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Abstract—The class of complex random vectors whose cova-
riance matrix is linearly parameterized by a basis of Hermi-
tian Toeplitz (HT) matrices is considered, and the maximum
compression ratios that preserve all second-order information
are derived — the statistics of the uncompressed vector must
be recoverable from a set of linearly compressed observations.
This kind of vectors arises naturally when sampling wide-
sense stationary random processes and features a number of
applications in signal and array processing.

Explicit guidelines to design optimal and nearly optimal
schemes operating both in a periodic and non-periodic fashion
are provided by considering two of the most common linear
compression schemes, which we classify as dense or sparse. It
is seen that the maximum compression ratios depend on the
structure of the HT subspace containing the covariance matrix of
the uncompressed observations. Compression patterns attaining
these maximum ratios are found for the case without structure as
well as for the cases with circulant or banded structure. Universal
samplers are also proposed to compress unknown HT subspaces.

Index Terms—Compressive Covariance Sensing, Covariance
Matching, Compression Matrix Design.

I. PRELIMINARIES

Consider the problem of estimating the second-order statis-
tics of a zero-mean random vector x ∈ CL from a set of K
linear observations collected in the vector y ∈ CK given by

y = Φ̄x, (1)

where Φ̄ ∈ CK×L is a known matrix and several realizations
of y may be available. This matrix may be referred to
as the compression matrix, measurement matrix or sampler,
where compression is achieved by setting K < L (typically
K � L). The covariance matrix Σ = E

{
xxH

}
contains

the second-order statistics of x and is assumed to be a linear
combination of the Hermitian Toeplitz (HT) matrices in a
given set S = {Σ0,Σ1, · · · ,ΣS−1} ⊂ CL×L, that is, there
exist some scalars αs such that Σ =

∑
s αsΣs.
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This problem arises in inference operations over the second-
order statistics of a random vector with a Toeplitz covariance
matrix. Operating on the compressed observations y entails
multiple advantages due to their smaller dimension. In fact,
many research efforts in the last decades have been pointed
towards designing compression methods and reconstruction
algorithms that allow for sampling rate reductions. While most
efforts have been focused on reconstructing x, there were
also important advances when only the second-order statistics
of this vector are of interest. This paper is concerned with
problems of the second kind.

The compression ratio ρ = L/K measures how much x
is compressed. The maximum compression ratio remains an
open problem in many cases of interest; and most existing
results rely on the usage of specific reconstruction algorithms
(see Sec. I-D). This paper presents a general and unifying
framework built on abstract criteria where the maximum
compression ratio is defined and computed for most relevant
settings. The proofs involved in this theory are constructive,
resulting in several methods for designing optimal compres-
sion matrices.
A. Covariance Matching Formulation

The prior information restricts the structure of Σ, thus
determining how much x can be compressed. When no infor-
mation at all is available, Σ is simply constrained to be Her-
mitian positive semidefinite and no compression is possible.
However, if x contains samples from a wide-sense stationary
process, the fact that Σ is HT and positive semidefinite
allows for a certain degree of compression. More generally,
Σ may be assumed to lie in the intersection of the cone
of positive semidefinite matrices and the subspace spanned
by a set of HT matrices (not necessarily positive semidef-
inite) S = {Σ0,Σ1, · · · ,ΣS−1} ⊂ CL×L. This subspace,
throughout referred to as the covariance subspace, captures
the prior information available and, intuitively, the smaller its
dimension, the higher the compression that can be reached.

Without any loss of generality, we consider real scalars:

Σ =

S−1∑
s=0

αsΣs, with αs ∈ R, (2)

and S is assumed to be a linearly independent set of matrices:
S−1∑
s=0

αsΣs =

S−1∑
s=0

βsΣs ⇒ αs = βs ∀s. (3)

Thus, S is a basis for the covariance subspace, which means
that the decomposition in (2) is unique and, consequently,
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knowing the αs’s is equivalent to knowing Σ. Since the
coefficients are real-valued and the matrices HT, it is necessary
that S ≤ 2L − 1 in order for S to be linearly independent.
The second-order statistics of y, arranged in Σ̄ = E

{
yyH

}
,

and those of x, arranged in Σ, are related by:

Σ̄ = Φ̄ΣΦ̄H =

S−1∑
s=0

αsΣ̄s, where Σ̄s = Φ̄ΣsΦ̄
H . (4)

In other words, the expansion coefficients of Σ with respect to
S are those of Σ̄ with respect to S̄ = {Σ̄0, Σ̄1, · · · , Σ̄S−1} ⊂
CK×K . Albeit Hermitian, the matrices in S̄ are not Toeplitz
in general. If the compression operation preserves all relevant
information, then S̄ is linearly independent and knowing Σ̄
is equivalent to knowing the αs’s, which in turn amounts
to knowing Σ. Conversely, if the compression is so strong
that the linear independence is lost, then some second-order
information about x cannot be recovered.

This paper unifies the treatment of a number of problems
arising in different applications (see Sec. I-C) by noting that
they can be stated as the estimation of a linearly parameterized
covariance matrix Σ̄ from the compressed observations y, that
is, they admit a covariance matching formulation [1], [2]. For
simplicity, a linear parameterization such as the one in (4)
is assumed, but the results still apply to certain non-linear
parameterizations [1] (see the discussion around Lemma 1).

B. Signal Acquisition

Compression is particularly convenient in the acquisition
stage since otherwise part of the resources would be devoted to
acquire data that is afterwards discarded. For this reason, the
literature contains many compressive acquisition and recon-
struction procedures. Remarkable examples are sub-Nyquist
sampling of multiband/multitone [3]–[7] signals, compressed
sensing [8], [9], and array design for aperture synthesis imag-
ing [10]–[12]. They differ as to which structure is assumed
for the data and which information is deemed important.

Most consider reconstructing a signal x from linearly
compressed observations y = Φ̄x. Although this procedure
is, in principle, possible when the goal is to estimate the
second-order statistics of x, saving the intermediate step of
reconstructing x may entail computational advantages and
greater compression ratios. This problem will be globally
referred to as compressive covariance sampling (CCS).

These approaches (including CCS) share similar compres-
sion structures, classified here according to the nature of Φ̄:
• Sparse samplers are those where Φ̄ is a sparse matrix.

Commonly, Φ̄ is composed of K different rows of the
identity matrix IL, thus performing a component selection
of x. If this selection is periodic, it is known as multi-
coset sampling (see Secs. II-C and IV-A).

• Dense samplers are those where Φ̄ is a dense matrix.
Each component of y is therefore a linear combination
of the components of x. In the case of periodic samplers,
Φ̄ is block diagonal where all diagonal blocks are replicas
of a certain dense matrix (see Sec. II-C).

The nature of the acquisition architecture depends on the
domain where the signal of interest is defined:

• Time-domain signals: several alternatives have been pro-
posed to replace analog-to-digital converters (ADCs),
which are known to be slow, expensive and power-
hungry. Some examples include interleaved ADCs [13],
non-uniform sampling and its generalizations [4], [5],
[14], the random demodulator [7], [15], the modulated
wideband converter [6] and the random modulator pre-
integrator [16], [17]. We will globally refer to these
devices as compressive-ADCs (C-ADCs). Their operation
is described by (1) when x contains the Nyquist samples
of the signal of interest, which are not physically acquired
but can be used as a convenient mathematical abstraction.

• Space-domain signals: Compression is accomplished us-
ing (1), where x is a snapshot of the uncompressed array.
With sparse sampling (see e.g. [10]–[12], [18]–[23]),
only the antennas corresponding to the non-null columns
of Φ̄ need to be physically deployed to obtain y, whereas
in dense sampling [24]–[26], analog combiners are used
to reduce the number of radio frequency chains.

C. Applications of CCS

We show how CCS can be applied to several problems that
can be formulated using covariance matching models. These
models need not be used for estimation [1], [2]; they are
simply used to capture the information to be preserved. The
most common covariance subspaces, defined in Sec. II-B,
are the Toeplitz subspace, the circulant subspace and the
d-banded subspace. Sparse and dense samplers have been
considered in most applications, either in a periodic or
non-periodic fashion.

1) Compressive Power Spectrum Estimation: The goal is
to estimate Σ from y with the only constraint that it must be
HT and positive semidefinite, which means that the covariance
subspace is the Toeplitz subspace. One can employ any basis
for this subspace, reconstruct Σ and apply a Fourier transform
to find the power spectrum. More directly, one can consider
the Fourier basis (see (12) below) where the coordinate αs in
(2) will represent the value of the power spectrum at frequency
2πs/(2L− 1). Assuming bounded autocorrelation supports
enables d-banded subspaces [27], whereas a frequency domain
formulation results in circulant subspaces [28], [29].

2) Wideband Spectrum Sensing: If x =
∑
s σsxs, where

xs corresponds to a signal whose second-order statistics are
known up to a scale, the parameters σs capturing the power of
each component can be estimated based on the observations
provided by a C-ADC [30]–[33]. The covariance subspace is
the span of the set of covariance matrices of the xs’s.

3) Incoherent Imaging: Arbitrary distributions of uncorre-
lated sources in the far field of a uniform linear array (the
uncompressed array) produce HT spatial covariance matrices.
The angular spectrum can be obtained as the coefficients αs in
the expansion (12) (see [10]), which correspond to the intensity
impinging from 2L−1 looking directions. Recent formulations
have also considered circulant subspaces [34], [35].

