar [3]. Mathematically, the single-user complex
MIMO channel withM transmit andN receive antennas is
modeled as

y = Hx+ z (1)

whereH ∈ CN×M is the channel matrix,y ∈ CN×1 is the
channel output,x ∈ CM×1 is the input vector that is subject
to the power constraint1

E(x†x) ≤M · SNR,

andz is an additive noise vector of i.i.d. circularly symmetric
complex Gaussian entries with zero mean and unit variance.

The mutual information of this channel is maximized by a
circularly symmetric complex Gaussian input [3] with covari-
ance matrixQ satisfyingtrace(Q) ≤ M · SNR, and is given
by2

C = max
Q≻0 : traceQ≤M·SNR

log det
(

I+QH†H
)

. (2)

The choice ofQ that maximizes (2) is determined by the
water-filling solution. When the matrixH is known at both
transmission ends, i.e., in a closed-loop scenario, this mutual
information is the capacity of the channel and may closely
be approached using the singular-value decomposition in con-
junction with standard scalar codes designed for an additive
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1In this paper(x)† is the conjugate transpose ofx.
2All logarithms in this paper are to base2, and rates are measured in bits

per channel use.

white Gaussian noise (AWGN) channel. In certain scenarios,
the natural choiceQ = SNR · I is used, resulting in thewhite-
input (WI) mutual information

log det
(

I+ SNRH†H
)

.

We may define the set

H(CWI , SNR) =

{

H ∈ C
N×M :

log det
(

I+ SNRH†H
)

= CWI

}

, (3)

of all channel matrices with the same white-input mutual
informationCWI . The correspondingcompound channelmodel
is defined by (1) with the channel matrixH arbitrarily
chosen from the setH(CWI, SNR), and fixed throughout the
whole transmission period. The matrixH that was chosen
by the channel is revealed to the receiver, but not to the
transmitter. Clearly, the capacity of this compound channel is
CWI, and is achieved with a white Gaussian input. This paper
is concerned with approaching the compound capacity using
a low-complexity scheme.

The compound MIMO channel model appears in several
important communication scenarios. Wireless systems often
operate inopen-loopmode, where the receiver knows the
channel matrixH but the transmitter only knows the cor-
responding white-input mutual information. This scenariois
well captured by the compound model, and will be the focus
of this paper. One may be even more conservative in the
assumptions on the channel state information available at the
transmitter (CSIT), and assume that evenCWI is unknown.
In this case, a reasonable approach is to transmit codewords
from an i.i.d. white Gaussian codebook with target rate
R, such that the receiver will be able to correctly decode
the transmitted message ifR < log det

(

I+ SNRH†H
)

. It
follows that from the transmitter’s perspective, the coding
task for this scenario is identical to that of coding for a
compound channel withCWI = R. It may be argued that
if the channel matrixH remains constant for a long period,
the receiver can communicate (a quantized version of) it to
the transmitter with a negligible overhead, which reduces the
communication problem to the simpler closed-loop scenario.
Sometimes, however, the transmitter wishes to broadcast the
same message to many receivers, such that all receivers witha
“good-enough” link should be able to decode the information.
This communication model approaches the compound channel
model (3) as the number of potential receivers grows.

While the theoretical performance limits of open-loop com-
munication over a Gaussian MIMO channel are well un-
derstood, unlike for closed-loop transmission, much is still
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lacking when it comes to practical schemes that are able to
approach these limits. In general, the notion of practicality
is rather vague and can be understood in different ways. In
this paper, we use it in the following sense: a scheme is
deemed practical if itdecouplesthe signal-processing task of
channel equalization from the coding task. In other words, a
practical scheme applies simple signal processing operations to
transform the MIMO channel to a set of scalar channels, over
which standard “off-the-shelf” codes for an AWGN channel
may be used. This notion of practicality is motivated by the
fact that in the past decades, coding for AWGN channels
has reached an advanced state, and low-complexity coding
schemes (e.g., turbo and LDPC codes) operating near capacity
are known. It is thus desirable to combine AWGN coding and
decoding techniques with equalization in a modular way, with
the aim of approaching the capacity of the MIMO channel.
For the closed-loop scenario, this can be achieved using the
singular-value decomposition. However, for the compound
MIMO channel, practical capacity-approaching schemes are
not known in general.

Such a modular scheme is known for the1×2 MISO chan-
nel where Alamouti modulation offers an optimal solution.
More generally, modulation via orthogonal space-time block
“codes” allows one to approach the WI mutual information
using scalar AWGN coding and decoding in the limit of small
rate [4].

Beyond the low rate regime, the multiple degrees of free-
dom offered by the channel need to be utilized in order
to approach capacity. For this reason, despite considerable
work and progress, the problem of designing a practical
scheme that approaches the capacity of the compound MIMO
channel remains unsolved. As a consequence, less demanding
benchmarks became widely accepted in the literature. First,
since statistical modeling of a wireless communication link
is often available, one may be content with guaranteeing
good performance only for channel realizations that have a
“high” probability. Further, to simplify analysis and design,
the asymptotic criterion of the diversity-multiplexing tradeoff
(DMT) [5] has broadly been adopted.

Unfortunately, statistical characterizations, and the DMT
criterion in particular, offer only a coarse figure of merit
for assessing schemes. Specifically, assuming an i.i.d. fading
model with a continuous distribution on the channel coeffi-
cients precludes the possibility of having an entire row in
the channel matrix nulled out. For example, if the channel is
assumed to haveN = 2 receive antennas andM = 2 transmit
antennas with i.i.d. Rayleigh fading, the class of matricesof
the form

H =

[

h1 h2
0 0

]

(4)

whereh1 andh2 satisfy log(1 + SNR(|h1|2 + |h2|2)) = CWI,
has zero probability. Thus, the DMT optimality of a scheme
w.r.t. a2×2 i.i.d. Rayleigh fading distribution, tells us nothing
about its performance over channels of the form (4). The class
of channels described by (4) corresponds to receivers that are
equipped with a single antenna, rather than two. It follows that,
a scheme that is DMT optimal for a2×2 i.i.d. Rayleigh fading

distribution, may exhibit terrible performance over channels
with dimensions1 × 2. Thus, the DMT framework is inade-
quate for analyzing communication scenarios with degrees-of-
freedom mismatch, i.e., when the transmitter does not know
in advance the number of receive antennas, or alternatively,
has to simultaneously transmit (the same message) to several
users, equipped with a different number of receive antennas.
The compound channel model, on the other hand, does not
distinguish between channel matrices with the same WI mutual
information, and is therefore more suitable for such scenarios.

In [6], Tavildar and Vishwanath introduced the notion of
approximately universal space-time codesand derived a nec-
essary and sufficient criterion for a code to be approximately
universal. This criterion is closely related to the nonvanishing
determinant criterion and is met by several known coding
schemes [7]–[9]. Roughly speaking, approximate-universality
guarantees that a scheme is DMT optimal for any statistical
channel model. The criterion derived in [6] ensures that the
minimum distance at the receiver scales appropriately with
CWI regardless of the exact realization ofH, which, in turn,
guarantees DMT optimality. Thus, the problem of finding
coding schemes that are DMT optimal regardless of the
channel statistics is now solved.

Approximately universal schemes still suffer, however, from
the asymptotic nature of the DMT criterion. Essentially, the
approximate universality of a scheme guarantees that if the
white-input mutual information of the MIMO channel isCWI ,
the scheme’s error probability at a certain rateR scales
roughly as3 Q(

√
2CWI−R), for large CWI. This is the same

error probability behavior as that of uncoded transmission
over a single-input single-output (SISO) AWGN channel with
capacityCWI . This may suffice whenCWI is large enough and
moderate error probabilities are required, but does not provide
performance guarantees for finite values ofCWI . In particular,
the approximate universality criterion was designed for coding
schemes with short block lengths, and does not attempt to
exploit the opportunity of reducing the error probability by
increasing the block length when the channel remains constant
for a long period of time.

While designing a practical communication scheme that
approaches the compound MIMO capacity is still out of
reach, in the present work we take a step in this direction.
Namely, a practical communication architecture that achieves
the compound MIMO capacity up to aconstant gap, that
depends only on the number of transmit antennas, is studied.
Such a traditional information-theoretic performance guarantee
is substantially stronger than approximate universality.In the
considered scheme, which we refer to asprecoded integer-
forcing, the transmitter encodes the data into independent
streams, as in the standard V-BLAST [4] architecture. How-
ever, in contrast to standard V-BLAST where each one of the
streams can be encoded by a different code, in the considered
scheme it is crucial that all streams are encoded using thesame
linear code. The coded streams are then linearly precoded
using the generating matrix of a space-time code from the class
of perfect codes [8]–[11], which are approximately universal.

3TheQ-function is defined asQ(x) , 1

2π

∫∞

x
e−

t2

2 dt.
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Linear dispersion space-time coding

Uncoded QAM
Symbol1

...

Uncoded QAM
SymbolK

Precoding
matrix

P

... MIMO
channel

... ML
detector

dmin

Precoded integer-forcing

Lin. Encoded
Stream1

...

Lin. Encoded
StreamK

Precoding
matrix

P

... MIMO
channel

... IF
equalizer

...

Dec

SNReff

Dec

SNReff

Fig. 1. An illustrative comparison between linear dispersion space-time coding and precoded integer-forcing. Lineardispersion space-time coding consists
of precoding uncoded QAM symbols, and detecting these symbols at the receiver. The detector’s performance is dictated by dmin which is the minimum
distance at the received constellation. In precoded integer-forcing, coded streams are precoded and transmitted overthe channel. The receiver first applies an
integer-forcing equalizer and then decodes linear combinations of the streams. The performance is dictated bySNReff. In this paper we show thatdmin and
SNReff are closely related.

At the receiver side, integer-forcing (IF) equalization [12] is
applied.

