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Abstract

Motivated by applications in molecular biology and genotyping, this paper proposes

a novel model of group testing for identifying items with real-valued status by using

nonbinary pooling designs under standard arithmetic observation. The purpose is to

learn more information of each item to be tested rather than identify only which ones

are defectives as was done in conventional group testing. This paper provides several

efficiently decodable nonadaptive strategies for the considered problem. The major

tool is a new structure called q-ary additive (w, d)-disjunct matrix, which is related

to known structures: the conventional disjunct matrix by Kautz and Singleton [35]

and the SQ-disjunct matrix by Emad and Milenkovic [26].

Key words: group testing, pooling design.

1 Introduction

A frequently used tool to identify an unknown set of defective (positive) elements

out of a large collection of elements by group tests is called Group Testing. In the

∗This paper was presented in part at 2nd Japan-Taiwan Conference of Combinatorics and its
Applications, Nagoya University, Japan, 2012.
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classic group testing, a “group” test can be any “subset” of the given collection and

its outcome is binary under Boolean operations: YES or NO. The former indicates

that there is a positive element in this test and the latter implies no positive elements.

Due to a diversity of its applications, there have been many variants of the classic

group testing in the literature. Readers are referred to the book [20] and some recent

papers [3, 11, 12, 15, 17, 18, 36, 39] for further information.

Most models in literature consider the elements to be tested with a binary sta-

tus: {positive(1), negative(0)}. In some applications, molecular biology [29], blood

testing [37] and drug discovery [38], there can be a third category of elements called

inhibitors, anti-bodies and blockers, respectively. The presence of such an element in

a test can somehow cancel the effect of positive elements. A model addressing this

issue has been intensively studied [7, 8, 9, 10, 11, 22, 29, 32] under the name of group

testing with inhibitors (GTI). Two other group testing models, mutually obscuring

defectives [16] and multiple access communication with interference [6], were built on

the real observation that in chemical testing and communication theory it is usually

seen that there exists some reaction when two substances meet in a suitable condition

and undesired interference when two channels receive or send a message at the same

time. Recently, Chen and Fu [12] combine the above notions and consider the mul-

tiple mutually-obscuring positives model (MMOP). In this model, more than three

categories of elements (a k-ary status) are allowed with an additional assumption

that certain obscuring phenomena, but unknown, occur among different categories of

positive elements.

Inspired by the inhibition and the interference models, this paper considers a

quantitative model that assumes the mutual effect of inhibition and interference can

be quantized through analyzing a great amount of data in advance. This paper

focuses on the problem where the elements to be tested are in nonbinary status and

defines multi-group testing. Namely, a test can be applied to any “multi-subset” of
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the given set, where “multi” means every single element is allowed to be taken more

than once in a single test. The test matrix is then changed from binary in group

testing to nonbinary in multi-group testing. Note that the notion of nonbinary tests

is not new and can be found in [14, 27, 26, 34] with nonnegative integer matrices, [13]

with integer matrices and [4] with no restriction on matrices. Obviously, allowing a

number of duplicate copies in a test is meaningless under the assumption of Boolean

operations. In the considered model, we shall assume that the outcome rule is linear

under standard arithmetic.

A mathematical model can be described roughly as follows: Let x = (x1, x2, · · · , xn)

∈ R
n be an unknown vector, where xi denotes the status of ith item. A measurement

can be applied to any vector y ∈ {0, 1, · · · }n with an outcome

vy ≡ f(x, y) = 〈y,x〉 =

n
∑

i=1

yixi.

The goal is to learn the unknown vector x through measurements in an efficient

fashion (less measurements and fast decoding).

An obvious feature under this model is that any measurement which is linearly

dependent on some other measurements is useless. The reason is that its outcome

can then be simply derived from a linear combination of the outcomes of the others.

The other feature is that, without any further information of the unknown vector x,

n measurements are necessary in the worst case to learn the unknown vector (n is

clearly sufficient). The reason is that after k measurements x can be any vector in the

n − k dimensional subspace whose outcome is consistent with the k measurements.

If k < n, such vectors are not unique and thus cannot be determined exactly.

To make the multi-group testing model more interesting and challenging, we shall

assume that

1. the unknown vector x is d-sparse, that is, x contains at most d nonzero entries

where d is a constant with d ≪ n;
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2. the entries of x all belong to a certain set D ⊂ R which is a priori knowledge;

3. the number of copies from every single item in a measurement is restricted to

{0, 1, · · · , q − 1}, i.e., y ∈ Z
n
q , where the integer q is prescribed.

Notice that the outcome vy =
∑n

i=1 yixi can possibly exceed q. Moreover, the car-

dinality of D must be finite because the decoding algorithms proposed in this paper

rely critically on |D|.

This paper focuses on nonadaptive strategies where measurements are performed

simultaneously and therefore all measurements must be settled in advance. A non-

adaptive strategy that uses t measurements can be represented by a t × n matrix

A = [aij ] with columns as items and rows as measurements, and the value at aij de-

notes the number of copies of item j in measurement i. The nonadaptive multi-group

testing problem can then be converted into the problem: Construct a matrix A = [aij ]

with aij ∈ Zq so that the unknown d-sparse vector x ∈ Dn can be determined exactly

and efficiently through the outcome vector v = Ax. Clearly, the conventional additive

group testing in [1, 19] is a special case of the multi-group testing with D = {0, 1}

and q = 2.