4) Sparse Spectrum Estimation: modal analysis can be
used to identify the components of a sum of sinusoids in
noise (time-domain signals) [36], [37] or to estimate the
direction of arrival (DoA) of a number of point sources
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in the far field (space-domain signals) [12], [20]–[23], [38]
using the compressed observations y. Σ is expanded as
Σ =

∑R−1
s=0 αsv(φs)v

H(φs), where R is the number of
sinusoids/sources and v(φs) corresponds either to the sinusoid
with frequency φs or to the source at angle φs. If x is
uniformly sampled, then v(φs)v

H(φs) is Toeplitz. Since the
angles φs are unknown, the only structure present in Σ is that
it is HT and positive semidefinite [12]. Therefore, Φ̄ must
preserve the structure of any Toeplitz matrix. An equivalent
approach uses universal samplers (see Sec. II).

D. Related Work and Contributions

Most works on reconstructing second-order statistics from
compressed measurements deal with estimating Toeplitz co-
variance matrices using non-periodic sparse samplers, where
the observation is that at least a pair of samples at each
possible distance is required to estimate the statistics of the
uncompressed signal [10]–[12], [23], [36]. The optimal solu-
tion, termed restricted minimum redundancy array or minimal
sparse ruler, was analyzed in [18], [19], [39]–[42] and shown
to be optimal in direction finding [12]. Suboptimal, yet more
structured, schemes were proposed in [18], [23], [41]–[44].

Periodic sampling in d-banded subspaces was considered
in [27], where the maximum ρ was bounded using the
conditions for unique reconstruction of a least squares algo-
rithm. Suboptimal compression schemes were proposed in [27]
and [45]. Non-periodic sparse sampling in circulant subspaces
was considered in [28] and [35], where optimal and suboptimal
designs are respectively found based on specific algorithms.1

The sampler design criteria used in most of these works
are tailored to specific reconstruction algorithms. Furthermore,
their formulation is not general enough to accommodate
periodic samplers, dense samplers or prior information. The
contributions of this paper can be summarized as follows:
• We present a formal and general framework, irrespective

of any algorithm, that establishes the conditions for a
compression pattern to be admissible and defines the
maximum compression ratio based on abstract criteria.

• Optimal sparse and dense samplers are found for most
cases of interest. Novel designs include (non-)periodic
sparse samplers for circulant and banded subspaces,
periodic sparse samplers for Toeplitz subspaces and
(non-)periodic dense samplers for Toeplitz, circulant and
banded subspaces.

• The notion of universal sampler is proposed as the
one preserving all second-order information for any HT
covariance subspace.

• We provide simple tools to assess admissibility in all
linear and certain non-linear cases. Particularly, we show
that the positive semidefinite nature of covariance matri-
ces does not generally allow greater compression ratios.

E. Notation

If a set A is finite, then |A| denotes its cardinality. If F is
a field, then the F-span of a set of matrices A is defined as
spanFA = {A ∈ CP×P : A =

∑
s αsAs, As ∈ A, αs ∈

1The initial statement in [28], [35] uses periodic sampling, but their
considerations in the frequency domain lead to non-periodic sampling.

F}. The F-dimension of a set B, denoted as dimF B, is the
smallest n ∈ N such that there exists some A with |A| = n
such that B ⊂ spanFA. The image of a set A through a
function φ is denoted as φ(A).

Lowercase is used for scalars, bold lowercase for vec-
tors and bold capital for matrices. Superscript T stands for
transpose, H for conjugate transpose and ⊗ represents the
Kronecker product [46]. The (i, j) entry of the P ×Q matrix
A is ai,j , where we start with index zero (that is, the top-left
entry is a0,0). The vectorization of A is the vector vec{A} =
[aT0 , · · · ,aTQ−1]T , where aj = [a0,j , · · · , aP−1,j ]

T . The d-th
diagonal refers to the entries (i, j) with j − i = d, where d is
a negative, null or positive integer. Ei,j is a matrix with all
zeros except for a 1 at the position (i, j) and it is represented
as ei if it has a single column.

The symbol  denotes the imaginary unit and (x)N is the
remainder of the integer division of x ∈ Z by N , i.e., (x)N is
the only element in the set {x+bN, b ∈ Z}∩{0, . . . , N−1}.
F. Paper Structure

The rest of the paper is structured as follows. Sec. II
sets the theoretical background, where maximum compression
ratios and covariance samplers are defined. Sec. III presents
some results to design covariance samplers, which are applied
in Secs. IV and V to design universal and non-universal
covariance samplers, respectively. Asymptotic compression
ratios are discussed in Sec. VI, whereas some remarks and
conclusions are respectively provided in Secs. VII and VIII.

II. THEORETICAL FRAMEWORK

The definition of the maximum compression ratio requires
to first decide which samplers we are willing to accept.
As explained in Sec. I, we are interested in those samplers
preserving all the second-order statistical information of x,
i.e., those samplers that allow to recover the statistics of x
from the statistics of y. In order to formalize this notion, let
us start by associating the compression matrix Φ̄ ∈ CK×L
with a linear function that relates the covariance matrices of
x and y and which is defined as

span
R
S φ−−−→ span

R
S̄

Σ −−−−→ φ(Σ) = Φ̄ΣΦ̄H
(5)

where, recall, S is a linearly independent set of S HT matri-
ces.2 We next specify which sampling matrices are admissible:

Definition 1: A matrix Φ̄ defines an S-covariance sampler3

if the associated function φ, defined in (5), is invertible.
The maximum compression ratio is the largest value of L/K

for which a covariance sampler Φ̄ ∈ CK×L can be found.
Above this value, it is not possible to consistently estimate
the second-order statistics of x, even from an arbitrarily large
number of realizations of y, since the statistical identifiability4

of Σ is lost [48]. For convenience, we will regard L as given
and attempt to minimize K.

2For mathematical convenience, φ is not only defined for positive semidef-
inite matrices.

3When the set S is clear from the context, we will simply say that Φ̄
defines a covariance sampler.

4See [47] for a discussion on the statistical identifiability in CCS.
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One may argue that the requirement in Definition 1 is too
strong since it suffices to require φ to be invertible only for
those matrices in spanR S that are positive semidefinite. More
generally, the prior information may constrain Σ to be in a
certain non-linear set A such as the set of positive semidefinite
matrices, the set of covariance matrices of auto-regressive
processes with a given order, the non-linear sets in [1], etc. In
that case, we may reformulate Definition 1 to require φ to be
invertible only in A∩ spanR S. However, this is unnecessary,
as shown next:

Lemma 1: Let φ be the function defined in (5), where S
is an independent set of S HT matrices, let A be a set of
matrices such that dimR[A ∩ spanR S] = S and let φ|A be
the restriction of φ to A ∩ spanR S, defined as:

A ∩ span
R
S

φ|A−−−−−→ φ(A ∩ span
R
S)

Σ −−−−→ φ|A(Σ) = φ(Σ).
(6)

Then, φ is invertible if and only if φ|A is invertible.
Proof: See Appendix A.

Therefore, the non-linear information collected in A is
irrelevant from the linear compression perspective whenever
dimR[A∩ spanR S] = S. If this condition is not satisfied, one
must choose a different basis S ′ such that A ∩ spanR S ′ =
A∩ spanR S and dimR[A∩ spanR S ′] = |S ′|, which is always
possible. This establishes the generality of Definition 1 and
enables us to work with covariance subspaces without further
concerns.

If A is the cone of positive semidefinite matrices, then S
satisfies dimR[A ∩ spanR S] = S in most cases of interest:

Lemma 2: Let A be the set of positive semidefinite ma-
trices. Then dimR[A ∩ spanR S] = S if at least one of the
following conditions holds:

1) Σ ≥ 0 for all Σ ∈ S
2) ∃Σ ∈ spanR S such that Σ > 0

Proof: 1) means that S ⊂ [A∩spanR S]. Then dimR[A∩
spanR S] ≥ dimR S = S. Noting that dimR[A∩spanR S] ≤ S
for any S shows that dimR[A ∩ spanR S] = S. On the other
hand, if 2) holds, we can assume without any loss of generality
that S = {Σ0, . . . ,ΣS−1} where Σ0 = Σ > 0. If S ′ =
{Σ0,Σ1+αΣ0, . . . ,ΣS−1+αΣ0}, then spanR S = spanR S ′
for any α. Choose α = −mins λmin(Σs)/λmin(Σ0), with λmin
representing the minimum eigenvalue. Then S ′ satisfies 1),
which concludes the proof.

Since at least one of the above sufficient conditions will be
satisfied in all cases considered in this paper, Lemma 2 estab-
lishes that positive semidefiniteness plays no role in the com-
pression of Toeplitz, circulant or banded subspaces. Hence, no
compression improvements are possible in those cases.

Clearly, a matrix Φ̄ may define a covariance sampler for
certain sets S but not for others. If a matrix Φ̄ is a covariance
sampler for any choice of S, we call it universal:

Definition 2: A sampling matrix Φ̄ ∈ CK×L defines a
universal covariance sampler if it is an S-covariance sampler
for any linearly independent set S of L× L HT matrices.

Knowing S is always beneficial since Φ̄ may be tailored to
obtain optimal compression ratios and estimation performance.
Universal samplers are motivated by those cases where S , or

even S, is unknown at the moment of designing the compres-
sion matrix. Note that other notions of universal samplers have
been introduced in different contexts [9], [28], [49]–[51].