An IF receiver [12] attempts to decode a full-rank set of
linear combinations of the transmitted streams with integer-
valued coefficients. Once these equations are decoded, they
can be solved for the transmitted streams. The receiver’s front
end consists of a linear equalization matrix that transforms the
MIMO channel into a set of SISO sub-channels, each corre-
sponding to a different linear combination, with an effective
SNR that depends on the integer coefficients of this linear
combination. The performance of the scheme is dictated by
the worst effective SNR, over all sub-channels.

A. Our Contribution

The integer-forcing receiver architecture was introduced
in [12] and has since received considerable attention in the
literature (see e.g., [13]–[16]). While numerical experiments
revealed that in many cases its performance is quite close to
that of the optimal maximum-likelihood decoder [12], [16],
[17], the analytic performance guarantees available in the
literature prior to this work were quite weak. In particular, the
strongest result was that forM ≤ N the IF receiver achieves
the optimal DMT for Rayleigh fading MIMO channels when
the transmit antennas are restricted to transmitting independent
streams [12]. The main contribution of the current work is
in providing solid analytic performance guarantees for the
integer-forcing receiver.

The key step in our analysis is Lemma 2 which lower
bounds the effective SNR seen by the integer-forcing receiver
in terms ofdmin - the minimum distance seen at the receiver
when all antennas transmit QAM symbols. When the number
of transmit antennasM is larger than the number of receive
antennasN , the minimum distance typically decreases as the
cardinality of the QAM constellation increases. Our result,
takes this phenomena into account and is therefore useful
for any number of transmit and receive antennas. We then
apply Lemma 2 together with a recent result from number
theory that concerns the typical rate of decrease ofdmin with

the cardinality of the transmitted constellation [18] to prove
Lemma 3 which establishes that the IF receiver achieves the
optimal number of degrees-of-freedom (DoF) for almost all
H ∈ RN×M , regardless ofN andM . While this result is not
surprising for the caseN ≥ M , where standard zero-forcing
or MMSE receivers suffice to achieve the maximal number
of DoF, it is quite remarkable for channels withM < N ,
where standard linear receivers are practically useless inthe
high-SNR regime.

Although Lemma 3 provides strong motivation for using
the IF receiver, it suffers from two shortcomings. First, it
characterizes the performance of the IF receiver only in the
asymptotic high-SNR regime. Second, it only holds for almost
all H ∈ RN×M w.r.t. Lebesgue measure onRN×M , but
provides no guarantees for specific channel realizations. To
circumvent these weaknesses, we employ space-time precod-
ing at the transmitter, resulting in aprecoded IFscheme.

Precoded IF may be viewed as an extension of linear dis-
persion space-time “codes”. In such “codes”, uncoded QAM
symbols are linearly modulated over space and time. This
is done by linearly precoding the QAM symbols using a
precoding matrixP. For precoded IF, the same precoding
matrix P is applied tocodewordstaken from a linear code,
rather than uncoded QAM symbols. See Figure 1. The per-
formance of linear dispersion space-time “codes” is dictated
by dmin, the minimum distance in the received constellation,
whereas the performance of precoded IF is determined by the
effective signal-to-noise ratioSNReff. By Lemma 2, minimum
distance guarantees for precoded QAM symbols translate to
guarantees on the effective SNR for precoded IF, when the
same precoding matrix is used.

The design of precoding matrices for uncoded QAM, that
guarantee an appropriate growth ofdmin as a function of
CWI, has been extensively studied over the last decade. A
remarkable family of such matrices are the generating ma-
trices ofperfectlinear dispersion space-time codes, which are
approximately universal [8], [9]. We apply the tight connection
betweendmin and SNReff to show that when such precoding
matrices are used for precoded IF,SNReff also grows appro-
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priately with CWI. Consequently, we are able to prove that
precoded IF achieves rates within a constant gap from the
compound MIMO capacity.

B. Related Work

Integer-forcing equalization essentially reduces to lattice-
reduction (LR) in the case of uncoded transmission. Lattice-
reduction aided receivers for perfect space-time modulated
QAM constellations were considered in the literature, and
were shown to be DMT optimal [19]. The key difference is
that while the latter approach involves uncoded transmission
and symbol-by-symbol detection, the architecture proposed
here uses linearlycoded streams and the detection phase
is replaced with equalization and decoding. This in turn,
leads to performance guarantees that are valid at any (fixed)
transmission rate.

In [20], El-Gamal et al. proposed a lattice space-time
(LAST) coding scheme, and showed that it can achieve
the compound MIMO capacity. Although the LAST coding
scheme uses lattice encoding and decoding, its complexity is
in general very high. The reason for this is that the lattice
decoding performed by the receiver is w.r.t. a lattice induced
by both the transmitted constellation and the channel matrix
H. In other words, the LAST coding scheme does not decouple
the equalization and decoding tasks. In particular, even if
a lattice with low decoding complexity is transmitted, after
passing through the channel its structure is changed and the
decoding complexity of the obtained lattice may (and is most
likely to) no longer be low. This is not the case for precoded
IF. In the scheme considered here, the receiver decodes integer
linear combinations of the transmitted streams. Since these
streams are taken from the same linear code, their integer
linear combinations are also members of the linear code. As
a result, the task of decoding these linear combinations is
identical to the task of decoding a single stream over a scalar
AWGN channel. If the linear/lattice code that was used to
encode the streams can be decoded with low complexity, so
can the integer linear combinations. The channel matrixH is
handled in the equalization procedure, and has no effect on the
decoding task, just as in standard linear receiver architectures.

Finding the exact capacity region of many network infor-
mation theoretic problems may be very difficult. Nevertheless,
a recent line of work has demonstrated that characterizing
the capacity region to within a constant number of bits
is often a manageable challenge (see e.g., [21]–[24] and
references therein). The constant gap result presented here
is of different spirit. The capacity of the compound MIMO
channel considered here is known and may be achieved using
random coding and maximum-likelihood decoding. Our results
only show that the rate achieved by the sub-optimal scheme
precoded IF, is a constant number of bits from the capacity.
Nevertheless, the results derived in this paper may be useful in
the future for obtaining approximate capacity characterizations
for several network problems. More specifically, it is now
recognized that lattice codes play a key role in characterizing
the fundamental limits of certain communication networks,see
e.g. [25]–[30] and [31, Chapter 12]. A common feature of

many of these lattice-based coding schemes is that, from the
perspective of each receiver, they induce effective multiple-
access (MAC) channels with a reduced number of users, all
of which employ the same lattice codebook. The achievable
rates for a MAC channel where all users use the same lattice
codebook is difficult to analyze, but can be lower bounded by
the rates attained via the IF receiver. In [30] this technique
was successfully applied for approximating the sum-capacity
for the symmetric GaussianK-user interference channel. Our
bounds on the rate-loss incurred by the IF receiver w.r.t. the
mutual information may lead to closed form inner bounds
on the performance of lattice-based coding schemes for other
networks.

C. Paper Outline

The rest of the paper is outlined as follows. Section II
gives an overview of IF equalization and analyzes its per-
formance without precoding under various assumptions, while
Section III considers the precoded IF scheme. In Section IV
several properties of perfect linear dispersion space-time codes
are recalled and a lower bound on their worst-case minimum
distance is derived. The proof that precoded IF achieves the
compound MIMO capacity to within a constant gap is given in
Section V. As an example of the advantages of the proposed
approach, low-complexity constructions of MIMOrateless
coding schemes, which are based on precoded IF, are derived
in Section VI. Concluding remarks appear in Section VII.

II. PERFORMANCE OF THEINTEGER-FORCING SCHEME

Integer-Forcing equalization is a low-complexity architec-
ture for the MIMO channel, which was proposed by Zhan
et al. [12]. The key idea underlying IF is to first decode
integral linear combinations of the signals transmitted by
all antennas, and then, after the noise is removed, invert
those linear combinations to recover the individual transmitted
signals. This is made possible by transmitting codewords from
the same linear/lattice code from allM transmit antennas,
leveraging the property that linear codes are closed under
(modulo) linear combinations with integer-valued coefficients.

In this section we review and extend some of the results
of [12] and [17] in a way that is suitable for our purposes.

A. Nested Lattice Codes

Let Λc ⊂ Λf be a pair ofn-dimensional nested lattices
(see [31], [32] for a more thorough treatment of lattice
definitions and properties). The latticeΛc is referred to as
the coarse lattice andΛf as the fine lattice. Denote byVc
the fundamental Voronoi region ofΛc, and define the second
moment ofΛc as

σ2(Λc) ,
1

n

1

Vol(Vc)

∫

u∈Vc

‖u‖2du,

whereVol(Vc) is the volume ofVc. A nested lattice codebook
C = Λf ∩ Vc, with rate

R =
1

n
log |Λf ∩ Vc|

bits
channel use
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is associated with the nested lattice pair. The codebook is
scaled such thatσ2(Λc) = SNR/2.

Example 1:We give three examples of common structures
of nested lattice codebooks. See Figure 2 for an illustration.
More examples can be found in [33].

• Uncoded transmission- The simplest nested lattice code-
book is an uncoded one, where the fine latticeΛf is the
integer latticeZ whereas the coarse lattice isΛc = qZ
for some integerq > 1. The Voronoi region in this case
is Vc = [−q/2, q/2) and the obtained nested lattice code-
bookC consists of all integers in the interval[−q/2, q/2).
The rate of this codebook isR = log q bits/channel use.

• q-ary linear code without shaping- A more sophisti-
cated, yet reasonable to implement, nested lattice code-
book can be obtained by lifting aq-ary linear code with
block lengthn to Euclidean space using Construction
A [34], [35], and taking the resulting lattice asΛf .
The coarse lattice is taken asΛc = qZn, as in the
uncoded case. The obtained nested lattice codebookC
is therefore simply theq-ary linear code coupled with a
PAM constellation.

• “Good” nested lattice pair of high dimension- A third
option is to use a pair of lattices of high dimension
where the fine lattice is “good” for coding over an
AWGN channel, whereas the coarse lattice is “good”
for mean-squared-error quantization (see [31], [32] for
precise definitions of “goodness”). The obtained nested
lattice codebook admits a relatively simple performance
analysis, that yields closed-form rate expressions. How-
ever, implementing such a codebook is more complicated
(although progress in this direction was made in [36]).
The performance improvement obtained by using such
a codebook w.r.t. aq-ary linear code without shaping
is bounded from above by1/2 log(2πe/12) bits per real
dimension, provided that theq-ary linear code performs
well over an AWGN channel.