Motivation and related work

Our model naturally arises in several situations. In some applications, such as blood

testing, what patients or doctors want to know might be not only a yes-or-no answer

but also a more precise index, a standard by which the level of some illness can be

judged. The major purpose of relaxing x from the usual set {0, 1} to a prescribed set

D (can be very large) is that we aim to learn more information that each item carries

rather than just determine which items are positive.

Of particular interest is that D is allowed to contain not only positive elements

but also negative elements, whose presence is in a sense to cancel the effect of positive

elements, as inhibitors in GTI mentioned above. In GTI, the status of an inhibitor
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can be viewed as −∞ while the outcome is still binary. Formally speaking, it is to

identify an unknown sparse vector x ∈ {−∞, 0, 1}n by measurements y ∈ {0, 1}n with

two possible outcomes:

{

1 if 〈y,x〉 ≥ 1;

0 if 〈y,x〉 < 1.
However, the setting that one inhibitor is

assumed to be able to cancel positive effect of all positive elements is too powerful to be

appropriate in practice. It would be more reasonable that certain weaker cancelation

effect exists between inhibitors and positives and can be quantized through analyzing

a large amount of data in advance. For instance, if the information that one inhibitor

cancels k positives is a priori then it can fit into the framework of our model by setting

x ∈ {−k, 0, 1}n.

Motivated by applications in genotyping, Emad and Milenkovic [27, 26] proposed

the Semi-Quantitative Group Testing (SQGT) which is a nonbinary pooling scheme

combining an adder channel and an integer-valued quantizer. The quantizer and the

nonbinary x settings in SQGT and our model, respectively, make a difference between

them and no one includes the other. It is worth mentioning that nonbinary pooling

designs are used commonly. The use of nonbinary pooling designs is based on the fact

that “genotyping methods allow for more precise readings at the output than classical

binary detectors” [27] and therefore the amount of samples must be reflected in the

readings. It leads to an advantage of performance, i.e., using less measurements in

the multiset model than in the set model is to be expected as set is a special case of

multiset.

Recently, group testing has been related to compressed sensing in [2, 4, 5, 30].

Compressed sensing is a signal processing technique for recovering a signal by finding

solutions to underdetermined linear systems (more unknown variables than equa-

tions), which coincides with the essence of multi-group testing under standard arith-

metic. As a consequence, results developed in compressed sensing could benefit our

model and vice versa. Although the two problems are in the same framework, to

the best of our knowledge, there is no research in sparse signal recovery addressing a

5



problem with the same setting as our model.

Our contribution

We give nonadaptive strategies for the multi-group testing problem with general D.

We note that the one-sided case, i.e., D is nonnegative or nonpositive, is a relatively

simple case to handle. The reason is that in this case a zero outcome simply implies

that all the items appearing in the measurement are zero, in contrast to the general

case, a zero outcome can be produced by a combination of some positive elements and

negative elements. Although the main result for the one-sided case has its counterpart

for the general case, the technique and complexity are very different.

We propose a new combinatorial structure called q-ary additive (w, d)-disjunct

matrices (will be defined later). Such a structure enables us to solve the general case

and decode efficiently. It is new but related to known structures: the well-known

binary disjunct matrix introduced by Kautz and Singleton [35] and the SQ-disjunct

matrix proposed by Emad and Milenkovic [26]. We have a method to construct q-

ary additive (w, d)-disjunct matrices, but not as strong as we like because it relies

critically on the construction of conventional disjunct matrices. Also, we provide

two methods by applying the Kronecker product to produce a bigger matrix from a

smaller one. Although the resulting matrices cannot be applied to solve the gen-

eral case, they can solve the one-sided case with efficient decoding algorithms. The

value of our constructions is not in its practicality in constructing efficient q-ary addi-

tive (w, d)-disjunct matrices, but rather in calling awareness to the existence of such

constructions, so that further research can improve on it.

Our decoding algorithms based on q-ary additive (w, d)-disjunct matrices are quite

efficient. For the one-sided case our strategy has a decoding algorithm in O(|D|tn)

time and for the general case it is O(|D|tnd+1). By contrast, even ignoring the time

for multiplications of vectors, in the worst case it takes extremely high time complex-
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ity O

(

d
∑

i=0

(

n

i

)

|D|i

)

to decode x by simply applying a straightforward brute-force

procedure.

The rest of the paper is organized as follows. Section 2 first introduces notations

and major tools and then exploits them to solve the one-sided case of the multi-group

testing problem under standard arithmetic. Section 3 deals with the general case.

Finally, Section 4 provides three constructions mentioned above.

2 The one-sided case

This section starts with a simple but useful lemma.

Lemma 2.1 Let A be a matrix in R
t×n. Given a fixed (unknown) vector x ∈ R

n, let

v = Ax. Let x′ = ax+b for some 0 6= a ∈ R and b ∈ R
n (known), and let v′ = Ax′.