A. Interpretation

Due to the definition of domain and codomain in (5), φ
clearly represents a surjective map. Therefore, the notion of
invertibility actually means that φ must be injective, that is,
for any set of real coefficients αs and βs,

φ

(∑
s

αsΣs

)
= φ

(∑
s

βsΣs

)
⇒ αs = βs ∀s. (7)

This condition is, in turn, equivalent to∑
s

αsΣ̄s =
∑
s

βsΣ̄s ⇒ αs = βs ∀s, (8)

which means that S̄ must be linearly independent. Thus,
determining whether a given matrix Φ̄ defines an S-covariance
sampler amounts to checking whether S̄ = φ(S) is linearly
independent or not. Alternatively, (8) states that no two dif-
ferent linear combinations of the matrices in S̄ can result in
the same Σ̄, which means that covariance samplers can also
be defined as those samplers preserving the identifiability of
the coefficients αs.

To the best of our knowledge, Definition 1 is the first attempt
to formalize the design of samplers for CCS problems using
abstract criteria not depending on specific algorithms. In the
sequel, several results will be established to determine whether
a matrix defines a covariance sampler or, in some cases, even
a universal covariance sampler.

B. Notable Covariance Subspaces

The results about covariance samplers derived in this paper
will be particularized in Sec. V for the most common cova-
riance subspaces, which are defined next:

1) Toeplitz Subspace: A matrix is Toeplitz if it is constant
along its diagonals [52]. The set of all L × L HT matrices,
represented as SL, is a subspace of CL×L over the real scalar
field,5 and it is the largest subspace considered in this paper.
The standard basis of SL is defined as the set

ST = {IL} ∪ {T1, · · · ,TL−1} ∪ {T̃ 1, · · · , T̃L−1}, (9)

where Tl denotes the HT matrix with all zeros except for the
entries on the diagonals +l and −l, which have ones, and T̃ l
represents the HT matrix with all zeros except for the entries
on the diagonal +l, which have the imaginary unit , and those
on the diagonal −l, which have −. Formally,

Tl = J lL + (J lL)T l ≥ 1 (10)

T̃ l = J lL − (J lL)T l ≥ 1, (11)

where JL is the first linear shift of IL to the right, i.e.,
the matrix whose element (m,n) is one if n − m = 1 and

5The reason is that any linear combination with real coefficients of HT
matrices is also HT. This statement is false for complex coefficients.
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zero otherwise. The basis ST shows that dimR SL = 2L− 1.
Another important basis for this subspace is the Fourier basis:

SF = {Σ0, · · · ,Σ2L−2}, (Σs)m,n =
ej

2π
2L−1 (m−n)s

2L− 1
. (12)

2) Circulant Subspace: A circulant matrix is a matrix
whose n-th row equals the n-th circular rotation of the zeroth
row6 to the right [52]. In other words, the element (m,n)
equals the element (m′, n′) if (m−n)L = (m′−n′)L. In our
case, the matrices in the circulant subspace must be HT and
circulant simultaneously. A possible basis for L odd is

SC = {IL} ∪ {C1, · · · ,CL−1
2
} ∪ {C̃1, · · · , C̃ L−1

2
}, (13)

where

Cl = Tl + TL−l, l = 1, . . . , b(L− 1)/2c (14)

C̃l = T̃ l − T̃L−l, l = 1, . . . , b(L− 1)/2c, (15)

and

SC = {IL} ∪ {C1, · · · ,CL
2 −1} ∪ {C̃1, · · · , C̃ L

2 −1} ∪ {TL2 }

for L even. Clearly, the dimension of this subspace equals L.
3) d-banded Subspace: A d-banded matrix is a matrix

where all the elements above the diagonal +d and below
the diagonal −d (these diagonals noninclusive) are zero. A
possible basis for this subspace is given by

SdB = {IL} ∪ {T1, · · · ,Td} ∪ {T̃ 1, · · · , T̃ d}, (16)

which is a subset of ST . The dimension is therefore 2d+ 1.

C. The Role of Periodicity

The fact that many sampling schemes operate repeatedly
on a block-by-block basis leads to the concept of period-
icity (see Sec. I-C). Note, however, that subsequent stages
may process multiple blocks jointly. Assume that x is par-
titioned into B blocks of N = L/B samples as7 x =
[x[0]T , · · · ,x[B − 1]T ]T , with x[b] ∈ CN ∀b and that sam-
pling a block with N elements results in another block with
M elements:

y[b] = Φx[b], b = 0, 1, . . . , B − 1, (17)

where y[b] ∈ CM and Φ ∈ CM×N . The use of the term
periodicity owes to the fact that the matrix Φ does not depend
on b. By making y = [y[0]T , · · · ,y[B − 1]T ]T and

Φ̄ = IB ⊗Φ, (18)

expression (17) results in (1). From (18), it also follows that
the matrices in S̄ are block Toeplitz with M ×M blocks.

Since K = MB, the compression ratio in the periodic
setting takes the form

ρ =
L

K
=
N

M
. (19)

Further conventions are useful when dealing with sparse
sampling, in which case, as seen in Sec. I-B, Φ̄ equals a

6Recall the conventions introduced in Sec. I-E.
7For simplicity, we assume that L is an integer multiple of B.

submatrix of IL up to row permutations. For concreteness,
assume that the rows of Φ̄ are ordered as they are in IL. If
K = {l0, · · · , lK−1} denotes the set containing the indices
of the non-null columns of Φ̄, the entries of y = Φ̄x are
given by yk = xlk , lk ∈ K, where x = [x0, · · · , xL−1]T and
y = [y0, · · · , yK−1]T . The set M, which contains the indices
of the non-null columns Φ, is related to K by

K = {m+ bN, m ∈M, b = 0, 1, . . . , B − 1}. (20)

Loosely speaking, we say that K is periodic with period M.
These sets have |K| = K = MB and |M| = M elements.

Note that periodic sampling indeed generalizes non-periodic
sampling, since the latter can be retrieved just by making
B = 1. For this reason, most results will be presented for
periodic samplers, with occasional comments on the non-
periodic setting if needed.

III. DESIGN OF COVARIANCE SAMPLERS

The results in this section allow to determine whether a
matrix Φ̄ defines a covariance sampler or not, and provide
useful means to design these matrices for a given S. They are
based on the following basic result from linear algebra:

Lemma 3: Let S = {Σ0, · · · ,ΣS−1} be a set of Hermitian
matrices. If S is linearly independent when considering real
coefficients, that is,

S−1∑
s=0

αsΣs = 0, αs ∈ R ⇒ αs = 0 ∀s, (21)

then it is also independent when considering coefficients in C,
i.e., (21) also applies when αs ∈ C.

Proof: It easily follows by combining expression (21)
with the fact that Σs = ΣH

s , ∀s.
The importance of this basic fact is that it allows us to focus

on the complex extension of φ, defined as

span
C
S φC−−−−→ span

C
S̄

Σ −−−−→ φC(Σ) = Φ̄ΣΦ̄H .
(22)

In other words, Φ̄ defines a covariance sampler iff φC is an
invertible function. An equivalent statement is provided by
the following lemma, which is the basic tool to be used in the
design of covariance samplers.

Lemma 4: Let kerφC denote the set of matrices Σ ∈
spanC S satisfying φC(Σ) = 0. Then, a matrix Φ̄ defines a
covariance sampler if and only if kerφC = {0}.

Proof: It is an immediate consequence of Definition 1
and Lemma 3.

A. Design of Sparse Samplers

Designing sparse samplers involves manipulating difference
sets, which contain all possible distances between elements of
another set:

Definition 3: The difference set of A ⊂ Z, denoted as
∆(A), is defined as:

∆(A) = {δ ≥ 0 : ∃a1, a2 ∈ A s.t. δ = a2 − a1}. (23)
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Note that the difference set considers no repetition of elements,
i.e., every distance shows up at most once. The cardinality of
∆(A) is upper bounded by one plus the number of unordered
subsets of A with two elements:

|∆(A)| ≤ |A| · (|A| − 1)

2
+ 1, (24)

where the +1 term accounts for the fact that 0 ∈ ∆(A) for
any non-empty A.

The correlation vector σs associated with the HT matrix
Σs is defined as the the first column of Σs. The following
theorem is a quick method to verify whether a sparse sampler
defined by a set K is a covariance sampler.

Theorem 1: Let S = {Σs}S−1
s=0 be a linearly indepen-

dent set of HT matrices, let {σs}S−1
s=0 be the associated set

of correlation vectors, and let σ̃s be the vector whose entries
are the elements of σs indexed by ∆(K). Then, K defines an
S-covariance sampler if and only if rankR = S, where

R =

[
σ̃0 σ̃1 . . . σ̃S−1

σ̃∗0 σ̃∗1 . . . σ̃∗S−1

]
. (25)

Proof: Observe that Σ̄s contains an element from the δ-
th diagonal of Σs iff |δ| ∈ ∆(K). Now vectorize the matrices
in S̄ and arrange these vectors as columns of a matrix. By
removing repeated rows and duplicating the row corresponding
to the main diagonal we obtain R. Therefore, the number
of linearly independent columns in R equals the number of
linearly independent matrices in S̄. The result follows from
Lemma 4 by noting that kerφC = {0} iff rankR = S.

From (25), it is easy to conclude8 that 2|∆(K)| − 1 ≥ S in
order for R to be full column rank. Combining this expression
with (24) results in the following necessary condition for K
to define a covariance sampler:

K · (K − 1) + 1 ≥ S. (26)

B. Design of Dense Samplers

Designing sampling matrices is oftentimes involved due
to the nature of the design criteria. In many cases, it is
convenient to draw Φ̄ at random using a distribution that
provides an admissible sampler with a certain probability [9],
[51]. Following this idea, this paper employs probabilistic
techniques to obtain optimal designs for dense samplers.

