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Abstract—We present novel non-asymptotic or finite block-
length achievability bounds for three side-information problems
in network information theory. These include (i) the Wyner-
Ahlswede-Korner (WAK) problem of almost-lossless source cod-
ing with rate-limited side-information, (ii) the Wyner-Zi v (W2Z)
problem of lossy source coding with side-information at the
decoder and (iii) the Gel'fand-Pinsker (GP) problem of chamel
coding with noncausal state information available at the enoder.
The bounds are proved using ideas from channel simulation ah
channel resolvability. Our bounds for all three problems improve
on all previous non-asymptotic bounds on the error probabiity of
the WAK, WZ and GP problems—in particular those derived by
Verdd. Using our novel non-asymptotic bounds, we recoverhe
general formulas for the optimal rates of these side-information
problems. Finally, we also present achievable second-ordeoding
rates by applying the multidimensional Berry-Es€en theorem
to our new non-asymptotic bounds. Numerical results show tht
the second-order coding rates obtained using our non-asyngtic
achievability bounds are superior to those obtained using»sting
finite blocklength bounds.

Index Terms—Source coding, channel coding, side-information,
Wyner-Ahlswede-Korner, Wyner-Ziv, Gel'fand-Pinsker, finite
blocklength, non-asymptotic, second-order coding rates

I. INTRODUCTION

The study ofnetwork information theoryl] involves char-
acterizing the optimal rate regions or capacity regions fi
problems involving compression and transmission from imul

still not known. In this paper, we revisit three coding pexbk
whose asymptotic rate characterizations are well knowas&h
include

o TheWyner-Ahlswede-&ner (WAK) problem of almost-

t . o
ple sources to multiple destinations. Apart from a few sﬂeciasymptotlc bounds on the error probability for the WAK and
channels or source models, optimal rate regions and cgpacit

regions for many network information theory problems arg

Pr(X # X)

Fig. 1. lllustration of the WAK problem

o The Gel'fand-Pinsker(GP) problem of channel coding
with noncausal state information at the encoder [5].
These problems fall under the class of coding problems with
side-information That is, a subset of terminals has access to
either a correlated source or the state of the channel. It mos
cases, this knowledge helps to strictly improve the rates of
compression or transmission over the case where there is no

side-information.

While the study of asymptotic characterizations of network
information theory problems has been of key interest and
importance for the pasp years, it is important to analyze non-
asymptotic (or finite blocklength) limits of various networ
information theory problems. This is because there may be
hard constraints on decoding complexity or delay in mod-

or

ern, heavily-networked systems. The paper derives new non-

GP problems as well as the probability of excess distortion f

e WZ problem. Our bounds improve on all existing finite
blocklength bounds for these problems such as thoselin [6].
In addition, we use these bounds to recover known general
formulas [7]-[10] and we also derive achievable secondord
coding rates([11], [12] for these side-information probé&em
Traditionally, achievability proofs of the direct pats bEse

lossless source coding with rate-limited (aka coded) Sid&jding problems are common and involve a covering step, a

information [2], [3],
o TheWyner-Ziv(WZ) problem of lossy source coding with
side-information at the decoderi [4], and

This paper was presented in part at the 2013 IEEE Interrat®ymposium
on Information Theory.

The first author is with the Department of Information Scermad Intelli-
gent Systems, University of Tokushima, 2-1, Minami-joganaj Tokushima,
770-8506, Japan, and with the Institute for Systems Reseahaiversity of
Maryland, College Park, MD 20742, USA, e-mail:shun-wata@kushima-
u.ac.jp.

The second author is with the Department of Computer and Gomm

nication Sciences, Wakayama University, Wakayama, 64®85apan, e-
mail:kuzuoka@ieee.org.

The third author is with the Department of Electrical and Qaier En-
gineering and Department of Mathematics, National Unitersf Singapore
(NUS), e-mail:vtan@nus.edu.sg

Manuscript received ; revised

packing step and the use of the Markov lemhia [2] (also known
as conditional typicality lemma in EI Gamal and Kirml [1]).
As such to prove tighter bounds, it is necessary to develop
new proof techniques in place of these lemmas [1] and their
non-asymptotic versions |[6][][7]. These new techniques are
based on the notion afhannel resolvability{7], [13], [14]

and channel simulatior[15]-[17]. We use the former in the
helper’s code construction.

To illustrate our idea at a high level, let us use the WAK
problem as a canonical example of all three problems of
interest. Recall that in the classical WAK problem, there
is an independent and identically distributed (i.i.d.)njoi
source Py (z™,y™) = [1i—, Pxvy(zi,y;). The main source
X™ ~ P% is to be reconstructed almost losslessly from rate-
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ur, - 5 of error probability can be done as if the decoder’s obsemat
uz, and the underlying distribution is the virtual 0% ;.

Moreover, by taking the average over the randomly generated
codeboolC, since the codewordy, is distributed according to
i Py v Pxy X Py, (Xj .UL) behaves I|ke(_X, U). Thus, the analysis of error

probability can be done in the same manner as the Slepian-
Wolf coding with full side-informatior/. The above argument
Fig. 2. High level description of helpers coding scheme WiAK. The €nables us to circumvent the need to use the so-called piggy-
upper row is a virtual scheme in which the uniform random nemibis sent  back coding lemma (PBL) and the Markov lemma [2] which

over channeIP;f‘U. The lower row is the corresponding actual scheme iMesult in much poorer estimates on the error probability.
which messagéd. is stochastically generated v}aLD;.

A. Main Contributions

limited versions of bothX™ andY™, whereY™ is a correlated  \ne now describe the three main contributions in this paper.
random variable regarded as side-information. SeellFigh&. T our first main contribution in this paper is to show improved
compression rates of " andY™ are denoted a®, andR2  pounds on the probabilities of error for WAK, WZ and GP

respectively. The optimal rate region is the set of ratespaigoding. We briefly describe the form of the bound for WAK

(R1, Ro) for which there exists aeliable code, that is one coding here. The primary part of the new upper bound on
whose error probability can be made arbitrarily small witfhe error probabilityP. (®) for WAK coding depends on two

increasing blocklengths. WAK([2]. [3] showed that the optim positive constantsy, and~. and is essentially given by
rate region is

R, > H(X|U), Re>I(U;Y) (1) Po(®) S Pr(€c U &) 3)

. where thecovering erroris
for some Py y. For the direct part, the helper encoder g
compresses the side-information and transmits a desamipti e =11 Pyu(U[Y) > @)
represented by/"™. By the covering lemma_[1], this results © & Py(Y) — e
in the rate constraintR; > I(U;Y). The main encoder P ;
-~ = ’ . . and thebinning erroris
then uses binning [18] as in the achievability proof of the g

Slepian-Wolf theorem[[19] to help the decoder recovér &, = log > 5)
given the descriptiorlU/. This results in the rate constraint ' Pxo(X|U) — '
Ry > H(X|U). . . . .

.The notation< is not meant to be precise and, in fact, we

The main idea in our proof of the new non-asymptotic

. are dropping several residual terms that do not contritmte t
upper bounq on the error probab|l|ty. .Of the WAK prob-lerqhe second-order coding rates in thdold i.i.d. setting if v,
is as follows: In the channel resolvability problem, for giv

channel P, and input distributionPy, the goal is to ap- and~. are chosen appropriately. This result is stated precisely

proximate the output distributiofty (induced by(Py ., Py) in Theorem b. From[{3), we deduce that in theold i.i.d.

by the output distribution?;. of codewords for a codebaok zﬁggggilgrwjr inggsteg; ar:S&zr(?n?;x;et%f?Z@g?r:;zatthire
C = {u1,...,u)z)} and the uniform random numbér c L. y ‘arg '

Asymptotically, the approximation can be done successitll conditional entropyH (X |U) respectively, we are guaranteed

the rateR, of the random numbek satisfiesR, > I(U:Y). that the error probabilityP.(®) decays to zero. This follows

In our helper's coding scheme (see FIj. 2), we use Chamﬁr&m Khintchine’s law of large numbersl[7, Ch. 1]. Thus, we

resolvability as a virtual scheme that is applied to the r&swe réover the direct part of WAK's result. In fact, we can take

test channelP, |, of a given test channel and the marginatlhls one step further (Theorem]12) to obtain an achievable

Py of the auxiliary random variable as the input distributio eneral formula(in the sense of Verdl-Han |[7]._[20]) for
v . y . b . the WAK problem with general sourcel[7, Ch. 1]. This was
Then, we flip the roles of the input and the output, i.e

we construct the conditional distributiaf, . from the joint previously done by Miyake-Kanayal[8] but their derivation
AN . Lﬁ/ is based on a different non-asymptotic formula more akin to
distribution P, . In the actual coding scheme, the messal

N ) . ner's PBL. Also, since we have the freedom to design
L on L is stochastically generated from helper’s souice %y g

. o o . and instead of fixed positi bers,
via Py ¢, which is known as thdikelihood encoder[17]. Je ane gp 8 SequBMCes Insiead of Txen Postive MUmbers

) N " if we let them beO(—-)-larger thanI(U;Y) and H(X|U)
v/ ’ . '
Since the successful appro>_<|mat|c>_n n th? Cha!"”e' resq:lyab then the error probability is smaller than a prescribed tzonts
guaranteesP; ~ Py, the joint distributions in the virtual

<cheme and the actual scheme are also close. i.e depending on the implied constants in thi - )-notations.
T This follows from the multivariate Berry-Esséen theor&t][

Pixy =Py Py Px)y = Py Py Pxyy = P gy (2) This bound is useful because it isuaion of two events and

The decoder reproduceX¥ via a Slepian-Wolf decoder by g;s;?fzr?;leyggth information spectrurn/[7] events which are

usingu; as the side-information. Because of (2), the analyS'SSecondly, the preceding discussion shows that the bound

1Usually, the codebook is randomly generated according o itiput 1N (3) also yields an a(_:hievable_second'.order goding rete [1
distribution Py [12]. However, unlike in the point-to-point setting [1117],



[22], the achievable second-order coding rate is expressedrhe generalization of the WZ problem for general correlated
terms of a so-calledlispersion matrix[23]. We can easily sources was considered by Iwata and Muramatsu [9] who
show that ifZwak (n, €) is the set of all rate pairdR,, R2) for showed that the general WZ function can be written as a
which there exists a lengthA\WAK code with error probability difference of a limit superior in probability and a limit &rfior

not exceeding > 0 (i.e., the (n, £)-optimal rate regiof), then in probability, reflecting the covering and packing compuse

for any Py, the set in the classical achievability proof.
The problem of channel coding with noncausal random state
: S (V 1
{]2(([;(’?[/]))} + % +0 < Ogn) 1, (6) information was solved by Gel'fand and Pinsker [5]. A gethera

formula for the GP problem (with general channel and general
is an inner bound taZwax(n,¢). In (@), #(V,e) C R? state) was provided by Tam [10]. Tyagi and Narayan| [31]
denotes the analogue of tigg! function [23] and it depends proved the strong converse for this problem and used it to
on the covariance matrix of the so-called information-epyr derive a sphere-packing bound. For both the WZ and GP

density vector problems, Verdu[[6] used generalizations of the packing an
Py (U]Y) ) T covering lemmas in[]1] to derive non-asymptotic bounds on
log =577~ 1og pry X|U)} : (7)  the probability of excess distortion (for Wz) and the averag

The precise statement for the second-order coding ratééor grror probability (for GP). HO\_/vever, they yield worse sedon
?rder rates because the main part of the bound is a sum of

WAK problem is given in Theoremi 15. We see frol (6) th - ) O
for a fixed test channely |y, the redundancy at blocklengtr?t)v;/?h(;r S?}riiﬁ zgo%ﬁégtles as ill(8), rather than the proktgbi

n in order to achieve an error probability> 0 is governed K deri iah ic bounds b
by the term&nﬁ). The pre-factor of this termt”(V,¢), is !n o%r Worf , W h er|ve| tg tI nobryl-.aS{_Tcﬂtot;c C?\une s é’
likened to thedispersion22], [24]-|2€], and depends notonlyuSIng ideas from channel resolvability J13]l [7, - 6] an

the variances of the information and entropy densities lat achannel simulation [IE] to replace the coverl’ng part and_
their correlations. Markov lemma. It was shown by Han and Verddl[13] that this

Thirdly, we note that the same flavour of non-asymptotﬁmblem is closely connected to channel coding and channel
bounds and second-order coding rates hold verbatim for ﬂqggtllflcat'[(ﬂ‘ Ha;(/jasdhl glsg studied the crla?.ne; reso:wylb\;v
WZ and GP problems. In addition, since the canonical rat foblem [14] an erived a non-asympltotic ormg a. \We
distortion problem([2[7] is a special case of the WZ proble e:vera-ge on a key lemma in Hayashi[14] (and also Guff [17])
we show that our non-asymptotic achievability bound for th@ derive our bounds. .