Then the problem of learning x from v is equivalent to the problem of learning x′ from

v′.

Proof. The proof follows immediately from the linear mapping from v′ to v, that

is, v′ = Ax′ = A(ax + b) = aAx + Ab = av + Ab.

To present our algorithms, we first introduce some notations. Throughout this

paper, let x ∈ Dn be an unknown d-sparse vector, A = [aij ] of size t × n be the

matrix corresponding to the measurements and v = Ax be the outcome vector. For

any vector y = (y1, · · · , yn), denote by ‖y‖0 ≡ |{yj : yj 6= 0}| the l0 norm (or sparsity)

of y. Given any vector y = (y1, · · · , yt), for each j ∈ [n] define

tj(y) = |{i : aij > yi}|.

For any vector y = (y1, y2, · · · , yn) and δ ∈ R, define sy,=δ = (sy,=δ
1 , sy,=δ

2 , · · · , sy,=δ
n )

where

sy,=δ
j =

{

1 if yj = δ,

0 otherwise.
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For convenience, we shall use sj to denote s
y,=δ
j if no confusion occurs without specified

superscripts. Likewise, we define sy,≥δ and sy,≤δ by replacing yj = δ with yj ≥ δ and

yj ≤ δ, respectively. For any two vectors x and y of the same dimension, denote by

x � y if xi ≥ yi for all i and by x 6� y otherwise.

Consider a fixed q-ary matrix M = [mij ] of size t× n. For any vector y of length

n, we define the syndrome vector of y in M by φM(y) = (φ1(y), φ2(y), · · · , φt(y)),

where

φj(y) =
n
∑

i=1

yi ·mji.

For any two n-vectors y0 and y1, we say their syndromes φM(y0), φM(y1) are different,

denoted by φM(y0) 6= φM(y1), if and only if there exists some j ∈ [t] such that

φj(y0) 6= φj(y1).

Definition 1 Let M = [mij ] of size t × n be a q-ary matrix. We say M is additive

(D, d)-separable if

φM(y0) 6= φM(y1)

for any two d-sparse vectors y0,y1 ∈ Dn with y0 6= y1.

By definition, it is easily seen that additive (D, d)-separability is a sufficient and

necessary condition for the considered problem. Moreover, a q-ary additive (D, d)-

separable matrix with q = 2 and D = {0, 1} reduces to a d-detecting matrix in [?].

Although separability provides a solution to identify the unknown vector x, it suffers

from lack of efficient algorithms for decoding.

Disjunct matrices were first studied by Kautz and Singleton [35] under the name

of zero-false-drop codes, and also known as cover-free families [28] or superimposed

codes [23]. A binary matrix is called d-disjunct if it satisfies the property: for any

fixed column and other d columns, there exists a row such that the designated column

is 1 and all the d columns are 0. Disjunct matrices have been intensively studied for

fifty years. Of particular note is that a d-disjunct matrix of size t × n can identify
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up to d defectives with efficient decoding complexity O(tn). Recently, the decoding

complexity has been further improved based on other combinatorial structures. Sev-

eral algorithms with sublinear decoding complexity (in n) were proposed [31, 33, ?].

It is known [19, 23, 24] that a d-disjunct matrix of n columns has an upper bound

O(d2 log n) and a lower bound Ω(d2 log n/ log d) on the number of rows. There are

many constructions attaining the best known upper bound O(d2 logn) (see [25, 20]).

Next, we define a new family of disjunct matrices that can be applied to solve the

multi-group testing problem with efficient decoding algorithms.

Definition 2 Let q, t, n and d be positive integers and w > 0. A q-ary matrix M =

[mij ] of size t × n is called additive (w, d)-disjunct if for any s ∈ {(s1, s2, · · · , sn) ∈

{0, 1}n :
∑n

j=1 sj ≤ d} and for each k ∈ [n] such that sk = 0, there exists an i ∈ [t]

such that

mik > w

n
∑

j=1

mijsj.

The additive disjunct matrices can be related to some known structures. A con-

ventional d-disjunct matrix is a binary (q = 2) additive (w, d)-disjunct matrix for any

w ≥ 1. In particular, when w ≥ q − 1, any q-ary additive (w, d)-disjunct matrix can

be converted simply to a binary d-disjunct matrix by replacing every non-zero entry

with 1. As a consequence, we have the following bound.

Proposition 2.1 Let g(n, w, d, q) denote the minimum t such that a t × n q-ary

additive (w, d)-disjunct matrix exists. Then g(n, w, d, q) = O(d2 logn) for any w ≥ 1

and g(n, w, d, q) = Ω(d2 log n/ log d) when w ≥ q − 1.

Another is the SQ-disjunct code defined by Emad and Milenkovic [26]. When

w = 1, a q-ary additive (w, d)-disjunct matrix is reduced to a special case of the

[q;Q; η; (1 : d); e]-SQ-disjunct code with Q = d, the thresholds η = [0, 1, · · · , d]T

and e = 0 (error-free). Thus, several useful constructions in [27] can be applied

immediately for constructing q-ary additive (w, d)-disjunct matrices with w = 1.

