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On reliable computation by noisy

random Boolean formulas
Alexander Mozeika and David Saad

Abstract—We study noisy computation in randomly

generated k-ary Boolean formulas. We establish bounds on

the noise level above which the results of computation by

random formulas are not reliable. This bound is saturated

by formulas constructed from a single majority-like gates.

We show that these gates can be used to compute any

Boolean function reliably below the noise bound.

Index Terms—Random Boolean formulas,ǫ-noise, reli-

able computation.

I. I NTRODUCTION

One of computation models for a Boolean function

f : {−1, 1}n → {−1, 1} is a Boolean circuit or formula

[1]. A circuit is a directed acyclic graph in which nodes

of in-degree zero are either the Boolean constants or

variables, nodes of in-degreek ≥ 1 are logical gates,

computing Boolean functions ofk arguments, and nodes

of out-degree zero correspond to the circuit outputs. If

a circuit has only a single output and the output of each

gate is used as an input to at most one gate then this

circuit is called aformula. In circuits, as in any other
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model of computation, the computational complexity and

effects of noise are important questions [2].

The circuit complexity of a Boolean function is the

minimum number of gates (circuitsize) or the minimum

depth1 of a circuit, constructed from a particular set of

gates, which computes this function. However, to find

a circuit representation of a Boolean function with a

bounded size or depth is a difficult problem [1]. One ap-

proach to this problem is to study complexity oftypical

Boolean functions computed by random formulas [3].

The two most studied methods of generating random

formulas use random tree generation and a growth pro-

cess as their core procedures. In the first method, a rooted

k-ary tree is sampled from the uniform distribution of

all rootedk-ary trees; the leaves of this random tree are

then labelled by reference to the Boolean variables and

internal nodes are labelled by the Boolean gates. This

method was used to investigate the complexity of typical

functions computed by random AND/OR formulas [4],

[5], [6] and allowed to obtain a close relation between

the probabilityP[f] of a random formula to compute a

Boolean functionf and its size (complexity). However, it

seems that this probability distribution is biased towards

very low complexity functions [5].

1The depth of a circuit is the number of gates on the longest path

from an input node to the output node

June 21, 2012 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, MAY 2012 2

The second method uses the following growth process:

Firstly, one defines the initial probability distribution

P0[f] over the setF0 of simple Boolean functions ofN

variables. Secondly, and in further steps, the functions

chosen from the distributionsPt[f] defined in previ-

ous steps are combined by Boolean gates:Ft+1 =

{α(f1, . . . , fk); fj ∈ Ft for j = 1, 2, . . . , k}. This pro-

cess can be seen as a growth ofk-ary balanced trees and

was first used by Valiant to obtain an upper bound on

the size of monotone formulas computing the majority

function [7]. Savický recently showed for one of these

processes, forP0[f] that is uniform on some set of

Boolean functionsF0 and under very broad conditions

on α, the probabilityPt[f] tends to the uniform distri-

bution over all Boolean functions ofN variables when

t → ∞ [8]. The convergence rates of the Savický’s

process and its variants with different gates and initial

conditions were studied in [3].

Another important question in the circuit theory is

a reliable computations of Boolean functions in the

presence of noise. One of the first to study the effect

of noise in computing systems was von Neumann who

attempted to explain the robustness of biologically-

inspired computing circuits [9]. His model represented

neural activities by a circuit (or formula) composed of

ǫ-noisy Boolean gates. Theǫ-noisy gate is designed to

compute a Boolean functionα : {−1, 1}k → {−1, 1},

but for each inputσ ∈ {−1, 1}k there is an error

probability ǫ such thatα(σ) → −α(σ). To simplify

the analysis, error-probability is taken to be independent

for each gate in the circuit. Clearly, a noisy circuit

(ǫ > 0) cannot perform any given computation in a

deterministic manner: for any circuit-input there is a non-

vanishing probability that the circuit will produces the

wrong output. The maximum of this error probabilityδ

over all circuit-inputs determines thereliability of the

circuit. In his paper, von Neumann showed that reliable

computation (δ < 1/2) is possible for a sufficiently small

ǫ [9] and demonstrated how reliability of a Boolean noisy

circuit can be improved by using constructions based

only on ǫ-noisy gates.

