
1

Second-Order Rate Region of

Constant-Composition Codes for the

Multiple-Access Channel
Jonathan Scarlett, Alfonso Martinez and Albert Guillén i Fàbregas

Abstract

This paper presents an achievable second-order rate region for the discrete memoryless multiple-access channel.

The result is obtained using a random-coding ensemble in which each user’s codebook contains codewords of a fixed

composition. The improvement of the second-order rate region over existing ones is demonstrated both analytically

and numerically. Finally, an achievable second-order rate region for the Gaussian multiple-access channel is derived

via an increasingly fine quantization of the input.

I. INTRODUCTION

Shannon’s channel capacity describes the largest possible rate of transmission with vanishing error probability in

coded communication systems. Further characterizations of the system performance are given by error exponents

[1, Ch. 9], moderate deviations results [2], and second-order coding rates [3]. The latter has regained significant

attention in recent years [4], [5], and is well-understood for a variety of single-user channels. In particular, for discrete

memoryless channels, the maximum number of codewords M∗(n, ε) of length n yielding an error probability not

exceeding ε satisfies

logM∗(n, ε) = nC −
√
nV Q−1(ε) + o(

√
n), (1)

where C is the channel capacity, Q−1(·) is the inverse of the Q-function, and V is known as the channel dispersion.

From (1), we see that a higher dispersion V means that a larger backoff from capacity is needed to achieve a fixed

ε < 1
2 , at least in terms of second-order asymptotics.
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In this paper, we study the second-order asymptotics for the discrete memoryless multiple-access channel (DM-

MAC). Achievability results for this problem have previously been obtained using i.i.d. random coding with a

random time-sharing sequence [6], [7] and a deterministic time-sharing sequence [8].

The main result of this paper is an achievable second-order rate region (see Definition 1) obtained using constant-

composition random coding [1, Ch. 9]. We demonstrate an improvement over the achievability results of [6]–[8]

even after the optimization of the input distributions. We can think of the improvement of constant-composition

codes as being analogous to a similar gain in the random-coding error exponent for the MAC [9]. A key tool in

our analysis is a Berry-Esseen theorem associated with a variant of Hoeffding’s combinatorial central limit theorem

(CLT) [10]; see Section IV-B for details.

A. Notation

The set of all probability distributions on an alphabet X is denoted by P(X ). Given a distribution Q(x) and

a conditional distribution W (y|x), the joint distribution Q(x)W (y|x) is denoted by Q ×W . We make use of the

method of types [11, Ch. 2]. The set of all types of length n on an alphabet A is denoted by Pn(A). The set of all

sequences of length n with a given type PX is denoted by Tn(PX), and similarly for joint types. Given a sequence

x ∈ Tn(PX) and a conditional distribution PY |X , we define Tnx (PY |X) to be the set of sequences y such that

(x,y) ∈ Tn(PX × PY |X).

Bold symbols are used for vectors and matrices (e.g. x), and the corresponding i-th entry of a vector is denoted

with a subscript (e.g. xi). The vectors of all zeros and all ones are denoted by 0 and 1 respectively, and the

k× k identity matrix is denoted by Ik×k. The symbols ≺, �, etc. denote element-wise inequalities for vectors, and

inequalities on the positive semidefinite cone for matrices (e.g. V � 0 means V is positive definite). We denote

the transpose of a vector or matrix by (·)T , the inverse of a matrix by (·)−1, the positive definite matrix square

root by (·) 1
2 , and its inverse by (·)− 1

2 . The multivariate Gaussian distribution with mean µ and covariance matrix

Σ is denoted by N(µ,Σ).

We denote the cross-covariance of two random vectors by Cov[Z1,Z2] = E
[
(Z1−E[Z1])(Z2−E[Z2])T

]
, and

we write Cov[Z] in place of Cov[Z,Z]. The variance of a scalar random variable is denoted by Var[·]. Logarithms

have base e, and all rates are in nats except in the examples, where bits are used. We denote the indicator function

by 11{·}.

For two sequences fn and gn, we write fn = O(gn) if |fn| ≤ c|gn| for some c and sufficiently large n, and

fn = o(gn) if limn→∞
fn
gn

= 0. We write fn = Θ(gn) if fn = O(gn) and gn = O(fn). A vector or matrix is said

to be O(fn) if all of its entries are O(fn) in the scalar sense.

B. System Setup

We consider a 2-user DM-MAC W (y|x1, x2) with input alphabets X1 and X2 and output alphabet Y . The

encoders and decoder operate as follows. Encoder ν = 1, 2 takes as input a message mν equiprobable on the set

{1, . . . ,Mν}, and transmits the corresponding codeword x(mν)
ν from the codebook Cν = {x(1)

ν , . . . ,x
(Mν)
ν }. Upon
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receiving y at the output of the channel, the decoder forms an estimate (m̂1, m̂2) of the messages. An error is said

to have occurred if the estimate (m̂1, m̂2) differs from (m1,m2).

A rate pair (R1, R2) is said to be (n, ε)-achievable if there exist codebooks with M1 ≥ exp(nR1) and M2 ≥

exp(nR2) codewords of length n for users 1 and 2 respectively such that the average error probability does not

exceed ε. Given (R1, R2), we define the rate vector

R
4
=


R1

R2

R1 +R2

 . (2)

The achievability part of the capacity result of Ahlswede [12] and Liao [13] states that for any ε ∈ (0, 1), rates

satisfying

R �


I(X1;Y |X2, U)

I(X2;Y |X1, U)

I(X1, X2;Y |U)

+ gε(n)1 (3)

are (n, ε)-achievable for some gε(n) which vanishes as n→∞, under any joint distribution of the form (U,X1, X2, Y ) ∼

PU × PX1|U × PX2|U ×W . Equation (3) is said to describe a first-order achievable rate region. In this paper, we

are concerned with second-order expansions, in which the gε(n)1 term is replaced by the sum of a second-order

term and an asymptotic third-order term.