9



Note that in Definition 2 w is assumed only to be positive and needs not to

be w ≥ 1, which is indeed the case throughout this paper. The case 0 < w < 1

seems strange but has its own interest in combinatorial structure. For instance, when

1
2
≤ w < 1 a binary (w, d)-disjunct matrix is equivalent to a matrix satisfying the

property that for any fixed column and d other columns there exists a row such that

the designated column has a 1 and the d columns have at least d− 1 0’s. In view of

this, we believe that the additive disjunct matrices with 0 < w < 1 might have other

potential applications.

Next, we study the one-sided case, i.e., elements in D are either all nonnegative or

all nonpositive. By symmetry, we may and shall assume thatD = {c0 = 0, c1, · · · , cm}

where 0 < c1 < c2 < · · · < cm.

Theorem 2.2 Let A be a q-ary additive (w, d)-disjunct matrix of size t × n with

w = max1≤k≤m{
cm−ck−1

ck−ck−1
}. Then A is additive (D, d)-separable.

Proof. Consider any two fixed d-sparse vectors y,y′ ∈ Dn with y 6= y′. There exist

some j’s ∈ [n] such that yj 6= y′j. Let yj be the smallest value among all those j’s and

by symmetry we may assume that yj < y′j . Without loss of generality, we assume that

yj = cg−1 and therefore y′j ≥ cg. To prove the theorem, it suffices to show that Ay′ 6=

Ay, or equivalently A · (y′1, · · · , y
′
j − yj , · · · , y

′
n)

T 6= A · (y1, · · · , yj−1, 0, yj+1, · · · , yn)
T .

Let yj denote the vector y subject to the j-th position, i.e., (0, · · · , 0, yj, 0, · · · , 0).

The above inequality can be rewritten as

A(y′ − yj) 6= A(y − yj). (1)

Consider the vector sy−yj ,≥c1, which is d-sparse as is y. Notice that s
y−yj ,≥c1
j = 0.

By definition of additive (w, d)-disjunctness, there exists some t∗ ∈ [t] such that

at∗j > w
∑n

i=1 at∗is
y−yj ,≥c1
i . Since the minimality of yj, we have [y− y′]i ≤ cm − cg−1
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for all i.

‖[A(y′ − yj)−A(y − yj)]t∗‖ ≥ (y′j − yj)at∗j − (cm − cg−1)

n
∑

i=1

at∗is
y−yj ,≥c1
i

>
[

(y′j − yj)w − (cm − cg−1)
]

n
∑

i=1

at∗is
y−yj ,≥c1
i

≥ [(cg − cg−1)w − (cm − cg−1)]

n
∑

i=1

at∗is
y−yj ,≥c1
i > 0,

where the last inequality holds as w = max1≤k≤m{
cm−ck−1

ck−ck−1
}. This proves (1) and

therefore concludes the theorem.

The above theorem makes an attempt to show that the designated matrix A

satisfies the separability property so that the unknown d-sparse vector x can be

successfully identified. However, even ignoring the time for multiplications of vectors,

it takes extremely high time complexity O

(

d
∑

i=0

(

n

i

)

mi

)

to decode x by simply

applying a straightforward brute-force procedure based on the separability property.

For what follows, we exploit a more powerful property, disjunctness, of A to quickly

identify the unknown vector x. Next, the focus is on decoding complexity.

Lemma 2.3 Suppose x ∈ Dn is an unknown d-sparse vector. Let A be a q-ary

additive (w, d)-disjunct matrix of size t × n with w ≥ cm
c1

and let v = Ax be the

outcome vector. Then sx,≥c1 can be identified from v.

Proof. By Lemma 2.1, this problem can be reduced to the problem of learning the

unknown sparse vector x′ = (x′
1, x

′
2, · · · , x

′
n) ∈ {0, 1, c2

c1
, · · · , cm

c1
}n from the outcome

vector v′ = 1
c1
v.

For each k such that x′
k 6= 0, for all i ∈ [t] we have aik ≤

cm/c1
∑

c=1



c
∑

{j:x′

j=c}

aij



 = v′i.

Accordingly, tk(v
′) = 0 whenever x′

k 6= 0.

Since the vector x is d-sparse,
∑n

j=1 s
x
′,≥1

j ≤ d. For each k such that x′
k = 0, by

definition of the q-ary additive (w, d)-disjunct matrix, there exists i ∈ [t] such that

aik > w

n
∑

j=1

aijs
x
′,≥1

j ≥

n
∑

j=1

aijx
′
j = v′i.
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This implies that tk(v
′) > 0 if x′

k = 0. By the above discussion, we can identify the

vector sx
′,≥1 through the counting function tk(v

′). As a consequence, sx,≥c1 can be

identified too.

We now analyze the time complexity for the decoding algorithm corresponding

to Lemma 2.3. For each j ∈ [n], it takes t operations for computing the value tj(·).

Therefore, the decoding complexity is O(tn).

