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Abstract

We present a new recovery analysis for a standard compressed sensing algorithm, Iterative Hard

Thresholding (IHT) (Blumensath and Davies, 2008), which considers the fixed points of the algorithm.

In the context of arbitrary measurement matrices, we derive a sufficient condition for convergence of

IHT to a fixed point and a necessary condition for the existence of fixed points. These conditions allow

us to perform a sparse signal recovery analysis in the deterministic noiseless case by implying that the

original sparse signal is the unique fixed point and limit point of IHT, and in the case of Gaussian

measurement matrices and noise by generating a bound on the approximation error of the IHT limit

as a multiple of the noise level. By generalizing the notion of fixed points, we extend our analysis

to the variable stepsize Normalised IHT (N-IHT) (Blumensath and Davies, 2010). For both stepsize

schemes, we obtain lower bounds on asymptotic phase transitions in a proportional-dimensional frame-

work, quantifying the sparsity/undersampling trade-off for which recovery is guaranteed. Exploiting

the reasonable average-case assumption that the underlying signal and measurement matrix are in-

dependent, comparison with previous results within this framework shows a substantial quantitative

improvement.

1 Introduction

Compressed Sensing (CS) seeks to recover sparse or compressible signals from undersampled linear mea-

surements [11,12,15]; it asserts that the number of measurements should be proportional to the information

content of the signal, rather than its dimension. More specifically, one seeks to recover a sparse signal from

noisy linear measurements. We refer to a signal which has at most k nonzero entries as being k-sparse,

and the problem can be stated as follows.

Sparse recovery from noisy measurements: Recover a k-sparse signal x∗ ∈ IRN from the linear

measurements

b = Ax∗ + e ∈ IRn, (1.1)

where e ∈ IRn is an unknown noise vector and where 0 < 2k ≤ n ≤ N .

Since the introduction of CS in 2004, many algorithms have been proposed to solve this seemingly (and

generally) intractable problem; see [31] for a recent survey. A common approach is to solve, by means of

classical or recently-proposed optimization methods, a (convex or nonconvex) optimization relaxation that

penalizes the lack of sparsity of x by means of lp-norms with 0 < p ≤ 1. Alternatively, greedy methods —

such as (Orthogonal) Matching Pursuit [14,24,28], SP [13], CoSAMP [25], amongst others — can be used

to tackle the so-called l0-problem directly, namely,

min
x∈IRN

Ψ(x)
def
= 1

2‖Ax− b‖2 subject to ‖x‖0 ≤ k, (1.2)
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where ‖ ·‖0 counts the number of nonzero entries of the argument. Problem (1.2) is nonconvex, with many

local minimizers and in the perfect case of zero noise, with a (unique) global minimizer at the k-sparse

vector x∗ [26] that we are aiming to recover. It is now well known that, under certain conditions, many

of these algorithms have stable recovery properties, namely that the error in approximating the original

signal is some (usually small) multiple of the noise level, which further implies exact recovery of the original

signal x∗ in the absence of noise [6, 31].

Here, we focus on a simple and widely-used greedy technique – Iterative Hard Thresholding (IHT) [9,10]

– that generates feasible steepest descent steps for problem (1.2), obtained by projecting steps along the

negative gradient direction of Ψ onto the l0-norm constraint by means of the hard threshold operator which

simply sets all but the k largest in magnitude coefficients of a vector to zero. IHT [9] performs gradient

projection with constant stepsize, while Normalised Iterative Hard Thresholding (N-IHT) [10] employs a

variable stepsize scheme.

Early CS theory focussed upon algorithms which solve convex relaxations of (1.2) [11,15], and perhaps

for this reason IHT algorithms were slow to gain acceptance in the CS community. However, more

recently, empirical studies in [7] have shown that, surprisingly, these nonconvex approaches are in fact

competitive in practice in terms of sparse recovery properties with more established CS algorithms based

on l1-minimization. In common with many gradient methods proposed for l1-based CS recovery, IHT

algorithms also have low computational cost, with the most costly operations being matrix-vector products

and hard threshold operations. As we detail below, existing theoretical recovery analyses are unduly

pessimistic and fail to account for this excellent practical behaviour of IHT variants, and it is the aim of

this paper to improve quantitative recovery guarantees of IHT algorithms by means of a new probabilistic

analysis.

Regarding state-of-the-art theoretical properties, Blumensath and Davies [9] obtained the first con-

vergence result for IHT, proving convergence to a fixed point of IHT/local minimizer of (1.2) provided

the spectral norm of the measurement matrix A is less than one, a somewhat restrictive condition. The

same authors [8] then proved that stable recovery is guaranteed provided A satisfies a restricted isometry

property (RIP) [12], which requires the matrix to act as a near isometry on all k-sparse vectors, a now

ubiquitous tool in CS recovery analysis. Other RIP-based recovery conditions were subsequently obtained

for IHT in [19–21], and for N-IHT in [10].

Determining whether a given measurement matrix satisfies a restricted isometry property is in itself,

however, NP-hard. It has been shown [3] that certain random matrices, such as Gaussian matrices in

which each entry is i.i.d. Gaussian, satisfy the RIP provided

n ≥ C · k ln

(
N

k

)
.

Quantifying the constant C is, however, vital to practitioners who wish to know how aggressively a signal

may be undersampled given its dimension and sparsity. Based on the RIP analysis in [8, 10, 19–21],

quantitative results were obtained for IHT in [6, 30] for the case of Gaussian matrices in an asymptotic

framework in which the problem dimensions are assumed to grow proportionally. We will refer to such a

framework as the proportional-growth asymptotic, defined as follows.

Definition 1.1 (Proportional-growth asymptotic [5]). We say that a sequence of problem sizes (k, n,N),

where 0 < k ≤ n ≤ N , grows proportionally if, for some δ ∈ (0, 1] and ρ ∈ (0, 1],

n

N
→ δ and

k

n
→ ρ as (k, n,N)→∞.

This framework, advocated by Donoho and others [16, 17], defines a two-dimensional phase space for

asymptotic analysis in which the variables δ and ρ have a simple practical interpretation. The parameter

δ is the ratio by which the signal is undersampled (an undersampling ratio), while the ratio ρ indicates

how many measurements need to be taken as a multiple of the sparsity (an oversampling ratio).
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By making use of RIP analysis for Gaussian matrices, first performed in [5] and subsequently improved

upon in [2], it was shown in [6, 30] that all of the RIP conditions proved to date for IHT algorithms

are pessimistic compared to these algorithms’ numerically-observed average-case behaviour. This is not

altogether surprising, since the RIP gives worst-case guarantees. There is, therefore, a need for improved

quantitative recovery guarantees for IHT algorithms which narrow the gap between theoretical guarantees

and observed performance. This is in contrast to l1-minimization, for which average-case phase transitions

in the proportional-growth asymptotic have been precisely determined for Gaussian matrices [16].1

The main contributions of this paper are as follows:

1) We present an entirely new recovery analysis of IHT algorithms. In the context of con-

stant stepsize IHT, whereas previous recovery analyses [8,10,19–21] take the direct approach of bounding

the approximation error from iteration to iteration, we take a two-part approach in which we analyse the

fixed points of the algorithm. First, we prove a stable point condition, namely a necessary condition for

there to be a fixed point on a given support. Second, we give a convergence condition which guarantees the

convergence of IHT to one of its fixed points. In the case of no noise, this analysis allows us to establish

conditions under which, surprisingly, IHT converges to its unique fixed point, namely, the original signal

x∗; noise-dependent recovery results are also given. By extending the notion of a fixed point to the (new)

concept of an α-stable point, we obtain similar recovery results for the variable-stepsize N-IHT.

2) We use average-case assumptions to obtain improved lower bounds on recovery phase

transitions for IHT algorithms with Gaussian matrices and Gaussian noise. While it is possible

to analyse the stable point condition using the RIP [30], we take a different approach. Because the

stable point condition has no dependence upon the iterates of the algorithm, it is amenable to analysis

for Gaussian matrices under the assumption that the measurement matrix is independent of the signal

– a realistic assumption in CS. We derive precise distributions of this condition’s constituent terms, and

obtain large deviations bounds on these terms over all possible support sets in the proportional-dimensional

asymptotic; in this context, we deduce bounds on some independent RIP constants that occur naturally

in our results. For the convergence condition, we still make use of the RIP, and upper bounds thereon

in the proportional-growth asymptotic for Gaussian matrices. However, the RIP condition involved is

substantially weaker than any others that have appeared in the literature to date for IHT algorithms.

Combining these results, we obtain lower bounds on recovery phase transitions for IHT and N-IHT,

namely regions of the phase plane in which stable recovery is guaranteed. In the case of zero noise, we

have exact recovery of the original signal. In the case of noise, we derive stability factors which bound the

approximation error as a multiple of the expectation of the noise. Comparison with state-of-the-art results

that have been quantified in the phase transition framework in [6, 30], shows a substantial quantitative

improvement, both in terms of recovery guarantees as expressed by the height of the phase transition

bounds, and of robustness to noise as expressed by the size of the stability factors; thus narrowing the

gap to observed average-case behaviour. In particular, for the variable-stepsize N-IHT, we obtain about a

factor 10 improvement in the height of the phase transition bound over best-known results.

We refer to the assumption of independence between signal and measurements as an average-case

assumption. The reason for this choice of terminology is that the assumption implies that results hold for

given signal instances chosen independently of the measurement matrix, and not for all k-sparse signals

(as is the case in worst-case RIP analysis). In particular, the independence assumption excludes the

(unlikely) scenario in which the worst possible signal is chosen for a given measurement matrix. However,

we are not claiming that our analysis is entirely average-case. Though the independence assumption is

utilized in analysing the stable point condition, this analysis also involves the use of union bounds, which

are often viewed as worst-case techniques. Furthermore, the independence assumption is not used in

the convergence analysis, which is based entirely upon the worst-case notion of the RIP. Two comments

will help further clarify our contribution. Firstly, our use of union bounds in the stable point analysis

is somewhat different from their use in RIP analyses. In our analysis, we fix a signal support set (and

1To the best of our knowledge, the average-case analysis techniques of approximate message passing (Donoho, Maleki and

Montanari, 2009) cannot be applied to IHT methods because the hard thresholding operator is not Lipschitz-continuous.



4 C. Cartis and A. Thompson

coefficients), and obtain probability bounds over all other incorrect support sets. We therefore make use

of union bounds within the context of the average-case assumption that the signal is independent of the

measurements. Secondly, the RIP conditions we require for convergence are much weaker than existing

RIP-based analyses for IHT algorithms. Thus the improvement we obtain over existing results for IHT

algorithms can be attributed jointly to the exploitation of average-case assumptions (in the stable point

conditions) — see the discussion in Section 4.2 — and to the weakening of RIP requirements (in the

convergence condition) — see the discussion in Section 5.2. While we achieve significant quantitative

improvements over previous analysis [6, 30], we emphasize that our results are still lower bounds on the

average-case phase transition, and it remains to fully bridge the gap between theory and empirical average-

case behaviour.

3) We determine a region of phase space within which constant-stepsize IHT is asymptot-

ically guaranteed to have a single fixed point in the case of zero measurement noise. Since

IHT attempts to solve a nonconvex problem with many local minimizers, it might be natural to expect

that the algorithm has a very large number of fixed points. In the noiseless case, our analysis implies a

radically new insight: that, within some region of the phase plane (which depends upon the stepsize), IHT

has a single fixed point (and hence minimizer), namely the original signal.

Outline of the paper. We begin in Section 2 by describing in more detail the generic IHT algorithm

and two stepsize scheme variants, IHT and N-IHT. In Section 3, we introduce our new recovery analysis,

proving our stable point condition, and convergence conditions for both stepsize schemes. Then we focus

our attention for the remainder of the paper upon Gaussian matrices: in Section 4, we prove various

distributional and large deviations results, and we use these in Section 5 to obtain improved lower bounds

on recovery phase transitions in the proportional-growth asymptotic, after which we conclude in Section

6.

Notation. We let ‖·‖ denote the Euclidean norm. The support set of the k-sparse signal x∗ we aim to

recover will be denoted by supp(x∗) = Λ with cardinality |Λ| = k. Given some index set Γ ⊆ {1, 2, . . . N},
we define the complement of Γ to be ΓC = {1, 2, . . . N} \ Γ. We write xΓ for the restriction of the vector

x to the coefficients indexed by the elements of Γ, and we write AΓ for the restriction of the matrix A to

those columns indexed by the elements of Γ.

2 Iterative hard thresholding algorithms

Let us describe in detail the algorithms that are the focus of the analysis in this paper. Generically, on

each hard thresholding iteration m, a steepest descent step, possibly with linesearch, is calculated for the

objective Ψ in (1.2), namely, a move is performed from the current iterate xm along the negative gradient

of Ψ,

−∇Ψ(xm) = −AT (Axm − b). (2.1)

The resulting step is then projected onto the (nonconvex) l0-constraint in (1.2) using the so-called hard

threshold operator Hk(·) defined as

Hk(x)
def
= arg min

‖z‖0≤k
‖z − x‖.

As the name suggests, Hk(·) is indeed a thresholding operator, keeping the k largest entries in magnitude

of its argument and setting the rest to zero, namely,

Hk(x) =

{
xi for i ∈ Γ,

0 for i /∈ Γ,
where Γ

def
= { indices of the k largest in magnitude entries of x } (2.2)

(See [30, Lemma 1.10] for a proof of (2.2) given its definition.) To avoid a situation in which the support

set Γ is not uniquely defined, if for instance some of the coefficients are equal in magnitude, then a support

set for the identical components can be selected either randomly or according to some predefined ordering.
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The generic IHT algorithm, that includes variants allowing constant or variable linesearch choices, can

be summarized as follows2.

Algorithm 2.1: Generic Iterative Hard Thresholding (G-IHT) algorithm [9,10].

Given A, b and k for problem (1.1), do:

Step 0: Set x0 = 0 and m = 0.

While some termination criterion is not satisfied, do:

Step 1: Compute

xm+1 := Hk

{
xm − αmAT (Axm − b)

}
, (2.3)

with Hk defined in (2.2) and αm > 0 some (pre-defined or computed) stepsize.

Step 2: Set m = m+ 1 and return to Step 1.

In our analysis, we will consider the possibly infinite sequence of iterates generated by G-IHT, though in

practice a useful termination criterion such as requiring the residual to be sufficiently small, would need

to be employed. Two popular stepsize choices will be addressed: constant stepsize αm = α ∈ (0, 1) for all

m, with the resulting G-IHT variant being denoted simply as IHT [9], and variable stepsize as prescribed

in the Normalised IHT (N-IHT) variant proposed in [10].

The IHT variant of G-IHT can be summarized as follows.

Algorithm 2.2: Iterative Hard Thresholding (IHT) algorithm [9].

Given some α > 0, on each iteration m ≥ 0 of G-IHT, do:

In Step 1, set αm in (2.3) as follows:
αm := α. (2.4)

The N-IHT variant defined below follows [10], having the stepsize αm chosen according to an exact

linesearch [27] when the support set of consecutive iterates stays the same, and using a shrinking strategy

when the support set changes so as to ensure sufficient decrease in the objective of (1.2).

