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Lattice Codes for Many-to-One Interference
Channels With and Without Cognitive Messages

Jingge Zhu and Michael Gastpar, Member, IEEE

Abstract—A new achievable rate region is given for the Gaus-
sian cognitive many-to-one interference channel. The proposed
novel coding scheme is based on the compute-and-forward
approach with lattice codes. Using the idea of decoding sums of
codewords, our scheme improves considerably upon the conven-
tional coding schemes which treat interference as noise or decode
messages simultaneously. Our strategy also extends directly to
the usual many-to-one interference channels without cognitive
messages. Comparing to the usual compute-and-forward scheme
where a fixed lattice is used for the code construction, the
novel scheme employs scaled lattices and also encompasses key
ingredients of the existing schemes for the cognitive interference
channel. With this new component, our scheme achieves a larger
rate region in general. For some symmetric channel settings,
new constant gap or capacity results are established, which are
independent of the number of users in the system.

I. INTRODUCTION

Recently, with growing requests on high data rate and
increasing numbers of intelligent communication devices, the
concept of cognitive radio has been intensively studied to
boost spectral efficiency. As one of its information-theoretic
abstractions, a model of the cognitive radio channel of two
users was proposed and analyzed in [1], [2], [3]. In this model,
the cognitive user is assumed to know the message of the
primary user non-causally before transmissions take place. The
capacity region of this channel with additive white Gaussian
noise is known for most of the parameter region, see for
example [4] for an overview of the results.

In this work we extend this cognitive radio channel model to
include many cognitive users. We consider the simple many-
to-one interference scenario with K cognitive users illustrated
in Figure 1. The message W0 (also called the cognitive
message) of the primary user is given to all other K users,
who could help the transmission of the primary user.

Existing coding schemes for the cognitive interference chan-
nel exploit the usefulness of cognitive messages. For the case
K = 1, i.e., a single cognitive user, the strategy consists in
letting the cognitive user spend part of its resources to help the
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transmission of this message to the primary receiver. At the
same time, this also appears as interference at the cognitive
receiver. But dirty-paper coding can be used at the cognitive
transmitter to cancel (part of) this interference. A new chal-
lenge arises when there are many cognitive users. The primary
user now benefits from the help of all cognitive users, but at
the same time suffers from their collective interference because
cognitive users are also transmitting their own messages. This
inherent tension is more pronounced when the channels from
cognitive transmitters to the primary receiver are strong. In the
existing coding scheme, the interference from cognitive users
is either decoded or treated as noise at the primary receiver. As
we will show later, direct extensions of these strategies to the
many-to-one channel have significant shortcomings, especially
when the interference is relatively strong.

The main contribution of this paper is a novel coding
strategy for the cognitive interference network based on lattice
codes. This scheme is based on the compute-and-forward
approach ([5] [6]). It deals with interference in a benefi-
cial fashion, enabling some degree of reconciliation between
the competing factors mentioned above. While most of the
compute-and-forward work considers a fixed lattice to be
used at each transmitter, the strategy developed here employs
scaled lattices. In general it achieves larger rates than using
fixed lattices and permits us to derive constant gap and
capacity results. We can also observe that the novel coding
strategy encompasses several key ingredients of the existing
coding schemes, such as rate splitting, dirty-paper coding
and successive interference cancellation. The performance of
the novel coding strategy is analyzed in detail. We show
our scheme outperforms conventional coding schemes. The
advantage is most notable in the case of strong interference
from the cognitive users to the primary receiver. The proposed
scheme applies naturally to the usual many-to-one interference
channel, where the messages are not shared between users.
Applying the proposed scheme to a symmetric channel setting,
we can show that under certain channel conditions, the novel
coding strategy is near-optimal (in a constant-gap sense) or
optimal regardless of the number of cognitive users.

The basic idea of the proposed scheme is that instead
of decoding its message directly, the primary decoder first
recovers enough linear combinations of messages and then
extracts its intended message. Lattice codes are well suited
for this purpose because their linear structure matches the
additivity of the channels. More specifically, when two code-
words are superimposed additively, the resulting sum still lies
in the lattice. To give an intuitive explanation as to why this
property is beneficial in the interference channel, we note
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that as a general rule of thumb, the idea of interference
alignment is needed in an interference network. However,
using structured codes is a form of interference alignment.
When the interfering codewords are summed up linearly by the
channels, the interference signal (more precisely, the sumset
of the interfering codewords) seen by the undesired receiver
is much “smaller” when structured codes are used than when
the codewords are chosen randomly. Hence the interference
is “aligned” due to the linear structure of the codebook. This
property gives powerful interference mitigation ability at the
signal level.

Similar systems have been studied in the literature. For the
case K = 2, the system under consideration is studied in
[7]. A similar cognitive interference channel with so-called
cumulative message sharing is also studied in [8] where each
cognitive user has messages of multiple users. We note that
those existing results have not exploited the possibility of
using structured codes in cognitive interference networks. The
many-to-one channel without cognitive message is studied in
[9], where a similar idea of aligning interference based on
lattice codes was used. We also point out that the method
of compute-and-forward is versatile and beneficial in many
network scenarios. For example it has been used in [10], [11]
to study the Gaussian two-way relay channel, in [12] to study
the K-user symmetric interference channel and in [13] to study
the multiple-antenna system.

The paper is organized as follows. Section II introduces
the system model and the problem statement. Section III ex-
tends the known coding schemes from the two-user cognitive
channel to the many-to-one cognitive channel. A novel coding
scheme is proposed in Section IV where we also discuss its
features in details. In Section V we specialize our coding
scheme to an interesting special case: the standard many-
to-one interference channel without cognitive messages. We
choose to present the cognitive channel first because it is
more general and the results of the non-cognitive channel are
absorbed in the former case.

We use the notation [a : b] to denote a set of increasing inte-
gers {a, a+1, . . . , b}, log to denote log2 and log+(x), [x]+ to
denote the function max{log(x), 0},max{x, 0}, respectively.
We use x̄ for 1−x to lighten the notation at some places. We
also adopt the convention that the sum

∑n
i=m xi equals zero

if m > n.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a multi-user channel consisting of K + 1
transmitter-receiver pairs as shown in Figure 1. The real-valued
channel has the following vector representation:

y0 = x0 +

K∑
k=1

bkxk + z0, (1)

yk = hkxk + zk, k ∈ [1 : K], (2)

where xk, yk ∈ Rn denote the channel input and output of the
transmitter-receiver pair k, respectively. The noise zk ∈ Rn
is assumed to be i.i.d. Gaussian with zero mean and unit
variance for each entry. Let bk ≥ 0 denote the channel gain
from Transmitter k to the Receiver 0 and hk denote the

direct channel gain from Transmitter k to its corresponding
receiver for k ∈ [1 : K]. We assume a unit channel gain
for the first user without loss of generality. This system is
sometimes referred to as the many-to-one interference channel
(or many-to-one channel for simplicity), since only Receiver
0 experiences interference from other transmitters.

We assume that all users have the same power constraint,
i.e., the channel input xk is subject to the power constraint

E{||xk||2} ≤ nP, k ∈ [1 : 0]. (3)

Since channel gains are arbitrary, this assumption is without
loss of generality. We also assume that all transmitters and
receivers know their own channel coefficients; that is, bk, hk
are known at Transmitter k, hk is known at Receiver k, and
bk, k ≥ 1 are known at Receiver 0.

Fig. 1. A many-to-one interference channel. The message of the first user
W0 (called cognitive message) may or may not be present at other user’s
transmitter.

Now we introduce two variants of this channel according
to different message configurations.

Definition 1 (Cognitive many-to-one channel): User 0 is
called the primary user and User k a cognitive user (for k ≥ 1).
Each user has a message Wk from a set Wk to send to its
corresponding receiver. Furthermore, all the cognitive users
also have access to the primary user’s message W0 (also called
cognitive message).

Definition 2 (Non-cognitive many-to-one channel): Each
user k, k ∈ [0 : K] has a message Wk from a set Wk to send
to its corresponding receiver. The messages are not shared
among users.

For the cognitive many-to-one channel, each transmitter has
an encoder Ek : Wk → Rn which maps the message to its
channel input as

x0 = Ek(W0) (4)
xk = Ek(Wk,W0), k ∈ [1 : K]. (5)

Each receiver has a decoder Dk : Rn → Wk which
estimates message Ŵk from yk as

Ŵk = Dk(yk), k ∈ [1 : K]. (6)

The rate of each user is

Rk =
1

n
log |Wk| (7)
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under the average error probability requirement

Pr

(
K⋃
k=0

{Ŵk 6= Wk}

)
→ ε (8)

for any ε > 0.
For the non-cognitive many-to-one channel, the encoder

takes the form

xk = Ek(Wk), k ∈ [0 : K] (9)

and other conditions are the same as in the cognitive channel.
As mentioned earlier, we find it convenient to first treat the

general model—the cognitive many-to-one channel where we
derive a novel coding scheme which outperforms conventional
strategies. We will show that the coding scheme for the
cognitive channel can be extended straightforwardly to the
non-cognitive channel, which also gives new results for this
channel.