B. Description of the IF scheme

In the IF scheme, the information bits to be
transmitted are partitioned into2M streams, labeled
{1Re, 1Im, . . . ,MRe,MIm}. Each of the 2M streams is
encoded by the nested lattice codeC, producing2M row
vectors, each inC ⊂ R1×n. In particular, the streammRe,
consisting ofnR information bits, is mapped to a lattice point
tmRe

∈ C. Then, a random ditherdmRe
∈ R1×n uniformly

distributed overVc and statistically independent oftmRe
,

known to both the transmitter and the receiver, is used to
produce the signal

xmRe
= [tmRe

− dmRe
] mod Λc.

The signal xmRe
is uniformly distributed overVc and is

statistically independent oftmRe
due to the Crypto Lemma [32,

Lemma 1]. It follows that

1

n
E‖xmRe

‖2 = σ2(Λc) =
SNR

2
.

A similar procedure is used to construct the signalxmIm
. The

mth antenna transmits the signalxm = xmRe
+ ixmIm

∈ C1×n

overn consecutive channel uses. Thus, the total transmission
rate isRIF = 2MR bits/channel use.

Let X , [xT1 · · · xTM ]T ∈ CM×n. The received signal is

Y = HX+ Z,

whereZ ∈ CN×n is a vector with i.i.d. circularly symmetric
complex Gaussian entries. Letting the subscriptsRe and Im

denote the real and imaginary parts of a matrix, respectively,
the channel can be expressed by its real-valued representation

[

YRe

YIm

]

=

[

HRe −HIm

HIm HRe

] [

XRe

XIm

]

+

[

ZRe

ZIm

]

, (5)

which will be written as

Ỹ = H̃X̃+ Z̃

for notational compactness. Let

T̃ , [tT1Re · · · tTMRe
tT1Im · · · tTMIm

]T

be a 2M × n real-valued matrix whose rows consist of the
lattice points corresponding to the2M bit streams, and

D̃ , [dT1Re · · · dTMRe
dT1Im · · · dTMIm

]T

be a2M×n real-valued matrix whose rows correspond to the
2M different dither vectors.

The IF receiver chooses an equalizing matrixB ∈ R2M×2N

and a full-rank target integer-valued matrixA ∈ Z2M×2M , and
computes

Ỹeff =
[

BỸ +AD̃
]

mod Λc

=
[

AX̃+AD̃+ (BH̃−A)X̃+BZ̃
]

mod Λc

=
[

AT̃+ (BH̃−A)X̃+BZ̃
]

mod Λc

= [V + Zeff] mod Λc, (6)

where

V ,

[

AT̃
]

mod Λc (7)

is a2M×n real-valued matrix with each row being a codeword
in C owing to the linearity of the code,

Zeff , (BH̃−A)X̃+BZ̃

is additive noise statistically independent ofV (asX̃, as well
as Z̃ are statistically independent of̃T), and the notation
mod Λc is to be understood as reducingeach row of the
obtained matrix modulo the coarse lattice. Each row ofỸeff

is the modulo sum of a codeword and effective noise. Thus,
the IF receiver transforms the original MIMO channel into a
set of2M point-to-point modulo-additive sub-channels

ỹeff,k = [vk + zeff,k] mod Λc, k = 1, . . . , 2M. (8)

The additive noise vectorszeff,1, . . . , zeff,2M are not statisti-
cally independent. Therefore, strictly speaking, the2M effec-
tive channels̃yeff,1, . . . , ỹeff,2M are not parallel. However, the
IF decoder ignores the correlation between the noise vectors
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(a) (b) (c)

Fig. 2. An illustration of the three different types of nested lattice codebooks given in Example 1. In all three cases theblack points correspond to the
fine lattice points, the blue circles to the coarse lattice points, and the blue polygon corresponds to the shaping region. In (a) the constellation for uncoded
transmission withq = 11 is illustrated. In (b) aq-ary linear code without shaping is shown, withq = 11. In (c) a “good” nested lattice pair in two-dimensions
is illustrated.

Transmitter Channel Receiver

info. bits 1 Enc
x1

...

info. bits M Enc
xM

H

y1

z1

...

yN

zN

B

Dec
v̂1

...

Dec
v̂M

A−1

̂info. bits 1

...

̂info. bits M

Fig. 3. A schematic overview of the integer-forcing transmitter and receiver. For simplicity, the dithers are not depicted in the figure, and a real-valued
channel is assumed. At the transmitter, the information bits are split toM streams. Each stream is encoded by the same linear codebook and transmitted by
one of the transmit antennas. The receiver first applies the equalizing matrixB whose role is to equalize the channelH to an equivalent channel with transfer
matrix approximately equal toA. The equalizer producesM outputs, each of which is an integer-valued linear combination of the transmitted codewords plus
effective noise. Each one of these outputs is decoded separately, and finally the outputs of theM decoders are multiplied byA−1 to produce the transmitted
codewords. The codewords are then mapped to information bits (this step is not depicted in the figure).

t1 ∈ C

...

tM ∈ C

A

v1 ∈ C
zeff,1

modΛc ỹeff,1

...
...

vM ∈ C
zeff,M

modΛc ỹeff,M

Fig. 4. An illustration of the effective channel obtained when integer-
forcing equalization is used. The effective channel consists of M parallel
sub-channels. The output of each sub-channel is an integer-valued linear
combination of lattice points, which is itself a lattice point, plus effective
noise, modulo the coarse latticeΛc.

and decodes the output of each sub-channel separately.4 If
decoding is successful over all2M sub-channels, the receiver
has access toV, from which it can recover the matrix̃T by
solving the (modulo) set5 of equations (7). See Figures 3 and 4.

Let aTk andbTk be thekth rows ofA andB, respectively,
and define the effective variance ofzeff,k as

σ2
eff,k ,

1

n
E ‖zeff,k‖2

=
1

n
E

∥

∥

∥(bTk H̃− aTk )X̃+ bTk Z̃

∥

∥

∥

2

=
SNR

2
‖(bTk H̃− aTk )‖2 +

1

2
‖bTk ‖2.

A natural criterion for choosing the equalizing matrixB and

4Some improvement can be obtained by exploiting these correlations [37],
[38]. Yet, we do not pursue this possibility in the present paper.

5In [39] it is shown that it suffices thatA is invertible overR in order to
recoverT̃ from V.
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the target integer-valued matrixA is to minimize the effective
noise variances. It turns out [12] that for a given matrixA,
the optimal choice ofB under this criterion is

Bopt = AH̃T

(

1

SNR
I+ H̃H̃T

)−1

. (9)

The matrix in (9) can be interpreted as first applying the
linear MMSE estimator ofX̃ form Ỹ, and then multiplying
the result by the integer-valued matrixA. In general, the
estimation errors after linear MMSE estimation may be highly
correlated, and have different powers. The roleA plays here
is in decreasing these correlations and balancing the powerof
the remaining estimation errors. The freedom to choose any
full-rank A ∈ Z2M×2M and not justA = I comes from
the fact that any integer-linear combination of codewords is
a codeword itself. SettingB as in (9) results in the effective
variances

σ2
eff,k =

SNR

2
aTk

(

I+ SNRH̃T H̃
)−1

ak,

for k = 1, . . . , 2M .
Define the effective signal-to-noise ratio (SNR) at thekth

sub-channel as

SNReff,k ,
σ2(Λc)

σ2
eff,k

=
SNR

2

SNR

2 aTk

(

I+ SNRH̃T H̃
)−1

ak

=

(

aTk

(

I+ SNRH̃T H̃
)−1

ak

)−1

, (10)

and let

SNReff , min
k=1,...,2M

SNReff,k. (11)

For IF equalization to be successful, decoding over all2M
sub-channels should be correct. Therefore, the worst sub-
channel constitutes a bottleneck. For this reason, the total
performance of the receiver is dictated bySNReff.

C. Achievable rates for IF

When the codebookC is constructed from a good pair of
nested lattices (see Example 1), the distribution of the effective
noise at each sub-channelk, which is a linear combination of
an AWGN and2M dither vectors, approaches (with the code’s
block length) that of an AWGN with zero mean and variance
σ2

eff,k [27]. Good nested lattice codebooks can achieve any rate
satisfying

R <
1

2
log (SNReff,k) (12)

over amod-Λc AWGN channel with signal-to-noise ratio
SNReff,k [27], [32]. Sincevk is a codeword from a good nested
lattice code andzeff,k approaches an AWGN in distribution,
vk can be decoded [12], [27] from̃yeff,k as long as the rate
of the codebookC satisfies (12). It follows that as long as

R <
1

2
log (SNReff) ,

all sub-channelsk = 1, . . . , 2M can decode their linear
combinationsvk without error, and therefore IF equalization
can achieve any rate satisfying

RIF < 2M
1

2
log (SNReff)

=M log (SNReff) . (13)

As mentioned in Example 1, good nested lattice codebooks
can be difficult to implement in practice. A more appealing
alternative may be to use aq-ary linear code without shaping.
In this case, the effective noisezeff,k at each sub-channel is
a linear combination of an AWGN and2M random dithers
uniformly distributed over the Voronoi region of a1-D integer
lattice. This effective noise is i.i.d. (in contrast to the case
where a higher-dimensional coarse lattice is used wherezeff,k

has memory). It was shown in [40, Remark 3] that, for a prime
q large enough,q-ary linear codes without shaping can achieve
any rate satisfying

R <
1

2
log (SNReff)−

1

2
log

(

2πe

12

)

over a modulo channel with additive i.i.d. effective noisezeff,k.
Therefore, IF equalization usingq-ary linear codes without
shaping can achieve any rate satisfying

RIF,q-ary< M log (SNReff)−M log

(

2πe

12

)

. (14)

When a specificq-ary linear code (such as an LDPC code or
a turbo code) is used, the achievable rate is further degraded
by 2M times the code’s gap-to-capacity at the target error
probability.