There had been little development in the analysis

of noisy computing systems until the seminal work of

Pippenger [10] who addressed the problem from an in-

formation theory point of view. He showed that if a noisy

k-ary formula is used to compute a Boolean functionf

with the error probabilityδ < 1/2, then (i) there is an

upper bound for the gate-errorǫ(k) which is strictly less

than1/2 and (ii) there is a lower bound for the formula-

depthd̂(k, ǫ, δ) ≥ d, whered is the depth of a noiseless

formula computingf . In comparison to its noiseless

counterpart, a noisy formula that computes reliably has

greater depth due to the presence of restitution-gates,

implying longer computation times [10].

A number of papers have followed and extended

Pippenger’s results. For instance, similar results were

derived for circuits by Feder [11], who also improved

the bounds obtained by Pippenger for formulas. The

exact noise thresholds fork-ary Boolean formulae were

later determined for oddk [12], [13] and for formulas

constructed from2-input NAND gates [14]; the latter

was recently suggested as the exact noise threshold for

general2-input gate formulas [15].

Results derived for noisy Boolean formulas in [12],

[13] rely on a specific construction which usesǫ-noisy

majority gates. The noiseless variant of this gate per-

forms the majority-vote function2 sgn[
∑k

i=1 Sj ] on the

binary inputsSj ∈ {−1, 1} and naturally the number of

these inputsk is odd. In contrast to previous work, in

2We use the definitionsgn[x] = 1 for x > 0, sgn[x] = −1 for

x < 0 and sgn[0]=0 throughout this paper.
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Fig. 1. Noisy growth process. i) Boolean functionsf1, . . . , fk

(represented by binary strings of length2N ) are sampled randomly and

independently from the distributionPt[f]. ii) These functions are then

used to compute a new Boolean functionf via the gateα. At each step

of this computation noise (represented by the binary stringξ) inverts

the output ofα (this operation is represented by the× symbol) with

probability ǫ. In this figure the first and the last bits of the function

f (in red) are inverted by noise. Repeating operations i) and ii) many

times gives rise to an ensemble described by the distribution Pt+1[f].

this paper we concentrate on the possibility of reliable

computation inrandomly generated Boolean formulas.

As a first step towards this goal, we study the effects

of ǫ-noise on the formulas generated in the Savický’s

growth process.

II. N OISY GROWTH PROCESSES AND MAIN RESULTS

Let us introduce noise into the formulas generated by

Savický’s growth process. In order to do this we note

that the noiseless case, as described in the Introduction,

can be also seen as a computation, performed by gateα,

of a new Boolean functionf from k Boolean functions

f1, . . . , fk. These functions, represented by binary±1

strings (or vectors) of length2N , are drawn randomly

and independently from the same distribution [8]. How-

ever, each computation at the gateα may be corrupted

by noise that inverts the result of this computation with

probability ǫ (see Figure 1). Averaging the process over

many realizations of noise leads us to the equation

Pt+1[ f ] =
∑

{fj}

k
∏

j=1

{

Pt[ fj ]
}

(1)

×
2N
∏

i=1

eβf
iα(fi1,...,f

i
k)

2 coshβα(fi1, . . . , f
i
k)

which gives us the probability of a Boolean functionf

being computed by the noisy formulas of deptht + 1.

Here for convenience we have introduced the inverse

“temperature” parameterβ = 1/T which is related to

the noise parameterǫ via the equalitytanhβ = 1− 2ǫ.

The limits β → 0/∞ correspond to completely ran-

dom/deterministic cases.

Without noise (β → ∞) the equation (1) reduces to

Pt+1[ f ] =
∑

{fj}

k
∏

j=1

{

Pt[ fj ]
}

(2)

×
2N
∏

i=1

δ
[

fi;α(fi1, . . . , f
i
k)
]

,

where we useδ[x; y] to denote Kronecker delta. Equa-

tion (2) was studied in the original Savický’s work [8]

and subsequent studies [3] where the stationary distribu-

tion P∞[ f ] = limt→∞ Pt[ f ] of the noiseless process

(2) was studied with the initial conditionsP0[ f ] =

1
|F0|

∑

g∈F0

∏2N

i=1 δ[f
i; gi] for different initial setsF0 of

simple Boolean functions (constants, identities, etc.) and

different gatesα. Depending on these parameters the

stationary distribution is either concentrated on a single

function, i.e.P∞[ f ] =
∏2N

i=1 δ
[

fI ; gi
]

or on some set

of functionsF, i.e. P∞[ f ] = 1
|F|

∑

g∈F

∏2N

i=1 δ[f
i; gi].

