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Abstract

We derive a single–letter formula for the zero–rate reliability (error exponent) of a finite–state
channel whose state variable depends deterministically (and recursively) on past channel inputs,
where the code complies with a given channel input constraint. Special attention is then devoted
to the important special case of the Gaussian channel with inter-symbol interference (ISI), where
more explicit results are obtained.
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1 Introduction

The concept of the reliability function of a channel is almost as old as information theory itself.

The first to show that below capacity, the probability of error decays exponentially with the block

length, for a sequence of good codes, was Feinstein [14] in 1955. Already in the same year, Elias

[11] derived the random coding bound and the sphere–packing bound, and he observed that they

exponentially coincide at high rates, for the cases of the binary symmetric channel (BSC) and the

binary erasure channel. Six years later, Fano [13], derived the random coding exponent, Er(R), and

heuristically also the sphere–packing bound for the general discrete memoryless channel (DMC). In

1965, Gallager [15] improved on Er(R) at low rates by the idea of expurgation of randomly selected

codes. In 1967, Shannon, Gallager, and Berlekamp, published their celebrated two–part paper [24],

[25], where they derived the classical lower bounds on the error probability for general DMC’s: the

sphere–packing bound, the zero–rate bound, and the straight–line bound, that improves on the

sphere–packing bound at low rates, using the zero–rate bound.

In the realm of channels with memory, the most popular model dealt with, in this context, has

been the model of a finite–state channel (FSC) and some of its special cases. The channel coding

theorem for FSC’s was proved by Blackwell, Breiman and Thomasian [3] in 1958. The random

coding exponent for FSC’s was derived by Blackwell [2] in 1961, Yudkin [28] in 1967, and further

developed by Gallager in his book [16, Section 5.9], especially for the case where the state is known

at the receiver.

Ever since these early days of information theory, there has been a vast amount of continued

work around error exponents and reliability functions, most notably, for memoryless channels (both

discrete and continuous), but also (albeit, much less) for various models of channels with memory

(FSC’s included), both in the presence and in the absence of feedback. For the latter category, see,

e.g., [1], [5], [6], [12], [18], [19], [22], [23], [27], [29], [30] and references therein, for a non–exhaustive

list of relevant works from the last three decades.

In this paper, our focus is on the zero–rate reliability of channels from a subclass of the FSC’s with

input–dependent states (without feedback), namely, finite–state channels where the state variable,

which designates the memory of the channel, evolves deterministically in response to past channel

inputs, as opposed to the more general channel model, where the state evolves stochastically in

2



response to both past inputs and outputs. For a finite input alphabet, this subclass of FSC’s is

still general enough to include the important model of the inter-symbol interference (ISI) channel,

among some other models.

Our primary motivation for studying the zero–rate reliability for these channels is in order to

identify and characterize, by means of single–letter formulas, the relevant distance metrics and the

maximum achievable minimum distance between codeword pairs under this metric, in analogy to

the Hamming distance for the BSC, the Euclidean distance for the Gaussian memoryless channel,

and the Bhattacharyya distance for a general DMC. A secondary motivation is that once the zero–

rate reliability is known and the sphere–packing bound is known, at least for some positive rate, one

can obtain a simple bound at all rates using the straight line in between, by using a straightforward

extension of [24, Theorem 1] (see also [26, Theorem 3.8.1]) to channels with memory. For example,

even if the sphere–packing exponent is not available, but the capacity C of the channel is known

(or at least we have an upper bound for it), then we know that the sphere–packing bound at rate

C vanishes, and we can safely use this theorem to connect the above–mentioned straight line to

the point (C, 0) in the plane of reliability vs. rate.1 This bound can be reasonably good at least for

low rates.

Our main result, in this paper, is an exact single–letter characterization of the zero–rate reliability

(or the maximum achievable minimum ‘distance’) for FSC’s with input–dependent states, and codes

that must conform with a given input constraint. More explicit results are provided in the Gaussian

case with inter-symbol interference (ISI), which will be treated in some detail later in the paper.

2 Preliminaries

Before addressing FSC’s, we begin with some preliminaries on the zero–rate reliability of a DMC.

Let us define

E+
0

∆
= lim

R↓0
lim sup

n→∞

[

− ln Pe(R, n)

n

]

(1)

E−
0

∆
= lim

R↓0
lim inf
n→∞

[

− ln Pe(R, n)

n

]

, (2)

1This is supported by the fact for any code of rate just above C + λ (λ > 0), the probability of list–error, for an
exponential list size of rate λ, must be bounded away from zero, as can easily be seen from a simple extension of
Fano’s inequality to list decoding.
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where Pe(R, n) is the minimum probability of error that can be attained, for the given channel, by

any block code of length n and rate R. Consider a DMC, designated by a matrix of input–output

transition probabilities {p(y|x), x ∈ X , y ∈ Y}. Here the channel input symbol x takes on values

in a finite input alphabet X , whereas the channel output symbol y takes on values in the output

alphabet Y, which may either be discrete or continuous.2 When the channel is fed by a vector

x = (x1, . . . , xn) ∈ X n, it outputs a vector y = (y1, . . . , yn) ∈ Yn according to

P (y|x) =
n
∏

t=1

p(yt|xt). (3)

For DMC’s whose zero–error capacity vanish, the zero-rate reliability is well–known [24], [25] to

be given by3

E+
0 = E−

0 = E0
∆
= max

q





∑

x,x′∈X

q(x)q(x′)dB(x, x′)



 , (4)

where dB(x, x′) is the Bhattacharyya distance function, defined as

dB(x, x′) = − ln





∑

y∈Y

√

p(y|x)p(y|x′)



 , x, x′ ∈ X , (5)

and the maximum is over all possible probability assignments, q = {q(x), x ∈ X }, over the input

alphabet. This is the best attainable error exponent for any code over X .