III. EXTENSIONS OF CONVENTIONAL CODING SCHEMES

In this section we revisit existing coding schemes for the
two-user cognitive interference channel and extend them to our
cognitive many-to-one channel. The extensions are straightfor-
ward from the schemes proposed for the two-user cognitive
channel in, for example, [1], [14] and [4] . Throughout the
paper, many schemes can be parametrized by letting cognitive
transmitters split their power. For each cognitive user, we
introduce a power splitting parameter 0 ≤ λk ≤ 1. For
convenience, we also define the vector λ := {λ1, . . . , λK}.

In the first coding scheme, the cognitive users split the
power and use part of it to transmit the message of the primary
user. Luckily this part of the signal will not cause interference
to the cognitive receiver since it can be completely canceled
out using dirty-paper coding (DPC). We briefly describe the
random coding argument for this coding scheme:
• Primary encoder. For each possible message W0, User

0 generates a codeword x0 with i.i.d. entries according
to the Gaussian distribution N (0, P ).

• Cognitive encoders. User k generates a sequence x̂k
with i.i.d. entry according to the Gaussian distribution
N (0, λ̄kP ) for any given λk and form

uk = hkx̂k + γhk
√
λkx0 (10)

with γ = λ̄kh
2
kP/(1+λ̄kh

2
kP ), k ≥ 1. The channel input

is given by

xk =
√
λkx0 + x̂k, k ∈ [1 : K]. (11)

• Primary decoder. Decoder 0 decodes x0 from y0 using
typicality decoding.

• Cognitive decoders. Decoder k (k ≥ 1) decodes uk from
yk using typicality decoding.

This coding scheme gives the following achievable rate region.

Proposition 1 (DPC): For the cognitive many-to-one chan-
nel, the above dirty paper coding scheme achieves the rate

region:

R0 ≤
1

2
log

(
1 +

(
√
P +

∑
k≥1 bk

√
λkP )2∑

k≥1 b
2
kλ̄kP + 1

)
(12)

Rk ≤
1

2
log
(
1 + λ̄kh

2
kP
)
, k ∈ [1 : K] (13)

for any power-splitting parameter λ.
It is worth noting that this scheme achieves the capacity in

the two-user case (K = 1) when |b1| ≤ 1, see [14, Theorem
3.7] for example.

Another coding scheme which performs well in the two-
user case when |b1| > 1, is to let the primary user decode
the message of the cognitive user as well [4]. We extend this
scheme by enabling simultaneous nonunique decoding (SND)
[15, Ch. 6] at the primary decoder. SND improves the cognitive
rates over uniquely decoding the messages Wk, k ≥ 1 at
primary decoder. We briefly describe the random coding
argument for this coding scheme.
• Primary encoder. For each possible message W0, User

0 generates a codewords x0 with i.i.d. entries according
to the distribution N (0, P ).

• Cognitive encoders. Given the power splitting parame-
ters λk, user k generates x̂k with i.i.d. entry according to
the distribution N (0, λ̄kP ) for its message Wk, k ≥ 1.
The channel input is given by

xk =
√
λkx0 + x̂k (14)

• Primary decoder. Decoder 0 simultaneously decodes
x0, x̂1, . . . , x̂K from y1 using typicality decoding. More
precisely, let T (n)(Y0, X0, X̂1 . . . , X̂K) denotes the set
of n-length typical sequences (see, for example [15, Ch.
2]) of the joint distribution (

∏K
i=1 PX̂i)PX0

PY0|X0...X̂K
.

The primary decoder decodes its message x0 such that

(x0, x̂1, . . . , x̂K) ∈ T (n)(Y0, X0, X̂1 . . . , X̂K) (15)

for a unique x0 and some x̂k, k ≥ 1.
• Cognitive decoders. Decoder k decodes x̂k from yk for
k ≥ 1.

We have the following achievable rate region for the above
coding scheme.

Proposition 2 (SND at Rx 0): For the cognitive many-to-
one channel, the above simultaneous nonunique decoding
scheme achieves the rate region:

R0 ≤
1

2
log

1 +

(√
P +

∑
k≥1

bk
√
λkP

)2


R0 +
∑
k∈J

Rk ≤
1

2
log

(
1 +

∑
k∈J

b2kλ̄kP

+

(√
P +

∑
k≥1

bk
√
λkP

)2
)

Rk ≤
1

2
log

(
1 +

λ̄kh
2
kPk

1 + λkh2
kPk

)
for any power-splitting parameter λ and every subset J ⊆ [1 :
K].
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We point out that if instead of using simultaneous nonunique
decoding at the primary decoder but require it to decode all
messages of the cognitive users Wk, k ≥ 1, we would have
the extra constraints∑

k∈J

Rk ≤
1

2
log

(
1 +

∑
k∈J

b2kλ̄kP

)
(16)

for every subset J ⊆ [1 : K], which may further reduce the
achievable rate region.

For the two-user case (K = 1), the above scheme achieves
the capacity when |b1| ≥

√
1 + P + P 2 +P , see [4, Theorem

V.2] for example.
We can further extend the above coding schemes by combin-

ing both dirty paper coding and SND at Rx 0, as it is done in
[4, Theorem IV.1]. However this results in a very cumbersome
rate expression in this system but gives little insight to the
problem. On the other hand, we will show in the sequel that
our proposed scheme combines the ideas in the above two
schemes in a unified framework.

IV. A LATTICE CODES BASED SCHEME FOR COGNITIVE
MANY-TO-ONE CHANNELS

In this section we provide a novel coding scheme for the
cognitive many-to-one channels based on a modified compute-
and-forward scheme. The key idea of this approach is that
instead of decoding the desired codeword directly at the
primary receiver, it is more beneficial to first recover several
integer combinations of the codewords and then solve for the
desired message. We first briefly introduce the nested lattice
codes used for this coding scheme and then describe how to
adapt the compute-and-forward technique to our problem.

A. Nested Lattice Codes

A lattice Λ is a discrete subgroup of Rn with the property
that if t1, t2 ∈ Λ, then t1 + t2 ∈ Λ. The details about lattice
and lattice codes can be found, for example, in [16] [17]. The
lattice quantizer QΛ : Rn → Λ is defined as as:

QΛ(x) = argmint∈Λ ||t− x|| (17)

The fundamental Voronoi region of a lattice Λ is defined to
be

V := {x ∈ Rn : QΛ(x) = 0} (18)

The modulo operation gives the quantization error with respect
to the lattice:

[x]mod Λ = x−QΛ(x) (19)

Two lattices Λ and Λ′ are said to be nested if Λ′ ⊆ Λ. A
nested lattice code C can be constructed using the coarse Λ′

for shaping and the fine lattice Λ as codewords:

C := {t ∈ Rn : t ∈ Λ ∩ V ′} (20)

where V ′ is the Voronoi region of Λ′. The second moment of
the lattice Λ′ per dimension is defined to be

σ2(Λ′) =
1

nVol (V ′)

∫
V′
||x||2 dx (21)

which is also the average power of code C defined in (20) if
the codewords t are uniformly distributed in V ′.

The following two definitions are important for the lattice
code construction considered here.

Definition 3 (Good for AWGN channel): Let z be a length-
n vector with i.i.d. Gaussian component N (0, σ2

z), A sequence
of n-dimensional lattices Λ(n) with its Voronoi region V(n) is
said to be good for AWGN channel if

Pr(z /∈ V(n)) ≤ e−nEp(µ) (22)

where

µ =
(Vol (V(n)))2/n

2πeσ2
z

(23)

is the volume-to-noise ratio and Ep(µ) is the Poltyrev expo-
nent [18] which is positive for µ > 1.

Definition 4 (Good for quantization): A sequence of n-
dimensional lattices Λ(n) is said to be good for quantization
if

lim
n→∞

σ2(Λ(n))

(Vol (V(n)))2/n
=

1

2πe
(24)

with σ(Λ(n))2 denoting the second moment of the lattice Λ(n)

defined in (21). Notice the quantity on the LHS approachs the
limit from above.

Erez and Zamir [17] have shown that there exist nested
lattice codes where the fine lattice and the coarse lattice are
both good for AWGN channel and good for quantization. Nam
et al. [19, Theorem 2] extend the results to the case when there
are multiple nested lattice codes.

Now we construct the nested lattice codes for our problem.
Let β := {β0, . . . , βK} denotes a set of positive numbers.
For each user, we choose a lattice Λk which is good for
AWGN channel. These K + 1 fine lattices will form a nested
lattice chain [19] according to a certain order which will be
determined later. We let Λc denote the coarsest lattice among
them, i.e., Λc ⊆ Λk for all k ∈ [0 : K]. As shown in [19,
Thm. 2], we can also find another K+1 simultaneously good
nested lattices such that Λsk ⊆ Λc for all k ∈ [0 : K] whose
second moments satisfy

σ2
0 := σ2(Λs0) = β2

0P (25a)

σ2
k := σ2(Λsk) = (1− λk)β2

kP, k ∈ [1 : K] (25b)

with given power-splitting parameters λ. Introducing the
scaling coefficients β enables us to flexibly balance the rates
of different users and utilize the channel state information in a
natural way. This point is made clear in the next section when
we describe the coding scheme.