We consider constant-composition random coding, as considered by Liu and Hughes [9], among others. We fix

a time-sharing alphabet U , as well as the input distributions QU (u), Q1(x1|u) and Q2(x2|u). We let QU,n, Q1,n

and Q2,n denote (conditional) types which are closest to QU , Q1 and Q2 respectively in terms of L∞ norm. We

fix an arbitrary time-sharing sequence u with type QU,n and generate the Mν
4
= enRν codewords of user ν = 1, 2

conditionally independently according to the uniform distribution on Tnu (Qν,n), i.e.

PXν |U (xν |u) =
1

|Tnu (Qν,n)|
11
{
xν ∈ Tnu (Qν,n)

}
. (4)

Throughout the paper, we define the joint distribution

PUX1X2Y (u, x1, x2, y)
4
= QU (u)Q1(x1|u)Q2(x2|u)W (y|x1, x2) (5)

and denote the induced marginal distributions by PY |X1U , PY |X2U , etc. A key quantity in our analysis is the

information density vector

i(u, x1, x2, y)
4
=


i1(u, x1, x2, y)

i2(u, x1, x2, y)

i12(u, x1, x2, y)

 , (6)
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where

i1(u, x1, x2, y)
4
= log

W (y|x1, x2)

PY |X2U (y|x2, u)
(7)

i2(u, x1, x2, y)
4
= log

W (y|x1, x2)

PY |X1U (y|x1, u)
(8)

i12(u, x1, x2, y)
4
= log

W (y|x1, x2)

PY |U (y|u)
. (9)

Averaging these quantities with respect to the distribution in (5) yields the mutual information quantities appearing

in (3).

C. Existing Results

We define the set

Qinv(V , ε)
4
=
{
z ∈ R3 : P

[
Z � z] ≥ 1− ε

}
, (10)

where Z ∼ N(0,V ). Since the existing second-order rate regions (and the one given in this paper) are written in

a similar form in terms of a matrix, a vector, and the set Qinv, we define the following notion of achievability.

Definition 1. Let I be a 3 × 1 non-negative vector, and let V be a 3 × 3 positive semidefinite matrix. The pair

(I,V ) is said to be second-order achievable if, for all ε ∈ (0, 1), there exists a sequence g(n) = o(
√
n) such that

all pairs (R1, R2) satisfying

nR ∈ nI −
√
nQinv(V , ε) + g(n)1, (11)

are (n, ε)-achievable, where R is defined in (2).

Expansions of the form (11) are somewhat more difficult to interpret than the scalar counterpart in (1). Roughly

speaking, given a vector I and two covariance matrices V 1 and V 2, V 1 ≺ V 2 implies that V 1 yields faster

convergence to the achievable rate region corresponding to I as n increases with ε < 1
2 fixed, at least in terms of

second-order asymptotics.

The first study of the problem under consideration was by Tan and Kosut [6], who used i.i.d. random coding

to prove that (I,V ) with I = E[i(U,X1, X2, Y )] and V = Cov[i(U,X1, X2, Y )] is second-order achievable for

any choice of U and (QU , Q1, Q2). MolavianJazi and Laneman [7] obtained second-order asymptotic results by

treating the three error events separately rather than jointly, and using just three variance terms instead of a full

3× 3 covariance matrix. Huang and Moulin [8] showed that the covariance matrix can be improved to

V iid = E
[
Cov

[
i(U,X1, X2, Y )

∣∣U]] (12)

by fixing a constant-composition time-sharing sequence u, rather than generating one at random. This result improves

on that of [6] due to the fact that conditioning reduces variance.

A simple improvement on the achievability result of [8] can be obtained by letting one user’s codebook be

constant-composition and the other i.i.d., yielding a covariance matrix of the form V = E
[
Cov[i(U,X1, X2, Y ) |U,X1]

]
October 1, 2013 DRAFT
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or V = E
[
Cov[i(U,X1, X2, Y ) |U,X2]

]
. The covariance matrix obtained in this paper improves further on each

of these.

Our main result is closely related to a recent result by MolavianJazi and Laneman [14], who derived an achievable

second-order rate region for the Gaussian MAC using random coding with a uniform distribution over the surface of

a sphere. In Section V, we give an alternative proof of the main result of [14] via an increasingly fine quantization

of the input.

For certain classes of channels, the present problem can be reduced to a single-user problem in order to obtain

a matching converse to the above achievability results [15]. A more general converse containing variances of the

form E[Var[iν(U,X1, X2, Y ) |U,X1, X2]] (ν = 1, 2, 12) has recently been reported by Moulin [16], [17].

An alternative to considering expansions of the form (11) is to consider the second-order asymptotics as a

particular point on the boundary of the capacity region is approached from a certain angle. We do not pursue this

approach in this paper; see [6], [15] for further discussion.

II. MAIN RESULT

The main result of this paper is the following theorem. Along with (6)–(9), we define the quantities

i(1)(u, x1)
4
= E

[
i(U,X1, X2, Y )

∣∣ (U,X1) = (u, x1)
]

(13)

i(2)(u, x2)
4
= E

[
i(U,X1, X2, Y )

∣∣ (U,X1) = (u, x2)
]

(14)

whose entries are given by

i(1)ν (u, x1)
4
= E

[
iν(U,X1, X2, Y )

∣∣ (U,X1) = (u, x1)
]

(15)

i(2)ν (u, x2)
4
= E

[
iν(U,X1, X2, Y )

∣∣ (U,X1) = (u, x2)
]

(16)

for ν = 1, 2, 12.

Theorem 1. Fix any finite time-sharing alphabet U and the input distributions (QU , Q1, Q2). The pair (I,V ) is

second-order achievable, where

I = E
[
i(U,X1, X2, Y )

]
(17)

V = E
[
Cov

[
i(U,X1, X2, Y )

∣∣U]− Cov
[
i(1)(U,X1)

∣∣U]− Cov
[
i(2)(U,X2)

∣∣U]]. (18)

Furthermore, the function g(n) in (11) satisfies g(n) = O(log n) if the argument to the expectation in (18) has full

rank for all u ∈ U , and g(n) = O(n
1
6 ) more generally.

Proof: See Section IV.