There are also cases when fort → ∞ the distributions

Pt[ f ] andPt+1[ f ] are distinct.

Our main contribution to these studies is the following

result for the noisy process (1).

Theorem 2.1: For a balanced gate3 α the stationary

3The gate is balanced when it has an equal number of+1’s and

−1’s in its output.
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distributionP∞[f] = 1

22N
is a stable and unique solution

of the process (1) whenǫ > ǫ(k) = 1−b(k)
2 , whereb(k)≡

{

2k−1/k
(

k−1
(k−1)/2

)

; 2k−2/(k−1)
(

k−2
(k−2)/2

)

}

, with k ≥ 3,

for k odd and even respectively.

Proof: In order to show this, we first use the result,

derived in Appendix A, that the distributionPt+1[f]

can be represented via its momentsmS(t + 1) =
∑

f̂ Pt+1 [̂f ]
∏

i∈S f̂i, where S is a subset of the set

[2N ] = {1, . . . , 2N}, andPt+1[f] is given by

Pt+1[f] =
1

22N



1 +
∑

S⊆[2N ]

mS(t+ 1)
∏

i∈S

fi



 , (3)

where then-th moment is governed by the equation

mi1,...,in(t+ 1) (4)

= tanhn(β)
∑

{fi
j
}

k
∏

j=1

{

× 1

2n



1 +
∑

S⊆I

mS(t)
∏

i∈S

fij





}

×
∏

i∈I

α(fi1, . . . , f
i
k)

with I = {i1, . . . , in}. Thus then-th moment att+1 is

a function of only then-th and lower order moments at

t.

Let us assume now thattanh(β) < b(k) then by

the Lemma 4.1, withn = 1, the first moments of

the distributionPt+1[f] are vanishing ast → ∞. But

then, by applying the same lemma to the ordern ≥ 2

moments, we conclude that all moments are vanishing

as t → ∞.

In addition to its direct interpretation that aboveǫ(k)

(see Figure 2) the noisy process (1) isergodic and has

only one stationary solution, the result of Theorem 2.1

also has consequences for computation in noisy random

formulas. A feature of noisy formulas, which is essential

for reliable computation, is their greater depth due to the

presence of correctingǫ-noisy gates [10]. This correction

 0

 0.1

 0.3

 0.5

 1  10  30  50  70  100

ǫ(k)

k

Fig. 2. Upper bound for reliable computation by noisyk-ary random

formulas.

operation can be seen as a procedure which reduces the

entropy, but in our case of very deep (t → ∞) random

formulas the entropy is at its maximum whenǫ > ǫ(k).

Thus any computation, even as simple as computing

identity function, can not be performed reliably in this

regime.

For odd k our result for the boundǫ(k) is exactly

equal to theexact threshold for reliable computation by

generalk-ary formulas [12], [13]. It is not clear however

if this threshold is also exact, i.e. any Boolean function

can be computed forǫ ∈ (0, ǫ(k)) with the errorδ <

1/2, for randomly generated formulas. For evenk >

2 this threshold is not known, but our result suggests

that for balanced gatesα it can not exceed the bound

ǫ(k) of Theorem 2.1. Furthermore ask → ∞ the ǫ(k)

approaches1/2 as1/2−ǫ(k) = O(1/
√
k), this is follows

from the Stirling’s approximation ofb(k), which is in

agreement with the bound computed in [16] for general

formulas.