In the presence of input constraints, the expression (4) may not be achievable since the optimal

codes might violate these constraints. For example, suppose that each codeword in the codebook

must satisfy the constraint
n
∑

t=1

φ(xt) ≤ nΓ, (6)

where φ : X → IR is a given function (e.g., φ(x) = x2) and Γ is a prescribed quantity. At first

glance, it may be tempting to guess that the best achievable exponent would then be the same

as in (4), except that the maximum over q should be restricted to comply with the corresponding

single–letter constraint, that is, q ∈ QΓ, where QΓ = {q :
∑

x q(x)φ(x) ≤ Γ}.

2We proceed hereafter under the assumption that Y is a discrete alphabet, but with the understanding that in
the continuous alphabet case, all probability distributions over Y are replaced by densities, and accordingly, all
summations over Y should be replaced by integrals.

3The zero–rate reliability is more commonly denoted by Eex(0), as it is identified with the expurgated error exponent
at rate zero. However, since we consider here zero–rate codes only, we will use the more convenient notation E0,
with no risk of confusion with customary notation concerning the Gallager function and random coding exponents,
as these quantities will not be addressed in this paper.
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It turns out, however, that this is indeed true for some channels, but not in general. In certain

cases, one can do better. The point is that the functional

E0(q)
∆
=

∑

x,x′∈X

q(x)q(x′)dB(x, x′) (7)

may not, in general, be concave in q. This depends on the given (symmetric) matrix of Bhat-

tacharyya distances, D = {dB(x, x′)}x,x′∈X , which in turn, depends solely on the channel and the

input alphabet. If D is such that E0(q) = qT Dq (q being thought of as a column vector), is

concave, then E0(q) is the best exponent achievable for codes with codebooks of composition4 and

hence maxq∈QΓ
E0(q) is indeed the best achievable exponent under the aforementioned input con-

straint. If, however, E0(q) is not concave, one can improve by taking the upper concave envelope

(UCE) of E0(q) (see [8, p. 191, Problem 21]). Accordingly, let us denote

E0(q) = UCE{E0(q)} ∆
= max

{(w,V ):
∑

u
w(u)v(x|u)=q(x) ∀x∈X }

∑

u∈U

w(u)
∑

x,x′

v(x|u)v(x′|u)dB(x, x′), (8)

where w = {w(u), u ∈ U} is a probability vector of a (time–sharing) variable u, whose alphabet

size |U| need not exceed |X | (as can easily be shown using the Carathéodory theorem [8, p. 310,

Lemma 3.4]), and V = {v(x|u), u ∈ U , x ∈ X } is a matrix of transition probabilities of x given

u. The input constraint is then accommodated for E0(q), that is, the best attainable exponent is

maxq∈QΓ
E0(q).

When E0(·) is concave, the operator UCE{·} is, of course, redundant, so it is instructive to know

when is this the case. The concavity of E0(q) over the simplex can easily be checked as follows.

Without loss of generality, let X = {1, 2, . . . , K}, K = |X |. On substituting q(K) = 1 −∑x<K q(x)

into the quadratic form E0(q) = qT Dq, one ends up with the reduced quadratic form q̃T D̃q̃,

where q̃ = {q(x), x = 1, 2, . . . , K − 1} and D̃ is a (K − 1) × (K − 1) whose (x, x′)–th entry is

dB(x, x′) − dB(x, K) − dB(K, x′), x, x′ ∈ {1, 2, . . . , K − 1}. Thus, E0(q) is concave iff D̃ is negative

semi–define, or equivalently, iff −D̃ = {dB(x, K) + dB(K, x′) − dB(x, x′)} is positive semi–definite.

We henceforth denote by D(K) the class of matrices {D} for which D̃ is negative semi–definite.5

It should be pointed out that for some rather important special cases, D ∈ D(K) and hence

E0(q) = qT Dq is concave on the simplex. For example, if dB(x, x′) is (proportional to) the Hamming

4The composition q of a fixed composition code is the empirical distribution of each one of the codewords.
5Of course, the choice of the letter x = K as the one with the special stature here is completely arbitrary.
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distance (which is always the case, for example, when K = 2), then −D̃ is a matrix whose all

diagonal elements are 2 and all off–diagonal elements are 1. The eigenvalues of this matrix are 0 and

K (the former, with multiplicity of K−2) and hence it is positive semi–definite. As another example,

if dB(x, x′) is (proportional to) the square–error, (x − x′)2, which is the case when the channel is

Gaussian, then the (x, x′)–th element of −D̃ is (x−K)2 +(x′ −K)2 − (x−x′)2 = 2(x−K)(x′ −K),

which is obviously positive semi–define, with eigenvalues 2
∑

x<K(x − K)2 > 0 and 0 (the latter,

with multiplicity K − 2). Thus, for the Gaussian channel, E0(q) is also concave on the simplex.

