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Abstract

We prove a lower bound on the relative entropy between two finite-dimensional states in
terms of their entropy difference and the dimension of the underlying space. The inequality
is tight in the sense that equality can be attained for any prescribed value of the entropy
difference, both for quantum and classical systems. We outline implications for information
theory and thermodynamics, such as a necessary condition for a process to be close to
thermodynamic reversibility, or an easily computable lower bound on the classical channel
capacity. Furthermore, we derive a tight upper bound, uniform for all states of a given
dimension, on the variance of the surprisal, whose thermodynamic meaning is that of heat
capacity.
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1 Introduction

The relative entropy is a distance-like measure that appears in a multitude of areas, such as infor-
mation theory, thermodynamics, statistics and learning theory, being of operational significance
in various situations (see Section 3 for a few applications). Also known as the Kullback-Leibler
divergence, it was first introduced for probability distributions [KL51], and later generalized
to quantum states [Ume62]. Another ubiquitous quantity is the entropy of a probability dis-
tribution or quantum state [Sha48, vN32], which in Thermodynamics had already played a
central role because entropy differences characterize possible and impossible thermodynamic
state transformations (see e.g. the Clausius inequality in Section 3.1.1).

In this work, we provide a lower bound on the relative entropy D(σ‖ρ) between two states σ,
ρ (probability distributions or quantum states) in terms of their entropy difference ∆ = S(σ)−
S(ρ). Qualitatively, it is clear that such non-trivial lower bounds exist in any finite dimension
due to the compactness of the state space, since ∆ 6= 0 implies σ 6= ρ and thus D(σ‖ρ) > 0
by Klein’s inequality [OP93]. Our main inequality (Theorem 1) makes this quantitative and
is furthermore tight, meaning that for each dimension d it provides the best lower bound on
D(σ‖ρ) in terms of ∆, both for classical and quantum systems. We note that any lower bound
that can be derived by combining the tight Pinsker inequality [Csi67, FHT03, AE05] with the
tight Fannes-Audenaert inequality [Fan73, Aud07, Zha07] will not be tight and will be strictly
weaker than the derived bounds, even in its functional dependence (see Remark 6).

Also considering states of finite dimension d, in Section 2.2 we give a tight upper bound on
the variance of the surprisal (or information gain), which is quadratic in log d (Section 2.2.1);
of course, the expectation value of the surprisal is just the entropy and is bounded by log d
[OP93]. One thermodynamic implication of this result is an upper bound on the heat capacity
of finite-dimensional systems (Section 2.2.2).

The main results of the present paper thus contribute new items to the set of dimension-
dependent entropy bounds, of which the Fannes-Audenaert inequality is the single most well-
known, and arguably most important, instance within information theory.

The inequalities presented here arose out of, and are used in, an investigation of finite-size
effects in Landauer’s Principle [RW14], but we expect them to have applications elsewhere in
thermodynamics and information theory; some are outlined in Section 3. Furthermore, the
finite-size bounds here arise in one-partite systems, whereas the Landauer scenario – the topic
of [RW14] – is bipartite, involving a system and a thermal reservoir [Lan61].

Physically, our bounds are especially interesting for quantum thermodynamics [GMM10,
SBL+11] and generally for the thermodynamics of microscopic systems or devices. Furthermore,
even a large heat bath may sometimes be reasonably treated as small, when the equilibration
time with another system is so short that only a small part of the bath effectively interacts with
the system. Our bounds can be applied to derive finite-size corrections to well-known physical
laws and, for example, alter efficiency analyses of physical process like Carnot’s or Landauer’s
[AG13, RW14].

By treating the Shannon and von Neumann (relative) entropies, our results are relevant to the
conventional situation of many independent copies of a system state (“thermodynamic limit”),
averaging quantities over these copies (“ensemble averages”). Thermodynamics and information
theory can instead also be examined in the “single-shot setting”, necessitating extra parameters
such as the success probability of a process (e.g. [Ren05, Abe13, HO13, EDR+12]). Our setup is
thus different from the one-shot scenario: whereas the latter concerns a finite (small) number of
systems, our results have implications in the limit of infinitely many finite-dimensional system
copies. The variance computed in Section 2.2.1, however, can quantify how many copies of a
finite-dimensional system have to be averaged before the Shannon or von Neumann entropies
become sensible measures (see also [TH13, Li14]).
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1.1 Notation

All states ρ, σ will be on a space of finite dimension d < ∞. In the quantum framework,
states are positive semi-definite d × d-matrices of trace 1 (“density matrices” [NC00]). In the
classical (probability theory) framework, they are probability distributions on d atomic events
[CT06]. For a unified presentation of our results in both the classical and quantum setups, we
will throughout identify such probability distributions with density matrices of size d×d that are
diagonal w.r.t. a fixed basis and have the d atomic probabilities p1, . . . , pd as diagonal entries;
the notation ρ = diag(p1, . . . , pd) provides the translation between both domains. We often
require d ≥ 2 to exclude the trivial one-dimensional case, in which some statements become
pathological.

The entropy of a state ρ is defined as

S(ρ) := − tr [ρ log ρ] . (1)

Throughout, we use the natural logarithm, denoted by log, and employ the usual rules of calculus
on the extended real line R := R∪ {±∞}, such as 0 log 0 := 0; only in Section 3.2.1 will we also
use the D-ary logarithm logD x := (log x)/(logD), with D > 1. A quantity of central interest
will be the entropy difference ∆ ≡ ∆(σ, ρ) of the states σ and ρ:

∆(σ, ρ) := S(σ)− S(ρ) ∈ [− log d,+ log d] . (2)

The other central quantity is the relative entropy between two states σ and ρ:

D(σ‖ρ) := tr [σ log σ]− tr [σ log ρ] , (3)

which equals +∞ if supp[σ] 6⊆ supp[ρ], and is finite otherwise, non-negative, and vanishes iff
σ = ρ.

We also define binary versions of the entropy and relative entropy, i.e. for binary probability
distributions (x, 1− x) and (y, 1− y) with 0 ≤ x, y ≤ 1:

H(x) := S (diag(x, 1− x)) = x log
1

x
+ (1− x) log

1

1− x
, (4)

D2(x‖y) := D (diag(x, 1− x)‖diag(y, 1− y)) = x log
x

y
+ (1− x) log

1− x
1− y

. (5)

Note that the entropy difference ∆(σ, ρ) changes sign under exchange of σ and ρ, whereas the
relative entropy D(σ‖ρ) does not generally have any symmetry under exchange. For example,
∆ = − log d forces ρ to be the maximally mixed state 1/d and σ to be any pure state (any Her-
mitian projector of rank 1), resulting in D(σ‖ρ) = log d; whereas ∆ = + log d interchanges these
ρ and σ and gives D(σ‖ρ) = ∞. The latter case is special as for any other ∆ ∈ [− log d, log d)
there exist full-rank states σ and ρ with ∆(σ, ρ) = ∆, such that D(σ‖ρ) <∞ is finite.

For a more detailed discussion of entropic quantities we refer to [OP93] and [Weh78] or, in
the context of classical and quantum information theory, to [CT06] and [NC00].

The acronyms LHS and RHS mean “left-hand side” and “right-hand side”, respectively.

2 Main results

In Section 2.1 we state the tight inequality between relative entropy and entropy difference
(Theorem 1) and describe properties and simplifications of the bound (Theorem 2 and Remarks
3–7) which are useful for applications (see Section 3). The tight upper bound on the variance
of the surprisal (or heat capacity) is given in Section 2.2. The proofs follow in Section 4.
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2.1 Relative entropy vs. entropy difference

To state our main inequality and its simplifications, we define for d ≥ 2 and ∆ ∈ [− log d, log d]:

M(∆, d) := min
0≤s,r≤(d−1)/d

{
D2(s‖r)

∣∣H(s)−H(r) + (s− r) log(d− 1) = ∆
}
, (6)

N(d) := max
0<r<1/2

r(1− r)
(

log

(
1− r
r

(d− 1)

))2

, (7)

Nd :=
1

4
log2(d− 1) + 1 . (8)

(The expression log2(d− 1) should always be read as (log(d− 1))2.) All of these quantities can
be efficiently computed numerically as they involve optimizations over at most two bounded real
variables. See also Fig. 1, and Lemmas 14 and 15 (Section 4.3) for relations among (6)–(8).

Theorem 1 (Tight lower bound on relative entropy by entropy difference). Let σ, ρ be states
of dimension d, with 2 ≤ d <∞, and define ∆ := S(σ)− S(ρ). Then:

D(σ‖ρ) ≥ M(∆, d) , (9)

with the function M(∆, d) defined in Eq. (6).
Conversely, for any ∆ ∈ [− log d, log d], there exist σ, ρ attaining equality in (9). More

precisely, for any pair (s, r) attaining the minimum in (6), the commuting d-dimensional states

σ := diag

(
1− s, s

d− 1
, . . . ,

s

d− 1

)
, ρ := diag

(
1− r, r

d− 1
, . . . ,

r

d− 1

)
(10)

have entropy difference S(σ)− S(ρ) = ∆ and achieve equality D(σ‖ρ) = M(∆, d).

Theorem 2 (Properties of the tight bound). Let 2 ≤ d < ∞. Then the function M(∆, d) in
the tight lower bound (9) is non-negative, continuous and strictly convex in ∆ ∈ [− log d, log d],
and continuously differentiable in the interior of this interval. It takes values M(0, d) = 0,
M(− log d, d) = log d, M(log d, d) =∞, and M(∆, d) <∞ for ∆ ∈ [− log d, log d).

For any N ≥ N(d), with N(d) from Eq. (7), the following lower bounds hold for all ∆:

M(∆, d) ≥ N

(
e

∆
N − 1− ∆

N

)
≥ ∆2

2N
+

∆3

6N2
, (11)

M(∆, d) ≥ ∆2

3 log2 d
. (12)

Easily computable choices for N are N = Nd = 1
4 log2(d−1)+1 > N(d), or N = log2 d > N(d).

Remark 3 (Equality cases in Eq. (9)). Regarding the equality statement in Theorem 1, we
remark that for any ∆ ∈ [− log d, log d] the minimum in (6) actually exists, i.e. is attained for
some pair (s, r) (see Section 4.2), and equals ∞ ∈ R for ∆ = log d. Note that for states of the
form (10), it is D(σ‖ρ) = D2(s‖r), S(σ) = H(s) + s log(d− 1) and similar for S(ρ). In Remark
11 we elaborate on the states (10), which come all from the same exponential family.

For ∆ 6= 0, the pair (σ, ρ) from (10) constitutes, up to simultaneous unitary equivalence, the
unique d-dimensional states achieving equality D(σ‖ρ) = M(∆, d) and S(σ) − S(ρ) = ∆. This
follows from the proof of Theorem 1 in Section 4.1 as the optimal states for ∆ 6= 0 are necessarily
of the form (10) with 0 ≤ s, r ≤ (d − 1)/d, and since for ∆ 6= 0 the pair (s, r) attaining the
minimum in (6) is unique (which is shown in our proof of the convexity of M(∆, d) in Section
4.2). For ∆ = 0, exactly the pairs with σ = ρ attain equality in (9).