The results of Lemma 3.1, which are used in the

proof of Theorem 2.1, can be also exploited to show that

reliable computation in randomly generated formulas is

possible. This can be shown as follows. Suppose that

gateα in the process (1) is the same as the one stud-
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ied in Lemma 3.1. Assume that the initial distribution

P0[f] is such that the stationary distributionP∞[f] of

the noiseless process (2) is concentrated on only one

Boolean function, i.e. all formulas compute the same

function. This implies that for any inputI ∈ {−1, 1}N

all formulas simultaneously provide an output of+1 or

−1. Then in the presence of noise the average formula

errors in its output with the probability(1−mI(∞))/2,

wheremI(∞) is the stationary solution of equation (5)

corresponding to this input. From the analysis in Lemma

3.1 follows that the maximum of this error over all inputs

is δ = (1 − m(∞))/2 and is bounded away from1/2

when ǫ < ǫ(k). Furthermore, the output error can be

reduced by decreasingǫ or by increasingk. Thus in this

regime any Boolean function can be computed with any

desired accuracy.

III. C OMPUTATION OF THE LOWER BOUND VALUES

In this section we compute the values of lower bounds

appearing in Theorem 2.1. In order to do this we

choose a balanced gateχ(σ) from the set of gates

sgn
[

∑k
j=1 σj

]

+ 1

[

∑k
j=1 σj = 0

]

γ(σ), whereγ(σ) ∈
{−1, 1} is such that

∑

σ 1

[

∑k
j=1 σj = 0

]

γ(σ)=0, and

consider the first momentsmi(t) =
∑

f Pt[ f ] f
i. These

are governed by the equations

m(t+ 1) = Fχ(m(t)) (5)

= tanh(β)

k
∑

ℓ=0

(

k

ℓ

)

sgn[2ℓ− k]

×
[

1 + m(t)

2

]ℓ [
1−m(t)

2

]k−ℓ

Lemma 3.1: For k ≥ 3 the functionFχ(m), defined

in the equation (5), has the following properties: i) if

tanhβ ≤ b(k) then m > Fχ(m) for m ∈ (0, 1] and

Fχ(m) > m for m ∈ [−1, 0); ii) if tanhβ > b(k) then

∃ m∗ 6= 0 such thatm∗ = Fχ(m
∗), whereb(k) is defined

in the Theorem 2.1.

Proof: This lemma follows from the equalities

Fχ(±1) = ± tanhβ, Fχ(0) = 0 (this can be shown by

direct substitution) and the fact thatFχ(m) is a strictly

increasing function, which is also convex and concave on

the intervals(−1, 0) and(0, 1), respectively (to show this

we study properties ofFχ(m) in the Appendix B). Then

i) is true becausedFχ

dm |m=0 < 1 whentanhβ < b(k) and

ii) is true because ofdFχ

dm |m=0 ≥ 1 whentanhβ ≥ b(k).

IV. M OMENTS OFPt[ f ]

Let us consider equation (4) for ann-th momentm.

Assuming that all lower order moments vanish allows us

to write this equation in a very simple form

m(t+ 1) = Fα(m(t)) (6)

= tanhn(β)
∑

{σi
j
}

k
∏

j=1

{

× 1

2n

[

1 + m(t)

n
∏

i=1

σi
j

]}

×
n
∏

i=1

α(σi
1, . . . , σ

i
k).

For a balanced gateα the pointm = 0 is a stationary

solution of the above equation and has the following

property.

Lemma 4.1: The pointm = 0 is a stable and unique

solution of (6) whentanhn(β) < b(k).

Proof: In order to prove this we first show that

tanh(β)n−1Fχ(m) (7)

= tanhn(β)
∑

{σi
j
}

k
∏

j=1

1

2n

[

1 + m
n
∏

i=1

σi
j

]

× sgn





k
∑

j=1

n
∏

i=1

σi
j



 ,
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whereFχ(m) is defined in (5). This can be shown by a

direct calculation as follows

tanhn(β)
∑

{σi
j
}

k
∏

j=1

1

2n

[

1 + m

n
∏

i=1

σi
j

]

(8)

× sgn





k
∑

j=1

n
∏

i=1

σi
j





= tanhn(β)
1

2n−1

∑

{σi
j
}

k
∏

j=1

[

1 + mσ1
j

2

]

× sgn





k
∑

j=1

σ1
j



 = tanh(β)n−1Fχ(m).

In the above the first equality was obtained by applying

transformationσ1
j → ∏n

i=1 σ
i
j and the last equality

followed from comparing this result with the right hand

side of equation (5).

Next, for a balanced gateα we compute the difference

∆(m) = tanhn−1(β)Fχ(m) − Fα(m) in Appendix C.