On the other hand, one can easily find channels for which D is not in D(K) and then E0(q) is not

concave.

3 Main Result

Consider the following model of the FSC with an input–dependent state, which is defined as follows:

P (y|x) =
n
∏

t=1

p(yt|xt, st), (9)

where the state st ∈ S evolves recursively, in response to the channel input, according to

st+1 = f(st, xt), t = 1, 2, . . . , n − 1, (10)

f : S × X → S being a given next–state function and s1 is an arbitrary initial state. It is assumed

that the set of states S has a finite cardinality, that is, S = |S| < ∞, hence the qualifier “finite–

state”.

For the direct part of our coding theorem below, it is further assumed that the finite–state

machine f is irreducible, namely, for every pair of states s, s′ ∈ S, there exists a finite string

x1, x2, . . . , xℓ ∈ X (ℓ ≤ S) that leads the machine from state s to state s′. Moreover, we assume

that the finite–state machine formed by two independent copies of f , that is, the finite–state

machine (st+1, s′
t+1) = (f(st, xt), f(s′

t, x′
t)), is irreducible as well. For convenience, we henceforth

refer to this assumption as double irreducibility.

For the converse part, we need a different assumption: we assume that there exists a state σ ∈ S
and a positive integer r such that for every s ∈ S, there exists a path of length r, x1, x2, . . . , xr,

that takes the finite–state machine from state s to state σ (note that by this definition, r should be
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independent of s). We henceforth refer to this assumption as uniform approachability. For example,

if σ has a self–transition, this assumption is clearly satisfied.

Before we present our main theorem, we first make a few simple observations. Without loss of

generality, we will take it for granted that the current state st contains the full information for

recovery of xt−1, that is, there exists a deterministic function g : S → X such that

g(st) = xt−1. (11)

To justify the phrase “without loss of generality”, we note that for any given channel of the form

(9) and any given next–state function f , one can always artificially add the conditioning on xt−1

in each factor on the right–hand side (r.h.s.) of eq. (9), that is, represent the model as

P (y|x) =
n
∏

t=1

p(yt|xt, xt−1, st), t = 1, 2, . . . , n − 1, (12)

with some arbitrary definition of x0 ∈ X , and then re–define the state as σt = (st, xt−1). Having

done this, we are back to the form (9), where: (i) st is replaced by σt, (ii) σt evolves recursively

in response to {xt}, using its own next–state function, and (iii) xt−1 is recoverable from σt simply

because it includes xt−1 as a component.6

Once the assumption (11) has been accepted, we have the following simple equalities:

p(yt|xt, st) = p(yt|xt, st, st+1) = p(yt|st, st+1), (13)

where the first equality is due to the fact that st+1 is uniquely determined by xt and st (using f),

and the second equality is because in the presence of st+1, the conditioning on xt is redundant since

xt is determined by st+1 (using g). The mapping between (xt, st) and (st, st+1) is obviously one–

to–one. Thus, instead of modeling the channel by the parameters {p(y|x, s), x ∈ X , s ∈ S}, one

might as well model it by the parameters {p(y|s, s+), s, s+ ∈ S}, and think of the state sequence as

the channel input. Note that, in this parametrization, not all S2 state pairs (s, s+) are necessarily

feasible, but only those that are related by the equation

s+ = f(s, g(s+)), (14)

6A simple important special case where the assumption xt−1 = g(st) is trivially satisfied, even without this mod-
ification, is the case where st = (xt−k, xt−k+1, . . . , xt−1) (k – positive integer), which is simply a shift register
fed by {xt}. This is the relevant case for the ISI channel with a finite impulse response. In this case, the corre-
sponding finite–state machine also satisfies the double irreducibility assumption and the uniform approachability
assumption (for example, the zero–state as a self–transition).
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in view of eqs. (10) and (11). The number L of feasible pairs {(s, s+) : s+ = f(s, g(s+))} cannot

exceed K · S, where K denotes the size of the input alphabet X , as before. An FSC with input–

dependent states is, therefore, completely defined by the functions f and g, and the parameters

{p(y|s, s+)}. Accordingly, we shall henceforth denote an FSC by the notation [{p(y|s, s+)}, f, g].

Let us denote the Bhattacharyya distance between two state pairs, (s, s+) and (s′, s′
+) by

dB(s, s+; s′, s′
+) = − ln





∑

y∈Y

√

p(y|s, s+)p(y|s′, s′
+)



 . (15)

The matrix D of all Bhattacharyya distances (15) is, of course, of dimension L × L.

We now redefine QΓ to be the class of joint distributions {q(s, s+)} of state pairs that satisfy the

following conditions:

1. For every state pair (s, s+): q(s, s+) > 0 implies s+ = f(s, g(s+)).

2. q has equal marginals, i.e.,
∑

s̃∈S q(s, s̃) =
∑

s̃∈S q(s̃, s)
∆
= π(s) for every s ∈ S.

3. All states in S+
∆
= {s : π(s) > 0} are fully connected, i.e., for every s, s′ ∈ S+, there exists

a path s = s1 → s2 → . . . → sm = s′ (with m ≤ |S+|), such that q(si, si+1) > 0 for all

i = 1, 2, . . . , m − 1.