Under the (weakest) assumptions of this paper, we can ensure that both the exact linesearch and the

shrinkage stepsizes in N-IHT are well-defined, until termination; see Section 3.2.2. The shrinkage iteration

between Steps 1.1–1.2 of N-IHT can be shown to terminate in finitely many steps [10].

3 Deterministic conditions for a recovery analysis

In this section we derive conditions for IHT algorithms when applied to general measurement matrices A.

Hence we make the following common assumption for compressed sensing algorithms.

A.1 The matrixA is in 2k-general position, namely any 2k of its columns are linearly independent.

The (weak) assumption A.1 is equivalent to the condition that, for any Γ such that |Γ| = 2k, the

matrix ATΓAΓ is nonsingular. Thus, whenever A.1 holds and there is no noise in the system (i.e., e = 0 in

(1.1)), we have ‖A(x∗ − x)‖ > 0 for any k-sparse x 6= x∗, and so x∗ is the unique k-sparse exact solution

to the linear system b = Ax∗. Note also that A.1 holds if A is in general position. It is also satisfied with

probability 1 if A is a Gaussian matrix and 2k ≤ n [22].

2The reason we introduce the G-IHT framework is to allow a more concise presentation of results for the (fully specified)

IHT variants that are of interest.
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Algorithm 2.3: Normalised Iterative Hard Thresholding (N-IHT) algorithm [10].

Given some c ∈ (0, 1) and κ > 1/(1− c), on each iteration m ≥ 0 of G-IHT, do:

In Step 1, compute αm in (2.3) as follows:

Step 1.0: Set Γm := supp(xm) and

αm :=
‖ATΓm(b−Axm)‖2

‖AΓmATΓm(b−Axm)‖2
. (2.5)

Compute x̃m+1 := Hk

{
xm + αmAT (b−Axm)

}
. If supp(x̃m+1) = Γm, terminate with αm

given in (2.5).

While αm ≥ (1− c) ‖x̃
m+1 − xm‖2

‖A(x̃m+1 − xm)‖2
, do:

Step 1.1: αm := αm/[κ(1− c)];

Step 1.2: x̃m+1 := Hk

{
xm + αmAT (b−Axm)

}
;

End.

The results derived in this section come in two parts: a necessary condition for the existence of

(generalized) fixed points of G-IHT and a sufficient condition guaranteeing convergence for particular

stepsize schemes. In the deterministic noiseless case, the former condition can be used to guarantee the

existence of at most one fixed point, namely, the original signal x∗; thus, provided we also have convergence

of the algorithm to some such fixed/stable point, signal recovery is ensured. The below deterministic results

also yield similar recovery properties (based on proximity/closeness of fixed points to the original signal)

in the presence of noise and Gaussian measurement matrices, as we show in later sections.

3.1 A stable-point condition

We introduce the concept of an α-stable point of G-IHT, a generalization of fixed points.

Definition 3.1 (α-stable points of G-IHT). Given α > 0 and an index set Γ with |Γ| = k, we say

x̄ ∈ IRN is an α-stable point of G-IHT on Γ if supp(x̄) ⊆ Γ and{
AT (b−Ax̄)

}
Γ

= 0 and (3.1)

min
i∈Γ
|x̄i| ≥ α max

j∈ΓC
|
{
AT (b−Ax̄)

}
j
|. (3.2)

Note that in the noiseless case (e = 0 in (1.1)), the original signal x∗ is clearly an α-stable point on

supp(x) = Λ, for any value of α > 0.

In the case of the constant-stepsize IHT algorithm, an α-stable point is nothing other than a fixed point

of IHT (see Blumensath & Davies [9, Lemma 6]) or an L-stationary point of (1.2) in [4, §2.3]. (Indeed, if a

further IHT iteration is applied at a fixed point x̄, there is no change in the support set; thus the gradient

term on the complement of the support of x̄ must be suitably small, which is (3.2). Also, the coefficients

on the support of x̄ must remain unchanged, and so we require the gradient on the support of x̄ to be

zero, namely (3.1).) A generalization of the notion of a fixed point and L-stationary point to stable points

is, however, required to allow for variable stepsize schemes in G-IHT3; we will be interested in values of α

that lower bound the stepsize αm of G-IHT.

Next we show that any α-stable point is a minimum-norm solution on some k-subspace.

3When (3.1) holds for N-IHT, the exact linesearch stepsize (2.5) is not well-defined with its numerator and denominator

both being zero.
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Lemma 3.1. Let A.1 hold and x̄ be an α-stable point of G-IHT on Γ for some α > 0. Then

x̄Γ = A†Γb, (3.3)

where A†Γ is the Moore-Penrose pseudo-inverse, namely,

A†Γ
def
= (ATΓAΓ)−1ATΓ . (3.4)

Proof. It follows from (3.1) that ATΓ (b−AΓx̄Γ) = 0. By A.1, the pseudoinverse A†Γ is well-defined

and we may rearrange to give (3.3). 2

While the previous lemma tells us that any stable point is necessarily a minimum-norm solution on

some k-subspace, the converse may not hold. Next, we give a more useful necessary condition for there

to exist a stable point on a given support set. We will use the latter condition in a sufficient sense later

on, to guarantee that under certain conditions, all G-IHT stable points are close to the underlying signal,

which in the noiseless case reduces to G-IHT having at most one stable point, namely, the original signal.

Theorem 3.2 (Stable point condition; noise case). Consider problem (1.1) and let Λ = supp(x∗).

Suppose A.1 holds4 and suppose there exists an α-stable point of G-IHT on some Γ such that Γ 6= Λ.

Then ∥∥∥A†ΓAΛ\Γx
∗
Λ\Γ

∥∥∥+
∥∥∥A†Γe∥∥∥ ≥ α{∥∥∥ATΛ\Γ(I −AΓA

†
Γ)AΛ\Γx

∗
Λ\Γ

∥∥∥− ∥∥∥ATΛ\Γ(I −AΓA
†
Γ)e
∥∥∥} , (3.5)

where A†Γ is defined in (3.4).

Proof. Assume x̄ is an α-stable point on Γ. Since Γ \ Λ ⊆ Γ and Λ \ Γ ⊆ ΓC , where Λ = supp(x∗),

(3.2) implies that

min
i∈Γ\Λ

|x̄i| ≥ α max
j∈Λ\Γ

|
{
AT (b−Ax̄)

}
j
|. (3.6)

Definition 3.1 implies that |Γ| = |Λ|, and so |Γ \ Λ| = |Λ \ Γ|. This, properties of the Euclidean norm

and (3.6) provide

‖x̄Γ\Λ‖2 ≥ |Γ \ Λ|
{

min
i∈Γ\Λ

|x̄i|
}2

≥ |Λ \ Γ|
{
α max
j∈Λ\Γ

|
{
AT (b−Ax̄)

}
j
|
}2

≥ α2‖ATΛ\Γ(b−Ax̄)‖2. (3.7)

Problem (1.1) and x∗ΛC = 0 imply

b = Ax∗ + e = AΓx
∗
Γ +AΛ\Γx

∗
Λ\Γ + e. (3.8)

This and Lemma 3.1 now provide, under A.1,

x̄Γ = A†Γb = x∗Γ +A†ΓAΛ\Γx
∗
Λ\Γ +A†Γe,

where in the last equality, we used A†ΓAΓ = I. Therefore, since x∗Γ\Λ = 0, we deduce

x̄Γ\Λ =
(
A†ΓAΛ\Γx

∗
Λ\Γ +A†Γe

)
Γ\Λ

and so,

‖x̄Γ\Λ‖ ≤
∥∥∥∥(A†ΓAΛ\Γx

∗
Λ\Γ

)
Γ\Λ

∥∥∥∥+

∥∥∥∥(A†Γe)
Γ\Λ

∥∥∥∥ ≤ ∥∥∥A†ΓAΛ\Γx
∗
Λ\Γ

∥∥∥+
∥∥∥A†Γe∥∥∥ , (3.9)

which upper bounds the left-hand side of (3.7). Under A.1, we may next use Lemma 3.1 and (3.8) to

express the right-hand side of (3.7) independently of x̄, as

ATΛ\Γ(b−Ax̄) = ATΛ\Γ(I −AΓA
†
Γ)b = ATΛ\Γ(I −AΓA

†
Γ)(AΛ\Γx

∗
Λ\Γ + e),

4Assumption A.1 may in fact be weakened in Theorem 3.2 to requiring the matrix A to be in k-general position.
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where in the last equality, we used A†ΓAΓ = I. We therefore may deduce∥∥∥ATΛ\Γ(b−Ax̄)
∥∥∥ ≥ ∥∥∥ATΛ\Γ(I −AΓA

†
Γ)AΛ\Γx

∗
Λ\Γ

∥∥∥− ∥∥∥ATΛ\Γ(I −AΓA
†
Γ)e
∥∥∥ . (3.10)

Substituting (3.9) and (3.10) into (3.7), we arrive at (3.5). 2

Theorem 3.2 simplifies further in the noiseless case.

Corollary 3.3 (Stable point condition; noiseless case). Consider problem (1.1) with e
def
= 0 and let

Λ = supp(x∗). Suppose A.1 holds and suppose there exists an α-stable point of G-IHT on some Γ such

that Γ 6= Λ. Then ∥∥∥A†ΓAΛ\Γx
∗
Λ\Γ

∥∥∥ ≥ α ∥∥∥ATΛ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ

∥∥∥ , (3.11)

where A†Γ is defined in (3.4).

Proof. The result follows immediately by setting e
def
= 0 in (3.5). 2

Clearly, Corollary 3.3 implies that if the reverse inequality in (3.11) holds for all support sets Γ 6= Λ,

then x∗ is the only α-stable point of G-IHT.

3.2 A convergence condition

This section gives conditions for IHT algorithms to convergence to stable points. Recalling (1.2) and (2.3),

we introduce the notation

gm
def
= ∇Ψ(xm) and Γm

def
= supp(xm), for all m. (3.12)

Some useful properties of the G-IHT iterates are given in the next lemma.

Lemma 3.4. Apply the G-IHT algorithm to solve (1.2). Then the G-IHT iterates satisfy for all m ≥ 0,

‖xm+1 − xm‖2 + 2αm(gm)T (xm+1 − xm) ≤ 0 (3.13)

and

Ψ(xm+1)−Ψ(xm) = (gm)T (xm+1 − xm) +
1

2

∥∥A(xm+1 − xm)
∥∥2
. (3.14)

Proof. Since the hard thresholding operation in (2.3) can be viewed as a projection onto the con-

straint of (1.2), we may rewrite the G-IHT iteration (2.3) as

xm+1 = arg min
‖z‖0≤k

‖z − {xm − αmgm} ‖2.

This further gives that

‖xm+1 − (xm − αmgm)‖2 ≤ ‖xm − (xm − αmgm)‖2 = (αm)2‖gm‖2,

which expands to give ‖xm+1 − xm‖2 + 2αm(gm)T (xm+1 − xm) + (αm)2‖gm‖2 ≤ (αm)2‖gm‖2, and so

(3.13) holds. Since Ψ in (1.2) is quadratic, we have no remainder in the following second-order Taylor

expansion

Ψ(xm+1)−Ψ(xm) = [∇Ψ(xm)]
T

(xm+1 − xm) + 1
2 (xm+1 − xm)T

[
∇2Ψ

]
(xm+1 − xm)

= (gm)T (xm+1 − xm) + 1
2 (xm+1 − xm)TATA(xm+1 − xm),

and so (3.14) follows. 2

A sufficient condition for G-IHT convergence is given next.
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Lemma 3.5. Let A.1 hold and the G-IHT iterates satisfy

‖xm+1 − xm‖2 ≤ d
[
Ψ(xm)−Ψ(xm+1)

]
, for all m ≥ 0, (3.15)

for some d > 0 independent of m and Ψ defined in (1.2). Assume that there exist α ≥ α > 0 such

α ≥ αm ≥ α for all m ≥ 0. (3.16)

Then xm → x̄ as m→∞, where x̄ is an α-stable point of G-IHT.

Proof. We deduce from (3.15) that

∞∑
m=0

‖xm+1 − xm‖2 ≤ d
∞∑
m=0

[
Ψ(xm)−Ψ(xm+1)

]
≤ dΨ(x0),

where to obtain the last inequality, we used Ψ(xm) ≥ 0. Thus convergent series properties provide

‖xm+1 − xm‖ −→ 0 as m −→∞. (3.17)

From (2.3) and (3.12), we deduce

xm+1
Γm+1 = xmΓm+1 − αmgmΓm+1 and xm+1

(Γm+1)C
= 0.

Thus restricting (3.17) to Γm+1 and using (3.16) provide

‖gmΓm+1‖ −→ 0 as m −→∞, (3.18)

while restricting (3.17) to Γm \ Γm+1 yields

‖xmΓm\Γm+1‖ −→ 0. (3.19)

For m ≥ 0, let ym denote the minimum-norm solution on Γm, namely,

ymΓm
def
= A†Γmb and ym(Γm)C

def
= 0, (3.20)

which is well-defined due to A.1. Then (3.20) and xm(Γm)C = 0 provide

‖ym+1 − xm‖ ≤ ‖ym+1
Γm+1 − xmΓm+1‖+ ‖xm(Γm+1)C‖ = ‖A†Γm+1b− xmΓm+1‖+ ‖xmΓm\Γm+1‖

= ‖(ATΓm+1AΓm+1)−1ATΓm+1(b−AΓm+1xmΓm+1)‖+ ‖xmΓm\Γm+1‖
= ‖(ATΓm+1AΓm+1)−1gmΓm+1‖+ ‖xmΓm\Γm+1‖ −→ 0, as m −→∞,

where the limit follows from (3.18), (3.19), A.1 and the fact that there are finitely many distinct

support sets Γm, m ≥ 0. This and (3.17) further give

‖ym − xm‖ −→ 0 as m −→∞, (3.21)

and so for any ε > 0, there exists m0 ≥ 0 such that

‖ym − xm‖ ≤ ε, for all m ≥ m0. (3.22)

We denote the index set of changing minimal-norm solutions by

S def
=
{
m ≥ m0 : ym+1 6= ym

}
,

and we will show that S is finite. Define

ε
def
= 1

4 min
m∈S
‖ym+1 − ym‖. (3.23)
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Note that ε > 0 since there are finitely many distinct support sets Γm, m ≥ 0. Then, the triangle

inequality, (3.22) and (3.23) yield

‖xm+1 − xm‖ ≥ ‖ym+1 − ym‖ − ‖ym+1 − xm+1‖ − ‖ym − xm‖ ≥ 4ε− ε− ε > ε, for all m ∈ S.

