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Randomized Quantization and Source Coding with
Constrained Output Distribution
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Abstract—This paper studies fixed-rate randomized vector Under certain conditions, dithering results in uniformlig-d
quantization under the constraint that the quantizer’s output has  tributed quantization noise that is independent of the tinpu
a given fixed probability distribution. A general representation [2], [3], which allows a simple modeling of the quantization

of randomized quantizers that includes the common models b dditi . h L In the inf i
in the literature is introduced via appropriate mixtures of process by an addiive noise channel. in tne informaton

joint probability measures on the product of the source and theoretic literature the properties of entropy coded détle
reproduction alphabets. Using this representation and reslts lattice quantizers have been extensively studied. For piam
from optimal transport theory, the existence of an optimal fmin-  sych quantizers have been used to provide achievable bounds
imum distortion) randomized quantizer having a given outpit o the performance of universal lossy compression systgms b
distribution is shown under various conditions. For source with Ziv 141 and Zami d Eeder 151761, R tlv Akvol and R
densities and the mean square distortion measure, it is shaw iv [ Jarl amir and Fedef [S]. [6]. e_cen y _yo and Rose
that this optimum can be attained by randomizing quantizers [7], [B], introduced a class of randomizesnuniformscalar
having convex codecells. For stationary and memoryless sme quantizers obtained via applying companding to a dithered
and output distributions a rate-distortion theorem is proved, yniform quantizer and investigated optimality conditidos
providing a single-letter expression for the optimum distation  {he design of such quantizers. One should also note that the
in the limit of large block-lengths. . "
random codes used to prove the achievability part of Shaanon
Index Terms—Source coding, guantization, randomization, rate-distortion theorem [9] can also be viewed as randainize
random coding, output-constrained distortion-rate function. ;
quantizers.
Dithered uniform/lattice and companding quantizers, aé we
. INTRODUCTION as random rate-distortion codes, pick a random quantipen fr

. . . . ta “small” structured subset of all possible quantizers.hSuc

A quantizer maps a source (input) alphabet into a finite. . . . . .

. . , Special randomized quantizers may be suboptimal for certai
collection of points (output levels) from a reproduction al

) . tasks and one would like to be able to work with more general
phabet. A quantizer’'s performance is usually charactdrine (or completely general) classes of randomized quantif
its rate, defined as the logarithm of the number of outpu? '

. . . . , example, Liet al. [10] and Klejsaat al. [12] considered
levels, and its expected distortion when the input is a remdo;. . .. =~ P o
; . . .distribution-preservinglithered scalar quantization, where the
variable. One usually talks about randomized quantization _ . . . o
. . : . antizer output is restricted to have the same distributio
when the quantizer used to encode the input signal is rando , :
selected from a given collection of quantizers. Although in. > the source, to improve the perceptual quality of mean
. given col quant : 9 quare optimal quantizers in audio and video coding. Détier
troducing randomization in the quantization proceduresdoe . . .
. . . . duantizers or other structured randomized quantizersetas
not improve the optimal rate-distortion tradeoff, randped . . . oo
: . .. _likely do not provide optimal performance in this problem. |
guantizers may have other advantages over their detetminis . :
counterparts an unpublished work [11] the same authors considered more

. - : ..general distribution-preserving randomized vector gzard
In what appears to be the first work explicitly dealing wit . : : .
. - . ) and lower bounded the minimum distortion achievable by such
randomized quantization, Roberts [1] found that adding ra

dom noise to an image before quantization and subtractim tchemes when the source is stationary and memoryless.
9 4 9™ 11 this paper we propose a general model which formalizes

n|0|se_ befpre recosnsrt]rucr:lon mazy res(;Jlgn a peéCZTtuilrlpfemlg]e notion of randomly picking a quantizer from the set of
pleasing image. Schuchmah [2] and Gray an ockham guantizers with a given number of output levels. Note that

analyzed versions of such so callditheredscalar quantizers this set is much more complex and less structured then say the

o o ot 1 i o Plrameticiamy ofa quanizers having a e rumoer o
the quantization operation tr.1e procedure is called sofbe convex codecells. Inspired by work in stochastl_c contrcg.(e
dithering; otherwise it is’caIIed non-subtractive ditineri [13].) our model represents the S(.at .Of al quan_tlzers acting o
' " agiven source as a subset of all joint probability measunes o
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quite general conditions an optimal solution (i.e., an ropti In what follows we define three models of randomized
randomized quantizer) exists for this generalized problemuantization; two that are commonly used in the source gpdin
We also consider a relaxed version of the output distriloutiditerature, and a third abstract model that will nevertksle
constraint where the output distribution is only required tprove very useful.

belong to some neighborhood (in the weak topology) of a

target distribution. For this problem we show the optinyatit Model 1

randomizing among finitely many quantizers. While for fixed gpe general model a¥/-level randomized quantization that

quantizer dimension we can only provide existence resulis.often used in the information theoretic literature is idegs
for stationary and memoryless source and output distobsti Fig. 1.

we also develop a rate-distortion theorem which identifies t

minimum distortion in the limit of large block lengths in tas 7 7

of the so-called output-constrained distortion-rate fiomc l l

This last result solves a general version of a problem that x Iefl,... .M} v

was left open in[[11]. ——— Encodet B Decodetr——
The rest of the paper is organized as follows. In Sedfibn I

we introduce our general model for randomized quantizatign . .
. . . igure 1. Randomized source code (quantizer)

and show its equivalence to other models more common in the

information theoretic literature. In Secti@nllll the ramdized Here X andY are the source and output random variables

guantization problem with an output distribution consttas taking values inX and Y, respectively. The index takes

formulated and the existence of an optimal solution is shovyllalues in{1,...,M}, and Z is aZ — R™-valued random

using optimal transport theory. For the special but impurta ariable which is independent df and which is assumed to

. " .V
case of sources with densmgs anq the mean square thor%% available at both the encoder and the decoder. The encoder
measure, we show that this optimum can be attained

o ) . - ¥'a measurable function : X x Z — {1,..., M} which
randomizing quantizers having convex codecells. In Sefti® . .
) 2 ) maps(X, Z) to I, and the decoder is a measurable function
a relaxed version of output distribution constraint is ¢desed

where finitely randomized quantizers are optimal. In Se¢ib d:{l,...,M} x Z — ¥ which maps(l,7) to Y. For a

. : ) iven source distribution, in a probabilistic sense a Matel
we present and prove a rate-distortion theorem for fixee-r S X .
. . C . quantizer is determined by the triple, d, v), wherer denotes
lossy source coding with an output distribution constralnt

. . distribution ofZ.
Many of the proofs are quite technical and they are relegate(%ote that codes used in the random coding proof of the
to the Appendix.

forward part of Shannon’s rate distortion theorem can be
realized as Model 1 quantizers. In this cdsemay be taken

Il. MODELS OFRANDOMIZED QUANTIZATION to be the random codebook consisting f = 2% code
A. Notation vectors of dimensiom, each drawn independently from a
given distribution. ThisZ can be represented as an= nM -

ructi out) alphabet. Th hout th ot dimensional random vector that is independentXof The
reconstruction (output) alphabet. Throughout the papessve encoder outputs the indek of the code vectorY in the

X =Y = R the n-dimensional Euclidean space for SOM&sdebook that best matches (in distortion or in a joint-

" 2 1, although most. of th? results hold in more gener Iepicality sense) and the decoder can reconstructith&@nce
settings; for example if the input and output alphabets 3y

Polish (complete and separable metric) spacds.igfa metric 's a function of/ and 7.

space,B(E) and P(E) _v_viII denote the Borelr-algebra an Model 2

and the set of probability measures @) B(E)), respectively. . .

It will be tacitly assumed that any metric space is equippedM0del 1 can be collapsed into a more tractable equivalent
with its Borel o-algebra and all probability measures on sucdfiodel. In this model, a randomized quantizer is a paiv),
spaces will be Borel measures. The product of metric spacédereq : X x Z — Y is a measurable mapping such that
will be equipped with the product Boret-algebra. Unless d(-,2) is an M-level quantizer for allz € Z and v is a
otherwise specified, the term “measurable” will refer to @or Probability measure od, the distribution of the randomizing
measurability. We always equip(E) with the Borelo-algebra random variableZ. Hereq is the composition of the encoder

B(P(E)) generated by the topology of weak convergefce [14Nd the decoder in Model H(z, 2) = d(e(z, 2), 2). _
Model 2 quantizers include, as special cases, subtraciive a

non-subtractive dithering of\/-level uniform quantizers, as

B. Three models of randomized quantization well as the dithering of non-uniform quantizers. For exaenpl
An M-level quantizer {/ is a positive integer) from the if » =m =1 andg, denotes a uniform quantizer, then

input alphabefX to the reconstruction alphab¥tis a Borel
measurable functiop : X — Y whose range;(X) = {q(x) :
x € X} containsat most M points of Y. If O, denotes g 5 dithered uniform quantizer using subtractive dithgrin
the set of allM-level quantizers, then our definition implies
Om C Q4 forall M > 1. q(x, 2) = qu(x + 2)

In this paperX denotes the input alphabet aiis the

q(r,2) = qu(z +2) — 2



is a dithered uniform quantizer with non-subtractive dithg, Lemma 1. T', (M) is a Borel subset oP(X x Y).

and with appropriate mappingsand ., Now we are ready to introduce Model 3 for randomized

a(z,2) = h(qu(g(z) + 2) — 2). quantization. LetP be a probability measure oR(X x Y)

is a dithered non-uniform quantizer (e.d.. [[10] ahd [8]). W\éVh'Ch is supported o', (M), i.e., P(',(M)) = 1. Then P

note that dithered lattice quantizers [4]] [5], [15] canoakse hduces a randomized quantizer} € P(X x Y) via
considered as Model 2 type randomized quantizers when the
source has a bounded support (so that with probability one vp(4 x B) :/P (M)
only finitely many lattice points can occur as output points) : ) .