The result of this computation is that∆(m) ≥ 0 and

∆(m) ≤ 0 on the intervalsm∈ [0, 1) andm∈(−1, 0], re-

spectively, from which the boundstanhn−1(β)Fχ(m) ≥
Fα(m) and tanhn−1(β)Fχ(m) ≤ Fα(m) on the same

intervals follow. The behaviour oftanhn−1(β)Fχ(m)

with respect to the inverse temperatureβ is the same

as of Fχ(m), which we described in Lemma 3.1, but

with the tanh(β) being replaced by thetanhn(β).

V. CONCLUSION

The paper extends previous work [12], [13] on the

reliability of computation in Boolean formulas and

generation of random Boolean functions [8], [3], by

investigating the properties of formulas constructed by

a random growth process whereby computing elements,

primarily k-ary balanced gates, are subject toǫ-noise.

We show that the noisy growth process is ergodic

above the noise boundǫ(k) and hence the formulas

generated by it are unreliable. We also show that formu-

las constructed from majority-like gates, which saturate

this bound, can be used for computing any Boolean

function whenǫ < ǫ(k). Our earlier work, which uses

methods of non-equilibrium statistical physics, suggests

that the same noise bound also applies to the noisy feed-

forward [17] and recurrent Boolean networks [18].

The current analysis is restricted to reliable computa-

tion in a growth process that uses onlybalanced gates4

and produces (without noise) onlyone Boolean function;

but we envisage that it can be extended to study more

general scenarios of non-balanced gates and a richer

distributions of Boolean functions [3].

APPENDIX A

MOMENT REPRESENTATION OFPt[ f ]

The probability distributionPt[ f ] can be represented

via its moments. In order to find this representation we

can use the identity
∑

f̂ δ[̂f ; f] = 1 to write Pt[f] =
∑

f̂ δ[̂f ; f]Pt [̂f ]. Then, becauseδ[x; y] = 1
2 (1 + xy) for

x, y ∈ {−1, 1}, we obtain

Pt[f] =
∑

f̂

Pt [̂f ]

2N
∏

i=1

1

2

(

1 + f̂ifi
)

(9)

=
1

22N



1 +
∑

f̂

Pt [̂f ]
∑

S⊆[2N ]

∏

i∈S

f̂ifi





=
1

22N



1 +
∑

S⊆[2N ]

mS(t)
∏

i∈S

fi



 ,

wheremS(t) =
∑

f̂ Pt[̂f ]
∏

i∈S f̂i are the moments of

Pt[f].

Let us now derive equation governing evolution of

then-th momentmi1,i2,...,in(t). This can be obtained by

multiplying both sides of equation (1) by the monomial

4The results of this paper can be easily extended to thedistributions

over balanced gates [18].
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∏

i∈I f
i, where I = {i1, . . . , in}, and taking the sums

over f as follows

∑

f

Pt+1[ f ]
∏

i∈I

fi (10)

=
∑

f

∑

{fj}

k
∏

j=1

{

Pt[ fj ]
}

×
2N
∏

i=1

eβf
iα(fi1,...,f

i
k)

2 coshβα(fi1, . . . , f
i
k)

∏

ℓ∈I

fℓ

= tanhn(β)
∑

{fi
j
}

k
∏

j=1

{

Pt[ f
i1
j , . . . , finj ]

}

×
∏

i∈I

α(fi1, . . . , f
i
k)

= mi1,...,in(t+ 1),

where in the above we have used the property

tanh(−x) = − tanh(x). Finally, using the moment

representation (9) in the above, we obtain

mi1,...,in(t+ 1) (11)

= tanhn(β)
∑

{fi
j
}

k
∏

j=1

{

× 1

2n



1 +
∑

S⊆I

mS(t)
∏

i∈S

fij





}

×
∏

i∈I

α(fi1, . . . , f
i
k).