This and (3.17) imply that S must be finite and so there exists m1 ≥ m0 such that ym+1 = ym = x̄

for all m ≥ m1, where x̄Γ = A†Γb and x̄ΓC = 0, for some Γ with |Γ| = k. This and (3.21) give

xm −→ x̄, as m −→∞. (3.24)

Clearly, (3.1) holds for the limit point x̄ of the iterates {xm}. To complete the proof, it remains to

establish (3.2). The thresholding operation that defines xm+1 in G-IHT gives that

min
i∈Γm+1

|xm+1
i | ≥ max

j∈(Γm+1)C
|{xm − αmgm}j |, for all m ≥ 0, (3.25)

and (3.16) implies that there exists a convergent subsequence of stepsizes,

αmr −→ α̃ ≥ α as r −→∞. (3.26)

Letting ε
def
= 1

2 mini∈supp(x̄) x̄i, (3.24) implies that ‖xm − x̄‖ ≤ ε, and so

supp(x̄) ⊆ Γm, for all m sufficiently large. (3.27)

Firstly, assume that supp(x̄) = Γ. Then, since |Γ| = |Γm| = k, (3.27) implies that Γm = Γ for all m

sufficiently large, which together with (3.25), provides

min
i∈Γ
|xm+1
i | ≥ max

j∈ΓC
|{xm − αmgm}j |, for all m sufficiently large. (3.28)

Passing to the limit in (3.28) on the subsequence mr for which (3.26) holds, using (3.24), x̄ΓC = 0

and the right-hand side of (3.16) imply (3.2) holds in this case. It remains to consider the case when

supp(x̄) ⊂ Γ. Then mini∈Γ |x̄i| = 0 and so (3.24) further provides

min
i∈Γm+1

|xm+1
i | −→ 0 as m −→∞. (3.29)

Now (3.27) and again (3.24) provide

xmΓm+1 −→ 0 as m −→∞. (3.30)

Passing to the limit in (3.25) on the subsequence mr for which (3.26) holds, and using (3.29) and (3.30),

we obtain that gm(Γm+1)C −→ 0 as m −→∞. This and (3.18) now give that gm = AT (Axm − b) −→ 0,

which due to (3.24), implies that AT (b−Ax̄) = 0 and so (3.2) trivially holds in this case. 2

In order to ensure (3.15) and (3.16), we make use of the well-known Restricted Isometry Property

(RIP) constants of the matrix A, defined as follows.

Definition 3.2. [5, 12] Define Ls and Us, the lower and upper RIP constants of A of order s, to be,

respectively,

Ls = 1− min
1≤‖y‖0≤s

‖Ay‖2

‖y‖2
and Us = max

1≤‖y‖0≤s

‖Ay‖2

‖y‖2
− 1. (3.31)

Note that A.1 is equivalent to the requirement that L2k < 1. This and all other RIP conditions we

use here are substantially weaker than those employed in existing worst-case analyses for IHT algorithms.

In order to ensure (3.15) and (3.16) – using RIP constants or otherwise – we must specify the choice of

stepsize αm in G-IHT. (This is by contrast to the stable point condition for which only lower bounds on

the stepsizes αm matter.) Hence we now return to the constant-stepsize IHT and variable-stepsize N-IHT

variants defined in Section 2.
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3.2.1 A convergence condition for the IHT algorithm

In [9], Blumensath and Davies prove convergence of IHT iterates to a fixed point that is also a local

minimizer of (1.2) (that may or may not be the original signal x∗) under the assumption that α‖A‖2 < 1.

Similarly, Beck and Eldar [4, Theorem 3.2] show IHT iterates converge to an L-stationary point, an

equivalent notion to that of a fixed point, under a commensurate condition on the stepsize, namely,

α‖ATA‖ < 1. Largely following the method of proof in [9], we now show that the requirement on the IHT

stepsize in both these analyses can be weakened to a condition involving the RIP constant U2k of A.

Theorem 3.6. Suppose that A.1 holds, and that the IHT stepsize is chosen to satisfy

α <
1

1 + U2k
. (3.32)

Then the IHT iterates {xm} converge to an α-stable point x̄ of IHT.

Proof. Let m ≥ 0. Since the support size of the change to the iterates xm+1− xm is at most 2k, the

upper RIP of A in (3.31) with s = 2k provides ‖A(xm+1 − xm)‖2 ≤ (1 + U2k)‖xm+1 − xm‖2. Using

this bound, and (3.13) with the choice (2.4), in (3.14), we obtain

Ψ(xm+1)−Ψ(xm) ≤ − 1

2α
‖xm+1− xm‖2 +

1

2
(1 +U2k)‖xm+1− xm‖2 =

α(1 + U2k)− 1

2α
‖xm+1− xm‖2,

which due to (3.32), implies that (3.15) holds with d
def
= 2α/[1 − α(1 + U2k)]. Due to (2.4), (3.16)

trivially holds with α = α = α. Thus Lemma 3.5 applies, and so the IHT iterates xm converge to an

α-stable point of IHT. 2

3.2.2 A convergence condition for the N-IHT algorithm

Using the notation (3.31) and A.1, we obtain that the N-IHT stepsize αm satisfies

1

1 + Uk
≤ αm ≤ 1

1− Lk
, whenever αm satisfies (2.5), (3.33)

and using also (2.3), that

1

κ(1 + U2k)
≤ αm ≤ 1− c

1− L2k
, otherwise (i.e., whenever αm is shrunk according to Steps 1.1–1.2).

(3.34)

As the RIP constants of A are monotonically increasing with k and κ, c ∈ (0, 1), (3.33) and (3.34) imply

1

κ(1 + U2k)
≤ αm ≤ 1− c

1− L2k
, for all m ≥ 0. (3.35)

Theorem 3.7. Suppose A.1 holds. Then the N-IHT iterates {xm} converge to a [κ(1 + U2k)]−1-stable

point x̄ of N-IHT.

Proof. Firstly, we consider the case when αm satisfies (2.5). Then (3.12) implies Γm+1 = Γm, and

(2.3) implies

xm+1
Γm = xmΓm − αmgmΓm . (3.36)

Using (3.36), (2.5) becomes

αm =
‖gmΓm‖2

‖AΓmgmΓm‖2
=
‖xm+1 − xm‖2

‖A(xm+1 − xm)‖2
. (3.37)
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Using that xm+1 − xm is supported on Γm, expressing gmΓm from (3.36) and substituting into (3.14),

we deduce that

Ψ(xm+1)−Ψ(xm) = − 1
αm (xm+1

Γm − xmΓm)T (xm+1
Γ − xmΓ ) + 1

2‖A(xm+1 − xm)‖2

= − 1
αm ‖x

m+1 − xm‖2 + 1
2αm ‖x

m+1 − xm‖2 = − 1
2αm ‖x

m+1 − xm‖2,
(3.38)

where to obtain the second equality, we also used (3.37). Alternatively, when αm is computed by

shrinkage, we deduce that

‖A(xm+1 − xm)‖2 ≤ 1− c
2αm

‖xm+1 − xm‖2.

Substituting this and (3.13) into (3.14), we obtain

Ψ(xm+1)−Ψ(xm) ≤ − 1

2αm
‖xm+1 − xm‖2 +

1− c
2αm

‖xm+1 − xm‖2 = − c

2αm
‖xm+1 − xm‖2. (3.39)

Thus (3.38), (3.39) and c ∈ (0, 1) imply that for all m ≥ 0,

‖xm+1 − xm‖2 ≤ 2αm

c
[Ψ(xm)−Ψ(xm+1)] ≤ 2(1− c)

c(1− L2k)
[Ψ(xm)−Ψ(xm+1)],

due to (3.35). Hence (3.15) holds with d
def
= 2(1 − c)/[c(1 − L2k)], and so does (3.16) due to (3.35).

Lemma 3.5 applies and together with (3.35) provides the required conclusion. 2

Note that due to (3.35), the shrinkage strategy, rather than the exact linesearch, determines the value

of α in Theorem 3.7, which is crucial for our phase transition bounds. However, we cannot guarantee that

the less-conservative exact linesearch strategy is taken asymptotically.

3.3 Deterministic recovery conditions

In the case of zero measurement noise, combining the two parts of our analysis in Sections 3.1 and 3.2

respectively leads immediately to recovery conditions for both IHT and N-IHT.

Theorem 3.8. Consider problem (1.1) with e
def
= 0 and let Λ = supp(x∗). Suppose that A.1 holds, that

the stepsize α of IHT satisfies (3.32), and that∥∥∥A†ΓAΛ\Γx
∗
Λ\Γ

∥∥∥ < α
∥∥∥ATΛ\Γ(I −AΓA

†
Γ)AΛ\Γx

∗
Λ\Γ

∥∥∥ (3.40)

for all Γ 6= Λ such that |Γ| = k, where A†Γ is defined in (3.4). Then the IHT iterates {xm} converge to its

only fixed point, namely, the original signal x∗.

Proof. Under Assumption A.1, Corollary 3.3 and (3.40) imply that there exists no α-stable point

on any Γ 6= Λ such that |Γ| = k. It follows that any α-stable point is supported on Λ, and therefore

by Lemma 3.1, it must coincide with x∗. Also under Assumption A.1, it follows from (3.32) and

Theorem 3.6 that IHT converges to an α-stable point, and hence to x∗. Since a fixed point of IHT

with stepsize α is the same as an α−stable point, we conclude the proof. 2

Theorem 3.9. Consider problem (1.1) with e
def
= 0 and let Λ = supp(x∗). Suppose that A.1 holds and

that ∥∥∥A†ΓAΛ\Γx
∗
Λ\Γ

∥∥∥ < [κ(1 + U2k)]−1
∥∥∥ATΛ\Γ(I −AΓA

†
Γ)AΛ\Γx

∗
Λ\Γ

∥∥∥ (3.41)

for all Γ 6= Λ such that |Γ| = k, where A†Γ is defined in (3.4). Then the N-IHT iterates {xm} converge to

the original signal x∗.
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Proof. Under Assumption A.1, Corollary 3.3 and (3.41) imply that there exists no [κ(1 + U2k)]−1-

stable point on any Γ 6= Λ such that |Γ| = k. It follows that any [κ(1+U2k)]−1-stable point is supported

on Λ, and therefore by Lemma 3.1 it must be x∗. Also under Assumption A.1, Theorem 3.7 implies

that we also have convergence to an [κ(1 + U2k)]−1-stable point, which concludes the proof. 2

While Theorems 3.8 and 3.9 give conditions guaranteeing recovery, what is less clear is when one might

expect these conditions to be satisfied. We provide answers to this question in the rest of the paper,

quantifying when these conditions are satisfied in the case of Gaussian matrices. Furthermore, we also

extend our analysis for Gaussian matrices to the case of measurements contaminated by Gaussian noise.

4 Probabilistic quantification of the deterministic analysis

Brief roadmap for Sections 4 and 5. For the remainder of the paper, we focus our attention on

quantifying the deterministic recovery conditions of Section 3 in the case of Gaussian matrices and dis-

cussing our results. In the case of IHT, two conditions must be satisfied to ensure recovery: an RIP-based

convergence condition (3.32) and the stable point condition (3.5). For N-IHT, the two notions combine to

give a single condition (this condition was given in Theorem 3.9 in the case of zero measurement noise; a

corresponding condition will be obtained in the case of nonzero noise in Section 5.1.2). The quantification

of these conditions for Gaussian matrices will be performed in the proportional-growth asymptotic of Def-

inition 1.1. As we explain below, there is a need to quantify each condition for a given support, as well as

the union/intersection of these conditions over all possible support sets.

Such a quantification has already been done for the RIP constants of Gaussian matrices. Namely, it

was shown in [5] that bounds on RIP constants of Gaussian matrices can be obtained in the proportional-

growth asymptotic; a subsequent improvement on these bounds was obtained in [2].

Lemma 4.1 (Gaussian RIP bounds [2, Theorem 2.3]). Suppose A ∼ Nn,N (0, 1/n) has RIP con-

stants Lk and Uk as defined in Definition 3.2, and let the implicit but computable expressions L(δ, ρ) and

U(δ, ρ) be defined as in [2, Definition 2.2]. Then, for any fixed ε, in the proportional-growth asymptotic,

IP[Lk < L(δ, ρ) + ε]→ 1 and IP[Uk < U(δ, ρ) + ε]→ 1,

exponentially in n.

Using the bounds in Lemma 4.1, quantifying the RIP-based convergence condition (3.32) for IHT and

the corresponding one for N-IHT is straightforward and we are left with quantifying the stable point

condition. In this section, we obtain analogous bounds to those in Lemma 4.1, in the proportional-

dimensional asymptotic, for the stable point condition (3.5) with Gaussian matrices. These asymptotic

bounds are then combined with the RIP bounds of Lemma 4.1 in Section 5 to determine a region of

phase-space in which recovery is asymptotically guaranteed. The boundary of this region can be viewed

as a lower bound on the average-case recovery phase transition for IHT algorithms (see Section 5.2 for

further discussion).

Roadmap for the results in Section 4. The stable point condition was itself analysed using the

RIP and the asymptotic bounds of Lemma 4.1 in [30]. However, we take a different approach in this paper,

motivated by the observation that the stable point condition has no dependence upon the iterates of the

algorithm, but depends only upon the original signal, the measurement matrix and the measurement noise.

This opens up a possibility that rarely presents itself in the recovery analysis of CS algorithms: we can

exploit the reasonable assumption that these three quantities are independent5.

Our asymptotic bounds for the stable point condition are obtained by first deducing the precise distribu-

tion of each term in the stable point condition (or bounds thereon) in terms of the χ2 and F distributions.

These distributional results are derived in Section 4.1, culminating in Lemma 4.4.

5A central tenet of CS is the design of nonadaptive measurement schemes, i.e. measurement matrices which are indepen-

dent of the signal.
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Recall that the stable point condition (3.5) takes the form of an inequality that is required to hold over

all supports Γ 6= Λ, where Λ = supp(x∗). Our asymptotic bounds therefore take the form of tail bounds

for a combinatorial number of certain χ2 and F distributions. In Section 4.2, we use union bounds to

derive three tail bound functions (upper and lower bounds for χ2 and an upper bound for F) which are

defined implicitly as the solution to equations involving δ and ρ. These results rely on the asymptotic

behaviour of the distribution functions for the χ2 and F distributions, which is analysed in Appendix A.

The χ2 tail bounds have a nice interpretation as bounds on independent RIP constants. We close

Section 4.2 by explaining this connection and numerically illustrating that the independence assumption

leads to a tightening of RIP bounds.

4.1 Distribution results for the stable point condition

The aim of this section is to derive distribution results in the context of Gaussian measurement matrices for

each of the terms in the stable point condition (3.5) of Theorem 3.2. We first give some definitions of Gaus-

sian and Gaussian-related matrix variate distributions, along with some fundamental results concerning

their Rayleigh quotients when applied to independent vectors.

We consider a particular kind of matrix variate Gaussian distribution in which all entries are i.i.d.

Gaussian random variables, and a few other related distributions.