WZ problem, when suitably specialized, yields the correct In [13], Bennet_tet al. proposed a problem to 5|mula_1te a
dispersion for lossy source codirig [25], [26]. We do so usi annel by the aid of common randomness. An application

two methods: (i) the method of types [28] and (ii) result9 the chgnne! simulation to simulat.e the. test channgl in
involving the D-tilted information [26]. Finally, we not only the rate-distortion problem was first investigated by Winte

improve on the existing bounds for the GP probléin [B]; [101’16], and _then ex?ensively _studie_d mainly in the field of the
antum information. Cuff investigated the trade-off bedw

but we also consider an almost sure cost constraint on e
channel input. the rates_of the_ message and common randomness _for the
channel simulation [17] (see aldo [33]). For a thoroughdist
B. Related Work literatures related to the chann_gl si_mulation, seeé [:.LE__].[B1
these works, channel resolvability is used as a buildingllo

Wyner [2] and Ahlswede-Korner [3] were the first tofor channel simulation. In particular, a code constructiol
consider and solve (in the first-order sense) the problem ghaysis techniques that do not rely on the typicality argom
almost-lossless source coding with coded side informatiagere developed in[17]. The idea to use channel simulation
Weak converses were proved in [2]| [3] and a strong converiggtead of the Markov lemma is motivated by aforementioned
was proved in[[29] using the “blowing-up lemma”. An in-napers, and our code construction and analysis are based on
formation spectrum characterization was provided by Mé&/akne ones in[[17]. However, we stress that the derivationsiof o
and Kanaya([8] and Kuzuoka [B0] leveraged on the noRpn-asymptotic bounds are not straightforward applicatiof
asymptotic bound which can be extracted from [8] to deriee ththannel simulation and channel resolvability. Indeed,amate
redundancy for the WAK problem. Verdul[6] strengthened theynstruction is tailored to derive the bound as[ih (3), and we

non-asymptotic bound and showed that the error probabilfyso introduce bounding techniques that have not appeared
for the WAK problem is essentially bounded as previously to the best of our knowledge.

P.(®) < Pr(&.) + Pr(&), (8) Rece_ntly, Yassaee-Aref-Gohari (YAG) _[34] _propqsed an
alternative approach for channel simulation, in which they
which is the result upon using the union bound on our bourgp|oited the (multi-terminal version of) intrinsic randaess
in (3). The notationS means that the residual terms do nof7, ch. 2] instead of channel resolvability. This approash i
affect the second-order coding rates. coinedoutput statistics of random binnin@SRB). Although

Wyner and Ziv [4] derived the rate-distortion function fokheir approach is also used to replace the Markov lemimat[2], i
lossy source coding with decoder side-information. Howeve

they do not cons!der th_e prObap”ity of excess difs’tortilon-ZSteinberg and Verd( also studied the channel simulatiailem [32].
Rather, the quantity of interest is the expected distortioRowever, their problem formulation is slightly differembf the one in[[15].



was nota priori yet clear when [34] was published whether our [l. PRELIMINARIES

bounds can be also derived from the OSRB apprdadh [34]. One ) i , ,

of difficulties to apply the OSRB approach for non-asymptoti In this section, we introduce our notation and recall the

analysis is that the amount of common randomness that can'lfek: WZ and GP problems.

used in the channel simulation is limited by the randomness

of sources involved in a coding problem, which is not thﬁ Notations

case with the approach using the channel resolvabilityas w

shown more recently by YAG [35] that a modification of the Random variables (e.g.X) and their realizations (e.g.,

OSRB framework can, in fact, be used to obtain achievabig are in capital and lower case respectively. All random

dispersions of Marton’s region for the broadcast charing] [3variables take values in some alphabets which are denoted

and the wiretap channel [87]. In fact, in another concurrefft calligraphic font (e.g.&'). The cardinality of, if finite, is

work by YAG [38], the authors derived very similar seconddenoted agX|. Let the random vectoX" := (X1,...,X,,)

order results to the ones presented here. They derive baumd@nd similarly for a realization™ = (z1,...,z,). The set

the probability of error for Gel'fand-Pinsker, Heegardrger of all distributions supported on alphabét is denoted as

and multiple description codingl[1] among others. The mai(X). The set of all channels with the input alphab¥t

idea in their proofs is to use thetochastic likelihood coder and the output alphabef is denoted byZ?(Y|X). We will

(SLC) and exploit the convexity ofzy,xs) +— 1/(z120) attimes use the method of types [28]. The joint distribution

(for z;,z2 > 0) to lower bound the probability of correctinduced by a marginal distributioR € &?(X’) and a channel

detection. Although the results in this paper and those I € #(Y|X) is denoted interchangeably #&x V or PV.

[38] partly overlap, the approaches to derive the resuks afhis should be clear from the context.

different. To the best of our knowledge, this paper is the firs For a sequence”™ = (z1,...,z,) € AX™ in which |X|

to demonstrate usefulness of the channel simulation in nds-finite, its type or empirical distributionis the probability

asymptotic analysis of network information theory probemmass functionP(z) = 2 3" | 1{z = z;} where the indicator

which we believe to be interesting in its own right. function 1{z € A} = 1 if z € A and 0 otherwise.
Our main motivation in this work is to derive tight non-The set of types with denominatar supported on alphabet

asymptotic bounds on the error probabilities. We are alst is denoted as#,(X). The type classof P is denoted

interested in second-order coding rates. The study of the 7p := {z" € X™ : z™ has typeP}. For a sequence

asymptotic expansion of the logarithm of the maximum num* € 7p, the set of sequenceg’ € Y" such that(z",y")

ber codewords that are achievable fouses a channel with has joint typePV = P(x)V (y|z) is theV-shell Ty (z™). Let

maximum error probability no larger than was first done ¥, (Y; P) be the family of stochastic matricd$ : X — Y

by Strassen[[329]. This was re-popularized in recent timésr which the V-shell of a sequence of typ® € £,(X)

by Kontoyiannis [[40], Baron-Khojastepour-Baraniuk [41]is not empty. Information-theoretic quantities are deddte

Hayashi [11], [12], and Polyanskiy-Poor-Verdl [22] amonthe usual way. For examplé(X;Y) andI(P, V) denote the

others. Second-order analysis for network informatiorotihe mutual information where the latter expression makes clear

problems were considered in Tan and Kodut| [23] as welat the joint distribution of X, Y") is PV. All logarithms are

as other authors [42]-[45]. However, this is the first worlvith respect to bas2 so information quantities are measured

that considers second-order rates for problems with side-bits.

information. The multivariate normal distribution with meap and
o covariance matrix2 is denoted as\V(u,X). The comple-
C. Paper Organization mentary Gaussian cumulative distribution functi}t) :=

In Section[), we state our notation and formally defing/,™ %eﬂz/? du and its inverse is denoted &3 !(¢) :=
the three coding problems with side-information. We thefin{t € R : Q(t) < ¢}. Finally, |z|* := max{z,0}.
review existing first-order asymptotic results in Sectidh |
In Section[1V, we state our new non-asymptotic bounds
for the three problems. We then use these bounds to Ee- The Wyner-Ahlswedeéiner (WAK) Problem
derive (direct parts of) known general formulas [8]Z[10] in

Sectior V. Following that t achievabl ” In this section, we recall the WAK problem of lossless
ectiorLy. ollowing that, we present achievable Seco " source coding with coded side-informatian [2], [3]. Let us
coding rates for these coding problems. We will see th

@ nsider a correlated sour¢&’,Y) taking values in¥ x Y

just as in the Slepian-Wolf setting [23], [44], the dispersi L L :
is in fact a matrix. In Sectiop_Vll, we show via numericaflnd having joint distributiorPyy . ThroughoutX,, a discrete

les that totic bounds lead to | andom variable, is the main source whiteis the helper or
examples that our non-asymptotic bounds lead to lapggr)- side-information. The WAK problem involves reconstrugtin

rate regions compared with |[6]. Concluding remarks an . T .
directions for future work are provided Section VIII. This losslessly given rate-limited (or coded) versions of bath

paper only contains achievability bounds. In the concim,sioandy' See FigL1L

we also discuss the difficulties associated with obtainiog-n Definition 1. A (possibly stochasticource coding with side-

asymptotic converse bounds. To ensure that the main idéa®rmation code or Wyner-Ahlswede-Korner (WAK) code
are seamlessly communicated in the main text, we relegate®l = (f,g,v) is a triple of mappings that includes two
proofs to the appendices. encodersf : X - M andg : Y — L and a decoder



Y M x L — X. Theerror probabilityof the WAK code
® is defined as

Pe(®) := Pr{X # ¢(f(X),9(Y))} . 9)

In the following, we may callf as the main encoder and
the helper.

In Sectior V], we considen-fold i.i.d. extensions ofX and
Y, denoted as{™ andY™. In this case, we use the subscnipt
to specify the blocklength, i.e., the codeds, = (f,, gn, ¥n)
and the compression index sets &g, = f,,(X™) andL,, =

Y

Fig. 3. lllustration of the WZ problem with probability of egss distortion
criterion

Definition 3. A (possibly stochastic) lossy source coding with

gn(Y™). In this case, we can define the pair of rates of theide-information or Wyner-Ziv (WZ) code = (f,) is a

coded,, as

1
Ry (@) i= —log | My (10)

Ry(®y,) : (11)

1
—log|Ly].
n

Definition 2. The (n,e)-optimal rate region for the WAK

problemZwaxk(n,¢) is defined as the set of all pairs of rate

(R1, R2) for which there exists a blocklength-WAK code
®,, with rates at mostR;, R2) and with error probability not
exceeding. In other words,
e@V\/AK(TL,&) = {(Rl,Rg) S Ri_ 3P, s.t.

1

— log |Mn| S Rl,

n

1

—log |L,] < Ro,

n

Pu(®,) < e} (12)

We also define thasymptotic rate regions

%WAK(E) = Cl[ U L@wAK(n, E)‘| y (13)
n>1
Rk = [ Bwak(e). (14)

0<e<1

wherecl denotes set closure R2.

In the following, we will provide an inner bound to
Zwaxk(n,e) that improves on inner bounds that can bev

i : : . e
derived from previously obtained non-asymptotic bounds on

P.(®,) [6], [30].

C. The Wyner-Ziv (WZ) Problem

In this section, we recall the WZ problem of lossy source

coding with full side-information at the decodEert [4]. Heas,in
the WAK problem, we have a correlated sou(ég V') taking
values inX’ x ) and having joint distributionPxy. Again,

X is the main source and is the helper or side-information.
Neither X norY has to be a discrete random variable. Unlik

the WAK problem, it is not required to reconstruttexactly,
rather a distortionD betweenX and its reproductionX is
allowed. LetX’ be the reproduction alphabet and ¢t X' x

X — [0,00) be a bounded distortion measure such that for

everyx € X there exists a € X such thatd(xz, ) = 0 and
max, ; d(x,2) = Dpax < oo. See Fig[B.

pair of mappings that includes an encoder X — M and a

decoder) : M xY — X. Theprobability of excess distortion

for the WZ codeb at distortion levelD is defined as
P(®; D) :=Pr{d(X,v(f(X),Y)) > D}.  (19)

We will again considem-fold extensions ofX and Y,
denoted asX™ and Y™ in Section[V]. The code is indexed

SDy the blocklength as?,, = (f.,v,). Furthermore, the

compression index set is denoted/et, = f,,(X™). The rate

of the coded,, is defined as
1
R(®,) = - log | M,]. (16)

The distortion between two lengthsequences™ € X™ and
"™ € X" is defined as

dp (2", 3" = %Zd(zi,@). (17)
=1

Definition 4. The (n,e)-Wyner-Ziv rate-distortion region
Pwz(n,e) C RZ is the set of all rate-distortion pairs
(R, D) for which there exists a blocklength\WZ code®,,
at distortion level D with rate at mostR and probability of
excess distortion not exceediagln other words,

Rwz(n,e) = {(R,D) eR? 30, st.
1
—log |M,| < R,
n
P(®,; D) < a} (18)

also define thasymptotic rate-distortion regions

%WZ(E) = Cl[ U e@V\/z(n,&)‘| 5 (19)
n>1
Rz = ﬂ Hwz(€). (20)
0<e<1

The (n, £)-Wyner-Ziv rate-distortion functio®Rwz(n, e, D) is
defined as

sz(n,e, D) = inf{R : (R, D) € %Wz(n,é)}
$Ve also define thasymptotic rate-distortion functions

sz(f—:, D) = inf{R : (R, D) € L@wz(é‘)}
sz(D) = glz)r%) sz(&', D)

(21)

(22)
(23)

Note that the use of the limit (as opposed to the limit supe-
rior or limit inferior) in (23) is justified becaus®&wz (e, D)



¥ Y — M. The average probability of error for the GP

Ps code is defined as
1
S S Pe(q);r) ::W Z ZPS(S)ZW(y|f(mvS)vS)
PI‘(M # M) meM seS yey . -
o ¥ v i 1{g(f(m,s)) >T Uy e Y\ v (m)}-A( )
f w (CHN More simply,P.(®;T) = Pr({g(f(M,S)) > T} U {M #
M}) whereM is uniform onM and independent of ~ P,

Fig. 4. lllustration of the GP problem. The channel inpitmust satisfy M : w(Y) a_ndY is the random Varlable whose conditional
@5). distribution givenM =m and S = s is W(-|f(m,s), s).