Let p: X x Y — R be a nonnegative measurable functiorfo" Borel setsA C X and B C'Y, which we abbreviate to
called the distortion measure. From now on we assume that
the sourceX has distributiony (denoted asX ~ ). The vp :/r (M)Up(d”)' ®)
distortion associated with Model 2 quantizer,v) or with .
Model 1 quantizer(e,d, v), with q(z,z) = d(e(z,z),z), is Since each in I', (M) corresponds to a quantizer with input

v(A x B) P(dv)

the expectation distribution 1, P can be thought as a probability measure on
the set of allM-level quantizergQ;,.
L(q,v) = //p(a:,q(x,z))u(dx)u(dz) 1) Let Po(T',,(M)) denote the set of probability measures on
ZJX P(X xY) supported o, (M). We define the set af/-level
= E[p(X,q(X,Z))] Model 3 randomized quantizers as
whereZ ~ v is independent ofX.
v P IR (M) (4)
Model 3
In this model, instead of considering quantizers as funstio {UP € POxY)vp = /F#(Xflj(dv)v re PO(F”(M))}'

that mapX into a finite subset of, first we represent them
as Specia] probabi“ty measures ohx Y (See, e.g, [16], Note that ifvp € FE(]\/[) is a Model 3 quantizer, then the
[17], [18], [19]). This leads to an alternative represeiotat X-marginal ofvp is equal to, and if X andY are random
where a randomized quantizer is identified with a mixture ¢fectors (defined on the same probability space) with joint
probability measures. In certain situations the space egeth distributionvp, then they provide a stochastic representation
“mixing probabilities” representingll randomized quantizers ©f the random quantizer's input and output, respectively.
will turn out to be more tractable than considering the quifeurthermore, the distortion associated with is
unstructured space of all Model 1 triplés, d, v) or Model 2
pairs(q, v). L(vp) = / p(x,y)vp(dz dy)

A stochastic kernef20] (or regular conditional probability oY
[21]) onY given X is a function@(dy|z) such that for each = / / p(x, y)v(dx dy) P(dv)
x € X, Q(-|z) is a probability measure oW, and for each Tu(M) JXXY
Borel setB C X, Q(B|-) is a measurable function frons = B[p(X,Y)]
to [0, 1]. A quantizerg from X into Y can be represented as a

stochastic kerned) on'Y given X by letting [17], [16], C. Equivalence of models

Q(dy|z) = 0q(2)(dy), Here we show that the three models of randomized quan-
whered, denotes the point mass at d,(A) = 1if u € A tization are essentially equivalent. As before, we assurae t
anddu(jl) —0if u ¢ A for any Borel sgtA cv. the source distribution: is fixed. The following two results
If we fix the distribution 2 of the sourceX, we can &re proved in Appendix]B and AppendiX C, respectively.
also represenyy by the probability measure(dzdy) = Theorem 1. For each Model 2 randomized quantizér, )

pu(dz)dy () (dy) on X x Y. Thus we can identify the s@s of there exists a Model 3 randomized quantizer € ' (1)
all M-level quantizers fronX to Y with the following subset gch that(X,Y) = (X,q(X, Z)) has distributionvp. Con-
of P(X xY): versely, for anyp € T (M) there exists a Model 2 random-
I, (M) ) ized quantize(q, v) such that(X, q(X, Z)) ~ vp.

= {veP(XxY):v(dxdy)=p(dr)dys)(dy), ¢ € Qu}. Theorem 2. Models 1 and 2 of randomized quantization are

Note thatg +— u(dz)dy) (dy) mapsQs ontol, (M), but this equivalent in the sense of Theorgin 1.

mapping is one-to-one only if we consider equivalence elassRemarkl.

of quantizers inQ,, that are equal: almost everywhereif- (a) Clearly, any two equivalent randomized quantizers have

a.e). the same distortion. The main result of this section is
We equipP (X x Y) with the topology of weak convergence TheorentlL. Theorem 2 is intuitively obvious, but proving

(weak topology) which is metrizable with the Prokhorov  that any Model 2 quantizer can be decomposed into an

metric, makingP(X x Y) into a Polish spacel [14]. The equivalent Model 1 quantizer with measurable encoder

following lemma is proved in the Appendix] A. and decoder is not quite trivial.



(b) Since the dimensiom of the randomizing random vectorUsing these definitions, finding optimal randomized quamn§z
Z was arbitrary, we can take = 1in Theoreni L. In fact, with a given output distribution can be posed as findinip
the proof also implies that any Model 2 or 3 randomizeﬂgw(M) which minimizesL(v), i.e.,
quantizer is eq_uwalent (in the sense of Theofém 1) to a (P1) minimize L(v)

Model 2 quantizerq,v), whereq : X x [0,1] — Y and _
v is the uniform distribution or0, 1]. subject tov € I}, (M).
(c) Assume thatZ, A,v) is anarbitrary probability space.  We can prove the existence of the minimizer (B.) under

For any randomized quantizer : X x Z — Y in the either of the following assumptions. Heter| denotes the

form q(X, Z), whereZ ~ v is independent ofX, there Eyclidean norm of: € R™.

exists a Model 3 randomized quantizep such that AssympTiond: p(z,y) is continuous and(B) = 1 for some

(X,q(X,Z)) ~ vp. This can be proved by using thecompact subseB of V.

same proof method as in Theordrh 1. In view of th } - 2

previous remark and Theordrh 1, this means that uniforgnSSUMPTIONZ' plz.y) = lle = yll*

randomization over the unit intervé, 1] suffices under Theorem 3. Supposeinf,crr (ar) L(v) < oo. Then there

the most general circumstances. exists a minimizer with finite cost for proble(®1) under
(d) All results in this section remain valid if the input anceither Assumption 1 or Assumption 2.

reproduction alphabebs andY are arbitrary uncountable

Polish spaces. In this case, uniform randomization ov

the unit interval still provides the most general modg

The theorem is proved in Appendix] D with the aid of
btimal transport theory [22]. The optimal transport peshl
r marginalst € P(X), A € P(Y) and cost function

possible. c: X xY —[0,00] is defined as
In the next two sections, Model 3 will be used to represent
randomized quantizers because it is particularly suited to minimize / c(x,y)v(dx dy)
treating the optimal randomized quantization problem unde . XxY
an output distribution constraint. subject tov € 'z .

In the proof of Theorerh]3 we set up a relaxed version of
the optimization problemR1). We show that if the relaxed
problem has a minimizer, therP{) also has a minimizer,
and then prove the existence of a minimizer for the relaxed
Let ¢ be a probability measure o and let A(M,) problem using results from optimal transport theory.

denote the set of alM/-level Model 2 randomized quantizersgemarie. Note that the product distributign® corresponds

(q,v) such that the output(X,Z) has distributiony. As 4 5 1-Jevel randomized quantizer (the equivalent Model2 ra

before, we assume thal’ ~ u, Z ~ v, andZ and X are  gomijzed quantizer is given by(z, z) = z andZ ~ v). Hence

independent. We want to show the existence of a minimun-, ,, ¢ TR (M) forall M >1, and if L(u ® ) < oo, then

distortion randomized quantizer having output distribot), he Condiﬁbninfveer(M) L(v) < oo holds. In particular, if
e

e, the existence ofq”, ) € A(M, ) such that both 12 and have finite second momenys||z|2u(dz) < oo
L(q*,v*)= inf  L(q,v). and [ ly|*¥(dy) < oo, and p(w,y) = |z — y||* (Assump-
(a,1)EA(M,3) tion 2), thenmfvepﬁ,yw(M) L(v) < oc.
If we sety = p, the above problem is reduced to showing Optimal transport theory can also be used to show that,
the existence of a distribution-preserving randomizedtjger under some regularity conditions on the input distributoml
[10], [11] having minimum distortion. the distortion measure, the randomization can be resiricte
The set ofM -level randomized quantizers is a fairly generajuantizers having a certain structure. Here we considecesu
(nonparametric) set of functions and it seems difficult t&/ith densities and the mean square distortion. A quantizer
investigate the existence of an optimum directly. On theeothg : X — Y with output pointsg(X) = {y1,...,yx} C Y is
hand, Model 3 provides a tractable framework for estabiighi said to haveonvex codeceli$ ¢~ * (y;) = {2 : q(z) = y;} isa

I11. OPTIMAL RANDOMIZED QUANTIZATION WITH FIXED
OuTPUT DISTRIBUTION

the existence of an optimal randomized quantizer undeequonvex subsetof = R" foralli = 1,..., k. Let Qys . denote
general conditions. the set of allM -level quantizers having convex codecells. The
Let T, , be the set of all joint distributions € P(X x ) proof of the following theorem is given in AppendiX E.
havingX-marginaly andY-marginali. Then Theorem 4. Supposep(z,y) = |jz — y||> and x admits
a probability density function. Then an optimal randomized
TR (M) =TR(M) T, ) &P y ty p

quantizer in Theorerl 3 can be obtained by randomizing over
is the subset of Model 3 randomized quantizers which corrguantizers with convex cells. That is
sponds .to the cIas; of output-distribution-constrained&@ min  L(v)= min L(v),
randomized quantizer&(M, ). very (M) vel™e (M)

oyt
Foranyv € P(X xY) let WhereFS’;(M) represents the Model 3 quantizers with output

distribution ¢ that are obtained by replacin@,; with Onrre
L(v) = /X Pl y)eldzdy) n @ v Y replacingas
« .