The covariance matrix V in (18) can be interpreted as follows. The term Cov[i] represents the variations in

(X1, X2, Y ) in the i.i.d. case, and the terms Cov[i(1)] and Cov[i(2)] represent the reduced variations in X1 and X2

respectively, resulting from the codewords having a fixed composition. In particular, using constant-composition
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coding for user 1 and i.i.d. coding for user 2, we instead obtain the covariance matrix

V cc-iid = E
[
Cov

[
i(U,X1, X2, Y )

∣∣U]− Cov
[
i(1)(U,X1)

∣∣U]] (19)

= E
[
Cov

[
i(U,X1, X2, Y )

∣∣U,X1

]]
, (20)

thus recovering the result stated in Section I-C. Since all covariance matrices are positive semidefinite, we clearly

have V � V cc-iid � V iid.

It is interesting to compare (18) with the conditional covariance matrix

V joint = E
[
Cov

[
i(U,X1, X2, Y ),

∣∣U]− Cov
[
i(12)(U,X1, X2)

∣∣U]] (21)

= E
[
Cov

[
i(U,X1, X2, Y )

∣∣U,X1, X2

]]
, (22)

where i(12)(U,X1, X2)
4
= E

[
i(U,X1, X2, Y ) |U,X1, X2

]
. Roughly speaking, this is the covariance matrix which

we would obtain if the joint composition of (U,X1, X2) were fixed, which is impossible in general in the absence

of cooperation. Based on this observation, we expect that V joint � V . To show that this is true, we use the matrix

version of the law of total variance to write

Cov
[
i(12)(u,X1, X2)

]
= Cov

[
E
[
i(12)(u,X1, X2)

∣∣X1

]]
+ E

[
Cov

[
i(12)(u,X1, X2)

∣∣X1

]]
(23)

= Cov
[
i(1)(u,X1)

]
+ E

[
Cov

[
i(12)(u,X1, X2)

∣∣X1

]]
, (24)

where each expression is implicitly conditioned on U = u. The second quantity in (24) can be weakened as follows:

E
[
Cov

[
i(12)(u,X1, X2)

∣∣X1

]]
=
∑
x1,x2

Q1(x1|u)Q2(x2|u)
(
i(12)(u,X1, X2)− E

[
i(12)(u, x1, X2)

])(
i(12)(u,X1, X2)− E

[
i(12)(u, x1, X2)

])T
(25)

�
∑
x1,x2

Q2(x2|u)
(
i(2)(u,X2)− E

[
i(2)(u,X2)

])(
i(2)(u,X2)− E

[
i(2)(u,X2)

])T
(26)

= Cov
[
i(2)(u,X2)

]
, (27)

where (26) follows using the identity E[ZZT ] � E[Z]E[Z]T . Combining (18), (21), (24) and (27), we obtain the

desired result.

III. EXAMPLE: THE COLLISION CHANNEL

In this section, we consider the channel with X1 = X2 = {0, 1, 2}, Y = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), c} and

W (y|x1, x2) =


1 y = (x1, x2) and min{x1, x2} = 0

1 y = c and min{x1, x2} 6= 0

0 otherwise

. (28)
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Figure 1. Capacity region of the collision channel.

In words, if either user transmits the zero symbol then the pair (x1, x2) is received noiselessly, whereas if both

users transmit a non-zero symbol then the output is c, meaning “collision”.

We recall the following observations by Gallager [18]: (i) The capacity region can be obtained without time

sharing;1 (ii) By symmetry, the points on the boundary of the capacity region are achieved using U = ∅ and

input distributions of the form Q1 = (1− 2p1, p1, p1) and Q2 = (1− 2p2, p2, p2); (iii) The achievable rate region

corresponding to any such (Q1, Q2) pair is rectangular. To illustrate these observations, we plot the capacity region

in Figure 1, along with three achievable rate regions corresponding to particular choices of p1 and p2.

We first compare the various random-coding schemes with fixed input distributions. Figure 2 plots the second-

order regions with p1 = p2 = 0.2, n = 50 and ε = 0.01, and with the third-order o(
√
n) terms ignored. It should

be noted that these ignored terms can be significant at finite block lengths, and thus the resulting curves should

only be viewed as approximations.

The improvement over [8] obtained by letting user 1’s codewords be constant-composition is insignificant at small

values of R1 but significant at high values of R1. A similar observation applies for user 2. The region resulting

from Theorem 1, obtained using constant-composition codes for both users, is strictly larger than all of the others,

and yields particularly large gains near the corner point. It is interesting to note that it is the only one which yields

a rectangular second-order region for this particular choice of p1 and p2. This results from a rank-one dispersion

matrix; see [6] for further discussion.

The preceding example shows that constant-composition codes can perform better than i.i.d. codes for a given

choice of Q1 and Q2. In the remainder of this section, we argue that the gains remain present even after the

full optimization, as is the case for the random-coding error exponents of certain MACs [9]. In contrast, in the

1On the other hand, for the collision channel with K non-zero symbols, time-sharing is required for K ≥ 8 [18].
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Figure 2. Second-order rate regions for the collision channel with p1 = p2 = 0.2, n = 50 and ε = 0.01.

single-user setting, constant-composition codes yield higher error exponents and second-order rates for a given input

distribution, but no gain after the optimization of the input distribution [11, Ex. 10.33] [4] [5].

For any given n, one can take the union of the achievable second-order regions in Theorem 1 (with the third-

order term ignored) over all (QU , Q1, Q2). We denote the resulting region by R∗n, and we say that (QU , Q1, Q2)

is first-order optimal (respectively, second-order optimal) if it achieves a point on the boundary of the capacity

region (respectively, the boundary of R∗n). As n grows large, the second-order term in (11) becomes insignificant

compared to the first-order term, and we conclude that any sequence of second-order optimal input distributions

must be asymptotically first-order optimal. Thus, we will obtain the desired result by showing that the diagonal

entries of V are strictly smaller than those of V iid in (12) under all first-order optimal input distributions. It

suffices to consider the case U = ∅, since otherwise these variances are simply weighted sums of the corresponding

variances under (Q1(·|u), Q2(·|u)), weighted by QU . In fact, as stated above, it suffices to consider distributions

of the form Q1 = (1− 2p1, p1, p1) and Q2 = (1− 2p2, p2, p2).