The following proposition, which will be proved in Ap-
pendix[A, guarantees that we can always convert a code in
the sense of Definitionl 5 into a code in the sense of an almost
sure cost constraint.

is, from its definition, monotonically non-increasing 4n In
the sequel, we will provide an inner bound #Bwz(n,¢)
and thus an upper bound ditwz(n, e, D) by appealing to a
new non-asymptotic upper bound on the probability of exceBsoposition 1 (Expurgated Code)Let the set of admissible
distortionP.(®,,; D). In addition, note that it = 0, i.e., side- inputs inXx" be
information is not available, this reduces to the poinptint GP L .
rate-distortion (lossy source coding) problem. T (D)i={w e X:gla) < T} 27)
Conventionally [[1], [[4], the WZ problem is stated notor any (stochastic) encoddPx ;s (this plays the role off
with the probability of excess distortion criterion but kit in Definition[3) and decodePy, ;- (this plays the role of
the average fidelity criterion That is, the requirement thatin Definition[5), there exists an encodégmfs such that
Pe(®,; D) — 0 (implicit in is replaced b -
( ) — 0 (imp [23)) is rep y Py (TP(T)) = 1 28)

limsup E[d, (X", v, (fu(X"),Y")] < D.  (24)

n—r oo

and

Poxyn m#m] < Py lgl@) >T Um #m], (29)
D. The Gel'fand-Pinsker (GP) Problem where

In the previous two subsections, we dealt exclusively with
source coding problems, either lossless (WAK) or lossy (WZ) Pryrsxywr = PMPSpXIMSWPva (30)
In this section, we review the setup of the GP problém [5] PMSXYM = PAffPSpXWSWPmy- (31)
which involves channel coding with noncausal state inferma - )
tion at the encoder. It is the dual to the WZ problémi[46], From Propositio]L, noting thate((Px us, Py ); 1) =
In this problem, there is a state-dependent chariiel: Lasxy i [8(z) > T'Um 7], we see that the constraint in
X x 8§ — ¥ and a random variable representing the state (23) is equivalent tog(X) < I' almost surely(implied by
with distribution Py taking values in some s&t. A message (28)). For the purposes of deriving channel simulationedas
M chosen uniformly at random froov is to be sent and the Pounds in Sectio TV-C, it is easier to work with the error
encoder has information about which message is to be sgHterion in [26) so we adopt Definitidd 5. _
as well as the channel state informatiSnwhich is known N order to obtain achievable second-order coding rates
noncausally (Noncausality only applies when the blocklengtfor the GP problem, we considei-fold i.i.d. extensions
is larger thanl.) It is assumed that the message and the st&tethe channel and state. Hence, for evesy, 2", y"), we
are independent. Lef : X — [0,00) be some cost function. have W (y"[z", s") = [[;_; W (yilx:, s;) and the states™
The encoderf encodes the message and state into a codewS§MPIVes in a stationary, memoryless fashion accordingdo

(channel input)X = f(M, S) that satisfies the cost constrainf0r blocklengthn, the code and message set are denoted as
®,, = (fn,¥n) and M,, respectively. The cost function is

g(X)<T, (25) denoted ag, : X — [0,00) and is defined as the average

of the per-letter costs, i.e.,
for someI' > 0 with high probability. See precise defini-

tion/requirement in[(26) as well as Propositidn 1. The decod gn(a") = 1 zn:g(a:i) (32)
receives the channel outpWtj{X = z,S = s} ~ W (- |z, s) n—

and decides which message was sent via a decgder
Y — M. See Fig[#. More formally, we have the following
definition.

For example, in the Gaussian GP problem (which is also

known asdirty paper coding[47]), g(z) = x2. This corre-
sponds to a power constraint afdis the upper bound on

Definition 5. A (possibly stochastic) code for the channghe permissible power. The rate of the code is the normalized

coding problem with noncausal state information or Geldan logarithm of the number of messages, i.e.,

Pinsker (GP) coded = (f,v) is a pair of mappings that 1

includes an encodef : M x & — X and a decoder R(®y) = —log | Ma]. (33)



Definition 6. The(n,<)-GP capacity-cost regiotigp (n,e) C
R is the set of all rate-cost pairg?, I') for which there exists
a blocklengthn GP code®,, with cost not exceeding, with
rate at leastR and probability of error not exceeding. In
other words,

Gap(n,e) == {(R,I‘) €R? 39, st.
L log| M| > R,
n
Po(@,:T) < a}. (34)

We also define thasymptotic capacity-cost regions

Gap(e) =d | %p(n,s)] , (35)
n>1
Gap = (] %ap(e) (36)

0<e<1

The (n, £)-capacity-cost functiogp (n, £, T') is defined as

Cap(n,e, ') :=sup{R: (R,T) € écp(n,e)} (37)
We also define thasymptotic capacity-cost functions
Cep(e,T) :=sup{R: (R,T) € 6cr(c)} (38)
CGP (1—‘) = HII(IJ CGP (E, 1—‘) (39)
e—

If the cost constraint(25) is absent (i.e., every codewordyiote from Markovity thatl (U; X) — I(U;Y) = I(U; X|Y)

in X™ is admissible), we will writeCgp(n,e) instead of
Cep(n,e,), Po(®,) instead ofP.(®P,,; 00) and so on.

where Zwak(¢) and Zwak are defined in(I3) and (14)
respectively.

To prove the direct part, Wyner used the PBL and the
Markov lemmal[2] while Ahlswede-Korner|[3] used a maximal
code construction. Only weak converses were provided]in [2]
and [3]. Ahlswede-Gacs-Korner [29] proved the strong-con
verse using entropy and image-size characterizationsggas,
15], which are based on the so-called blowing-up lemima [28,
Ch. 5]. Seel[28, Thm. 16.4].

B. First-Order Result for the WZ Problem

Let #p(Pxy) be the set of all pair§Pyxy,g) where
Pyxy € Z(UxX xY)is ajointdistributionand : Y xY —
X is a (reproduction) function such that the x Y-marginal
of Pyxy is the source distributio®xy, U — X —Y forms a
Markov chain in that orderl{(| < |X| 4+ 1 and the distortion
constraint is satisfied, i.e.,

E[d(ng(Ua Y))] = Z PUXy(u,a?,y)d(x,g(u,y)) <D.

o (42)
In Sectio VI-B, we allowg to be stochastic (i.e., represented
by a conditional probability mass functid@gwy) but we still
retain the use of the notatio®”p (Pxy ). Define the function

Riyy(D) = min I(U; X) - I(U;Y). (43
WaD)e= | min I X) 1Y), (49)

Then, we have the following asymptotic characterization of
the WZ rate-distortion function.

Once again, the limit in[{39) exists because the functiofheorem 3 (Wyner-Ziv []). We have

Cep(e,T') is monotonically non-decreasingdn In the sequel,
we will provide a lower bound ogp(n,e,T") by appealing

to a new non-asymptotic upper bound on the average prob

bility of error P.(®,,;T).

Ill. REVIEW OF EXISTING FIRST-ORDER RESULTS
A. First-Order Result for the WAK Problem

Let #(Pxy) be the set of all joint distribution®y xy €
P (U x X xY) such that theX x Y-marginal of Py xy is the
source distributionPxy, U — Y — X forms a Markov chain
in that order arfdi /| < |V| + 1. Define

N — U {(R1,R2) € R% :Ry > H(X|U),
Pyxy€P(Pxy)
Ry > I(U;Y)}.
(40)

Wyner [2] and Ahlswede-Kdrner [3] proved the following:

Theorem 2 (Wyner [2], Ahlswede-Korner [3]) For every0 <
e < 1, we have

Fwak(€) = Bwak = Bwak (41)

3The cardinality bound ot in the definition of2?( Pxy ) is applied when
we consider the single letter characterizatieff; , , and the inner bound
to the (n, e)-optimal rate regionZwaxk (n, ). It is not applied when we
consider non-asymptotic analysis. Similar remarks are afsplied for the
WZ and GP problems.

Rwz(D) = Ry(D),
Where Ry (D) is defined in(Z3).

The direct part of the proof of the theorem in the original
Wyner-Ziv paperl[4] is based on the average fidelity criterio
in 24). It relies on thecompress-bindea. That is, binning is
used to reduce the rate of the description of the main source
to the receiver. The encoder transmits the bin index and the
decoder searches within that bin for the transmitted codewo
The reproduction functiory is then used to reproduce the
source to within a distortioD. To prove Theorerh]3 for the
probability of excess distortion criterion, we may use tlegvn
non-asymptotic bound in Sectidn TV-B or the weaker non-
asymptotic bounds iri_[9] ol [6].

(44)

C. First-Order Result for the GP Problem

We conclude this section by stating the capacity of the GP
problem [5]. Recall that in the GP problem, we have a channel
W : X xS — Y and a state distributioRs € Z(S). Assume
for simplicity that all alphabets are finite sets. L&t (W, Ps)
be the collection of all joint distribution®y xsy € LU x
X x § x ) such that theS-marginal is Pg, the conditional
distribution Py | x5 = W, U — (X, S) — Y forms a Markov
chain in that order,

E[g(X) <T (45)



andf [U| < min{|X|S],|S| + |Y|}. Define the quantity By applying the Jensen inequality, we find thaty., Pyy)

x has the property that
Cép(T) = ma, I(U;Y)—-1(U;S), 46
Gr(D) Puxsyegﬂ)r((W,Ps) ( ) ( ) (46)
whereI(U;Y) andI(U;S) are computed with respect to the Alre. Prv) < /370 49
joint distribution Py x sy . If there is no cost constrainf_(45), Oe: Pov) < ' (49)
we simply writeC,p instead ofC¢,p, (c0). Then, we have the

following asymptotic characterization.

Theorem 4 (Gel'fand-Pinsker([b]) If the alphabetsS, X and

. A. Novel Non-A totic Achievability Bound for the WAK
Y are discrete, for every) < e < 1, we have ovel Non-Asymplotic Achievabliity Bound for the

Problem
CGP(E) = C(}p = Cap (47)
where Cqp(¢) and Cep are defined in(38) and (39) respec-  Fix an auxiliary alphabei and a joint distributiony xy €
tively. ar(e) “r Z(Pxy). See definition of #(Pxy) prior to (40). For

] . ] ] arbitrary non-negative constants and-~., define two sets
The direct part was proved using a covering-packing ar-

gument as well as the conditional typicality lemma (using th .

notion of strong typicality). Essentially, each message M WAK — .

is uniquely associated to a subcodebook of sizeTo send 7o 0w) = {(u’x) SUx:log Px v (z|u) = %} ’
messagen, the encoder looks in the:-th subcodebook for (50)
a codeword that is jointly typical with the noncausal state. P u

The decoder then searches for the unique subcodebook whicﬁWAK(%) = {(U,y) eU XY :log % <
contains at least one codeword that is jointly typical wthia t (51)
channel output. The weak converse in the original Gel'fand-

Pinsker paper was proved using the Csiszar-sum-ideSts.

[T, Thm. 7.3]. In fact the weak converse shows that encodid§€se sets are similar to thgpical sets used extensively in
function Py s can be restricted to the set of deterministi@etwork information theory [1] but note that these sets amly
functions. Tyagi and Narayan proved a strong converse [349Ive the entropy and information densities. Consequethiéy
using entropy and image-size characterizations via jodici Probabilities of these sets (events) are entropy and irdaom
choices of auxiliary channels. Their proof only applies t§Pectrum quantities [7]. The subscriptsand ¢ refer respec-
discrete memoryless channels with discrete state disiwibu tively to binningand covering Similar subscripts and will be

without cost constraints. used in the sequel for the other side-information problemns t
demonstrate the similarities between the proof techniglies
IV. MAIN RESULTS: NOVEL NON-ASYMPTOTIC of which leverage on ideas from channel resolvability [7, Ch
ACHIEVABILITY BOUNDS 6] [14] and channel simulation [15]-[17].

In this section, we describe our results concerning novel ) )
non-asymptotic achievability bounds for the WAK, Wz and heorem 5 (CS-type bound for WAK coding)For arbitrary
GP problems. We show using ideas from channel resolvaik: ve = 0, there exists a WAK cod@ with error probability
ity [7) Ch. 6] [13] [12] and channel simulation [L5[=[17] tha Saisfying
the bounds obtained by Verd( ihl [6] can be refined so as
to obtain better second-order coding rates. The definition WAK c WAK (. \c
and techniques involving channel resolvability and channgc(q)) <Pyxy [(U’I) €% (w)*U (w9) € T () }

simulation are reviewed in Appendide$ B C respectively. + L Z Pu(u) + A(%,Puy)_
These are concepts that form crucial components of the M (u,7) ETVAK (7,) 2¢/1£]

proofs of the @annel-8nulation-type (CS-type) bounds in (52)
the sequel.