Remark3. Each quantizer having/ convex codecells can be The continuity of L, implied by the boundedness and
described usingM + (n + 1)M (M — 1)/2 real parameters continuity of p is crucial in the proof of Theorefd 5 and thus
if x4 has a density and any two quantizers that ara.e. for Corollary[1. However, the next theorem shows that for
equal are considered equivalent. One obtains such a pafamein arbitraryp, anye > 0, andv € /\/l5 . there existp in
description by specifying thé/ output points using:A/ real M3, | NT'FR (M) such thatl (vr) < L( )+e. That s, for any
parameters, and specifying tli¢ convex polytopal codecells ¢ > O there exists am-optimal finitely randomized quantizer
by M(M — 1)/2 hyperplanes separating pairs of distinctor (P3). The theorem is proved in AppendiX G

codecells usingn + 1)M (M — 1)/2 real parameters. Thus
Theorem[# replaces theonparametricfamily of quantizers
Q@ in Theoren{B with theparametricfamily Qs c.

Theorem 6. Let p be an arbitrary distortion measure and
assumenf, ¢ \s . L(v) < co. Then,
s

inf L(v)= inf L(v).
V. APPROXIMATION WITH FINITE RANDOMIZATION vEM], |, NIER(M) vEM]

Since randomized quantizers require common randomné&smark4. The above results on finite randomization heavily
that must be shared between the encoder and the decoder,deisend on our use of the Prokhorov metric as a measure of
of interest to see how one can approximate the optimal cost'lijstance” between two probability measures. In particula
randomizing over finitely many quantizers. Clearly, if tlee-t if one considers other measures of closeness, such as the
get probability measuré¢ onY is not finitely supported, then Kullback-Leibler (KL) divergence or the total variationsdi
no finite randomization exists with this output distributidn  tance, then finite randomization may not suffice if the target
this section we relax the fixed output distribution consirai output distribution is not discrete. In particular, if therget
and consider the problem where the output distributiontigso output distribution;) has a density ang denotes the (neces-
to some neighborhood (in the weak topology) ©f We sarily discrete) output distribution of any finitely randized
show that one can always find a finitely randomized quantizgunantizer, then) is not absolutely continuous with respect to
which is optimal (resp.¢-optimal) for this relaxed problem ¢ and for the KL divergence we haverr,(¢||1) = oo, while
if the distortion measure is continuous and bounded (resfor the total variation distance we hall@ — ¢||ry = 1.
arbitrary).

Let B(v, d) denote the open ball if?(Y), with respect to V. A SOURCE CODING THEOREM
the Prokhorov metrid [14] (see aldo {20) in Apperldix F), hav- ) . ) .
ing radiuss > 0 and centered at the target input distribution Aft€r proving the existence of an optimum randomized
¥. Also, Iet/\/l5 denote the set of alb € FR( ) whose quantizer in problenfP1) in Section T\, one would also like
Y marginal belongs taB (v, ). That is, M‘{ represents all to evaluate the minimum distortion
randomized quantizers iR (M )_ whose output distribution is L* :=min{L(v) : v € T}} (M)} (6)
within distanced of the target distribution). We consider the
following relaxed version of the minimization problefR1).  achievable for fixed source and output distributipnand ¢

and given number of quantization leveld. For any given
(P3) minimize L(v) blocklengthn this seems to be a very hard problem in general.
subject tov € Mfw, However, we are able to prove a rate-distortion type result

o . ] ) _that explicitly identifiesL* in the limit of large block lengths

The set offinitely randomizedquantizers inT}(M) is ,, if the source and output distributions correspond to two
_0btamed by taking finite mixtures of quantizers Iin, (M), stationary and memoryless (i.e., i.)grocesses.
€., With a slight abuse of the notation used in previous sections
TFR (M) we letX =Y = R and consider a sequence of problefifg)

" with input and output alphabed$™ = Y* = R"”, n > 1, and
= {UP € Ffj(M) tup = / vP(dv), |supp(P)| < oo}. corresponding source and output distributipfis= 4®- - -@u
I (M) andy™ = ¢ ® --- ® v, the n-fold products of a two fixed
Theorem 5. Assume the distortion measupeis continuous Probability measures, 1) € P(R). To emphasize the changing
and bounded and lat € M?, , be arbitrary. Then there exists block length,z™ = (z1,...,2,) andy™ = (y1, ..., ya) Wil
vp in M9 2w NTER(M) such thatL(vp) < L(v). denote generic elements ¥f* andY”, respectively.
AssumPTION3: The distortion measure is the average squared

The proof is given in AppendikIF. error given by

Although the minimum in(P3) may not be achieved by
anyv € Mﬂ,w, the theorem implies that if the problem has a
solution, it also has a solution in the set of finitely randoeci pn(2",y") = n Z p(zi, yi)
quantizers. '

Corollary 1. Assumep is continuous and bounded and supWIth plr.y) = (z —y)*. We assume thatQa”dﬂ’ have finite
pose there exists* € M’ , with L(v*) = inf,¢ v , L(v). second moments, |ej 2?p(dr) < oo, [y*(dy) < oo
w

Then there existsr € M, NT¥(M) such thatL(vp) = ForR >0 letT}},. ,.(2"") denote the set ai-dimensional
L(v*). Model 3 randomlzed guantizers defined id (5) having input



distributiony™, output distribution)”, and at mos2™ levels  (c) In [11] it was left as an open problem B (u, i, R) can
(i.e., rateR). Then be asymptotically achieved by a sequence of distribution-
. . R nR preserving randomized quantizers. The authors presented
Ln(p,%, R) = inf{L(v) : v € Ly oy (2 )} an incomplete achievability proof for the special case

is the minimum distortion achievable by such quantizers. of Gaussianu using dithered lattice quantization. We
We also define prove the achievability oD(u, v, R) for arbitraryy and
1 using a fundamentally different (but essentially non-
D(p, ¥, R) constructive) approach. In particular, our proof is based
= inf{E[p(X, Y)N]:X~up YV~ I(X;Y) < R}, on random coding where the codewords are uniformly

distributed on the type class of am-type that well

approximates the target distributiafh, combined with

optimal coupling from mass transport theory.
(d) With only minor changes in the proof, the theorem
remains valid ifX = Y are arbitrary Polish spaces with
metricd and p(z,y) = d(x,y)? for somep > 1. In this
case the finite second moment conditions translate into
[ d(z,x0)? p(dz) < co and [ d(y,yo)? ¢(dy) < oo for
some (and thus ally, yo € X.

where the infimum is taken over pairs of all joint distribuntso
of real random variableX andY such thatX has distribution
u, Y has distribution), and their mutual informatiofi(X; Y)
is upper bounded byz.

One can trivially adapt the standard proof from rate-
distortion theory to show that similar to the distortionera
function, D(u, v, R) is a convex and nonincreasing function
of R. Note thatD(u,%, R) is finite for all R > 0 by the

assumption thaj: and ) have finite second moments. The _
distortion-rate functionD(y, R) of the i.i.d. sourcey, is Proof of Theorenf]7. In this proof we use Model 2 of

obtained fromD(y, ¢, R) as randomized quantization which is more suitable here than
. Model 3. Also, it is easier to deal with the rate-distortion
D(p, R) = wel%izv)D(u’w’R)' performance that with the distortion-rate performanceusth

following the notation in [[2B], forD > 0 we define the

By a standard argument one can easily show thgfinimum mutual information with constraint outpyitas
the sequence{nL,(u,%, R)},>1 is subadditive and so

inf,>1 Ly (g, ¥, R) = limy,—00 Ln(p, 9, R). Thus the limit Ly (ulv, D)

represents the mi_nimum disto_rt_ion achievab!e with r_Hte— = Wf{I(X;Y): X ~uY ~9,E[p(X,Y)] < D},
randomized quantizers for an i.i.d. source with marginal

under the constraint that the output is i.i.d. with marginal where the infimum is taken over pairs of all joint distriburiso
The next result proves that this limit is equal Bz, 4, R), of X with marginal 1 and Y with marginal ¢» such that
which one could thus call the “output-constrained distorti  E[p(X,Y)] < D. If this set of joint distributions is empty,
rate function.” we let I,,,(u||p, D) = oo. Clearly, the extended real valued
functions I, (u||v, -) and D(R, i1, -) are inverses of each

Theorem 7. We have other. Hencd.,,, (11]|®, D) is a nonincreasing, convex function

lim Ly (p, %, R) = D(p, %, R). (7) ofD.
e The converse part of the theorem, i.e., the statement
Remarks. L. (u, v, R) > D(R, u, ) foralln > 1, is directly implied by

(@) As usual, the proof of the theorem consists of a convergr: following lemma. The proofs of all lemmas in this section
and an achievability part. The converse (Lenitha 2 belowjye given in AppendikH.

directly follows from the usual proof of the converse

part of the rate-distortion theorem. In fact, this was fird€€mma 2. For all n > 1 if a randomized quantizer has input
noticed in [L1] where the special case — u was distribution 1™, output distributioryy™, and distortionD, then

considered and (in a different formulation) it was showlﬁs rate is lower bounded as
that for alln R > L, (u|v, D).