4. The marginal π = {π(s), s ∈ S+} satisfies the input constraint
∑

s∈S+
π(s)φ[g(s)] ≤ Γ.

Consider again the definitions of E+
0 and E−

0 as in (1), but this time, with an FSC, rather than a

DMC, in mind. Also, E+
0 (Γ) and E−

0 (Γ) will be defined in the same way, except that here, Pe(n, R)

is redefined as the minimum error probability across all codes that satisfy the input constraint (6)

for each codeword. Accordingly, our new definition of E0(q) is

E0(q)
∆
=

∑

s,s+,s′,s′
+

q(s, s+)q(s′, s′
+)dB(s, s+; s′, s′

+), (16)

and once again, E0(q) is the UCE of E0(q). Considering the analogous extension of the r.h.s. of

eq. (8), here the time–sharing variable u should take on values in an alphabet whose size need not

exceed L. We are now ready to state our main theorem.

Theorem 1 Consider the FSC [{p(y|s, s+)}, f, g], with the input constraint (6). If the uniform

approachability assumption is met,

E+
0 (Γ) ≤ max

q∈QΓ

E0(q). (17)
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If f is doubly irreducible,

E−
0 (Γ) ≥ max

q∈QΓ

E0(q). (18)

Consequently, if both assumptions hold,

E+
0 (Γ) = E−

0 (Γ) = max
q∈QΓ

E0(q). (19)

The remaining part of this section is devoted to the proof of Theorem 1.

Proof. The proof is divided into two parts – the direct part, asserting that

E−
0 (Γ) ≥ max

q∈QΓ

E0(q), (20)

and the converse part, which tells that

E+
0 (Γ) ≤ max

q∈QΓ

E0(q). (21)

Beginning with the direct part, to fix ideas, consider first the case where E0(q) is concave and

then E0(q) = E0(q). Let q∗ be an7 achiever of the maxq∈QΓ
E0(q). For convenience, let us assume8

that q∗(s, s+) ≥ qmin > 0 for all state pairs for which s+ = f(s, g(s+)), thus S+ = S. Consider an

oriented multi–graph G having a total of n arcs (edges) and |S+| vertices, labeled by the members

of S+. For every ordered pair (s, s+), let G contain9 nq∗(s, s+) arcs stemming from vertex s and

ending at vertex s+.

From the construction in [9, p. 433], we learn that given such a directed multigraph G, there exist

(exponential many) state sequences of length n, s = (s1, s2, . . . , sn), with s1 = f(sn, g(s1)), that

are identified with various Eulerian circuits10 on G. In other words, there exist many sequences s

with the property that the number of transitions from st = s to st⊕1 = s+ is exactly nq∗(s, s+),

where ⊕ denotes addition modulo n, that is, we adopt the cyclic convention that sn is followed by

s1 (hence the requirement s1 = f(sn, g(s1))). The validity of this statement is based on properties

of G that are guaranteed by the definition of the class QΓ to which q∗ belongs (see, in particular,

7We refer to an achiever, rather than the achiever, because for a general matrix D, the maximum may be achieved
by more than one distribution q.

8If this is not the case, one can slightly alter q∗ with an arbitrarily small degradation in E0(q).
9We are assuming, without essential loss of generality, that {nq∗(s, s+)} are all integers. If this is not the case,

q∗(s, s+) can be approximated arbitrarily closely, for large n, by rational numbers with denominator n.
10An Eulerian circuit is a walk on a graph, starting an ending at the same vertex, where each arc is used exactly

once.
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properties 3 and 4 in [9, p. 433], which are reflected in items 2 and 3 in the definition of QΓ). For

convenience, we make the convention that the initial state s1 is always a certain fixed member σ

of S.

Let Tn(q∗) be the set of all state sequences {s} with the properties described in the previous

paragraph, that is, the so called Markov type associated with q∗ (see, e.g., [9], [7, Subsection

VII.A] and references therein). Let M be a fixed (independent of n) positive integer and consider

an independent random selection of 2M − 1 members from Tn(q∗), each one under the uniform

distribution across Tn(q∗), i.e.,

Π(s) =

{

1
|Tn(q∗)| s ∈ Tn(q∗)

0 elsewhere
(22)

Let s1, s2, . . . , s2M−1 be the resulting randomly chosen state sequences. We can think of this

collection as a random code for the channel

P (y|s)
∆
=

n
∏

t=1

p(yt|st, st⊕1). (23)

We next apply an expurgation process (see, e.g., [16, Subsection 5.7], [26, Subsection 3.3]), which

guarantees that there exists a sub-code of size M for which each each codeword contributes a

conditional error probability that does not exceed (2P
1/ρ
e|m )ρ, where ρ is an arbitrary positive real,

and P
1/ρ
e|m is the expectation of P

1/ρ
e|m under the above defined ensemble. Therefore, within this

sub-code,

max
1≤m≤M

Pe|m ≤











4M
∑

s,s′

Π(s)Π(s′)





∑

y

√

P (y|s)P (y|s′)





1/ρ










ρ

, (24)

and consequently,

lim sup
n→∞

ln
[

max1≤m≤M Pe|m

]

n

≤ lim inf
ρ→∞

lim sup
n→∞

1

n
ln











4M
∑

s,s′

Π(s)Π(s′) exp

[

−1

ρ

n
∑

t=1

dB(st, st⊕1; s′
t, s′

t⊕1)

]







ρ



(a)
≤ −

∑

s,s+,s′,s′
+

q∗(s, s+)q∗(s′, s′
+)dB(s, s+; s′, s′

+)

= −E0(q∗) = − max
q∈QΓ

E0(q), (25)
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where the inequality marked by (a) is justified by using the method of types for Markov chains ([7,

Subsection VII.A] and references therein), and on the basis of the double irreducibility assumption

(see Appendix for the details).