The following quantity, introduced in_[17], will be used
extensively in this section so we provide its definition héar See AppendiX_D for the proof of Theorem 5. Observe
a joint distributionPyy € £ (U x Y) and a positive constantthat the primary novelty of the bound if_(52) lies in the
7., define fact that both error event§(u,z) € T, VA¥(y,)¢} and

.: {(u,y) € T.VAK(4.)¢} lie under thesame probability and

Alre, Puy) : ZPY(y) so can be bounded together (as a vector) in second-order
coding analysis. The sum of the information spectrum terms
P P . . - . .
y \J Z Poty (uly) 25(y|u)1 {bg o (ylw) < %} (first two terms) in Verd{’'s bound in [6, Thm. 1] is the result

yey

(y) Py (y) upon invoking the union bound on the first term [in](52). We
illustrate the differences in the resulting second-ordwtirg
(48)  rates numerically in Sectidn W1I. The bound {n{52) is rather

4Because of cost constraint, the second entry of the caityirtabund is unwieldy- Welc_a.n simplify it without Iosing too much. Indeed
increased by one compared to the case without cost corsffaimhm. 7.3].  using the definition Ofﬁ)wAK (), we observe that the second

ueU



term in [52) can be bounded as We can prove the boun@9) by using the standard Slepian-

1 Wolf type bin coding for both the main encoder and the
M| Z Py (u) (53) helper [23], [44]. As it will turn out later in Sectiof VIIA,
(u,2)ETYVAX () this simple bound gives tighter second-order achievahitit
_ 1 Z Po(u PX|U(%|U) (54) some cases.
ML pyeriniyy DX
1 ' ° B. Novel Non-Asymptotic Achievability Bound for the Wz
< o > Py (u)Px |y (#|u)2"  (55) Problem
(u,B)ETYVAE () We now turn our attention to the WZ problem where we
< 2 (56) derive a similar bound as in Theordrh 5. This improves on
- M| Verd('s bound in Theorem [6, Thm. 2]. It again uses the same

Together with [(4D), we have the following simplified CS-typ&S idea for the covering part.
bound, which resembles a Feinstein-typel [48] achievgbilit Define the three sets for fixgdy xy, g) € #p(Pxy) and
bound (but average instead of maximum error probability). "On-negative constantg, and.:

Corollary 6 (Simplified CS-type bound for WAK coding}-or TWZ(y.) = {(u,y) CUxXY:log Py (ylu) > } 61)
arbitrary ~vi,,7. > 0, there exists a WAK codé with error P P Py(y) —°

probability satisfying TVE() {(u,x) CUXX:log Pxy(w|u) <
Pe(®) <Puxy () € TV (30)° U (1) € T ()] Px(@) ©2)
27 1 /27 WZ
T 57)  Ta “(D):=A{(u,2,y) €U x X x Y :d(z,g(u,y)) < D}.
M3 e D 63

If (X", Y™) is drawn from the product distributioRy,, These sets have intuitive explanatiois"Z(v.)¢ represents
then by designingy, and . appropriately, we see that thethecoveringerror thatl is unable to describ to the desired
dominating term in[(37) is the first one. The other terms \@nigeye| indicated byye; przwp)c represents thpackingerror

with n. o ) in which the decoder is unable to decode the correct codeword
By modifying the helper in the proof of Theordth 5, we cap; given v using a threshold test based on the information

show the following theorem. density statistic andy,; 7,V%(D) represents thelistortion

Theorem 7 (Modified CS-type bound for WAK coding)For ~ error in which the the reproductio not within a distortion
arbitrary 7,7 > 0, and positive integet/, there exists a Of D of the sourceX.

WAK coded with error probability satisfying In the following, we allow the reproduction functign ¢/ x
WAK . WAK, e Y X tO be stochastic; i.e., we consider a reproduction
Pe(®) <Puxy [(u,z) € TV (1) U (u, y) € T (1) channelPy,,, : U x ¥ — X. When we consider a stochastic
1 P function instead of a deterministic one, we will use the set
+ M| Z v (u)
(0. 8) ETIAK () TWAD) = {(w,8) e X x X i d(z,3) <D} (64)
J A('Yca PUY)
+ IM[Z] Z Py (u) + T oT instead of7;V%(D); see [(66) and RemafK 2 below.
(@) €T () In this subsection, a paitPy|x, Px;y) of a test channel

(58) Pyix: & — U and a reproduction channé?X‘UY: U x
See Appendi{E for the proof of Theorelh 7. By lettingy — X is fixed. Note that the joint distributio
J = |L] in (B8), we recover(52) up to an additional residual’, X v, X is also fixed as
term, which is unimportant in second-order analysis. A €los
inspection of the proof reveals that the additional termue d Fuxy x (42,9, %) = Pxy (2, y) Py x (u|z) gy (2[u, y).
to additional random bin coding at the helper, which is not (65)

needed ifJ = |L|. Theorem 8 (CS-type bound for WZ coding)For arbitrary

Remark 1. For the special case such that test chanfgly is ~ constantsy,, v = 0 and positive integer., there exists a WZ
noiseless, we can show that there exists a WAK code satjsfy¢@de ® with probability of excess distortion satisfying

®yxy 5 Of

Po(®) <Pyy [(2.9) € TRV (1) U T,VAK ()] Pe(®; D) < Pyxy x[(u:2) € T (0e)°
NN 9) U @,d) € TAD)® U (u,y) € TV,
M| IMIL L A(ve, Pux)
Y PewPy(y) + 20X,
for any yy,, s > 0, where M| ()T () 2VL
TWAK s;:{ ) €EX XY log ——— < g (66)
s () (z,y) Y :log oy

(60) where A(v., Pyx) is defined in{48).
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Remark 2. If PX|UY is deterministic and represented byis fixed. Note the encoding functioRx ;s is allowed to be

g: U x Y — X then the evenf(z, %) € TWZ(D)°} can be stochastic but just as in Remdrk 2, there is no loss in assum-
replaced by{ (u, ) € T2VZ(D)}. In fact, by an application iNg Px|us is deterministic by the functional representation

of the functional representation lemma [1, Appendix A], th€mma. We prefer to us€xy s for convenience.

assumption that the reproduction chanig}, ;- is determin-  Theorem 10 (CS-type bound for GP coding)For arbitrary

istic can be made without any loss of generality. constantsy,, y. > 0 and positive integer., there exists a GP
The proof of Theoreni 10 is provided in Appendik F. A§ode® with average error probability satisfying

with Theorem[b, the main novelty of our bound lies in th _ GP/ e
fact that the three error events lie under the same protyibilﬁ%(q)’ D) < Posxyl(uy) € T, ()

making it amendable to treat all three error evgaistly. The U (u,8) € T () U € TSP ()]
residual terms in[(86) (namely, the second, third and fourth A(ve, Pus)
terms) are relatively small with a proper choice of congtant +LIM]| Z Py (u)Py (y) + oI
Yp;7e @and L € N as we shall see in the sequel. We can again (wy)ETEE (p)

relax the somewhat cumbersome second and third terms in (70)

(66) by noting the definition of V% (+,,) and by going through , i od in(@3
the same steps to upper bouﬁd cf. (49). We thus obtain: where Afve, Pus) is defined infdg)

Corollary 9 (Simplified CS-type bound for WZ coding}or
arbitrary constantsy,,y. > 0 and positive integet_, there

exists a WZ codeb with probability of excess distortion
satisfying

Because the technique to prove Theolferh 10 is similar to
that for TheoremEgl5 arld 8, we only sketch the code construc-
tion in Appendix[G. In the second-order asymptotics sense,
Theoreni 1D improves ofl[6, Thm. 3] because the error events
are under thesameerror probability. Notice that unlike the
Po(®;D) < Pyyy 5 l(u,y) € EWZ(%)C F)}isfing]] a[sygnprt]otichand nlon-asymptoftic re;ults for GP ngdi

W7 ¢ . W7/ ¢ 6], [10], [49], the channel input satisfies the cost constraint
U (u,2) € T ()" U (2, 2) € Tase (D) (29) or its almost sure equivalent (cf. Proposit[dn 1). Bire
n L n 1 /27 (67) application of [[(4) to bound\(~., Pys) and the definition of
2w|M| 2V L 7;GP(7P) in (68) yields the following:

To obtain achievable second-order coding rates for the Wprollary 11 (Simplified CS-type bound for GP codingfor
problem, we evaluate the bound in67) for appropriate @®icarbitrary constantsy,,y. > 0 and positive integet., there
of 7p,7% = 0 and L € N in Section[VI-B. Since the exists a GP code with average error probability satisfying
lossy source coding problem is a special case of WZ coding,
we use a specialization of the bound [J(67) to derive an Pe(®;T) < Pusxy[(u,y) € T (p)°
achievable dispersion (or second-order coding rate) afylos U(u,s) € TP (1) Uz € 7-gGP(1—\)c]

source coding [25],[26], which turns out to be tight.
LML (72)
27 2V L

C. Novel Non-Asymptotic Achievability Bound for the GP
Problem To obtain achievable second-order coding rates for the GP

This section presents with a novel non-asymptotic achieE}[Oblem' we evaluate the bound in71) for appropriate amic

ability bound for the GP problem, which is the dual of the w2 7 7e @nd L € N in SectionVI-C.
problem [46]. Our bound improves on Verd(’s non-asymptoti

bound for GP codind |6, Thm. 3] and uses the same Channel- V. GENERAL FORMULAS
Simulation idea for the covering part.

To state the bound. we define the sets In this section, we use the simplified CS-type bounds in

Py (ylu) Corollaried 6[® and11 to derive achievable general formula
y|u\Y|u i i -
%Gp(%) — {(U,y) cUxY:log I > 'Yp} (68) fqr thg optlmal_ rate region of the WAK problem, the .rate
Py (y) distortion function of the WZ problem and the capacity of
Pgy(s|u) < 69 the GP problem. This allows us to recover known results
Ps(s) — e (69) in [8]-[10Q]. By general formula we mean that we consider
. . sequences of these problems and do not place any underlying
These are analogous to the typical sets used .eXtens'Velysfrnucture such as stationarity, memorylessness and eitodi
.network.mformaypn theory_ 1] bu_t they  only mvolvg theon the source and channell [7],_[20]. To state our results
mfon;namn g]en5|t|es.;'h§.]2gst set iN{68) rc_apresqr?s'lzlng let us first recall the following probabilistic limit operanbs.
even”vr\: 'g f_e__seco? hl gprepres erlr?gﬁven. SO Their properties are similar to the limit superior and limit
reca t ede inition of the sef; .(F) in @4) which represents inferior for numerical sequences in mathematical analgsid
satisfaction of the cost constraints. are summarized i [7]
In the following, the distributionPysxy € ZU x S X '
X x ) satisfying (i) theS-marginal of Pysxy is Pg, (i) Definition 7. LetU := {U, }22, be a sequence of real-valued
Py xs =W and (i) U — (X, S) — Y forms a Markov chain random variables. Thdimit superior in probabilityof U is

T () = {(U,S) €U xS :log



defined as

p-limsup U, := inf {a eR: lim Pr(U, > a) = 0} .
n—r oo n—oo
(72)
Thelimit inferior in probability of U is defined as

p-liminf U,, := — p-limsup (-U,)

n—oo n—r oo

(73)

We also recall the following definitions from Han [7]. Thesé
definitions play a prominent role in the rest of this section.

Definition 8. Given a pair of stochastic processe€X,Y) =
{X™, Y™}, with joint distributions{ Px~ y= }52 ,, thespec-
tral sup-mutual information rates defined as
Pynx» (Y X™)
PYn (Yn)

The spectral inf-mutual information raté(X;Y) is defined
as in (72) with p-liminf in place ofp-limsup. The spectral
sup- and inf-conditional mutual information ratese defined
similarly.

The spectral sup-conditional entropy ratissdefined as

I(X;Y) := p-limsup

n—oo

l log (74)
n

H(Y|X) := p-limsup

n—oo

1 1
“log——_ (75
8 Py xn (VX7 (75)

Thespectral inf-conditional entropy ratés defined as in{73)
with p-liminf in place ofp-limsup.
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and memoryless (and the alphabétsand ) are discrete
and finite), %, reduces to the single-letter regioi;,
defined in [[4D). This follows easily from the law of large
numbers. The proof of Theoreml]12 follows directly from the
finite blocklength bound in Corollary] 6. In fact, the weaker
bounds in[[30] and [6] suffice for this purpose.