The codebook for user k is constructed as

Ck := {tk ∈ Rn : tk ∈ Λk ∩ Vsk}, k ∈ [0 : K] (26)

where Vsk denotes the Voronoi region of the shaping lattice Λsk
used to enforce the power constraints. With this lattice code,
the message rate of user k is also given by

Rk =
1

n
log

Vol (Vsk)

Vol (Vk)
(27)

with Vk denoting the Voronoi region of the fine lattice Λk.
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B. Main Results

Equipped with the nested lattice codes constructed above,
we are ready to specify the coding scheme. Each cognitive user
splits its power and uses one part to help the primary receiver.
Messages Wk ∈ Wk of user k are mapped surjectively to
lattice points tk ∈ Ck for all k.

Let γ = {γ1, . . . , γK} be K real numbers to be determined
later. Given all messages Wk and their corresponding lattice
points tk, transmitters form

x0 =

[
t0

β0
+ d0

]
mod Λs0/β0 (28a)

x̂k =

[
tk
βk

+ dk −
γkx0

βk

]
mod Λsk/βk, k ∈ [1 : K](28b)

where dk (called dither) is a random vector independent of
tk and uniformly distributed in Vsk/βk. It follows that x0 is
also uniformly distributed in Vs0/β0 hence has average power
β2

0P/β
2
0 = P and is independent from t0 [17, Lemma 1].

Similarly x̂k has average power λ̄kP and is independent from
tk for all k ≥ 1.

Although x0 will act as interference at cognitive receivers,
it is possible to cancel its effect at the receivers since it
is known to cognitive transmitters. The dirty-paper coding
idea in the previous section can also be implemented within
the framework of lattice codes, see for example [20]. The
parameters γ are used to cancel x0 partially or completely
at the cognitive receivers.

The channel input for the primary transmitter is x0 defined
above and the channel input for each cognitive transmitter is

xk =
√
λkx0 + x̂k, k ∈ [1 : K]. (29)

Notice that E{||xk||2}/n = λkP + λ̄kP = P hence power
constraints are satisfied for all cognitive users.

We first give an informal description of the coding scheme
and then present the main theorem. Let a := [a0, . . . , aK ] ∈
ZK+1 be a vector of integers. We shall show that the integer
sum of the lattice codewords

∑
k≥0 aktk can be decoded

reliably at the primary user for certain rates Rk. After this,
we continue decoding further integer sums with judiciously
chosen coefficients and solve for the desired codeword using
these sums at the end. An important observation (also made in
[5] and [21]) is that the integer sums we have already decoded
can be used to decode the subsequent integer sums. We now
point out the new ingredients in our proposed scheme com-
pared to the existing successive compute-and-forward schemes
as in [21] and [5]. Firstly the scaling parameters introduced in
(25) allow users to adjust there rates according to the channel
gains and generally achieve larger rate regions. They will also
be important for deriving constant gap and capacity results
for the non-cognitive channel in Section V-A. Secondly as the
cognitive message acts as interference at cognitive receivers,
using dirty-paper coding against the cognitive message in
general improves the cognitive rates. But its implementa-
tion within successive compute-and-forward framework is not
straightforward and requires careful treatment, as shown later
in our analysis.

In general, let L ∈ [1 : K+1] be the total number of integer
sums1 the primary user decodes and we represent the L sets
of coefficients in the following coefficient matrix:

A =

a0(1) a1(1) a2(1) . . . aK(1)
...

...
...

...
...

a0(L) a1(L) a2(L) . . . aK(L)

 , (30)

where the `-th row a(`) := [a0(`), . . . , aK(`)] represents the
coefficients for the `-th integer sum

∑
k ak(`)tk. We will show

all L integer sums can be decoded reliably if the rate of user
k satisfies

Rk ≤ min
`
rk(a`|1:`−1, λ, β, γ) (31)

with

rk(a`|1:`−1, λ, β, γ) := max
α1,...,α`∈R

1

2
log+

(
σ2
k

N0(`)

)
. (32)

The notation a`|1:`−1 emphasizes the fact that when the pri-
mary decoder decodes the `-th sum with coefficients a(`), all
previously decoded sums with coefficients a(1), . . . ,a(`− 1)
are used. In the expression above σ2

k is given in (25) and N0(`)
is defined as

N0(`):= α2
` +

∑
k≥1

α`bk − ak(`)βk −
`−1∑
j=1

αjak(j)βk

2

λ̄kP

+

α`b0 − a0(`)β0 −
`−1∑
j=1

αja0(j)β0 − g(`)

2

P (33)

with

b0 := 1 +
∑
k≥1

bk
√
λk (34)

g(`) :=
∑
k≥1

`−1∑
j=1

αjak(j) + ak(`)

 γk. (35)

For any matrix A ∈ FL×(K+1)
p , let A′ ∈ FL×Kp denote the

matrix A without the first column. We define a set of matrices
as

A(L) := {A ∈ FL×(K+1)
p : rank(A) = m, rank(A′) = m− 1

for some integer m, 1 ≤ m ≤ L}. (36)

We will show that if the coefficients matrix A of the L
integer sums is in this set, the desired codeword t0 can be
reconstructed at the primary decoder. For cognitive receivers,
the decoding procedure is much simpler. They will decode the
desired codewords directly using lattice decoding.

Now we state the main theorem of this section formally and
the proof will be presented in the next section.

Theorem 1: For any given set of power-splitting parameters
λ, positive numbers β, γ and any coefficient matrix A ∈ A(L)
defined in (36) with L ∈ [1 : K + 1], define Lk := {` ∈ [1 :
L]|ak(`) 6= 0}. If rk(a`|1:`−1, λ, β, γ) > 0 for all ` ∈ Lk,

1There is no need to decode more than K+1 sums since there are K+1
users in total.
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k ∈ [0 : K], then the following rate is achievable for the
cognitive many-to-one interference channel

R0 ≤ min
`∈L0

r0(a`|1:`−1, λ, β, γ) (37a)

Rk ≤ min

{
min
`∈Lk

rk(a`|1:`−1, λ, β, γ),

max
νk∈R

1

2
log+ σ2

k

Nk(γk)

}
for k ≥ 1. (37b)

The expressions rk(a`|1:`−1, λ, β, γ) and σ2
k are defined in (32)

and (25) respectively, and Nk(γk) is defined as

Nk(γk) :=ν2
k + (νkhk − βk)2λ̄kP

+ (νk
√
λkhk − γk)2P (38)

Several comments are made on the above theorem. We use
rk(a`|1:`−1) to denote rk(a`|1:`−1, λ, β, γ) for brevity.
• In our coding scheme the primary user may decode more

than one integer sums. In general, decoding the `-th sum
gives a constraint on Rk:

Rk ≤ rk(a`|1:`−1). (39)

However notice that if ak(`) = 0, i.e., the codeword
tk is not in the `-th sum, then Rk does not have to be
constrained by rk(a`|1:`−1) since this decoding does not
concern Tx k. This explains the minimization of ` over
the set Lk in (37a) and (37b): the set Lk denotes all
sums in which the codeword tk participates and Rk is
determined by the minimum of rk(a`|1:`−1) over ` in
Lk.

• Notice that rk(a`|1:`−1) is not necessarily positive and a
negative value means that the `-th sum cannot be decoded
reliably. The whole decoding procedure will succeed only
if all sums can be decoded successfully. Hence in the
theorem we require rk(a`|1:`−1) > 0 for all ` ∈ Lk to
ensure that all sums can be decoded.

• The primary user can choose which integer sums to
decode, hence can maximize the rate over the number
of integer sums L and the coefficients matrix A in the
set A(L), which gives the best rate as:

Rk ≤ max
L∈[1:K+1]

max
A∈A(L)

min
`∈Lk

rk(a`|1:`−1, λ, β, γ).

The optimal A is the same for all k. To see this, notice
that the denominator inside the log of the expression
rk(a`|1:`−1) in (32) is the same for all k and the numera-
tor depends only on k but does not involve the coefficient
matrix A, hence the maximizing A will be the same for
all k.

• In the expression of rk(a`|1:`−1) in (32) we should
optimize over ` parameters α1, . . . , α`. The reason for in-
volving these scaling factors is that there are two sources
for the effective noise N0(`) at the lattice decoding stage,
one is the non-integer channel gain and the other is the
additive Gaussian noise in the channel. These scaling
factors are used to balance these two effects and find
the best trade-off between them, see [5, Section III] for
a detailed explanation. The optimal α` can be given

explicitly but the expressions are very complicated hence
we will not state it here. We note that the expression
rk(a1) with the optimized α1, βk = 1 and γk = 0 is the
computation rate of compute-and-forward in [5, Theorem
2].

• As mentioned in Section IV-A, the parameters β are
used for controlling the rate of individual users. Un-
like the original compute-and-forward coding scheme in
[5] where the transmitted signal xk contains the lattice
codeword tk in the fine lattice Λ, the transmitted signal
here contains a scaled version of the lattice codeword
tk/βk. By choosing different βk for different user k we
can adjust the rate of the individual user and achieve a
larger rate region in general. More information about this
modified scheme can be found in [6] where it is applied to
other scenarios where the compute-and-forward technique
is beneficial.