Denote the diagonal entries of V by (V1, V2, V12), and those of V iid by (V iid
1 , V iid

2 , V iid
12 ). We observe from (12)

and (18) that for ν = 1, 2, 12, Vν ≤ V iid
ν with equality if and only if Var

[
i
(1)
ν (X1)

]
= 0 and Var

[
i
(2)
ν (X2)

]
= 0;

the quantities i(1)ν and i(2)ν are defined as in (15)–(16) with U = ∅. By a direct calculation, it can be shown that

i
(1)
12 (x1) = (1− 2p2) log

1

1− 2p2
+ 2p2 log

1

p2
+ log

1

Q1(x1)
,

which yields zero variance if and only if p1 = 1
3 , i.e. Q1 = ( 1

3 ,
1
3 ,

1
3 ). Similarly, i(2)12 (X2) has zero variance if and

only if p2 = 1
3 . However, from Figure 1, we know that p1 = p2 = 1

3 is not first-order optimal. A similar argument

holds for i(1)1 , i(2)1 , i(1)2 and i
(2)
2 , except that the condition p1 = p2 = 1

3 is replaced by p1 = p2 = 0.2867. Once

again, we see from Figure 1 that this choice is not first-order optimal. Thus, for ν = 1, 2, 12, we have Vν < V iid
ν

for all first-order optimal input distributions.
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IV. PROOF OF THEOREM 1

For clarity of exposition, we present the proof in the absence of time-sharing, and we assume that the input

distributions Q1 and Q2 are types (i.e. Qν ∈ Pn(Xν) for ν = 1, 2), and that V has full rank and hence V � 0.

In Section IV-C, we state the changes in the proof required to handle the general case. For ν = 1, 2, 12, we write

iν(x1, x2, y) to denote the quantities in (7)–(9) with the conditioning on u removed, and similarly for i(x1, x2, y).

Using the notation of Section I-B with the time-sharing sequence removed, we define the random variables

(X1,X2,X1,X2,Y ) ∼ PX1(x1)PX2(x2)PX1(x1)PX2(x2)Wn(y|x1,x2), (29)

where Wn(y|x1,x2)
4
=
∏n
i=1W (yi|x1,i, x2,i). We make use of the threshold-based bound on the random-coding

error probability pe given in [19, Thm. 3], which is written in terms of three arbitrary output distributions QY |X2
,

QY |X1
and QY . Choosing these to be i.i.d. on the corresponding marginals of (5) (e.g. PY |X2

), we obtain

pe ≤ 1− P
[
in(X1,X2,Y ) � γ

]
+
M1 − 1

2
P
[
in1 (X1,X2,Y ) > γ1

]
+
M2 − 1

2
P
[
in2 (X1,X2,Y ) > γ2

]
+

(M1 − 1)(M2 − 1)

2
P
[
in12(X1,X2,Y ) > γ12

]
, (30)

where γ = [γ1 γ2 γ12]T is arbitrary, and

in(x1,x2,y)
4
=

n∑
i=1

i(x1,i, x2,i, yi) (31)

inν (x1,x2,y)
4
=

n∑
i=1

iν(x1,i, x2,i, yi) (32)

with i and iν defined in (6)–(9).

We claim that the second, third and fourth terms of (30) can be upper bounded by Mνp0(n)e−γν for ν = 1, 2, 12

respectively, where p0(n) is a polynomial depending only on the alphabet sizes, and

M12
4
= M1M2. (33)

We prove this for ν = 12 only, since the other two are handled similarly. We write Qnν (xν)
4
=
∏n
i=1Qν(xν,i) for

ν = 1, 2, and make use of the fact that

PXν (xν) =
1

µν,n
Qnν (xν)11

{
xν ∈ Tn(Qν)

}
, (34)

where µν,n
4
= P

[
X ′ν ∈ Tn(Qν)

]
with X ′ν ∼ Qnν (xν). Using standard properties of types, we have µν,n ≥
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(n+ 1)−(|Xν |−1) [11, pp. 17]. We therefore obtain

M1M2P
[
in1 (X1,X2,Y ) > γ12

]
= M1M2

∑
x1,x2,y

PX1(x1)PX2(x2)Wn(y|x1,x2)11
{
in12(x1,x2,y) > γ12

}
(35)

≤ M1M2

µ1,nµ2,n

∑
x1,x2,y

Qn1 (x1)Qn2 (x2)Wn(y|x1,x2)11
{
in12(x1,x2,y) > γ12

}
(36)

≤ M1M2

µ1,nµ2,n

∑
x1,x2,y

Qn1 (x1)Qn2 (x2)

( n∏
i=1

PY (yi)

)
e−γ12 (37)

≤M1M2p0(n)e−γ12 , (38)

where (36) follows from (34) and by summing over all sequences instead of just those in Tn(Qν), (37) follows

by using the definition of i12 and upper bounding the indicator function, and we have defined p0(n)
4
= (n +

1)(|X1|+|X2|−2).

Returning to (30), we have thus far shown that

pe ≤ 1− P
[
in(X1,X2,Y ) � γ

]
+ p0(n)

∑
ν=1,2,12

Mνe
−γν . (39)

Using this bound with

γν = logMν +
(
d+

1

2

)
log n, (40)

where d = |X1| + |X2| − 2 is the order of the polynomial p0(n), the statement of the theorem will follow using

identical steps to [6, Thm. 2] once we prove the following:

1) E[in(X1,X2,Y )] = nI +O
(
logn
n

)
and Cov[in(X1,X2,Y )] = nV +O

(
logn√
n

)
, where (I,V ) are given by

(17)–(18).

2) The probability on the right-hand side of (39) can be approximated using a multivariate Berry-Esseen theorem.

We prove these statements in Sections IV-A and IV-B respectively. The remaining details of the proof of Theorem

1 are omitted to avoid repetition with [6]. It should be noted that the growth rates O
(
logn
n

)
and O

(
logn√
n

)
in the

former statement ensure that g(n) = O(log n), as stated in the theorem.