Finally, let {s1, . . . , sM } be a sub–code with the property max1≤m≤M Pe|m ≤ e−n[E0(q∗)−o(n)]

(where the indices 1, 2, . . . , M are after possible relabeling). Then each n-tuple sm = (sm,1, . . . , sm,n),

m = 1, 2. . . . , M , uniquely determines a corresponding codeword xm = (xm,1, . . . , xm,n) according

to xm,t = g(sm,t⊕1), t = 1, 2, . . . , n, which obviously satisfies the input constraint (6), and so, the

actual code for the given channel is C = {x1, . . . , xM }. This completes the proof of the direct part

the for case where E0(q) is concave.

To complete the proof of the direct part for the general case, we repeat the very same construction,

but now, we combine it with time sharing. In particular, consider the more explicit form of E0(q∗)

as

E0(q∗) = max
w,V

∑

u∈U

w(u)E0[v(·, ·|u)], (26)

where w = {w(u), u ∈ U} is a probability assignment on u, V = {v(s, s+|u), s, s+ ∈ S, s+ =

f(s, g(s+)), u ∈ U} is a set of probability assignments on state pairs given u, and the maxi-

mum is over all pairs {(w, V )} such that
∑

u∈U w(u)V (s, s+|u) = q∗(s, s+). Let w∗ and V ∗ be

achievers of the maximum on the r.h.s. of (26). For each codeword, the block of length n is di-

vided into |U| segments, each one of length nw∗(u), labeled by u ∈ U . Specifically, for every

m = 1, 2, . . . , M , we proceed as follows. For every u ∈ U , select, independently at random, a mem-

ber from Tnw∗(u)[v
∗(·, ·|u)], as the u–th segment of the state sequence associated with codeword,

which is concatenated to all previous segments. Now, after expurgation of such randomly selected

code, a straightforward extension of the derivation in (24) and (25) would yield an error exponent of
∑

u∈U w∗(u)E0[v∗(·, ·|u)] = E0(q∗). Note that there is no need to worry about tailoring consecutive

segments of the state sequence, because by our convention, all segments begin and end at state σ.

This completes the proof of the direct part.

Moving on to the converse part, let C be an arbitrary rate–ǫ code (ǫ > 0, infinitesimally small) of

length n, that satisfies the input constraint (6) for each codeword. Consider the transformation of

each codeword xm in C into a state sequence sm, according to the recursion sm,t+1 = f(sm,t, xm,t),

t = 1, 2, . . . , n−1, m = 1, 2, . . . , M = enǫ, where sm,1 = σ, which is a uniformly approachable state,

11



and all codewords are extended (if needed) to be of length n′ = n + r (complying with the same

recursion also for t = n, n+1, . . . , n′ −1), such that f(sn′ , xn′) = σ, which is possible by the uniform

approachability assumption. This extension of the codewords can only decrease the probability of

error, so any lower bound on the error probability of the modified code is also a lower bound for

the original code. The price of this extension is a possible increase in the average cost, but by no

more than r · maxx φ(x)/n
∆
= c/n, which is vanishing as n grows without bound, since r depends

only on f , but not on n.

For the sake of convenience, we denote the new block length by n again, rather than n′. Consider

now the resulting collection of state sequences, {s1, s2, . . . , sM }, which can be considered as a code

for the channel (23). Obviously, each sm belongs to some Markov type Tn(q) where q ∈ QΓ+c/n.

Since the number of distinct Markov types cannot exceed (n + 1)S2
, then at least (n + 1)−S2

enǫ

‘codewords’ must belong to the same Markov type Tn(q). Obviously, the probability of error of the

original given code (after the extension) cannot be smaller than (n + 1)−S2
times the probability

of error of the smaller code C′ = |C ∩ Tn(q)|. Thus, any upper bound on the error exponent of C′

is also an upper bound on the error exponent of the original code, and so, from this point onward

we may assume that all codewords are of the same Markov type Tn(q), q ∈ QΓ+c/n.

Now, the channel (23) is obviously memoryless w.r.t. pairs of consecutive states {(st, st⊕1)}, and

we can therefore invoke the proof of Theorem 4 in [25] for memoryless channels. Combining eqs.

(1.12), (1.36), (1.40), (1.42), (1.43) and (1.53) of [25] (with K of [25] being replaced by L, in our

notation), we learn that

− ln Pe(ǫ, n)

n
≤ 1

M2

n
∑

t=1

∑

s,s+,s′,s′
+

Mt(s, s+)Mt(s
′, s′

+)dB(s, s+; s′, s′
+) + o(n), (27)

where Mt(s, s+) is the number of codewords in (a subset of) C′ such that (sm,t, sm.t⊕1) = (s, s+)

and o(n) is a term that tends to zero as n → ∞. It now readily follows that

E+
0 (Γ) = lim

ǫ↓0
lim sup

n→∞

[

− ln Pe(ǫ, n)

n

]

(28)

≤ lim sup
n→∞

[

1

n

n
∑

t=1

E0

(

Mt(·, ·)
M

)

]

(29)

≤ lim sup
n→∞

[

1

n

n
∑

t=1

E0

(

Mt(·, ·)
M

)

]

(30)
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≤ lim sup
n→∞

E0

(

1

n

n
∑

t=1

Mt(·, ·)
M

)

(31)

= lim sup
n→∞

E0(q) (32)

≤ lim sup
n→∞

sup
q∈QΓ+c/n

E0(q) (33)

= sup
q∈QΓ

E0(q). (34)

This completes the proof of the converse part, and hence also the proof of Theorem 1.