Definition 4.1 (Matrix variate Gaussian distribution [1]). We say that an s × t matrix B follows

the matrix variate Gaussian distribution B ∼ Ns,t(µ, σ2), if each entry of B independently follows the

(univariate) Gaussian distribution Bij ∼ N (µ, σ2).

Definition 4.2 (Matrix variate Wishart distribution [1]). Let B ∼ Ns,t(µ, σ2) such that s ≥ t.

Then we say that BTB follows a matrix variate Wishart distributionWt(s;µ, σ
2) with s degrees of freedom,

mean µ and variance σ2.

Definition 4.3 (χ2 and F distributions [1, pp.940,946]). Given a positive integer s, let Zi ∼ N (0, 1)

be independent random variables for 1 ≤ i ≤ s. Then we say P = Z2
1 +Z2

2 + . . .+Z2
s follows a chi-squared

distribution with s degrees of freedom, and we write P ∼ χ2
s. Furthermore, given positive integers s and t,

if P ∼ 1
sχ

2
s and Q ∼ 1

tχ
2
t are independent random variables, we say that P/Q follows the F-distribution,

and we write P/Q ∼ F(s, t).

Crucial to our argument will be the well-known result that the central matrix variate Gaussian distri-

bution defined in Definition 4.1 is invariant under transformation by an independent orthonormal matrix.

Lemma 4.2 (Orthogonal invariance [18]). Let B ∼ Ns,t(0, σ2) and let Z1 ∈ IRs×s and Z2 ∈ IRt×t be

orthonormal and independent of B. Then

Z1B ∼ Ns,t(0, σ2), independently of Z1, (4.1)

and

BZ2 ∼ Ns,t(0, σ2), independently of Z2. (4.2)

Useful results concerning the distributions of Rayleigh quotients related to Gaussian and Wishart

matrices are given in the next lemma.

Lemma 4.3 (Distributions of Rayleigh quotients). Let B ∼ Ns,t(0, σ2) with s ≥ t. Let z ∈ IRt be

independent of B, and such that IP(z 6= 0) = 1. Then

zTBTBz

zT z
∼ σ2χ2

s and is independent of z; (4.3)

zT z

zT (BTB)−1z
∼ σ2χ2

s−t+1 and is independent of z; (4.4)

zT (BTB)2z

zT z
has the same distribution as

{
(BTB)2

}
11

. (4.5)
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Proof. Let B ∼ Ns,t(0, σ2) with s ≥ t. [22, Theorem 3.3.12] gives a more general result than (4.3) for

when the entries of B are not necessarily independent. The present result follows by setting Σ = σ2I

for the covariance matrix. Similarly, (4.4) follows by setting Σ = σ2I in [22, Corollary 3.3.14.1]. To

prove (4.5), let S = BTB so that S ∼ Wt(s; 0, σ2) and let Z ∈ IRt×t be any orthonormal matrix which

is independent of B. Lemma 4.2 yields BZ ∼ Ns,t(0, σ2) independently of Z, and, writing T := ZTSZ,

we therefore have

T = ZTSZ = ZTBTBZ = (BZ)TBZ ∼ Wt(s; 0, σ2), (4.6)

independently of Z. In particular, let us fix the first column of Z as z normalized so that

Z =

[
z

‖z‖

∣∣∣∣Z2

]
,

which leads to

zTS2z = zT (ZTZT )2z = zTZTZTZTZT z = zTZT 2ZT z

= zT
[
z

‖z‖

∣∣∣∣Z2

]
T 2

[
zT

‖z‖
ZT2

]
z = [ ‖z‖ | 0 ]T 2

[
‖z‖
0

]
= (T 2)11‖z‖2.

Dividing by ‖z‖2 and using (4.6) then gives the desired result. 2

We now make the assumption that the measurement matrix in (1.1) is drawn from the (central) matrix

variate Gaussian distribution with appropriate normalization.

A.2 The measurement matrix A has i.i.d. N (0, 1/n) entries, so that A ∼ Nn,N (0, 1/n). Further-

more, A is independent of x∗.
Given Assumption A.2 and the standard compressed sensing regime with 2k ≤ n, we can dispense

with Assumption A.1 [22, Theorem 3.2.1]6.

We also impose the additional assumption that measurement noise is itself Gaussian and independent

of both the original signal and the measurement matrix.

A.3 The noise vector e has i.i.d. Gaussian entries ei ∼ N(0, σ2/n), independently of A and x∗.

Note that, under Assumption A.3, IE‖e‖2 = σ2, so that ‖e‖ ≈ σ.

We now give the main result of this section, in which we derive precise distributions for various ex-

pressions which make up the stable point condition (3.5) of Theorem 3.2, in terms of the χ2 and F
distributions.

Lemma 4.4 (Distribution results for the stable point condition). Suppose Assumptions A.2 and

A.3 hold, and let Γ and Λ be index sets of cardinality k, where k < n, such that Γ 6= Λ. Then

‖A†ΓAΛ\Γx
∗
Λ\Γ‖

‖x∗Λ\Γ‖
=
√
FΓ, where FΓ ∼

k

n− k + 1
F(k, n− k + 1); (4.7)

‖ATΛ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ‖

‖x∗Λ\Γ‖
≥
(
n− k
n

)
·RΓ, where RΓ ∼

1

n− k
χ2
n−k; (4.8)

‖A†Γe‖ ≤ σ ·
√
GΓ, where GΓ ∼

k

n− k + 1
F(k, n− k + 1); (4.9)

‖ATΛ\Γ(I −AΓA
†
Γ)e‖ ≤ σ

√
k(n− k)

n2
· (SΓ)(TΓ), where SΓ ∼

1

n− k
χ2
n−k, TΓ ∼

1

k
χ2
k. (4.10)

Proof of (4.7): Let AΓ have the singular value decomposition

AΓ := U [D | 0]V T = U1DV
T , (4.11)

6 [22, Theorem 3.2.1] states that BTB is positive definite with probability 1 when B ∼ Ns,t(0, σ2) with s ≥ t.
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where D ∈ IRk×k is diagonal, and where V ∈ IRk×k and U = [U1 | U2] ∈ IRn×n are orthonormal, with

U1 ∈ IRn×k. By Assumption A.2, A†Γ is well-defined and we have the standard result

A†Γ = V D−1UT1 , (4.12)

and since (ATΓAΓ)−1 = V D−2V T , it follows by rearrangement that

D−2 = V T (ATΓAΓ)−1V. (4.13)

Using (4.12) and (4.13), we have

‖A†ΓAΛ\Γx
∗
Λ\Γ‖

2 = (x∗Λ\Γ)TATΛ\Γ(A†Γ)T (A†Γ)AΛ\Γx
∗
Λ\Γ

= (x∗Λ\Γ)TATΛ\ΓU1D
−1V TV D−1UT1 AΛ\Γx

∗
Λ\Γ

= (x∗Λ\Γ)TATΛ\ΓU1D
−2UT1 AΛ\Γx

∗
Λ\Γ

= (x∗Λ\Γ)TATΛ\ΓU1V
T (ATΓAΓ)−1V UT1 AΛ\Γx

∗
Λ\Γ. (4.14)

By Lemma 4.2, we have UTAΛ\Γ ∼ Nn,r(0, 1/n), independently of U , where r := |Λ \ Γ|. Since UT1 AΛ\Γ
is a submatrix of UTAΛ\Γ, it follows that UT1 AΛ\Γ ∼ Nk,r(0, 1/n), independently of U . Writing C :=

V UT1 AΛ\Γ ∈ IRk×r, we also have by Lemma 4.2 that C ∼ Nk,r(0, 1/n), independently of both U and V ,

and therefore independently of AΓ. Substituting for C in (4.14), we have

‖A†ΓAΛ\Γx
∗
Λ\Γ‖

2

‖x∗Λ\Γ‖2
=

(x∗Λ\Γ)TCT (ATΓAΓ)−1Cx∗Λ\Γ

(x∗Λ\Γ)Tx∗Λ\Γ

=
(x∗Λ\Γ)TCT (ATΓAΓ)−1Cx∗Λ\Γ

(x∗Λ\Γ)TCTCx∗Λ\Γ
·

(x∗Λ\Γ)TCTCx∗Λ\Γ

(x∗Λ\Γ)Tx∗Λ\Γ
, (4.15)

where x∗, C and AΓ are all independent. Now it follows from Lemma 4.3 that

(x∗Λ\Γ)TCTCx∗Λ\Γ

(x∗Λ\Γ)Tx∗Λ\Γ
∼ 1

n
χ2
k and

(x∗Λ\Γ)TCTCx∗Λ\Γ

(x∗Λ\Γ)TCT (ATΓAΓ)−1Cx∗Λ\Γ
∼ 1

n
χ2
n−k+1, (4.16)

where both distributions are independent of each other. Combining (4.15) and (4.16) leads us to conclude

‖A†ΓAΛ\Γx
∗
Λ\Γ‖

2

‖x∗Λ\Γ‖2
∼ χ2

k

χ2
n−k+1

=
k

n− k + 1
F(k, n− k + 1),

where in the last step we use the fact that the two distributions are independent, which proves (4.7).

Proof of (4.8): Using (4.11) and (4.12), we have

AΓA
†
Γ = U1DV

TV D−1UT1 = U1U
T
1 = U

[
I 0

0 0

]
UT ,

and writing I = UUT ,

I −AΓA
†
Γ = U

{[
I 0

0 I

]
−
[
I 0

0 0

]}
UT = U

[
0 0

0 I

]
UT = U2U

T
2 , (4.17)

which in turn gives

ATΛ\Γ(I −AΓA
†
Γ)AΛ\Γ = ATΛ\ΓU2U

T
2 AΛ\Γ. (4.18)

Writing F := UT2 AΛ\Γ, we have UTAΛ\Γ ∼ Nn,r(0, 1/n) by Lemma 4.2, and since UT2 AΛ\Γ ∈ IR(n−k)×r is

a submatrix of UTAΛ\Γ, it follows that

F ∼ N(n−k),r(0, 1/n). (4.19)
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Substituting for F in (4.18) gives

ATΛ\Γ(I −AΓA
†
Γ)AΛ\Γ = FTF. (4.20)

Now, writing M := FTF , and using (4.20) and (4.5) of Lemma 4.3, we deduce

‖ATΛ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ‖

2

‖x∗Λ\Γ‖2
=
‖FTFxΛ\Γ‖2

‖x∗Λ\Γ‖2
=

(x∗Λ\Γ)T (FTF )2x∗Λ\Γ

(x∗Λ\Γ)Tx∗Λ\Γ
∼ (M2)11. (4.21)

To obtain a lower bound in terms of the chi-squared distribution, note that

(M2)11 =

r∑
i=1

M2
i1 = M2

11 +

r∑
i=2

M2
i1 ≥M2

11. (4.22)

Meanwhile it follows from (4.19) and (4.3) that

M11 =

n−k∑
i=1

F 2
i1 ∼

1

n
χ2
n−k,

which combines with (4.21) and (4.22) to give (4.8).

Proof of (4.9): By (4.12), we have

A†Γe = V D−1UT1 e = V D−1p, (4.23)

where p := UT1 e ∈ IRn−k. Using Assumption A.3, we may view e as a one-column Gaussian matrix, such

that e ∼ Nn,1(0, σ2/n), it follows from Lemma 4.2 that

p ∼ Nk,1(0, σ2/n), (4.24)

independently of U and therefore independently of AΓ. Substituting (4.13) into (4.23) then gives

‖A†Γe‖
2 = ‖V D−1p‖2 = ‖D−1p‖2 = pTD−2p = pTV T (ATΓAΓ)−1V p = qT (ATΓAΓ)−1q, (4.25)

where q := V p ∈ IRk. It now follows from (4.24) and Lemma 4.2 that q ∼ Nk,1(0, σ2/n), independently of

V and therefore independently of AΓ, and consequently that

qT q ∼ σ2χ2
k. (4.26)

By (4.4) of Lemma 4.3,
qT q

qT (ATΓAΓ)−1q
∼ 1

n
χ2
n−k+1. (4.27)

Since q and AΓ are independent, we may combine (4.25), (4.26) and (4.27) to give

‖A†Γe‖ ∼ σ
√
GΓ, where GΓ ∼

k

n− k + 1
F(k, n− k + 1), (4.28)

and (3.9) now follows.

Proof of (4.10): Using (4.17), we have

ATΛ\Γ(I −AΓA
†
Γ)e = ATΛ\ΓU2U

T
2 e = ATΛ\ΓU2f = BT f, (4.29)

where B := UT2 AΛ\Γ ∼ Nn−k,r(0, 1/n) by Lemma 4.2, and where

f := UT2 e ∼ Nn−k,1(0, σ2/n) (4.30)

by Lemma 4.2. Now let B have singular value decomposition

W [F | 0]Y T = W1FY
T , (4.31)
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where F ∈ IRr×r is diagonal, and where Y ∈ IRr×r and W = [W1 | W2] ∈ IR(n−k)×(n−k) are orthonormal,

noting that W1 ∈ IR(n−k)×r. We have

g := WT
1 f ∼ Nr,1(0, σ2/n) (4.32)

by (4.30) and Lemma 4.2, and we may apply (4.29) to give

‖ATΛ\Γ(I −AΓA
†
Γ)e‖2 ≤ ‖BT f‖2 = ‖Y FWT

1 f‖2

= ‖Fg‖2 = gTF 2g = gTY T (BTB)Y g = hT (BTB)h,
(4.33)

where h := Y g ∈ IRk. Since h ∼ Nr,1(0, σ2/n) by (4.32) and Lemma 4.2, it follows that

hTh ∼ σ2χ2
r ≤ σ2χ2

k, (4.34)

since a χ2
r random variate may be viewed as a truncation of its extension to a χ2

k random variate. By (4.3)

of Lemma 4.3,
hTBTBh

hTh
∼ 1

n
χ2
n−k. (4.35)

Combining (4.33), (4.34) and (4.35) then proves (4.10). 2

In order for the (converse of the) stable point condition (3.5) to provide a recovery result regarding

the proximity of all stable points to the underlying signal, we need to quantify the quantities in Lemma

4.4 on all possible fixed points on support sets Γ of cardinality k. Similarly, the convergence conditions in

Section 3.2 involve RIP constants which again involve looking over combinatorially many supports. Thus

we need to derive union bounds for the relevant distributions involved in the stable point and convergence

conditions.

4.2 Large deviation results involving Gaussian matrices

In this section, we derive large deviations results for quantities relating to Gaussian matrices within the

proportional-growth asymptotic that is defined on page 2. We define three tail bound functions.

Definition 4.4 (χ2 tail bounds). Let δ ∈ (0, 1], ρ ∈ (0, 1) and λ ∈ (0, 1]. Let the tail bound function

IU(δ, ρ, λ) be the unique solution to

ν − ln(1 + ν) =
2H(δρ)

λ
for ν > 0, (4.36)

and let the tail bound function IL(δ, ρ, λ) be the unique solution to

− ν − ln(1− ν) =
2H(δρ)

λ
for ν ∈ (0, 1), (4.37)

where H(·) is the Shannon entropy with base e logarithms [5], namely,

H(p) := −p ln(p)− (1− p) ln(1− p). (4.38)

That IU is well-defined follows since the left-hand side of (4.36) is zero at ν = 0, tends to infinity as

ν →∞, and is strictly increasing on ν > 0. Similarly, IL is well-defined since the left-hand side of (4.37)

is zero at ν = 0, tends to infinity as ν → 1, and is strictly increasing on ν ∈ (0, 1).