A. Calculation of Moments

Let X1,i denote the i-th entry of X1, and similarly for X2,i and Yi. The first moment of in is easily found by

writing

E
[
in(X1,X2,Y )

]
=

n∑
i=1

E
[
i(X1,i, X2,i, Yi)

]
= nI, (41)

where the last equality follows since, by symmetry, X1,i ∼ Q1 and X2,i ∼ Q2 for all i.
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To compute the covariance matrix of in, we write

Cov
[
in(X1,X2,Y )

]
= Cov

[ n∑
i=1

i(X1,i, X2,i, Yi)

]
(42)

=

n∑
i=1

n∑
j=1

Cov
[
i(X1,i, X2,i, Yi), i(X1,j , X2,j , Yj)

]
(43)

= nCov
[
i(X1, X2, Y )

]
+ (n2 − n)Cov

[
i(X1, X2, Y ), i(X ′1, X

′
2, Y

′)
]
, (44)

where (X1, X2, Y ) and (X ′1, X
′
2, Y

′) correspond to two arbitrary but different indices in {1, · · · , n} (e.g. one can

set (X1, X2, Y ) = (X1,1, X2,1, Y1) and (X ′1, X
′
2, Y

′) = (X1,2, X2,2, Y2)). In (44), we have used the fact that, by

the symmetry of the codebook construction, the n terms in (43) with i = j are equal, and similarly for the n2 − n

terms with i 6= j.

To compute the cross-covariance matrix in (44), we need the joint distribution of (X1, X2, Y ) and (X ′1, X
′
2, Y

′).

This distribution is easily understood by considering the following procedure for generating a codeword uniformly

over Tn(Q): (i) Fix an arbitrary sequence x = (x1, · · · , xn) with composition Q; (ii) Randomly choose a symbol

from the n symbols of x (each with probability 1
n ) and place it in position 1 of the codeword, (iii) From the

n− 1 remaining symbols of x, randomly choose one (each with probability 1
n−1 ) and place it in position 2 of the

codeword; (iv) Continue until all n symbols have been placed. Stated more compactly, this procedure generates a

codeword uniformly over Tn(Q) by randomly permuting the symbols of an arbitrary sequence x ∈ Tn(Q).

From the above procedure, we conclude that

P[Xν = xν ] = Qν(xν) (45)

P[X ′ν = x′ν |Xν = xν ] =
nQν(x′ν)− 11{xν = x′ν}

n− 1
(46)

for ν = 1, 2. Let Q′ν(x′ν |xν) denote the right-hand side of (46). The cross-covariance matrix in (44) is given by

Cov
[
i(X1, X2, Y ), i(X ′1, X

′
2, Y

′)
]

= E
[(
i(X1, X2, Y )− I

)(
i(X ′1, X

′
2, Y

′)− I
)T ]

(47)

=
∑

x1,x2,y

Q1(x1)Q2(x2)W (y|x1, x2)

×
∑

x′
1,x

′
2,y

′

Q′1(x′1|x1)Q′2(x′2|x2)W (y′|x′1, x′2)
(
i(x1, x2, y)− I

)(
i(x′1, x

′
2, y
′)− I

)T
(48)

= M1 +M2 +M3 +M4, (49)

where the four terms in (49) correspond to the four terms in the expansion of
(
nQ1(x′1)−11{x1 = x′1}

)(
nQ2(x′2)−
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11{x2 = x′2}
)

resulting from (46). Specifically, we obtain

M1 =
n2

(n− 1)2
E
[
i(X1, X2, Y )− I

]
E
[
i(X1, X2, Y )− I

]T
(50)

M2 = − n

(n− 1)2
E
[(
i(X1, X2, Y )− I

)(
i(X1, X2, Y )− I

)T ]
(51)

M3 = − n

(n− 1)2
E
[(
i(X1, X2, Y )− I

)(
i(X1, X2, Y )− I

)T ]
(52)

M4 =
1

(n− 1)2
E
[(
i(X1, X2, Y )− I

)(
i(X1, X2, Ỹ )− I

)T ]
(53)

under the joint distribution

(U,X1, X2, Y,X1, X2, Y , Y , Ỹ ) ∼ QU (u)Q1(x1|u)Q2(x2|u)W (y|x1, x2)

×Q1(x1|u)Q2(x2|u)W (y|x1, x2)W (y|x1, x2)W (ỹ|x1, x2). (54)

We observe that M1 is the zero matrix, and M4 = O
(

1
n2

)
. Furthermore, recalling the definitions of i(1) and i(2)

in (15)–(16), we have

−(n− 1)2

n
M2 = E

[
E
[(
i(X1, X2, Y )− I

) ∣∣∣X2

]
E
[(
i(X1, X2, Y )− I

) ∣∣∣X2

]T]
(55)

= Cov
[
i(2)(X2)

]
. (56)

It follows that

M2 =
−n

(n− 1)2
Cov

[
i(2)(X2)

]
, (57)

and we similarly have

M3 =
−n

(n− 1)2
Cov

[
i(1)(X1)

]
. (58)

Using the identity n
(n−1)2 = 1

n +O
(

1
n2

)
and combining (44), (49), (57) and (58), we obtain

Cov
[
in(X1,X2,Y )

]
= nV +O(1), (59)

where V is defined as in (18) with U = ∅.

B. A Combinatorial Berry-Esseen Theorem

Before stating the required Berry-Esseen theorem, we outline some of the relevant literature. A combinato-

rial CLT was given by Hoeffding [10], who proved the asymptotic normality of random variables of the form∑n
j=1 fn(j, π(j)), where fn is a real-valued function taking arguments on 1, · · · , n, and π(·) is uniformly distributed

on the set of permutations of {1, · · · , n}. The rate of convergence (i.e. Berry-Esseen theorem) was studied by

Bolthausen [20], who proved O
(

1√
n

)
convergence under fairly general conditions. An extension to the multivariate

setting was given by Bolthausen and Götze [21].

A more general setting is that in which each fn(j1, j2) is replaced by a random variable Zn(j1, j2), independent

of π(·), such that Zn(j1, j2) is independent of Zn(j′1, j
′
2) whenever (j1, j2) 6= (j′1, j

′
2). Berry-Esseen theorems for
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this setting were given by von Bahr [22] and Ho and Chen [23]. The analysis of each scalar quantity inν (X1,X2,Y )

(see (29) and (32)) falls into this setting upon identifying

Zn(j1, j2) = iν
(
x1,j1 , x2,j2 , Yn(j1, j2)

)
, (60)

where x1 = (x1,1, · · · , x1,n) and x2 = (x2,1, · · · , x2,n) are arbitrary sequences of type Q1 and Q2 respectively,

and Yn(j1, j2) ∼ W (·|x1,j1 , x2,j2). Under this choice, the permutation π(·) applied to x2 induces the uniform

distribution on Tn(Q2), as desired. By symmetry, we can let x1 be an arbitrary element of Tn(Q1) (e.g. see [10,

Thm. 5]).