Finally, consider the case of uncoded transmission. In this
case,Λf = γZ and Λc = γqZ, where γ =

√

12SNR/q2 is
chosen so as to meet the power constraint, andq > 1 is
an integer (see Example 1). The performance of uncoded
transmission with IF equalization followed by a simple slicer
is characterized by the following lemma.

Lemma 1:The error probability of the IF receiver with
uncoded transmission rateRIF is upper bounded by

Pe,IF-uncoded≤ 4M exp

{

−3

2
2

1
M

(M log(SNReff)−RIF)

}

. (15)

Proof: See Appendix A

Remark 1: Integer-forcing equalization with uncoded trans-
mission is quite similar to the extensively studied lattice-
reduction-aided linear decoders framework [19], [41], [42].
However, two subtle differences should be pointed out. First,
under the framework of LR-aided linear decoding, the target
integer matrixA has to be unimodular, i.e., it has to satisfy
| det(A)| = 1, whereas in IF equalizationA is only required
to be full-rank. Second, the use of the dithers in IF equalization
results in statistical independence betweenvk andzeff,k at each
of the 2M sub-channels. This allows for an exact rigorous
analysis of the error probability, which is seemingly difficult
under the LR framework.
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D. Bounding the Effective SNR for an optimal choice ofA

In this subsection, we derive a lower bound onSNReff,
which will subsequently be used to lower bound the achievable
rate of IF. Since the IF scheme is compatible with any choice
of full-rank integer matrixA ∈ Z2M×2M , we would like to
chooseA so as to maximizeSNReff. We denote the rate-
maximizing target integer-valued matrix byAopt. For the
remainder of the paperSNReff refers to the effective SNR
corresponding to the choiceA = Aopt.

Using (10) and (11), this maximization criterion translates
to

Aopt = argmin
A∈Z

2M×2M

det(A) 6=0

max
k=1...,2M

aTk

(

I+ SNRH̃T H̃
)−1

ak.

The matrix
(

I+ SNRH̃T H̃
)−1

is symmetric and positive
definite, and therefore it admits a Cholesky decomposition

(

I+ SNRH̃T H̃
)−1

= LLT , (16)

where L is a lower triangular matrix with strictly positive
diagonal entries. With this notation the optimization criterion
becomes

Aopt = argmin
A∈Z

2M×2M

det(A) 6=0

max
k=1...,2M

‖LTak‖2.

Denote byΛ(LT ) the2M dimensional lattice spanned by the
matrix LT , i.e.,

Λ(LT ) ,
{

LTa : a ∈ Z
2M

}

.

It follows that Aopt should consist of the set of2M linearly
independent integer-valued vectors that result in the shortest
set of linearly independent lattice vectors inΛ(LT ).

Definition 1 (Successive minima):Let Λ(G) be a lattice
spanned by the full-rank matrixG ∈ RK×K . For
k = 1, . . . ,K, we define thekth successive minimum as

λk(G) , inf
{

r : dim
(

span
(

Λ(G)
⋂

B(0, r)
))

≥ k
}

whereB(0, r) =
{

x ∈ RK : ‖x‖ ≤ r
}

is the closed ball of
radiusr around0. In words, thekth successive minimum of
a lattice is the minimal radius of a ball centered around0 that
containsk linearly independent lattice points.

With the above definition of successive minima, the effective
signal-to-noise ratio, when the optimal integer-valued matrix
Aopt is used, can be written as

SNReff =
1

λ22M (LT )
. (17)

Bounding the value of the2M th successive minimum of
a lattice is seemingly difficult. Fortunately, a transference
theorem by Banaszczyk [43] relates the2M th successive
minimum of a lattice to the first successive minimum of
its dual lattice. Following the derivation from [12, Proof of
Theorem 5], we proceed to boundSNReff using this relation.

Definition 2 (Dual lattice): For a latticeΛ(G) with a gen-
erating full-rank matrixG ∈ R2M×2M the dual lattice is
defined by

Λ∗(G) , Λ
(

(GT )−1
)

=
{

(GT )−1a : a ∈ Z
2M

}

.

Theorem 1 (Banaszczyk [43, Theorem 2.1]):Let Λ(G) be
a lattice with a full-rank generating matrixG ∈ RK×K and
let Λ∗(G) = Λ

(

(GT )−1
)

be its dual lattice. The successive
minima ofΛ(G) andΛ∗(G) satisfy the following inequality

λk (G)λK−k+1

(

(GT )−1
)

< K, ∀k = 1, 2, . . . ,K.

Proof: See [43]

The following theorem gives a lower bound forSNReff.

Theorem 2:Consider the complex MIMO channel
y = Hx+ z with M transmit antennas andN receive
antennas, power constraintE(x†x) ≤M · SNR, and additive
noise z with i.i.d. circularly symmetric complex Gaussian
entries with zero mean and unit variance. The effective
signal-to-noise ratio when integer-forcing equalizationis
applied is lower bounded by

SNReff >
1

4M2
min

a∈ZM+iZM\0
a†

(

I+ SNRH†H
)

a. (18)

Proof: Let H̃ be the real-valued representation of the
channelH, as in (5), and letL andLT be as in (16). From (17)
we have

SNReff =
1

λ22M (LT )
.

The dual lattice ofΛ(LT ) is Λ(L−1). Thus, Theorem 1 gives

1

λ22M (LT )
>

1

(2M)2
λ21(L

−1),

and therefore

SNReff >
1

(2M)2
λ21(L

−1)

=
1

4M2
min

a∈Z2M\0
‖L−1a‖2

=
1

4M2
min

a∈Z2M\0
aT (LLT )−1a

=
1

4M2
min

a∈Z2M\0
aT

(

I+ SNRH̃T H̃
)

a. (19)

where (19) follows from (16). Since the matrix
(

I+ SNRH̃T H̃
)

∈ R2M×2M is the real-valued representa-

tion of the complex matrix
(

I+ SNRH†H
)

∈ CM×M , (19)
can be written in complex form as (18).

Remark 2: It is worth mentioning that the bound (18) is
tight up to a multiplicative factor of4M2. Namely, it can be
easily shown [44, VIII.5, Theorem VI] that for a full-rank
matrix G ∈ RK×K

λK (G)λ1
(

(GT )−1
)

≥ 1.
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Now, repeating the same derivation as in the proof of Theo-
rem 2 withG = LT gives

SNReff ≤ min
a∈ZM+iZM\0

a†
(

I+ SNRH†H
)

a.

E. Relation between the effective SNR and the minimum
distance for uncoded QAM

A basic communication scheme for the MIMO channel is
transmitting independent uncoded QAM symbols from each
antenna. In this case, the error probability strongly depends
on theminimum distanceat the receiver. For a positive integer
L, we define

dmin(H, L) , min
a∈QAMM (L)\0

‖Ha‖, (20)

where

QAM(L) , {−L,−L+ 1, . . . , L− 1, L}
+ i {−L,−L+ 1, . . . , L− 1, L} , (21)

and QAMM (L) is anM -dimensional vector whose compo-
nents all belong to QAM(L). Note that ifL is an even integer,
dmin(H, L) is the minimum distance at the receiver when each
antenna transmits symbols from a QAM(L/2) constellation.
This is true since

min
x1,x2∈QAMM (L/2)

x1 6=x2

‖Hx1 −Hx2‖ = min
x∈QAMM (L)\0

‖Hx‖.

In the IF schemethere is no assumptionthat QAM symbols
are transmitted. Rather, each antenna transmits codewords
taken from a linear codebook. Nevertheless, we show that
the performance of the IF receiver over the channelH can
be tightly related to those of ahypotheticaluncoded QAM
system over the same channel. See Figure 1. Namely,SNReff

is closely related todmin(H, L). This relation is formalized
in the next key lemma, which is a simple consequence of
Theorem 2.

Lemma 2 (Relation betweenSNReff and dmin): Consider
the complex MIMO channely = Hx+ z with M transmit
antennas andN receive antennas, power constraint
E(x†x) ≤M · SNR, and additive noise z with i.i.d.
circularly symmetric complex Gaussian entries with zero
mean and unit variance. The effective signal-to-noise ratio
when integer-forcing equalization is applied is lower bounded
by

SNReff >
1

4M2
min

L=1,2,...

(

L2 + SNRd2min(H, L)
)

,

whered2min(H, L) is defined in (20).

Proof: The bound from Theorem 2 can be written as

SNReff >
1

4M2
min

a∈ZM+iZM\0
‖a‖2 + SNR‖Ha‖2. (22)

Let

ρ(a) , max
m=1,...,M

max (|amRe
|, |amIm

|) ,

i.e.,ρ(a) is the maximum absolute value of all real and imag-
inary components ofa. With this notation, (22) is equivalent
to

SNReff >
1

4M2
min

L=1,2,...
min

a∈Z
M+iZM\0
ρ(a)=L

‖a‖2 + SNR‖Ha‖2

≥ 1

4M2
min

L=1,2,...

(

L2 + SNRd2min(H, L)
)

,

as desired.

Remark 3: In the transmission scheme described above
each antenna transmits an independent stream. Therefore, the
bounds from Theorem 2 and Lemma 2 continue to hold true
for multiple access (MAC) channels withM users equipped
with a single transmit antenna and a receiver equipped with
N receive antennas, where the gains from themth transmit
antenna to the receiver are given by themth column ofH and
each user is subject to the power constraintE

(

|xk|2
)

≤ SNR.

Remark 4:For real-valued N × M MIMO channels
y = Hx+ z with power constraintE(xTx) ≤M · SNR, and
z ∼ N (0, I) the bound from Theorem 2 becomes

SNReff >
1

M2
min

a∈ZM\0
aT

(

I+ SNRHTH
)

a,

and the bound from Lemma 2 becomes

SNReff >
1

M2
min

L=1,2,...

(

L2 + SNRd̃2min(H, L)
)

,

where

d̃min(H, L) , min
a∈PAMM (L)\0

‖Ha‖,

PAM(L) , {−L,−L+ 1, . . . , L− 1, L} .