Proof: Consider [(BFF) and let us fix a process
Pynxnyn}ol, € P({Pxnyn}52;) and a constany > 0.
et

% log |M| := H(X[U) + 21 (78)
% log|L| :=1(U;Y) + 2n (79)
T = n(HX[U) +17) (80)

Ye :=n(I(U;Y) + 1) (81)

Then for blocklengthn, the probability on the RHS of (57)
can be written as

1 1
P n n n _1 — T wr T~
a5 8
1 Pynjgn (YU™) _ =
~log ———————>>I(U;Y 82
U{3 e 2 210 10} (@2
By the definition of the spectral sup-entropy rate and the

spectral sup-mutual information rate, the probabilitiésath
events in[(8R) tend to zero. Further,

> H(X|U) + 77}

A. General Formula for the WAK problem 27b 1 /2% 1
. . . =27 0, and —,/=— ==.2""1/2 .
In this section, we consider sequences of the WAK problem |A1] 2\ 1] 2
indexed by the blocklength where the sequence of source (83)

distributions{ Px~y~ }°2 ; is general i.e., we do not place any

assumptions on the structure of the source such as statjpnatience,Pe(®,) — 0. Sincen > 0 is arbitrary, from [(7B)
memorylessness and ergodicity. We aim to characterize @i [Z9) we deduce that any pair of rafd® , R») satisfying
inner bound to the optimal rate region defined inl (14). W&: > H(X|U) and R, > I(U;Y) is achievable. L
show that our inner bound coincides with that derived by
Miyake and Kanayal]8] but is derived based on the uppgr
bound on the error probability provided in our CS-type bound o
in Corollary[8. The choice of the parametets v. ands plays In_ a S|m|I_ar way, we can recover the general formula for WZ
a crucial role and guides our choice of these parameters f§ding derived by Iwata and Muramatsd [9]. Note however,

second-order coding analysis in the following section. that we directly work with the probability of excess diston,
Let P ({Px~y~}>,) be the set of all sequences ovhich is related to but different from the maximum-distorti

criterion employed in[[9]. Once again, we assume that the
source is{ Pxny=~ }22, is generalin the sense explained in
Section V-A.

Let Zp({Px~yn}52,) be the set of all sequences of
distributions{ Py~ x»y~ }22 ; and reproduction functionfgy, :
U™ x Y — X} such that for everyp > 1, U" — X" —Y"
forms a Markov chain, théX™ x Y™)-marginal of Pyn xnyn

General Formula for the WZ problem

distributions { Pyn xny=» }22; such that for everyn > 1,
Um —Y" — X" forms a Markov chain and théx™ x Y")-
marginal of Py» xnyn is Pxnyn«. Define the set

{PUnxnyn }ZO:] E.@({Pxnyn }7010:1)

{(R1,Rs) € R% : Ry > H(X|U), R, > I(U;Y)}

2k .f
%WAK T

(76) is Pxny» and
Theorem 12 (Inner Bound to the Optimal Rate Region for p-limsup d, (X", g, (U™, Y™)) < D (84)
WAK [B8]). We have n—oo
@%AK C Bwax. (77) Define the rate-distortion function
We remark that by using techniques from[32], Miyake Riyz(D) = inf {1(U;X) - [(U; Y) (85)

and Kanaya[[8] showed thai (77) is in fact an equalityynere the infimum is over al{ Pynxnyn,gn}e, €
i.e., Ziyyak 1S also an outer bound t&#wak. In addition, P ({Pxnynt32,). -

when the source distribution§Px~y~}52, are stationary
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Theorem 13 (Upper Bound to the Rate-Distortion FunctiorLet 2 ({W™, Ps»}5° ;) be the family of joint distributions
for WZ [9]). We have Pyngnxnyn such that for every, > 1, U™ — (X", S™) - Y™
Rwz(D) < R;KNZ(D)_ (86) forms a Markov chain, theS™-marginal of Pyngnxnyn IS

Psn, the channel lawPy | x» g» = W™ and
Iwata and Muramatsu_[9] showed in fact that](86) is an

equality by proving a converse alqng the lines of [32]._It can p-limsup g, (X™) <T (93)

be shown that the general rate-distortion function defimed i n—00

(83) reduces to the one derived by Wyner and Ziv [4] in the _ .

case where the alphabets are finite and the source is stzytior%efme the quantity

and memoryless. Also Iwata and Muramatsu [9] showed that

deterministic reproduction functiong, : U™ x Y — X"

suffice and we do not need the more general stochastic _ . o

reproduction functionsy., .y where the supremum is over all joint distributions
Proof: Let n > 0. We start from the bound on the {Xuns»xnyn}iiiy € Pr({W", Psn}il,).

probability of excess distortion if(67), where we first ddes Theorem 14(Lower Bound to the GP capacity [10]yve have
D + n instead of D. Let us fix the sequence of distribu-

Cep(T) :=sup {L(U;Y) - T(U; 8)} (94)

tion and the sequence of functioR$Py» xnyn,gn)}52, € Cap(D) > Cip(D). (95)
L@D({Pxnyn }%O:l). Set
1 log M| := T(U: X) — I(U;Y) + 45 87) Tan [10] also shpwgd that the inequality E](Q_S) is, in fact,
n tight. However, unlike in the general WZ scenario, the encod
1 log L := T(U; X) + 21 (88) ?ng function Px» y»g» cannot be assumed to t_)e deterministic
n in general. When the channel and state are discrete, safion
Y =n(L(U;Y) —n) (89) and memoryless, Tan_[10] showed that the general formula
Ye :=n(I(U; X) + 7). (90) in ([@4) reduces to the conventional one derived by Gel'fand-

Pinsker [5] in [46). The proof of Theorem]14 parallels that

Then, the probability in[(87) for blocklengtih can be written for TheorenIB and thus, we omit it.

as
1. Pynpyn (YU
Pynxnyn H— log Ln') <I(U;Y) - n}
" Pyn(Y™) VI. ACHIEVABLE SECOND-ORDER CODING RATES
U 110 M>T(UX)+
n 8 Pxn(Xn)  — ' g In this section, we demonstrate achievable second-order

coding rates[[11],[112],[122],[139],.[40] for the three side-
U {dn(X", g (U™, Y™) > D + WH information problems of interest. Essentially, we areriested
(91 in characterizing thdén, ¢)-optimal rate region for the WAK

roblem, the(n, €)-Wyner-Ziv rate-distortion function and the
n, e)-capacity of GP problem up to the second-order term.
We do this by applying the multidimensional Berry-Esséen
theorem [[211], [[5D] to the finite blocklength CS-type bounds
in CorollariesT6[ P an@11. Throughout, we will not concern
ourselves with optimizing the third-order terms.

The following important definition will be used throughout
His section.

By the definition of the spectral sup- and inf-mutual inform
tion rates and the distortion condition [0n_{84), we obsehat t
the probability in [[9L) tends to zero asgrows. By a similar
calculation as in[(83), the other terms|in](67) also tend to.ze
Hence, the probability of excess distortiBa(®,,; D+71) — 0
asn grows. This holds for every > 0. By (81), the any rate
below I(U;X) — I(U;Y) + 47 is achievable. In order to
complete the proof, we choose a positive sequence satj;sfyf
m >mng >--->0andn, — 0 ask — oo. Then, by using Definition 9. Let k be a positive integer. LeV € RF** be

the diagonal line argumenf7, Thm. 1.8.2], we complete the g positive-semidefinite matrix that is not the all-zeros nirat
proof of (88). B putis allowed to be rank-deficient. Let the Gaussian random

vectorZ ~ N(0,V). Define the set
C. General Formula for the GP problem

We conclude this section by showing that the non- S (V,e):={zecRF:Pr(Z<z)>1-¢). (96)
asymptotic bound on the average probability of error derive
in Corollary[11 can be adapted to recover the general for-this set was introduced in [23] and is, roughly speaking,

mula for the GP problem derived in Tan [10]. Here, bothhe myltidimensional analogue of th@—! function. Indeed,
the state distribution Ps» € 22(S")};2, and the channel {5, 1. — 1 and any standard deviation> 0,

{Wn . X" x §™ — Y™}, are general. In particular, the
only requirement on the stochastic mappig® is that for F(02,¢) = [0Q71(e), 0). (97)
every (z",s") € X" x §",

Z W (y™|z", s™) = 1. (92) Also, 1, and0,x denote the lengti-all-ones column vector
yreyn and thek x k all-zeros matrix respectively.
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A. Achievable Second-Order Coding Rates for the WAK proBurthermore, the union oveP; 1 xy can be restricted to those
lem distributions for which the support& and 7 of auxiliary

In this section, we derive an inner bound #wak (n,c) fandom variablesU and T' satisfy that|i/| < [Y| + 4 and
in (I2) by the use of Gaussian approximations. Instead df| < 5 respectively.
simply applying the Berry-Esséen theorem to the inforomati  From the modified CS-type bound for the WAK problem in
spectrum term within the simplified CS-type bound inl(57)rheoreniy, we can derive the following:
we enlarge our inner bound by using a “time-sharing” vagabl B )
T, which is independent ofX,Y). This technique was also Theorem 16 (Modified Inner Bound to(n, ¢)-Optimal Rate
used for the multiple access channel (MAC) by Huang aftegion) For every0 < e <1 and alln sufficiently large, the
Moulin [42]. Note that in the finite blocklength setting, thel”2:€)-optimal rate regionZwax (n, ¢) satisfies

region Zwaxk (n,e) does not have to be convex unlike in the U R (n,e: Purxy) C Zwak(n,e), (105)

asymptotic case; cf[(40). For fixed finite séfsand 7, let _
5 Pyrxy €2 (Pxy)

P (Pxy) be the set of alPyrxy € (U X T x X xY) such
that thex x Y-marginal of Pyrxy is Pxy, U — (Y,T) — X WhereZ], (n,¢; Pyrxy) is the set defined by replacir{g02)

forms a Markov chain and’ is independent of X, Y). with

T
Definition 10. Theentropy-information density vectdor the g ¢ | | {J LIV F el 210gn12} . (106)
WAK problem forPyrxy € & (Pxy) is defined as 250 Vn n

Remark 3. We can also restrict the cardinalitigd/| and | 7|

of auxiliary random variables in Theoreml|16 in the same way
; | ) as in Theorerh 15. The bound in Theoferh 16 is at least as tight
~ Note that the mean of the entropy-information density VeCtgq that in Theorerfi15, and the former is strictly tighter than
in (98) is the vector of the entropy and mutual informationpe |atter for a fixed test channel. However, it is not clear
€., whether the improvement is strict or not when we take the
H(X|U,T) union over the test channels.

, . (99)

_ _ I(U,Y|T)} By setting? =Y = U = § and R, = 0 in Theoren{ 1§
The mutual information/ (U;Y|T') = I(U,T;Y) becausel’ we obtain a result first discovered by Strassen [39].
andY are independent.

(U, X, Y|T) = (98)

1
log IP;X\UTgif"ga:—IZ:))
log =5 w7y

J(Pyrxy) =E[jU,X,Y|T)] = {

Corollary 17 (Achievable Second-Order Coding Rate for

Definition 11. Theentropy-information dispersion matrfer | ossless Source CodingPefine thesecond-order coding rate
the WAK problem for a fixedyrxy € & (Pxy) is defined for lossless source codirtg be

as o(Px,¢e) :=limsup vn(Rx(n,e) — H(X)) (107)
V(Purxy) = Er [Cov(j(U, X, Y|T))] (100) n—o0
_ ZPT(LL) Cov(j(U, X, Y|t)). (101) where Rx (n,¢) is the minimal rate of almost-lossless com-
Pyt pression of sourcé’x at blocklengthn with error probability
We abbreviate the deterministic quantitlfsyrxy ) € R3. not exceeding. Then,
and V(Pyrxy) = 0 asJ and V respectively when the o(Px,e) < \/Var(log Px (X))Q !(¢). (108)

distribution Pyrxy € #(Pxy) is obvious from the context. It is well-known that the result in Corollafy 117 is tight, i.e

Definition 12. If V(Pyrxy) # 0242, define /Var(log Px(X))Q !(¢) is indeed the second-order coding
Pin(n,e; Purxy) to be the set of rate pairdR;,R:) rate for lossless source codirig [11], [39], [40].

such thatR := [R;, R,]T satisfies We refer to the reader to Appendix | for the proof of
F(V,e) 2logn TheorgnﬂB (Appendikl J for the proof of Theoréni 16). The
RecJ+ 7 +— 1L (102) proof is based on the CS-type bound [n](57) and the non-

) i.i.d. version of the multidimesional Berry-Esséen trerorby
If V(Purxy) = 02x2, defineZin(n, ¢; Purxy) to be the set Ggetze [21]. The proof of the cardinality bounds is prodde
of rate pairs(f2,, Ry) such that in AppendiX]M. The interpretation of this result is clearoRr
ReJ+ 2 logn1 (103) (102) which is the non-degenerate case, we see that thedsecon
2 order coding rate region for a fixel;rxy is represented by
From the simplified CS-type bound for the WAK problenthe set”(V(Pyrxy),e)/v/n. Thus, the(n,c)-optimal rate
in Corollary[8, we can derive the following: region converges to the asymptotic WAK region at a rate of
O(1/+/n) which can be predicted by the central limit theorem.
More importantly, because our finite blocklength bound in
(57) treats both the covering and binning error evgoitstly,

Theorem 15 (Inner Bound to(n, £)-Optimal Rate Region)
For every0 < ¢ < 1 and all n sufficiently large, thgn, ¢)-
optimal rate regionZwax (n, ) satisfies

5In fact, to be precise, we cannot derive Corollar} 17 from oreen[1%

U Hin(n,&; Purxy) C Awak(n,€). (104)  pecause there is the residual te?A?E" and we cannot sét, = 0. However,
Pyrxy €@ (Pxy) we can use Corollarf] 6 with’ = @ to obtain Corollan{Il7 easily.
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this results in the coupling of the second-order rates thinouof the WAK problem [[B) yields the following inner bound on
the set.”(V(Pyrxy),e) and hence, the dispersion matrixZwaxk (n, ).