Lty s B) = D(ps, p, ). In the rest of the proof we show the achievability of

Virtually the same argument implies that, (i, v, R) > D(R, p,v). We first prove this for finite alphabets and then

D(u, v, R) for all n ands). Nevertheless, we write out thegeneralize to continuous alphabets.

proof in Appendix(H since, strictly speaking, the proof LetX =Y be finite sets and assume thét, y) = d(z, y)?,

in [11] is only valid if ¢ is discrete with finite (Shannon)whered is a metric onX andp > 0. For eachn let ¢,, be a

entropy or it has a density and finite differential entropyglosestn-type [24, Chapter 11] t@) in the [;-distance which
(b) The proof of the converse part (Lemfda 2) is valid for anig absolutely continuous with respect tg i.e., ¢, (y) = 0

randomized quantizer whose outplt® satisfiesY; ~ whenevery(y) = 0. Let D be such thatl,,,(u|¢, D) < oo,

¥, ¢ = 1,...,n. Thus the theorem also holds if in thelet ¢ > 0 be arbitrary, and sek = I,,, (1|1}, D) + €. Assume

definition of L,, (i, v, D), the randomized quantizers areX™ ~ u™ for n > 1. For eachn generate2"’* codewords

required to have outputs with identically distributed (butiniformly and independently drawn frofi,(v,,), the type

not necessarily independent) components having commadass of ,, [24], i.e., independently (of each other and of

distribution . X™) generate random codewordg*(1),...,U"(2"F) such



that U™ (i) ~ v, where (U(1),..., U2 R)) = fu(Z1), X" = fu(X™, 7)), and
Y™ = g,(X™, Z2), where f,,, f,, andg, are suitable (mea-

1 i n
M(ln)(yn) — { Ta(@n)l” ity E_ann) surable) functions. Combining random coding with optimal
0, otherwise. coupling this way gives rise to a randomized quantizer of
type Model 2 whose output has the desired distributigh

(As usual, for simplicity we assume theit”™ is an integer.) Let
X™ denote the output of the nearest neighborhood encod

X = argmin p, (X™, U™(i)). In case of ties, we choose . (n)
1Si§2nR X’n ~ Mn Xn ~ N . Yn ~ 'l/]n

U™ (i) with the smallest index. The next lemma states the—————| Rggggm (%%tgmé

intuitively clear fact thatX™ is uniformly distributed on

Tn(wn)'
Lemma 3. X" ~ (.

%sre_e Fig[R).

Figure 2. D(R, u,%) achieving randomized quantizer scheme.

The next lemma uses Marton's inequalify [25] to show

The ide"_" f-or. thi_s_ random coding §cheme comes from [Zﬁlat the extra distortion introduced by the coupling step
where an infinite i.i.d. codebooklU™(¢)}$2, was considered asymptotically vanishes.

and the coding rate was defined @gn) log N,,, where N,
is the smallest index such thatp, (X", U"(i)) < D. If the Lemma 5. We have

U™ (i) are uniformly chosen from the type clags(,, ), then lim T (0, ) =
by Theorem 1 and Appendix A and B 6f [23], /n) log N,, — n-soo T
L (p|[tn, D) — 0 in probability. and consequently
Our scheme converts this variable-length random cod- )
ing scheme into a fixed-rate scheme by considering, for lim sup E[p, (X", Y")] < D.

n—r oo

each blocklengt, the finite codebook §™ (i) f:f Letting

: . In summary, we have shown that there exists a se-
= , the expected distortion of our scheme ' . . .
i/)smg)é)unizng p(z,y) P quence of Model 2 randomized quantizers having rte-

1 L. (], D) + ¢ and asymptotic distortion upper bounded by
Elpn(X™, X™)] < D + pmax Pr{ —log N,, > R}. D which satisfy the output distribution constrairit* ~ ™.
n Sincees > 0 is arbitrary, this completes the proof of the achiev-
Since I, (pl|¢n, D) — In(ullv, D) by the continuity of ability of I, (x|, D) (and the achievability ofd(y, 1, R))
Ln (i, D) in 4 (see [28, Appendix A]), we have? > for finite source and reproduction alphabets.

Ly (pl[n, D) + 6 for somed > 0 if n is large enough. ThUS pemarks. We note that an obvious approach to achievability
the above bound implies would be to generate a codebook where the codewords have
lim sup E[pn (X", X™)] < D. (8) i.i.d. components drawn according o However, the output
n—o0 distribution of the resulting the scheme would o far
Hence our random coding scheme has the desired rate &ogn the desired)™. In particular, such a scheme produces
distortion asn — co. However, its outpu ™ has distribution output X™ whose empirical distribution (type) converges to
(") instead of the requireg”. The next lemma shows thata “favorite type” which is typically different fromy [23,
the normalized Kullback-Leibler divergence (relativerepy, Theorem 4]. As well, the rate achievable with this scheme

[24]) between,™ and™ asymptotically vanishes. at distortion levelD is [26, Theorem 2]
LDy R= min (In(ulv’, D)+ D’
Lemma 4. —D( M ypm) = 0 asn — oo. W@}}gy)( (ull', D) +D(¢'ll¥))

Let 7, A € P(X). The optimal transportation cod, (r, \) Which is typically strictly less thad,, (ul|¢, D).
betweenr and \ (see, e.g.,[122]) with cost functiop,, is Now letX =Y =R, p(z,y) = (x—y)?, and assume that
defined by and have finite second moments. We make use of the final

. . n om n n alphabet case to prove achievability for this continuouseca

To(m, A) = i { Blpn (U™, V)] : U" ~mr, VI~ A}, (9) e following lemma provides the necessary link between the
where the infimum is taken over all joint distribution of gaaf two cases.
random vectorsU™, V™) satisfying the given marginal distri-
bution constraints. The joint distribution achieviig(r, \) as
well as the resulting paifU™, V™) are both called an optimal
coupling ofr and A. Optimal couplings exist wheK is finite
or X = R", p(z,y) = (z — y)?, and bothr and X both have
finite second moments [22].

Now consider an optimal couplingX™,Y") of wﬁf‘) and
Y™ If Z; and Z, are uniform random variables of), 1]
such thatZ = (Zi,Z,) is independent ofX™, then the Let n} and; denote then-fold products ofu, and iy,
random code and optimal coupling can be “realized” asspectively. Definition[{9) of optimal coupling impliesath

Lemma 6. There exist a sequendel } of finite subsets dR
and sequences of probability measufgs.} and {v}, both
supported onAy, such that
() Th(p, pr) = 0, Ty (Y, 9) — 0 @ask — oo;
(i) For anye > 0 and D > 0 such thatl,,(u||v, D) < oo,
we havel,, (jux||Yx, D+¢) < L, (u|j1, D) for all k large
enough.



T, ) < T1(p, i) @nd T, (7, 47) < T1(3,4%). Hence empirical distribution of good rate-distortion codes (seq.,

for any givere > 0 by Lemmd® we can choogdarge enough [27] and references therein) are also worth studying. Kinal

such that for alln, a rigorous theory of randomized quantization paves the way
s m A m for interesting applications in signaling games in gameithe
Tou"s k) < € and T (7, y) <, (10) o8] and in stochastic networked control (seel [29] 4nd [b6] f

and alsol,,, (p ||k, D +€) < L, (|, D). applications of randomized quantization in real-time oggi

Now for eachn define the following randomized quantizerand [17] and([30] for quantizers and stochastic kernels egew
(a) Realize the optimal coupling betwegh and 1.7 as information structures in networked control).

(b) Apply the randomized quantizer scheme for the finite

alphabet case with common source and output alphabet APPENDIX

Ay, source distributior?, and output distribution)?.  A. Proof of Lemmal[ll

Set the rate of the quantizer ® = I,,,(u||®), D) + ¢.
(c) Realize the optimal coupling betweer and ™.

In particular, the optimal couplings are realized as foow Ay ={vePXxY):v(- xY)=pu}
in (a) the sourceX™ ~ p™ is mapped taX " (k) ~ uj, which
serves as the source in (b), vid" (k) = fn,k(X",Zg), and
in (c) the outpu®™ (k) ~ ¢ of the scheme in (b) is mapped
toY” ~ ¢y viaY"™ = g, k(Y™ (k), Z4), whereZs and Z, are
uniform randomization variables that are independenk &t
Thus the composition of these three steps is a valid ModelP2oposition 1. A, is closed and convex, and its set of extreme
randomized quantizer. pointsA,, . is a Borel set inP(XxY). Furthermorep € A, .

Since R = I,(u|, D) + ¢, in step (b) the asymptotic if and only ifv(dz dy) can be disintegrated as
(in n) distortion D + ¢ can be achieved by Lemnid 6(ii).

Using [10) and the triangle inequality for the notfi™ ||, := v(dz dy) = Q(dylx)p(dx)
(>, E[Vf])l/2 on R™-valued random vectors having finitewhere Q( - |z) is a Dirac measure foru-a.e. z, i.e., there
second moments, it is straightforward to show that the asyngxists a measurable functioh: X — Y such thatQ( - |z) =
totic distortion of the overall scheme is upper bounded b (-) for u-a.e.x.