The bound from Lemma 2 and its real-valued counterpart
from Remark 4 exhibit a Diophantine tradeoff, i.e., they
depend on how small the norm‖Ha‖2 can be made as
a function of the largest component in the integer-valued
vector a. The typical behavior of this minimal norm, is the
subject of several results in the metrical theory of Diophantine
approximation, see e.g. [18], [45], [46]. Using these results we
derive the following lemma, which is proved in Appendix B

Lemma 3 (DoF of Integer-Forcing):For almost all real-
valued MIMO channels (w.r.t. Lebesgue measure), IF equal-
ization achieves the optimal number of degrees-of-freedom
(DoF), i.e.,

lim
SNR→∞

RIF(SNR)
1/2 log(SNR)

=M lim
SNR→∞

1/2 log(SNReff)
1/2 log(SNR)

= min(M,N).

Standard linear equalizers, such as the zero-forcing equal-
izer, or the MMSE equalizer, fail to achieve the optimal
number of DoF whenN < M (In fact, whenN < M , they
achieve zero DoF). In light of this fact, our result that IF
equalization achieves the full DoF is notable. As discussed
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in Remark 3, this result is also applicable for the MIMO-
MAC channel. Thus, for almost every real-valued MIMO-
MAC channel withM users equipped with a single transmit
antenna and a receiver equipped withN receive antennas, each
user can achievemin(M,N)/M DoF using IF equalization.
This extends [30, Corollary 6], which only covered the case
of N = 1.

III. PRECODED INTEGER-FORCING

The performance of IF equalization over Rayleigh fading
channels was studied in [12] and it was shown that when
N ≥ M the IF equalizer achieves the optimal receive DMT
(corresponding to transmission of independent streams from
each antenna). However, in order to approach the compound
MIMO capacity, transmitting independent streams from each
antenna is not sufficient.

Clearly, there are instances of MIMO channels for
which the lower bound (18) onSNReff does not increase
with the WI mutual information. For example, consider
a channelH where one of theNM entries equalsh
whereas all other gains are zero. For such a channel
CWI = log(1 + |h|2SNR), yetSNReff = 1 (and the bound (18)
only gives SNReff > 1/(4M2)). Thus, it is evident that IF
equalization alone can perform arbitrarily far fromCWI .

This problem can be overcome by transmitting linear
combinations of multiple streams from each antenna. More
precisely, instead of transmitting2M linearly coded streams,
one from the in-phase component and one from the quadrature
component of each antenna, overn channel uses,2MT
linearly coded streams are precoded by a unitary matrix and
transmitted overnT channel uses.

Domanovitzet al. [17] proposed to combine IF equalization
with linear precoding. The idea is to transform theN ×M
complex MIMO channel (1) into an aggregateNT ×MT
complex MIMO channel and then apply IF equalization to
the aggregate channel. The transformation is done using
a unitary precoding matrixP ∈ CMT×MT . Specifically, let
x̄ ∈ CMT×1 be the input vector to the aggregate chan-
nel. This vector is multiplied byP to form the vector
x = Px̄ ∈ CMT×1 which is transmitted over the channel (1)
duringT consecutive channel uses. Let

H = IT ⊗H =











H 0 · · · 0
0 H · · · 0
...

...
. . .

...
0 0 · · · H











, (23)

where⊗ denotes the Kronecker product. The output of the
aggregate channel is obtained by stackingT consecutive
outputs of the channel (1) one below the other and is given
by

ȳ = HPx̄+ z̄

= H̄x̄+ z̄, (24)

whereH̄ , HP = (IT ⊗H)P ∈ CNT×MT is the aggregate
channel matrix, and̄z ∈ CNT×1 is a vector of i.i.d. circularly
symmetric complex Gaussian entries. See Figure 5.

A remaining major challenge is how to choose the precoding
matrix P (recall that a compound channel is considered, and
hence, the choice ofP cannot depend onH). As observed in
Section II-C, the performance of the IF equalizer is dictated
by SNReff. Thus, in order to obtain achievable rates that
are comparable to the WI mutual information,SNReff must
scale appropriately withCWI . The precoding matrixP should
therefore be chosen so as to guarantee this property for all
channel matrices with the same WI mutual information.

Lemma 2 indicates that for the aggregate channelSNReff is
lower bounded byminL(L

2 + SNRdmin(H̄, L))/4M
2, where

dmin(H̄, L) = min
a∈QAMMT (L)\0

‖HPa‖. (25)

Thus, the precoding matrixP could be chosen so as to
guarantee thatdmin(H̄, L) scales appropriately withCWI . This
boils down to the problem of designing precoding matrices for
transmitting QAM symbols over an unknown MIMO channel
with the aim of maximizing the received minimum distance.
The latter problem was extensively studied during the past
decade, under the framework of linear dispersion space-time
coding, and unitary precoding matrices that satisfy the afore-
mentioned criterion were found. Therefore, the same matrices
that proved so useful for space-time coding are also useful
for precoded integer-forcing. A major difference, however,
between the two is that while for linear dispersion space-time
coding the precoding matrixP is applied to uncoded QAM
symbols, in precoded integer-forcing it is applied tocoded
streams. This in turn, yields an achievable rate characterization
for the compound MIMO channel which is not available
using linear dispersion space-time coding. In particular,very
different asymptotics can be analyzed. Rather than fixing the
block length and takingSNR to infinity, as usually done in the
space-time coding literature, here, we fix the channel and take
the block lengthto infinity, as in the traditional information-
theoretic framework.

In [17] the performance of IF equalization with the Golden
code’s [11] precoding matrix was numerically evaluated in
a 2 × 2 MIMO Rayleigh fading environment. The scheme’s
outage probability was found to be relatively close to that
achieved by white i.i.d. Gaussian codebooks. Here, we prove
that, in fact, precoded IF equalization, where the precoding
matrix generates a perfect linear dispersion space-time code,
achieves rates within aconstant gapfrom the compound
MIMO capacity.

The aim of the next section is to lower bounddmin(H̄, L)
as a function ofCWI for precoding matricesP that generate
perfect linear dispersion space-time codes. This lower bound
will be instrumental in proving that precoded IF universally
attains the compound MIMO capacity to within a constant
gap.

IV. L INEAR DISPERSIONSPACE-TIME CODES

Before deriving the lower bound ondmin(H̄, L) some nec-
essary background on space-time codes is given.

An M×T space-time (ST) codeCST for the channel (1) with
rateR is a set of|CST| = 2RT complex matrices of dimensions
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x̄1

...

info. bits TM Enc
x̄TM

P

x1

...

xM

H

z̄1
ȳ1

...
z̄N

ȳN

...

xT (M−1)+1

...

xTM

H

z̄T (N−1)+1

ȳT (N−1)+1

...
z̄TN

ȳTN

B

Dec
v̂1

...

Dec
v̂TM

A−1

̂info. bits 1

...

̂info. bits TM

Fig. 5. A schematic overview of precoded integer-forcing. For simplicity, the dithers are not depicted in the figure, anda real-valued channel is assumed.
At the transmitter, the information bits are split toTM streams, each of which is encoded by the same linear code. Then, aTM × TM precoding matrix
“mixes” theTM codewords intoTM linear combinations. The channelH is usedT times, where in each channel use each of the antennas transmits one of
the precoded linear combinations. The receiver treatsT consecutive channel outputs as the output of an aggregateNT ×MT channel with transfer matrix
H̄ = (IT ⊗H)P, and applies integer-forcing equalization to the aggregate channel.

M × T . The codebookCST has to satisfy the average power
constraint6

1

2RT

∑

X∈CST

‖X‖2F ≤MT · SNR.

When the ST codeCST is used, a code matrixX ∈ CST is
transmitted column by column overT consecutive channel
uses, such that theT channel outputs can be expressed as

Y = HX+ Z,

where each column of the matricesY,Z ∈ CN×T represents
the channel output and additive noise, respectively, at oneof
the T channel uses.

An ST code CST is said to be alinear dispersionST
code [47] over the constellationS if every code matrix
X ∈ CST can be uniquely decomposed as

X =
K
∑

k=1

skFk, sk ∈ S,

whereS is some constellation and the matricesFk ∈ CM×T

are fixed and independent of the constellation symbolssk. De-
noting byvec(X) the vector obtained by stacking the columns
of X one below the other, and lettings = [s1 · · · sK ]T gives

vec(X) = Ps,

where

P = [vec(F1) vec(F2) · · · vec(FK)]

is the code’sMT ×K generating matrix. A linear dispersion
ST code is full-rate if K = MT . In the sequel, linear

6The Frobenius norm of a matrixX is denoted by‖X‖2
F

.

dispersion ST codes over a QAM(L) constellation, defined
in (21), will play a key role. The linear dispersion ST code
obtained by using the infinite constellation QAM(∞) = Z+iZ
is referred to asCST

∞ , and, after vectorization, is in fact a
complex lattice with generating matrixP. Since the QAM(L)
constellation is a subset ofZ+ iZ it follows that for any finite
L the QAM(L) based codeCST is a subset ofCST

∞ .
An important class of linear dispersion ST codes withT =

M is that ofperfect codes[8], [9], which is defined next.

Definition 3: An M ×M linear dispersion ST code over a
QAM constellation is calledperfect if

1) It is full-rate;
2) It satisfies the nonvanishing determinant criterion

δmin(CST
∞ ) , inf

0 6=X∈CST
∞

| det(X)|2 > 0;

3) The code’s generating matrix is unitary, i.e.,P†P = I.
Note that this definition is slightly different than the one

used in [8], [9], where instead of condition 3 it is required that
the energy of the codeword corresponding to the information
symbolss will have the same energy as‖s‖2, and that all the
coded symbols in allT time slots will have the same average
energy.

In [8], perfect linear dispersion ST codes were found for
M = 2, 3, 4 and 6, whereas in [9] perfect linear dispersion
ST codes were obtained for any positive integerM . The
constructions in [8], [9] are based on cyclic division algebras,
and result in unitary generating matrices. Thus, for any positive
integerM , there exist codes that satisfy the requirements of
Definition 3.