Corollary 2.4 Let x ∈ {c0 = 0, c1, · · · , cm}
n be an unknown d-sparse vector, where

0 < c1 < c2 < · · · < cm. Let w = max1≤k≤m{
cm−ck−1

ck−ck−1
}. Then any q-ary additive

(w, d)-disjunct matrix of size t× n can be used to identify x with O(|D|tn) decoding

complexity.

Proof. The corollary follows by applying Lemma 2.3 repeatedly (m times). The

precise process is as follows. Let x1 = 1
c1
x and v1 = 1

c1
v (here we shall use xi and

vi to denote the updated vectors in the ith round). Since w ≥ cm
c1
, by Lemma 2.3 we

know that sx
1,≥1 can be identified from v1 successfully.

For k = 2, · · · , m− 1, define recursively that

vk =
1

ck−ck−2

ck−1−ck−2
− 1

(

vk−1 − Asx
k−1,≥1

)

and xk =
1

ck−ck−2

ck−1−ck−2
− 1

(

xk−1 − sx
k−1,≥1

)

.

It is easily verified that vk = Axk for all k. Note that xk ∈ {0, 1, ck+1−ck−1

ck−ck−1
, · · · , cm−ck−1

ck−ck−1
}n

is a d-sparse vector and w ≥
cm−ck−1

ck−ck−1
for each k = 1, · · · , m. Applying Lemma 2.3

repeatedly, sx
k,≥1 can be identified for all k = 1, · · · , m. Consequently, the unknown

vector x can be identified as x =
∑m

i=1 (ci − ci−1) s
x
i,≥1 =

∑m
i=1 cis

x,=ci. This com-

pletes the proof.

3 The general case

In this section, we turn our attention to the general case that elements in D are

neither all nonnegative nor all nonpositive. Throughout this section, we shall assume
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D = {zm2
, · · · , z1, 0, c1, · · · , cm1

}, where zm2
< · · · < z1 < 0 < c1 < · · · < cm1

. For

any vector v, r ∈ {0, 1}n and h ∈ R, define

vhr ≡ v + hAr.

For any vector v, d ∈ N and h ∈ R, define

t∗j(v, h, d) ≡ min
r∈{0,1}n,‖r‖0≤d

tj(v
hr) for j = 1, · · · , n.

Theorem 3.1 Let x ∈ Dn be an unknown d-sparse vector and w ≥
cm1

−zm2

c1
. Then

any q-ary additive (w, 2d)-disjunct matrix of size t× n can be used to identify sx,≥c1.

Proof. By Lemma 2.1, this problem is equivalent to the problem of learning x ∈

{
zm2

c1
, · · · , z1

c1
, 0, 1, c2

c1
, · · · ,

cm1

c1
}n. Let x = (x1, · · · , xn), A be a q-ary additive (w, 2d)-

disjunct matrix, w ≥
cm1

−zm2

c1
, of size t × n and v = Ax be the outcome vector

corresponding to x. It suffices to identify sx,≥1.

Consider any vector r(x) = (r1, r2, · · · , rn) ∈ {0, 1}n with ‖r(x)‖0 = d such that

r(x) � sx,<0. For each k with xk ≥ 1, for all i ∈ [t] we have

v
−zm2

c1
r(x)

i = vi −
zm2

c1

n
∑

j=1

aijrj (since v
−zm2

c1
r(x)

= v −
zm2

c1
Ar(x))

≥
∑

{j:xj≥1}

aij +
zm2

c1

∑

{j:xj<0}

aij −
zm2

c1

n
∑

j=1

aijrj (since r(x) � sx,<0)

≥
∑

{j:xj≥1}

aij ≥ aik.

By definition, tk(v
−

zm2
c1

r(x)
) = 0 and therefore t∗k(v,−

zm2

c1
, d) = 0 if xk ≥ 1.

Consider the case xk < 1. For any arbitrary vector r ∈ {0, 1}n with ‖r‖0 ≤ d,

consider the unknown vector s = (s1, s2, · · · , sn) where

sℓ =

{

1 if xℓ ≥ 1 or rℓ = 1,

0 otherwise.
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As ‖r‖0 ≤ d and ‖x‖0 ≤ d, we have ‖s‖0 ≤ 2d. Since A is a q-ary additive (w, 2d)-

disjunct matrix where w ≥
cm1

−zm2

c1
, there exists i ∈ [t] such that

aik >
cm1

− zm2

c1

n
∑

j=1

aijsj ( by definition of disjunctness)

=
cm1

c1

n
∑

j=1

aijsj −
zm2

c1

n
∑

j=1

aijsj

≥
n
∑

j=1

aijxj −
zm2

c1

n
∑

j=1

aijsj ( since s � x)

≥ vi −
zm2

c1

n
∑

j=1

aijsj

≥ vi −
zm2

c1

n
∑

j=1

aijrj ( since s � r(x) and
zm2

c1
< 0)

= v
−

zm2
c1

r

i .

This implies tk(v
−

zm2
c1

r
) > 0 for any r ∈ {0, 1}n with ‖r‖0 ≤ d. Hence, t∗k(v,−

zm2

c1
, d) >

0 if xk < 1.