D + I(¢), whereli(e) — 0 ase — 0. Sincee > 0 can be
taken to be arbitrarily small by choosiriglarge enough, this
completes the achievability proof for the caée-Y =R O

For a fixed probability measure on X define

(A, is the set of all probability measuresi(XxY) whoseX-
marginal isp). The following proposition, due to Borkar [13,
Lemma 2.2], gives a characterization of the extreme poihts o

e

In fact, Borkar did not explicitly state Borel measuralyilit
of A, in [13], but the proof of [1B, Lemma 2.3] clearly
implies this.

By Propositior 1 it is clear that € I',,(M) if and only if
v € A, and its marginal ofY is supported on a set having at

We investigated a general abstract model for randomizetbst M elements, i.e., for somé < M and{y1,...,yr} C
guantization that provides a more suitable framework fof,
certain optimal quantization problems than the ones uguall
considered in the source coding literature. In particuta, (X x{yr,--yr}) = L.
model formalizes the notion of randomly picking a quantizret {4, },,~,; be a countable dense subsetYofand define
from the set allall quantizers with a given number of outpug|lowing subsets of\,, .:
levels. Using this model, we proved the existence of an agitim u

randomized vector quantizer under the constraint that tlgze U {
= UEAMC:U(XX UB(yni,l/k))zl

VI. CONCLUSION

guantizer output has a given distribution.

Our results are mostly non-constructive and it is an open
problem how to find (or well approximate) such optimal quargnd
tizers. A special case where a scalar source has a density and
the output distribution is constrained to be equal to thec®u v m o

k=1

ni>1,nar>1 i=1

distribution was considered ih_[10] and construction based
dithered uniform quantization followed by a nonlinear map- B )
ping was given. Although this construction is optimal in théhereB(y, r) denotes the open ball i centered ay having
limit of high resolution (/ — oc), it is very likely suboptimal "adiusr. Sets of the form

for any finite M. In general, it would be interesting to better M

characterize optimal randomized quantizers in Thedrer:3, f {U EPXxY): U(x x| By, 1/k)) = 1}
example, by finding useful necessary conditions for opfiyal i=1

It would also be interesting to characterize the high-netsmh are Borel sets by [31, Proposition 7.25]. Sinkg . is a Borel
behavior of the distortion, which should be markedly diffier set, (2, is a Borel set for allk. Thus X is a Borel set in
from the classical case if the input and output distribugiorP(X x Y). We will prove that® =T',,(M).

are not equal. Connections between the output distribution Since {y,,},>: is dense inY, for anyv € T', (M) and
constrained lossy source codes studied in Seéfion V and the> 1 there existiy,..., 7y such thatsupp(v(X x -)) C



UﬁlB(yﬁi,l/k). Thus T, (M) C Q4 for all k, implying an uncountable Borel space, there is a measurable bijection

I, (M) cCZX. (Borel isomorphism)g : R™ — I',(M) betweenR™ and
To prove the inclusiort C I',(M), letv € ¥ and notice T',(M) [21]. Now defineq by q(z,z) = g4 (z) and let
that for all k there exista}, n§, ..., n%, such that v = Pog. Then for allz, q(-,z) is a u-a.e. defined) -
M level quantizer. However, it is not clear whethefz, z) is

v(X % U Bly,x,1/k ) -1 meas_ura?le. Therefore we will construct another mea_lsaalrabl
function g(z, z) such thatg(-,z) is an M-level quantizer

_ . " andq(-,z) = q(-,2) p-a.e., for allz. Then we will prove
Let us defineK,, = X x (N, U=y B(y,x,1/k). Clearly, that(X,Y) = (X,d(X,Z)) ~ v, whereZ ~ v. Define the
K41 C Ky ando(K,) = 1, for all n. Letting stochastic kernel o)X x Y givenT (M) as

~ dx dylv) = v(dx dy).
G = (U Bl 1/k). Y(dx dylv) = v(dx dy)
k=1i=1 Clearly,~ is well defined becausi, (M) is a Borel subset of

we havev(X x G) = 1. If we can prove thati has at most P(X x Y). Observe that for each € I', (M), we have
M distinct elements, them € I',(M). Assuming the contrary,

there must exist distindtj, s, . . . , Yar, 41} C G. Lete = Clv /5% ) dz) (11)
min{||g; — 95| 14,5 =1,..., M +1,i # j}. Clearly, for < N

¢, UM, B(y,r,1/k) cannot contair{gi, o, - - -, Jar, Jar+1}, for C' € B(XxY). Furthermore, by [31, Proposition 7.27] there

a contradiction. Thué' has at mosf/ elements and we obtain €XiStS & stochastic kerngldy|x,v) on'Y given X x T',, (M)
N =T,(M).  Which satisfies for al” € B(X x Y) andv € I',(M),

B. Proof of Theorem[I V(o) = /XH(OALU)H(CM)' (12)

We will need the following result which gives a necessargince(Y) is countably generated by the separabilityofor
and sufficient condition for the measurability of a mappingnyv < I',,(M) we haven( - |z,v) = O, (x)(+) p-a.e. by[(I1)
from a measurable space R(E), whereE is a Polish space. and [12). Slncey is a stochastic kernel |t can be represented
It is proved for compact in [32, Theorem 2.1] and for as a measurable function frokix ', (M) to P(Y), i
noncompact it is the corollary of [31, Proposition 7.25].

n: X xTu(M) = P(Y).
Theorem 8. Let (2, F) be a measurable space and Etbe
a Polish space. A mappinl : Q@ — P(E) is measurable if DefinePi(Y) = {¢ € P(Y) : ¢/({y}) = 1 for somey € Y}.
and only if the real valued functions — h(w)(A) fromQ to  P1(Y) is a closed (thus measurable) subsefgl) by [34,
[0,1] are measurable for alld € B(E). Lemma 6.2]. HenceM := n~1(P(Y)) is also measurable.
i Observe that for anyw € I',(M) we haveM, = {z €

For any (q,l/) dEflnef : R™ — F#(M) by f(Z) = X (I 1)) c M} S {ZC e X : ( |I 1)) =6 ( )} Thus

Sa(o. (dy)u(dz). By TheoreniBf i ble if and onl 7 0(©)
Oq(x,) (dy)pu(dz). By TheoreniB.f is measurable if and only v 'y for all v € T, (1), which |mpl|esu®P(M) =1.
if the mappingsz — [ dq(z.-)(Cy)p(dzx) are measurable for pofina the functiori, from X x T, (M) toY as

all C € B(X x Y), whereC,, = {y : (z,y) € C}. Observe
that 64(,-)(Cz) is @ measurable function dfr, z) because ~ g, if (z,v) € M, wheren({7}|z,v) =1,
{(@,2) € XX Z: 0ga(Ca) = 1} = {(w2) € XxZ: W@ =9 " Gpoee
(z,9(z, 2)) € C}. By [33, Theorem 18.3] dq(z,»)(Ce ) p1(dx)
is measurable as well. Hengeis measurable. wherey is fixed. By constructiong, (x) = ¢,(z) u-a.e., for

Thus we can define the probability measutesupported all v € I',(M). For anyC € B(Y) we have
onl',(M)by P=vof~!(ie,P(B)=v(f"'(B)) forany _

Borel setB c I',(M)). Then, for the corresponding> we G, (C)
have(X,Y) ~ vp, i.e., forC € B(X x Y), = {(@,v) e XX Tu(M): qu(x) € C}

= {(z,v) e M: Gy(x) € CYU{(z,v) € M®: §,(z) € C}.
Pr{(X.q(x.2)) €} = //5 (@2) (e Julda)u(de) Clearly {(z,v) € M°: g,(x) € C} =M or depending on

/f whether or noy is an element o€. Henceg, }(C) € B(X x
Lu(M)) if {(z,v) e M: gy(z) € C} € B(XxT',(M)). But
/ o(C) P(dv) {(:c_,v)_E_M D gu(x) € CF = {(z,v) € M : ﬁ_(C’|a:,U) =1}
T, (M) which is in B(X xT',(M)) by the measurability ofy(C| -, -).

= up(0). Thus, g is a measurable function frod x I',(AM) to Y.

Let us defineq asq(z, z) = gy(-)(x). By the measurability
Conversely, letvp be defined as in{3) withlP supported of g it is clear thatg is measurable. In addition, for anye
onT, (M), ie.,vp = fr (1) vP(dv). Define the mapping Z q(-,z) is an M-level quantizer which isu-a.e. equal to
(M) 3> v~ qu, Whereqv is the u-a.e. defined quantizerq(-, z). Finally, if Z ~ v is independent ofX andY =
in Qur, giving v(dx dy) = p(dx)dy, (o) (dy). Sincel', (M) is  §(X,Z), then(X,Y) ~ vp, i.e.,
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and thusf, is measurable. Continuing in this fashion, we
define the Borel set¥; = {(x,2) : 4(z,2) — fi(z) = 0}

Pr{(X,ﬁ(X, 7)) e C} and write, for anya € [0,1),

= | [ stz zeZ:fiz)<a)

Z JX

= zEZ:/ Oa(z.)([0,al)u(dx) > 04,

= [ [ bwContanpia) G2 [y, e (i) > 0]

r, (M) Jx . .

wo proving thatf; is measurable for all = 1,..., M.

= [ [ (Gl vputd)Piav) Define

Tu(M)JIM,

N={(z,2) eXxZ:4(z,2) # fi(z) foralli=1,...,M}

/ ) (P
! =XxZ\|JE:.
=1

= / v(C)P(dv)
I, (M
— (é)) O Clearly, N is a Borel set and: ® v(N) = 0 by Fubini’s
PR theorem and the definition of;, .. ., fa,. Now we can define
M
C. Proof of Theorem e(x,z) = Z,’l{q(w):ﬁ(z)} + M1y(z,2)
If (e,d,v) is a Model 1 randomized quantizer, then setting =1

q(x, z) = d(e(x, 2), z) defines a Model 2 randomized quangnd
tizer (g, v) such that the joint distributions of their inputs and
outputs coincide.