These techniques provide sampling matrices with an ac-
ceptable behavior without considering any structure of the
covariance subspace other than its dimension. The next result
establishes the minimum size of a random matrix Φ to define
a covariance sampler. The only requirement is that this matrix
be drawn from a continuous probability distribution.

Theorem 2: Let Φ ∈ CM×N , with M ≤ N , be a random
matrix with a continuous probability distribution.9 Then, with
probability one, the matrix Φ̄ = IB ⊗ Φ defines an S-
covariance sampler if and only if S ≤M2(2B− 1), where S
is the cardinality of the HT basis set S.

8Note the existence of a duplicate row in R.
9Formally, we say that a distribution µ is continuous if it is absolutely

continuous with respect to Lebesgue measure, that is, µ(B) = 0 for all Borel
sets of CM×N with zero Lebesgue measure [53]. Intuitively, this means that
there are no probability masses.

Proof: See Appendix B.
Note that the matrices in spanR S̄ are Hermitian and block

Toeplitz with M×M blocks. It can be seen that the dimension
of such a subspace is at most M2(2B − 1), which is exactly
the one achieved by the random design from Theorem 2 when
S = M2(2B − 1) (see Sec. II-A). Therefore, no other design
can achieve a higher compression ratio.

IV. UNIVERSAL COVARIANCE SAMPLERS

After having laid the mathematical framework, we are
ready to provide designs that result in covariance samplers
independently of which basis of HT matrices is considered.
The first result of this section reduces the task of checking
whether a given matrix defines a covariance sampler for all
possible bases to that of checking just for one.

Lemma 5: Let S be a basis for SL. Then, a sampler Φ̄ is
universal if and only if it is an S-covariance sampler.

Proof: Clearly, if Φ̄ is universal, it is also an S-covariance
sampler. Conversely, if Φ̄ is an S-covariance sampler, it is also
an S ′-covariance sampler for any basis S ′ of HT matrices since
the restriction of an injective map is always injective.

The rest of this section applies this result to obtain sparse
and dense universal covariance samplers.

A. Sparse Samplers

The next necessary and sufficient condition for a sparse
sampler to be universal basically states that all autocorrelation
lags must be identifiable from the compressed observations.

Theorem 3: The set K ⊂ {0, . . . , L−1} defines a universal
covariance sampler if and only if ∆(K) = {0, . . . , L− 1}.

Proof: Consider the basis ST from (9). If ∆(K) =
{0, . . . , L− 1}, the matrix R from Theorem 1 becomes

R =

[
IL −ĨL
IL ĨL

]
, (27)

where ĨL is the submatrix of IL that results from removing
the first column. Since R has rank 2L− 1, K defines an ST -
covariance sampler and, due to Lemma 5, it is universal.

If one or more elements of {0, . . . , L − 1} are missing in
∆(K), at least two of the rows of R are missing, meaning that
rankR < 2L−1. Then, rankR = 2L−1 iff {0, . . . , L−1} ⊂
∆(K). From Theorem 1, K defines an ST -covariance sampler
iff ∆(K) = {0, . . . , L− 1}. Now apply Lemma 5.

This theorem provides a very simple means to check
whether K is universal or not. Interestingly, this is closely
related to the classical problem in number theory known as
the sparse ruler problem, or as the representation of integers
by difference bases (see [40], [54] and references therein). Its
application to array processing dates back to the 60’s [11].

Definition 4: A length-(L−1) (linear) sparse ruler is a set
K ⊂ {0, 1, . . . , L−1} satisfying ∆(K) = {0, 1, . . . , L−1}. It
is called minimal if there exists no other length-(L−1) sparse
ruler with smaller cardinality.

Intuitively, we may associate this set with a classical ruler
(the physical object) with some marks erased, which is still
capable of measuring all integer distances between 0 and its
length using pairs of marks. Two examples of minimal sparse
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Fig. 1: Example of a length-10 minimal sparse ruler (above)
and length-20 minimal sparse ruler (below).

rulers are shown in Fig. 1, where red dots correspond to the
marks that have not been erased. Sparse rulers exist for all
L, although they are not necessarily unique. For instance,
two different length-10 sparse rulers are {0, 1, 2, 3, 6, 10}
and {0, 1, 2, 5, 7, 10}. The most remarkable properties of a
length-(L − 1) sparse ruler are that the endpoints are al-
ways present, i.e., {0, L − 1} ⊂ K, and that its reflection
(L− 1)−K = {(L− 1)− k : k ∈ K} is also a sparse ruler.
Trivially, if K is minimal, then (L− 1)−K is also minimal.
Therefore, (minimal) sparse rulers exist at least in pairs unless
K = (L− 1)−K. The cardinality K = |K| of a sparse ruler
is lower bounded as

K ≥ 1

2
+

√
2(L− 1) +

1

4
, (28)

which follows directly from (24) and is only attained for L−
1 = 0, 1, 3 and 6 (see e.g. [42]); or as (see [39], [40]):

K ≥
√
τ(L− 1), (29)

where τ = maxθ 2(1− sin θ
θ ) ≈ 2.4345; and, if it is minimal

it is upper bounded by [18]:

K ≤
⌈√

3(L− 1)
⌉
, L− 1 ≥ 3. (30)

Thus, in the non-periodic case (B = 1), Theorem 3 reduces
our design problem to finding a length-(L − 1) sparse ruler,
for which design algorithms abound. A trivial example is
{0, . . . , L − 1}, which clearly represents a universal sampler
since in that case y = x. More sophisticated constructions
were discussed in [18], [23], [39]–[43]. However, if the
compression ratio is to be maximized, then one should look for
a minimal sparse ruler, which is an exhaustive-search problem.
Fortunately, there exist tables for values of L−1 up to the order
of 100. Although higher values of this parameter demand, in
principle, intensive computation, one may resort to the designs
in [18], [41], [42], which provide nearly minimal rulers despite
being really simple.

On the other hand, it is not clear how to design sampling
patterns in the periodic case (B > 1) since periodicity needs to
be enforced on K. Before that, the next definition is required.

Definition 5: A length-(L − 1) periodic sparse ruler of
period N , where N divides L, is a set K ⊂ {0, 1, . . . , L− 1}
satisfying two conditions:

1) if k ∈ K, then k + bN ∈ K for all b ∈ Z such that
0 ≤ k + bN < L

2) ∆(K) = {0, 1, . . . , L− 1}.
It is called minimal if there exists no other periodic sparse
ruler with the same length and period but smaller cardinality.

Observe that any periodic sparse ruler is also a sparse ruler,
whereas the converse need not be true. Clearly, Theorem 3

could be rephrased to say that K is universal iff it is a
length-(NB − 1) periodic sparse ruler of period N . The
problem of designing sparse covariance samplers becomes that
of designing periodic sparse rulers. The next result simplifies
this task by stating that a length-(NB−1) periodic sparse ruler
of period N is indeed the concatenation of B length-(N − 1)
sparse rulers:

Theorem 4: A set K is a periodic sparse ruler of length
NB−1 and period N if and only if there exists a sparse ruler
M of length N − 1 such that

K = {m+ bN : m ∈M, b = 0, 1, . . . , B − 1}. (31)

Proof: See Appendix D.
One of the consequences of Theorem 4 is that increasing

the number of blocks in a periodic sparse sampler cannot
improve the compression ratio. For example, concatenating
two equal length-(N − 1) minimal sparse rulers with M
elements results in a length-(2N − 1) sparse ruler with 2M
elements. Note, however, that the situation is different if the
periodicity requirement is dropped. For instance, a minimal
length-10 sparse ruler has 6 elements, whereas a length-21
minimal sparse ruler has 8 < 6× 2 elements.

As a corollary of Theorem 4, we conclude that a minimal
periodic sparse ruler is the concatenation of minimal sparse
rulers. Thus, the problem of designing optimal sparse universal
covariance samplers (either periodic or non-periodic) reduces
to designing a minimal length-(N − 1) sparse ruler M.

Table I illustrates the minimum value of M = |M| (labeled
as MLSR) for several values of N , enabling us to obtain the
optimum compression ratio for block lengths N up to 60,
which covers most practical cases. For higher N , one may
resort to another table, to a computer program, or to the
asymptotic considerations in Sec. VI. However, although there
is no closed form expression for the maximum achievable
compression ratio ρ, the bounds in (29) and (30) show that

N⌈√
3(N − 1)

⌉ ≤ ρ ≤ N√
τ(N − 1)

. (32)

B. Dense Samplers

Deriving conditions for universality of dense samplers is
simpler than for sparse samplers since most mathematical
complexity has been subsumed by Theorem 2. Moreover, the
results are simpler and can be expressed in closed form.

Theorem 5: Let Φ be an M ×N random matrix satisfying
the hypotheses of Theorem 2. Then, Φ̄ = IB ⊗ Φ defines a
universal covariance sampler with probability 1 if and only if

M ≥
√

2NB − 1

2B − 1
. (33)

Proof: If S is a basis for SL, then |S| = 2L − 1 =
2NB − 1. From Theorem 2, Φ̄ is an S-covariance sampler
iff 2NB − 1 ≤ M2(2B − 1), which is equivalent to (33).
Universality then follows from Lemma 5.