V(Pyrxy). This shows that the correlation between the v

entropy and information densities matters in the detertiina U Hin(n,€; Puxy) C Awax(n,e). (113
of the second-order coding rate. Puxy€P(Pxy)

More specifically, Theorems 1L5 arid116 are proved byhis “splitting” technique of: into Ae and (1 — A)e in (T09)
taking Pyn v« (u”|y") to be equal toPy . (u"[t",y™) for —and [IID) was used by MolavianJazi and Lanenian [43] in
some fixed (time-sharing) sequentec 7™ and some joint their work on finite blocklength analysis for the MAC. In
distribution Pyrxy € &(Pxy). If T =0, this is essentially section[V]l, we numerically compare the inner bounds for
using i.i.d. codes. Theorenis]15 ahd 16 also show [fiat the WAK problem provided in[{104)[{105) arid (113).
can be upper bounded by. An alternative to this proof i )
strategy is to use conditionally constant composition scae Remark 4. From the non-asymptotic bound in Remafk 1, we
was done in Kelly-Wagnef [51] to prove their error exponerf@n also show that
result. The advantage of this strategy is that it may yield 5
better dispersion matrices because the unconditionagidizm Hin(n,€) C Awa(n. <), (114)
matrix always dominates the conditional dispersion mdg2s whereﬁ?in(n,s) is the set of rate pair§R;, R2) such that
Lemma 62] (in the partial order induced by semi-definitehess .

For using conditionally constant composition codes, we fix a { Iy } [H(X|Y)} 4 Z(V,e) T 2logn12 (115)
conditional typeVy, € 7,(U;Qy) for every marginal type Ri+ Ry H(X,Y) vn n

Qy € Z,(Y). Then, codewords are generated uniformly gby the covariance matrix

random from7y,_(y") if y" € Tq, . However, it does not

appear that this strategy yields improved second-ordeingod V = Cov ({_ log PXY(X|Y)D _ (116)
rates compared to using i.i.d. codes as given in Theofeins 15 —log Pxy (X,Y)

and[16.

We emphasize here that the restriction of the sizes of tBe Achievable Second-Order Coding Rates for the WZ prob-
alphabetd/ and7 only allows us to only preserve tlsecond- lem
order regiondefined by the vectal (Pyrxy) and the matrix
V(Pyrxy) overallPyrxy € #(Pxy). An optimized third-
order term in[{10R) might be dependent on higher-orderssta
tics of the entropy-information density vect§(U, X,Y|T)
and the quantities that define this third-order term acé
preservedby the boundgi/| < |V| + 4 and |T| < 5. This
remark is also applicable to the second-order rate regions
WZ and GP in Subsectiois VI}B ahd VI-C. However, we no
that for lossless source coding [39] or channel coding [2
[52], under some regularity conditions, the third-ordemntes

In this section, we leverage on the simplified CS-type bound

in Corollary[9 to derive an achievable second-order codineg r
Yor the wz problem. We do so by first finding an inner bound
to the (n, e)-Wyner-Ziv rate-distortion regiot¥#wz(n, <) de-
fined in [I8). Subsequently we find an upper bound to the

n,€)-Wyner-Ziv rate-distortion functionRwz(n,e) defined

n (21). We also show that the (direct part of the) dispersion
16t lossy source coding found by Ingber-Kochman![25] and

ostina-Verd[[26] can be recovered from the CS-type bound
- ‘ ' in Corollary[9. This is not unexpected because the lossycgsour
neither dependent on higher-order statistics nor on theadigt coding (rate-distortion) problem is a special case of the sy

sizes. .. Ziv problem where the side-information is absent.
To compare our Theorenis]15 and 16 to that of Vefdl [6], \ye il again employ the “time-sharing” strategy used in

: ; v )
for a fixed Pyxy € ‘@(PXY)'_ define;, (n, e; Puxy) to be Sectiof VI-A and show that the cardinality of the time-shgri
the set of rate pairs that satisfy alphabet7 can be bounded. Note again that in the finite-

Vi (X|U) 2logn blocklength settingZwz(n,e) does not have to be convex,
Ry > HX|U) + TQ_I()@) +—=—(109) unlike in the asymptotic setting. For fixed finite sétsand
: T, let Z(Pxy) be the collection of all joint distributions
Ro > I(U;Y) + MQ—I(Q —Ne) + 2logn Purxy € (U x T x X x ) such that thet x Y-marginal
n n (110) of Pyrxy is Pxy, U — (X,T) — Y forms a Markov chain

and T is independent of X, Y). A pair (Purxy, Pgyyr)
for some) € [0, 1] where the marginal entropy and informaof a joint distributionPyrxy € Z(Pxy) and a reproduction

tion dispersions are defined as ChannEIPX\UYT: UxYxT — X defines a joint distribution
Vu (X|U) V (1 ! ) (111) Porxyx such that
H = Var [ log —————
Px iy (X|0) ey (s, )
Vi(U;Y) := Var (1og %};l)[])) a12) = Pxv@y)Pr)Poyr(uly, ) Py r(@lu,y,t). (117)
Y

Further, a pair ofPyrxy € @(ny) and Py induces

respectively. Note that " = ), thenV (X|U) andVi(U;Y) 3 random variable Xy

are the diagonal elements of the matvixPyrxy ) in (Z0OQ). It X R
can easily be seen that Verd(’s bound on the error probabili d(X, X|T) :=d(Xr, XT) (118)
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where (X, X;) for anyt € T has distributionPy ¢ ;. In U, X|T)-I(U;Y|T) = I(U; X|Y, T) (by the Markov chain
other words, for fixed € T, U—(X,T)-Y). From the simplified CS-type bound for the
WZ problem in Corollary P and the multidimensional Berry-
Esséen theorem [21], we can derive the following:

= Z ZPXY(I’ WPy Uly D Pgryr (@6 v 1) 1hegrem 18 (Inner Bound to thén, ¢)-Wyner-Ziv Rate-Dis-
x,r Y

Pr{d(X,X|T =t) = d}

d(m,i}:d “f tortion Region) For every0 < ¢ < 1 and all n sufficiently
(119) large, the (n,e)-Wyner-Ziv rate-distortion regio#wz(n, €)
o . satisfies
Definition 13. For a pair (PUTXY’PXWYT) of Purxy €
2 (Pxy) and Pg .y the information-density-distortion U Hi(n, & Purxy, Py oy r)
vectorfor the WZ problem is defined as Purxy €2 (Pxy),Px \yyr
_ Pyiyr(Y|U,T) CZ n,e). (227)
. log =3 — wali,e)
U XY, X|T) = | log PX”}Z({);(I)U’T_) . (120) Furthermorg, the union over a pai_r Furxy a_md Pioyr
d(X X|T) can be restricted to those distributions for which the supgpo
R ’ R U and T of auxiliary random variabled/ and T satisfy that
Since IE[d(X,_X)] = Do PT_(t)prX‘T[d()_(T,XTHT = U] <|X|+8and|T| <9 respectively.
t].’ thebexpectatlon of information-density-distortion \&rcis Remark 5. The assumption that the reproduction channel
given by PX|UTX is stochastic is used to establish bounds on the

J(PUTXY7PX\UYT) = E[j(U, X, Y7X|T)] (121) cardinalities of the auxiliary random variable§/ and T
(see Remark710). This is because even though the functional

— —Iél(]U,)?/HTT)) 122 representation lemme_[1, Appendix A] ensures that the first
- ]E[d(iX X)] ' (122) two entries ofj(u, =, y, 2|t) in (120) are preserved using a

deterministic reproduction channel and appropriate bosiod
Observe that thesum of the first two components of (IP2) |¢/| and |7, the last entry concerning the distortiaiiz, |t)
resembles the Wyner-Ziv rate-distortion function definad imay not be preserved using the same techniques.

(43). As such when stating an achievalfte )-Wyner-Ziv

rate-distortion region, we project the first two terms onto
affine subspace representing their sum. $eel (125)[and (
below.

The proof of this result is provided in AppendiX K. Further
fg@jecting onto the first dimension (the rate) for a fixed
iStortion level D yields the following:

Theorem 19(Upper Bound to thén, £)-Wyner-Ziv Rate-Dis-
tortion Function) For every0 < ¢ < 1 and all n suf-

ficiently large, the(n,e)-Wyner-Ziv rate-distortion function
Rwz(n, e, D) satisfies

Definition 14. Theinformation-distortion dipersion matrifor
the WZ problem for a pair ofPyrxy € Z(Pxy) and
Pg vy is defined as

V(Purxy, Pgyyr) =Er [COV(J(U7 X, Y7X|T))}(:.L23) Rwz(n,e, D) <inf {R (R, D) € U
PUTXYEQ(PXYLPX‘UYT
Definition 15. Let M € R?*3 be the matrix
11 0 %in(n,E;PUTXY,PXWYT)}- (128)
M := 00 1l (124)
Theorem§ 118 arl[d 19 are very similar in spirit to the result on
If V(Pyrxy, PX|UYT) #+ 0343, define the achievable second-order coding rate for the WAK problem
%in(n,E;PUTxy,PX‘UYT) to be the set of all rate-distortion The marginal contributions from the distortion error eyent
pairs (R, D) satisfying the packing error event, the covering error event as well as
their correlations are all involved in the dispersion matri
S (V 21
{g] eM (J+ Vo) | Ognlg) . (125) V(Purxy, Pgjyyr)-
Vin n It is worth mentioning why for the inner bound to the
where J = J(PUTXY7PX|UYT) and V .= second-order region in Theordm] 18, we should, in general,

V(Purxy, Pgyyr)- Else f V(Purxy, Pgpyr) 7# O3xs, employ stochastic reproductionAfunctioﬁ’gﬂUYT instead of
define Zin(n,&; Purxy, Pgyyr) t0 be the set of all adeterministic oneg: i/ xY — X. The reasons are twofold:

rate-distortion pairs(R, D) satisfying First, this is to facilitate the bounding of the cardinaii
R 9210en of the auxiliary alphabet#/ and 7" in Theorem[IB. This is
[D} eM (J + & 13) . (126) done using variants of the support lemma [1, Appendix A].
n

See Lemma 37 and B8 in Appendixl M. The preservation of
In (I28), the matrixM serves project the three-dimensionahe expected distortioﬂEd(X,X) requires thatPX‘UYT is

setJ +.7(V,¢)/y/n C R? onto two dimensions by linearly stochastic. See Theoréml 35 in Apperidix M. Second, and more

combining the first two mutual information terms to givémportantly, it is nota priori clear without a converse (outer)
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bound onZwz(n, ) that the second-order inner bound wéound to the(n, e, I')-capacityCap (n,¢,T") defined in [(3F).
have in [I2F) cannot be enlarged via the use of a stochagii in the previous two subsections, we start with definitions
reproduction functionPy, ;... The same observation holdsFor two finite setsi/ and 7, define 2 (W, Ps) to be the
verbatim for the GP problem where we uBg ;s instead of collection of all Pyrsxy € ZU x T xS x & x))
a deterministic encoding function frotd x S to X'. such that theS-marginal of Pyrsxy is Ps, Py|xs = W,

At this juncture, it is natural to wonder whether we are able — (X, S,T)—Y forms a Markov chain an@ is independent
to recover the dispersion for lossy source coding [25], 6% of S. Note thatPyrsxy does not necessarily have to satisfy
special case of Theordm]19 (like Corollary 17 is a specia cathe cost constraint il (45).
of Theoren_1b). This does not seem straightforward becausén addition, to facilitate the time-sharing for the cost ¢un
of the distortion error event if (67). However, we can station, we define
from the CS-type bound il (67), s&f = §, U = X and g(X|T) = g(Xr) (135)
use the method of types [28] or the notion of thetilted
information [26] to obtain the specialization for the dirpart.
Before stating the result, we define a few quantities. Let tlizefinition 16. Theinformation-density-cost vectdor the GP
rate-distortion function of the sourc® ~ Q € £(X) be problem forPyrgxy € Z(W, Ps) is defined as

where X; for anyt € 7 has distributionPx 7.