Definition 4.5 (F tail bound). Let δ ∈ (0, 1] and ρ ∈ (0, 1/2]. Let the tail bound function IF(δ, ρ) be

the unique solution in f to

ln(1 + f)− ρ ln f = 2H(δρ) +H(ρ) for f >
ρ

1− ρ
, (4.39)

where H(·) is defined in (4.38).
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That IF is well-defined follows since the left-hand side of (4.39) is equal to H(ρ) at f = ρ/(1 − ρ),

tends to infinity as f →∞, and is strictly increasing on f > ρ/(1− ρ).

Defining Sn as

Sn
def
=

{
1, . . . ,

(
N

k

)}
, (4.40)

we have the following large deviation bound for a combinatorial number of χ2 distributions.

Lemma 4.5 (Large deviations result for χ2). Let l ∈ {1, . . . , n} and let the random variables Xi
l ∼

1

l
χ2
l for all i ∈ Sn, and let ε > 0. In the proportional-growth asymptotic, let l/n→ λ ∈ (0, 1]. Then

IP
{
∪i∈Sn [Xi

l ≥ 1 + IU(δ, ρ, λ) + ε]
}
→ 0 (4.41)

and

IP
{
∪i∈Sn [Xi

l ≤ 1− IL(δ, ρ, λ)− ε]
}
→ 0, (4.42)

exponentially in n, where IU(δ, ρ, λ) and IL(δ, ρ, λ) are defined in (4.36) and (4.37) respectively.

The proof of Lemma 4.5 is delegated to Appendix A. It employs asymptotic results derived by Temme

[29] for the incomplete gamma function which is related to the χ2 distribution.

Lemma 4.6 (Large deviations result for F). Let the random variables Xi
n ∼ k

n−k+1 F(k, n− k + 1)

for all i ∈ Sn, and let ε > 0. In the proportional-growth asymptotic,

IP
{
∪i∈Sn [Xi

n ≥ IF(δ, ρ) + ε]
}
→ 0, (4.43)

exponentially in n, where IF(δ, ρ) is defined in (4.39).

The proof of Lemma 4.6 is delegated to Appendix A. It employs asymptotic results derived by

Temme [29] for the incomplete beta function which is related to the F distribution.

Comparison of Lemmas 4.1 and 4.5; RIP versus Independent RIP constants. Suppose A ∼
Nn,N (0, 1/n), let Γ be an index set of cardinality k and fix ε > 0. Then in the conditions of Lemma 4.1,

in the proportional-growth asymptotic, for any y ∈ IRk,

1− L(δ, ρ)− ε < ‖AΓy‖2

‖y‖2
< 1 + U(δ, ρ) + ε. (4.44)

However, if y is independent of A, we may set λ = 1 in Lemma 4.5, giving in the proportional-growth

asymptotic,

1− IL(δ, ρ, 1)− ε < ‖AΓy‖2

‖y‖2
< 1 + IU(δ, ρ, 1) + ε. (4.45)

Comparing (4.44) and (4.45), we see that IU(δ, ρ, 1) and IL(δ, ρ, 1) may be viewed as upper bounds on

‘independent RIP’ constants for Gaussian matrices.

Figure 4.1 gives plots of the ‘independent RIP’ bounds for Gaussian matrices IU(δ, ρ, 1) and IL(δ, ρ, 1)

derived in this paper, along with plots of the RIP bounds for Gaussian matrices U(δ, ρ) and L(δ, ρ) in [2].

One observes empirically the inequalities

IU(δ, ρ, 1) < U(δ, ρ) and IL(δ, ρ, 1) < L(δ, ρ).

A simple interpretation is that the additional information that the matrix and vector are independent

allows us to tighten the bounds in (4.44) to obtain (4.45). This consideration accounts for a large part

of the quantitative improvement that is obtained in this paper over existing recovery results for IHT

algorithms which rely solely upon the RIP. Of course, our improved analysis is only possible because our

proposed stable point condition (3.5) can exploit the assumption of matrix-vector independence.
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Figure 4.1: A comparison of standard RIP bounds [2] and ‘independent RIP’ bounds for Gaussian matrices:

(a) U(δ, ρ) (b) IU(δ, ρ, 1) (c) L(δ, ρ) (d) IL(δ, ρ, 1).

5 Novel recovery analysis for IHT algorithms

Roadmap for the results in Section 5. Revisiting the roadmap at the start of Section 4, we find

that we now have all the necessary asymptotic bounds for quantifying both the RIP-based convergence

conditions and the stable point conditions required for ensuring recovery using IHT and N-IHT. Putting

these ingredients together, we are now ready to present our main quantitative recovery results for IHT and

N-IHT when Gaussian measurement matrices are employed. We begin the next section by defining the

phase transition bounds and noise stability factors which feature in the statement of our main recovery

results. We then state our main recovery results for IHT and N-IHT, respectively, before illustrating and

discussing their significance in Section 5.2. Proofs for the IHT results can be found in Section 5.3 (with a

roadmap for the line of argument given at the start of the respective section), while the proofs for N-IHT

(which follow very similar lines) are delegated to Appendix B.

5.1 Statement of main recovery results

5.1.1 Results for IHT

We first give definitions of the lower bound on the phase transition and noise stability factor featuring in

the main result. The function ρ̂IHT (δ) is a lower bound on the phase transition for recovery using IHT

(see Section 5.2 for further explanation). The function ξ(δ, ρ) represents a stability factor in our results,

bounding the approximation error of the output of IHT as a multiple of the noise level σ. Both functions
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are numerically computable.

Definition 5.1 (Phase transition lower bound for IHT). Given δ ∈ (0, 1], define the phase transi-

tion lower bound ρ̂IHT (δ) to be the unique solution to√
IF(δ, ρ)

(1− ρ) [1− IL(δ, ρ, 1− ρ)]
=

1

1 + U(δ, 2ρ)
for ρ ∈ (0, 1/2], (5.1)

where IF is defined in (4.39), IL is defined in (4.37), U is defined in [2, Definition 2.2].7

Definition 5.2 (Stability factor for IHT). Given δ ∈ (0, 1], ρ ∈ (0, 1/2] and α > 0, provided

α >

√
IF(δ, ρ)

(1− ρ)[1− IL(δ, ρ, 1− ρ)]
, (5.2)

define the stability factor ξ(δ, ρ) to be

ξ(δ, ρ)
def
=

√
IF(δ, ρ) [1 + a(δ, ρ)]

2
+ [a(δ, ρ)]

2
, (5.3)

where8

a(δ, ρ)
def
=

√
IF(δ, ρ) + α

√
ρ(1− ρ)[1 + IU(δ, ρ, 1− ρ)][1 + IU(δ, ρ, ρ)]

α(1− ρ)[1− IL(δ, ρ, 1− ρ)]−
√
IF(δ, ρ)

, (5.4)

and where IF is defined in (4.39), IU is defined in (4.36), and where IL is defined in (4.37).

We have the following recovery result for IHT.

Theorem 5.1 (Recovery result for IHT; noise case). Suppose Assumptions A.2 and A.3 hold, sup-

pose that

ρ < ρ̂IHT (δ), (5.5)

where ρ̂IHT (δ) is defined in (5.1), and that the IHT stepsize α satisfies√
IF(δ, ρ)

(1− ρ) [1− IL(δ, ρ, 1− ρ)]
< α <

1

1 + U(δ, 2ρ)
. (5.6)

Then, in the proportional-growth asymptotic9, IHT converges to x̄ that is close to x∗ in the sense that

‖x̄− x∗‖ ≤ ξ(δ, ρ) · σ (5.7)

holds with probability tending to 1 exponentially in n, where ξ(δ, ρ) is defined in (5.3).

Comparing our result with previous RIP-based recovery results for IHT, Theorem 5.1 proves a phase

transition bound that is equally valid over a continuous stepsize range. In contrast, the recovery results

in [6, 8, 20,21] either require a specific fixed stepsize or degrade with the choice of stepsize.

In the absence of noise, the same condition guarantees exact recovery of the original signal x∗.

Corollary 5.2 (Recovery result for IHT; noiseless case). Suppose Assumption A.2 holds, as well

as (5.5), and that α satisfies (5.6) and the noise e
def
= 0. Then, in the proportional-growth asymptotic,

IHT converges to x∗ with probability tending to 1 exponentially in n.

7A proof that ρ̂IHT (δ) is well-defined can be found in [30, Section 5.2].
8Note that (5.2) ensures that the denominator in (5.4) is strictly positive and that a(δ, ρ) is therefore well-defined.
9In other words, we consider instances of the Gaussian random variables A and e for a sequence of triples (k, n,N) where

n→∞, where n is the number of measurements, N , the signal dimension and k, the sparsity of the underlying signal.
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In the case of IHT applied to problems with zero noise, the above result has a surprising corollary:

a condition can be given which guarantees that, with overwhelming probability, the underlying k-sparse

signal x∗ is the algorithm’s only fixed point. In other words, within some portion of phase space, there is

only one possible solution to which the IHT algorithm can converge, namely the underlying signal x∗. This

is remarkable since IHT is a gradient projection algorithm for the nonconvex problem (1.2) which can be

shown to have a combinatorially large number of local minimizers. The conclusion is that the properties of

Gaussian matrices ensure that, within this region of phase space, the IHT algorithm will never ‘get stuck’

at an unwanted local minimizer, thus exhibiting a behaviour one would usually only expect if a convex

problem was being solved. The result follows.

Corollary 5.3 (Single fixed point condition; noiseless case). Suppose Assumption A.2 holds, as well

as (5.2), and that e = 0. Then, in the proportional-growth asymptotic, x∗ is the only fixed point of IHT

with stepsize α, with probability tending to 1 exponentially in n.

5.1.2 Results for N-IHT

Again, we first define two numerically computable functions, namely, the lower bound ρ̂N−IHT (δ) on the

phase transition for recovery using N-IHT and the stability factor ξ(δ, ρ).

Definition 5.3 (Phase transition lower bound for N-IHT). Given δ ∈ (0, 1], define the phase tran-

sition lower bound ρ̂N−IHT (δ) to be the unique solution to√
IF(δ, ρ)

(1− ρ) [1− IL(δ, ρ, 1− ρ)]
=

1

κ[1 + U(δ, 2ρ)]
for ρ ∈ (0, 1/2], (5.8)

where IF is defined in (4.39), IL is defined in (4.37), U is defined in [2, Definition 2.2], and κ is an

N-IHT algorithm parameter.10

Definition 5.4 (Stability factor for N-IHT). Given δ ∈ (0, 1] and ρ ∈ (0, 1/2], provided ρ < ρ̂N−IHT (δ)

holds, where ρ̂N−IHT (δ) is defined in (5.8), define the stability factor ξ(δ, ρ) to be

ξ(δ, ρ)
def
=

√
IF(δ, ρ) [a(δ, ρ)]

2
+ [a(δ, ρ)]

2
, (5.9)

where11

a(δ, ρ)
def
=

√
IF(δ, ρ) + {κ[1 + U(δ, 2ρ)]}−1

√
ρ(1− ρ)[1 + IU(δ, ρ, 1− ρ)][1 + IU(δ, ρ, ρ)]

(1− ρ){κ[1 + U(δ, 2ρ)]}−1[1− IL(δ, ρ, 1− ρ)]−
√
IF(δ, ρ)

. (5.10)

and where IF is defined in (4.39), IU is defined in (4.36), IL is defined in (4.37), U is defined in [2,

Definition 2.2].

We have the following recovery result for N-IHT.

Theorem 5.4 (Recovery result for N-IHT; noise case). Suppose Assumptions A.2 and A.3 hold,

as well as

ρ < ρ̂N−IHT (δ), (5.11)

where ρ̂N−IHT is defined in (5.8). Then, in the proportional-growth asymptotic, N-IHT converges to x̄

such that

‖x̄− x∗‖ ≤ ξ(δ, ρ) · σ, (5.12)

with probability tending to 1 exponentially in n, where ξ(δ, ρ) is defined in (5.9).

10A proof that ρ̂N−IHT (δ) is well-defined can be found in [30, Section 5.2].
11Note that (5.11) ensures that the denominator in (5.10) is strictly positive and that a(δ, ρ) is therefore well-defined. The

reader may verify by comparison with Definitions 5.2 that the α terms have been replaced by the term {κ[1 + U(δ, 2ρ)]}−1.
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In the case of zero noise, Theorem 5.4 also simplifies to an exact recovery result.

Corollary 5.5 (Recovery result for N-IHT; noiseless case). Suppose Assumption A.2 holds, as well

as (5.11), and that the noise e
def
= 0. Then, in the proportional-growth asymptotic, N-IHT converges to x∗

with probability tending to 1 exponentially in n.

5.2 Illustration and discussion of results

Noiseless case. The recovery phase transition bounds given in Definition 5.1 for IHT and N-IHT (with

κ = 1.1) respectively are displayed in Figure 5.1. Exact recovery in the case of zero noise is guaranteed

asymptotically for (δ, ρ) pairs falling below the respective curves. The best-known lower bounds on exact

recovery phase transitions obtained in [30] from previous RIP analysis are included for comparison: the

IHT phase transition bound applies the RIP bounds in [2] to Foucart’s analysis in [19], while an extension

of the same approach leads to the phase transition bound for N-IHT. An RIP analysis of the stable point

approach adopted in this paper was also carried out in [30], and the resulting phase transition bounds

are also displayed in Figure 5.1. We see a considerable improvement over the phase transition bounds

corresponding to previous RIP analysis, with recovery being guaranteed for IHT for values of ρ around

1.7 times higher than before, and for N-IHT around 10 times higher than before. Figure 5.2 displays the

inverse of the phase transition bound for each stepsize scheme. Previous RIP analysis requires a lower

bound of n ≥ 234k measurements to guarantee recovery using IHT, and n ≥ 1617k using N-IHT. By

comparison, we reduce these lower bounds to n ≥ 138k for IHT and n ≥ 154k for N-IHT. It should also

be added that our result for IHT holds for a continuous stepsize range, while the result based upon [19],

in keeping with all other similar RIP-based results for IHT (see [30]), holds true only if the stepsize is

optimized to a particular value.
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Figure 5.1: Our average-case phase transition bounds for IHT algorithms (unbroken) compared with the

best-known RIP-based phase transition bounds based on our stable point analysis [30] (dashed) and the

analysis in [19] (dash-dot): (a) IHT (b) N-IHT.

Interpretation of recovery results as lower bounds on a weak phase transition. We have

obtained an improvement by switching to a new method of analysis which allows us to leverage the

assumption that the measurements are statistically independent of the signal. The latter has allowed us

to make a partial transition from worst-case to average-case analysis.