The approximate universality of an ST code over the MIMO
channel was studied in [6]. This property refers to an ST
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code being optimal in terms of DMT regardless of the fading
statistics ofH. A sufficient and necessary condition for an ST
code to be approximately universal was derived in [6]. This
condition is closely related to the nonvanishing determinant
criterion and is satisfied by perfect linear dispersion ST codes.
The next Theorem is an extension of [6, Theorem 3.1]. The
notation[x]+ , max(x, 0) is used.

Theorem 3:Let CST
∞ be anM×M perfect linear dispersion

ST code over a QAM(∞) constellation withδmin(CST
∞ ) =

inf0 6=X∈CST
∞

| det(X)|2 > 0, and let CST be its sub-
code over a QAM(L) constellation. Then, for all chan-
nel matricesH with corresponding WI mutual information
CWI = log det(I+ SNRH†H), M transmit antennas and an
arbitrary number of receive antennas and all0 6= X ∈ CST

SNR‖HX‖2F ≥
[

δmin(CST
∞ )

1
M 2

CWI
M − 2M2L2

]+

.

Proof: The proof closely follows that of [6, Theorem 3.1],
and is given in Appendix C.

Let H = IM ⊗H, as in (23). The next simple corollary of
Theorem 3 will be used in Section V to prove the main result
of this paper.

Corollary 1: Let P ∈ CM
2×M2

be a generating matrix
of a perfectM ×M QAM based linear dispersion ST code
CST
∞ with δmin(CST

∞ ) = inf0 6=X∈CST
∞

| det(X)|2 > 0. Then, for all
channel matricesH with corresponding WI mutual informa-
tion CWI = log det(I+ SNRH†H), M transmit antennas and
an arbitrary number of receive antennas

SNRd2min(HP, L) ≥
[

δmin(CST
∞ )

1
M 2

CWI
M − 2M2L2

]+

.

Proof: Consider the subcodeCST of CST
∞ , defined over a

QAM(L) constellation. Then, for anya ∈ QAMM2

(L) there
exist a code matrixX ∈ CST such that

vec(X) = Pa.

Now,

SNR‖HPa‖2 = SNR‖H vec(X)‖2

= SNR‖HX‖2F
≥

[

δmin(CST
∞ )

1
M 2

CWI
M − 2M2L2

]+

,

where the last inequality follows from Theorem 3. It follows
that

SNRd2min(HP, L) = min
a∈QAMM2

(L)\0
SNR‖HPa‖2

≥
[

δmin(CST
∞ )

1
M 2

CWI
M − 2M2L2

]+

.

V. M AIN RESULT

The next theorem lower bounds the effective signal-to-noise
ratio of precoded IF equalization, where the precoding matrix
generates a perfect linear dispersion ST code. The obtained
bound depends on the channel matrixH only through its
corresponding WI mutual information.

Theorem 4:Consider the aggregate MIMO channel

ȳ = HPx̄+ z̄

where H = IM ⊗ H ∈ CNM×M2

, and P ∈ CM
2×M2

is a generating matrix of a perfectM ×M
QAM based linear dispersion ST codeCST

∞ with
δmin(CST

∞ ) = inf0 6=X∈CST
∞

| det(X)|2 > 0. Then, applying
IF equalization to the aggregate channel yields

SNReff >
1

8M6
δmin(CST

∞ )
1
M 2

CWI
M ,

for all channel matricesH with corresponding WI mutual
informationCWI = log det(I+ SNRH†H),M transmit anten-
nas and an arbitrary number of receive antennas

Proof: Applying Lemma 2 to the aggregateNM ×M2

channel matrixH̄ = HP gives

SNReff >
1

4M4
min

L=1,2,...

(

L2 + SNRd2min(H̄, L)
)

. (26)

Using Corollary 1, this is bounded by

SNReff >
1

4M4
min

L=1,2,...

(

L2 +
[

δmin(CST
∞ )

1
M 2

CWI
M − 2M2L2

]+
)

≥ 1

4M4
min

L=1,2,...



L2 +

[

δmin(CST
∞ )

1
M 2

CWI
M

2M2
− L2

]+




≥ 1

8M6
δmin(CST

∞ )
1
M 2

CWI
M

as desired.

The next theorem shows that precoded IF attains the com-
pound MIMO capacity to within a constant gap.

Theorem 5:Let P ∈ CM
2×M2

be a generating matrix of
a perfectM ×M QAM based linear dispersion ST codeCST

∞

with δmin(CST
∞ ) = inf0 6=X∈CST

∞

| det(X)|2 > 0. For all channel
matricesH with M transmit antennas and an arbitrary number
of receive antennas, precoded integer-forcing with the precod-
ing matrixP achieves any rate satisfying

RP-IF < CWI − Γ
(

δmin(CST
∞ ),M

)

,

whereCWI = log det(I+ SNRH†H), and

Γ
(

δmin(CST
∞ ),M

)

, log
1

δmin(CST
∞ )

+ 3M log(2M2). (27)

Proof: In precoded IF, the matrixP is used as a precoding
matrix that transforms the originalN×M MIMO channel (1)
to the aggregateNM ×M2 MIMO channel

ȳ = HPx̄+ z̄

= H̄x̄+ z̄, (28)

as described in Section III, and then IF equalization is applied
to the aggregate channel. Assuming a “good” nested lattice
codebook is used to encode all2M2 streams transmitted over
the aggregate channel, by (13), IF equalization can achieve
any rate satisfying

RIF,aggregate< M2 log(SNReff).
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Using Theorem 4, it follows that any rate satisfying

RIF,aggregate< M2 log

(

1

8M6
δmin(CST

∞ )
1
M 2

CWI
M

)

=MCWI −M log
1

δmin(CST
∞ )

−M2 log(8M6)

is achievable over the aggregate channel.
Since each channel use of the aggregate channel (28)

corresponds toM channel uses of the original channel (1),
the communication rate should be normalized by a factor of
1/M . Thus,RP-IF = RIF,aggregate/M , and the theorem follows.

Example 2:The Golden-code [11] is a QAM-based perfect
2×2 linear dispersion space time code, withδmin(CST

∞ ) = 1/5.
Thus, for a MIMO channel withM = 2 transmit antennas,
its generating matrixP ∈ C4×4 can be used for precoded
integer-forcing. Theorem 5 implies that with this choice of
P, precoded integer-forcing achievesCWI to within a gap
of Γ (1/5, 2) = 20.32 bits, which translates to a gap of5.08
bits per real dimension. In fact, using a slightly more careful
analysis,7 it can be shown that, with this choice ofP, precoded
integer-forcing achievesCWI to within 15.24 bits, i.e.,3.81 bits
per real dimension.

While the constants from Example 2 may seem quite large,
one has to keep in mind that this is a worst-case bound,
whereas for the typical case, under common statistical assump-
tions such as Rayleigh fading, the gap-to-capacity obtained
by precoded IF is considerably smaller, as demonstrated in
Figure 6.

Moreover, the recent work of Fischleret al. [49] demon-
strates that for channels with a special structure, the gap
can be much smaller when precoded IF-SIC [37] is used. In
particular, [49] studies the compoundparallel MIMO channel
and finds that for channels of dimensions2 × 2 and 3 × 3
precoded IF-SIC achieves at least94% and82%, respectively,
of the compound capacityfor any value of capacity. Theo-
rem 5 provides an additive bound on the gap-to-capacity, and
therefore guarantees that the fraction of the compound MIMO
capacity achieved by precoded IF approaches100% as the
compound capacity increases. It does not, however, provide
useful efficiency guarantees, i.e. multiplicative bounds,for
small capacities. The results in [49] indicate that with a slightly
more complex scheme that also incorporates successive in-
terference cancelation, and a more limited channel model
(parallel MIMO channel instead of the general MIMO channel
studied here), excellent performance can be guaranteed also for
low capacities.

Note that although the proof of Theorem 5 assumed that
a “good” nested lattice code was used, a similar result holds
when aq-ary linear code without shaping is used. This follows
from the fact that the performance of the latter is only degraded
by no more than the shaping loss oflog(2πe/12) bits per

7Namely, the product of successive minima of a lattice and itsdual lattice
in Theorem 1 can be bounded using Proposition 3.3 from [48] instead of the
result from [43]. The bound from [48] involves Hermite’s constant and gives
better results than those obtained using [43] only when verysmall values of
M are of interest.
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Fig. 6. The probability density function of the gap-to-capacity achieved
by precoded IF with “good” nested lattices over a2 × 2 MIMO chan-
nel with Rayleigh fading, where after drawingH it is scaled such that
log det

∣

∣I+ SNRH†
H
∣

∣ = 30bits. The precoded matrix that was used is
the generating matrix of the Golden code. The probability that precoded IF
achieves less than90% of capacity is smaller than0.0015 in this scenario.

antenna w.r.t. the former. Moreover, Theorem 4 can also be
used to obtain an upper bound on the error probability of
precoded IF with uncoded transmission.

Proposition 1: For all channel matricesH with correspond-
ing WI mutual informationCWI = log det(I+ SNRH†H), M
transmit antennas and an arbitrary number of receive antennas,
the error probability of precoded IF with uncoded transmission
is bounded by

Pe,P-IF-uncoded≤ 4M2 exp

{

−3

2
2

1
M (CWI−RP-IF−Γ(δmin(C

ST
∞

),M))
}

,

provided that the precoding matrixP generates anM ×M
perfect linear dispersion ST codeCST

∞ with minimum determi-
nantδmin(CST

∞ ) = inf0 6=X∈CST
∞

| det(X)|2 > 0.

Proof: Using (15), the error probability of uncoded IF
equalization over the aggregate channel (28) is bounded by

Pe,P-IF-uncoded≤ 4M2 exp

{

−3

2
2

1

M2 (M
2 log(SNReff)−MRP-IF)

}

,

where we have used the fact that the transmission rate over
the aggregate channel isM times larger than the actual
communication rateRP-IF. Now, replacingSNReff with its
bound from Theorem 4 establishes the proposition.