denoted as log Privr(YIU.T)
. A 08 —Py r(VIT)
R(Q, D) := min  I(X;X), (129) J(U,8, X, Y |T) := | _ g Pewr(SILT) | (136)
Px xPx=Q,Ed(X,X)<D g Ps(9)
—g(X|T)

where Ed(X, X) := 3, , Px x(&,2)d(z,2). Also, define _
the D-tilted informationto be Since _Zt PT@EPX\T[g(XT”T =t} = E,[g(X)]* the
expectation of this vector with respect®yrs xy is the vector

j(z,D) := —logE [exp ()\*D — \*d(z, X*)} (130) of mutual informations and the negative cost, i.e.,

where the expectation is with respect to the unconditional _ . I(U;.Y|T)
distribution of X*, the output distribution that optimizes the J(Porsxy) = E[(U, 8, X, Y|T)] = | ~1(U; S|T)| .
rate-distortion function in[{129) and —E[g(X)] (137)
3]
AT = —a—DR(PX,D)- (131) Definition 17. Theinformation-dispersion matrifor the GP
roblem forPyrsxy € @(W Pg) is defined as
Theorem 20 (Achievable Second-Order Coding Rate foP ’
Lossy Source Coding)Define thesecond-order coding rate V(Pursxy) = Er[Cov(j(U, S, X, Y|T))]. (138)
for lossy source coding be Definition 18. Let M be the matrix defined in(124). If
o(Px,D,¢) :=limsupv/n(Rx(n,e; D) — R(Px, D)) V(Pursxy) # 0O3xs, define the setZ,(n,e; Pursxy) to
n—o0 (132) be the set of all rate-cost paifgR, I') satisfying
where Rx(n,e; D) is the minimal rate of compression of R ceMm(3— S (V,e) B 210gn1 (139)
source X ~ Px up to distortion D at blocklengthn and -r vn 3
probability of excess distortion not exceedingWe have whereJ := J(Pursxy) and V := V(Pyrsxy). Else if

U(Px,D,E) < 4 /Var(j(X,D))Q_l(s) (133) V(PUTxy,g) # 03x3, define%in(n,E;PUTsxy) to be the
) ) set of all rate-cost pairg R, I') satisfying
Two proofs of Theorenh 20 are provided in Appendik L,

one based on the method of types and the other based on the { R} cM (J _ 210g”13) _ (140)
D-tilted information in [23D). For the former proof based on -T n

the method of types, we need to assume that> R(Q, D) By leveraging on our finite blocklength CS-type bound for
is differentiable in a small neighborhood @ty and Px is the GP problem in[(41), we obtain the following:

supported on a finite set. For the second prdofcan be an
abstract alphabet. Note th&(Px, D) = Ex..p,[i(X, D)].
We remark that for discrete memoryless sources,Phited
informationj(x, D) coincides with the derivative of the rate-

Theorem 21 (Inner Bound to the(n,e)-GP Capacity-Cost
Region) For every0 < ¢ < 1 and all n sufficiently large, the
(n,<)-GP capacity-cost regioféqp (n, ) satisfies

distortion function with respect to the sourcel[25] U Fin(n,e; Pursxy) C Gap(n,e). (141)
0 Pursxy €P(W,Ps)
R(z,D)= ——R(Q,D . 134 . )
(z,D) 0Q(x) (@, D) 0=Px (134) Furthermore, the union ovePyrsxy can be restricted to

those distributions for which the suppotisand7 of auxiliary
C. Achievable Second-Order Coding Rates for the GP profandom variabled/ and T satisfy thatj/| < |S[|X| + 6 and
lem |T| < 9 respectively.

We conclude this section by stating and achievable secondThe assumption that the encoding functidfk ;s is
order coding rate for the GP problem by presenting a lowstochastic appears to be necessary for establishing bounds



17

on |U| and|T|. See Remark]5. By projecting onto the firsbver a particular type class (constant composition codss) a
dimension (the rate) for a fixed coBt> 0, we obtain: the input distribution. The type is chosen to be close to the

Theorem 22 (Lower Bound to the(n, ¢)-GP Capacity) For optimal input distribution (assuming it is unique).
every0 < € < 1 and all n sufficiently large, then, ¢)-GP

capacity-cost functiogp (n, e, I') satisfies VII. N UMERICAL EXAMPLES

A. Numerical Example for WAK Problem

Cgp(n,e,T') >sup {R :(R,T) € U In this section, we use an example to illustrate the inner
Pursxy €2 (W,Ps) bound on(n,¢)-optimal rate region for the WAK problem

obtained in Theorein 15. We neglect the sr@(l"g") term.

n

Hin(n, €; PUTSXY)}‘ (142)  The source is taken to be a discrete symmetric binary source

DSBS(), i.e.,
The proof of Theorenl 21 parallels that for the WZ case €

in Theorem[IB so it is omitted for brevity. The matriM _ 1 [ l—a « } _ (145)

Pxy = -
serves to project the first two components of each element in 2 « -«

the setJ + .7(V,¢)/y/n onto one dimension. Indeed, for an this case, the optimal rate region reduces to

fixed Pyrsxy € &Z(W, Ps), the first two components read

I(U;Y|T) — I(U; S|T) which, if T" = ( and the random %, = {(Rl,RQ) Ry > h(B*a),

variables(U, S, X,Y’) are capacity-achieving, reduces to the

GP formula in[(4B). Hence, the sk1.#(V,¢)//n C R quan- Ry>1-h(B), 0<B< 1} (146)

tifies all possible backoffs from the asymptotic GP capacity - oo T 2f

cost regioriégp (defined in[(36)) at blocklength and average whereh(-) is the binary entropy function ané o := 3(1 —

error probabilitye based on our CS-type finite blocklength,) . (1 — 3)q is the binary convolution. The above region

bound for the GP problem il (V1). The bound In_(142) i& attained by setting the backward test channel figno

clearly much tighter than the one provided in[10] which i3 {5 pe a BSC with some crossover probability All the

based on the use of Wyner's PBL and Markov lemma.  glements in the entropy-information dispersion matvix3)
Now by settingS = T' = §, U = X andI' = oo in  ¢an pe evaluated in closed form in termsiofefined (8) :=

Theorem 2P, we recover the direct part of the second-ordgy 3.q), 1—#(3)]7. In Fig.[5, we plot the second-order region
coding rate for channel coding without cost constraintd,[12

A%
K. 3. Fnln2) = {(Rl,Rg:ReJ(mw}'
n
Corollary 23 (Achievable Second-Order Coding Rate for 0<p<;
Channel Coding) Fix a non-exotic [[22] discrete memoryless ! L (147).
channel W : X — Y with channel capacityC(W) = The first-order regio¥#sy, x and the second-order region with

simple time-sharing|{’| = 2) are also shown for comparison.
More precisely, the simple time-sharing is betwegn= 0
and 3 = 1/2. As expected, as the block length increases, the
o(W,e) := limsup vn(C(W) — Cy (n,€)) (143) (n,e)-optimal rate region tends to the first-order one. Interest-
nTreo ingly, at small block length, time-sharing makes the seeond
where Cy (n, €) is the maximal rate of transmission over therder (n, €)-optimal rate region in[(147) larger compared to
channelV at blocklengthn and average error probability. that without time-sharing. Especially, the simple timewsihg
Then, is better thanZ,(n, <) for n = 500 because the rank of the
D) entropy-information dispersion matrixV (0)+ (1—-\)V(1/2)
: WIX*)\ 1 for0 <A <1ison
o(We) < II?;? \/Var <1Og Py (Y~) )Q (5)  (144) We also consider the regicﬁ?i‘{l(n, ¢) which is the analogue
of Zin(n, <) but derived from Verd’s bound if](8). In Figl 6,

where_(X*, Y_*) = P:’f* x W and the minimization is over all we compare the second-order coefficients, namely thatetbriv
capacity-achieving input distributions. from our bound”(V (), ) and

maxp, I(X;Y). Define thesecond-order coding rate for
channel codindgo be

The bound in is has long been known to be an
equality [39]. Notﬁi the uncondgional dispersion @4} FY(V(B),e) 1= U {(Zl’ZQ) 21 2 VYR (B)QT (M),
Var (1og %) coincides with the conditional disper- oAt
sion [22] s‘?nce it is being evaluated at a capacity-achggvin 22>/ Vi(B)Q (1 - /\)5)}-
input distribution. As such, the converse can be provedgusin (148)

the meta-converse in_[22] or an modifica_ltio_n_Of the Verd{ote that the difference between the two regions is quite
Han converse[[7, Lem. 3.2.2] with an judiciously chosegn,) even fore = 0.5. This is because, for this example,

output dlstrlbuuo_n as was done in J12]. m fact, we can a_‘lﬁﬂe covariance of the entropy- and information-density- (of
derive a generalization of Corollafy 123 with cost Consum'ndiagonal in the dispersion matrix) is negative so the dffiee
incorporated([12, Thm. 3] using similar techniques as in the

proof of Theoreni_20. Namely, we use a uniform distribution ®it should be noted that the rank 8 (1/2) is zero.
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Fig. 5. A comparison betweet;, (n, ) without time-sharing (solid line) Fig. 7. A comparison betweet;, (n, <) (red solid curve) and the bound
and the time-sharing region (dashed line) for= 0.1. The regions are to from Remark# (blue solid curve) far = 0.1 andn = 1000. The regions
the top right of the curves. The blue and red curves arenfee 500 and are to the top right of the curves.

n = 10, 000 respectively. The black curve is the first-order regigh (1).

2 we plot the second-order region
1.0~
I . Z(V(B),
%’in(n,s) = U {(Rl,Rg)RGJ(ﬁ)—Fw}
i 0<B<p "
o8 (150)

For comparison, we also plot the second-order region derive
from Remark[%. Around the corner point defined by the
entropies[H (X |Y), H(Y)]T = [h(B),h(p)]*, we find that

the bound from Remarl 4 is tighter than that given[by {150).

0.6

0.4~

I B. Numerical Example for GP Problem

I In this section, we use an example to illustrate the inner

0.2 0.4 0.6 08 10 bound on(n,e)-optimal rate for the GP problem obtained

Fig. 6. A comparison between’(V(5),c) (defined in [3)) and @n Theorem[Zll. We do not consider colst.constraints here,

V(V(B),¢) (defined in [IB)) for3 = h=1(0.5) ande = 0.5. The Ii.€.,I' = co. We also neglect the smald (%) term. We

red and blue curves are the boundariess6fV (), ) and .V (V(8),¢)  consider thememory with stuck-at faultexample [[54] (see

respectively. The regions lie to the top right of the curves. also [1, Example 7.3]). The stat§ — 0 correspond to a
faculty memory cell that outpud independent of the input
value, the stateS = 1 corresponds to a faculty memory

betweenPr(Z; > z 0rZy > z) and Pr(Z; > z1) + cell that outputsl independent of the input value, and the

Pr(Zy > 22) is small. In this case, the-dimensional Gaussian state S = 2 corresponds to a binary symmetric channel with

Z ~ N(0,V(pB)) has a negative covariance and hence thgossover probabilityr. The probabilities of these states are

probability mass in the first and third quadrants are smalj, £, and1 — p respectively.

Hence, the union bound is not very loose in this case. It is known [54] that the capacity is

Next, we consider the binary joint source given by . _

Px1y(1]0) = Pxy(0]1) = a and Py (0) = p < 1, which Cap = (1=p)(1 = hia)). (151)

is a generalization of (145). This example was investigated The above capacity is attained by settiig= {0,1} and

[53], and the optimal rate region reduces to Pyix(010) = Pys(11) = 1—a, Pyis(ul2) = 3, andX = U.

All the elements in the information dispersion mafiixcan be

. evaluated in closed form. In Fig] 8, we plot the second-order
Rwax = {(Rlv Ry) :Ry > h(B* @), capacity

Ry > h(p) —h(B), 0 <3< p}- Rap(n,&;p,a) :==(1 - p)(1 - h(e))
(149)

1
— —min{z + 22 : (21,22) € L (V,¢e)}.

vn
The above region is attained by setting the backward test-cha (152)
nel fromU to Y to be BSC with some crossover probability For comparison, let us consider the case in which the
0 < B < p. All the elements in the entropy-informationdecoder, instead of the encoder, can access the State
dispersion matrixXV(3) can be evaluated in closed form inthis case, we can regai as the channel input and,Y") as
terms of3. DefineJ(B) := [h(B*a), h(p)—h(B)]T. In Fig.[d, the channel output. It is known [54] that the capadityV)
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0s- C. Further Work on Non-Asymptotic and Second-Order Con-
: verse Bounds

A natural question that arises from this work is whether
one can derive non-asymptotic converse bounds that, when
suitably specialized, coincide with the second-order echi
ability bounds in Section_VI. Apart from the Slepian-Wolf
problem [23], [44] and the Gaussian MAC with degraded
message sets [67], this has not been done for other problems
in network information theory. Because second-order csgve
bounds imply the strong converse, it appears that first estab

lishing a strong converse provides intuition for estaliigh

00 T e a0 eooo  sooo wodt  hon-asymptotic converse bounds that are tight in the second
fo s A , betweetian J (red soid line) and order sense after asymptotic evaluation.