As inequality (9) is tight for commuting density matrices, it is tight for classical probability
distributions (diagonal density matrices) as well.
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Figure 1: Upper and left panels: The upper (red) curves show M(∆, d) from Eq. (6) (tight lower
bound of Theorem 1) for d = 2, 10, 50. The black and blue solid curves below are the lower
bounds from Eq. (11) with the optimal N = N(d), the dotted blue curve is the quadratic lower
bound ∆2/2N(d) (for ∆ ≥ 0). At ∆ = ± log d, all these lower bounds approach 2 in the limit
d → ∞, whereas M(− log d, d) = log d and M(log d, d) = ∞. Lower right panel: The red dots
show N(d) for 2 ≤ d ≤ 100 (Eq. (7)), which approaches its easily computable upper bound Nd

(Eq. (8) and Remark 9) as d→∞ and which is bounded from below by Nd − 1 (blue curves).

Remark 4 (Goodness of the lower bounds in Eq. (11)). One can check that the functionM(∆, d)
is smooth around ∆ = 0 (see Section 4.2) and that the RHS of (11) with N = N(d) is its cubic
Taylor expansion. This is thus the best cubic lower bound possible, and ∆2/2N(d) is the best
quadratic lower bound for ∆ ≥ 0 (Fig. 1); it is however not a lower bound for small ∆ < 0.

The lower bounds in (11) are quite good (cf. Fig. 1) even for relatively large |∆|. For any
constant t ∈ (−1, 1), the states (10) with s = (1 + t)/2, r = (1 − t)/2 give ∆ = ∆(σ, ρ) =
t log(d−1) and M(∆, d) ≤ D(σ‖ρ) = D2(s‖r) = t log(1+ t)/(1− t), whereas the lowest bound in
(11) gives ' 2t2 (the cubic term vanishes as ∼ 1/ log d). Even for the large values ∆ = ±1

2 log d,
the lower bound is thus tight (for large d) up to at most 10%.

The quantity N(d) from Theorem 2 appears in the upper bound in Theorem 8 as well, see
Remark 9. For this quantity, see also the lower right panel in Fig. 1.

Remark 5 (Monotonicity of M(∆, d) in ∆). The tight lower bound M(∆, d) is strictly mono-
tonically decreasing in ∆ in the regime ∆ ≤ 0, and strictly increasing in ∆ in the regime ∆ ≥ 0
(cf. Fig. 1). This follows since the non-negative function M(∆, d) vanishes at ∆ = 0 and is
strictly convex by Theorem 2 (see also Fig. 1). As our convexity proof in Section 4.2 is quite
involved, we give now a simpler proof of monotonicity. We actually prove

M(λ∆, d) < λM(∆, d) for ∆ ∈ [− log d, log d] \ {0} , λ ∈ (0, 1) . (13)
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Let first ∆ ∈ (0, log d), λ ∈ (0, 1), and let σ, ρ be states with D(σ‖ρ) = M(∆, d) and
S(σ)− S(ρ) = ∆. Define states σµ := µσ + (1− µ)ρ for µ ∈ [0, 1]. As S(σµ) is continuous in µ,
there exists µ′ ∈ (0, 1) with S(σµ′)−S(ρ) = λ∆, and by strict concavity of the entropy we have

λ∆ > µ′S(σ) + (1− µ′)S(ρ)− S(ρ) = µ′∆ , (14)

i.e. µ′ < λ. Convexity of the relative entropy [OP93] finally gives

M(λ∆, d) ≤ D(σµ′‖ρ) ≤ µ′D(σ‖ρ) + (1− µ′)D(ρ‖ρ) < λM(∆, d) . (15)

(13) holds for ∆ = log d as well, since M(λ∆, d) < ∞ due to λ∆ < log d. The proof for ∆ < 0
is similar, now replacing ρ by some state ρµ′ = µ′ρ+ (1− µ′)σ (see also the end of the proof of
Theorem 1 in Section 4.1 for the case ∆ = − log d).

Remark 6 (Lower bounds from the Fannes-Audenaert and Pinsker inequalities). A weaker
lower bound on the relative entropy D(σ‖ρ) in terms of the entropy difference ∆ = ∆(σ, ρ), as
in Theorem 1, can be obtained by combining the Fannes-Audenaert [Fan73, Aud07] and Pinsker
[Csi67] inequalities: writing T := ‖σ−ρ‖1/2 for the trace distance (or total variation or statistical
distance [CT06]) between the states σ and ρ, we have the bound [Fan73, Aud07, Zha07]

|∆| = |S(σ)− S(ρ)| ≤ T log(d− 1) +H(T ) =: hd(T ) ≤ T (1 + log(d− 1) + log 1/T ) ,
(16)

the first inequality being tight, and the sharpened Pinsker bound [Csi67, CT06, HOT81, FHT03,
AE05]

D(σ‖ρ) ≥ s(T ) ≥ 2T 2 , (17)

where s : [0, 1] → [0,∞] is a function [FHT03] such that the first inequality is tight (for any
dimension d ≥ 2) and which is bounded from below by its quadratic Taylor expansion, s(x) ≥
2x2.

If now ∆ ∈ [− log d, log d] is given, we can invert the function hd|[0,(d−1)/d] : [0, (d− 1)/d]→
[0, log d] from (16), or bound the inversion of its RHS from below, to get a lower bound on T :

T ≥ h−1
d (|∆|) ≥ e− 1

e

|∆|
1 + log(d− 1)− log |∆|

, (18)

where the prefactor is (e−1)/e ≈ 0.63. Plugging either of this into (17) yields a lower bound on
D(σ‖ρ). This approach, however, can never yield a quadratic lower bound ∼ ∆2 near ∆ = 0,
as (9) and (11)–(12) together do, since the tight lower bound s(T ) in (17) is quadratic near
T = 0 and since hd from (16) does not satisfy h−1

d (|∆|) ≥ c(d)|∆| for any positive d-dependent
constant c(d). Numerically, one actually sees that, for all d ≥ 2 and ∆ 6= 0, the lower bound
obtained by plugging the RHS of (18) into the RHS of (17) is worse than the RHS of (11) with
N = N(d) (and even worse than the quadratic lower bound ∆2/2N(d) for ∆ > 0).

Furthermore, this approach can only ever yield lower bounds that are invariant under ∆ 7→
−∆ since the Fannes-Audenaert and Pinsker inequalities are both symmetric in σ and ρ. The
tight lower bound M(∆, d) however does actually not have this invariance (see Fig. 1).

Remark 7 (Dimension-independent bounds are trivial). The non-trivial lower bounds (i.e.,
which are strictly positive for ∆ 6= 0) on the relative entropy from Theorems 1 and 2 de-
pend explicitly on the dimension d < ∞. This has to be so as any dimension-independent
bound will necessarily be trivial: setting t := ∆/ log(d − 1) in the states of Remark 4, with
any constant ∆ ∈ (−∞,+∞) and for large enough dimension d, gives ∆(σ, ρ) = ∆ and

6



D(σ‖ρ) = O
(
2∆2/ log2(d− 1)

)
→ 0 as d → ∞, so that 0 is the best possible dimension-

independent lower bound for any fixed value of ∆; this also holds for states over infinite-
dimensional Hilbert spaces. In this case, however, the lower bound 0 is never attained for
∆ 6= 0 as D(σ‖ρ) = 0 would imply σ = ρ [OP93, BR97], and thus ∆ = 0 (if the entropies S(σ),
S(ρ) are at all defined).

We further remark that the optimal lower bound M(∆, d) is a decreasing function of d,
implying that the finite-size corrections in applications (see Section 3) will be smaller for larger
systems. To see this, let d′ > d ≥ 2, ∆ ∈ [− log d, log d], and let s, r be optimal variables when
computing M(∆, d) in (6). Now define s′ := s, and find r′ such that the entropy difference
∆(σ′, ρ′) between d′-dimensional states σ′, ρ′ as in (10) equals the given ∆; if ∆ 6= 0, r′ will be
closer to s′ = s than r is to s, such that M(∆, d′) ≤ D2(s′‖r′) ≤ D2(s‖r) = M(∆, d) with strict
inequality for ∆ 6= 0.

The main part of the proofs of Theorems 1 and 2 consists in reducing the minimization of
D(σ‖ρ) over (quantum) states σ, ρ with a fixed value of ∆(σ, ρ) = ∆ to the simpler minimization
over two bounded real variables in (6). The first step in this reduction is a simple argument that
the bound (9) for quantum states follows from the corresponding bound for classical probability
distributions, i.e. for all states σ, ρ that are both diagonal w.r.t. a fixed basis. We give the full
proofs in Sections 4.1–4.3.

2.2 Dimension bounds on second moments

In Section 2.2.1 we derive a tight upper bound on the variance of the surprisal in terms of the
dimension of the underlying space. Translating to thermodynamics in Section 2.2.2, this yields
an upper bound on the second moment of the energy of thermal states or, equivalently, on the
heat capacity of finite-dimensional systems.

The derived bounds have apparent connections to the relative entropy inequalities from The-
orems 1 and 2. Namely, the optimal states are of the same form and the (optimal) bounds involve
the same quantities (see Remarks 9 and 11). Also, all the bounds are dimension-dependent and
become trivial for infinite-dimensional spaces (cf. Remark 7). Furthermore, the heat capacity
bound of Corollary 10 is in fact used in [RW14] in a bipartite situation to bound a relative en-
tropy term from below in an indirect way, as the direct bound by Theorem 1 would necessarily
depend on an undesired entropic quantity (i.e. one from the “wrong” subsystem).

2.2.1 Maximum variance of the surprisal

In a classical random experiment described by a probability distribution ρ = diag(p1, p2, . . . , pd),
the information gain upon outcome i is (− log pi), which is the unique sensible information
measure in the limit of many independent experiments [Sha48, CT06]. Equivalently, the surprise
about obtaining i may be quantified by the surprisal (− log pi). The (Shannon) entropy (1) is
the expectation value of the surprisal, S(ρ) =

∑
i pi(− log pi) = 〈− log ρ〉ρ. In this section, we

look at its second moment, i.e. the variance or fluctuation of the surprisal:

varρ(− log ρ) :=
∑
i

pi(− log pi)
2 −

(∑
i

pi(− log pi)

)2

= tr
[
ρ (− log ρ− S(ρ))2

]
. (19)

In classical coding theory, when the source signals are i.i.d. distributed according to the
spectrum of ρ, optimal prefix codes assign a codeword length of roughly ' (− log pi) to symbol i
[CT06]. The expected codeword length is thus ' S(ρ) with fluctuation '

√
varρ(− log ρ), which

implies a certain fluctuation in the lengths of encoded messages. (This holds up to an overall
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factor logarithmic in the size of the code alphabet, see Section 3.2.1.) Similar second-order
effects in hypothesis testing using only finitely many copies have recently been investigated in
[TH13, Li14].