In our case, a multivariate generalization to random vectors Zn(j1, j2) in R3 is required. The desired Berry-

Esseen theorem is a special case of a more general result by Loh [24, Thm. 2] for a problem known as Latin

hypercube sampling. When specialized to our setting, we obtain the following theorem. Details on the how to

specialize [24, Thm. 2] are provided in Appendix A. We define the quantities

Σn
4
=

1

n
Cov

[
in(X1,X2,Y )

]
, (61)

Ŝn
4
= Σ

− 1
2

n

(
1√
n

(
in(X1,X2,Y )− nI

))
(62)

T n(x1, x2)
4
= Σ

− 1
2

n

(
i
(
x1, x2, Y (x1, x2)

)
− i(1)(x1)− i(2)(x2) + I

)
(63)

βn
4
=
∑
x1,x2

Q1(x1)Q2(x2)E
[
‖T n(x1, x2)‖3

]
, (64)

where Y (x1, x2) ∼W (·|x1, x2). From (59), we have Σn = V +O(n−1).

Theorem 2. (Corollary of [24, Thm. 2]) Let the input distributions Q1 and Q2 be given, and consider the quantities

(X1,X2,Y ), (I,V ) and (Σn, Ŝn) respectively defined in (29), (17)–(18) and (61)–(62). Suppose that V � 0,

and that n is sufficiently large so that Σn � 0. Then∣∣∣P[Ŝn ∈ A]− P
[
Z ∈ A

]∣∣∣ ≤ 1√
n

K

βn
(65)

for any convex, Borel measurable set A ⊆ Rd, where Z ∼ N(0, I3×3), K is a universal constant,2 and βn is

defined in (64).

In the discrete memoryless setting, one can show that βn = Θ(1) using (61) and the uniform bounding techniques

in [6, Appendix D]. Thus, we obtain the required O
(

1√
n

)
convergence in (65). Assuming that V � 0 and n is

2In the extension of this theorem to the MAC with several users, this constant may depend on the number of users.
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sufficiently large so that Σn � 0, we can use Theorem 2 to bound the probability in (39) by writing

P
[
in(X1,X2,Y ) � γ

]
= P

[ 1√
n

(
in(X1,X2,Y )− nI

)
� 1√

n

(
γ − nI

)]
(66)

= P
[
Σ
− 1

2
n

( 1√
n

(
in(X1,X2,Y )− nI

))
∈ An

]
(67)

= P
[
Z ∈ An

]
+O

(
1√
n

)
(68)

= P
[
Σ

1
2
nZ �

1√
n

(
γ − I

)]
+O

(
1√
n

)
, (69)

where (67) follows by defining An to be the image of the rectangular region in (66) under Σ
− 1

2
n , (68) follows by

defining Z ∼ N(0, I3×3) and applying Theorem 2, and (69) follows by reversing the step from (66) to (67). These

steps are similar in nature to [6, Appendix B], where a Cholesky decomposition is used.

C. General Case

In the case that Q1 and Q2 do not correspond to types of length n, we can simply repeat the above derivation

using Q1,n and Q2,n, defined in Section I-B. In this case, each type differs from its corresponding distribution by

at most O
(
1
n

)
in each entry, which does not affect the second-order asymptotics.

In general, the dispersion matrix V may not have full rank, in which case Theorem 2 does not directly apply.

However, we can deal with this case by reducing the problem to a lower dimension, similarly to [6, Sec. VIII-A]. The

argument here is slightly more involved, since nV is not necessarily the exact covariance matrix of in(X1,X2,Y ),

due to the additional O(1) term in (59). If V has rank r < 3, then there exist matrices T and Ṽ of dimension

3× r and r × r respectively such that V = T Ṽ T T , and such that

E
[
T ĩ

n
(X1,X2,Y )

]
= nI (70)

Cov
[
ĩ
n
(X1,X2,Y )

]
= nṼ +O(1) (71)

for some r × 1 subvector ĩ
n

of in. It follows that

in(X1,X2,Y ) = T ĩ
n
(X1,X2,Y ) + ∆, (72)

where ∆ is a 3×1 random vector (not necessarily independent of i′n(X1,X2,Y )) with E[∆] = 0 and Cov[∆] =

O(1). We can thus write

P
[
in(X1,X2,Y ) � γ

]
= P

[
T ĩ

n
(X1,X2,Y ) + ∆ � γ

]
(73)

≥ P
[
T ĩ

n
(X1,X2,Y ) � γ + δn1

]
− P

[
‖∆‖∞ ≥ δn

]
, (74)

where (74) holds for an arbitrary constant δn ≥ 0 by [6, Lemma 8]. Using Chebsyhev’s inequality and (71), we

have

P
[
‖∆‖∞ ≥ δn

]
≤ O

(
δ−2n
)
. (75)

Following the analysis of this section and [6], we obtain that the O(δ−2n ) term in (75) contributes an additive

O(
√
nδ−2n ) term to the expansion in (11), whereas the addition of δn1 in the first probability in (74) contributes an
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additive O(δn) term to the expansion. The overall third-order term O(
√
nδ−2n + δn) is minimized by δn = O(n

1
6 ),

yielding g(n) = O(n
1
6 ) as stated in Theorem 1.