Expression (33) can be interpreted as M2(2B − 1) ≥
2NB − 1, where 2NB − 1 is the dimension of the uncom-
pressed subspace and M2(2B−1) is the maximum dimension
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N 5 6 7 8 9 10 11 12 13 14 15 16
MCSR 3 3 3 4 4 4 4 4 4 5 5 5
MHLSR 3 3 3 4 4 4 4 4 4 5 5 5
MLSR 4 4 4 5 5 5 6 6 6 6 7 7

N 17 18 19 20 21 22 23 24 25 26 27
MCSR 5 5 5 6 5 6 6 6 6 6 6
MHLSR 5 5 5 6 6 6 6 6 6 6 6
MLSR 7 7 8 8 8 8 8 8 9 9 9

N 28 29 30 31 32 33 34 35 36 37 38
MCSR 6 7 7 6 7 7 7 7 7 7 8
MHLSR 7 7 7 7 7 7 7 7 8 8 8
MLSR 9 9 9 10 10 10 10 10 10 10 11

N 39 40 41 42 43 44 45 46 47 48 49
MCSR 7 8 8 8 8 8 8 8 8 8 8
MHLSR 8 8 8 8 8 8 8 8 8 9 9
MLSR 11 11 11 11 11 11 12 12 12 12 12

N 50 51 52 53 54 55 56 57 58 59 60
MCSR 8 8 9 9 9 9 9 8 9 9 9
MHLSR 9 9 9 9 9 9 9 9 9 9 10
MLSR 12 12 13 13 13 13 13 13 13 13 14

TABLE I: Values of M for a length-(N −1) minimal circular
sparse ruler (MCSR), length-bN2 c minimal linear sparse ruler
(MHLSR) and length-(N − 1) minimal linear sparse ruler
(MLSR).

of a subspace of Hermitian block-Toeplitz matrices. Thus, this
design provides optimal compression, which is achieved when

M =

⌈√
2NB − 1

2B − 1

⌉
, (34)

and given by

ρ =
N

M
≈
√

(2B − 1)N2

2NB − 1
. (35)

V. NON-UNIVERSAL COVARIANCE SAMPLERS

Universal samplers are used when no structure exists or
when it is unknown. However, when prior information is
available, the values that Σ̄ can take on are restricted, allowing
for larger compression ratios. This section analyzes this effect
for the covariance subspaces introduced in Sec. II-B. Since the
Toeplitz subspace has already been considered in Sec. IV, we
proceed to analyze circulant and d-banded subspaces.

A. Circulant Covariance Subspace

1) Sparse Samplers: Restricting Σ to be circulant yields
considerable compression gains with respect to the Toeplitz
case since the requirements on every period of K relax. In
particular, every period must be a circular sparse ruler, which
is a much weaker requirement than that of being a linear
sparse ruler. This concept is related to the modular difference
set defined next. Recall from Sec. I-E that (x)A denotes the
remainder of the integer division of x by A.

Definition 6: Let A be a set of integers. The A-modular
difference set of A, denoted as ∆A(A), is defined as

∆A(A) = {δ ≥ 0 : ∃a1, a2 ∈ A s.t. δ = (a2 − a1)A}. (36)

Clearly, for any A ⊂ {0, 1, . . . , A − 1}, we have that
∆(A) ⊂ ∆A(A), which means that |∆A(A)| is never less than
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(b) Example of length-20 circu-
lar sparse ruler designed with a
length-10 linear sparse ruler.

Fig. 2: Comparison of two length-20 circular sparse rulers.
The ruler on the left, with 5 elements, is minimal whereas the
one on the right, with 6 elements, is not.

|∆(A)|. Actually, ∆A(A) will typically be larger than ∆(A)
since the fact that δ is in ∆A(A) implies that A − δ is also
in that set. For example, if A = {0, 1, 5} and A = 10, then
∆(A) = {0, 1, 4, 5} ⊂ ∆10(A) = {0, 1, 4, 5, 6, 9}. Finally,
the cardinality of the modular difference set is upper bounded
by noting that any pair of elements in a set A with cardinality
|A| generates at most two distances in ∆A(A):

|∆A(A)| ≤ |A| · (|A| − 1) + 1. (37)

Now it is possible to state the requirements to compress
circulant subspaces:

Theorem 6: Let SC be given by (13). Then, the set K ⊂
{0, . . . , L − 1} is an SC-covariance sampler if and only if
∆L(K) = {0, . . . , L− 1}.

Proof: See Appendix E.
Theorem 6 is therefore the analogue of Theorem 3 for

circulant subspaces. However, in this case the conclusion does
not lead to a linear sparse ruler but to a circular one:

Definition 7: A length-(L−1) circular (or modular) sparse
ruler is a set K ⊂ {0, . . . , L − 1} satisfying ∆L(K) =
{0, . . . , L−1}; and it is said to be minimal if no other length-
(L− 1) circular sparse ruler exists with smaller cardinality.

As with linear sparse rulers, a geometric interpretation is
possible in terms of a physical ruler. Suppose that we wrap
around a conventional ruler (made of some flexible material)
until the first mark and the last mark lie at unit distance, thus
making a circular ruler. Now assume that some of the marks
are erased, but that it is still possible to measure all distances
between 0 and the length of the original ruler using pairs of
marks. The advantage with respect to a linear ruler is that any
pair of marks provides, in general, two distances, which are
the lengths of the two circular segments that they define. Two
length-20 circular sparse rulers are illustrated in Fig. 2, the one
on the left being minimal. Other examples of length-(L − 1)
circular sparse rulers are {0, . . . , L − 1} and {0, . . . , bL2 c},
which are referred to as trivial circular sparse rulers.

Circular sparse rulers, also known as difference cycles, were
analyzed by the mathematical community using finite group
theory and additive number theory (see [54] for an overview
of the main results). Among the most remarkable properties,
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we mention that a reflection of a circular sparse ruler is also
a circular sparse ruler (see Sec. IV-A) and that any circular
rotation of a circular sparse ruler K, defined as

K(i) = {(k + i)L : k ∈ K}, i ∈ Z, (38)

is also a circular sparse ruler. Moreover, since ∆(K) ⊂ ∆L(K)
for any K ⊂ {0, . . . , L − 1}, any linear sparse ruler is also
a circular sparse ruler. Hence, the cardinality of a minimal
circular sparse ruler can never be greater than the cardinality
of a minimal linear sparse ruler if both have the same length.
It is possible to go even further by noting that any length-
bL2 c linear sparse ruler is also a length-(L−1) circular sparse
ruler. For example, Fig. 2b shows a length-20 circular sparse
ruler constructed with a length-10 linear sparse ruler. From
this observation and (30), we obtain

|K| ≤

⌈√
3

⌊
L

2

⌋ ⌉
(39)

for any minimal circular sparse ruler. On the other hand,
expression (37) yields

|K| ≥ 1

2
+

√
L− 3

4
. (40)

A length-(L − 1) circular sparse ruler can be designed in
several ways. For certain values of L, minimal rulers attaining
(40) can be obtained in closed form (see [55, Sec. III-B]
for an overview; also [56]). Other cases may require exhaus-
tive search, which motivates sub-optimal designs. Immediate
choices are length-(L−1) or length-bL2 c minimal linear sparse
rulers [27]. In fact, the latter provides optimal solutions for
most values of L below 60 (see Table I). Further alternatives
include [57].

Circular sparse rulers seem to have been introduced in
signal/array processing in [47] and used later in [34], [35],
[45]. Theorem 6 basically states that a covariance sampler
for circulant subspaces is a length-(L − 1) circular sparse
ruler, which gives a practical design criterion just for the non-
periodic case. We now move on to introduce periodicity:

Definition 8: A length-(L − 1) periodic circular sparse
ruler of period N , where N divides L, is a set K ⊂
{0, 1, . . . , L− 1} satisfying:

1) if k ∈ K, then k + bN ∈ K for all b ∈ Z such that
0 ≤ k + bN < L;

2) ∆L(K) = {0, 1, . . . , L− 1}.
It is called minimal if there is no other periodic circular sparse
ruler with the same length and period but smaller cardinality.

Hence, Theorem 6 could be rephrased to say that K is an
SC-covariance sampler iff it is a length-(NB − 1) periodic
circular sparse ruler of period N . Although designing these
rulers may seem difficult, the next result simplifies this task
by stating that every period is, indeed, a circular sparse ruler.

Theorem 7: A set K is a periodic circular sparse ruler of
length NB − 1 and period N if and only if there exists a
circular sparse ruler M of length N − 1 such that

K = {m+ bN : m ∈M, b = 0, 1, . . . , B − 1} (41)

Proof: See Appendix F.

Table I reveals that the cardinality M of a minimal circular
sparse ruler is not monotone with N . For example, minimal
length-19 circular sparse rulers have 6 elements whereas min-
imal length-20 circular sparse rulers have 5 elements (see [54]
for a proof). Table I also illustrates the compression gain due
to the knowledge that Σ is circulant. For example, when
N = 60, a universal sampler has a compression ratio of
N
M = 60

14 ≈ 4.28, whereas a covariance sampler for circulant
subspaces has a compression ratio of N

M = 60
9 ≈ 6.67.

Although maximum compression ratios cannot be expressed
in closed form, simple bounds follow from (39) and (40):

N⌈√
3
⌊
N
2

⌋ ⌉ ≤ ρ ≤ 2N

1 +
√

4N − 3
. (42)

2) Dense Samplers: As in universal sampling, designing
dense samplers is much easier than designing sparse samplers.
The following corollary of Theorem 2 follows by noting that
any basis for the circulant subspace has L = NB elements.

Corollary 1: Let Φ be an M×N random matrix satisfying
the hypotheses of Theorem 2 and let SC be given by (13).
Then, with probability one, the matrix Φ̄ = IB ⊗ Φ defines
an SC-covariance sampler if and only if

M ≥
√

NB

2B − 1
. (43)

The optimum compression ratio is, therefore,

ρ =
N

M
≈
√

(2B − 1)N

B
. (44)

For large B, this represents an approximate gain of
√

2 with
respect to the universal case.