APPENDIX B

DERIVATION OF Fχ AND ANALYSIS OF ITS

PROPERTIES

Here we first derive the functionFχ(m) then we study

its properties. Let us first compute the sum

∑

{fj}

k
∏

j=1

[

1 + fj m

2

]

{

sgn





k
∑

j=1

fj



 (12)

+1





k
∑

j=1

fj = 0



γ(f1, . . . , fk)

}

=
∑

{fj}

[

1 + m

2

](
∑

k
j=1

fj+k)/2 [
1−m

2

](k−
∑

k
j=1

fj)/2

×
{

sgn





k
∑

j=1

fj



+ 1





k
∑

j=1

fj = 0



 γ(f1, . . . , fk)

}

=

k
∑

ℓ=0

(

k

ℓ

)[

1 + m

2

]ℓ [
1−m

2

]k−ℓ

sgn[2ℓ− k] ,

in the definition (10) for the specific choice ofα ≡ χ.

This result leads to the functionFχ(m) used in equation

(5).

We are interested in how the functionFχ(m) behaves

on the intervalm ∈ [−1, 1] and how this behaviour is

affected by the parametertanhβ. In order to find this

out we first rewriteFχ(m) as follows

Fχ(m) (13)

= tanh(β)

×
k
∑

ℓ=0

(

k

ℓ

)[

1 + m

2

]ℓ [
1−m

2

]k−ℓ

×{1[2ℓ− k > 0]− 1[2ℓ− k < 0]} ,

but
k
∑

ℓ=0

(

k

ℓ

)[

1 + m

2

]ℓ [
1−m

2

]k−ℓ

(14)

=
k
∑

ℓ=0

(

k

ℓ

)[

1 + m

2

]ℓ [
1−m

2

]k−ℓ

×{1[2ℓ− k ≥ 0] + 1[2ℓ− k < 0]}

= 1
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so

Fχ(m) (15)

= tanh(β)

(

1− 2

k̃
∑

ℓ=0

(

k

ℓ

)

×
[

1 + m

2

]ℓ [
1−m

2

]k−ℓ

−1[k ≡ 0 (mod 2)]

×
(

k

k/2

)([

1 + m

2

] [

1−m

2

])k/2
)

,

where

k̃ = 1[k ≡ 0 (mod 2)](k/2− 1)

+ 1[k ≡ 0 (mod 1)](k − 1)/2.

Now we use the above representation ofFχ(m) to

compute

d

dm
Fχ(m) (16)

= tanh(β)
k̃
∑

ℓ=0

(

k

ℓ

)

×
(

(k − ℓ)

[

1 + m

2

]ℓ [
1−m

2

]k−ℓ−1

−ℓ

[

1 + m

2

]ℓ−1 [
1−m

2

]k−ℓ
)

+tanh(β)
k

4
1[k ≡ 0 (mod 2)]

(

k

k/2

)

×m

([

1 + m

2

] [

1−m

2

])k/2−1

= tanh(β)

(

k

k̃ + 1

)

(k̃ + 1)

×
[

1 + m

2

]k̃ [
1−m

2

]k−k̃−1

+tanh(β)
k

4
1[k ≡ 0 (mod 2)]

(

k

k/2

)

×m

([

1 + m

2

] [

1−m

2

])k/2−1

So, using definition of̃k, we obtain

d

dm
Fχ(m) = tanh(β)

(

k

(k + 1)/2

)(

k + 1

2

)

(17)

×
([

1 + m

2

] [

1−m

2

])(k−1)/2

for k odd and

d

dm
Fχ(m) = tanh(β)

(

k

k/2

)(

k

4

)

(18)

×
([

1 + m

2

] [

1−m

2

])k/2−1

for k even.

Thus d
dmFχ(m) > 0 on for allm ∈ (−1, 1) and hence

Fχ(m) is a strictly increasing function. Furthermore, the

function Fχ(m) at the pointm = 0 changes its slope

from d
dmFχ(m)|m=0 < 1 to d

dmFχ(m)|m=0 ≥ 1 at

tanh(β) = 2k−1/k

(

k − 1

(k − 1)/2

)

for k odd and

tanh(β) = 2k−2/

(

k − 2

(k − 2)/2

)

(k − 1)

for k even.

Let us now compute the second derivative ofFχ(m).