Conversely, let(q, ) be a Model 2 randomized quantizer.
It is obvious thatq can be decomposed into an encoder o
X x Z - {1,...,M} and decoded : {1,...,M} xZ =Y where 15 _Qenotes the indicator of event (or seB). The
such thatd(e(z, z), z) = q(x, 2) for all z andz. The difficulty Measurability ofq and f, fi,..., far implies thate and d
lies in showing that this can be done so that the resuking®'® measurable. Sinee(z,z),z) = 4(z,2) p ® v-a.e. by
andd are measurable. In fact, we instead construct measuragfgstruction, this completes the proof. .
e andd whose composition ig ® v-a.e. equal taj, which is
sufficient to imply the theorem. D. Proof of Theorem

Let(q, ) be a Model 2 randomized quantizer. Sifi®eand |y proof under Assumption 1

[0, 1] are both uncountable Borel spaces, there exists a Borelrp simplify the notation we redefine the reconstruction
isomorphismf : R™ — [0, 1] [21]. Defineq: X x Y — [0,1]  alphabet asY = B, so thatY is a compact subset of
by g = foq. Hence,q is measurable and, for any fixed R~ |t follows from the continuity ofp that L is lower
q(-, z) is anM-level quantizer fronX to [0, 1]. Also note that semicontinuous orP(X x Y) for the weak topology (see,
q=f"loq. e.g., [22, Lemma 4.3]). Hence, to show the existence of a

Now for any fixedz € Z consider only those output pointsminimizer for problem(P1) it would suffice to prove that
of 4(-, z) that occur withpositivey, probability and order these F5¢(]V[) = FE(M) NT,., is compact. It is known that,, ,,
according to their magnitude from the smallest to the largegs compact[[22, Chapter 4], but unfortunatdly, (M) is not
Fori = 1,..., M let the functionfi(z) take the value of closed [17] and it seems doubtful thEf'(}/) is compact.
the ith smallest such output point. If there is no such valugjence, we will develop a different argument which is based
let f;(z) = 1. We first prove that all thef; are measurable on optimal transport theory. We will first give the proof unde
and then define the encoder and the decoder in terms of thaggumption 1; the proof under Assumption 2 then follows via
functions. a one-point compactification argument.

Observe that for any < [0, 1], by definition Let Pas(Y) = {10 € P(Y) : |supp(¢0)| < M} be the set

of discrete distributions withl/ atoms or less olY.

M
di,z) =Y 7' o fi(2) 1=y
=1

{z€Z2:filz) <o} = {Z €z /Xé‘ﬁ(”’z)([o’a])u(dx) o 0}’ Lemma 7. Py (Y) is compact inP(Y).

where the set on the right hand side is a Borel set by Fubini's Proof: Let {¢,,} be an arbitrary sequence iR(Y).
theorem. Hencef; is a measurable function. Defing, = Each v, can be represented by pointgy,...,y%,) =
{(x,2) € Xx Z: 4(z,2) — f1(z) = 0}, a Borel set. Letting ¥" € Y and (p{,...,p}y) = p* € K,, where K, =
E,.={x €X: (x,2) € E} denote thez-section ofEy, for {(p1,...,pm) € RM SMopi = 1p; > 0} is the

anya € [0,1) we have probability simplex inRM . Letw,, = (y",p"). SinceYM x K
is compact, there exists a subsequefieé+} converging to
{z€Z: fa(z) < a} somew in YM x K. Let ¢) be the probability measure in

_ . P (Y) which is represented by. It straightforward to show
= Z: Og 0 d 0 4 o .
{Z © /x\El,z i) (10, al)ulde) > }’ thaty is a weak limit of{¢)"+}. This completes the proof.]
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Define Recall the sef\, and its set of its extreme points,, . from
A B " e Propositior(IL. It is proved ir [13] and [36] that anyc A,
Lu(M) = U {0 € Ly : L(0) = vgnplfflwo L(v)}. can be written a9 = fA vP(dv) for someP € P(A,, ).
YoePu(Y) By Propositior L we also have, (M) C A,,... The following

The elements ot', (M) are the probability measures whichemma is based on these two facts,

solve the optimal transport problem (see, elg.] [22]) foedix Lemma 9. Let & € A, which is represented as =

input marginaly and some output marginal, in PM ]
the end of this proof Lemnfalll shows thiar(M) is a Borel fA vP(dv). 11X x ) € Pu(Y), then P(L,(M)) =
set. LetFR( ) be the randomization df (M), obtained by Proof: Slncev(x x ) € Pu(Y), there exist a finite set
replacingl’,, (M) with T, (M) in @). Define the optimization B C Y having M’ < M elements such that(X x B) = 1.
problem(P2) as We have
(P2) minimize L(v) B(X x B) :/ v(X x B)P(dv)
subject tov € T} (M), Drwre

. . = v(X x B)P(dv
Whel’el—‘fidj(]V[) = FB(M) n FM7»¢. ~/Au,e\FH(M) ( ) ( )
Proposition 2. For any v* € F}jw(M) there existso € +/ v(X x B)P(dv).
fR »(M) such thatL(v*) > L(9). Hence, the distortion of T (M)

any minimizer in(P2) is less than or equal to the dlstortlonSmCEU(X x B) < 1forallv e A, \T,(M), we obtain

of a minimizer in(P1). P(T,(M)) =1. 0
To prove Propositiofl]2 we need the following lemma. Lemmal® impliesl", (M) C I'i(M) becauses(X x -) €
Pu(Y) whenv € T',(M). Defineh : P(T',(M)) — A, as

Lemma 8. Let P be a probability measure oh,(A1). Then
there exists a measurable mappifgI’,, (M) — I',,(M) such

thatv(X x -) = f(v)(X x -) and L(v) > L(f(v)), P-a.e. h(P)(-) :/ (M)U(.)p(dv), (13)

Proof: Define the projections; : I',(M) — Pu(Y)
and fy : T,(M) — Par(Y) by fi(v) = v(X x -), f2(v) = Itis clear that the range df is TR(M) C A,
v(X x ). Note thatf; is continuous and is continuous and
onto. DefineP = Po f; ! onPy,(Y). By Yankov’s lemmal[35,
Appendix 3] there exists a mappingrom Py, (Y yto T, (M) Proof: Assume {P,} converges weakly toP in
such thatfy(g(1)) = ¢ P-a.e. Then, it is straightforward toP(I',(M)). Then, for any continuous and bounded real func-
show thatf = go f; satisfies conditions(Xx -) = f(v)(Xx tion f onX xY

follows:

Lemma 10. h is continuous.

-)yandL(v) > L(f(v)), P-a.e. O
Proof of Propositiol R: Let v* € Ff}w(M), ie., lim f(z,y)v(dx dy) P, (dv)
’ n=0 Jr,, (M) JXxY
"= / vP(dv) andv™ (X x -) = 1. - / f(x,y)v(da dy) P(dv)
L (M) (M) JxxYy
By Lemmal8 there existy : I',(M) — I',(M) such that it the mappingv ~ [ . f(z,y)v(dzdy) is continuous
v(X x +) = f(lv)(x x ) andL(v) > L(f(v)), P-a.e. Define and bounded oifr, (7). Clearly this mapping is continuous
P =Pof" e PluM) ando = Jo, ry ?P(dv) € by the definition ‘of weak convergence and bounded by the
[} (M). We have boundedness of. Thus
L(v*) :/ L(v)P(dv) 2/ L(f(v))P(dv) / v Py, (dv) —>/ vP(dv)
T, (M) T,.(M) T (M) T (M)
- / L(v)P(dv) = L(%) weakly, completing the proof. O
0, (M) Since I',(M) < T}(M), we have PP"(I',(M)) :=

YT, (M) C P(Tu(M)), which is measurable by the
measurability of, (M) and h. Let g : PPYT,(M)) —

v (X x ) :/ v(X x - )P(dv) F «(M) be the restriction of to PP(I',(M)). Clearly g
L (M) is measurable and onto. By Yankov’s lemmal[35] for any

as well as

_/ FO)X x ) P(dv) probability measure” on I'.(M) there exists a measurable
= I v v mappingy : I, (M) — PP (L', (M)) such thatg(p(2)) = 0
. P-a.e. In addition, since(9) € g~'(9) P-a.e., we have
= / v(X x -)P(dv) = (X x -).
(00 L) = [ L)) 19)
This completes the proof. O Ty (M)
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and Definition 5.1]. A setB C X x Y is said to bec-cyclically

A . monotone if for anyN > 1 and pairs(z1,y1),.-., (N, yN)
DX x )= /P ) v(X X - )p(0)(dv) (159 in B, the following inequality holds:
. . . N
P-a.e. Define the stochastic keri&(dv|o) onT',, (M) given
fu(M) as Zlc xzayz Z xuszrl
(dv|d) = p()(dv). (16) whereyn.1 == 1.