B. d-banded Covariance Subspace

1) Sparse samplers: The prior knowledge that Σ is d-
banded may also provide compression gains. In particular, we
will see that, for sparse samplers, d-banded subspaces with
N ≤ d ≤ N(B − 1) are compressed like circulant subspaces.

Theorem 8: Let SdB be given by (16) with N ≤ d ≤ N(B−
1). Then, the set

K = {m+ bN, m ∈M, b = 0, 1, . . . , B − 1}, (45)

where M ⊂ {0, . . . , N − 1}, defines an SdB-covariance
sampler iff M is a length-(N − 1) circular sparse ruler.

Proof: See Appendix G.
Observe that the condition d ≤ N(B − 1) is a mild

assumption since we are only requiring that the last N−1 lags
of the associated autocorrelation sequence be zero.10 Note as
well that other cases rather than N ≤ d ≤ N(B − 1) may be
considered, resulting in different conclusions. For example,
in the non-periodic case (B = 1) it can be shown from
Theorem 1 that the only requirement on K sampler is that
∆(K) = {0, . . . , d}.

From Theorem 8 and Theorem 7, it follows that K must
be a length-(NB − 1) periodic circular sparse ruler of period

10Strictly speaking, we only need the lags NB−N + 1 through NB− 1
to be zero since the lags greater than NB − 1 are not relevant in the model.
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N , which means that samplers for d-banded subspaces mimic
those for circulant subspaces. Thus, one should apply the
design and compression ratio considerations from Sec. V-A1.
Interestingly, note that the latter does not depend on d provided
that this parameter remains within the aforementioned limits.

2) Dense Samplers: From Theorem 2 and noting that d-
banded subspaces have dimension 2d+ 1 we obtain:

Corollary 2: Let Φ be an M×N random matrix satisfying
the hypotheses of Theorem 2 and let SdB be given by (16).
Then, with probability one, the matrix Φ̄ = IB ⊗ Φ defines
an SdB-covariance sampler if and only if

M ≥
√

2d+ 1

2B − 1
. (46)

According to this result, the maximum compression ratio is:

ρ =
N

M
≈
√

(2B − 1)N2

2d+ 1
, (47)

which clearly improves the ratio in (35) since d ≤ NB − 1.

VI. ASYMPTOTIC REGIME

We next provide the optimal compression ratios for univer-
sal dense samplers and bound the optimal ratios for universal
sparse samplers as M and N become larger.
• Dense Samplers: The maximum compression ratio ρDS

of universal dense samplers is given by (35). Asymp-
totically in N , we have that ρDS →

√
2B−1

2B N , which

becomes ρDS →
√

N
2 in the non-periodic case and

ρDS →
√
N if the number of periods B also becomes

large. Alternatively, we observe that M →
√

2B
2B−1N as

N becomes large, which means that M →
√

2N in the
non-periodic case and M →

√
N as B →∞.

• Sparse Samplers: In [18], [40] it is established that the
quotient M2/N asymptotically converges to a constant
c, which is between11 τ ≈ 2.434 and 3, with M and
N −1 respectively denoting the cardinality and length of
a minimal linear sparse ruler. Therefore, the asymptotic
optimal compression ratio is given by

ρSS →
√
N

c
. (48)

In terms of M , this means that M →
√
cN . Interestingly,

if we use nested arrays [23], [43], the maximum achiev-
able compression we can obtain for suitable choices of the
parameters is ρNA →

√
N
4 , which is therefore suboptimal.

However, they present the advantage of having a simple
design. The scheme in [18], [41] allows the simple
construction of sparse rulers satisfying M2/N < 3,
which entail compression ratios greater than

√
N
3 even

for finite M and N .
To sum up, dense samplers provide better asymptotic com-

pression ratios than sparse samplers. The compression loss
between both approaches is quantified by the constant c, which

11As an informal guess, consider the length-90 minimal sparse ruler, which
has 16 elements. A simple approximation yields c ≈ 162/91 ≈ 2.8132.

means that between 36% and 42% compression may be lost for
large B if we use sparse sampling instead of dense sampling.
Similar observations arise for non-universal samplers by using
the expressions in Sec. V.

Interestingly, these expressions show that the compression
ratio can be made arbitrarily large just by increasing the
number of observations. This conclusion agrees with [58].

VII. DISCUSSION

The compression ratio was defined such that it is preserved
for any number of realizations of y — note that each one is
compressed using that ratio. In case of an arbitrarily large num-
ber of realizations, the maximum compression ratio separates
consistency from inconsistency in the estimation. However,
the notion of consistency is not truly meaningful in case of
just one realization. For those cases, the values presented here
provide simple guidelines to select suitable compression ratios
and a guess of the quality of the estimation, in the sense that
a good performance is expected when the actual compression
ratio is much lower than the maximum one and vice versa.

VIII. CONCLUSIONS

We have derived maximum compression ratios and optimal
covariance samplers for a number of cases including Toeplitz,
circulant, and banded covariance subspaces. The results were
derived for the general periodic case, but they can be imme-
diately particularized to the non-periodic setting. One of the
effects observed is the convenience of having long blocks.

Two common schemes were considered: sparse and dense
samplers. The design of optimal sparse samplers is related
to the minimal sparse ruler problem, which is an exhaustive
search problem with known near-optimal simple approxima-
tions. Some cases deal with linear and others with circular
sparse rulers.

For dense samplers, the proposed random design is much
simpler since it solely depends on the size of the compression
matrix relative to the dimension of the covariance subspace. As
opposed to the designs presented for sparse samplers, which
result in samplers which are optimal only among the family
of sparse samplers, the random designs proposed here result
in samplers which are optimal in general, that is, no other
covariance sampler (either dense or sparse) can do better.

APPENDIX A
PROOF OF LEMMA 1

Clearly, if φ is invertible so is φ|A. In order to prove the
converse statement, it suffices to show that φ is injective if φ|A
is injective. This is a simple consequence of the definition
of the codomains for both functions. Therefore, we need to
prove that, given any two vectors a = [a0, · · · , aS−1]T and
b = [b0, · · · , bS−1]T in RS , the matrices

Σa =
∑
s

asΣs and Σb =
∑
s

bsΣs (49)

must satisfy that

φ(Σa) = φ(Σb) ⇒ Σa = Σb (50)
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or, equivalently, that

φ(Σa) = φ(Σb) ⇒ a = b, (51)

since S is linearly independent. To do so, let us take S
linearly independent vectors α0, · · · ,αS−1, where αi =
[αi,0 . . . αi,S−1]T , such that the S matrices

Σαi =
∑
s

αi,sΣs, i = 0, . . . , S − 1 (52)

are inA. This operation is possible since dimR[A∩spanR S] =
S. Moreover, since φ|A is injective and {Σαi}S−1

i=0 is a linearly
independent set of matrices, it follows that the matrices

Σ̄αi = φ|A(Σαi) = φ(Σαi) =
∑
s

αi,sΣ̄s (53)

also form an independent set of matrices. On the other hand,
since the S vectors αi constitute a basis for RS , it is possible
to write a and b as:

a =
∑
i

ãiαi and b =
∑
i

b̃iαi, (54)

for some ãi, b̃i ∈ R, which in turn means that

Σa =
∑
i

ãiΣαi and Σb =
∑
i

b̃iΣαi (55)

or

φ(Σa) =
∑
i

ãiΣ̄αi and φ(Σb) =
∑
i

b̃iΣ̄αi . (56)

Noting that the matrices Σ̄αi are linearly independent leads
to the statement

φ(Σa) = φ(Σb) ⇒ ãi = b̃i ∀i, (57)

which is equivalent to (51), thus concluding the proof.

APPENDIX B
PROOF OF THEOREM 2

In order to show Theorem 2 we will proceed by computing
the dimension of kerφC, and deriving the conditions under
which dim kerφC = 0, which, in virtue of Lemma 4, are
the conditions determining whether Φ̄ defines a covariance
sampler. However, since the direct computation of kerφC is
not a simple task, we perform several intermediate steps. First,
we compute ker φ̃C, where φ̃C is defined as the extension of
φC to CL×L:

CNB×NB φ̃C−−−−→ CMB×MB

Σ −−−−→ Σ̄ = Φ̄ΣΦ̄H
(58)

We later compute dim kerφC by successive intersections as

kerφC = span
C
S ∩

(
TNB ∩

(
BN,B ∩ ker φ̃C

))
, (59)

where TNB represents the set of (not necessarily Hermitian)
NB ×NB Toeplitz matrices and BN,B represents the set of
NB×NB matrices with Toeplitz N×N blocks. The matrices
in BN,B can thus be written as A0,0 , · · · , A0,B−1

...
...

AB−1,0 , · · · , AB−1,B−1

 (60)

where the blocks Ab,p ∈ CN×N are Toeplitz. Expression (59)
results from the fact that kerφC = spanC S ∩ ker φ̃C and

span
C
S ⊂ TNB ⊂ BN,B . (61)

On the other hand, the requirement that the probability
measure is absolutely continuous means that the probability
that any row (or column) of Φ is in a given subspace of
dimension less than N (resp. M ) is zero. Another consequence
is that rank Φ = M ≤ N with probability one and, as a result,
the (right) null space of Φ has dimension N − M . Let us
denote by V an N × (N −M) matrix whose columns span
this null space. Due to the properties of Φ, it is clear that the
probability that the columns of V are contained in a given
subspace of dimension less than N is zero.