• For the cognitive users, their rates are constrained both
by their direct channel to the corresponding receiver,
and by the decoding procedure at the primary user. The
two terms in (37b) reflect these two constraints. The
parameters γ are used to (partially) cancel the interfer-
ence x0 at the cognitive receivers. For example if we
set γk = νk

√
λkhk, the cognitive receiver k will not

experience any interference caused by x0. However this
affects the computation rate at the primary user in a non-
trivial way through rk(a`|1:`−1) (cf. Equations (32) and
(33)).

This proposed scheme can be viewed as an extension of
the techniques used in the conventional schemes discussed in
section III. First of all it includes the dirty-paper coding within
the lattice codes framework and we can show the following
lemma.

Lemma 1: The achievable rates in Proposition 1 can be
recovered using Theorem 2 by decoding one trivial sum with
the coefficient a(1) = [1, 0, . . . , 0].

Proof: For given power-splitting parameters λ we decode
only one trivial sum at the primary user by choosing a(1)
such that a0(1) = 1 and ak(1) = 0 for k ≥ 1, which is the
same as decoding t0. First consider decoding at the primary
user. Using the expression (32) we have Rk ≤ rk(a(1)) =
1
2 log(σ2

k/N0(1)) with N0(1) = α2
1

(
1 +

∑
k≥1 b

2
kλ̄kP

)
+

(α1b0 − β0)2P and g(1) = 0 with this choice of a(1) for
any γ. After optimizing α1 we have

R0 ≤
1

2
log

(
1 +

b20P

1 +
∑
k≥1 b

2
kλ̄kP

)
. (40)

Notice that this decoding does not impose any constraint on
Rk for k ≥ 1.

Now we consider the decoding process at the cognitive
users. Choosing γk = νk

√
λkhk in (38) will give Nk(γk) =

ν2
k + (νkhk − βk)2λ̄kP and

max
νk∈R

1

2
log+ σ2

k

Nk(γk)
=

1

2
log(1 + h2

kλ̄kP ) (41)

with the optimal ν∗k = βkhkλ̄kP
λ̄kh2

kP+1
. This proves the claim.
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The proposed scheme can also be viewed as an exten-
sion of simultaneous nonunique decoding (Proposition 2).
Indeed, as observed in [22], SND can be replaced by either
performing the usual joint (unique) decoding to decode all
messages or treating interference as noise. The former case
corresponds to decoding K + 1 integer sums with a full
rank coefficient matrix and the latter case corresponds to
decoding just one integer sum with the coefficients of cognitive
users’ messages being zero. Obviously our scheme includes
these two cases. As a generalization, the proposed scheme
decodes just enough sums of codewords without decoding
the individual messages. Unfortunately it is difficult to show
analytically that the achievable rates in Proposition 2 can be
recovered using Theorem 1, since it would require the primary
receiver to decode several non-trivial sums and the achievable
rates are not analytically tractable for general channel gains.
However the numerical examples in Section IV-E will show
that the proposed scheme generally performs better than the
conventional schemes.

C. On the Optimal Coefficient Matrix A

From Theorem 1 and its following comments we see that
the main difficulty in evaluating the expression rk(a`|1:`−1)
in (37a) and (37b) is the maximization over all possible
integer coefficient matrices in the set A(L). This is an integer
programming problem and is analytically intractable for a
system with general channel gains b1, . . . , bK . In this section
we give an explicit formulation of this problem and an example
of the choice of the coefficient matrix.

The expression rk(a`|1:`−1) in (32) is not directly amenable
to analysis because finding the optimal solutions for the
parameters {α`} in (33) is prohibitively complex. Now we
give an alternative formulation of the problem. We write N0(`)
from Eq. (33) in the form of (43). It can be further rewritten
compactly as

N0(`) = α2
` +

∣∣∣∣∣∣
∣∣∣∣∣∣α`h− ã` −

`−1∑
j=1

αj ãj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

P (42)

where we define h, ãj ∈ RK for j ∈ [1 : `] in (44).
We will reformulate the above expression in such a way

that the optimal parameters {αj} have simple expressions and
the optimization problem on A can be stated explicitly. This
is shown in the following proposition.

Proposition 3: Given ãj , j ∈ [1 : ` − 1] and h in (44),
define

uj = ãj −
j−1∑
i=1

ãj |ui , j = 1, . . . `− 1

u` = h−
`−1∑
i=1

h|ui (45)

where x|ui := xTui
||ui||2

ui denotes the projection of a vector x

on ui. The problem of finding the optimal coefficient matrix
A maximizing rk(a`|1:`−1) in Theorem 1 can be equivalently

formulated as the following optimization problem

min
L∈[1:K+1]
A∈A(L)

max
`∈Lk

∣∣∣∣∣∣B1/2
` a(`)

∣∣∣∣∣∣ (46)

where a(`) is the coefficient vector of the `-th integer sum. The
set A(L) is defined in (36) and Lk := {` ∈ [1 : L]|ak(`) 6= 0}.
The notation B

1/2
` denotes a matrix satisfying2 B

1/2
` B

1/2
` =

B`, where B` is given by

B` := C

(
I−

`−1∑
i=1

uju
T
j

||uj ||2
− (u`u

T
` )P

1 + P ||u`||2

)
CT , (47)

and the matrix C is defined as

C :=


β0 0 0 . . . 0

γ1 β1

√
λ̄1 0 . . . 0

γ2 0 β2

√
λ̄2 . . . 0

...
...

...
...

...
γK 0 0 . . . βK

√
λ̄K

 . (48)

Proof: The proof is given in Appendix B.
The above proposition makes the optimization of A explicit,

although solving this problem is still a computationally expen-
sive task. We should point out that this problem is related to the
shortest vector problem (SVP) where one is to find the shortest
non-zero vector in a lattice. In particular let B ∈ RK×K be
a matrix whose columns constitute one set of basis vectors of
the lattice, the SVP can be written as

min
a∈Zk,a6=0

||Ba|| . (49)

Our problem in Proposition 3 is more complicated than solving
L shortest vector problems. Because the L matrices B

1/2
` are

related through the optimal integer vectors a(`) in a nontrivial
manner and the objective in our problem is to minimize the
maximal vector length max`

∣∣∣∣∣∣B1/2
` a(`)

∣∣∣∣∣∣ of the L lattices.
Furthermore the vectors a(1), . . . ,a(`) should lie in the set
A(L) and the number of sums L is also an optimization
variable. A low complexity algorithm has been found to solve
this instance of SVP for the compute-and-forward problem in
simple cases, see [23].

Here we provide an example on the optimal number of sums
we need to decode. Consider a many-to-one channel with three
cognitive users. We assume b1 = 3.5 and vary b2 and b3 in
the range [0, 6]. We set the direct channel gains hk = 1 and
consider four different power constraints. Now the goal is to
maximize the sum rate

max
L∈[1:4]
A∈A(L)

4∑
k=0

min
`∈Lk

rk(a1:`−1, λ, β, γ) (50)

with respect to L ∈ [1 : 4], A ∈ A(L) and β ∈ R4. For
simplicity we assume λk = γk = 0 for k ≥ 1. Here we search
for all possible A and are interested in the optimal L: the
optimal number of sums that need to be decoded.

2It is shown that N0 = Pa(`)TB`a(`) hence B` is positive semi-definite
because N0 ≥ 0. The guarantees the existence of B1/2

` .
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N0(`) := α2
`+
∑
k≥1

α`bk√λ̄k − ak(`)βk
√
λ̄k −

`−1∑
j=1

αjak(j)βk
√
λ̄k

2

P

+

α`b0 − a0(`)β0 −
∑
k≥1

ak(`)γk −
`−1∑
j=1

αj

a0(j)β0 +
∑
k≥1

ak(j)γk

2

P. (43)

h =
[
b0, b1

√
λ̄1, . . . , bK

√
λ̄k

]
ãj =

a0(j)β0 +
∑
k≥1

ak(j)γk, a1(j)β1

√
λ̄1, . . . , aK(j)βK

√
λ̄K

 , j ∈ [1 : `]. (44)

0 2 4 6
0

2

4

6

0 2 4 6
0

2

4

6

 

 

one sum

two sums

three sums

four sums

0 2 4 6
0

2

4

6

0 2 4 6
0

2

4

6

P = 3P = 1

P = 5 P = 10

Fig. 2. We consider a many-to-one channel with three cognitive users and
b1 = 3.5. The horizontal and vertical axes are the range of b2 and b3,
respectively. The objective is to maximize the sum rate. The red, white, black
and blue areas denote the region of different channel gains, in which the
number of the best integer sums (the optimal L) is one, two, three and four
respectively. Here the patterns are shown for four different power constraints.

The four plots in Figure 2 show the optimal number of
integer sums that the primary user will decode for different
power constraints where P equals 1, 3, 5 or 10. The red area
denotes the channel gains where the optimal L equals 1,
meaning we need only decode one sum to optimize the sum
rate, and so on. Notice that the sign of the channel coefficients
b2, b3 will not change the optimization problem hence the
patterns should be symmetric over both horizontal and vertical
axes. When power is small (P = 1) we need to decode
more than two sums in most channel conditions. The patterns
for P equals 3, 5 or 10 look similar but otherwise rather
arbitrary–reflecting the complex nature of the solution to an
integer programming problem. One observation from the plots

is that for P relatively large, with most channel conditions
we only need to decode two sums and we do not decode
four sums, which is equivalent to solving for all messages.
This confirms the point we made in the previous section: the
proposed scheme generalizes the conventional scheme such
as Proposition 2 to decode just enough information for its
purpose, but not more.