The above definitions in terms of a general density matrix ρ are sensible in the quantum
framework as well, and have similar interpretations [Sch95, NC00, SW01]. Note that S(ρ) and
varρ(− log ρ) depend both only on the eigenvalues of the density matrix ρ.

Our main theorem here places a tight upper bound on the variance of the surprisal, only in
terms of the dimension d of the system. A non-tight upper bound is implicit in [PPV10], where
the term

∑
i pi log2 pi in (19) has been bounded. For the expectation value of the surprisal, i.e.

the entropy, a tight upper bound is of course well-known: S(ρ) ≤ log d.

Theorem 8 (Maximum variance of the surprisal). Let ρ be a state on a d-dimensional system.
Then, for d ≥ 2,

varρ(− log ρ) ≤ N(d) < Nd . (20)

(See definitions (7) and (8) for N(d) and Nd, and cf. Lemma 15.) For d = 1, varρ(− log ρ) = 0.
For d ≥ 2, let r = rd be the (unique) parameter attaining the maximum in the definition of

N(d) (Eq. (7)). Then equality varρ(− log ρ) = N(d) is achieved if and only if ρ has spectrum

spec[ρ] =

(
1− rd,

rd
d− 1

, . . . ,
rd

d− 1

)
. (21)

Theorem 8 is proved in Section 4.4 by the method of Lagrange multipliers.

Remark 9 (The quantities N(d) and Nd). N(d) from Eq. (7) is well approximated by the easily
computable Nd ≡ 1

4 log2(d− 1) + 1 since, by Lemma 15 (see also Fig. 1, lower right panel),

Nd > N(d) > Nd − 1 . (22)

One can even show N(d) = Nd−O
(
1/ log2 d

)
for d→∞, the optimal r in (7) being rd = 1/2−

1/ log(d−1)+O
(
1/ log2 d

)
. Instead of the maximization (7), one may compute N(d) numerically

by finding the optimal r = rd ∈ [0, 1/2] as the (unique) solution of (1− 2r) log
(

1−r
r (d− 1)

)
= 2

and plugging it back.
Note that the quantity N(d) from the optimal upper bound (20) appears in the quadratic

Taylor term of the optimal lower bound M(∆, d) in (11) as well (cf. Remark 4). This can be
understood in a pedestrian way by minimizing D(ρ + ε‖ρ) at fixed ρ and for small ε (with
[ρ, ε] = 0; see beginning of the proof of Theorem 1) under the constraint S(ρ + ε) − S(ρ) = δ
(small), which gives δ2/2varρ(− log ρ) +O(δ3). Finally minimizing this over all ρ, the quadratic
term of M(δ, d) is therefore δ2/2N(d) by Theorem 8.

2.2.2 Maximum heat capacity in finite dimensions

We now explain the thermodynamic significance of Theorem 8 (for a more detailed exposition
of the thermodynamics background see also [RW14, Appendix A]). Let H be a Hamiltonian
of a d-dimensional system, i.e. a Hermitian d × d-matrix (diagonal for classical systems); this
operator determines the physical energy of the system. Then, at any temperature T ∈ (0,∞),
the corresponding thermal (or equilibrium) state is

ρT :=
e−H/T

tr
[
e−H/T

] , (23)
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with units chosen such that Boltzmann’s constant kB = 1. The (average) energy of the thermal
state is the energy expectation value E(T ) := tr [HρT ], and the heat capacity C(T ) quantifies
the rate of change of the system energy upon temperature variation:

C(T ) :=
dE

dT

∣∣∣∣
T

=
d

dT
tr

[
H

e−H/T

tr
[
e−H/T

]] = varρT (H/T ) = varρT (− log ρT ) , (24)

where we omitted the little computation of the derivative, and used in the last step that the
variance is unchanged under addition of a constant term (proportional to 1).

Eq. (24) shows that the heat capacity does not depend on H and T separately, but only
on the thermal state ρT . Note that every full-rank state ρ can be interpreted as the thermal
state of some Hamiltonian Hρ := − log ρ, and common extensions of the above framework
include even some (or all) non-full-rank states; it is for example conventional to allow T ∈ [0,∞]
and define ρ0 to be the normalized projector onto the ground space of H, H/∞ := 0, and
C(∞) := limT→∞C(T ).

Further note that, by (24), the heat capacity also equals the energy fluctuations varρT (H),
i.e. the second moment of the energy, up to a factor of T 2.

Theorem 8 has thus the following corollary:

Corollary 10 (Maximum heat capacity in d dimensions). Let H be any Hamiltonian on a d-
dimensional system, and let T ∈ [0,∞]. Then its heat capacity C(T ) is uniformly bounded in
terms of the dimension: for d ≥ 2,

C(T ) ≤ N(d) < Nd ≡
1

4
log2(d− 1) + 1 , (25)

with N(d) from Eq. (7). For d = 1, C(T ) = 0.

Note that the first bound in (25) is tight for any d: the optimal state ρ from (21) has full-rank
and is thus the thermal state of the Hamiltonian H := − log ρ at temperature T := 1.

Remark 11 (Exponential family of optimal states (10) and (21)). The optimal states ρ and σ
from (10) come, for all values of ∆, from the same exponential family: defining a d-dimensional
“Hamiltonian” Hopt := diag(−1, 0, . . . , 0), it is σ, ρ = e−Hopt/Tσ,ρ/tr

[
e−Hopt/Tσ,ρ

]
for some “tem-

peratures” Tσ,ρ ∈ [0,∞]. The same is true for the state (21) having maximal surprisal variance
or heat capacity; thermal states with one large occupation number (eigenvalue) ≈ 1/2 and
completely degenerate small occupations have thus the largest energy fluctuations [Mac03].

On an N -particle system, e.g. the space Cd = (Cl)⊗N of N l-level particles, the Hamiltonian
Hopt means physically that the system energy is minimized (−1) when each of the N particles is
in a preferred state |0〉 and equals 0 otherwise, irrespective of the specific state. This very strong
interaction between all N particles leads, at some temperature Tcrit, to the largest possible heat
capacity of any d = lN -dimensional system by Corollary 10,

C(Tcrit) = N(lN ) ' Nd=lN '
1

4
log2 lN = N2 log2 l

4
. (26)

This is in stark contrast to a system of N independent (non-interacting) particles, whose heat
capacity is proportional to N , i.e. “extensive”, whereas (26) is faster than extensive. Such
extensivity is also usually assumed in thermodynamics e.g. by the Dulong-Petit law [Hua87], at
least for the most commonly considered systems made up of weakly-interacting particles.

When a system’s heat capacity C(T )/N per particle diverges at some temperature T = Tcrit,
one sometimes speaks of a second-order phase transition, and the system can then absorb or
release energy density by just “reorganizing” its state without temperature change [Mac03].
Corollary 10 shows explicitly that such effects cannot occur for finite(-dimensional) systems.
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3 Applications

Here we outline some implications for thermodynamics and information theory of Theorem 1,
the inequality relating relative entropy and entropy difference (see Section 2.1).

3.1 Thermodynamics applications

In Section 3.1.1 we examine how slowly equilibration processes [AG13] have to be conducted
to make them (close to) thermodynamically reversible. A relation between an intensive and an
extensive quantity in many-particle systems is given in Section 3.1.2. Regarding the extensivity
of the heat capacity in many-body systems, see also the previous Remark 11.

The following sections also serve to illustrate the prominence of relative entropy and entropy
difference in thermodynamics and statistical physics.

3.1.1 Approach to reversibility in equilibration processes

In thermodynamics it is a common assumption (which can be justified in specific models) that
a system with a Hamiltonian H and in weak interaction with an environment at temperature
T will “equilibrate” to the thermal final state ρf = e−H/T /tr

[
e−H/T

]
(see [RW14, Appendix

A] and Section 2.2.2 above), irrespective of its initial state ρi. The system’s energy change
associated with such a spontaneous state change is called heat flow or heat ∆Q [PW78, AG13]:

∆Q := tr [(ρf − ρi)H] = T tr [(ρf − ρi)(− log ρf )] . (27)

One can relate this to the system’s entropy change ∆S := ∆(ρf , ρi) = S(ρf )− S(ρi):

∆Q

T
= ∆S −D(ρi‖ρf ) ≤ ∆S . (28)

(In order for all quantities to be well-defined, we assume ρf to be a full-rank state, i.e. assume
T ∈ (0,∞]; for simplicity and without further mentioning, we assume all states in this section
to be of full-rank or at least of the same support.)

The above equilibration processes can also be conducted in a stepwise fashion, which was
presented and analyzed in detail by Anders and Giovannetti [AG13]. One can view this as an
attempt to formalize the vague notion of “slowness” of an equilibration process, which according
to common physics folklore should make the process “thermodynamically reversible”. We now
recapitulate some elements from [AG13] and complement their analysis by a lower bound on
how “close” a process can be to reversibility.

In a k-step process, adjust the system Hamiltonian successively first to H1, then instanta-
neously to H2, . . . , and finally to Hk ≡ H, and let the system equilibrate with an environment
at temperature Tj in each step j = 1, . . . , k (often, it will be either Hj ≡ H for all j, or Tj ≡ T
for all j). We denote the associated intermediate thermal states by ρj := e−Hj/Tj/tr

[
e−Hj/Tj

]
(note, ρk = ρf ) and define ρ0 := ρi. The entropy change ∆S of the overall process equals just
the sum of all changes ∆(ρj , ρj−1), and the sum of the single-step quantities ∆Qj/Tj satisfies,
by (28),

k∑
j=1

∆Qj
Tj

=
k∑
j=1

[
∆(ρj , ρj−1)−D(ρj−1‖ρj)

]
= ∆S −

k∑
j=1

D(ρj−1‖ρj) ≤ ∆S . (29)

The inequality between the process quantity on the LHS and ∆S is the Clausius Theorem
[AG13], often cited to be an incarnation of the Second Law of Thermodynamics. Note that, for
Tj ≡ T , the LHS is just proportional to the total heat flow into the system,

∑
j ∆Qj .
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In the special case [AG13] where the intermediate steps j = 1, . . . , k−1 are chosen such that
the states ρj interpolate linearly between ρi = ρ0 and ρf = ρk, i.e.