We start by computing a basis for ker φ̃C in terms of V .
Lemma 6: Let Ei,j ∈ CB×B be the matrix with all

entries set to zero but the (i, j)-th entry, which is one, and
let ek denote the k-th column of the identity matrix IN .
Let also φ̃C be defined as in (58), and let the columns of
V = [v0, · · · ,vN−M−1] ∈ CN×(N−M) form a basis for the
null space of Φ. Then, a basis for ker φ̃C is given by

W =

B−1⋃
i=0

B−1⋃
j=0

Wi,j , (62)

where

Wi,j =
{
Ei,j ⊗ ek ⊗ vHl , (63)

k = 0, 1, . . . , N − 1, l = 0, 1, . . . , N −M − 1
}

∪
{
Ei,j ⊗ eHk ⊗ vl, (64)

k = 0, 1, . . . ,M − 1, l = 0, 1, . . . , N −M − 1
}
.

Proof: See Appendix C.
Now let us evaluate the intersection BN,B ∩ ker φ̃C, which

means that we must look for the matrices in ker φ̃C whose N×
N blocks have a Toeplitz structure. For the sake of simplicity,
let us proceed block-by-block by separately considering the
subspaces generated by each Wi,j . Clearly, the matrices in
spanCWi,j can have, at most, a single non-null N×N block,
which is the (i, j)-th block. This block is in the subspace
generated by the following basis:

{ek ⊗ vHl , k = 0, 1, . . . , N − 1,

l = 0, 1, . . . , N −M − 1}
∪ {eHk ⊗ vl, k = 0, 1, . . . ,M − 1,

l = 0, 1, . . . , N −M − 1}.

Therefore, all blocks in this subspace can be written in terms
of this basis as∑

k

∑
l

αk,l(ek ⊗ vHl ) +
∑
k

∑
l

βk,l(e
H
k ⊗ vl) (65)
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for some αk,l ∈ C and βk,l ∈ C. The blocks with Toeplitz
structure must necessarily satisfy

N−1∑
n=−N+1

γnPn =

N−1∑
k=0

N−M−1∑
l=0

αk,l(ek ⊗ vHl ) (66)

+

M−1∑
k=0

N−M−1∑
l=0

βk,l(e
H
k ⊗ vl)

for some γn ∈ C, where Pn equals JnN for n ≥ 0 and (J−nN )T

for n < 0, with JN defined in Sec. II-B.
Expression (66) represents a system of linear equations in

αk,l, βk,l and γn, with N2 −M2 + 2N − 1 unknowns and
N2 equations. On the other hand, since Φ, and consequently
V , follow a continuous distribution, it follows that there are
min(N2, N2 −M2 + 2N − 1) independent matrices in (66).
Consequently, if N2 ≥ N2−M2 +2N−1 the only solution is
just the zero matrix, and BN,B ∩ ker φ̃C = {0}, which in turn
means that kerφC = {0}. Therefore, a sufficient condition for
Φ̄ to define a covariance sampler (see Lemma 4) is

M2 ≥ 2N − 1. (67)

Conversely, if N2 < N2 − M2 + 2N − 1 the subspace of
solutions has dimension N2 −M2 + 2N − 1 −N2 = 2N −
M2−1. Therefore, the blocks of the matrices in BN,B∩ker φ̃C
can be written as a linear combination of 2N−M2−1 Toeplitz
matricesMk. By considering all blocks, it follows that BN,B∩
ker φ̃C is generated by the following basis:{

Ei,j ⊗Mk, i, j = 0, 1, . . . , B − 1;

k = 0, 1, . . . , 2N −M2 − 2
}
. (68)

Thus, any matrix in BN,B ∩ ker φ̃C can be written as

Σ =
∑
i,j,k

ηki,jEi,j ⊗Mk. (69)

Now we compute the dimension of TNB ∩(
BN,B ∩ ker φ̃C

)
. First note that dim(BN,B ∩ ker φ̃C) =

B2(2N − M2 − 1). In order for Σ ∈ BN,B ∩ ker φ̃C
to be Toeplitz, we require that ηki,j only depend on the
difference i − j, which reduces the dimension of this space
to 2N − M2 − 1 times the number of block diagonals,
i.e., (2N − M2 − 1)(2B − 1). Moreover, since any two
adjacent block diagonals share N − 1 diagonals, this imposes
(2B − 2)(N − 1) additional equations and results in

dim
(
TNB ∩

(
BN,B ∩ ker φ̃C

))
(70)

= (2N −M2 − 1)(2B − 1)− (2B − 2)(N − 1).

At this point, note that TNB is the smallest subspace
containing of both TNB∩BN,B∩ker φ̃C and spanR S. Since Φ
was generated according to a continuous distribution, then with
probability one these two subspaces will not overlap (except
for the zero matrix) unless the sum of their dimensions exceeds
the dimension of the parent subspace, which is 2NB − 1.
Therefore, Φ̄ defines a covariance sampler if and only if

(2N −M2 − 1)(2B − 1)− (2B − 2)(N − 1) + S ≤ 2NB − 1

or, equivalently

S ≤M2(2B − 1). (71)

It remains only to show that one only needs to look at (71)
in order to assess whether a matrix Φ̄ defines a covariance
sampler, the condition in (67) being completely irrelevant. This
follows from the fact that (67) implies (71). Indeed, if we
multiply both sides of (67) by (2B − 1), we obtain

M2(2B − 1) ≥ (2N − 1)(2B − 1) (72)
= (2NB − 1) + 2(N − 1)(B − 1) (73)
≥ (2NB − 1) ≥ S (74)

where the second inequality follows from the fact that (N −
1)(B − 1) ≥ 0 and the third one is a consequence of the
linear independence of S. Therefore, (67) implies (71), and Φ̄
defines a covariance sampler if and only if (71) holds.

APPENDIX C
PROOF OF LEMMA 6

Computing ker φ̃C amounts to finding a basis for the sub-
space of matrices Σ in CNB×NB satisfying Φ̄ΣΦ̄H = 0.
Vectorizing this expression (see e.g. [46]) results in the con-
dition (Φ̄∗ ⊗ Φ̄) z = 0, where z = vec Σ. Thus, ker φ̃C is
given (up to inverse vectorization) by the null space of the
(MB)2 × (NB)2 matrix Φ̄∗ ⊗ Φ̄.

Since the columns of V constitute a basis for the null
space of Φ and since Φ̄ = IB ⊗ Φ, the columns of
V̄ = IB ⊗ V constitute a basis for the null-space of Φ̄. It
can be shown that ker φ̃C is composed of matrices of the form
Σ = V̄ AH +BV̄

H , where A and B are arbitrary matrices
of the appropriate dimensions. It follows that the null space
of Φ̄∗ ⊗ Φ̄ is spanned by the columns of the matrix

W̄ = [INB ⊗ V̄ , V̄
∗ ⊗ INB ]. (75)

By the properties of the Kronecker product [46], the fact that
Φ has maximum rank implies that Φ̄∗⊗Φ̄ has maximum rank
as well, so that its null space has dimension (N2 −M2)B2.
However, since V̄ is NB×(N−M)B, it is clear that W̄ has
2(N−M)NB2 columns, which is greater than (N2−M2)B2.
Thus, in order to obtain a basis for the null space of Φ̄∗⊗Φ̄ we
should remove dependent columns from W̄ . This procedure
is carried out in the following lemma:

Lemma 7: Let V ∈ CN×(N−M), with M ≤ N , be a matrix
whose columns generate the null space of Φ ∈ CM×N , which
follows a continuous distribution, and let V̄ = IB⊗V . Then,
the columns of W̄ , defined by (75), span the same subspace
as the columns of ¯̄W , which is defined as

¯̄W = [INB ⊗ V̄ , V̄
∗ ⊗ IB ⊗ FM ], (76)

where FM = [IM , 0M,N−M ]T .
Proof: The procedure we follow in this proof is to remove

linearly dependent columns from W̄ . Since the case B > 1 is
quite tedious, here we only show this result for the case B = 1.
The proof for the general case follows the same lines and it
is easily extrapolated, but it requires an overloaded notation.
For B = 1 we have that

W̄ = [IN ⊗ V , V ∗ ⊗ IN ]. (77)
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Now scale the last N(N −M) columns of W̄ to obtain

W̄
′

= [IN ⊗ V , G⊗ IN ], (78)

where G is the result of scaling the columns of V ∗ such that
the first row contains only ones12:

G =


1 1 . . . 1
g1,0 g1,1 . . . g1,N−M−1

...
...

. . .
...

gN−1,0 gN−1,1 . . . gN−1,N−M−1

 (79)

Now consider a submatrix of W̄ ′ obtained by retaining the first
N(N −M) columns and the columns with indices N(N −
M) +Ni, . . . , N(N −M) +N(i+ 1)− 1, i.e.,

W̄
′
i =


V 0 . . . 0 IN
0 V . . . 0 g1,iIN

. . .
0 0 . . . V gN−1,iIN

 , (80)

where i = 0, . . . , N −M − 1. Scaling the diagonal blocks on
the left yields:

W̄
′′
i =


V 0 . . . 0 IN
0 g1,iV . . . 0 g1,iIN

. . .
0 0 . . . gN−1,iV gN−1,iIN

 . (81)

Now, since Φ follows a continuous distribution, the last N−M
columns of [V , IN ] can be written as linear combinations of
the first N columns, which means that the last N−M columns
of W̄ ′

i are linearly dependent of the others. Repeating this
operation for i = 0, . . . , N −M − 1 and removing from W̄
the columns declared as dependent at each i gives

¯̄W = [IN ⊗ V , V ∗ ⊗ FM ], (82)

which clearly spans the same subspace as W̄ . In the general
case with B ≥ 1 we obtain

¯̄W = [INB ⊗ V̄ , V̄
∗ ⊗ IB ⊗ FM ]. (83)

Note that, indeed, the matrix defined in (76) has (N2 −
M2)B2 columns, which means that they constitute a basis for
the null space of Φ̄∗ ⊗ Φ̄. Upon inverse vectorization of the
columns of ¯̄W we obtain the sought basis in matrix form:

W =
{
Ei,j ⊗ ek ⊗ vHl , i, j = 0, 1, . . . B − 1, (84)

k = 0, 1, . . . , N − 1, l = 0, 1, . . . , N −M − 1
}

∪
{
Ei,j ⊗ eHk ⊗ vl, i, j = 0, 1, . . . B − 1, (85)

k = 0, 1, . . . ,M − 1, l = 0, 1, . . . , N −M − 1
}
.