D. Proof of Theorem 1

In this section we provide a detailed proof for Theorem 1.
We also discuss the choice of the fine lattices Λk introduced in
IV-A. The encoding procedure has been discussed in section
IV-B, now we consider the decoding procedure at the primary
user. The received signal y0 at the primary decoder is

y0 = x0 +
∑
k≥1

bkxk + z0 (51)

= (1 +
∑
k≥1

bk
√
λk)x0 +

∑
k≥1

bkx̂k + z0 (52)

= b0x0 +
∑
k≥1

bkx̂k + z0 (53)

where we define b0 := 1 +
∑
k≥1 bk

√
λk.

Given a set of integers a(1) := {ak(1) ∈ Z, k ∈ [0 : K]}
and some scalar α1 ∈ R, the primary decoder can form the
following:

ỹ
(1)
0 = α1y0 −

∑
k≥0

ak(1)βkdk

= (α1b0 − a0(1)β0)x0 +
∑
k≥1

(α1bk − ak(1)βk)x̂k + α1z0

+
∑
k≥1

ak(1)βkx̂k + a0(1)β0x0 −
∑
k≥0

ak(1)βkdk.
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Rewrite the last three terms in the above expression as∑
k≥1

ak(1)βkx̂k + a0(1)β0x0 −
∑
k≥0

ak(1)βkdk

(b)
=
∑
k≥1

ak(1)

(
βk(

tk
βk
− γkx0

βk
)− βkQΛs

k
βk

(
tk
βk

+ dk −
γkx0

βk
)

)
+a0(1)

(
β0t0 − β0QΛs0

β0

(
t0

β0
+ d0)

)
(c)
= −

∑
k≥1

ak(1)γkx0 + a0(1)(t0 −QΛs0
(t0 + β0d0))

+
∑
k≥1

ak(1)
(
tk −QΛsk

(tk + βkdk − γkx0)
)

(d)
= −

∑
k≥1

ak(1)γkx0 +
∑
k≥0

ak(1)̃tk. (54)

In step (b) we used the definition of the signals x0 and x̂k from
Eqn. (28b). Step (c) uses the identity QΛ(βx) = βQΛ

β
(x) for

any real number β 6= 0. In step (d) we define t̃k for user k as

t̃0 := t0 −QΛs0
(t0 + βkd0) (55)

t̃k := tk −QΛsk
(tk + βkdk − γkx0) k ∈ [1 : K]. (56)

Define g(1) :=
∑
k≥1 ak(1)γk and substitute the expression

(54) into ỹ
(1)
0 to get

ỹ
(1)
0 = (α1b0 − a0(1)β0 − g(1))x0 +

∑
k≥1

(α1bk − ak(1)βk)x̂k

+α1z0 +
∑
k≥0

ak(1)t̃k

= z̃0(1) +
∑
k≥0

ak(1)t̃k (57)

where we define the equivalent noise z̃0(1) at the primary
receiver as:

z̃0(1) := α1z0 + (α1b0 − a0(1)β0 − g(1))x0

+
∑
k≥1

(α1bk − ak(1)βk)x̂k (58)

where b0 := 1 +
∑
k≥1 bk

√
λk.

Notice that we have t̃k ∈ Λk since tk ∈ Λk and Λsk ⊆ Λc
due to the lattice code construction (recall that Λc denotes the
coarsest lattice among all Λk for k ∈ [0 : K]). Furthermore
because all Λk are chosen to form a nested lattice chain,
the integer combination

∑
k≥0 ak(1)̃tk also belongs to the

finest lattice among all Λk with ak(1) 6= 0. We denote this
finest lattice as Λf , i.e., Λk ⊆ Λf for all k ∈ [0 : K]
satisfying ak(1) 6= 0. Furthermore, the equivalent noise z̃0(1)
is independent of the signal

∑
k≥0 ak(1)̃tk thanks to the

dithers dk.
The primary decoder performs lattice decoding to decode

the integer sum
∑
k≥0 ak(1)̃tk by quantizing ỹ

(1)
0 to its

nearest neighbor in Λf . A decoding error occurs when ỹ
(1)
0

falls outside the Voronoi region around the lattice point∑
k≥0 ak(1)̃tk. The probability of this event is equal to the

probability that the equivalent noise z̃0(1) leaves the Voronoi
region of the finest lattice, i.e., Pr(z̃0(1) /∈ Vf ) where Vf

denotes the Voronoi region of Λf . The same as in the proof
of [5, Theorem 5], the probability Pr(z̃0(1) /∈ Vf ) goes to zero
if the probability Pr(z∗0(1) /∈ Vf ) goes to zero where z∗0(1) is
a zero-mean Gaussian vector with i.i.d entries whose variance
equals the variance of the noise z̃0(1):

N0(1) = α2
1 + (α1b0 − a0(1)β0 − g(1))2P

+
∑
k≥1

(α1bk − ak(1)βk)2λ̄kP.

By the AWGN goodness property (Definition 3) of Λf , the
probability Pr(z∗0(1) /∈ Vf ) goes to zero exponentially if

(Vol (Vf ))2/n

N0(1)
> 2πe. (59)

Since Λf is the finest lattice in the nested lattice chain formed
by Λk, k ∈ [0 : K] satisfying ak(1) 6= 0, namely

Vol (Vf ) = min
k∈[0:K],ak(1) 6=0

Vol (Vk),

the inequality in (59) holds if it holds that

(Vol (Vk))2/n

N0(1)
> 2πe. (60)

for all k ∈ [0 : K] satisfying ak(1) 6= 0. Hence using the rate
expression

Rk =
1

n
log

Vol (Vsk)

Vol (Vk)
(61)

we see the error probability goes to zero, or equivalently (59)
holds, if

22Rk ≤ (Vol (Vsk))2/n

2πeN0(1)
(62)

for all k ∈ [0 : K] satisfying ak(1) 6= 0. For Tx k with
ak(1) = 0, decoding this integer sum will not impose any
constraint on the rate Rk.

Recalling the fact that Λsk is good for quantization (Defini-
tion 4), we have

σ2
k

(Vol (Vsk))2/n
<

(1 + δ)

2πe
(63)

for any δ > 0. We conclude that lattice decoding will be
successful if

Rk < rk(a1, λ, β, γ) :=
1

2
log

σ2
k

N0(1)
− 1

2
log(1 + δ) (64)

that is

R0 <
1

2
log+

(
β2

0P

α2
1 + P ||α1h− ã||2

)
(65a)

Rk <
1

2
log+

(
(1− λk)β2

kP

α2
1 + P ||α1h− ã||2

)
k ∈ [1 : K] (65b)

if we choose δ arbitrarily small and define

h := [b0, b1
√
λ̄1, . . . , bK

√
λ̄K ]

ã := [a0(1)β0 + g(1), a1(1)β1

√
λ̄1, . . . , aK(1)βK

√
λ̄K ].

Notice we can optimize over α1 to maximize the above rates.
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At this point, the primary user has successfully decoded one
integer sum of the lattice points

∑
k≥0 akt̃k. As mentioned

earlier, we may continue decoding other integer sums with
the help of this sum. The method of performing successive
compute-and-forward in [21] is to first recover a linear com-
bination of all transmitted signals x̃k from the decoded integer
sum and use it for subsequent decoding. Here we are not able
to do this because the cognitive channel input x̂k contains x0

which is not known at Receiver 0. In order to proceed, we use
the observation that if

∑
k≥0 akt̃k can be decoded reliably,

then we know the equivalent noise z̃0(1) and can use it for
the subsequent decoding.

In general assume the primary user has decoded `−1 integer
sums

∑
k ak(j)tk, j ∈ [1 : `−1], ` ≥ 2 with positive rates, and

about to decode another integer sum with coefficients a(`). We
show in Appendix A that with the previously known z̃0(`−1)
for ` ≥ 2, the primary decoder can form

ỹ
(`)
0 = z̃0(`) +

∑
k≥0

ak(`)̃tk (66)

with the equivalent noise z̃0(`)

z̃0(`):= α`z0 +
∑
k≥1

α`bk − ak(`)βk −
`−1∑
j=1

αjak(j)βk

 x̂k

+

α`b0 − a0(`)β0 −
`−1∑
j=1

αja0(j)β0 − g(`)

x0 (67)

where g(`) is defined in (35) and the scaling factors α1, . . . , α`
are to be optimized.