ρj =

(
1− j

k

)
ρi +

j

k
ρf for j = 0, . . . , k , (30)

then the LHS of (29) can also be bounded from below in terms of the entropy difference [AG13]:

k∑
j=1

∆Qj
Tj

= ∆S −
D(ρf‖ρi) +D(ρi‖ρf )

k
+

k∑
j=1

D(ρj‖ρj−1) (31)

≥ ∆S −
D(ρf‖ρi) +D(ρi‖ρf )

k
. (32)

Thus, as the number of steps k in the interpolation (30) becomes finer (and if ρi, ρf have the
same support), one has

∑
j ∆Qj/Tj → ∆S. This is remarkable since a priori the quantity∑

j ∆Qj/Tj depends on the details of the process, whereas ∆S = ∆(ρf , ρi) depends only on its
initial and final state.

Any process ρi 7→ ρ1 7→ . . . 7→ ρf satisfying equality
∑

j ∆Qj/Tj = ∆S is called (thermo-
dynamically) reversible, as intuitively one expects that the reverse of such a process leads back
to the original situation. This intuition can be made rigorous for the process (30): the entropy
production ∆S′ = −∆S of the reverse process ρf 7→ ρk−1 7→ . . . 7→ ρi exactly cancels ∆S,
and also the process quantity

∑
j ∆Q′j/T

′
j will come close to ∆S′ ≈ −

∑
j ∆Qj/Tj by reason-

ing analogous to (29) and (32). For constant temperatures Tj ≡ T , the last fact means that
(almost) no heat is produced during the entire cyclic process ρi 7→ . . . 7→ ρf 7→ . . . 7→ ρi, i.e.
(almost) none of the work expended to (gradually) alter the Hamiltonian [PW78] is converted to
heat, which physically is a less useful form of energy than work. In actual physical realizations,
thermodynamic processes become irreversible when the system state ρ(t) is not at all times t
close to the thermal state determined by the system Hamiltonian H(t) and the environment
temperature T (t). This happens for example when the process is conducted too fast so that the
system cannot fully equilibrate at each infinitesimal step.

From this reasoning, one can quantify the degree of irreversibility of any process ρi 7→ ρ1 7→
. . . 7→ ρf by the quantity

∑k
j=1D(ρj−1‖ρj) in (29). This corresponds to the amount of work

wasted at least as heat in any cyclic completion ρi 7→ ρ1 7→ . . . 7→ ρf = ρk 7→ ρk+1 7→ . . . 7→
ρk+m ≡ ρi, since

∑k+m
j=1 ∆Qj/Tj ≤ −

∑k
j=1D(ρj−1‖ρj) by (29). Quantitatively, denoting the

minimal temperature Tmin := min1≤j≤k Tj , the excess heat production is at least

Wwaste ≥ Tmin

k∑
j=1

D(ρj−1‖ρj) , (33)

which is exact if Tj ≡ T for all j. Theorem 1 now bounds the sum in (33) from below:

k∑
j=1

D(ρj−1‖ρj) ≥
k∑
j=1

M (∆(ρj−1, ρj), d) = k

k∑
j=1

1

k
M(∆(ρj−1, ρj), d) (34)

≥ kM

 k∑
j=1

1

k
∆(ρj−1, ρj), d

 = kM

(
−∆S

k
, d

)
(35)

≥ 1

k

(∆S)2

3 log2 d
, (36)

where d <∞ denotes the dimension of the system, the second inequality is by convexity of the
function M (Theorem 2), and we exemplarily used the lower bound (12).
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Achieving a degree ε of reversibility by a stepwise process thus necessitates a minimum
number k = O(1/ε) of steps via Eq. (36). When k interpreted as the time duration of the
entire process – assuming that each equilibration step consumes roughly equal time – then (36)
substantiates the folklore whereby thermodynamically reversible processes have to be conducted
“infinitely slowly”. Our estimate is thus relevant for fundamental thermodynamics and especially
for small systems [SBL+11], as it delineates where the idealized but commonplace notion of
reversible process can apply. It also provides new heat bounds for processes out of equilibrium
in the area of non-equilibrium thermodynamics [Lin83, Jar99, Jar11].

Although the lower bound (35) is essentially tight in the typical thermodynamics situation
where only the entropy difference ∆S between two states is known, it becomes trivial for ∆S = 0.
In this and other cases, when in addition the initial and final states ρi, ρf are known, one may
use an estimate similar to (34)–(36) but based on Pinsker’s inequality (17):

k∑
j=1

D(ρj−1‖ρj) ≥
k∑
j=1

1

2
‖ρj−1 − ρj‖21 ≥

k

2

 k∑
j=1

1

k
‖ρj−1 − ρj‖1

2

≥
‖ρi − ρf‖21

2k
. (37)

On the topic of stepwise processes we finally remark that the approach to reversibility∑k
j=1 ∆Qj/Tj → ∆S for k → ∞ is not special to the linear interpolation process (30) [AG13].

Rather, for any (piecewise continuously differentiable) curve ρ(t) in state space with ρ(0) = ρi,
ρ(1) = ρf , a discretization at points 0 = t0 < t1 < . . . < tk = 1 gives

k∑
j=1

∆Qj
Tj

=

k∑
j=1

tr [(− log ρ(tj))(ρ(tj)− ρ(tj−1))] (38)

→
∫ 1

t=0
tr [(− log ρ(t)) dρ(t)] =

∫ 1

0
dt tr [−ρ̇(t) log ρ(t)] (39)

=

∫ 1

0
dt

d

dt
tr [ρ(t)− ρ(t) log ρ(t)] = S(ρf )− S(ρi) = ∆S , (40)

with convergence as the discretization becomes finer, k → ∞ and maxj |tj − tj−1| → 0 (i.e. a
Riemann sum). Thus, any state change ρi 7→ ρf can be made thermodynamically reversible
(when supp[ρi] = supp[ρf ]). For the discretized process ρ(t) we do however not have a lower
convergence estimate as in (32) (the upper bound from the Clausius Theorem (29) holds of
course for any discretization).

In this section, we have considered thermalizing processes, bringing an arbitrary state ρi to a
thermal state ρf , and have measured the heat production w.r.t. the Hamiltonian H corresonding
to the final (thermal) state [AG13]. This leads to the Clausius inequality (29).

In [RW14] we use Theorem 1 in the reverse situation where an initially thermal state ρi is
used as the resource in a process leading away from equilibrium. The heat production is again
measured w.r.t. the system’s Hamiltonian, which there however is related to the initial state and
reverses the inequality (29) [AG13, RW14]. Furthermore, the paper [RW14] concerns a bipartite
scenario – the Landauer process involving a system and a thermal reservoir [Lan61] – where
a Second Law-like statement can be formulated more properly and where the above stepwise
process may be implemented by swapping the system and reservoir states.

3.1.2 Free energy vs. entropy density

To further elucidate the thermodynamic meaning of the quantity D(ρi‖ρf ) for a thermal final
state ρf = e−H/T /tr

[
e−H/T

]
(cf. Eq. (28) in Section 3.1.1), we relate it to the work extractable

at constant temperature from the state ρi, and then examine it in a many-particle system.
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For this, consider an isothermal process, i.e. where the temperature T remains constant and
only the Hamiltonian is changed from its initial value H0 ≡ H in k successive steps to H1,
. . . , Hk ≡ H, at each of which the system equilibrates as in Section 3.1.1. The total heat flow
∆Q :=

∑k
j=1 ∆Qj during the process then satisfies the Clausius inequality T∆S ≥ ∆Q (Eq.

(29)), so that

T D(ρi‖ρf ) = − tr [H(ρf − ρi)] + T [S(ρf )− S(ρi)] = F (ρi)− F (ρf ) (41)

≥ −∆E + ∆Q = −∆W , (42)

where we have defined: the free energy F (ρ) := tr [Hρ] − TS(ρ) of a state ρ (at temperature
T and for Hamiltonian H); the internal energy increase ∆E := tr [H(ρf − ρi)]; and the work
∆W := ∆E −∆Q done on the system [PW78, PL76, AG13].

According to Section 3.1.1, equality in (42) can be approached by a suitable (reversible)
process (note that then the jump from H = H0 to the first equilibration step H1 ≈ −T log ρi
may be big, whereas the further steps H1 7→ . . . 7→ Hk = H are small). Thus, the amount
T D(ρi‖ρf ) = (−∆W )max of work can be extracted from the state ρi by a thermodynamic
process at temperature T and using the internal energy function H. Conversely, for given
temperature T and Hamiltonian H, this is also the maximum amount of work extractable from
ρi since, for any process leading to a final state ρ′f (not necessarily thermal for either H or T ),

−∆W ′ = −∆E′ + ∆Q′ ≤ − tr
[
H(ρ′f − ρi)

]
+ T

[
S(ρ′f )− S(ρi)

]
= F (ρi)− F (ρ′f ) = [F (ρi)− F (ρf )]−

[
F (ρ′f )− F (ρf )

]
= T D(ρi‖ρf )− T D(ρ′f‖ρf ) ≤ T D(ρi‖ρf ) . (43)

The last inequality is due to the nonnegativity of the relative entropy, which here in more physical
terms amounts to the fact that the free energy F (ρ′f ) attains its minimum at the thermal state
ρ′f = ρf (uniquely for T 6= 0).

Theorems 1 and 2 provide thus lower bounds on the extractable work at constant temperature
T :

Wextr,T = T D(ρi‖ρf ) ≥ T M(−∆S, d) & 2T

(
∆S

log d

)2

= 2T

(
∆s

log l

)2

, (44)

where in the last step we have assumed a system of N l-level particles, i.e. d = lN (cf. Remark
11), and defined the change in entropy density ∆s := ∆S/N = (S(ρf )− S(ρi))/N [BR97].

Inequality (44) seems quite unusual as its LHS is the “extensive” free energy difference or
extractable work whereas the RHS is an “intensive” quantity, given by the entropy density
and temperature; moreover, in the “thermodynamic limit” N →∞, the inequality is essentially
tight. The reason for this is that states attaining equality are of the form (10), which are strongly
correlated as discussed in Remark 11, such that one cannot speak of few-particle properties and
the designation “extensive” is not appropriate.

3.2 Information-theoretic applications

We have already outlined in Section 2.2.1 the meaning of
√

varρ(log ρ) as the fluctuation in
codeword length of an optimal prefix code; for a source with d distinct signals this fluctuation is
at most ' 1

2 log d by Theorem 8. In the following, we discuss implications in information theory
of the lower bound on the relative entropy (Theorems 1 and 2).
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3.2.1 Cost of wrong code, universal codes, and Shannon channel capacity

For a source producing i.i.d. signals i according to a classical probability distribution ρ = {pi}di=1,
Shannon’s source compression theorem [Sha48, CT06] shows any prefix code with a D-ary al-
phabet to have an average length of at least S(ρ)/ logD per encoded signal. The lower the
entropy of the signal distribution, the shorter on average the encoded message can be. This
length is in fact achievable – up to less than 1 alphabet symbol – by assigning codewords of
length d− logD pie to the signals.