Finally, we consider the case that U 6= ∅, and thus the codewords are drawn uniformly over the conditional

type class Tu(Qν) for some u ∈ Tn(QU ). In this case, the procedure described in Section IV-A for generating a

codeword uniformly over the type class should be replaced by the following procedure. Let x be an arbitrary element

of the conditional type class Tu(·). Instead of randomly permuting the entire sequence x, a random permutation

of the subsequence x(u) corresponding to the indices where u equals u is applied independently for each value

of u ∈ U . Due to this independence, the covariance matrices in (43) are zero between symbols with different

corresponding u values. Within each subsequence, the joint distribution between two symbols is similar to that of

(45)–(46), with Q1(·|u) replacing Q1 and nQU (u) replacing n. The quantity in in (31) is replaced by

in(u,x1,x2,y)
4
=

n∑
i=1

i(ui, x1,i, x2,i, yi) (76)

=
∑
u

nQU (u)∑
i=1

i(u, x
(u)
1,i , x

(u)
2,i , y

(u)
i ), (77)

where x(u)1,i is the i-th entry of x1 for which the corresponding u entry equals u, and similarly for x(u)2,i and y(u)i .

From Theorem 2, we conclude that under (u,X1,X2,Y ), each inner summation in (77) is asymptotically normal

with O
(

1√
nQU (u)

)
= O

(
1√
n

)
convergence. It follows that the overall sum is also asymptotically normal with

O
(

1√
n

)
convergence.

Using the above observations and repeating the analysis of this section, we obtain the more general result of

Theorem 1.

V. APPLICATION TO THE GAUSSIAN MAC

Thus far, we have limited our attention to the DM-MAC, thus permitting an analysis based on types and

combinatorial methods. In this section, we show that the same techniques can be used to derive second-order

asymptotics for the Gaussian MAC using an increasingly fine quantization of the input, similarly to Hayashi [5,

Thm. 3] and Tan [25]. The channel is described by

Y =
√
P1X1 +

√
P2X2 + Z, (78)

where Z ∼ N(0, 1), and where the codewords for user ν = 1, 2 are constrained to satisfy ‖xν‖2 ≤ n. We can think

of P1 and P2 as representing the powers for users 1 and 2 respectively, though for convenience we have factored

them into the channel itself. The capacity region is pentagonal [26, Sec. 15.1], and is achieved by the Gaussian input

distributions, namely Q1, Q2 ∼ N(0, 1). Under this choice, the pair (I,V) in (17)–(18) can be written explicitly

as follows:

I =


1
2 log(1 + P1)

1
2 log(1 + P2)

1
2 log(1 + P1 + P2)

 (79)
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V =


P1(2+P1)
2(1+P1)2

P1P2

2(1+P1)(1+P2)
P1(2+P1+P2)

2(1+P1)(1+P1+P2)

P1P2

2(1+P1)(1+P2)
P2(2+P2)
2(1+P2)2

P2(2+P1+P2)
2(1+P2)(1+P1+P2)

P1(2+P1+P2)
2(1+P1)(1+P1+P2)

P2(2+P1+P2)
2(1+P2)(1+P1+P2)

(P1+P2)(2+P1+P2)+2P1P2

2(1+P1+P2)2

 . (80)

The goal of this section is to present an alternative proof of the following result, which was recently derived by

MolavianJazi and Laneman using random coding with a uniform distribution over the surface of a sphere [14].

Theorem 3. The pair (I,V) in (79)–(80) is second-order achievable for the Gaussian MAC described by (78).

Theorem 3 follows in a straightforward fashion from Theorem 1 and the following lemma, which states the

existence of a sequence of discrete input distributions Qm1 and Qm2 of cardinality m such that the corresponding

vector-matrix pair (Im,Vm) converges to (I,V), with the convergence Im → I being exponentially fast in m. This

generalizes a result by Wu and Verdú for the scalar case [27], and is proved similarly.

Lemma 1. There exists a sequence of discrete input distributions Qm1 and Qm2 of cardinality m with a corre-

sponding matrix-vector pair (Im,Vm) defined according to (17)–(18) under the channel law in (78) such that (i)

‖Im − I‖∞ ≤ e−ψm for some ψ > 0 and sufficiently large m, (ii) ‖Vm −V‖∞ → 0, and (iii) the third absolute

moment of each entry of i(Xm1, Xm2, Y ) under Qm1 ×Qm2 × Y is uniformly bounded in m.

Proof: See Appendix B.

We are now in a position to prove Theorem 3. Setting m = n
1
4 , we have from parts (i)–(ii) of Lemma 1 that

‖Im − I‖∞ ≤ e−ψn
1
4 and ‖Vm −V‖∞ → 0, thus yielding

nIm −
√
nQinv(V m, ε) = nI−

√
nQinv(V , ε) + o(

√
n), (81)

where we have used the continuity of Qinv for V � 0. It remains to show that under (Im,Vm), the third-order term

g(n) (see (11)) from the proof of Theorem 3 is also o(
√
n). This term is affected by two remainder terms appearing in

Section IV: the second term in (40), and the remainder term in the Berry-Esseen theorem in (65). For the former term,

we note that d = |X1|+ |X2|−2 as stated following (40), and we thus have (d+ 1
2 ) log n = O(n

1
4 log n) = o(

√
n),

as desired. For the latter term, we note from (64) and the third part of Lemma 1 that 1√
n
K
βn

= O
(

1√
n

)
, thus yielding

the same growth rate as that for the discrete memoryless case.

APPENDIX

A. Proof of Theorem 2

In this section we outline the problem studied by Loh [24] and describe how Theorem 2 can be attained. To

avoid a clash of notation, we use the symbol Z in place of X defined in [24], and (j1, j2) in place of (i1, i2). We

use the symbol U defined in [24] even though it clashes with the time-sharing variable in the present paper, since

time-sharing is not considered in this section. Throughout this section, we write A d
= B if the random variables A

and B have the same distribution.
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The dimension d of the hypercube in [24] corresponds to the number of users of the MAC, so we focus on the case

d = 2. Let π1(·) and π2(·) be independent random permutations of {1, · · · , n}, uniformly distributed over the n!

possible permutations. For ν = 1, 2 and j1, j2 = 1, · · · , n, define the random variables Uν(j1, j2) ∼ Uniform(0, 1),

independent of each other and of π1(·) and π2(·). Define

Zν(j1, j2)
4
=
jν − Uν(j1, j2)

n
, ν = 1, 2 (82)

Z(j1, j2)
4
=

 Z1(j1, j2)

Z2(j1, j2)

 . (83)

Loh considers sample means of the form

µ̂n
4
=

1

n

n∑
j=1

f
(
Z
(
π1(j), π2(j)

))
, (84)

where f(·) is a vector-valued function with two arguments. We henceforth write f(z1, z2) and f([z1 z2]T ) inter-

changeably. We wish to choose f in such a way that, for each (j1, j2), we obtain

f
(
Z(j1, j2)

) d
= i
(
x1,j1 , x2,j2 , Yn(j1, j2)

)
,

where x1 = (x1,1, · · · , x1,n) and x2 = (x2,1, · · · , x2,n) are arbitrary sequences of type Q1 and Q2 respectively,

and Yn(j1, j2) ∼ W (·|x1,j1 , x2,j2) with independence between different (j1, j2) pairs. Since drawing a codeword

uniformly from a type class is equivalent to randomly permuting any codeword of the given type, such an

identification will yield µ̂n in (84) with the same distribution as 1
ni
n(X1,X2,Y ) in (31).