In the same vein as we derived (64), using ỹ
(l)
0 we can de-

code the integer sums of the lattice codewords
∑
k≥0 ak(`)̃t0

reliably using lattice decoding if the fine lattice satisfy

(Vol (Vk))2/n

N0(`)
> 2πe (68)

for k satisfying ak(`) 6= 0 and we use N0(`) to denote the
variance of the equivalent noise z̃0(`) per dimension given in
(33). Equivalently we require the rate Rk to be smaller than

rk(a`|1:`−1, λ, β, γ) := max
α1,...,α`∈R

1

2
log+

(
σ2
k

N0(`)

)
(69)

where σ2
k is given in (25). Thus we arrive at the same

expression in (32) as claimed.
Recalling the definition of the set A(L) in (36), we now

show that if the coefficient matrix A is in this set, the term
t̃0 can be solved using the L integer sums with coefficients
a(1), . . . ,a(L).

For the case rank(A) = K + 1 the statement is trivial. For
the case rank(A) = m ≤ L < K + 1, we know that by
performing Gaussian elimination on A′ ∈ ZL×K with rank
m − 1, we obtain a matrix whose last L − m + 1 rows are
zeros. Notice that A ∈ ZL×K+1 is a matrix formed by adding
one more column in front of A′. So if we perform exactly the
same Gaussian elimination procedure on the matrix A, there
must be at least one row in the last L−m+1 row whose first
entry is non-zero, since rank(A) = rank(A′) + 1. This row

will give the value of t̃0. Finally the true codeword t0 can be
recovered as

t0 = [t̃0]mod Λs0. (70)

Now we consider the decoding procedure at cognitive
receivers, for whom it is just a point-to-point transmission
problem over Gaussian channel using lattice codes. The cog-
nitive user k processes its received signal for some νk as

ỹk = νkyk − βkdk
= νk(zk +

√
λkhkx0) + (νkhk − βk)x̂k + βkx̂k − βkdk

= νk(zk +
√
λkhkx0) + (νkhk − βk)x̂k − βkdk

+QΛsk
(tk + βkdk − γkx0) + βk(

tk
βk

+ dk −
γk
βk

x0)

= z̃k + t̃k.

In the last step we define the equivalent noise as

z̃k := νkzk + (νkhk − βk)x̂k + (νk
√
λkhk − γk)x0 (71)

and t̃k as in (56).
Using the same argument as before, we can show that the

codeword t̃k can be decoded reliably using lattice decoding if

(Vol (Vk))2/n

Nk(γk)
> 2πe (72)

for all k ≥ 1 where Nk(γ) is the variance of the equivalent
noise z̃k per dimension given in (38). Equivalently the cogni-
tive rate Rk should satisfy

Rk < max
νk

1

2
log

σ2
k

Nk(γk)
. (73)

Similarly we can obtain tk from t̃k as tk = [t̃k]mod Λsk. This
completes the proof of Theorem 1.

We also determined how to choose the fine lattice Λk.
Summarizing the requirements in (72) and (68) on Λk for
successful decoding, the fine lattice Λ0 of the primary user
satisfies

(Vol (V0))2/n > 2πeN0(`) (74)

for all ` where a0(`) 6= 0 and the fine lattice Λk of the
cognitive user k, k ∈ [1 : K], satisfies

(Vol (Vk))2/n > max{2πeN0(`), 2πeNk(γk)} (75)

for all ` where ak(`) 6= 0. As mentioned in Section IV-A, the
fine lattices Λk are chosen to form a nested lattice chain. Now
the order of this chain can be determined by the volumes of
Vk given above.

E. Symmetric Cognitive Many-to-One Channels

As we have seen in Section IV-C, it is in general difficult
to describe the optimal coefficient matrix A. However we can
give a partial answer to this question if we focus on one simple
class of many-to-one channels. In this section we consider a
symmetric system with bk = b and hk = h for all k ≥ 1
and the case when all cognitive users have the same rate, i.e.,
Rk = R for k ≥ 1. By symmetry the parameters λk, βk and
γk should be the same for all k ≥ 1. In this symmetric setup,
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one simple observation can be made regarding the optimal
number of integer sums L and the coefficient matrix A.

Lemma 2: For the symmetric many-to-one cognitive inter-
ference channel, we need to decode at most two integer sums,
L ≤ 2. Furthermore, the optimal coefficient matrix is one of
the following two matrices:

A1 =
(
1 0 . . . 0

)
(76)

or

A2 =

(
c0 c . . . c
0 1 . . . 1

)
(77)

for some integer c0 and nonzero integer c.
Proof: For given λ, β and γ, to maximize the rate Rk

with respect to A is the same as to minimize the equivalent
noise variance N0(`) in (33). We write out N0(1) for decoding
the first equation (` = 1) with βk = β, λk = λ and γk = γ
for all k ≥ 1:

N0(1) = α2
1 +

∑
k≥1

(α1b− ak(1)β)
2
λ̄P + (α1b0 − a0(1)β0

−γ
∑
k≥1

ak(1))2P

The above expression is symmetric on ak(1) for all k ≥ 1
hence the minimum is obtained by letting all ak(1) be the
same. It is easy to see that the same argument holds when we
induct on `, i.e., for any ` ∈ [1 : L], the minimizing ak(`) is
the same for k ≥ 1. Clearly A1 and A2 satisfy this property.

To see why we need at most two integer sums: the case
with A1 when the primary decoder decodes one sum is trivial;
now consider when it decodes two sums with the coefficients
matrix A2. First observe that A2 is in the set A(2), meaning
we can solve for t0. Furthermore, there is no need to decode
a third sum with ak(3) all equal for k ≥ 1, because any other
sums of this form can be constructed by using the two sums
we already have. We also mention that the coefficient matrix

A3 =

(
c0 c . . . c
1 0 . . . 0

)
(78)

is also a valid choice and will give the same result as A2.
Now we give some numerical results comparing the pro-

posed scheme with the conventional schemes proposed in
Section III for the symmetric cognitive many-to-one channels.

Figure 3 shows the achievable rate region for a symmetric
cognitive many-to-one channel. The dashed and dot-dash lines
are achievable regions with DPC in Proposition 1 and SND
at Rx 0 in Proposition 2, respectively. The solid line depicts
the rate region using the proposed scheme in Theorem 1.
Notice the achievable rates based on the simple conventional
schemes in Proposition 1 and 1 are not much better than the
trivial time sharing scheme in the multi-user scenario, due
to their inherent inefficiencies on interference suppression.
On the other hand, the proposed scheme based on structured
codes performs interference alignment in the signal level,
which gives better interference mitigation ability at the primary
receiver. The effect is emphasized more when we study the
non-cognitive system in Section V. The outer bound in Figure

3 is obtained by considering the system as a two-user multiple-
antenna broadcast channel whose capacity region is known. A
brief description to this outer bound is given in Appendix C.
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Fig. 3. Achievable rate region for a many-to-one symmetric cognitive many-
to-one channel with power P = 10, channel gain bk = 4, hk = 1.5 for
k ≥ 1 and K = 3 cognitive users.The plot compares the different achievable
rates for the cognitive many-to-one channel. The horizontal and vertical axis
represents the primary rate R0 and cognitive rate Rk, k ≥ 1, respectively.

It is also instructive to study the system performance as a
function of the channel gain b. We consider a symmetric chan-
nel with h fixed and varying value of b. For different values
of b, we maximize the symmetric rate Rsym := min{R0, R}
where R = Rk for k ≥ 1 by choosing optimal A, λ and β,
i.e.,

max
A∈A(2)
λ,β

min

{
min
`∈L0

r0(a`|1:`−1), min
`∈Lk

rk(a`|1:`−1),

max
νk∈R

1

2
log+ σ2

k

Nk(γk)

}
(79)

where the first term is the rate of the primary user and the
minimum of the second and the third term is the rate of
cognitive users. Notice λk, βk, rk(a`|1:`−1) are the same for all
k ≥ 1 in this symmetric setup. Figure 4 shows the maximum
symmetric rate of different schemes with increasing b.

V. NON-COGNITIVE MANY-TO-ONE CHANNELS

As an interesting special case of the cognitive many-to-one
channel, in this section we will study the non-cognitive many-
to-one channels where user 1, . . . ,K do not have access to the
message W0 of User 0. The many-to-one interference channel
has also been studied, for example, in [9], where several
constant-gap results are obtained. Using the coding scheme
introduced here, we are able to give some refined result to
this channel in some special cases.

It is straightforward to extend the coding scheme of the
cognitive channel to the non-cognitive channel by letting users
1, . . .K not split the power for the message W0 but to transmit
their own messages only. The achievable rates are the same as
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cross gain b
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Proposed Scheme

SND at Rx0

Dirty Paper Coding

Fig. 4. The maximum symmetric rates Rsym of different schemes for a
many-to-one cognitive interference network with power P = 5 and K = 3
cognitive users where Rk = R for k ≥ 1. We set h = 1 and vary the cross
channel gain b in the interval [0 : 10]. Notice the maximum symmetric rate
is upper bounded by 1

2
log(1+h2P ). We see the proposed scheme performs

better than the other two schemes in general. When the interference becomes
larger, the proposed scheme quickly attains the maximum symmetric rate.
The joint decoding method approaches the maximum symmetric rate much
slower, since it requires the cross channel gain to be sufficiently large such
that the primary decoder can (nonuniquely) decode all the messages of the
cognitive users. The dirty paper coding approach cannot attain the maximum
symmetric rate since the primary decoder treats interference as noise.

in Theorem 1 by setting all power splitting parameters λk to
be zero and γk to be zero because x0 will not be interference
to cognitive users. Although it is a straightforward exercise to
write out the achievable rates, we still state the result formally
here.