If one however wrongly assumes the signals i to be distributed according to σ = {qi}di=1 and
constructs a code for this distribution, with codewords of length d− logD qie, then the average
code length Lσ will be

Lσ =
d∑
i=1

pi d− logD qie ≥ − 1

logD

d∑
i=1

pi log qi =
S(ρ)

logD
+
D(ρ‖σ)

logD
. (45)

The last term is the cost of the wrong code [CT06] beyond the optimal average code length
S(ρ)/ logD when one knew the correct distribution.

Theorems 1 and 2 give a lower bound on this penalty just in terms of the difference δ =
(S(ρ)− S(σ)) / logD between the supposed length S(σ)/ logD and the optimal achievable length
S(ρ)/ logD:

D(ρ‖σ)

logD
≥ M(δ logD, d)

logD
≥ δ2 2 logD

log2(d− 1) + 4
, (46)

where the last inequality holds only for positive expected savings δ ≥ 0.

When the signals i ∈ {1, . . . , d} follow one of the distributions ρθ, where the parameter
θ ∈ {1, . . . ,m} is not known, one may choose a coding distribution σ (“universal code”) that
minimizes the maximal occuring penalty or redundancy (see [CT06], Section 13.1):

R∗ := min
σ

max
θ
D(ρθ‖σ) . (47)

The theorems from Section 2.1 give an easily computable lower bound on the quantity R∗: for
this, denote by Smin and Smax the minimal resp. maximal entropy S(ρθ) among the states ρθ.
Then using the properties from Theorem 2 and Remark 5, we have:

R∗ ≥ min
σ

max
θ

M(S(ρθ)− S(σ), d) = min
S∈[0,log d]

max
θ

M(S(ρθ)− S, d) (48)

= min
S∈[Smin,Smax]

max
{
M (Smax − S, d) , M (Smin − S, d)

}
(49)

≥ min
S∈[Smin,Smax]

max
∆∈{Smax−S, Smin−S}

[
2∆2

log2(d− 1) + 4
+

8∆3

3
(
log2(d− 1) + 4

)2
]

(50)

≥ (Smax − Smin)2

2
(
log2(d− 1) + 4

) − (Smax − Smin)3

3
(
log2(d− 1) + 4

)2 , (51)

where the last inequality follows from the observation that for every S one has |Smax − S| ≥
(Smax − Smin)/2 or |Smin − S| ≥ (Smax − Smin)/2. If the following conjecture holds, a stronger
lower bound R∗ ≥M(−(Smax − Smin)/2, d) would follow from line (49) by the same reasoning.

Conjecture 12. For any d ≥ 2 and any ∆ ∈ [0, log d], it is M(∆, d) ≥ M(−∆, d).
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While there is numerical evidence in favor of this conjecture, e.g. by plotting for many
values of d ≥ 2 the functions (M(∆, d) −M(−∆, d)) in the range ∆ ∈ [0, log d] and observing
their nonnegativity, and while the conjecture is consistent with all previous analytical results
(e.g. Theorem 2 and first paragraph of Remark 4), we have not been able to prove it. In
particular, the stronger conjecture that D2(s‖r) ≥ D2(r‖s) holds for the optimal pair (s, r) in
the minimization (6) of M(∆, d) at any positive ∆ > 0 is generally wrong; e.g. for d = 1000 and
∆ = 6, it is s ≈ 0.9497, r ≈ 0.0723 and thus D2(s‖r) ≈ 2.30 < 2.51 ≈ D2(r‖s).

The minimal redundancy R∗ from (47) equals the Shannon capacity C(T ) (measured in
nats) of the classical discrete memoryless channel T : θ 7→ i that is defined by the transition
probabilities T (i|θ) := pθi (Theorem 13.1.1 in [CT06], originally due to [Gal79, Rya79]; the proof
uses a minimax theorem). This gives as above:

Proposition 13 (Lower bound on the classical Shannon capacity). For a discrete memoryless
channel T : X → Y, given by transition probabilities T (y|x) and with finite output dimension
|Y| ≥ 2, the Shannon capacity C(T ) is bounded from below as

C(T ) ≥ (Smax − Smin)2

2
(
log2(|Y| − 1) + 4

) − (Smax − Smin)3

3
(
log2(|Y| − 1) + 4

)2 , (52)

where Smax and Smin denote the maximal and minimal entropies, respectively, of any column
T (·|x) of the transition matrix.

Again, if Conjecture 12 holds we would have the stronger bound C(T ) ≥ M((Smin −
Smax)/2, |Y|). This bound or the bound from Proposition 13 are easier to evaluate than Shan-
non’s mutual information formula for the exact C(T ) [Sha48, CT06]. When one bounds the
relative entropies in (47) from below by Pinsker’s or the H-O-T inequality (17) [Csi67, HOT81,
FHT03, AE05], one would obtain a linear program in the variables σ. Also, Proposition 13
provides a more systematic way to obtain lower bounds on C(T ) than by plugging trial input
distributions into Shannon’s formula.

On the other hand, the lower bound (52) will be trivial iff all columns T (·|x) have the same
entropy, whereas the capacity C(T ) vanishes only iff all columns are themselves identical. Also,
the lower bound in (52) can never exceed (log 2) = 1 bit, since it has to hold for input dimension
|X | = 2 as well (or when there are only two distinct columns in T (·|x)); in the most favorable
case Smax−Smin = log d, the RHS of (52) is actually always between 0.111 ' 0.16 bit (for d = 2)
and log

√
3 ' 0.80 bit (for d→∞; cf. Remark 4).

In the quantum setting, identical formulas apply for the cost of the wrong code (46) and the
redundancy (51), see [SW00, SW01]. Furthermore, the Holevo quantity, which is a lower bound
on the classical capacity of a quantum channel [NC00], equals the relative entropy radius of the
channel output, i.e. the redundancy (47) over all output states [OPW97, SW00]. For a quantum
channel, however, there is no systematic way known in particular to find the minimum output
entropy Smin efficiently; the channel output set has, e.g., generally infinitely many extreme
points.

3.2.2 Hypothesis testing and large deviations

The relative entropy features prominently also in hypothesis testing and large deviation theory
[CT06]. On the one hand, relative entropies D(σ‖ρ) between given states σ, ρ appear for
example as error exponents in asymmetric hypothesis testing (in the classical Chernoff-Stein
Lemma [CT06] as well as in its quantum analogue [HP91, ON00]), such that Theorems 1 and 2
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apply immediately to yield lower bounds on error decay rate in terms of the entropy difference
S(σ)− S(ρ) only.

On the other hand, in these areas one is often interested in quantities like

dist(E, ρ) := inf
σ∈E

D(σ‖ρ) , (53)

where E is some set of d-dimensional probability distributions and ρ a fixed distribution. Some-
times the set E is described by an entropy constraint, for example in universal coding for
all d-dimensional sources of entropy less than R ([CT06]; similarly [BDK+05] for the quan-
tum case): here, the decoding error probability vanishes exponentially in the message length
n like ∼ exp(−n dist(E, ρ)) if the true source distribution is ρ (assuming S(ρ) < R) and
where E := {σ|S(σ) > R}. The decay rate, dist(E, ρ), may thus be bounded from below
by M(R− S(ρ), d) according to Theorems 1 and 2 simply in terms of an entropy difference.

Finally, in symmetric hypothesis testing between two classical (commuting) probability dis-
tributions ρ1, ρ2, the optimal error decay rate is given by the Chernoff information ξ(ρ1, ρ2) =
− log min0≤s≤1 tr

[
ρs1ρ

1−s
2

]
[Che52, CT06], which has the property that there exists a distribution

σ (from the Hellinger arc between ρ1 and ρ2) satisfying ξ(ρ1, ρ2) = D(σ‖ρ1) = D(σ‖ρ2). Similar
to the derivation leading up to (51), the latter quantity can be bounded from below in terms of
the entropy difference ∆(ρ1, ρ2) = S(ρ1)− S(ρ2) between the two states only:

ξ(ρ1, ρ2) ≥ |∆(ρ1, ρ2)|2

2
(
log2(d− 1) + 4

) − |∆(ρ1, ρ2)|3

3
(
log2(d− 1) + 4

)2 , (54)

where the last expression does not involve any extremization (cf. Theorem 2), and a better
bound would follow from Conjecture 12 as above.

Whereas for symmetric hypothesis testing between (non-commuting) quantum states ρ1, ρ2

the basic formula for the decay rate ξ(ρ1, ρ2) holds as well, the existence of a state σ as above
is not known [ANS+08]. We can therefore not apply the same reasoning to get a lower bound
on ξ(ρ1, ρ2) in the quantum setting. For other kinds of (dimension-independent) bounds on the
quantum and classical Chernoff information, see [ANS+08, Aud14].

3.2.3 Mutual information

Let ρAB be a joint state on a bipartite system AB with respective local dimensions dA and dB
and total dimension d = dAdB (in the classical probabilistic case, ρAB is a joint probability
distribution of two random variables A and B with dA and dB outcomes, respectively). Then
its mutual information I(A : B) := S(ρA) + S(ρA) − S(ρAB) can be written as both a relative
entropy and an entropy difference [OP93]:

I(A : B) = S(ρA ⊗ ρB)− S(ρAB) = −∆(ρAB, ρA ⊗ ρB) (55)

= D(ρAB‖ρA ⊗ ρB) , (56)

where ρA, ρB denote the reduced states (marginal probability distributions) for A and B, and
in the first line we used the notation (2).

Here we just remark that Theorem 1, which relates relative entropy and entropy difference,
does not give any constraints in this situation: for ∆ ∈ [− log d, 0], which is the case here,
it is −∆ ≥ M(∆, d) by Remark 5, with strict inequality except for ∆ = − log d, 0; the fact
D(ρAB‖ρA⊗ρB) = −∆(ρAB‖ρA⊗ρB) is thus consistent with Theorem 1 and therefore (9) does
not give new information.

Note that I(A : B) ≤ min{log dA, log dB} in the classical case, whereas for quantum states
I(A : B) ≤ 2 min{log dA, log dB}, so that the maximum value log d = log dA + log dB of
−∆(ρAB, ρA ⊗ ρB) and of D(ρAB‖ρA ⊗ ρB) can be attained only in the quantum case and
only when dA = dB with a maximally entangled state ρAB [NC00].
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4 Proofs

4.1 Proof of Theorem 1

Proof of Theorem 1. To prove the inequality (9) and the optimality statement around (10), we
will compute, for any fixed ∆ ∈ [− log d, log d], the infimum

inf
σ,ρ

{
D(σ‖ρ)

∣∣ S(σ)− S(ρ) = ∆
}

(57)

over d-dimensional quantum states σ, ρ, and show that it equals M(∆, d) from Eq. (6) with
optimal states σ, ρ of the form (10).