Therefore, by the above discussion, one can determine whether xk ≥ 1 through

the counting function t∗k(v,−
zm2

c1
, d).

We now analyze the time complexity for the decoding algorithm corresponding to

Lemma 3.1. For each j ∈ [n], it takes t
(

n
d

)

operations for computing the value t∗j(·).

Therefore, the decoding complexity is O(tnd+1).

Combining Corollary 2.4 and Theorem 3.1, we have the following result.

Theorem 3.2 Let x ∈ Dn be an unknown d-sparse vector and let

w ≥ max

{{

cm1
− ci − zm2

ci+1 − ci

∣

∣

∣

∣

0 ≤ i ≤ m1 − 1

}

⋃

{

−zm2
+ zi−1

−zi + zi−1

∣

∣

∣

∣

1 ≤ i ≤ m2

}}

.

Then any q-ary additive (w, 2d)-disjunct matrix of size t × n can be used to identify

x with O(|D|tnd+1) decoding complexity.

Proof. By Theorem 3.1, sx,≥c1 can be identified since w ≥
cm1

−zm2

c1
. Let x1 = x −

c1s
x,≥c1 and for i = 2, · · · , m1−1 define recursively xi = xi−1− (ci− ci−1)s

x,≥ci. Note

14



that xi ∈ {zm2
, · · · , z1, 0, ci+1−ci, · · · , cm1

−ci}
n and ‖xi‖0 ≤ d for i = 1, · · · , m1−1.

With w ≥
cm1

−ci−zm2

ci+1−ci
, applying Theorem 3.1 repeatedly, one can successfully identify

sx
i,≥ci+1−ci (or equivalently sx,≥ci+1) for i = 1, · · · , m1−1. As a result, one can identify

sx,=ci = sx,≥ci − sx,≥ci+1 for all i = 1, · · · , m1 (for well-defineness let cm1+1 = ∞).

Next, let x′ =

(

m1
∑

i=1

cis
x,=ci − x

)

∈ {0,−z1, · · · ,−zm2
}n; hence ‖x′‖0 ≤ d. As

w ≥ max
1≤i≤m2

{
−zm2

+ zi−1

−zi + zi−1
}, by Corollary 2.4, x′ can be identified. This completes the

proof.

Note that the bound on w in Theorem 3.2 is not necessary the best choice. One

might obtain a better bound by first applying the transformation method introduced

in Section 2. The following demonstrates such an example.

Example 1 Let x1 ∈ {−2, 0, 1, 4}n with ‖x1‖0 ≤ d and let x2 = −x1 ∈ {−4,−1, 0, 2}n.

By Lemma 2.1, we know that the problem of learning x1 is equivalent to the prob-

lem of learning x2. However, to apply Theorem 3.2 to x2, we have to require w2 ≥

max{2−(−4)
2−0

, 4−0
1−0

, 4−1
4−1

} = 4 which is smaller than 6 = max{4−(−2)
1−0

, 4−1−(−2)
4−1

, 2−0
2−0

} ≤ w1,

required by simply applying Theorem 3.2 to x1.

4 Constructions for multi-group testing

This section proposes three constructions for the multi-group testing problem. The

first one is to construct a q-ary additive (w, d)-disjunct matrix from a conventional

binary disjunct matrix by deleting some rows.

Theorem 4.1 Let A be a q-ary additive (w, d)-disjunct matrix of size t × n and

w ≤ q−1
d
. If A has d+2 rows R1, · · · , Rd+2 pairwise disjoint with entries in {0, 1}, then

A′ obtained from A by deleting Rd+2 and replacing Rk with R′
k = (wd+ 1)Rk +Rd+2

for k = 1, · · · , d+ 1 is a q-ary additive (w, d)-disjunct matrix of size (t− 1)× n.

Proof. For convenience, represent A using row indices [t] and column indices [n]

and without loss of generality assume R1, · · · , Rd+2 be the first d + 2 rows, i.e.,

15



indexed from 1 to d + 2. Let A′ be the obtained matrix (using the same indices

with A). Obviously, every entry in A′ is at most q. Consider fixed j ∈ [n] and

j1, · · · , jd ∈ [n] \ {j}. Since A is q-ary additive (w, d)-disjunct, there exists an i ∈ [t]

such that aij ≥ w
∑d

k=1 aijk . There are only three cases as follows.

If i 6∈ {1, · · · , d + 2}, then row i is in A′ and a′ij = aij ≥ w
∑d

k=1 aijk = w
∑d

k=1 a
′
ijk
,

as desired.

If i ∈ {1, · · · , d + 1}, then row i is in A′, aij = 1 and aijk = 0 for k = 1 · · · , d.

Therefore, a′ij = (wd + 1) > w
∑d

k=1 1 ≥ w
∑d

k=1 a
′
ijk

where the last inequality holds

for a′ijk ≤ 1.

If i = d + 2, then row i is not in A′. We need to find another row i′ in A′ with the

desired property. In this case, ad+2,j = 1 and ad+2,jk = 0 for k = 1 · · · , d. Since

R1, · · · , Rd+1 are pairwise disjoint, at least one of them, say i′, has all 0 entries at

the columns jk’s for k = 1, · · · , d, i.e., ai′jk = 0 for k = 1, · · · , d. Since ad+2,j = 1 and

therefore ai′j = 0, we have a′i′j = 1. Thus, a′i′j > w
∑d

k=1 a
′
i′jk

= 0.