Theorem 2: For any given positive numbers β and coeffi-
cient matrix A ∈ A(L) in (36) with L ∈ [1 : K + 1], define
Lk := {` ∈ [1 : L]|ak(`) 6= 0}. If rk(a`|1:`−1, λ, β, γ) > 0 for
all ` ∈ Lk, k ∈ [0 : K], then the following rate is achievable
for the many-to-one interference channel

R0 ≤ min
`∈L0

r̃0(a`|1:`−1, β) (80a)

Rk ≤ min

{
1

2
log
(
1 + h2

kP
)
, min
`∈Lk

r̃k(a`|1:`−1, β)

}
(80b)

for k ∈ [1 : K] with

r̃k(a`|1:`−1, β) := max
α1,...,α`∈R

1

2
log+

(
β2
kP

Ñ0(`)

)
(81)

where Ñ0(`) is defined as

Ñ0(`) := α2
` +

∑
k≥1

α`bk − ak(`)βk −
`−1∑
j=1

αjak(j)βk

2

P

+

α` − a0(`)β0 −
`−1∑
j=1

αja0(j)β0

2

P. (82)

Proof: The proof of this result is almost the same as
the proof of Theorem 1 in Section IV-D. The only change in
this proof is that the user 1, . . . ,K do not split the power to

transmit for the primary user and all γk are set to be zero since
x0 will not act as interference to cognitive receivers. We will
use lattice codes described in Section IV-A but adjust the code
construction. Given positive numbers β and a simultaneously
good fine lattice Λ, we choose K + 1 simultaneously good
lattices such that Λsk ⊆ Λk with second moments σ2(Λsk) =
β2
kP for all k ∈ [0 : K].
Each user forms the transmitted signal as

xk =

[
tk
βk

+ dk

]
mod Λsk/βk, k ∈ [0 : K] (83)

The analysis of the decoding procedure at all receivers is
the same as in Section IV-D. User 0 decodes integer sums
to recover t0 and other users decode their message tk di-
rectly from the channel output using lattice decoding. In
fact, the expression r̃k(a`|1:`−1, β) in (81) is the same as
rk(a`|1:`−1, λ, β, γ) in (32) by letting λk = γk = 0 in the
later expression. Furthermore we have

max
νk∈R

1

2
log

σ2
k

Nk(γk = 0)
=

1

2
log(1 + h2

kP ) (84)

for any choice of βk, k ≥ 1.
For a simple symmetric example, we compare the achiev-

able rate region of the cognitive many-to-one channel (The-
orem 1) with the achievable rate region of the non-cognitive
many-to-one channel (Theorem 2) in Figure 5. The parameters
are the same for both channel. This shows the usefulness of
the cognitive messages in the system.
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Fig. 5. A many-to-one symmetric interference channel with power P = 10,
channel gain bk = 4, hk = 1.5 for k ≥ 1 and K = 3 cognitive users.
This plot compares the different achievable rate regions for the cognitive and
non-cognitive channel. The horizontal and vertical axis represents the primary
rate R0 and cognitive rate Rk, k ≥ 1, respectively. The rate region for the
cognitive channel given by Theorem 1 is plotted in solid line. The dashed line
gives the achievable rate region in Theorem 2 for the non-cognitive many-to-
one channel.

A. Capacity Results for Non-cognitive Symmetric Channels

Now we consider a symmetric non-cognitive many-to-one
channel where bk = b and hk = h for k ≥ 1. In [9], an
approximate capacity result is established within a gap of
(3K + 3)(1 + log(K + 1)) bits per user for any channel gain.
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In this section we will give refined results for the symmetric
many-to-one channel. The reason we restrict ourselves to
the symmetric case is that, for general channel gains the
optimization problem involving the coefficient matrix A is
analytically intractable as discussed in Section IV-C, hence
it is also difficult to give explicit expressions for achievable
rates. But for the symmetric many-to-one channel we are able
to give a constant gap result as well as a capacity result when
the interference is strong. First notice that the optimal form
of the coefficient matrix for the cognitive symmetric channel
given in Lemma 2 also applies in this non-cognitive symmetric
setting.

Theorem 3: Consider a symmetric (non-cognitive) many-
to-one interference channel with K + 1 users. If |b| ≥
|h|
⌈√

P
⌉

, then each user is less than 0.5 bit from the
capacity for any number of users. Furthermore, if |b| ≥√

(1+P )(1+h2P )
P , each user can achieve the capacity, i.e.,

R0 = 1
2 log(1 + P ) and Rk = 1

2 log(1 + h2P ) for all k ≥ 1.
Proof: For the symmetric non-cognitive many-to-one

channel, we have the following trivial capacity bound

R0 ≤
1

2
log(1 + P ) (85)

Rk ≤
1

2
log(1 + h2P ). (86)

To show the constant gap result, we choose the coefficients
matrix of the two sums to be

A =

(
1 c . . . c
0 1 . . . 1

)
(87)

for some nonzero integer c. Furthermore we choose β0 = 1
and βk = b/c for all k ≥ 1. In Appendix D we use Theorem
2 to show the following rates are achievable:

R0 =
1

2
log+ P

Rk = min

{
1

2
log+ b2P

c2
,

1

2
log+ b2,

1

2
log(1 + h2P )

}
.

If |b| ≥ |h|
⌈√

P
⌉

, choosing c =
⌈√

P
⌉

will ensure Rk ≥
1
2 log+ h2P .

Notice that for P ≤ 1, then 1
2 log(1 + P ) ≤ 0.5 hence the

claim is vacuously true. For P ≥ 1, we have

1

2
log(1 + P )−R0 ≤

1

2
log

1 + P

P
≤ 1

2
log 2 = 0.5 bit

With the same argument we have

1

2
log(1 + h2P )−Rk ≤ 0.5 bit (88)

To show the capacity result, we set β0 = 1 and βk = β
for all k ≥ 1. The receiver 0 decodes two sums with the
coefficients matrix

A =

(
0 1 . . . 1
1 0 . . . 0

)
. (89)

The achievable rates using Theorem 2 is shown in Appendix
D to be

R0 =
1

2
log(1 + P ) (90)

Rk = min

{
1

2
log

(
Pb2

1 + P

)
,

1

2
log(1 + h2P )

}
. (91)

The inequality

Pb2

1 + P
≥ 1 + h2P (92)

is satisfied if it holds that

b2 ≥ (1 + P )(1 + h2P )

P
. (93)

This completes the proof.
Comparing to the constant gap result in [9], our result only

concerns a special class of many-to-one channel, but gives a
gap which does not depend on the number of users K. We
also point out that in [24], a K-user symmetric interference
channel is studied where it was shown that if the cross channel
gain h satisfies |h| ≥

√
(1+P )2

P , then every user achieves the
capacity 1

2 log(1 +P ). This result is very similar to our result
obtained here and is actually obtained using the same coding
technique.

APPENDIX A
DERIVATIONS IN THE PROOF OF THEOREM 1

We give the proof for the claim made in Section IV-D that
we could form the equivalent channel

ỹ
(`)
0 = z̃0(`) +

∑
k≥0

ak(`)t̃k

with z̃0(`) defined in (67) when the primary decoder decodes
the `-th integer sum

∑
k≥0 ak(`)t̃k for ` ≥ 2.

We first show the base case for ` = 2. Since
∑
k≥0 ak(1)t̃k

is decoded, the equivalent noise z̃0(1) in Eqn. (58) can be
inferred from ỹ0. Given α20, α21 we form the following with
y0 in (53) and z̃0(1)

ỹ
(2)
0 := α20y0 + α21z̃0(1)

= (α20 + α21α1)z0

+
∑
k≥1

((α20 + α20α1)bk − α21ak(1)βk)x̂k

+((α20 + α21α1)b0 − α21a0(1)β0 − α21g(1))x0

= α′2z0 +
∑
k≥1

(α′2bk − α′1ak(1)βk)x̂k

+(α′2b0 − α′1a0(1)β0 − α′1g(1))x0

by defining α′1 := α21 and α′2 := α20+α21α1. Now following
the same step for deriving ỹ

(1)
0 in (57), we can rewrite ỹ

(2)
0

as

ỹ
(2)
0 =

∑
k≥0

ak(2)t̃k + z̃0(2) (94)

with

z̃0(2) := α′2z0 +
∑
k≥1

(α′2bk − ak(2)βk − α′1ak(1)βk)x̂k

+(α′2b0 − a0(2)β0 − α′1a0(1)β0 − g(2))x0
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This establishes the base case by identifying α′i = αi for
i = 1, 2.