We first make some basic observations about the infimum (57) including the fact that it is
always attained. For ∆ = log d, one necessarily has σ = 1/d and ρ is a pure state, so that
D(σ‖ρ) = ∞ is attained; on the other hand, this equals M(log d, d) = ∞, as ∆ = log d in (6)
enforces s = (d − 1)/d and r = 0; the case ∆ = log d is thus done and we exclude it from all
further considerations. For any fixed ∆ ∈ [− log d, log d) there exists a full-rank state ρ with
S(σ) − S(ρ) = ∆, such that the infimum (57) is finite. As the set of pairs (σ, ρ) satisfying
S(σ) − S(ρ) = ∆ is compact and the function (σ, ρ) 7→ D(σ‖ρ) is lower semicontinuous, the
infimum is attained. For similar reasons, the infimum in (6) is attained. For the argumentation
below, we note further that H(s) + s log(d − 1) is strictly increasing in s ∈ [0, (d − 1)/d] from
the value 0 at s = 0 to log d at s = (d− 1)/d with first derivative

d

ds
(H(s) + s log(d− 1)) = log

(
1− s
s

(d− 1)

)
for s ∈ (0, 1) . (58)

It is easy to see that the infimum in (57) is attained for commuting states σ and ρ: fixing
the state ρ and fixing all eigenvalues spec(σ) of σ (which also fixes the entropy S(σ); this should
be done to be consistent with S(σ) − S(ρ) = ∆ for the fixed ∆), the infimum (over σ) of the
relative entropy

D(σ‖ρ) = − S(σ) + tr [(− log ρ)σ] (59)

is attained by the state σ which is diagonal in the same basis as (− log ρ) and has its eigenvalues
ordered in the opposite way as (− log ρ) [Bha97]; as the logarithm is a strictly increasing function,
σ will thus also be diagonal in the same basis as ρ (and in particular commute with ρ), with its
eigenvalues ordered in the same way as ρ. (When rank(ρ) < rank(spec[σ]), the infimum is +∞,
and this as well can be attained by a σ commuting with ρ). This commutativity carries over to
the infimum in (57), and implies that the bound we are about to prove will be optimal for the
case of classical d-dimensional probability distributions (i.e. diagonal density matrices) as well.

One can get more information about the optimal pair (σ, ρ) from Klein’s inequality, i.e. the
nonnegativity of the relative entropy. We fix again the state ρ and fix the entropy of σ to equal
S(σ) = S, leaving the spectrum of σ otherwise free; under these constraints we again minimize
(59). In thermodynamics language (see Eq. (23) and below), this is the minimization of the
“energy” of σ w.r.t. the “Hamiltonian” (− log ρ) under the entropy constraint S(σ) = S; by
the “thermodynamic inequality” (e.g. [OP93]), a version of Klein’s inequality, it is well-known
that the minimum is attained for a “thermal state” σ ∼ e−γ(− log ρ), i.e. σ = ργ/tr [ργ ], for some
“inverse temperature” γ ∈ [0,+∞] (here we define 00 := 0, and ρ∞/tr [ρ∞] is to be understood
as the maximally mixed state on the eigenspace of ρ corresponding to its largest eigenvalue).

Making this argument more precise requires some care. We consider the minimization of
(59) under variation of both σ and ρ with the constraints of fixed S(ρ) = Sρ and fixed S(σ) =
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Sσ = Sρ + ∆, and denote by (σ̂, ρ̂) a minimizing assignment. Only in the case Sρ = 0 we can
have D(σ̂‖ρ̂) = +∞, and we do not consider this case here as it is only necessary if ∆ = log d,
which was already discussed above. Thus D(σ̂‖ρ̂) <∞, and so we have supp[σ̂] ⊆ supp[ρ̂], which
implies log rank(ρ̂) ≥ Sσ. Now, if Sσ = log rank(ρ̂), then obviously σ̂ = ρ̂0/tr

[
ρ̂0
]

(i.e. σ̂ is the
maximally mixed state on the support of ρ̂; we define 00 := 0). Second, if log rank(ρ̂) > Sσ >
logm0, where m0 denotes the dimension of the eigenspace of the largest eigenvalue of ρ̂ (i.e. the
dimension of the ground state space of the “Hamiltonian” (− log ρ̂)), then due to continuity of
the entropy [Fan73, Aud07] there exists γ ∈ (0,∞) with S(ρ̂γ/tr [ρ̂γ ]) = Sσ. We claim that then
σ̂ = ρ̂γ/tr [ρ̂γ ] is the unique minimizer of (59) under variation of σ (when keeping ρ = ρ̂ fixed).
This is easy to see by verifying γ (D(σ‖ρ̂)−D(ρ̂γ/tr [ρ̂γ ] ‖ρ̂)) = D(σ‖ρ̂γ/tr [ρ̂γ ]) for all states σ
with S(σ) = Sσ, and then using that D(σ‖ρ̂γ/tr [ρ̂γ ]) ≥ 0 with equality iff σ = ρ̂γ/tr [ρ̂γ ] (by
Klein’s inequality). Third, if Sσ = logm0, then the maximally mixed state on the eigenspace of
the largest eigenvalue of ρ̂ is obviously the unique state with entropy Sσ and minimizing (59),
i.e. we could formally write σ̂ = ρ̂∞/tr [ρ̂∞]. Fourth, if Sσ < logm0, then σ̂ may be any state
supported on the eigenspace of the largest eigenvalue of ρ̂. In all of these case, σ̂ and ρ̂ commute,
which was already seen above by simpler reasoning.

For the following we will thus write the minimizing assignment (σ̂, ρ̂) from the previous
paragraph as follows:

σ̂ = diag(q̂1, . . . , q̂d) and ρ̂ = diag(p̂1, . . . , p̂d) . (60)

Now fixing σ = σ̂ in (59), the minimization over all commuting states ρ = diag(p1, . . . , pd) leads
to the Lagrange function

L({pi}, ν, µ) :=
∑
i

(q̂i log q̂i − q̂i log pi) + ν
∑
i

pi + µ
∑
i

pi log pi (61)

with Lagrange multipliers ν and µ corresponding to the nomalization and entropy constraints
tr [ρ] = 1 and S(ρ) = Sρ, respectively. We now look at this as a function of those variables
pi, for which the corresponding element p̂i 6= 0 is positive (i.e. which lie in the interior of the
domain of L), and we fix the other elements pi to be zero. Then, since pi = p̂i is a minimizing
assignment, by the method of Lagrange multipliers we are guaranteed one of the following two
things: either there exist ν̂, µ̂ ∈ (−∞,+∞) such that

dL

dpj

∣∣∣∣
{p̂i},ν̂,µ̂

= − q̂j
p̂j

+ (ν̂ + µ̂) + µ̂ log p̂j = 0 ∀j with p̂j 6= 0 ; (62)

or the gradients of the constraints tr [ρ] and S(ρ) in (61) are linearly dependent at ρ = ρ̂, i.e.{
grad{j: p̂j 6=0}

(∑
i

pi

)∣∣∣∣∣
{p̂i}

, grad{j: p̂j 6=0}

(∑
i

pi log pi

)∣∣∣∣∣
{p̂i}

}
is linearly dependent. (63)

We will now examine (potential) minimizing assignments satisfying (62), and at the end of this
proof we will show that the solutions of (63) yield no (new) minimizers.

Eq. (62) does not allow the fourth case from the paragraph before Eq. (60) as a minimizing
assignment, since in this case there are p̂j = p̂k = λmax(ρ̂) > 0 and q̂j 6= q̂k, contradicting (62).
Within the third case of the same paragraph, it excludes the possibility that, apart from the
maximum eigenvalue λmax(ρ̂), there could be two further distinct non-zero eigenvalues p̂i 6= p̂j ,
as in the third case both of these would have corresponding q̂i = q̂j = 0, again contradicting
(62). Thus, in the third case above, ρ̂ has at most two distinct non-zero eigenvalues, as does σ̂.

Also for the first and second cases in the paragraph before Eq. (60) we now want to show
that, except possibly when γ = 1 (i.e. for σ̂ = ρ̂ or ∆ = 0), Eq. (62) allows ρ̂ to have at most
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two distinct non-zero eigenvalues, and σ̂ as well. In these two cases, we have q̂j = p̂γj /Z for

some γ ∈ [0,∞) with Z :=
∑

i p̂
γ
i > 0. Now define xj := Zq̂j/p̂j = p̂γ−1

j for each j with p̂j > 0.
Eq. (62) says then that, for γ 6= 1, the points xj lie at intersections of the non-horizontal affine
function −x/Z+ (ν̂+ µ̂) with the function −(µ̂/(γ−1)) log x (both are functions of x > 0). The
latter function is either strictly convex or strictly concave or constant (depending on whether
the prefactor is negative or positive or zero). The two functions can thus not intersect at more
than 2 distinct points xj > 0. When γ 6= 1, there can therefore be at most 2 distinct non-zero
values of xj , i.e. also at most 2 distinct non-zero values of p̂j and of q̂j .

Summing up so far, any states ρ and σ attaining the infimum in (57) commute and, for
∆ 6= 0 and when they satisfy Eq. (62), have at most two distinct non-zero eigenvalues each, in
such a way that distinct eigenvalues in σ and in ρ correspond to each other. More precisely,

σ = diag

(
1− s
m

, . . . ,
1− s
m

,
s

n
, . . . ,

s

n
, 0, . . . , 0

)
,

ρ = diag

(
1− r
m

, . . . ,
1− r
m

,
r

n
, . . . ,

r

n
, 0, . . . , 0

)
,

(64)

where m,n ≥ 1, m+n ≤ d and s, r ∈ [0, 1]. Permuting the entries of both states simultaneously,
we may assume the entries of σ to be ordered non-increasingly, i.e. (1− s)/m ≥ s/n. The above
analysis showed further that the diagonal entries of a minimizing pair are ordered in the same
order (see below Eq. (59); this can also be seen by the fact that the inverse temperature γ above
turned out to be always non-negative). Thus, (1 − r)/m ≥ r/n as well, and we will therefore
in the following always assume 0 ≤ s, r ≤ n/(m + n). Even in the case ∆ = 0, some of the
minimizing pairs (σ, ρ) have this form (choose any m, n, and s = r), and we thus assume this
form below; similarly for the case ∆ = log d, which is achieved by m = 1, n = d−1, s = (d−1)/d,
r = 0. We can thus continue the optimization in (57) with states of the form (64). Before that,
note for the states in (64):

S(σ) = H(s) + (1− s) logm+ s log n , S(ρ) = H(r) + (1− r) logm+ r log n , (65)

∆(σ, ρ) = S(σ)− S(ρ) = H(s)−H(r) + (s− r) log
n

m
, (66)

D(σ‖ρ) = D2(s‖r) = s log
s

r
+ (1− s) log

1− s
1− r

. (67)