Sincey is measurablell(dv|3) is well defined. Observe that 'Nformally, whenv € Iz, is concentrated on ecyclically

both ¢ and I1(dv|3) depend on the probability measurec monotone set, then its cost cannot be improved by local
I (M) perturbations; see the discussion [n ][22, Chapter 5]. The
" .

following result shows that an optimalmust concentrate on
Proposition 3. If (P2) has a minimizew*, then we can find a ¢-cyclically monotone set.

v € T}, (M) such thatL(v) = L(v*), implying thatv is a

m|n|m|zer for (P1). Proposition 4 ( [37, Theorem 1.2],[[22, Theorem 5.10])

Let ¢ : X xY — [0,00] be continuous. Ifu € T';
Proof: v* can be written asv* = [z ,, 9P(dd). is a solution to the optimal transport probleri{18) and
Consider the stochastic kerrié(dv|v) def|ned in[(16). Com- [ c(z,y)v(dxdy) < oo, thenw is concentrated on some
posing P with II we obtain a probability measur& on c-cyclically monotone set.

Lu(M) > Tu(M) given by ForanyK C P(X) andS C P(Y) defineEx ¢ C P(XxY)
A(dod dv) = P(dd)TI(dv|d). (17) as the set of probability measures which are concentrated on

. . i ) somec-cyclically monotone set and solvie {18) for some=
LetP_: A_(F“(]\g) x ) ef(F“(M))‘ Define the randomized K, A € S. The following result is a slight modification df [22,
quantizers € I';}(M) asv = [ (M) vP(dv). We show that Corollary 5.21]

L(v*) = L(v) andv*(X x -) = 9(X x - ) which will complete

the proof. We have Proposition 5. If K and S are compact, then=x ¢ is
compact.
L{v") = / ) L(0)P(do) Proof: Let {v,} be a sequence ifix s. It can be shown

that there exists a subsequereg, } converging tov whose
/ / L(v)p(9)(dv)P(dv) (by (I4))  marginals belong td& andsS [22, Lemma 4.4]. Since eaah,,
Lyu(M) JT (M) is concentrated on ecyclically monotone set by assumption,
_/ L(v)A(dodv) (by (I8)) it can be shown by using the continuity ofthat v is also
Ly (M)xTy (M) concentrated on a-cyclically monotone set (see proof of
B ~ o Theorem 5.20 in[[22]). Them is also an element dEx s
- /FM(M) L(v)P(dv) = L(v). by [37, Theorem B]. O
Since {u} and Py (Y) are both compact, we obtain that
Equy,Pu(y) 1S compact. Thus it follows thaP(Z,y »,,(v))
V(X % ) :/ B(X x -)P(dD) E also compact. Fur’Ehermore, by Propositidn 4 we have
(M) Erpuy)y O {v € TW(M) : L(v) < oo}. Hence the

Similarly,

o(X Io\P(ds) (b randomization can be restricted 3,7 (v) When defining
/ M)/ (M) X+ )e(0)(dv)P(do) (by @5)) IR (M) for (P2). Let = { 1 Par(y) 0€ the randomization of
E{u},Pu () Obtained by replacrnﬁu(M) with Z¢,3 py,(v) IN
/ v(X x -)A(ddodv) (by (16))  @). One can show that the mappifR(Z .y p,.(v)) > P —
(M)>T (M) vp € :{H} Par(Y) is continuous by using the same proof as

:/ v(X x - )P(dv) = 5(X x -). in LemmalI0. Thu£{ }Pa(v) IS the continuous image of
(M) a compact set, and thus it is also compact. This, together
By Propositior{ R, is a minimizer for(P1). 0 with the compactness df, , and the lower semicontinuity

Hence, to prove the existence of a minimizer (B) it is of L, implies the existence of the minimizer f¢P2) under
enough prove the existence of a minimizer {&2). Before Assumption 1.
proceeding to the proof we need to define the optimal trattispor To tie up a loose end, we still have to show ttiat(M)
problem. Optimal transport problem for marginals 7(X), is measurable, which will complete the proof under Assump-
A € P(Y) and cost functior: : X x Y — [0, oc] is defined as: tion 1.

I / Lemma 11. T, (M) is a Borel set.
minimize c(z, y)v(dz dy)
_ XY (18) Proof: Let us deflneFf( ) :={vel,(M): LK) <
subject tov € I'r. . oo} and I¢(M) = I, (M) \ T (M). Since solutions to
The following result is about the structure of the optimal the optlmal transport problem havmg finite costs must con-

in (I8). It uses the concept afcyclically monotone set$ [22, centrate onc-cyclically monotone sets by Propositioh 4, we
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have fZ(M) = {v € Eypury) @ L(v) < oo}. Hence, Proof: Since T',(M) is a separable metric space,
fﬁ(M) is a Borel set sinc&y,; p,,(v) is compact andL  Pr(I'u(M)) is dense inP(T',(M)) by [34, Theorem 6.3].
is lower semi-continuous. Recall the continuous mapping Since T';®(M) is the image of aPg(I',(M)) under the
in the proof of Lemma8. Sinc&y,; »,,(v) is compact, continuous functio which mapsP(I',(M)) onto I'}}(M),
{v € Egypuv @ Lv) < N} is also compact for all itis dense inC Y (M). O
N > 0. Hence, £ (Fi(M)) = Urzo 2({v € Egypuv) Recgll that theT Prokhorov metric oR(E), where(E, d) is
L(v) < N}) is o-compact, so a Borel set, iRy (V). Since @ metric space, is defined as [14]
LT 00 e LA TR O0) 8359201 o0 < 0 0

orel set. Note that for any € I'?° we haveL(v) = oo, o
which means that aft with the salme marginals asare also in v(A) <v(A%) +aforall Ae B(E)} (20)
[pe(M). This impliesT';? (M) = [ (f2(T52(M))). Hence, where
I'7°(M) is a Borel set. 0 A = {e €E: inf d(e,€) < a}.
II) Proof under Assumption 2 e’€A

It is easy to check that the proof under Assumption fence forv,v € P(X xY),
remains valid if X and Y are arbitrary uncountable Polish
spaces such that is compact, and the distortion measpris  dp(v,v) > inf{a:v(X x B) <v((X x B)*) +a,
an extended real valued function (no steps exploited theiape v(X x B) <v((Xx B)*) +a,B € B(Y)}
structure ofR™). Let Y be the one-point compactification of — dp (v(x x ), (X x ,))
R™ [21]. Y is clearly an uncountable Polish space. Define the
extended real valued distortion measpre X x Y — [0,00] (note that(X x B)* = X x B®). This implies

by

Gy = {vePXxY):v(Xx -)eB(,a)}
r—yl? ifyeR” D e P(XXY):dp(v,v) < 21
Sorg) {LO P yek (19) (Ve PXxY):dp(0,0) <a},  (20)
’ y=oo whered is such thatiy(X x -) = ¢ anda > 0 . Recall that

It is straightforward to check that is continuous. Define given a metric spacé and A C E, a setB C A is relatively
L on P(X x Y) as before, but with this new distortionopen inA if B = ANU for some open sel C E.
measurep. The proof under Assumption 1 gives a minimize
v = Jp, 0P (dv) for (P1) Define T,(M) = {v €
I, (M) : v(Xx{oo}) =0}. SinceL(v*) < oo by assumption, Proof: Since MY, , = G5 NTR(M), it is enough to
P(T',(M)) = 1. This implies that* is also a minimizer for prove thathp is open inP(XxY). Letv € Gfp. Theno(X x
the problem(P1) whenX =Y =R" andp = ||z —y|?>. O -) € B(v,6) by definition, and there exis& > 0 such that
B(t(X x -),00) C B(v,6). By (21) we have

E. Proof of Theorem 4 {vePXxY):dp(,0) <o} CGUy, . (22)

Lemma 13. Mfw is relatively open ian}(M).

From_ .the proof of Th_eorerﬁ]3 recall t_he SEf, (M) of We also haveG®™, . c G since BH(X x -),d0) C
probability measures which solve the optimal mass trarispaor T u(Xx) 5 W .
problem for fixed input margingl and some output marginale’ d). This implies thattz;; is open inP(X x Y). U

ase 1
First we treat the casé(v) > inf,cp,ar) L(v'). If pis
continuous and bounded, thénis continuous. Hencejv' €

Yo in Pu(Y). It is known that iquadmits a density and
p(x,y) = ||z — y|? then eachv € T',(M) is in the form
v(dedy) = p(de)dy.) (dy) for someq € Q. (see, e.g. _ _ - i
B, Theorem 10 thus in this casé, (M) CC r,(M) TR(M) : L(v’fz < L(v)} is relatively open inl'}(M). Define
' ;. . ' L) ) /
which implies that™® , (M) ¢ T (M) ¢ TR (a1). Recall = {0/ € (M) L) < L)}
the problem(P2) in the proof of Theorentf3. It was shownLemma 14. F 1 M, ., is nonemptyand relatively open in
that (P2) has a minimizerv*. It is clear from the previous I} (M) '
discussion that* is obtained by randomizing over the set of _ ) )
quantizers having convex codecells represented, fiy/). On Proof: By LemmallB and the above discussion the
the other handy* is also a minimizer for the problertP1) intersection is clearly relatively open nhf}(M), so we need

by Propositiof 2 in the proof of Theoreh 3. ] toshow that it is not empty. Sinck(v) > inf,er, (ar) L(v'),
there existst € T', (M) such thatL(?) < L(v). Define the

sequence of randomized quantiz¢rs } € I')(M) by letting
F. Proof of Theorem vy = 20+ (1 — L)v. Then,v, — v weakly because for any
Recall the continuous mappirig: P(T',,(M)) — TR (M) continuous and bounded real functigron X x Y
defined in [(IB). LetPr(I',(M)) denote the set of prob- .
ability measures o', (M) having finite support. Clearly lim Jdvoy —/ fdv
XxY XxY
fdv — / fdv
XxY XxY

h(Pr(T,u(M))) = TEF(M). nie
= lim —

. . =0.
Lemma 12. I';¥(M) is dense inl"}}(M). n—oo n
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Hence there exists, such thatv, € Mfi,qp for all n > ng. ~v-a.s. As a subset dP(X x Y), I',(M) with the Prokhorov