Now assume the expression (67) is true for ` − 1 (` ≥ 3)
and we have inferred z̃0(m) from ỹ

(m)
0 using the decoded sum∑

k≥0 ak(m)t̃k for all m ≤ 1, . . . , ` − 1, we will form ỹ
(`)
0

with ` numbers α`0, . . . , α``−1 as

ỹ
(`)
0 := α`0y0 +

`−1∑
m=1

α`mz̃0(m)

= α′`z0 +
∑
k≥1

(α′`bk − βkC`−1(k)) x̂k

+

(
α′`b0 − β0C`−1(0)−

`−1∑
m=1

α`mg(m)

)
x0

with

α′` := α`0 +

`−1∑
m=1

α`mαm (95)

C`−1(k) :=

`−1∑
m=1

α`m

ak(m) +

m−1∑
j=1

αjak(j)

 . (96)

Algebraic manipulations allow us to rewrite C`−1(k) as

C`−1(k) =

`−1∑
m=1

α`m + αm

`−1∑
j=m+1

α`j

 ak(m) (97)

=

`−1∑
m=1

α′mak(m) (98)

by defining α′m := α`m+αm
∑`−1
j=m+1 α`j for m = 1, . . . , `−

1. Substituting the above into ỹ
(`)
0 we get

ỹ
(`)
0 = α′`z0 +

∑
k≥1

(
α′`bk − βk

`−1∑
m=1

α′mak(m)

)
x̂k

+

(
α′`b0 − β0

`−1∑
m=1

α′ma0(m)−
`−1∑
m=1

α`mg(m)

)
x0.

Together with the definition of g(m) in (35) and some algebra
we can show

`−1∑
m=1

a`mg(m) =

K∑
k=1

γkC`−1(k) (99)

=

K∑
k=1

(
`−1∑
m=1

α′mak(m)

)
γk. (100)

Finally using the same steps for deriving ỹ
(1)
0 in (57) and

identifying α′m = αm for m = 1, . . . , `, it is easy to see that
we have

ỹ
(`)
0 =

∑
k≥0

ak(`)t̃k + z̃0(`) (101)

with z̃0(`) claimed in (67).

APPENDIX B
PROOF OF PROPOSITION 3

For any given set of parameters {αj , j ∈ [1 : `]} in the
expression N0(`) in (42) , we can always find another set of
parameters {α′j , j ∈ [1 : `]} and a set of vectors {uj , j ∈ [1 :
`]}, such that

α`h +

`−1∑
j=1

αj ãj =
∑̀
j=1

α′juj (102)

as long as the two sets of vectors, {h, ãj , j ∈ [1 : ` − 1]}
and {uj , j ∈ [1 : `]} span the same subspace. If we choose
an appropriate set of basis vectors {uj}, the minimization
problem of N0(`) can be equivalently formulated with the set
{uj} and new parameters {α′j} where the optimal {α′j} have
simple solutions. Notice that {uj , j ∈ [1 : `]} in Eqn. (45) are
obtained by performing the Gram-Schmidt procedure on the
set {h, ãj , j ∈ [1 : ` − 1]}. Hence the set {uj , j ∈ [1 : `]}
contains orthogonal vectors and spans the same subspace as
the set {h, ãj , j ∈ [1 : ` − 1]} does. For any ` ≥ 1, the
expression N0(`) in (42) can be equivalently rewritten as

N0(`) = α′2` +

∣∣∣∣∣∣
∣∣∣∣∣∣
∑̀
j=1

α′juj − ã`

∣∣∣∣∣∣
∣∣∣∣∣∣
2

P (103)

with {uj} defined above and some {α′j}. Due to the orthogo-
nality of vectors {uj}, we have the following simple optimal
solutions for {α′∗j } which minimize N0(`):

α′∗j =
ãT` uj

||uj ||2
, j ∈ [1 : `− 1] (104)

α′∗` =
P ãT` u`

P ||u`||2 + 1
. (105)

Substituting them back to N0(`) in (103) we have

N0(`) = P ||ã`||2 −
`−1∑
j=1

(ãT` uj)
2P

||uj ||2
− P 2(uT` ã`)

2

1 + P ||u`||2

= P ãT`

(
I−

`−1∑
i=1

uju
T
j

||uj ||2
− (u`u

T
` )P

1 + P ||u`||2

)
ã`

= Pa(`)TB`a(`)

with B` given in (47). As we discussed before, maximizing
rk(a`|1:`−1) is equivalent to minimizing N0(`) and the optimal
coefficients a(`), ` ∈ [1 : L] are the same for all users. This
proves the claim.

APPENDIX C
AN OUTER BOUND ON THE CAPACITY REGION

In this section we give a simple outer bound on the capacity
region of the cognitive many-to-one channel, which is used for
the numerical evaluation in Figure 3, Section IV-E. Notice that
if we allow all transmitters k = 0, . . . ,K to cooperate, and
allow the cognitive receivers k = 1, . . . ,K to cooperate, then
the system can be seen as a 2-user broadcast channel where the
transmitter has K+1 antennas. The two users are the primary
receiver and the aggregation of all cognitive receivers with K
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antennas. Obviously the capacity region of this resulting 2-
user MIMO broadcast channel will be a valid outer bound on
the capacity region of the cognitive many-to-one channel. The
capacity region CBC of the broadcast channel is given by (see
[15, Ch. 9] for example)

CBC = R1

⋃
R2 (106)

where R1 is defined as

R1 ≤
1

2
log
|H1(K1 + K2)HT

1 + I|
|H1K2HT

2 + I|
(107)

R2 ≤
1

2
log |H2K2G

T
2 + I| (108)

and R2 defined similarly with all subscripts 1 and 2 in R1

swapped. The channel matrices H1 ∈ R1×(K+1) and H2 ∈
RK×(K+1) are defined as

H1 =
[
1 b1 . . . bK

]
(109)

H2 =


0 h1 0 . . . 0
0 0 h2 . . . 0
...

...
...

. . .
...

0 0 0 . . . hK

 (110)

where H1 denotes the channel from the aggregated transmit-
ters to the primary receiver and H2 denotes the channel to all
cognitive receivers. The variables K1,K2 ∈ R(K+1)×(K+1)

should satisfy the condition

tr(K1 + K2) ≤ (K + 1)P (111)

which represents the power constraint for the corresponding
broadcast channel3. As explained in [15, Ch. 9], the problem of
finding the region CBC can be rewritten as convex optimization
problems which are readily solvable using standard convex
optimization tools.

APPENDIX D
DERIVATIONS IN THE PROOF OF THEOREM 3

We give detailed derivations of the achievable rates in
Theorem 3 with two chosen coefficient matrices.

When the primary user decodes the first equation (` = 1) in
a symmetric channel, the expression (82) for the variance of
the equivalent noise simplifies to (denoting βk = β for k ≥ 1)

Ñ0(1) = ᾱ2
1 +K(ᾱ1b− ak(1)β)2P + (ᾱ1 − a0(1)β0)2P.

(112)

For decoding the second integer sum, the variance of the
equivalent noise (82) is given as

Ñ0(2) = α2
2 +K(α2b− ak(2)β − α1ak(1)β)2P

+(α2 − a0(2)β0 − α1a0(1)β0)2P. (113)

We first evaluate the achievable rate for the coefficient
matrix in (87). We choose β0 = 1 and β = b/c. Using
Theorem 2, substituting a(1) = [1, c, . . . , c] and the optimal

3Since each transmitter has its individual power constraint, we could give
a slightly tighter outer bound by imposing a per-antenna power constraint.
Namely the matrices K1,K2 should satisfy (K1 +K2)ii ≤ P for i ∈ [1 :
K + 1] where (X)ii denotes the (i, i) entry of matrix X. However this is
not the focus of this paper and we will not pursue it here.

ᾱ∗1 = 1 − 1
P (Kb2+1) into (112) will give us a rate constraint

on R0

r̃0(a1, β) =
1

2
log+

(
1

1 +Kb2
+ P

)
>

1

2
log+ P

r̃k(a1, β) =
1

2
log+

(
b2P (Kb2P + P + 1)

c2(Kb2P + P )

)
>

1

2
log+ b2P

c2
.

Notice here we have replaced the achievable rates with smaller
values to make the result simple. We will do the same in the
following derivation.

For decoding the second sum with coefficients a(2) =
[0, 1, . . . , 1], we use Theorem 2 and (113) to obtain rate
constraints for Rk

r̃k(a2|1, β) =
1

2
log+

(
b2 +

1

K

)
>

1

2
log+ b2 (114)

with the optimal α∗1 = −b2K
c(Kb2+1) and α∗2 = 0. Notice that

a0(1) = 0 hence decoding this sum will not impose any
rate constraint on R0. Therefore we omit the expression
r̃0(a2|1, β). Combining the results above with Theorem 2 we
get the claimed rates in the proof of Theorem 3.

Now we evaluate the achievable rate for the coefficient
matrix in (89). We substitute β0 = 1, βk = β for any β
and a(1) = [0, 1, . . . , 1] in (112) with the optimal ᾱ∗1 =

Kbβp
Kb2P+P+1 . Notice again R0 is not constrained by decoding
this sum hence we only have the constraint on Rk as

r̃k(a1, β) =
1

2
log+

(
1

K
+

P

1 + P
b2
)
>

1

2
log+ Pb2

1 + P
.

For the second decoding, using a(2) = [1, 0, . . . , 0] in (113)
gives

r̃0(a2|1, β) =
1

2
log (1 + P ) (115)

with the optimal scaling factors α∗1 = bP
β(P+1) and α∗2 = P

P+1 .
Combining the achievable rates above with Theorem 2 gives
the claimed result.
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