Using (82) and the fact that Uν(j1, j2) ∈ (0, 1) almost surely, any realization zν of Zν uniquely determines

both the index jν and the variable Uν in the numerator of (82). Thus, overloading the symbol f , we can write

f(z1, z2) = f(j1, j2, u1, u2) without ambiguity. We choose

f(j1, j2, u1, u2) = i
(
x1,j1 , x2,j2 , F

−1
Yn(i1,i2)

(u1 ⊕ u2)
)
, (85)

where F−1Yn(j1,j2)
(u) = inf

{
y : FYn(j1,j2)(y) ≥ u

}
is the inverse CDF of Yn(j1, j2), and ⊕ denotes real addition

modulo one (e.g. 1.1 ⊕ 2.3 = 0.4). Clearly U1 ∼ Uniform(0, 1) and U2 ∼ Uniform(0, 1) implies U1 ⊕ U2 ∼

Uniform(0, 1), and since F−1X (U)
d
= X for any random variable X (discrete or continuous) with CDF FX , it

follows that F−1Yn(j1,j2)
(U1 ⊕ U2)

d
= Yn(j1, j2) as desired. While the choice of the function in (85) to recover the

desired distribution is not unique, it yields a simpler analysis when either u1 or u2 is fixed. In particular, we have

F−1Yn(j1,j2)
(u1 ⊕ U2(j1, j2))

d
= Yn(j1, j2) (86)

F−1Yn(j1,j2)
(U1(j1, j2)⊕ u2)

d
= Yn(j1, j2) (87)

for all (u1, u2). This observation simplifies the evaluation of several quantities in [24].
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Using the choice of f in (85), one can obtain the following equivalences between quantities defined in [24]

(left-hand sides) and the present paper (right-hand sides):

µ̂ =
1

n
in(X1,X2,Y ) (88)

µ = I (89)ˆ
[0,1]2

frem(z)frem(z)T dz = V (90)

Σlhs =
1

n
Σn (91)

µ−ν(jν) = i(ν)(xν,jν ), ν = 1, 2 (92)

W = Ŝn (93)

Y (j1, j2) =
1√
n
T n(x1,j1 , x2,j2) (94)

Cd,p = K (95)

β3 =
βn√
n
. (96)

Using these equivalences, we see that Theorem 2 coincides with [24, Thm. 2].

B. Proof of Lemma 1

The arguments in the proof are very similar to [27], so we only explain the differences. We choose Qm1 and

Qm2 according the Gauss quadrature rule Qg [27, Sec. II], which satisfies the property of having moments which

coincide with that of a standard Gaussian random variable for all moments up to order 2m−1 [27, Thm. 2]. Using

this property along with the fact that Qg converges weakly to N(0, 1), we immediately obtain parts (ii) and (iii)

of Lemma 1.

Define (Xm1, Xm2, Ym) ∼ Qm1×Qm2×W and (X1, X2, Y ) ∼ Q1×Q2×W , where Q1, Q2 ∼ N(0, 1). Using

the identity [26, Eq. (15.142)]

I(Xm1;Ym|Xm2) = H
(√

P1Xm1 + Z
)
−H(Z), (97)

we see that the convergence of the first entry of Im to I is precisely that studied in [27], and similarly for the

second entry. It remains to study the third entry, i.e. to show that I(Xm1, Xm2;Ym)→ I(X1, X2;Y ) exponentially

fast. Analogously to [27, Eq. (5)], we have

I(X1, X2;Y )− I(Xm1, Xm2;Ym) = D
(√

P1X1 +
√
P2X2 + Z‖

√
P1Xm1 +

√
P2Xm2 + Z

)
(98)

, Dm. (99)

Using nearly identical arguments to [27, Sec. V] with an “optimal” output distribution of N(0, 1+P1+P2) (instead

of N(0, 1 + snr)), we obtain analogously to [27, Eq. (54)] that

Dm ≤
∑
k≥1

1

k!

( P1 + P2

1 + P1 + P2

)k∣∣∣E[Hk

(√P1Xm1 +
√
P2Xm2√

P1 + P2

)]∣∣∣, (100)
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where Hk is the Hermite polynomial of degree k; see [27, Eq. (15)]. As shown in [27], we obtain the desired

convergence rate provided that the expectation appearing in (100) is zero for odd values of k, and also for k ≤ 2m−1.

For odd values of k, we simply use the same symmetry argument as [27]; since the distributions of Xm1 and Xm2

are both symmetric, so is that of their weighted sum. To handle the remaining values k ≤ 2m− 1, we write

Hk(a+ b) =

k∑
i=0

k∑
j=0

cija
ibj

for some constants cij . By the independence of Xm1 and Xm2, the expectation E
[
Hk

(√
P1Xm1+

√
P2Xm2√

P1+P2

)]
depends

only on the first k moments of Xm1 and Xm2. Since the i-th moment of Xmν coincides with the corresponding

moment of Xν ∼ N(0, Pν) for i = 1, · · · , 2m− 1 [27, Thm. 2], we have for k ≤ 2m− 1 that

E
[
Hk

(√P1Xm1 +
√
P2Xm2√

P1 + P2

)]
= E

[
Hk

(√P1X1 +
√
P2X2√

P1 + P2

)]
(101)

= 0, (102)

where (102) follows since for any k we have Hk(X) = 0 under X ∼ N(0, 1) [27].
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