VI. A PPLICATION: RATELESS CODING FORMIMO
CHANNELS VIA PRECODED INTEGER-FORCING

A notable feature of precoded IF is that the scheme, as
well as its performance guarantees, do not depend on the
number of antennas at the receiver side. In this section, we
exploit this property for developing efficient rateless codes for
the MIMO channel. The rateless coding problem is another
instance of a DoF-mismatch scenario, where the transmitter
has to simultaneously transmit to different (virtual) users, each
with a different number of receive antennas.
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Fig. 7. An illustration of the proposed rateless code construction. P k

ℓ
denotes the matrix obtained by taking theℓth up tokth rows of the matrixP.

In an open-loop scenario, in addition to not knowing the
channel gains, the transmitter may also not know the capacity
of its link to the receiver. A reasonable approach, in this case,
is to transmit a long codeword describing the information
bits, such that if the channel is “good”, the receiver can stop
listening after a short while, whereas if it is “bad” a longer
fraction of the codeword is needed to ensure correct decoding.
Since the code’s rate is not predefined, and depends on the
channel condition, such an approach is referred to asrateless
coding.

A rateless code is defined as a family of codes that has the
property that codewords of the higher rate codes are prefixesof
those of the lower rate ones. A family of such codes is called
perfect (not to be confused with perfect linear dispersion ST
codes) if each of the codes in the family is capacity-achieving.

In this section, we show how precoded IF can be used for
constructing a rateless code for the MIMO channel which is a
constant number of bits from perfect, i.e., each of its subcodes
achieves the compound MIMO capacity to within a constant
number of bits. For sake of brevity, we only illustrate the
scheme through an example rather than give a full description.

Assume the channel model is the one from (1), and the goal
is to design two codes with ratesR, andR/2, where the higher
rate code is a prefix of the lower rate one. It is further required
that for some predefinedδ > 0 if the channel’s capacityC
satisfiesC > R+ δ the high-rate (short) code can be decoded
reliably, and ifC > R/2 + δ the low-rate (long) code can
be decoded reliably. This problem can be viewed as that of
designing a code which is simultaneously good for the two
channel matrices

H1 =

[

H 0

0 0

]

and H2 =

[

H 0

0 H

]

,

since the effective channelH2 is obtained from twice as many
channel uses asH1, which corresponds to a code twice as
long. If H ∈ CN×M , thenH1,H2 ∈ C2N×2M . In the previous
section, it was shown that precoded IF can simultaneously
achieve the capacity of any MIMO channel to within a constant
gap. In particular, it can simultaneously achieve the capacity
of H1 andH2 to within a constant gap.

The rateless code is therefore constructed from4M2 com-
plex streams of linear codewords (each consisting of one
linear codeword in its quadrature component and one in its

in-phase components). Each complex stream is of lengthn
and carriesnR/2M bits. These streams are then precoded
using the matrixP ∈ C4M2×4M2

which generates a perfect
2M × 2M linear dispersion ST code. This results in a set
of 4M2 linear combinations of the coded streams. The linear
combinations are then split into4M groups each containing
M linear combinations, such that the first group consists of the
first M linear combinations, the next group contains the next
M linear combinations, and so on. The short code consists of
the odd groups of linear combinations, whereas the long code
consists of both odd and even groups of linear combinations.
See Figure 7 for an illustration of the code construction.

The long code is transmitted during4Mn consecutive
channel uses. At the receiver side, integer-forcing equalization
is applied. The receiver, which knows the channel capac-
ity, can decide whether the first2M2 linear combinations,
corresponding to the first2Mn channel uses, suffice for
correct decoding of the4M2 coded streams, or all4M2 linear
combinations, corresponding to all4Mn channel uses, are
needed. Theorem 5 implies that if the capacity is greater than
R+ Γ

(

δmin(CST
∞ ), 2M

)

the short code can be decoded reliably,
and if it is greater thanR/2 + Γ

(

δmin(CST
∞ ), 2M

)

the long
code can be decoded reliably.

Note that although we have only described the construction
of a code that is compatible with two different rates, the
aforementioned construction can be easily extended to any
number of rates.

VII. D ISCUSSION ANDSUMMARY

The additive Gaussian noise MIMO channel in an open-
loop scenario, where the receiver has complete channel state
information whereas the transmitter only knows the white-
input mutual information was considered in this paper. It
was shown that using linear precoding at the transmitter in
conjunction with integer-forcing equalization at the receiver
suffices to approach the capacity of this compound channel
to within a constant gap, depending only on the number of
transmit antennas. To the best of our knowledge, this is the
first practical scheme that guarantees an additive loss w.r.t.
the compound capacity. Such a performance guarantee is much
stronger than DMT optimality, which is at present the common
benchmark for evaluating schemes. In particular, althoughour
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results are free from any statistical assumptions, they can
be interpreted to obtain performance guarantees in a MIMO
fading environment. Specifically, a scheme that achieves a
constant gap from capacity is DMT optimal under any fading
statistics, and achieves a constant gap from the outage capacity
under any fading statistics.

IF equalization uses coded streams, and is therefore usually
less suitable for fast fading environments. Nevertheless,we
have also developed new upper bounds on an uncoded version
of IF equalization, which is more adequate for fast fading.
We note that while uncoded IF equalization is quite similar to
lattice reduction aided decoding, to the best of our knowledge,
the performance of the latter was never analyzed at such a fine
scale.

Another appealing feature of the described scheme, inher-
ited from the properties of its underlying perfect ST codes,
is that it is independent of the number of receive antennas,
and the performance guarantees obtained in this paper do not
depend on the number of receive antennas as well. Hence, the
scheme is not sensitive to a degrees-of-freedom mismatch.

The compound channel studied in this paper includes all
channel matrices with the same white-input mutual infor-
mation. In certain scenarios, such as multicasting the same
message to a finite set of users whose channel matrices
are known at the transmitter, it makes sense to consider
compound channels with a relatively small number of users.
Recent work [50] demonstrates that precoded IF-SIC performs
remarkably well in such scenarios and achieves a large fraction
of the compound capacity, even at small SNRs, under reason-
able statistical assumptions on the distribution of the channel
matrices.
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APPENDIX A
PROOF OFLEMMA 1

The output of thekth sub-channel with uncoded transmis-
sion is

ỹk = [vk + zeff,k] mod γqZ,

wherevk ∈ γZ. The estimatêvk is generated by applying a
simple slicer (nearest-neighbor quantizer w.r.t.γZ) to ỹk, fol-
lowed by mod γqZ reduction. The detection error probability
at thekth sub-channel is upper bounded by

Pe,k , Pr (v̂k 6= vk)

≤ Pr
(

|zeff,k| ≥
γ

2

)

.

In order to boundPe,k, a simple lemma, which is based on [33,
Theorem 7] is needed.

Lemma 4:Consider the random variable

zeff =

L
∑

ℓ=1

αℓzℓ +

K
∑

k=1

βkdk

where{zℓ}Lℓ=1 are i.i.d. Gaussian random variables with zero
mean and some varianceσ2

z and {dk}Kk=1 are i.i.d. random
variables, statistically independent of{zℓ}Lℓ=1, uniformly dis-
tributed over the interval[−ρ/2, ρ/2) for someρ > 0. Let
σ2

eff , E(z2eff). Then

Pr(zeff > τ) = Pr(zeff < −τ) ≤ exp

{

− τ2

2σ2
eff

}

.

Proof: The probability density function ofzeff is symmet-
ric around zero and hence

Pr(zeff ≥ τ) = Pr(zeff ≤ −τ).

Applying Chernoff’s bound gives (fors > 0)

Pr(zeff ≥ τ) ≤ e−sτE (eszeff)

= e−sτE
(

es(
∑L

ℓ=1
αℓzl+

∑K
k=1

βkdk)
)

= e−sτ
L
∏

ℓ=1

E (esαℓzl)

K
∏

k=1

E
(

esβkdk
)

.

Using the well-known expressions for the moment generating
functions of Gaussian and uniform random variables gives

E (esαℓzl) = e
1
2
s2α2

ℓσ
2
z ,

E
(

esβkdk
)

=
sinh(sβkρ/2)

sβkρ/2
≤ e

1
2

s2β2
k
ρ2

12 ,

where the last inequality follows from
sinh(x)/x ≤ exp{x2/6} (which can be obtained by simple
Taylor expansion) [33]. It follows that

Pr(zeff ≥ τ) ≤ e−sτe
s2

2

(

∑L
ℓ=1

α2
ℓσ

2
z+

∑K
k=1

β2
k

ρ2

12

)

= e−sτ+
1
2
s2σ2

eff . (29)

Settings = τ/σ2
eff gives the desired result.

Now, using Lemma 4, the probability of detection error at
the kth sub-channel can be bounded as

Pe,k ≤ Pr
(

|zeff,k| ≥
γ

2

)

≤ 2 exp

{

− γ2

8σ2
eff,k

}

= 2 exp

{

− 12SNR

8q2σ2
eff,k

}

= 2 exp

{

−3

2

1

q2
SNReff,k

}

,

where the definition ofSNReff,k was used in the last equality.
Using the fact thatq = 2R and thatSNReff,k ≥ SNReff for all
k = 1, . . . , 2M , the detection error probability at each of the
2M sub-channels can be further bounded as

Pe ≤ 2 exp

{

−3

2
22(

1
2
log(SNReff)−R)

}

.

Since the IF equalizer makes an error only if a detection
error occurred in at least one of the2M sub-channels, and
since the total transmission rate isRIF = 2MR, the total error
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probability of the IF equalizer with uncoded transmission rate
RIF is bounded by

Pe,IF-uncoded≤ 4M exp

{

−3

2
22(

1
2
log(SNReff)−

RIF
2M )

}

= 4M exp

{

−3

2
2

1
M

(M log(SNReff)−RIF)

}

.