The distinction between worst-case and average-case phase transitions can also be found in the phase

transitions of Donoho and Tanner for recovery using l1-minimization [17], where successful recovery by
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Figure 5.2: Inverse of the phase transition bounds in Figure 5.1: (a) IHT (b) N-IHT.

means of l1-minimization is shown to be equivalent to the neighbourliness of projected l1 balls [16]. There

are both strong and weak version of neighbourliness: strong neighbourliness guarantees recovery of any

signal by means of l1-minimization, while weaker forms of neighbourliness assume either a randomly-

chosen support and/or randomly-chosen sign pattern for the signal. It is appropriate then to see our

results as lower bounds on a weak phase transition for IHT, in contrast to an RIP analysis which gives

lower bounds on the strong phase transition. The notions of weakness are comparable but not identical: in

the case of l1-minimization, some dependency between the signal and measurement matrix is permitted:

it is only required that the support set and sign pattern of the signal are chosen independently of the

matrix. However, independence is the only assumption we place upon the signal, and beyond this there is

no further restriction upon the signal’s coefficients.

It is worth pointing out that it is the weak phase transition that is observed empirically for recovery

by means of l1-minimization, and the same is also to be expected for IHT algorithms. While we obtain

a significant improvement, our lower bound is still pessimistic compared to the weak phase transition

observed empirically, though we have succeeded in narrowing the gap between the two. It is no surprise

that our results do not give the precise weak phase transition, due to the continued (but limited) use of

worst-case techniques, such as the RIP and large deviations analysis. However, the use of the average-case

independence assumption to analyse the stable point condition has allowed us to break free in part from

the restrictions of worst-case analysis.

Choice of stepsize for IHT. Corollary 5.2 guarantees exact recovery using IHT provided the

stepsize α falls within the interval given in (5.6), provided this interval is well-defined. In fact, an inspection

of the proof of these two results reveals that the lower bound in (5.6) arises from the stable point condition,

while the upper bound in (5.6) arises from the convergence condition. Figure 5.3 illustrates these bounds

for the case δ = 0.5. We see that, as ρ is increased, the admissible stepsize range contracts, until a critical

ρ-value is reached at which the interval is no longer well-defined.

It has been observed empirically [23] that care must be taken to ensure that the IHT stepsize is neither

too small or too large. Our analysis gives theoretical insight into this observation: the stepsize must be

small enough to ensure that the algorithm converges, but large enough to ensure that it does not converge

to fixed points other than the underlying sparse signal.

Extension to noise. In the case where measurements are contaminated by noise, exact recovery of

the original signal is impossible. However, Theorems 5.1 and 5.4 guarantee that, in the same region of

phase space defined by the exact recovery phase transition bound, the approximation error of the output

of IHT/N-IHT is asymptotically bounded by some known stability factor multiplied by the noise level σ.
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Figure 5.3: Lower bound (unbroken) and upper bound (dashed) on the IHT stepsize for δ = 0.5.

Figure 5.4 plots this noise stability factor ξ(δ, ρ) for each of the two stepsize schemes considered (κ = 1.1

for N-IHT). In keeping with the results in [5] and [6], we observe that the stability factor tends to infinity

as the transition point is reached.
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Figure 5.4: Plot of the stability factor ξ(δ, ρ) for (a) IHT (b) N-IHT.

For both IHT and N-IHT, in the region for which the stability factors derived in this paper are defined,

they are everywhere lower than the corresponding stability factors derived from the previous analysis

in [19]; see [30] for a comparison. It should be pointed out that we have obtained improved stability

results by imposing additional restrictions upon the noise, namely that the noise is Gaussian distributed

and independent of the signal and measurement matrix. This assumption is in keeping with our aim of

using average-case assumptions. Our analysis could, however, be altered to deal with the case of non-

independent noise by making more use of the RIP, though this would lead to larger stability constants.

We have also extended our analysis in [30] to the case of signals which are only approximately k-sparse,

for both IHT and N-IHT, though we omit this extension in the present work for the sake of brevity. In
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this extension, a stability factor is derived which multiplies the unrecoverable energy of the signal, due to

both measurement noise and inaccuracy of the k-sparse model.

5.3 Proof of recovery results for IHT

Roadmap for the results in this section. Here we prove the results stated in Section 5.1.1. Let us

outline how our argument will proceed. We first define a support set partition, see (5.14) that follows.

This partition is defined in such a way that, provided (5.2) holds, an analysis of the stable point condition

(3.5) shows that there are asymptotically no α-stable points on any Γi such that i ∈ Θ1
n, and this is proved

in Lemma 5.6. On the other hand, it is also possible to use the large deviations results of Section 4.2 to

bound the error in approximating x∗ by any α-stable point on Γi such that i ∈ Θ2
n, which is achieved by

Lemma 5.7. It follows that, for any α > 0, all α-stable points have bounded approximation error. Finally,

Lemma 5.8 builds on the convergence result in Theorem 3.6 and gives a condition on the stepsize α which

asymptotically guarantees convergence of IHT to some α-stable point. Combining all three results, we

have convergence to some α-stable point with guaranteed approximation error, provided the conditions in

each lemma hold; combining the conditions leads to the phase transition bound defined in (5.1).

We begin by defining the above-mentioned support set partition.

Definition 5.5 (Support set partition for IHT). Suppose δ ∈ (0, 1], ρ ∈ (0, 1/2] and α > 0. Given

ζ > 0, let us write

a∗(δ, ρ; ζ)
def
= a(δ, ρ) + ζ, (5.13)

where a(δ, ρ) is defined in (5.2), let us write {Γi : i ∈ Sn} for the set of all possible support sets of

cardinality k, and let us disjointly partition Sn
def
= Θ1

n ∪Θ2
n such that

Θ1
n

def
=
{
i ∈ Sn : ‖x∗Λ\Γi‖ > σ · a∗(δ, ρ; ζ)

}
; Θ2

n
def
=
{
i ∈ Sn : ‖x∗Λ\Γi‖ ≤ σ · a

∗(δ, ρ; ζ)
}
. (5.14)

We recall that Λ is defined to be the support of the original signal x∗. Note that the partition

Sn := Θ1
n ∪ Θ2

n defined in (5.14) also depends on ζ, though we omit this dependency from our notation

for the sake of brevity. Note also that if Γi = Λ, then ‖x∗Λ\Γi‖ = 0 and i ∈ Θ2
n. In other words, the index

corresponding to Λ is contained in Θ2
n.

We first show that, asymptotically, there are no α-stable points on any Γi with i ∈ Θ1
n, and we write

NSPα for this event.

Lemma 5.6. Choose ζ > 0. Suppose Assumptions A.2 and A.3 hold, as well as (5.2). Then, in the

proportional-growth asymptotic, there are no α-stable points on any Γi such that i ∈ Θ1
n, with probability

tending to 1 exponentially in n.

Proof. For any Γi such that i ∈ Θ1
n, we have Γi 6= Λ, and we may therefore use Theorem 3.2 and

Lemma 4.4 with Γ := Γi to deduce that a necessary condition for there to be an α-stable point on Γi
is

‖x∗Λ\Γi‖ ·
√
FΓi + σ ·

√
GΓi ≥ α

[(
n− k
n

)
‖x∗Λ\Γi‖ ·RΓi − σ ·

√
k(n− k)

n2
· SΓi · TΓi

]
, (5.15)

where

FΓi ∼
k

n− k + 1
F(k, n− k + 1); GΓi ∼

k

n− k + 1
F(k, n− k + 1);

RΓi ∼
1

n− k
χ2
n−k; SΓi ∼

1

n− k
χ2
n−k; TΓi ∼

1

k
χ2
k.

We also have, by (5.14),

σ ≤
‖x∗Λ\Γi‖
a∗(δ, ρ; ζ)

(5.16)
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for any Γi such that i ∈ Θ1
n. Since Γi 6= Λ, ‖x∗Λ\Γ‖ > 0, and substitution of (5.16) into (5.15),

rearrangement and division by ‖x∗Λ\Γi‖ yields

a∗(δ, ρ; ζ)

[
α

(
n− k
n

)
·RΓi −

√
FΓi

]
≤
√
GΓi + α

√
k(n− k)

n2
· SΓi · TΓi .

Consequently,

IP(NSPα)

= IP
{
∪i∈Θ1

n
(∃ an α-stable point supported on Γi)

}
≤ IP

 ⋃
i∈Θ1

n

[
a∗(δ, ρ; ζ)

[
α (1− ρn) ·RΓi −

√
FΓi

]
≤
√
GΓi + α

√
ρn(1− ρn) · SΓi · TΓi

] ,

(5.17)

where we write ρn for the sequence of values of the ratio k/n. For brevity’s sake, let us define

Φ[ρ, F,G,R, S, T ]
def
=
√
G+ α

√
ρ(1− ρ)(S)(T )− a∗(δ, ρ; ζ) ·

[
α(1− ρ) ·R−

√
F
]
, (5.18)

so that (5.17) may be equivalently written as

IP(NSPα) ≤ IP
{
∪i∈Θ1

n
(Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ 0)

}
. (5.19)

Given some ε > 0, we now define

F ∗ = G∗
def
= IF(δ, ρ) + ε; R∗

def
= 1− IL(δ, ρ, 1− ρ)− ε;

S∗
def
= 1 + IU(δ, ρ, 1− ρ) + ε; T ∗

def
= 1 + IU(δ, ρ, ρ) + ε.

(5.20)

Using (5.20), we deduce from (5.19) that

IP(NSPα)

≤ IP
{
∪i∈Θ1

n
(Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

(5.21)

+ IP{Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε} (5.22)

+ IP{Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε ≥ 0} , (5.23)

since the event in the right-hand side of (5.19) lies in the union of the three events in (5.21), (5.22)

and (5.23). Now (5.23) is a deterministic event, and a∗(δ, ρ; ζ) has been defined in such a way that, for

any ζ > 0, provided ε is taken sufficiently small, the event has probability 0. This follows from (5.2),

(5.4), (5.13), and by the continuity of Φ. The event (5.22) is also deterministic, and by continuity and

since ρn → ρ, it follows that there exists some ñ such that

IP{Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε} = 0 for all n ≥ ñ.

Taking limits as n→∞, the terms (5.22) and (5.23) are zero, leaving only (5.21), and we have

lim
n→∞

IP(NSPα)

≤ lim
n→∞

IP
{
∪i∈Θ1

n
(Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

≤ lim
n→∞

IP
{
∪i∈Θ1

n
(FΓi ≥ F ∗)

}
+ lim
n→∞

IP
{
∪i∈Θ1

n
(GΓi ≥ G∗)

}
+ lim
n→∞

IP
{
∪i∈Θ1

n
(RΓi ≤ R∗)

}
+ lim

n→∞
IP
{
∪i∈Θ1

n
(SΓi ≥ S∗)

}
+ lim
n→∞

IP
{
∪i∈Θ1

n
(TΓi ≥ T ∗)

}
, (5.24)

where the last line follows from the monotonicity of Φ with respect to F , G, R, S and T . Since

Θ1
n ⊆ Sn, we may apply Lemmas 4.5 and 4.6 to (5.24), and we deduce IP(NSPα) → 0 as n → ∞,

exponentially in n, as required. 2
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Next, we show that any α-stable points on Γi with i ∈ Θ2
n are ‘close’ to x∗.

Lemma 5.7. Suppose Assumptions A.2 and A.3 hold, as well as (5.2). Then there exists ζ sufficiently

small such that, in the proportional-growth asymptotic, any α-stable point x̄ on Γi such that i ∈ Θ2
n satisfies

(5.7) with probability tending to 1 exponentially in n, where ξ(δ, ρ) is defined in (5.3).

Proof. If σ = 0, the result follows trivially from Lemma 5.3, so let us assume that σ > 0. Suppose

x̄ is a minimum-norm solution on Γ, so that x̄Γ = A†Γb. Then, using A†ΓAΓ = I, we have

(x̄− x∗)Γ = A†Γ(AΓx
∗
Γ +AΓCx

∗
ΓC + e)− x∗Γ

= x∗Γ +A†Γ(AΛ\Γx
∗
Λ\Γ +A(Λ∪Γ)Cx

∗
(Λ∪Γ)C + e)− x∗Γ

= A†Γ(AΛ\Γx
∗
Λ\Γ + e) + x∗Γ − x∗Γ

= A†Γ(AΛ\Γx
∗
Λ\Γ + e), (5.25)

while

(x̄− x∗)ΓC = −x∗ΓC . (5.26)

Combining (5.25) and (5.26) using the triangle inequality, we may bound

‖x̄− x∗‖2 = ‖(x̄− x∗)Γ‖2 + ‖(x̄− x∗)ΓC‖2

= ‖A†Γ(AΛ\Γx
∗
Λ\Γ + e)‖2 + ‖x∗ΓC‖

2

≤
[
‖A†ΓAΛ\Γx

∗
Λ\Γ‖+ ‖A†Γe‖

]2
+ ‖x∗Λ\Γ‖

2 (5.27)

We may deduce, by (4.7) of Lemma 4.4,

‖A†ΓAΛ\Γx
∗
Λ\Γ‖

2 = ‖x∗Λ\Γ‖
2 · PΓ, where PΓ ∼

k

n− k + 1
F(k, n− k + 1), (5.28)

and by (4.9) of Lemma 4.4,

‖A†Γe‖
2 = σ2 ·QΓ, where QΓ ∼

k

n− k + 1
F(k, n− k + 1). (5.29)

Substituting (5.28) and (5.29) into (5.27), we have

‖x̄− x∗‖2 ≤
[
‖x∗Λ\Γ‖ ·

√
PΓ + σ ·

√
QΓ

]2
+ ‖x∗Λ\Γ‖

2, (5.30)

and we may use (5.14) to further deduce

‖x̄− x∗‖2 ≤ σ2
[
a∗(δ, ρ; ζ) ·

√
PΓ +

√
QΓ

]2
+ [a∗(δ, ρ; ζ)]

2 · σ2

= σ2

{[
a∗(δ, ρ; ζ) ·

√
PΓ +

√
QΓ

]2
+ [a∗(δ, ρ; ζ)]

2

}
. (5.31)

For the sake of brevity, let us define

Ψ(P,Q) :=

√(
a∗(δ, ρ; ζ) ·

√
P +

√
Q
)2

+ a∗(δ, ρ; ζ)2, (5.32)

so that (5.31) may equivalently be written as

‖x̄− x∗‖ ≤ σ ·Ψ [PΓ, QΓ] . (5.33)

Given ζ > 0, let us define

P ∗ = Q∗ := IF(δ, ρ) + ζ. (5.34)
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Now we use (5.33) to perform a union bound over all Γi such that i ∈ Θ2
n, writing x̄i for the minimum-

norm solution on Γi, giving

IP
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗]
}

= IP

 ⋃
i∈Θ2

n

(‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗])

 (5.35)

≤ IP

 ⋃
i∈Θ2

n

(‖x̄i − x∗‖ > σ ·Ψ [PΓi , QΓi ])