Since j, j1, · · · , jd are chosen arbitrarily, the proof is complete.

A binary matrix A is called transversal if its rows can be divided into disjoint

families such that rows in each family are disjoint. We say a family of size b if it has b

rows. Denote fb(A) as the number of disjoint families of size at least b in the matrix

A.
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Example 2 Let

A =









































1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0









































12×16

.

It is easily verified that A is 2-disjunct and transversal as it can be divided into 3

disjoint families. Further, f4(A) = 3.

Corollary 4.2 Let A be a transversal d-disjunct matrix of size t× n. There exists a

q-ary additive (w, d)-disjunct matrix of size t′×n with q ≥ wd+2 and t′ = t−fd+2(A).

Proof. The Corollary follows immediately from Theorem 4.1.

In [21], Du et al proved that there exists a transversal d-disjunct matrix A of size

t × n with t = (2 + o(1))
[

d logn
log(d logn)

]2

and fd+2(A) =
d logn

log(d logn)
. As a result, we have

the following.

Corollary 4.3 Let q ≥ wd+ 2. There exists a q-ary additive (w, d)-disjunct matrix

of size t× n with t = (2 + o(1))
[

d logn
log(d logn)

]2

− d logn
log(d logn)

.

Example 3 Let

A′ =





























5 5 5 5 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 5 5 5 5 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 5 5 5 5 1 1 1 1
5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1
0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1
0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1
5 0 0 1 1 5 0 0 0 1 5 0 0 0 1 5
0 5 0 1 1 0 5 0 0 1 0 5 5 0 1 0
0 0 5 1 1 0 0 5 5 1 0 0 0 5 1 0





























9×16
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obtained from A by using operations as in Theorem 4.1. Then A′ is a 6-ary (2, 2)-

disjunct matrix of size 9× 16.

The following two constructions are based on a special operation of matrices,

referred to Kronecker Product. Of particular note is that the resulting matrices are

q-ary additive (D, d)-separable where D is one-sided. Although the resulting matrices

do not satisfy the additive disjunctness property, they also admit efficient decoding

algorithms.

Definition 3 If A and B are matrices of size n×m and s× t respectively, then the

Kronecker Product A⊗B of the two matrices A and B is the ns×mt matrix whose

entries (A⊗B)ij,kℓ = AikBjℓ with row indices listed as 11, · · · , 1s, 21, · · · , n1, · · · , ns

and column indices as 11, · · · , 1t, 21, · · · , m1, · · · , mt.

The Kronecker Product of two matrices A and B can also be viewed as

A⊗ B =











a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

...
. . .

...
an1B an2B · · · anmB











.

Theorem 4.4 Let A be a matrix of size t × n that can successfully identify any

unknown d-sparse vector y ∈ {0, c1, c2, · · · , cm}
n, where 0 < c1 < · · · < cm. Let B be

a binary d-disjunct matrix of size t′ × n′. Then B ⊗ A can successfully identify any

unknown d-sparse vector x ∈ {0, c1, c2, · · · , cm}
nn′

.

Proof. Partition the unknown vector x equally into n′ pieces x1,x2, · · · ,xn′ where

xj ∈ {0, c1, c2, · · · , cm}
n for all j = 1, · · · , n′. Then

(B ⊗ A)x =











b11A b12A · · · b1n′A
b21A b22A · · · b2n′A
...

...
. . .

...
bt′1A bt′2A · · · bt′n′A





















x1

x2
...

xn′











=











v1

v2
...
vt′











,
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where the outcome vector v =











v1

v2
...
vt′











with each vi a vector of length t. We now want

to show that the unknown vector x can be identified from the outcome vector v.

We first show that one can determine whether xj = 0, where 0 denotes a vector

whose entries are all zero, for all j through the d-disjunctness property. Obviously,

there are at most d xj ’s such that xj 6= 0 as ‖x‖0 ≤ d. Let J be such a set consisting

of indices of these xj ’s with xj 6= 0. For a fixed k with xk = 0, by the definition of

d-disjunctness, there exists an ℓ such that bℓk = 1 and bℓj = 0 for all j ∈ J . It follows

that vℓ =
(

bℓ1A bℓ2A · · · bℓn′A
)











x1

x2
...

xn′











=











0
0
...
0











. In contrast, for each j ∈ J ,

for each i with bij = 1 we have vi =
(

bi1A bi2A · · · bin′A
)











x1

x2
...

xn′











6=











0
0
...
0











since

bijAxj 6= 0 and entries in bij′Axj′ are all nonnegative. As a result, one can determine

whether xj is 0 or not by checking vi = 0 for some i with bij = 1.

For each j with xj 6= 0, by the definition of d-disjunctness, there exists an i such

that bij = 1 and bij′ = 0 for all j′ ∈ J \ {j}. It follows that

vi =
(

bi1A bi2A · · · bin′A
)











x1

x2
...

xn′











= Axj .