On the other hand, for any metric is a separable metric space, and thus|[by [21, The-
1 1 orem 11.4.1] we also have the almost sure convergence of
L(vn) =L (517 + (1 n)”) empirical measures, i.eP“ — P weakly y-a.s. Thus there
1 1 exists o € Q for wh|ch both convergence results hold.
=—L({)+ (1 — —)L(v) Define the sequence of finitely randomized quantiZers}
_ Z( ) " by vu = Jr (ary vPi(dv). By @3) L(v,) — L(8) and by
Lemmal[10 |n the proof of Theorem @, — © weakly. Since
This impliesv, € M, , N F for all n > no, completing the A9 %, is a relatively open neighborhood af in T% (M),
proof. u we can find suff|C|entIy largen such thatwv,, € M‘5 and
Hence, we can conclude that there exists finitely randomized,, ) < L(¢) + £. Hence, for anye > 0 there eX|sts an
quantizervp € F N M), by Lemmas_I2 and14. By the.. optlmal finitely randomlzed quantizer f¢P3). O

definition of F* we also haveL(vp) < L(v). This completes

the proof of the theorem for this case.

II) Case 2 H. Proofs for Section
The casel.(v) = inf,cr, (ar) L(v') := L* is handled simi-

larly. Define the subset df, (M) whose elements corresponq,Or i

to optimal quantizers:

Proof of Lemmd12: The proof uses standard notation
nformation quantities[[24]. LetX" ~ u", Z ~ v,
and Y" = q(X",Z) ~ ¢", where(q,v) is an arbitrary

Tpopt(M) = {v er w(M): L(v ) =L*}. Model 2 randomized quantizer with at mazt? levels (Z
Define I o (M) = L~'(L) N T, (M) and letTR,,, (vr) 5 Jiependent oK. Let D = Elo(Xe Y] and b =
be the randomization of, .,.(M), obtained by replacing Iazll:t i = hz[p"( ,Y™)]. Sinceq( -, 2) has at mos
I',(M) with T, ope (M) in (). Note that ifL(v) = L*, then evels for eaclr,

v is obtained by randomizing over the 3&f .. (M), i.e.,v € nR> H(Y"Z) > (X" Y"|Z)
IR (M), LetT1R (M) denote the set obtained by the finite - N / an - »
randomization of’, ¢ (M). By using the same proof method > I(X™Y™") (24)
as in Lemma 12 we can prove thBfY (M) is dense in - v
I oo (M). In addition M? is relatively open i L (M) 2 Z}I(X“YZ) (25)
by LemmdIB. Thus, there exists finitely randomized quantize Y
vp € M8, NTR (M) with L(vp) = L(v) = L*. This >3 L(ull, Ds)
completes the proof of Theorem 5. O P

> nlm (pllh, D)

G. Proof of Theorem [@
Leto € M5 be such thaf (9) < inf,c \s wL(v)-t—g/Q, where in the last two inequalities follow sincg; ~ 1,
Let P be the probab|I|ty measure ofi, (M Mj that induces © = 1---»n and Iy (ufy, D) is convex inD [23, Appendix
b, e, b = fr UP dv). Consider a sequence of in- Al Ineq_ual|t|es [(_214) and[(25) follt)w from the lchaln rule for
dependent and” |dent|cally distributed (i.).drandom vari- mutual information (Kolmogorov’s formula)_[39, Corollary
ablesXy, X4,...,X,,... defined on some probability space 7.14], which in particular implies that(U; VW) > I(U; V)

; for general random variablgs, V', and W, defined on the
Q, F,~) which take values inI, (M), B(I',(M))) and have
((:ommor)t distribution?. Thenr(L(le) L()((Q) (' . ');)re g Same probability space, such tHatand W are independent.

valued random variables with distributid® o L~1. Thus we This proves thatit > I (]|, Dngq -
Proof of LemmaR:Let U2 = (U"(1),...,U"(2"R))
have I P :
R which is an2™-vector. Then, we can write
[ rxi@mia) = [ Le)P@) = 1) A
Q T, (M) X" =g(X",U* )
19

< velAr}fj)w Llv)+ 2 for a functiong from Y™(2"“+1) to Y™ Observe the following:
by assumption. The empirical measuiés on T',,(M) corre- (i) For any permutationr of {1,...,n}, X" and X2 =
sponding toX, ..., X,, are (Xo(1), - -+ Xo(n)) have the same distribution. The same
n issue is true forU"(i) and U"(i), for all i be-
= 125&(“})(.)_ cause for anyu™ € T,(¢y), u? € T,(¢¥,) and this
niz mapping is a bijection onT), (). It follows from
By the strong law of large numbers the independence oK™ and U"(i) that (X", U"F)
Lo and (X, U2"") have the same distribution, where
=3 LX) = / L(v)P¥ (dv) Uzt = (U"(1),,...,U™2"R),). Thus,g(X™,U?"")
s w(M) andg(X",U2"") have the same distribution.

L\ P(dv) = L(% 23 (i) For any 2" € X" and y" € Y™, pn(z™,y") =
_)/#(M (0)P(dv) (9) (23) pn(x2,y™). Thus, if ¢ outputs u™(i) for inputs
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", u™(1),...,u™(2"), theng outputsu™ (i), for inputs we still have||[U™ + V||, < [|[U"||, + [[V"|/,- Thus we can

? u(1),, ..., u™(2"%),. It follows that upper boundE[p, (X™,Y™)] as follows:
" nR, . nR n 1/q
g XG’7U3 - g X 7U2 (o 1
( ) =TT e E EZp(Xi,Yi)
Together withi) this implies thatX™ and X have the i
same distribution.
Let u™ and v™ € T,( (")) and sou™ = v? for some ( [ ZdX“Y D

permutations. Then(ii) implies

~ ~ 1 n 1/q
Pr{X" =u"} =Pr{X? =u"}. < ( [ ZquX }) ( [EZ (X3, Y3) })
SincePr{X" = v"} = Pr{X? = ¢”} andv? = u", we N ¥
obtain = (E[Pn(X X )]) T (), ).
Pr{X" = u"} = Pr{X" = 0"} Hence [(8) and[(27) imply
proving thatX™ is uniform onT,, (). O 1i£s;pE[pn(X”,Y”)] =D
Proof of Lemma&l4: By [24, Theorem 11.1.2] we have .
i as claimed. O
1 U (y™) Proof of Lemmdl6: Let X ~ p andY ~ ¢ such that
(M) ||p7) = = (n) (ym RN C A . . .
I n Z Ui (y")log D) I(X;Y) achieved,, (1|, D) < oo at distortion levelD (the
Y E€Tn(¥n) existence of such pair follows from an analogous statements
_1 o 2n(H W) +D(Yn[¥) (26) for rate-distortion functiong [40]) . Lejf;, denote the uniform
n 08 | T ()] quantizer on the intervdl-, k] having 2* levels, where we
From [22, Theorem 11.1.3], extendg; to the real line by using the nearest neighborhood
1 encoding rule. LetX (k) = qx(X) and Y (k) = qr(Y). We
onH () < ()] < onH(¢n) clearly have
EES M AU y

n) _ _ E[(X — X (k))*] =0, E[(Y =Y (k))?)] = 0 ask — .
and thus: D(yy,"[|y") is sandwiched betweeR (v, [|1) and 28)

Xl 1og(n + 1) + D(n|¢). Thus
n log(n+1) Wallv) Let u; and 1), denote the distributions ok (k) and Y (k),

lim lD(lﬂr(l")Hlﬂ") = lim D(n|¥) =0 respectively. Then by[[22, Theorem 6.9] it follows that

n—o0 n n=—00 Ty (uk,pp) — 0 and Ty (¢y,vb) — 0 ask — oo since
where the second limit holds sin¥eis a finite setand,, — ¢ ux — p, Yr — 1 weakly, and E[X (k)?)] — E[X?],
in the [;-distance. 0 E[Y(k)?] — E[Y?].

Proof of Lemma&ls: By the data processing inequality, we have forfall

Let p* denote the Hamming distortion and |ef (z",y") =
(1/n) S0, p (24, y:). Sincep(x,z) = 0 for all z € X, we I(X (k); Y (k) < I(X;Y). (29)
have Also note that[(2B) implies

" y" max 71;1 ‘Tn’ ).
pu(@"y") < pumax i (", y") lim sup B [p1 (X (k), Y (k)]

Let TH( 7(1"),1/;") be the distortion of the optimal coupling k—o0
between” and+™ when the cost function isf. Then the = limsup E[(X (k) — Y(k))Q] <D.
above inequality gives k=00

. Thus, for givens > 0, if k is large we haved,, (yu||tx, D +

(n) ,n H/  (n) ,n )

Tn(u} 7#’ ) < pmaxT (U) ,1/1 ) ) < Im(/i”'djaD) as claimed. O

On the other hand, by Marton’s inequality [25, Propositign 1
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lim T, (4", ¢") = 0 (27)
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