4 The Gaussian Channel with ISI

In this section, we consider the important special case of the Gaussian channel with ISI. Our

objective is to provide more explicit results, which are available thanks to the facts that: (i) the

finite–state machine f is simple, and more importantly, and (ii) the Bhattacharyya distance is

proportional to the Euclidean distance, for which E0(q) is concave, and hence the operator UCE{·}
becomes redundant.

The Gaussian ISI channel is defined by

yt =
k
∑

i=0

hixt−i + wt, (35)

where {wt} is Gaussian white noise with zero mean, variance σ2, and is independent of the channel

input, {xt}. Here, {hi}k
i=0 are the ISI channel coefficients. Obviously, the state of the channel,

in this case, is given by the contents a shift register of length k, fed by the input, i.e., st =

(xt−k, xt−k+1, . . . , xt−1)
∆
= xt−1

t−k, and the corresponding next–state function f is doubly irreducible

and uniformly approachable. The channel input power is limited to Γ, that is, the input constraint

(6) is imposed with the cost function φ(x) = x2.

First, a straightforward calculation of the Bhattacharyya distance for the Gaussian ISI channel

(35) yields

dB(st, st⊕1; s̃t, s̃t⊕1) = dB(xt
t−k, x̃t

t−k)

=
1

8σ2

(

k
∑

i=0

htxt−i −
k
∑

i=0

htx̃t−i

)2

. (36)
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Therefore,

E0(q) =
1

8σ2

∑

xk
0 ,x̃k

0

q(xk
0)q(x̃k

0)

(

k
∑

i=0

hixk−i −
k
∑

i=0

hix̃k−i

)2

(37)

=
1

4σ2







∑

xk
0

q(xk
0)

(

k
∑

i=0

hixk−i

)2

−







∑

xk
0

q(xk
0)

k
∑

i=0

hixk−i







2





=
1

4σ2

∑

xk
0

q(xk
0)

(

k
∑

i=0

hixk−i

)2

− 1

4σ2





k
∑

i=0

hi

∑

xk−i

q(xk−i)xk−i





2

=
1

4σ2

k
∑

i=0

k
∑

j=0

hihj

∑

x0x|i−j|

q(x0, x|i−j|)x0x|i−j| − 1

4σ2

(

k
∑

i=0

hi

∑

x0

q(x0)x0

)2

. (38)

The above expression should be maximized subject to a set of constraints that reflect the fact that

q(xk
0) stems from an empirical distribution (of each codeword), i.e., the marginals of (xi1 , xi2 , . . . , xil

)

(l ≤ k) depend on the indices i1, i2, . . . , il only via the differences i2 − i1, i3 − i2, . . . , il − il−1. An

additional constraint is, of course, the power constraint
∑

x0
q(x0)x2

0 ≤ Γ. Since the objective

function is concave in q and the constraints are linear, this is, in principle, a standard convex

programming problem.

It would be insightful to examine now the behavior in the case where {xt} takes on continuous

values on the real line. In this case, in the limit of large n, the last expression reads, in the frequency

domain, as follows:

E0(q) =
1

4σ2

[

1

2π

∫ +π

−π
Sx(eiω)|H(eiω)|2dω − X̄2|H(ei0)|2

]

, (39)

where H(eiω) (i =
√

−1) is the frequency response (the Fourier transform) associated with impluse

response {hi}k
i=0, Sx(eiω) is power spectrum of an underlying stationary process {Xt}, and X̄ is

the DC component of {Xt}. In other words, we think of the input power spectrum as

Sx(eiω) = S′
x(eiω) + 2πX̄δ(ω), − π ≤ ω < π (40)

where S′
x(eiω) does not include a Dirac delta function at the origin. We can now express the

zero–rate exponent as

E0(q) =
1

4σ2
· 1

2π

∫ +π

−π
S′

x(eiω)|H(eiω)|2dω, (41)
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which should be maximized under the power constraint

1

2π

∫ +π

−π
S′

x(eiω)dω + X̄2 ≤ Γ.

It is now obvious that any non–zero value of X̄ is just a waste, at the expense of the available

power, which does not contribute to E0(q), and the best input spectrum is that of a sinusoidal

process at the frequency ω0 that maximizes the amplitude response |H(eiω)|. If ω0 = 0, this means

a DC process, which strictly speaking, contradicts our conclusion that the DC component should

vanish. In this case, one can approach the maximum achievable exponent by a sinusoidal waveform

of an arbitrarily low frequency, so that the response is close as desired to the maximum. Thus, the

maximum achievable exponent when X = IR is given by

sup
q∈QΓ

E0(q) =
Γ

4σ2
· max

ω
|H(eiω)|2. (42)

To create M orthogonal codewords, one can generate each one with a slightly different frequency

in the vicinity of ω0. This is, of course, an upper bound also for any discrete–alphabet input.