 (5.36)

+ IP

 ⋃
i∈Θ2

n

(σ ·Ψ [PΓi , QΓi ] ≥ σ ·Ψ [P ∗, Q∗])

 ,

(5.37)

since the event in (5.35) lies in the union of the two events in (5.36) and (5.37). It is an immediate

consequence of (5.33) that the event in (5.36) has probability 0. Taking limits of (5.37) as n → ∞,

and cancelling σ, we have

lim
n→∞

IP
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗]
}

≤ lim
n→∞

IP

 ⋃
i∈Θ2

n

(Ψ [PΓi , QΓi ] ≥ Ψ [P ∗, Q∗])


≤ lim

n→∞
IP
{
∪i∈Θ2

n
(PΓi ≥ P ∗)

}
+ lim
n→∞

IP
{
∪i∈Θ2

n
(QΓi ≥ Q∗)

}
, (5.38)

where we used the monotonicity of Ψ with respect to P and Q in the last line. Since Θ2
n ⊆ Sn, and

using (5.28) and (5.29), we may apply Lemma 4.6 to (5.38), yielding that each of the limits in the

right-hand side of (5.38) converges to zero exponentially in n, and so finally

lim
n→∞

IP
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [a∗(δ, ρ; ζ), P ∗, Q∗]
}

= 0,

exponentially in n. Since by Lemma 3.1, any stable point is necessarily a minimum-norm solution,

and recalling the definition of a∗(δ, ρ; ζ) in (5.13), Ψ(a, P,Q) in (5.32), and the definitions of P ∗, Q∗

in (5.34), we have

lim
n→∞

IP

{
∃ some α-stable point x̄i on Γi such that i ∈ Θ2

n and

‖x̄i − x∗‖ > σ

√
IF(δ, ρ) [1 + a(δ, ρ) + ζ]

2
+ [a(δ, ρ) + ζ]

2

}
= 0, (5.39)

with convergence exponential in n. Finally, by continuity,

‖x̄i − x∗‖ > σ

√
IF(δ, ρ) [1 + a(δ, ρ)]

2
+ 1 + [a(δ, ρ)]

2

=⇒ ‖x̄i − x∗‖ > σ

√
IF(δ, ρ) [1 + a(δ, ρ) + ζ]

2
+ [a(δ, ρ) + ζ]

2
,

for some ζ suitably small, and the result now follows from the definition of ξ(δ, ρ) in (5.3). 2

In the context of IHT, we obtain the following convergence result in the proportional-dimensional

asymptotic framework.

Lemma 5.8. Suppose Assumption A.2 holds and that the stepsize α of IHT is chosen to satisfy

α <
1

1 + U(δ, 2ρ)
. (5.40)

Then, in the proportional-growth asymptotic, IHT converges to an α-stable point with probability tending

to 1 exponentially in n.
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Proof. Given (5.40), we may apply Lemma 4.1 with ε sufficiently small to deduce α(1+U2k) < 1, with

probability tending to 1 exponentially in n. Under Assumption A.2, we may then apply Theorem 3.6

and deduce convergence of IHT to an α-stable point. 2

We now combine Lemmas 5.6, 5.7 and 5.8 and prove the three main recovery results for IHT.

Proof of Theorem 5.1: First note that (5.5) implies that the interval in (5.6) is well-defined. Provided

α is chosen to satisfy (5.6), (5.40) holds, and under Assumption A.2, we may apply Lemma 5.8 to deduce

convergence of IHT to an α-stable point. On the other hand, Lemma 5.6 establishes that there are

asymptotically no α-stable points on any Γi such that i ∈ Θ1
n, while we may apply Lemma 5.7 to deduce

that any α-stable points on any Γi such that i ∈ Θ2
n satisfy (5.7).

Proof of Corollary 5.2: The result follows by setting σ
def
= 0 in Theorem 5.1.

Proof of Corollary 5.3: Lemma 5.6 establishes that, if (5.2) holds, there are asymptotically no

α-stable points on any Γi such that i ∈ Θ1
n. Setting σ

def
= 0 in (5.14), we have i ∈ Θ2

n ⇒ Γi = Λ. Therefore

any α-stable point is supported on Λ, and Lemma 3.1 implies that it must be x∗. However, any fixed

point of IHT with stepsize α is necessarily an α-stable point, and therefore x∗ is also the only fixed point

of IHT with stepsize α.

6 Conclusions and future directions

While CS was first developed within the framework of l1-minimization, there is growing evidence that

recovery algorithms which do not rely on convex relaxation and the l1-norm can be equally effective in

practice [7]. Two such examples are the gradient-based IHT [9] and N-IHT [10] algorithms, which also have

favourable computational efficiency in comparison with other CS approaches. It is important that a CS

recovery algorithm is supported by theory which quantitatively determines the degree of undersampling

that the algorithm permits. Such results now exist for l1-minimization, where precise phase transitions have

been determined within a proportional-growth asymptotic framework in the case of Gaussian matrices [17].

By contrast, worst-case recovery guarantees for IHT algorithms using the RIP are pessimistic in comparison

with observed empirical behaviour [6].

To address this issue, we introduced a new method of recovery analysis for IHT algorithms in which

we analysed the algorithms’ stable points, a generalization of the notion of fixed points. By making the

realistic assumption of independence between the signal and measurement matrix, we obtained the first

recovery guarantees for IHT algorithms and Gaussian measurement matrices which make use of average-

case assumptions. In contrast to RIP analysis, which leads to lower bounds on the strong phase transition,

we obtained lower bounds on a weak phase transition for recovery using IHT algorithms, which is the

notion of practical interest. By breaking free in part from the restrictions of worst-case analysis, we

have obtained, to the best of our knowledge, the highest phase transition bounds yet guaranteeing exact

recovery of sparse signals by means of IHT and N-IHT. Our results extend to the realistic model of noisy

measurements, guaranteeing an improved robustness to these inaccuracies.

The ultimate remaining goal of the work is to fully close the gap between theoretical guarantees

and empirical performance for IHT algorithms. At present, the continued use of worst-case methods of

analysis such as union bounds over combinatorially many support sets is a hindrance to significant further

improvements in phase transition bound. It is an open question whether such a strong requirement is

necessary for ensuring signal recovery on average. Though we have obtained quantitative results only

for Gaussian matrices here, many other families of random or randomized measurement matrices exhibit

similar empirical behaviour and are important to practitioners. Obtaining quantitative guarantees for IHT

algorithms applied to such CS measurement schemes is an open avenue of research.
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Appendix A

Proofs of results in Section 4.2

We make use of asymptotic results derived by Temme [29] for the incomplete gamma and beta functions,

which are related to the χ2 and F distributions respectively. We denote by P (s, t) the lower regularized

incomplete gamma function P (s, t) [29], and we let Q(s, t) = 1−P (s, t) be the upper regularized incomplete

gamma function. We also define the complementary error function erfc(ω) in the usual way as

erfc(ω)
def
=

2√
π

∫ ∞
ω

e−u
2

du.

The result for the gamma function follows.

Lemma A.1 (Gamma asymptotic [29, Section 3.4 and (2.20)]). For 0 < s < t,

Q(s, t) =
1

2
erfc

(
ηQ

√
s

2

)
−Rs(ηQ) where ηQ =

√
2

[
t

s
− ln

(
1 +

t

s

)]
, (A.1)

and for s > t > 0,

P (s, t) =
1

2
erfc

(
−ηP

√
s

2

)
+Rs(ηP ) where ηP = −

√
2

[
− t
s
− ln

(
1− t

s

)]
, (A.2)
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where Rs(·) is a residual term. Furthermore, if t/s remains fixed so that η is held constant,

Rs(η) = O
(

1√
s

)
e−

1
2 sη

2

for s sufficiently large. (A.3)

Lemma A.2. Let 0 < l ≤ n and let the random variable Xl ∼
1

l
χ2
l . Let l/n → γ ∈ (0, 1] as n → ∞.

Then, for any ν > 0,

lim
n→∞

1

n
ln IP(Xi

l ≥ 1 + ν) = −γ
2

[ν − ln(1 + ν)] (A.4)

and, for any ν ∈ (0, 1),

lim
n→∞

1

n
ln IP(Xi

l ≤ 1− ν) = −γ
2

[−ν − ln(1− ν)]. (A.5)

Proof. We first show (A.4). We have

IP(Xl ≥ 1 + ν) = IP[χ2
l ≥ l(1 + ν)] = Q

[
l

2
,
l(1 + ν)

2

]
, (A.6)

where the first step follows from the definition of Xl, and the second step follows from the properties

of the χ2 distribution. We can further express the right-hand side of (A.6) by using (A.1) with s = l/2

and t = l(1 + ν)/2, which then gives

IP(Xl ≥ 1 + ν) =
1

2
erfc

(ηQ
2

√
l
)
−Rl(ηQ), (A.7)

where

ηQ
def
=
√

2[ν − ln(1 + ν)]. (A.8)

Applying a standard exponential tail bound on the complementary error function erfc to (A.7) then

gives

IP(Xl ≥ 1 + ν) ≤ 1

2
e−

1
4 lη

2
Q −Rl(ηQ), (A.9)

to which we can apply (A.3) to obtain

IP(Xl ≥ 1 + ν) = O(1)e−
1
4 lη

2
Q for all l sufficiently large.

Taking logarithms, letting n→∞ and recalling that l/n→ γ, we deduce

lim
n→∞

1

n
ln IP(Xl ≥ 1 + ν) = lim

n→∞

1

n
lnO(1) + lim

n→∞

1

n
·
(
−1

4
lη2
Q

)
= −γ

4
η2
Q,

which together with (A.8) yields (A.4). The proof for the lower tail is similar, since the distribution

function of Xl is given by

IP(Xl ≤ 1− ν) = IP[χ2
l ≤ l(1− ν)] = P

[
l

2
,
l(1− ν)

2

]
,

which further becomes, due to (A.2) with s = l/2 and t = l(1− ν)/2,

IP(Xl ≤ 1− ν) =
1

2
erfc

(
−ηP

2

√
l
)

+Rl(ηP ),

where ηP = −
√

2[−ν − ln(1− ν)]. The bound (A.5) now follows similarly to (A.4). 2

We will need the following lemma which gives the limit of a binomial coefficient in the proportional-

growth asymptotic.
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Lemma A.3 (Combinatorial limit). In the proportional-dimensional asymptotic,

lim
n→∞

1

n
ln

(
N

k

)
=
H(δρ)

δ
, (A.10)

where H(·) is defined in (4.38).

Proof. In the proportional-dimensional asymptotic,

lim
n→∞

1

n
ln

(
N

k

)
= lim
n→∞

N

n
· 1

N
ln

(
N

k

)
=

1

δ
·H(δρ),

where the last step follows from Stirling’s formula. 2

Proof of Lemma 4.5 (Large deviation result for χ2). Union bounding IP
(
Xi
l ≥ 1 + ν

)
over all

i ∈ Sn gives

IP
{
∪i∈Sn(Xi

l ≥ 1 + ν)
}
≤
∑
i∈Sn

IP
(
Xi
l ≥ 1 + ν

)
= |Sn| · IP(X1

l ≥ 1 + ν). (A.11)

Taking logarithms and limits of the right-hand side of (A.11), using (A.4) and (A.10), we have

lim
n→∞

1

n
ln
[
|Sn| · IP(X1

l ≥ 1 + ν)
]

= H(δρ)− λ

2
[ν − ln(1 + ν)],

and so (A.11) implies that, for any η > 0,

1

n
ln IP

{
∪i∈Sn(Xi

l ≥ 1 + ν)
}
≤ H(δρ)− λ

2
[ν − ln(1 + ν)] + η, (A.12)

for all n sufficiently large. By the definition of IU(δ, ρ, λ) in (4.36), and since [ν − ln(1 + ν)] is strictly

increasing on ν > 0, then, for any ε > 0, setting ν := ν∗ = IU(δ, ρ, λ) + ε and choosing η sufficiently small

in (A.12) ensures

1

n
ln IP

{
∪i∈Sn(Xi

l ≥ 1 + ν∗)
}
≤ −cQ for all n sufficiently large,

where cQ is some positive constant, from which it follows that

IP
{
∪i∈Sn(Xi

l ≥ 1 + ν∗)
}
≤ e−cQ·n for all n sufficiently large,

and (4.41) follows. Combining the same union bound argument with the lower tail result of Lemma A.2

shows that, if we take ν∗ = IL(δ, ρ, λ) + ε for some ε > 0, then

1

n
ln IP

{
∪i∈Sn(Xi

l ≤ 1− ν∗)
}
≤ −cP for all n sufficiently large,

where cP is some positive constant, and (4.42) follows similarly to (4.41). 2

For the F-distribution, we need an asymptotic result concerning the regularized incomplete beta func-

tion [29], which we denote by Iβ(d1, d2).

Lemma A.4 (Beta asymptotic [29, Section 3.3.2 and (2.20)]). For d1 > d2 > 0,

Iβ(d1, d2) =
1

2
erfc

(
ηI

√
d1 + d2

2

)
+ Sn(ηI) (A.13)

where

− 1

2
η2
I =

(
d1

d1 + d2

)
ln

[
β(d1 + d2)

d1

]
+

(
d2

d1 + d2

)
ln

[
(1− β)(d1 + d2)

d2

]
, (A.14)

where

sgn(ηI) = sgn

(
β − d1

d1 + d2

)
, (A.15)
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and where Sn(·) is a residual term. Furthermore,

Sn(ηI) = O
(

1√
s

)
e−

1
2 sη

2
I for l sufficiently large, (A.16)

uniformly in ηI on compactly-supported subsets of IR.

Lemma A.5. Let the random variable Xn ∼
k

n− k + 1
F(k, n− k + 1). Provided

f >
ρ

1− ρ
, (A.17)

in the proportional-growth asymptotic,

lim
n→∞

1

n
ln IP(Xn ≥ f) =

1

2
[ln(1 + f)− ρ ln f −H(ρ)] . (A.18)

Proof. We have

IP[F(d1, d2) ≥ β] = I( d2
d1β+d2

) (d2

2
,
d1

2

)
, (A.19)

where the first step follows from the definition of Xn, and the second step follows from the properties

of the F-distribution. Now n ≥ 2k, and therefore n−k+1
2 > k

2 , and so we may apply (A.13) with

d1 = k, d2 = n− k + 1 and β =
(
n−k+1

k

)
f to the right-hand side of (A.19) to obtain

IP[F(d1, d2) ≥ β] =
1

2
erfc

(
−ηI

2

√
n+ 1

)
+ Sn(ηI), (A.20)

where

− 1

2
η2
I =

(
n− k + 1

n+ 1

)
ln

[
n+ 1

(n− k + 1)(1 + f)

]
+

(
k

n+ 1

)
ln

[
(n+ 1)f

k(1 + f)

]
, (A.21)

and where

sgn(ηI) = sgn

(
1

1 + f
− n− k + 1

n+ 1

)
. (A.22)

By (A.17), f > ρ/(1− ρ), which may be combined with the observation that

1

1 + f
− n− k + 1

n+ 1
< 0 ⇐⇒ f >

k

n− k + 1
,

to deduce that ηI < 0 for (k, n) sufficiently large, and therefore that

η̄I
2 def

= lim
n→∞

η2
I = 2

{
(1− ρ) ln[(1− ρ)(1 + f)] + ρ ln

[
ρ(1 + f)

f

]}
= 2 [(1− ρ) ln(1− ρ) + (1− ρ) ln(1 + f) + ρ ln ρ+ ρ ln(1 + f)− ρ ln f ]

= 2 [ln(1 + f)− ρ ln f −H(ρ)] . (A.23)

Combining (A.20) with a standard exponential tail bound on the complementary error function erfc

gives

IP(Xn ≥ f) ≤ 1

2
e−

1
4 (n+1)η2I + Sn(ηI), (A.24)

to which we can apply (A.16) to obtain

IP(Xn ≥ f) ≤ O(1)e−
1
4 (n+1)η2I for all n sufficiently large.