Differentiating equations (17) and (18) with respect to

m gives us

d2

dm2
Fχ(m) = −mtanh(β) (19)

×
(

k

(k + 1)/2

)(

k + 1

2

)

(k − 1)

4

×
([

1 + m

2

] [

1−m

2

])(k−1)/2−1

for k odd and

d2

dm2
Fχ(m) = −mtanh(β) (20)

×
(

k

k/2

)(

k

4

)

(k − 2)

4

×
([

1 + m

2

] [

1−m

2

])k/2−2

for k even. We note that both are of the form

d2

dm2Fχ(m) = −mG(m), where G(m) > 0 for all

m ∈ (−1, 1). Thus the functionFχ(m) is strictly
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convex and concave on the intervals(−1, 0) and (0, 1)

respectively.

APPENDIX C

COMPUTATION OF∆(m) AND ANALYSIS OF ITS

PROPERTIES

Let us first define the average〈· · · 〉σ|m =
∑

{σi
j
}

∏k
j=1

1
2n

[

1 + m
∏n

i=1 σ
i
j

]

(· · · ) and shorthand

notations{1+[σ],1−[σ],10[σ]} for the indicator func-

tions {1[
∑k

j=1

∏n
i=1 σ

i
j > 0],1[

∑k
j=1

∏n
i=1 σ

i
j <

0],1[
∑k

j=1

∏n
i=1 σ

i
j =0]}. Then the rescaled difference

∆(m)/4 tanhn(β) can be computed as follows

∆(m)

4 tanhn(β)
(21)

=
1

4

〈

sgn





k
∑

j=1

n
∏

i=1

σi
j



−
n
∏

i=1

α(σi
1, . . . , σ

i
k)

〉

σ|m

=
1

4

〈

1+ [σ]− 1− [σ]

− (1+ [σ] + 1− [σ] + 10 [σ])

n
∏

i=1

α(σi
1, . . . , σ

i
k)

〉

σ|m

=
1

2

〈

1+ [σ]1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=−1

]

−1− [σ] 1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=+1

]

−1

2
10 [S]

n
∏

i=1

α(σi
1, . . . , σ

i
k)

〉

σ|m

.

In the above we can use the identity

k
∏

j=1

1

2n

[

1 + m

n
∏

i=1

σi
j

]

= (22)

[

1+m

2n

]

k+
∑k

j=1

∏n
i=1

σi
j

2
[

1−m

2n

]

k−
∑k

j=1

∏n
i=1

σi
j

2

to obtain

∆(m)

4 tanhn(β)
(23)

=
1

2

([

1+m

2n

] [

1−m

2n

])
k
2

×
{

∑

{σi
j
}

[

1+m

1−m

]

|
∑k

j=1

∏n
i=1

σi
j
|

2

×1+ [σ]1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=−1

]

−
∑

{σi
j
}

[

1−m

1+m

]

|
∑k

j=1

∏n
i=1

σi
j
|

2

×1− [σ]1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=+1

]

−1

2

∑

{σi
j}

10 [σ]
n
∏

i=1

α(σi
1, . . . , σ

i
k)

}

.

Now becauseα is a balanced gate we have the following

identity

∑

{σi
j
}

n
∏

i=1

α(σi
1, . . . , σ

i
k) (24)

=
∑

{σi
j
}

(

1+ [σ] + 1− [σ] + 10 [σ]

)

×
(

1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=+1

]

− 1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=−1

])

=
∑

{σi
j
}

(

1

2
10 [σ]

n
∏

i=1

α(σi
1, . . . , σ

i
k)

+ 1− [σ]1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=+1

]

− 1+ [σ]1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=−1

])

= 0.

Adding the above representation of zero to the terms

inside the curly brackets in equation (23) leads to the
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final result

∆(m) (25)

= 2 tanhn(β)

([

1+m

2n

] [

1−m

2n

])
k
2

×
{

∑

{σi
j
}







[

1+m

1−m

]

|
∑k

j=1

∏n
i=1

σi
j
|

2

− 1







× 1+ [σ]1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=−1

]

+
∑

{σi
j
}






1−

[

1−m

1+m

]

|
∑k

j=1

∏n
i=1

σi
j
|

2







× 1− [σ] 1

[

n
∏

i=1

α(σi
1, . . . , σ

i
k)=+1

]}

.

From the above it is clear that∆(m) ≥ 0 for m∈ [0, 1)

and∆(m) ≤ 0 for m∈(−1, 0].
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