APPENDIX B
PROOF OFLEMMA 3

Let ψ : R+ → R+ be a real positive decreasing function
with ψ(r) → 0 asr → ∞, let IN×M , [−1/2, 1/2)N×M be
the set of all matrices of dimensionsN ×M with all entries
taken from the interval[−1/2, 1/2), and define the set

W0(M,N,ψ) ,

{

H ∈ I
N×M : ||Ha‖∞ ≤ ψ(‖a‖∞)

for i.m. a ∈ Z
M \ 0

}

, (30)

where‖x‖∞ , maxi |xi| is the infinity norm, and i.m. means
infinitely many. The next result from [18, Corollary 2] shows
that W0(M,N,ψ) has either zero Lebesgue measure or full
Lebesgue measure, depending on the choice of the function
ψ.

Theorem 6: [18, Corollary 2] Letψ : R+ → R+ be a real
positive decreasing function withψ(r) → 0 as r → ∞. For
M > N , if the series

∞
∑

r=1

ψN (r)rM−N−1

converges then the setW0(M,N,ψ) has zero Lebesgue mea-
sure, and if it diverges the setW0(M,N,ψ) has full Lebesgue
measure.

For the choiceψ(r) = r−(M+ǫ
N

−1), ǫ > 0, the sum from
Theorem 6 converges. This, implies that forM > N the set

W̃0(M,N) ,

{

H ∈ I
N×M : ||Ha‖∞ ≤ ‖a‖−(M+ǫ

N
−1)

∞

for i.m. a ∈ Z
M \ 0

}

(31)

has zero measure. Define the set

S0(M,N) ,

{

H ∈ I
N×M : ‖Ha‖2 ≤ ‖a‖−2(M+ǫ

N
−1)

∞

for i.m. a ∈ Z
M \ 0

}

,

and note thatS0(M,N) ⊆ W̃0(M,N), as‖Ha‖2∞ ≤ ‖Ha‖2.
The next Corollary is straightforward.

Corollary 2: ForM > N and anyǫ > 0, the set

H0(M,N) ,

{

H ∈ I
N×M : d̃2min(H, L) ≤ L−2(M+ǫ

N
−1)

for i.m. L ∈ N

}

.

has zero Lebesgue measure.

Proof: By the definition ofd̃min(H, L), the setsS0(M,N)
andH0(M,N) are equal. The corollary then follows from the
fact thatW̃0(M,N) has zero measure and thatS0(M,N) ⊆
W̃0(M,N).

Let H̄0(M,N) = IN×M \ H0(M,N) be the complement
set ofH0(M,N), and note that̄H0(M,N) has full Lebesgue
measure. For anyH ∈ H̄0(M,N) there exist a positive integer
L∗(H) such that the inequality

d̃2min(H, L) > L−2(M+ǫ
N

−1) (32)

holds for any integerL > L∗(H). It follows that

min
L>L∗(H)

(

L2 + SNRd̃2min(H, L)
)

> min
L>L∗(H)

(

L2 + SNRL−2(M+ǫ
N

−1)
)

> min
L>L∗(H)

max
(

L2, SNRL−2(M+ǫ
N

−1)
)

> min
L>0

max
(

L2, SNRL−2(M+ǫ
N

−1)
)

. (33)

Since L2 is increasing inL and SNRL−2(M+ǫ
N

−1) is de-
creasing inL, the minimum in (33) is attained whenL2 =
SNRL−2(M+ǫ

N
−1), which occurs for

L2 = SNR
N

M+ǫ .

This implies that

min
L>L∗(H)

L2 + SNRd̃2min(H, L) > SNR
N

M+ǫ .

On the other hand, for anyH ∈ H̄0(M,N) we can find a
constantc(H) > 0 such that

min
L≤L∗(H)

d̃min(H, L) > c(H).

This follows from the fact that if there exist an integer
vector a ∈ ZM \ 0 for which ‖Ha‖2 = 0, then there are
infinitely many such vectors, which contradicts the fact that
H ∈ H̄0(M,N). Thus, for anyH ∈ H̄0(M,N) we have

SNReff >
1

M2
min

L=1,2,···

(

L2 + SNRd̃2min(H, L)
)

=
1

M2
min

(

min
L≤L∗(H)

(

L2 + d̃2min(H, L)
)

,

min
L>L∗(H)

(

L2 + d̃2min(H, L)
)

)

>
1

M2
min

(

c(H)SNR, SNR
N

M+ǫ

)

. (34)

Taking the limit ofSNR → ∞ we see that

lim
SNR→∞

1/2 log(SNReff)
1/2 log(SNR)

≥ N

M + ǫ
, (35)

for anyH ∈ H̄0(M,N) andM > N . Now, takingǫ→ 0 we
see that for anyH ∈ H̄0(M,N) andM > N the IF scheme
achievesN degrees of freedom. SinceH ∈ H̄0(M,N) has
full Lebesgue measure, the IF scheme achievesN degrees of
freedom for almost everyH ∈ IN×M . To see why this is
also true for almost everyH ∈ RN×M , note that ifH /∈
IN×M , then we can scale it by a scalarρ ≤ 1 such that
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ρH ∈ IN×M . But sinced̃min(H, L) ≥ d̃min(ρH, L), this will
only decreaseSNReff. Thus, we conclude that the IF scheme
achievesN degrees of freedom for almost everyH ∈ RN×M ,
which establishes the lemma forM > N .

The caseN ≥ M is much easier. For any matrixH ∈
RN×M we denote the smallest singular value byσM (H).
Standard linear algebra gives

‖Ha‖2 ≥ σ2
M (H)‖a‖2.

Since‖a‖ ≥ 1 for all a ∈ PAMM (L) \ 0, we have

SNReff >
1

M2
min

L=1,2,···

(

L2 + SNRd̃2min(H, L)
)

>
σ2
M (H)

M2
SNR. (36)

For N ≥ M , the set of matricesH ∈ RN×M for which
σ2
M (H) > 0 has full Lebesgue measure. Applying (36) gives

lim
SNR→∞

1/2 log(SNReff)
1/2 log(SNR)

≥ 1, (37)

for almost everyH ∈ RN×M whenN ≥M . Combining (35)
and (37), we get that

lim
SNR→∞

RIF(SNR)
1/2 log(SNR)

≥ min(M,N). (38)

It is well-known (see e.g., [4]) that for allH ∈ RN×M ,
the number of DoF offered by the channel is not greater
min(M,N), regardless of the coding scheme which is used.
Combining this with (39) gives

lim
SNR→∞

RIF(SNR)
1/2 log(SNR)

= min(M,N). (39)

for almost everyH ∈ RN×M , as desired.

APPENDIX C
PROOF OFTHEOREM 3

Consider some arbitrary0 6= X ∈ CST and let

H = U1ΨV
†
1 andX = U2ΛV

†
2

be the singular value decompositions (SVD) ofH and X,
respectively. With this notation

SNR‖HX‖2F = SNR‖ΨV
†
1U2Λ‖2F . (40)

Suppose without loss of generality that the (absolute) singular
values are ordered by increasing value inΛ and by decreasing
value inΨ:

Λ = diag{λ1, . . . , λM},
Ψ = diag{ψ1, . . . , ψmn

, 0, · · · , 0},

wheremn , min{M,N}. In order to establish the desired
result one has to find the channelH with corresponding WI
mutual informationCWI that minimizes (40). The rotation
matrix V1 that minimizes (40) isV1 = U2 which aligns the
weaker singular values of the channel matrix with the stronger
singular values of the code matrix [51]. Thus, the problem of

finding the worst channel matrixH w.r.t. the codewordX
reduces to the optimization problem

min
ψ1,...,ψmn

SNR

mn
∑

m=1

|ψm|2|λm|2

subject to
mn
∑

m=1

log(1 + |ψm|2SNR) = CWI . (41)

A lower bound on the solution of the minimization prob-
lem (41) can be obtained by replacingmn with M ≥ mn,
which increases (or does not change) the optimization space
and results in

min
ψ1,...,ψM

SNR

M
∑

m=1

|ψm|2|λm|2

subject to
M
∑

m=1

log(1 + |ψm|2SNR) = CWI . (42)

The solution to (42) is given by standard water-filling [6]

SNR‖HX‖2F ≥
M
∑

m=1

[

1

λ
− |λm|2

]+

, (43)

whereλ satisfies
M
∑

m=1

[

log

(

1

λ|λm|2
)]+

= CWI . (44)

Without loss of generality we may assume that
2M2L2 ≤ δmin(CST

∞ )
1
M 2

CWI
M as otherwise the theorem is

trivial. With this assumption, we next show that the[·]+
operation in (44) is not needed, and hence its solution is
given by

1

λ
= |λ1 · · ·λM | 2

M 2
CWI
M . (45)

To see this, one has to show that with1/λ as above the
inequality 1/λ ≥ |λm|2 holds for all m = 1, · · · ,M . First
recall thatX is a codeword from a perfect linear dispersion ST
code over an QAM(L) constellation. LetP be the generating
matrix of the codeCST. Thus, vec(X) = Ps for some
vector s whoseM2 components all belong to the QAM(L)
constellation. This implies that

M
∑

m=1

|λm|2 = ‖X‖2F

= ‖ vec(X)‖2

= ‖Ps‖2

= ‖s‖2 (46)

≤ 2M2L2, (47)

where (46) follows from the fact thatP is unitary. In partic-
ular, (47) implies that

|λm|2 ≤ 2M2L2

for all m = 1, . . . ,M . Since by definition

|λ1 · · ·λM |2 = | det(X)|2 ≥ δmin(CST
∞ ),
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we have for allm = 1, . . . ,M

|λm|2 ≤ 2M2L2

≤ δmin(CST
∞ )

1
M 2

CWI
M

≤ |λ1 · · ·λM | 2
M 2

CWI
M

=
1

λ
.

Thus, (45) indeed solves (44).
Substituting (45) into (43) gives

SNR‖HX‖2F ≥
[

M |λ1 · · ·λM | 2
M 2

CWI
M −

M
∑

m=1

|λm|2
]+

≥
[

Mδmin(CST
∞ )

1
M 2

CWI
M − 2M2L2

]+

≥
[

δmin(CST
∞ )

1
M 2

CWI
M − 2M2L2

]+

as desired.
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