Given ∆ 6= 0, let now the states σ and ρ in (64), parametrized by s, r, m, and n, attain the
infimum in (57). Our next goal is to show m = 1 and n = d − 1. For now, we will denote by
τt,m,n the state parametrized by t, m, and n, such that, for example, τs,m,n = σ and τr,m,n = ρ in
(64). Assume that there exist m′, n′ ≥ 1 with m′+n′ ≤ d and n′/m′ > n/m. We will then show
that there exists some s′ such that the pair of states (τs′,m′,n′ , τr,m′,n′) would achieve a strictly
lower value in (57) than the pair (σ, ρ). For this, compute

S(τs,m′,n′)− S(τr,m′,n′) = H(s)−H(r) + (s− r) log
n′

m′
= ∆ + (s− r) log

n′/m′

n/m
, (68)

and note the the last logarithm is positive due to n′/m′ > n/m. Now, assume first ∆ > 0. Then,
from (66), we have s > r due to our convention s, r ≤ n/(m + n). Thus the expression (68) is
strictly larger than ∆, and because its left-hand-side is an increasing function of the argument
s ≤ n/(m+ n) (similar to the computation (58)), there exists due to continuity some s′ ∈ (r, s)
with

S(τs′,m′,n′)− S(τr,m′,n′) = ∆ . (69)
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Since D2(s‖r) is strictly increasing in its first argument for s ≥ r (using r > 0, which holds due
to ∆ < log d), we have D2(s′‖r) < D2(s‖r), which contradicts the optimality of the pair (σ, ρ).
In the case ∆ < 0, it is s < r (again using the convention s, r ≤ n/(m + n)) and (68) is thus
strictly smaller than ∆. Therefore, we can find r′ ∈ (s, r) with S(τs,m′,n′) − S(τr′,m′,n′) = ∆,
and it is now D2(s‖r′) < D2(s‖r) (irrespective of the value of s). We have thus shown that, if
we choose the parametrization of the optimal pair in (64) such that s ≤ n/(m+ n), then there
do not exist m′, n′ ≥ 1 with m′ + n′ ≤ d and n′/m′ > n/m. This implies n = d− 1, m = 1 for
the optimal pair (σ, ρ).

Using now n = d − 1, m = 1 in (64) and recalling (65)–(67), the optimal states (for ∆ 6= 0
and satisfying Eq. (62)) will thus be of the form (10), where (s, r) attains the minimum in (6);
for ∆ = 0, the optimal states can be chosen to be of that form.

So far, we have examined the (potentially) optimal states (σ̂, ρ̂) satisfying Eq. (62). We now
show that the solutions of Eq. (63) do not yield any new optimizing assignments. Condition
(63) holds iff there exists λ̂ ∈ (−∞,+∞) such that

1 + log p̂j =
d

dpj

(∑
i

pi log pi

)∣∣∣∣∣
{p̂i}

= λ̂
d

dpj

(∑
i

pi

)∣∣∣∣∣
{p̂i}

= λ̂ ∀j with p̂j 6= 0 . (70)

This holds iff log p̂j = log p̂k whenever p̂j , p̂k 6= 0, i.e. it holds exactly iff ρ̂ is completely mixed on
its support. When supp[σ̂] 6⊆ supp[ρ̂], then D(σ̂‖ρ̂) =∞, and this is not a minimizing assignment
except when S(σ̂)−S(ρ̂) = log d, which is however already contained in the solutions (64) found
above with n = d− 1, m = 1. On the other hand, when supp[σ̂] ⊆ supp[ρ̂] and ρ̂ is completely
mixed on its support, one can compute

∆ = S(σ̂)− S(ρ̂) = −D(σ̂‖ρ̂) = S(σ̂)− log rank(ρ̂) ≤ 0 . (71)

Thus, we always have D(σ̂‖ρ̂) = −∆ ∈ [0, log d] here. Among these solutions, the cases ∆ = 0
and ∆ = − log d have been discussed above and are contained in (64) with n = d − 1, m = 1.
We will finally show that all other solutions of (71) (and thus of (63)) are not minimizers of
the optimization problem (57) by showing that for any ∆ ∈ (− log d, 0) one can find states
σ, ρ with S(σ) − S(ρ) = ∆ and D(σ‖ρ) < −∆. For this, let σ := |ψ〉〈ψ| be any fixed pure
state and let ρµ := µ1d/d+ (1− µ)σ for µ ∈ [0, 1] be convex mixtures of the maximally mixed
state 1d/d with σ. Similar to Remark 5, let µ′ ∈ (0, 1) be such that S(σ) − S(ρµ′) = ∆, and
notice again that µ′ < −∆/ log d due to strict concavity of the entropy: ∆ = S(σ) − S(ρµ′) <
S(σ) − (µ′S(1d/d) + (1 − µ′)S(σ)) = −µ′ log d. Defining ρ := ρµ′ , convexity of the relative
entropy then indeed gives:

D(σ‖ρ) ≤ µ′D(σ‖1d/d) + (1− µ′)D(σ‖σ) < (−∆/ log d)D(|ψ〉〈ψ| ‖1d/d) = −∆ . (72)

One may notice that all these better pairs (σ = |ψ〉〈ψ|, ρµ) here are contained in the solutions
(64) found above with n = d− 1, m = 1.

The preceding proof shows also that, for ∆ 6= 0, the optimal states are necessarily of the
form (10), up to simultaneous unitary transformations of σ and ρ; the proof in Section 4.2 shows
furthermore that, for each ∆ 6= 0, the optimal s and r are unique. For ∆ = 0, the optimal pairs
are obviously exactly the ones with σ = ρ.

4.2 Proof of Theorem 2

Proof of Theorem 2. M(∆, d) ≥ 0 is clear, and the stated values are argued below Eq. (5). For
the convenient upper bounds on N(d), see Lemma 15.
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For N = N(d), the first inequality in (11) is just Lemma 14, and for N ≥ N(d) it follows
from the monotonicity of the lower bound:

d

dN

(
Ne

∆
N −N −∆

)
= − e

∆
N

[
e−

∆
N −

(
1− ∆

N

)]
≤ 0 , (73)

since the square brackets is non-negative due to convexity of the exponential function. For any
N and ∆, the second inequality in (11) is easily verified by subtracting both sides from each
other and observing that the difference and its first three derivatives w.r.t. ∆ vanish at ∆ = 0,
whereas the fourth derivative is positive everywhere. If one defines, as usual, the minimum over
an empty set in (6) to be ∞, then the lower bounds (11) hold even for ∆ outside the range
[− log d, log d].

To prove (12) for d ≥ 3, we use the rightmost bound in (11) with N = log2 d and show
∆2/(2 log2 d)+∆3/(6 log4 d) ≥ ∆2/(3 log2 d) for ∆ ∈ [− log d, log d]; this inequality is easily seen
to hold whenever log d ≥ 1. For d = 2 and ∆ ∈ [− log2 2, log 2] the last inequality holds as well;
for d = 2 and ∆ ∈ [− log 2,− log2 2] we use the left inequality in (11) with N = 0.45 > N(2)
and verify numerically (cf. also upper left panel in Fig. 1) that Ne∆/N −N −∆ ≥ ∆2/(3 log2 2)
holds in this range of ∆, with the gap in the inequality being at last 0.005 which is well above
0 numerically.

We now sketch a proof of strict convexity (and continuous differentiability) of M(∆, d),
which is somewhat involved; see also the proof of Theorem 1 in [FHT03] for a related approach
at optimal refinements of Pinsker’s inequality. For our proof, we employ the definition (6), will
somtimes abbreviate D := log(d−1) ≥ 0, and denote by rd the (unique) r ∈ (0, 1/2) attaining the

maximum in (7), i.e. satisfying (1−2rd) log
(

1−rd
rd

(d− 1)
)

= 2. We also define γd ∈ (0, (d−1)/d)

to be the unique solution of (1− γd) log
(

1−γd
γd

(d− 1)
)

= 1; one can check that γd > rd.

If, for some ∆ = x ∈ (− log d, log d), a pair (s, r) ∈ (0, (d − 1)/d)2 attains the minimum in
(6), then by the method of Lagrange multipliers the following two equations hold:

∆(s, r) := H(s)−H(r) + (s− r)D = x , (74)

F (s, r) :=

(
log

1− r
r
− log

1− s
s

)(
D + log

1− r
r

)
−
(
s

r
− 1− s

1− r

)(
D + log

1− s
s

)
= 0 ,

(75)

where the latter equality expresses the requirement that the gradients of the target function and
the constraint function be parallel (i.e., that the 2 × 2-matrix formed by these gradients have
vanishing determinant). In a small enough neighborhood of any such pair (s, r) ∈ (0, (d−1)/d)2

with s 6= r, the equations (74)–(75) are sufficiently well-behaved to have a unique solution
(s(x′), r(x′)) for any x′ ∈ (x − ε, x + ε), as the solution of the differential equations obtained
from (74)–(75). For any s = r, (74)–(75) are satisfied with x = 0 (corresponding to the trivial
optimality cases σ = ρ), but near any such point there are no other pairs with F (s, r) = 0 and
s 6= r (as one sees from a quadratic expansion of F (s, r)) with the exception of s = r = rd: around
x = 0 and s = r = rd, the equations (74)–(75) have a solution with ṡ(x = 0) = (1 − 2rd)/3,
ṙ(x = 0) = −(1− 2rd)/6 (overdots denote derivatives w.r.t. x), which can be seen by computing
the third directional derivatives of F (s, r) at this point.

Examining the equation F (s, r) = 0 for (s, r) ∈ (0, (d− 1)/d)2 (by way of discussing F (s, r)
and its derivative Fs(s, r) along each fixed r) and furthermore considering optimal pairs (s, r)
for any ∆ = x in (6) on the boundary of [0, (d−1)/d]2, one finds the following: for r = 0, optimal
pairs are obtained for s = 0 and for s = (d − 1)/d (where x = log d); for 0 < r < rd, optimal
pairs are obtained for s = r and for one other value s ∈ (rd, (d − 1)/d) (where 0 < x < log d);
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for r = rd, the only optimal pair is obtained for s = rd (where x = 0); for rd < r < γd, optimal
pairs are obtained for one value s ∈ (0, rd) (where x ∈ (∆r, 0), where we define ∆r := ∆(s =
0, r = γd) = 1−D + log γd ∈ (− log d, 1− log d)) and for s = r; for γd ≤ r ≤ (d− 1)/d, optimal
pairs are obtained for s = 0 (where x ∈ [− log d,∆r]) and for s = r.

Combining this with the above differentiability result and defining s(0) := r(0) := rd for
x = 0 while disregarding the other optimal pairs with s = r, we get the following: for any x ∈
[− log d, log d]\{0} there exists exactly one optimal pair (s(x), r(x)) (i.e. with ∆(s(x), r(x)) = x),
the curve (s(x), r(x)) is continuous in x ∈ [− log d, log d], and differentiable in x ∈ (∆r, log d).
Thus already, M(x, d) = D(s(x)‖r(x)) is continuous in x ∈ [− log d, log d] (with the usual
convention limx↗log dM(x, d) =∞ = M(log d, d)).