It would be interesting now to have also a lower bound on the achievable zero–rate exponent

for a given finite–alphabet size K. To this end, we will analyze the behavior for a specific class

of input signals. When the finite input alphabet corresponds to the K quantization levels of a

uniform quantizer Q(·), i.e., {±(i − 1/2)∆, i = 1, 2, . . . , K/2} (K even), and ∆ is reasonably

small, it is natural, in view of the above, to consider the quantized sinusoid as an input signal

xt = Q[A sin(ω0t + φ)], where A ≤ (K − 1)∆/2 is chosen to meet the input power constraint,
∑

t Q2[A sin(ω0t + φ)] ≤ nΓ. Obviously, the smaller is ∆ (i.e., the larger is K for a given A), the

smaller is the loss compared to the clean (unquantized) sinusoid. We next examine this loss.

Let et = Q[A sin(ω0t + φ)] − A sin(ω0t + φ) designate the quantization error signal. Then,

Γ =
1

n

n
∑

t=1

Q2[A sin(ω0t + φ)] (43)

=
1

n

n
∑

t=1

[A sin(ω0t + φ) + et]
2 (44)

=
A2

2
+

2

n

n
∑

t=1

Aet sin(ω0t + φ) +
1

n

n
∑

t=1

e2
t (45)

→ A2

2
+ 2Rxe(0) + Ree(0), (46)
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where we define

Ree(ℓ) = lim
n→∞

1

n

n
∑

t=1

etet+ℓ (47)

and

Rxe(ℓ) = lim
n→∞

A

n

n
∑

t=1

et+ℓ sin(ω0t + φ). (48)

Denoting H2
max = |H(eiω0)|2, we now have:

lim
n→∞

1

n

n
∑

t=1

[

k
∑

ℓ=0

hℓxt−ℓ

]2

(49)

= lim
n→∞

1

n

n
∑

t=1

[

k
∑

ℓ=0

hℓ(A sin[ω0(t − ℓ) + φ] + et−ℓ)

]2

(50)

=
A2

2
H2

max +
k
∑

ℓ=0

k
∑

j=0

hℓhj [Rxe(ℓ − j) + Rxe(j − ℓ) + Ree(ℓ − j)] (51)

= [Γ − 2Rxe(0) − Ree(0)]H2
max +

k
∑

ℓ=0

k
∑

j=0

hℓhj [Rxe(ℓ − j) + Rxe(j − ℓ) + Ree(ℓ − j)] (52)

= ΓH2
max − Λ (53)

where Λ is the loss due to quantization, i.e.,

Λ = [2Rxe(0) + Ree(0)]H2
max −

k
∑

ℓ=0

k
∑

j=0

hℓhj [Rxe(ℓ − j) + Rxe(j − ℓ) + Ree(ℓ − j)]. (54)

For the case where ω0 is irrational, one can find in [17, eqs. (44), (45), (51)] all the relevant joint

second order statistics needed here. In particular, for the sinuoidal input under discussion,

Ree(ℓ) =
∞
∑

m=−∞

εm exp{2πiℓλm} =
∞
∑

m=−∞

εm cos(2πℓλm), (55)

where λm = 〈(2m − 1)ω0/2π〉, and

εm =

[

∆

π

∞
∑

ℓ=1

J2m−1(2πℓA/∆)

ℓ

]2

, (56)

Jm(z) being the m–th coefficient in the Fourier series expansion of the periodic function exp(iz sin s),

as a function of s, and

Rxe(ℓ) = A∆ cos(ω0ℓ)
∞
∑

m=1

J1(2πmA/∆)

m

∆
= AB cos(ω0ℓ). (57)
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We therefore obtain

Λ =

[

2AB +
∞
∑

m=−∞

εm

]

H2
max − 2AB

k
∑

ℓ=0

k
∑

j=0

hℓhj cos[ω0(ℓ − j)] −

∞
∑

m=−∞

εm

k
∑

ℓ=0

k
∑

j=0

hℓhj cos[2π(ℓ − j)λm] (58)

=

[

2AB +
∞
∑

m=−∞

εm

]

H2
max − 2H2

maxAB −
∞
∑

m=−∞

εm|H(e2πiλm)|2 (59)

=
∞
∑

m=−∞

εm[H2
max − |H(e2πiλm)|2]. (60)

This expression is intuitively appealing: each term is the loss due to spectral term of {et} that is in

a non–optimal frequency (higher order harmonic) λm, where the power gain is |H(e2πiλm)|2, rather

than the optimal frequency ω0, where the power gain is |H(e2πiω0)|2 = H2
max. Thus, to summarize,

the exponent of the finite–alphabet case is upper bounded by ΓH2
max/(4σ2) and lower bounded by

(ΓH2
max −Λ)/(4σ2), where it should be kept in mind that Λ depends on the ratio A/∆ ≤ (K −1)/2

via {εm}. In [17, eq. (50)], there is a more explicit expression for εm. As K increases, the loss Λ

decreases, essentially inverse proportionally to K2,

On a related note, in the continuous–time version of the problem, where the channel is an additive

white Gaussian noise channel, without bandwidth constraints, but only a peak–power constraint,

a binary input xt ∈ {−
√

Γ, +
√

Γ} is as good as any xt ∈ [−
√

Γ, +
√

Γ] since the filter response to

the latter can be approximated arbitrarily closely using binary inputs, as is shown in [21]. In other

words, when {xt} is not discretized in time, it can be discretized in amplitude even as coursely as

in binary quantization without essential loss of optimality.