12This is always possible whenever the elements of the first row of V are
all different from zero. However, it is possible with probability one to choose
V such that it generates the null space of Φ and satisfies this condition.

APPENDIX D
PROOF OF THEOREM 4

Clearly, if M is a length-(N − 1) sparse ruler, then (31)
defines a periodic sparse ruler. To show the converse statement,
assume that K is a periodic sparse ruler and take M = K ∩
{0, . . . , N − 1}. Then, {0, . . . , NB − 1} ⊂ ∆(K) and, in
particular, {N(B − 1), . . . , NB − 1} ⊂ ∆(K), meaning that

∀δ ∈ {N(B − 1), . . . , NB − 1}, ∃q, p ∈ K s.t. q − p = δ.

Due to the periodicity of K, any k ∈ K can be uniquely
decomposed as k = mk + bkN , where mk ∈ M and
bk ∈ {0, . . . , B − 1}. Denote as mp, mq, bp and bq the
corresponding coefficients of the decomposition of p and q.
Therefore, the condition above becomes

∀δ ∈ {N(B − 1), . . . , NB − 1}, ∃mp,mq ∈M (86)
and bp, bq ∈ {0, . . . , B − 1} s.t. mq −mp + (bq − bp)N = δ.

Since mq −mp ≤ N − 1 and δ ≥ N(B − 1), it is clear that
bq−bp must equal B−1 in order for the condition mq−mp+
(bq − bp)N = δ to hold. Then, after subtracting N(B − 1),
the following equivalent expression arises:

∀δ ∈ {0, . . . , N − 1}, ∃mp,mq ∈M s.t. mq −mp = δ.

Hence, M is a sparse ruler.

APPENDIX E
PROOF OF THEOREM 6

Assume that L is odd. The proof for L even follows similar
lines. If ∆(K) = {0, . . . , L − 1}, then the matrix from
Theorem 1 is given by:

R =


1 0T

L̄
0T
L̄

0L̄ IL̄ −IL̄
0L̄ KL̄ KL̄

1 0T
L̄

0T
L̄

0L̄ IL̄ IL̄
0L̄ KL̄ −KL̄

 (87)

where L̄ = L−1
2 , 0L̄ is an L̄ × 1 vector with all zeros and

KL̄ is an L̄× L̄ Hankel matrix with ones in the antidiagonal
and zeros elsewhere, i.e., its (m,n)-th element equals 1 if
m+ n = L̄− 1 and 0 otherwise. All the columns are linearly
independent so that rankR = L and, according to Theorem 1,
K is an SC-covariance sampler.

Now consider removing elements from ∆(K). It can readily
be seen that the rank is not maximum iff there is some
δ ∈ {0, . . . , L} such that δ /∈ ∆(K) and L − δ /∈ ∆(K).
Equivalently, we can say that the rank is maximum if and
only if ∆L(K) = {0, . . . , L− 1}.

APPENDIX F
PROOF OF THEOREM 7

Let us start by showing that if M is a circular sparse ruler,
then K is a periodic circular sparse ruler or, in other words, if
∆N (M) = {0, . . . , N − 1}, then ∆NB(K) = {0, . . . , NB −
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1}. Consider any δ ∈ {0, . . . , N − 1}. Since δ ∈ ∆N (M), at
least one of the following two conditions will hold:

C1: ∃m1,m2 ∈M, m2 ≥ m1 such that (88)
(m2 −m1)N = m2 −m1 = δ

C2: ∃m1,m2 ∈M, m2 < m1 such that (89)
(m2 −m1)N = N +m2 −m1 = δ

We next show that, in both cases, all the elements of the form
δ + bN , with b = 0, . . . , B − 1, are in ∆NB(K):

• C1: consider k2 = m2 + bN and k1 = m1 for any b =
0, . . . , B − 1. Since k1, k2 ∈ K, it follows that (k2 −
k1)NB = m2 + bN −m1 = δ + bN ∈ ∆NB(K).

• C2: first take k1 = m1 and k2 = m2 + N + bN with
b = 0, . . . , B− 2. Since k1, k2 ∈ K, then (k2−k1)NB =
m2 + N + bN −m1 = δ + bN ∈ ∆NB(K). It suffices
only to show that δ+bN ∈ ∆NB(K) when b = B−1. To
this end, consider k1 = m1 and k2 = m2, which results
in (k2 − k1)NB = NB +m2 −m1 = N(B − 1) +N +
m2 −m1 = N(B − 1) + δ ∈ ∆NB(K).

To sum up, we have shown that δ + bN ∈ ∆NB(K) for any
δ = 0, . . . , N−1 and b = 0, . . . , B−1, which establishes that
K is a circular sparse ruler.

To show the converse statement, assume that K is a circular
sparse ruler, i.e., ∆NB(K) = {0, . . . , NB − 1}. In particular,
all modular distances of the form δ = {0, . . . , N − 1} are
present in ∆NB(K), which means that one or both of the
following two conditions will be satisfied:

C1’: ∃k1, k2 ∈ K, k2 ≥ k1 such that (90)
(k2 − k1)NB = k2 − k1 = δ,

C2’: ∃k1, k2 ∈ K, k2 < k1 such that (91)
(k2 − k1)NB = NB + k2 − k1 = δ.

It is therefore to be shown that δ ∈ ∆N (M) in both cases,
where M is defined as M = K ∩ {0, . . . , N − 1}.
• C1’: clearly, we can assume without any loss of generality

that k1 ∈ M. According to whether k2 is also in M or
not, we distinguish two scenarios:

– k2 ∈ M: in this case, it is clear that (k2 − k1)N =
k2 − k1 ∈ ∆N (M).

– k2 /∈ M: since 0 ≤ δ < N , it follows that k2 can
be written as k2 = m + N for some m ∈ M with
m < k1. Therefore, (m − k1)N = N + m − k1 =
k2 − k1 = δ ∈ ∆N (M).

• C2’: since 0 ≤ δ < N , it can be seen that N(B − 1) <
k1 − k2 ≤ NB, which in turn requires k2 ∈ M and
k1 = m + N(B − 1) for some m ∈ M with m > k2.
Now consider the circular distance between m and k2:

(k2 −m)N = N + k2 −m = N + k2 − [k1 −N(B − 1)]

= k2 − k1 +NB = δ ∈ ∆N (M).

Therefore, we have shown that δ ∈ ∆N (M) for all δ =
0, . . . , N − 1, which means that M is a circular sparse ruler.

APPENDIX G
PROOF OF THEOREM 8

If we form the matrix R in Theorem 1 using the matrices
from (16), we conclude that {0, . . . , d} ⊂ ∆(K) in order for K
to define a covariance sampler. As we did to prove Theorem 4,
we write the following necessary and sufficient condition:

∀δ ∈ {0, . . . , d}, ∃m1,m2 ∈M and b1, b2 ∈ {0, . . . , B − 1}
such that m2 −m1 + (b2 − b1)N = δ. (92)

We start by showing that if M is a circular sparse ruler,
then (92) holds true, i.e., K is a covariance sampler. More
specifically, we show that δ ∈ ∆(K) ∀δ ∈ {0, . . . , N(B−1)}.
Consider two different cases:
• Case 0 ≤ δ < N(B−1): It suffices to write δ as δ = mδ+
bδN , with mδ ∈ {0, . . . , N−1} and bδ ∈ {0, . . . , B−2}.
Since mδ ∈ ∆N (M), then mδ can be represented either
as mδ,2−mδ,1 or as N+mδ,2−mδ,1, where mδ,1,mδ,2 ∈
M. In the former case just make m2 = mδ,2, m1 = mδ,1,
b2 = bδ and b1 = 0. In the later case make m2 = mδ,2,
m1 = mδ,1, b2 = bδ + 1 and b1 = 0.

• Case δ = N(B−1): this is trivial since N(B−1) ∈ ∆(K)
for any non-empty choice of M.

Now, in order to show the converse theorem, we prove that
if {0, . . . , N − 1} ⊂ ∆(K), then {0, . . . , N − 1} ⊂ ∆N (M).
Let us consider some δ ∈ {0, . . . , N − 1}. Since δ ∈ ∆(K),
it is clear that there exist some m1,m2 ∈ M and b1, b2 ∈
{0, . . . , B − 1} such that m2 − m1 + (b2 − b1)N = δ. In
particular, (b2 − b1) can be either 0 or 1. Therefore, for any
δ ∈ {0, . . . , N − 1}, there exists m1,m2 ∈ M such that
either m2 − m1 = δ or N + m2 − m1 = δ. Noting that
this condition is equivalent to the condition {0, . . . , N −1} ⊂
∆N (M) concludes the proof.
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