We can now finally prove strict convexity of M(x, d). First, for x ∈ [− log d,∆r], it is s(x) = 0.
One can thus explicitly write ∆ = −H(r)−Dr as a function of M = M(x, d) = D2(s = 0‖r) =
− log(1 − r) in this range of ∆ = x; the function ∆ = ∆(M) is easily seen to be continuously
differentiable, strictly decreasing and strictly convex in this range. Its inverse M = M(∆, d)
is thus strictly convex as well and continuously differentiable in ∆ ∈ (− log d,∆r], and one can
compute dM/d∆ |∆=∆r = −1 (and dM/d∆ |∆↘− log d = −∞).

Second, for x ∈ (∆r, log d), the optimal pairs (s(x), r(x)) ∈ (0, (d− 1)/d)2 satisfy (74)–(75).
We can thus compute

d

dx
M(x, d) =

d

dx
D2(s(x)‖r(x)) (76)

=

(
log

1− r(x)

r(x)
− log

1− s(x)

s(x)

)
ṡ(x)−

(
s(x)

r(x)
− 1− s(x)

1− r(x)

)
ṙ(x) (77)

=

(
log

1− r(x)

r(x)
− log

1− s(x)

s(x)

)(
D + log

1− s(x)

s(x)

)−1

, (78)

where in the last step we used (75) and the derivative of (74) w.r.t. x. Notice for later that
dM(x, d)/dx |x↘∆r = −1 since s(x)↘ 0 and r(x)→ γr for x↘ ∆r. Thus,(

D + log
1− s(x)

s(x)

)2 d2

dx2
M(x, d) =

(
D + log

1− r(x)

r(x)

)
ṡ(x)

s(x)(1− s(x))

−
(
D + log

1− s(x)

s(x)

)
ṙ(x)

r(x)(1− r(x))
. (79)

Strict convexity, d2M(x, d)/dx2 > 0, would thus follow from ṡ(x) ≥ 0 and ṙ(x) ≤ 0; to see
the last implication, note that not both of ṡ(x) and ṙ(x) can vanish simultaneously because of
d∆(s(x), r(x))/dx = 1 > 0. The last insight also shows that ṡ(x) ≤ 0 and ṙ(x) ≥ 0 cannot both
be true simultaneously unless ṡ(x) = ṙ(x) = 0. It thus suffices now to show that ṡ(x) and ṙ(x)
cannot both be simultaneously positive nor both be simultaneously negative. For x = 0, this
was remarked above. For x ∈ (∆r, log d) \ {0}, we show it in the following way.

Differentiating (75), one has

0 =
d

dx
F (s(x), r(x)) = Fs(s(x), r(x)) ṡ(x) + Fr(s(x), r(x)) ṙ(x) . (80)

The considerations of the equation F (s, r) = 0 above show that Fs(s(x), r(x)) > 0 for s(x) 6=
r(x). Finally, the fact that s(x) > r(x) implies r(x) < rd and the fact that s(x) < r(x) implies
r(x) > rd (see above) can be used, together with (75), to show Fr(s(x), r(x)) > 0 for s(x) 6= r(x).
(80) then implies that not both of ṡ(x) and ṙ(x) can have the same sign.

M(x, d) is thus strictly convex in x ∈ (∆r, log d), as well as in x ∈ [− log d,∆r]. Since M(x, d)
is continuous with matching left-sided and right-sided derivatives at x = ∆r (see above), it is
strictly convex in the whole range x ∈ [− log d, log d]. Continuity of (s(x), r(x)) and Eq. (78),
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together with the above considerations of the range x ∈ [− log d,∆r], finally prove continuous
differentiability of M(x, d) in x ∈ (− log d, log d).

4.3 Auxiliary Lemmas

Lemma 14 (Simple lower bound on M(∆, d)). For 2 ≤ d < ∞ and ∆ ∈ [− log d, log d], the
quantity M(∆, d) from Eq. (6) is bounded from below as follows:

M(∆, d) ≥ N(d)

(
e

∆
N(d) − 1− ∆

N(d)

)
, (81)

where N(d) is defined in Eq. (7).

Proof. Define the function ∆(s, r) := H(s)−H(r) + (s− r) log(d− 1). To show Lemma 14, we
will prove

G(s, r) := D2(s‖r) − N(d)

(
e

∆(s,r)
N(d) − 1− ∆(s, r)

N(d)

)
≥ 0 (82)

for all s, r ∈ [0, (d−1)/d]. The statement is easily verified for r = 0, since D2(s‖0) = +∞ unless
s = 0. We thus fix r ∈ (0, (d−1)/d] from now on, so that G(s, r) is a function of s ∈ [0, (d−1)/d].

At s = r, the function G(s = r, r) = 0 vanishes, as does its first derivative

d

ds
G(s, r)

∣∣∣∣
s=r

= log
1− r
r
− log

1− s
s
−
(
e

∆(s,r)
N(d) − 1

)
log

(
1− s
s

(d− 1)

)∣∣∣∣
s=r

= 0 . (83)

Furthermore, G(s, r) is convex in s ∈ [0, (d− 1)/d] since, for s ∈ (0, (d− 1)/d],

d2

ds2
G(s, r) = e

∆(s,r)
N(d)

1

N(d) s(1− s)

[
N(d) − r(1− r)

(
log

(
1− r
r

(d− 1)

))2
]
≥ 0 (84)

as the term in square brackets is non-negative due to the definition of N(d) in Eq. (7).
All of this together shows that, for each fixed r ∈ [0, (d− 1)/d], G(s, r) attains its minimum

0 at s = r, which finally proves (82).

Lemma 15 (Simple bounds on N(d)). For d ≥ 2, the optimization N(d) from Eq. (7) satisfies
the following bounds:

Nd − 1 =
1

4
log2(d− 1) < N(d) < Nd =

1

4
log2(d− 1) + 1 , (85)

N(d) < log2 d , (86)

where Nd in the first inequality was defined in Eq. (8).

Proof. To prove the upper bound in (85), we show that for all r ∈ [0, 1],

0 <
1

4
log2(d− 1) + 1 − r(1− r)

(
log

(
1− r
r

(d− 1)

))2

. (87)

For r = 0, 1 this is clear due to the convention 0 · ∞ = 0 (or by continuity), and for r = 1/2 it
is easily verified. Let thus r ∈ (0, 1) \ {1/2}. The right-hand-side of (87) equals

=

(
1

2
− r
)2

log2(d− 1)− 2r(1− r)
(

log
1− r
r

)
log(d− 1) + 1− r(1− r)

(
log

1− r
r

)2

=

((
1

2
− r
)

log(d− 1)− r(1− r)
1
2 − r

log
1− r
r

)2

+ 1−

[
r(1− r) +

r2(1− r)2(
1
2 − r

)2
](

log
1− r
r

)2

≥ 1

(1− 2r)2

[
(1− 2r)2 − r(1− r)

(
log

1− r
r

)2
]

=:
φ(r)

(1− 2r)2
, (88)
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where the inequality arises by omitting the non-negative first term (. . .)2 from the step before.
Now, the last expression does not depend on the dimension d anymore, and one can show

that it is positive for all r ∈ (0, 1) \ {1/2}. This is numerically easily verified, or analytically in
the following way: the term in square brackets in (88) vanishes at r = 1/2, as do its first three
derivatives w.r.t. r, whereas its fourth derivative

d4

dr4
φ(r) =

8

r2(1− r)2
+

2(1− 2r)2

r3(1− r)3
+ (1− 2r)

(
log

1− r
r

)
16r(1− r) + 4(1− 2r)2

r3(1− r)3

is strictly positive for all r ∈ (0, 1), since (1− 2r) log 1−r
r ≥ 0 for r ∈ (0, 1).

The lower bound in (85) follows by letting r → 1/2 in the definition (7) of N(d).

In the range d ≥ 4 > e
√

4/3 ≈ 3.2, the bound (86) follows from (85) due to 1
4 log2(d−1)+1 ≤

1
4 log2 d+ 3

4 ·
4
3 ≤

1
4 log2 d+ 3

4 log2 d = log2 d. For d = 2, 3 the claim can be verified numerically
(cf. also the lower right panel of Fig. 1).

4.4 Proof of Theorem 8

Proof of Theorem 8. For fixed d ≥ 2, we maximize the expression on the LHS of (20) or (19)
over all probability distributions {pi} (i.e., spectra of ρ), which leads to the Lagrange function

L({pi}, ν) :=
∑
i

pi(log pi)
2 −

(∑
i

pi log pi

)2

+ ν
∑
i

pi , (89)

with the Lagrange multiplier ν corresponding to the normalization tr [ρ] = 1. Assume now that
{p̂i} (corresponding to the state ρ̂) attains the maximum of (19) over all probability distributions
{pi} (due to continuity and compactness, this maximum is attained). We now view (89) as a
function of those variables pi for which p̂i > 0, fixing the other elements pi to be zero. Then,
due to the extremality of {p̂i} and having components in the interior of the domain of L, the
method of Lagrange multipliers guarantees the existence of ν̂ ∈ (−∞,+∞) such that

0 =
dL

dpj

∣∣∣∣
{p̂i},ν̂

= (log p̂j)
2 + 2 log p̂j − 2

(∑
i

p̂i log p̂i

)
(1 + log p̂j) + ν̂

= (S({p̂i}) + 1 + log p̂j)
2 − (S({p̂i}))2 + ν̂ − 1 ∀j with p̂j > 0 ,

(90)

where the quantity S({p̂i}) = S(ρ̂) denotes the entropy of the distribution {p̂i} and in particular
does not depend on the index j. Thus, the equality (90) implies that

log p̂j = ±
√

(S(ρ̂))2 − ν̂ + 1 − S(ρ̂)− 1 ∀j with p̂j > 0 , (91)

so that strict monotonicity of the logarithm yields that there can be at most two distinct non-zero
elements in {p̂i}.

Thus, leaving off hats again, an optimal ρ = ρ̂ has the form

ρ = diag

(
1− r
m

, . . . ,
1− r
m

,
r

n
, . . . ,

r

n
, 0, . . . , 0

)
(92)

with m,n ≥ 1, m+ n ≤ d, r ∈ [0, 1]. W.l.o.g. we can assume r ≤ 1/2 by permuting the entries
of ρ. For such states one has, after a small calculation,

varρ(log ρ) = r(1− r)
(

log
1− r
r

+ log
n

m

)2

. (93)
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Maximizing this, for any fixed r ∈ [0, 1/2], over m and n yields n = d−1 and m = 1. Maximizing
(93) finally over r gives a unique r = rd ∈ (0, 1/2), namely the unique value of r ∈ [0, 1/2]
satisfying (1− 2r) log

(
1−r
r (d− 1)

)
= 2, and the maximum of (93) is N(d) from Eq. (7).

The last inequality in (20) is shown by Lemma 15, completing the proof of Theorem 8.
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