Appendix

Justification of Inequality (a) in Equation (25). We are interested in an exponential upper bound

on the expression
{

Π(s)Π(s′) exp

[

−1

ρ

n
∑

t=1

dB(st, st⊕1; s′
t, s′

t⊕1)

]}ρ

. (A.1)

Using the method of types for Markov chains, we find that the exponential rate of this quantity is
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of the exponential order of exp{−nZ(ρ)}, where

Z(ρ) = min
wSS+S′S′

+

{

ρ[Hw(S+|S) + Hw(S′
+|S′) − Hw(S+, S′

+|S, S′)]−

∑

s,s+,s′,s′
+

wSS+S′S′
+

(s, s+, s′, s′
+)dB(s, s+; s′, s′

+)











, (A.2)

where wSS+S′S′
+

is a generic joint distribution of a dummy quadruple of random variables (S, S+, S′, S′
+)

over S4, Hw(·|·) are various conditional entropies induced by wSS+S′S′
+

, and the weighted diver-

gences are defined in the usual way. We note that since wSS+S′S′
+

is the empirical distribution of

two pairs of consecutive states, it must always satisfy the stationarity conditions

∑

s1,s2

wSS′(s1, s2)wS+S′
+|SS′(s3, s4|s1, s2) = wSS′(s3, s4) ∀s3, s4. (A.3)

Since Π(s) supports only members in Tn(q∗), we also note that

∑

s′,s′
+

wSS+S′S′
+

(s, s+, s′, s′
+) = q∗(s, s+) (A.4)

∑

s,s+

wSS+S′S′
+

(s, s+, s′, s′
+) = q∗(s′, s′

+). (A.5)

Now, let is denote

∆(wSS+S′S′
+

) = Hw(S+|S) + Hw(S′
+|S′) − Hw(S+, S′

+|S, S′) (A.6)

and note that ∆(wSS+S′S′
+

) ≥ 0 with equality iff wSS+S′S′
+

satisfies wSS+S′S′
+

(s, s+, s′, s′
+) =

wSS′(s, s′)q∗(s+|s)q∗(s′
+|s′), where q∗(s+|s)

∆
= q∗(s, s+)/π∗(s). Now, let wρ

SS+S′S′
+

denote the min-

imizing wSS+S′S′
+

for a given ρ. Considering a sequence ρℓ → ∞, we have

lim sup
ℓ→∞

Z(ρℓ) = lim sup
ℓ→∞

min
wSS+S′S′

+

[

ρℓ · ∆(wSS+S′S′
+

)−

−
∑

s,s+,s′,s′
+

wSS+S′S′
+

(s, s+, s′, s′
+)dB(s, s+; s′, s′

+)







= lim sup
ℓ→∞

[

ρℓ · ∆(wρℓ

SS+S′S′
+

)−

−
∑

s,s+,s′,s′
+

wρℓ

SS+S′S′
+

(s, s+, s′, s′
+)dB(s, s+; s′, s′

+)







18



≥ − lim inf
ℓ→∞







∑

s,s+,s′,s′
+

wρℓ

SS+S′S′
+

(s, s+, s′, s′
+)dB(s, s+; s′, s′

+)






. (A.7)

As ℓ → ∞, there is a subsequence with indices {ℓi} that tends to the limit inferior in the last line

of (A.7), and within this subsequence, there is a sub–subsequence for which w
ρℓi

SS+S′S′
+

(s, s+, s′, s′
+)

converges11 to some limiting distribution of the form of the form w∞(s, s′)q∗(s+|s)q∗(s′
+|s′), as

otherwise, the ρ · ∆ term would tend to infinity, and hence cannot achieve the minimum, which is

finite. Thus,

lim sup
ℓ→∞

Z(ρℓ) ≥ −
∑

s,s+,s′,s′
+

w∞(s, s′)q∗(s+|s)q∗(s′
+|s′)dB(s, s+; s′, s′

+). (A.8)

Now, since w∞(s, s′)q∗(s+|s)q∗(s′
+|s′) is a limit of empirical distributions of pairs of consecutive

states, then, as mentioned in (A.3), it must satisfy

∑

s,s′

w∞(s, s′)q∗(s+|s)q∗(s′
+|s′) = w∞(s+, s′

+) ∀ s+, s′
+. (A.9)

One solution to these equations is obviously w∞(s, s′) = π∗(s)π∗(s′), but since we have assumed

double irreducibility, then the corresponding pair of independent Markov chains has a unique

stationary state distribution, which then must be π∗(s)π∗(s′). Thus,

lim sup
ℓ→∞

Z(ρℓ) ≥ −
∑

s,s+,s′,s′
+

π∗(s)π∗(s′)q∗(s+|s)q∗(s′
+|s′)dB(s, s+; s′, s′

+)

= −
∑

s,s+,s′,s′
+

q∗(s, s+)q∗(s′, s′
+)dB(s, s+; s′, s′

+). (A.10)
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