Taking logarithms and letting n→∞, we deduce

lim
n→∞

1

n
ln IP(Xn ≥ f) ≤ lim

n→∞

1

n
lnO(1) + lim

n→∞

1

n
· −1

4
kη2
I = −ρ

4
η̄I

2,

which together with (A.23) proves (A.18). 2
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Proof of Lemma 4.6 (Large deviation result for F). Union bounding IP(Xi
n ≥ 1 + f) over all

i ∈ Sn gives

IP

{ ⋃
i∈Sn

(Xi
n ≥ f)

}
≤
∑
i∈Sn

IP
(
Xi
n ≥ f

)
= |Sn| · IP(X1

n ≥ f), (A.25)

Taking logarithms and limits of the right-hand side of (A.25), using (A.18) and (A.10), we have

lim
n→∞

1

n
ln
[
|Sn| · IP(X1

n ≥ f)
]

= H(δρ)− 1

2
[ln(1 + f)− ρ ln f −H(ρ)] ,

which combines with (A.25) to imply that, for any η > 0,

1

n
ln IP

{
∪i∈Sn(Xi

n ≥ f)
}
≤ H(δρ)− 1

2
[ln(1 + f)− ρ ln f −H(ρ)] + η, (A.26)

for all n sufficiently large. By the definition of IF(δ, ρ) in (4.39), and since the left-hand side of (4.39) on

f >
ρ

1− ρ
is strictly increasing in f , then, for any ε > 0, setting f := f∗ = IF(δ, ρ) + ε and choosing η

sufficiently small in (A.26) ensures

1

n
ln IP

{
∪i∈Sn(Xi

n ≥ f∗)
}
≤ −cI for all n sufficiently large,

where cI is some positive constant, from which it follows that

IP
{
∪i∈Sn(Xi

n ≥ f∗)
}
≤ e−cI ·n for all n sufficiently large,

and (4.43) now follows. 2

Appendix B

Proof of recovery results for N-IHT

Roadmap for the results in this section. Here we prove the results stated in Section 5.1.2. In the

case of N-IHT, it is possible to prove convergence to an α(δ, ρ; ε)-stable point, where

α(δ, ρ; ε)
def
= {κ[1 + U(δ, 2ρ) + ε]}−1, (B.1)

for some ε > 0.

The proof of Theorem 5.4 for N-IHT takes broadly the same approach as for the corresponding result

for IHT in Section 5.3. However, in order to finally eliminate the dependence upon ε in α(δ, ρ; ε), the

results corresponding to Lemmas 5.6 and 5.8 for IHT need to be combined together. This is accomplished

by Lemma B.1, which establishes that, provided (5.11) holds and ε is taken sufficiently small, N-IHT

converges to an α(δ, ρ; ε)-stable point on some Γi such that i ∈ Θ2
n (the N-IHT support set partition is

given in (B.3) below). Lemma B.2 corresponds to Lemma 5.7 for IHT, giving bounds on the approximation

error of an α(δ, ρ; ε)-stable point on some Γi such that i ∈ Θ2
n, for any ε > 0. Combining the two lemmas

leads us to conclude that N-IHT converges to some limit point with bounded approximation error. We

write NSPα for the event that there is no α(δ, ρ; ε)-stable point on any Γi such that i ∈ Θ1
n.

We next introduce the support set partition definition relevant for N-IHT.

Definition B.1 (Support set partition for N-IHT). Suppose δ ∈ (0, 1] and ρ ∈ (0, 1/2]. Given ζ >

0, let us write

a∗(δ, ρ; ζ) := a(δ, ρ) + ζ, (B.2)

where a(δ, ρ) is defined in (5.10), let us write {Γi : i ∈ Sn} for the set of all possible support sets of

cardinality k, and let us disjointly partition Sn
def
= Θ1

n ∪Θ2
n such that

Θ1
n

def
=
{
i ∈ Sn : ‖x∗Λ\Γi‖ > σ · a∗(δ, ρ; ζ)

}
; Θ2

n
def
=
{
i ∈ Sn : ‖x∗Λ\Γi‖ ≤ σ · a

∗(δ, ρ; ζ)
}
. (B.3)
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Lemma B.1. Choose ζ > 0. Suppose Assumptions A.2 and A.3 hold, and suppose that (5.11) holds.

Then there exists ε such that, in the proportional-growth asymptotic, N-IHT converges to an α(δ, ρ; ε)-stable

point on some Γi such that i ∈ Θ2
n, with probability tending to 1 exponentially in n.

Proof. Under Assumption A.2, we have by Theorem 3.7 convergence of N-IHT to a [κ(1 +U2k)]−1-

stable point. By Definition 3.1, for any α1 < α2, the set of α1-stable points includes the set of

α2-stable points, and this observation combines with Lemma 4.1 to imply convergence to an α(δ, ρ; ε)-

stable point, where α(δ, ρ; ε) is defined in (B.1), with probability tending to 1 exponentially in n. We

now rehearse the argument of Lemma 5.6 to show that, provided ε is taken sufficiently small, this

stable point must be on Γi such that i ∈ Θ2
n. For any Γi such that i ∈ Θ1

n, we have Γi 6= Λ, and

we may therefore use Theorem 3.2 and Lemma 4.4 with Γ := Γi to deduce that, given some ε > 0, a

necessary condition for there to be an α(δ, ρ; ε)-stable point on Γi is

‖x∗Λ\Γi‖ ·
√
FΓi + σ ·

√
GΓi

≥ α(δ, ρ; ε)

[(
n−k
n

)
‖x∗Λ\Γi‖ ·RΓi − σ ·

√
k(n−k)
n2 · SΓi · TΓi

]
,

(B.4)

where

FΓi ∼
k

n− k + 1
F(k, n− k + 1); GΓi ∼

k

n− k + 1
F(k, n− k + 1);

RΓi ∼
1

n− k
χ2
n−k; SΓi ∼

1

n− k
χ2
n−k; TΓi ∼

1

k
χ2
k.

We also have, by (B.3),

σ ≤
‖x∗Λ\Γi‖
a∗(δ, ρ; ζ)

(B.5)

for any Γi such that i ∈ Θ1
n. Since Γi 6= Λ, ‖x∗Λ\Γ‖ > 0, and substitution of (B.5) into (B.4),

rearrangement and division by ‖x∗Λ\Γi‖ yields

a∗(δ, ρ; ζ)

[
α(δ, ρ; ε)

(
n− k
n

)
·RΓi −

√
FΓi

]
≤
√
GΓi + α(δ, ρ; ε)

√
k(n− k)

n2
· SΓi · TΓi ,

and consequently

IP(NSPα) = IP
{
∪i∈Θ1

n
(∃ an α(δ, ρ; ε)-stable point supported on Γi)

}
≤ IP

{
∪i∈Θ1

n
(Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ 0)

}
, (B.6)

where we write ρn for the sequence of values of the ratio k/n, and where

Φ[ρ, F,G,R, S, T ]
def
=
√
G+α(δ, ρ; ε)

√
ρ(1− ρ)(S)(T )−a∗(δ, ρ; ζ) ·

[
α(δ, ρ; ε)(1− ρ) ·R−

√
F
]
. (B.7)

We now define

F ∗ = G∗
def
= IF(δ, ρ) + ε; R∗

def
= 1− IL(δ, ρ, 1− ρ)− ε;

S∗
def
= 1 + IU(δ, ρ, 1− ρ) + ε; T ∗

def
= 1 + IU(δ, ρ, ρ) + ε.

(B.8)

Using (B.8), we deduce from (B.6) that

IP(NSPα)

≤ IP
{
∪i∈Θ1

n
(Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

(B.9)

+ IP{Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε} (B.10)

+ IP{Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε ≥ 0} , (B.11)

since the event in (B.6) lies in the union of the three events in (B.9), (B.10) and (B.11). Now (B.11)

is a deterministic event, and a∗(δ, ρ; ζ) has been defined in such a way that, for any ζ > 0, provided
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ε is taken sufficiently small, the event has probability 0. This follows from (5.11), (5.10), (B.2), and

by the continuity of Φ. The event (B.10) is also deterministic, and by continuity and since ρn → ρ, it

follows that there exists some ñ such that

IP{Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε} = 0 for all n ≥ ñ.

Taking limits as n→∞, the terms (B.10) and (B.11) are zero, leaving only (B.9), and we have

lim
n→∞

IP(NSPα)

≤ lim
n→∞

IP
{
∪i∈Θ1

n
(Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

≤ lim
n→∞

IP
{
∪i∈Θ1

n
(FΓi ≥ F ∗)

}
+ lim
n→∞

IP
{
∪i∈Θ1

n
(GΓi ≥ G∗)

}
+ lim
n→∞

IP
{
∪i∈Θ1

n
(RΓi ≤ R∗)

}
+ lim

n→∞
IP
{
∪i∈Θ1

n
(SΓi ≥ S∗)

}
+ lim
n→∞

IP
{
∪i∈Θ1

n
(TΓi ≥ T ∗)

}
, (B.12)

where the last line follows from the monotonicity of Φ with respect to F , G, R, S and T . Since

Θ1
n ⊆ Sn, we may apply Lemmas 4.5 and 4.6 to (B.12), and we deduce IP(NSPα) → 0 as n → ∞,

exponentially in n, as required. 2

Lemma B.2. Suppose Assumptions A.2 and A.3 hold, and suppose that (5.11) holds. Given any ε > 0,

there exists ζ sufficiently small such that, in the proportional-growth asymptotic, any α(δ, ρ; ε)-stable point

on Γi such that i ∈ Θ2
n satisfies (5.12), with probability tending to 1 exponentially in n.

Proof. Suppose x̄ is a minimum-norm solution on Γ, so that x̄Γ = A†Γb. Then we may follow the

argument of Lemma 5.7 to deduce (5.30), where

PΓ ∼
k

n− k + 1
F(k, n− k + 1); QΓ ∼

k

n− k + 1
F(k, n− k + 1). (B.13)

Combining (5.30) with (B.3), we may further deduce

‖x̄− x∗‖2 ≤ σ2
[
a∗(δ, ρ; ζ) ·

√
PΓ +

√
QΓ

]2
+ [a∗(δ, ρ; ζ)]

2 · σ2

= σ2

{[
a∗(δ, ρ; ζ) ·

√
PΓ +

√
QΓ

]2
+ [a∗(δ, ρ; ζ)]

2

}
. (B.14)

For the sake of brevity, let us define

Ψ[P,Q]
def
=

√(
a∗(δ, ρ; ζ) ·

√
P +

√
Q
)2

+ a∗(δ, ρ; ζ)2, (B.15)

so that (B.14) may equivalently be written as

‖x̄− x∗‖ ≤ σ ·Ψ [PΓ, QΓ] . (B.16)

First suppose that σ > 0. Given ζ > 0, let us define

P ∗ = Q∗
def
= IF(δ, ρ) + ζ. (B.17)

Now we use (B.16) to perform a union bound over all Γi such that i ∈ Θ2
n, writing x̄i for the minimum-

norm solution on Γi, giving

IP
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗]
}

= IP

 ⋃
i∈Θ2

n

(‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗])

 (B.18)
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≤ IP

 ⋃
i∈Θ2

n

(‖x̄i − x∗‖ > σ ·Ψ [PΓi , QΓi ])

 (B.19)

+ IP

 ⋃
i∈Θ2

n

(σ ·Ψ [PΓi , QΓi ] ≥ σ ·Ψ [P ∗, Q∗])

 ,

(B.20)

since the event in (B.18) lies in the union of the two events in (B.19) and (B.20). It is an immediate

consequence of (B.16) that the event in (B.19) has probability 0. Taking limits of (B.20) as n → ∞,

and cancelling σ, we have

lim
n→∞

IP
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗]
}

≤ lim
n→∞

IP

 ⋃
i∈Θ2

n

(Ψ [PΓi , QΓi ] ≥ Ψ [P ∗, Q∗])


≤ lim

n→∞
IP
{
∪i∈Θ2

n
(PΓi ≥ P ∗)

}
+ lim
n→∞

IP
{
∪i∈Θ2

n
(QΓi ≥ Q∗)

}
, (B.21)

where we used the monotonicity of Ψ with respect to P and Q in the last line. Since Θ2
n ⊆ Sn, and

using (B.13), we may apply Lemma 4.6 to (B.21), yielding that each of the limits in the right-hand

side of (B.21) converges to zero exponentially in n, and so finally

lim
n→∞

IP
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗]
}

= 0,

with convergence at a rate exponential in n also by Lemma 4.6. The same result also holds when

σ = 0 by (B.14). Since by Lemma 3.1, any stable point is necessarily a minimum-norm solution, and

recalling the definition of Ψ(P,Q) in (5.32), and the definitions of P ∗, Q∗ in (B.17), we have

lim
n→∞

IP

{
∃ some α-stable point x̄i on Γi such that i ∈ Θ2

n and

‖x̄i − x∗‖ > σ

√
IF(δ, ρ) [1 + a(δ, ρ) + ζ]

2
+ [a(δ, ρ) + ζ]

2

}
= 0, (B.22)

with convergence exponential in n. Finally, by continuity,

‖x̄i − x∗‖ > σ

√
IF(δ, ρ) [1 + a(δ, ρ)]

2
+ 1 + [a(δ, ρ)]

2

=⇒ ‖x̄i − x∗‖ > σ

√
IF(δ, ρ) [1 + a(δ, ρ) + ζ]

2
+ [a(δ, ρ) + ζ]

2
,

for some ζ suitably small, and the result now follows from the definition of ξ(δ, ρ) in (5.9). 2

It is now straightforward to prove the two main results for N-IHT.

Proof of Theorem 5.4: By Lemma B.1, there exists ε > 0 such that N-IHT converges to an α(δ, ρ; ε)-

stable point on some Γi such that i ∈ Θ2
n, and for this choice of ε, we can apply Lemma B.2 to deduce the

result.

Proof of Corollary 5.5: The result follows by setting σ
def
= 0 in Theorem 5.4.
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