Consequently, xj can be identified from the outcome vi since A can successfully

identify any unknown vector y ∈ {0, c1, c2, · · · , cm}
n with ‖y‖0 ≤ d, where 0 < c1 <

· · · < cm. By the above discussion, one can successfully identify x by using the matrix

B ⊗ A.

Note that the decoding complexity of Theorem 4.4 depends on the decoding com-

plexity of the underlying matrix A.
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Corollary 4.5 Let x ∈ {0, c1, c2, · · · , cm}
nn′

be a d-sparse vector, where 0 < c1 <

· · · < cm. Let A be a q-ary additive (w, d)-matrix of size t×n with w = max1≤k≤m{
cm−ck−1

ck−ck−1
}

as in Corollary 2.4 and let B be a binary d-disjunct matrix of size t′ × n′. Then the

q-ary matrix B⊗A can successfully identify the unknown vector x. Furthermore, the

decoding complexity is O(tt′nn′ + dmtn).

Proof. The identification result follows immediately from Corollary 2.4 and The-

orem 4.4. The decoding complexity follows by taking O(tt′nn′) time in determining

xj = 0 or not and then applying the decoding algorithm in Corollary 2.4 to those

xj ’s with xj 6= 0 at most d times.

Following the idea in [26] of concatenating several matrices, we obtain the fol-

lowing result: Let A be a binary d-disjunct matrix of size t × n. Let u = cmd and

n′ = ⌊logu (1 + (u− 1)(q − 1))⌋. Construct a q-ary matrix C of size t×nn′ by concate-

nating n′ matrices: C =
(

A1 A2 · · · An′

)

, where Aj =

(

j−1
∑

i=0

ui

)

A for 1 ≤ j ≤ n′;

equivalently C = B ⊗ A where

B =
(

1 1 + u 1 + u+ u2 · · · un′

−1
u−1

)

.

Theorem 4.6 Let C be the q-ary matrix as defined above. Then C can successfully

identify any unknown d-sparse vector x ∈ {0, c1, · · · , cm}
nn′

with 0 < c1 < · · · < cm

where all ci’s are positive integers. Moreover, the decoding complexity is O(tnn′).

Proof. Let v = Cx be the outcome vector. Consider x =
(

x1 x2 · · · xn′

)

where

xj ’s are vectors of length n. We prove this theorem by showing xn′ , · · · ,x1 can be

identified successfully one by one.

Observe that

v =
n′

∑

j=1

Ajxj =

(

n′−1
∑

j=1

uj − 1

u− 1
Axj

)

+
un′

− 1

u− 1
Axn′ . (2)
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Since

n′−1
∑

j=1

‖xj‖0 ≤ d and cm is the largest value, each entry of the term

(

n′−1
∑

j=1

uj − 1

u− 1
Axj

)

in (2) is at most

(

un′−1 − 1

u− 1

)

cmd <
un′

− 1

u− 1
. It follows that, taking the floor of num-

bers in the vector u−1
un′−1

v componentwisely, we have

⌊

u− 1

un′ − 1
v

⌋

= Axn′ . Note that

the above equality holds when ci’s are positive integers, as required. This equality

implies that xn′ can be identified from the outcome

⌊

u− 1

un′ − 1
v

⌋

as A is a d-disjunct

matrix, which guarantees the identification of any d-sparse vector with entries all

nonnegative in O(tn) decoding time.

Assume now that xn′ ,xn′−1, · · · ,xk+1 have been identified. Define vk = v −

∑n′

j=k+1Ajxj. An analogous argument shows that

⌊

u− 1

uk − 1
vk

⌋

= Axk. By the

d-disjunctness property again, one can identify xk from the outcome

⌊

u− 1

uk − 1
vk

⌋

.

Repeating this process, xn′ , · · · ,x1 can be identified successfully one by one, and

therefore the total decoding complexity is O(tnn′). This completes the proof.

Concluding remarks

In this section, three constructions are proposed for three purposes: the general case,

the one-sided case, and the one-sided integer case. So, it might make little sense to

compare their performances in absolute terms. To conclude this section, we simply

list the rate of their performances in comparison with the difficulty of their goals,

where the rate of a t × n matrix M is defined by R(M) = lim
n→∞

n/t. Table 1 lists

the corresponding rates of the three constructions. As shown results for the first two

constructions, we can conclude that the more restrictions on D, the better rates.

Table 1: Rates of three constructions: (1)general case
(2)one-sided case (3)one-sided integer case

(1)
(log(d log n))2n

(d logn)2
Cor. 4.3

(2)
(log(d logn))2n

(d log n)2
×

n

d2 logn
Cor. 4.5

(3)
n

d2 logn
× (log q − log cmd) Thm. 4.6
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Table 2 lists the corresponding decoding complexities for the underlying matrices

of the same size t× n.

Table 2: Decoding complexities of three constructions

Corollary 4.3 Corollary 4.5 Theorem 4.6

general O(|D|tnd+1)
one-sided O(|D|tn) O(|D|tn)
one-sided integer O(tn)
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