-ig. 8. comparison betweerRgp(n,e;p,a) (red solid line) an )

C(n,e:p,a) (blue solid line) fore = 0.001, p = 0.1, anda = 0.11. To the best of the authors’ knowledge, there are only

The black solid line is the first-order capacify (151). three approaches that may be used to obtain second-order
converses for network problems whose first-order (capacity
region) characterization involve auxiliary random vakéeh

of this channel is the same ds (151). The disperdiosan The first is the information spectrum method. For example

be evaluated in closed form by appealing to the law of totf88, Lem. 2] provides a non-asymptotic converse bound for

variance|[55]. In Figl.18, we also plot the second order capacthe asymmetric broadcast channel. However, the evaluation
is not efficiently computable for large (or even moderate)

~ _ o V as one has to perform an exhaustive search over the space

C(n,e;p,a) == (1 =p)(1 = h(a)) — \ ) (&) (A53) ¢ all n-letter auxiliary random variables (or equivalently
From the figure, we can find that the lower bounclje.tte”oInt dlstr_lbu'qons). Th_e second is the entropy alndge
~ . ) Size characterization technigue [29] based on the blowimg-
Rgp(n,e;p,«) on the GP(n,)-optimal rate is smaller than .

. : L . lemma [28, Ch. 5]. This has been used to prove the strong
the (n, e)-optimal rate with decoder side-information though .
. L converse for the WAK probleni [29] and the GP problém [31].
the first order rates coincide. : .
However, the use of the blowing-up approach to obtain second
order converse bounds is not straightforward. The thirchiogbt

VIIl. CONCLUSION AND FURTHER WORK involves a non-standard change-of-measure argument and wa
used in the work of Kelly and Wagner [51, Thm. 2] to prove an
A. Summary upper bound on the error exponent for WAK coding. Again, it

In this paper, we proved new non-asymptotic bounds élpes not appear, at first_glance, that this argument is arteenab
the error probability for side-information coding problgm t0 second-order analysis.
including the WAK, WZ and GP problems. These bounds
theq _yield known general formulas as _simple .coroIIaries. In APPENDIX A
addition, we used these bounds to p_row_de ach|e_vable second  proor OFPROPOSITIONT (EXPURGATED CODE)
order coding rates for these three side-information proble
We argued that when evaluated using i.i.d. test channads, th Proof: Let zo € & be a prescribed constant satisfying
second-order rates evaluated using our non-asymptotiedsoug(zo) < I', and letPy be the distribution such thdty (zo) =

are the best known in the literature including [6]. 1, i.e., Py (x) = 1[x = xo]. Then, we define
Pxjars(@|m, s) :==Px|ars(xm, s)1 [g(z) < T
B. Further Work on Non-Asymptotic and Second-Order + Pxus (TEF(D)¢m, s) Pk ().

Achievability Bounds (154)

Other challenging problems involving the derivation of no . . ~
asymptotic achievability bounds for multi-terminal prebis nThen, itis obvious thaPx (TgGP(F)) = 1. We also have
include the Heegard-Bergérl[1, Sec. 11.4] problem, mldtiplp W ———
description coding[]1, Ch. 13], Marton’s inner bound for MSXY'M .
the broadcast channell[1, Thm. 8.3], and hypothesis testing Z Z Prr(m)Ps(s)Px|ars(z|m, s)
with multi-terminal data compressian [56]. Achievablewed- m,m 8T,y
order coding rate regions for some of these problems have mEm R
been derived independently and concurrently by Yassaeé-Ar x Wyle, s) Py y (112]y) (155)
G_ohari [35_], [38] using a compl_etely diffe_rent te(_:hnique as— Z Z Pai(m)Ps(s)Px|as(x|m, s)
discussed in the Introduction but it may be interesting tifye S
if the technique contained in this paper can be adapted to the m#m
above-mentioned coding problems. x W(ylz, )Py y (ly)1 [g(z) < T
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+ > Pu(m)Ps(s)Px s (T (T)°|m, 5) 2) The data-processing inequality: Fa?,Q € 2'(U/) and

m;én} 5,2,y W e 2'(ZU),
x Px(z)W ( Iw S)PM\Y(m|y) (156) d(PW,QW) < d(P,Q). (164)
< > > Pu(m)Ps(s)Px s (xlm, s) In particular, whenW € 2(Z|U), the equality holds
i in (164) |
. 3) For a distribution P € &(U), a sub-normalized mea-
x W(ylz, s) M\Y(mml lg(z) =T} sureQ € 2'(U4), and any subsef c U,
+ Z Z Pyr(m)Ps(s)Px|us (TgGP(F)C|W, 5) 1- QW)
m,h 8,T,y P)<QM)+dP,Q)+ — (165)
x Px (z)W (ylw $)Pyypy (]y) (157)
* MY Remark 6. Combining(&3)for V' = W and (1&4), we have
= Z Z Prr(m)Ps(s)Pxars(z|m, s)
mﬂ 5,3,y d(P',Q") < d(P,Q). (166)
x W (y|z, s) M\y(m|y)1 [g(z) <T Although the above inequality is usually referred as theadat
GP (e processing inequality, we will us@64) in the proofs of non-
+ ZPM (8)Pxjars (T (T)m, s) (158) asymptotic bounds.
= PMsxyM [g(x) <TNm#m]+ Pyrsxyar [g(z) >T] Next, we introduce the concept soothingof a distribu-
(159) tion [59]. For a distribution” € 3”(2/{_) and a subsef C U,
_p [g(x) > T Um % )] (160) a smoothed sub-normalized functiéhof P is derived by
MSXY M
as desired. N P(u) := P(u)lfu € T]. (167)
APPENDIX B Note that the distance between the original distributiod an
CHANNEL RESOLVABILITY smoothed one is
In this appendix, we review notations and known results for d(P,P) = (T ), (168)
channel resolvability([7, Ch. 6 T13] 141 [17]. 2

As a start, we first review the properties of the variation&8imilarly, for a channelW: i/ — Z and a subsel C U x Z,
distance. Let#’ () be the set of all sub-normalized non-a smoothed oné&V € &'(Z|U) is derived by
negative functions (not necessarily probability disttibo un- B
less otherwise stated) on a finite &&tNote that ifP ¢ &' (U) W (z|u) := W(z|u)1[(u,z) € T] (169)
is normalized then? € &(U), i.e., P is a distribution ori/.
For P, € &'(U), we define the variational distance (divide
by 2) as

d’md it satisfies

d(PW,PW) = LW;TC) , (170)

T2 Z|P(u) — Q) (161) where PW € Z(U x Z) is the joint distribution induced by
ueU
P andW.
For two setsl/ and Z, let &/(Z|U) be the set of all sub- Now, we consider the problem of channel resolvability. Let
normalized non-negative functions indexed @y ¢/. When 4 channelPy; : U — Z and an input distribution?; be

W e 2'(2]U) is normalized, it is a channel. In this sectiongiyen, We would like to approximate the output distribution
we denote the joint distribution induced by € 2 (U)

and W € 2 (Z|U) as PW € Z'(U x Z). The following =Y Pu(u)Pgy(zlu) (171)
properties are useful in the proof of theorems. Since thefpro ued
are almost the same as well known properties of the variattion

distance for normalized distributions, we omit the proofs. by using Pz and as small an amount of randomness as

possible. This is done by means of a designing a deternunisti
Lemma 24. The variational distance satisfies the followingnap from a finite se¥ to a codebook = {u;};,cz C U. For

properties. a given resolvability cod€, let
1) The monotonicity with respect to marginalization: For
P.Q € 2'(U) and W,V € P2'(ZU), let P',Q => |I|PZ|U 2lu;) (172)
P'(Z) be i€l

/ _ 1Y be the simulated output distribution. The approximatiamer
2) = 2 PWl), Q') = 3 Q)V(ehw) is evaluated by the distanc&P;, Pz).
(162) We consider using the random coding technique as fol-
Then, lows. We randomly and independently generate codewords
d(P', Q") < d(PW,QV). (163) w1, us,...,uz according toPy. To derive an upper bound

ueU uelU
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on the averaged approximation erity [d(P;, Pz)], it is con- Moreover, IetPZ‘U be a smoothed version dfz;; defined
venient to consider a smoothing operation defined as follows (I174). Then,C, L, and Pz induce the sub-normalized
For the set measure

_ 1 -
P P, :-(l,z) ;= —P zlug). 177
T = {(u,z) og 71 (z|u) . %}7 173) 1z(1,2) izl z1u (2|w) (177)
Py (2) o .
et Marginal P; is also induced as
_ 1 -
Py (2lu) == Pzy(slu)lf(u, 2) € Te(e)].  (174) Pa(2) = Z P ). (178)
Moreover, for fixed resolvability codé = {u,, ..., uz}, let Now, we define a stochastic mag: Z — £ adl

_ 1 _ _

Py(2) = Z mPZ|U(Z|ui)- (175) ce(l]z) = PL7Z~(l,z). (179)
1€l PZ(Z)

Then, we have the following lemma known ssft covering

C : Let L be the output of the stochastic map for the inputZ.
which is an improvement of [14, Lemma 2]. =

Then, the joint distribution of. and Z is given by
Lemma 25 (Corollary 7.2 of [17]) For any. > 0, we have

Pj (1, z) = Pz(2)pc(l|2). (180)

5 5 A(ve, Puz) . _ _

Ec [d(PZ, PZ)} < 27|I| (176) We also introduce a smoothed versionif, as follows:
P ,(1,2) = Pz(2)pc(ll2), (181)

where Pz (z) = ", Pu(u) Pz (z|u). _ . = 5 Ca B
Remark 7. Although the statement of [17, Corollary 7'2]wherePZ ‘s the marginal otFyy 7 := Py Pz Le. Pz(z) =
Py (u) Pzp(2|u).

c_onS|sts of .tWO terms, th_e second term f:or_resporlds_to ow, we prove two lemmas which can be used to evaluate
right hand side of(I78) Since our target distributior? is LT
the performance of the approximation Bf ;.

smoothed, the first term af [17, Corollary 7.2] does not appea
in (I78) Lemma 26. We have

5 Puz((u,2) ¢ Te(7e)) -
APPENDIXC d(Pp g Prz) < 9 +d(P; 5, Prz).

SIMULATION OF TEST CHANNEL (182)

In this appendix, we develop two lemmas which form  Proof: By the triangular inequality, we have
crucial components of the proof of all CS-type bounds. To = = = =
do this, we consider the problem related to channel simu- A(Pyz Prz) < APy Prg) +d(Pyy Prz) (183)
lation [15]-[17], [60], [61]. Roughly speaking, the prolie Further, we can bound the first term of the right hand side of
is described as follows. For a given message Setnd a the above inequality as

codeC = {u1,...,u|z}, our goal is to construct a stochastic _ _

map ¢ : Z — L such that the joint distributiorP; , of AP0 Prz) = d(Pzie, Pric) (184)
(p(2), Z) is indistinguishable fromP, >, where P, ; is the =d(Pz, Pz) (185)
joint distribution such that, is sent over the channéty;; <d(Pyz,Puz) (186)
for the uniform random numbef on L. This is done by P w, 2) € To(ve)©

the argument of thdikelihood encodef[17] (see also[[62]). _ Pozllw, )2 (e)°) (187)

However, we need to modify the argument in][17] since our L
goal is, in fact, to approximate a smoothed version/pt;. where [I18b) follows the data-processing inequallly 1164),

. . . . (I88) follows from the monotonicity property i (163), and
We will use notations introduced in Appendix B. (187) follows from [L7D). -
Remark 8. In the earlier version of this paper_[63], we
were considering exactly the problem of channel simulatiolr’iemma 27. We have
where we simulate the joint distributiaf, ; by the aid of the Eeld(P; . P, )] < A(%,PUZ). (188)
common randomness. However, simulating the margtaais Larm Lz = o /1L
unnecessary to derive bounds on WAK, WZ, and GP problems. . ; - : P
Thus, we consider approximation &% » in this paper, which ) F;ropf. By Cv?ﬂg\}gat the definition ofc in (179) implies
enables us to remove a residual term in][63] that stems from-Z ~ * Z¥C:

the use of the common randomness. d(P; ;, P, 3) = d(Pzc, Pzpc) (189)

To construct a stochastic map frafnto £, we first consider = d(Pz, Py). (190)

the channel resolvability code as follows. Let us generaterfen. by taking the expectation with respect to the codebook

codebookC = {ui,...,ujz}, where each codeword; is (¢ ang py invoking Lemm&25, we have the desired boumd.
randomly and independently generated frém, which is the

marginal of P 7. Let L be the uniform random numbers dhn "When P (z) = 0, we definepc (I]2) arbitrarily.
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APPENDIXD Then, for fixedf andC, we have
PROOF OF THEFIRST NON-ASYMPTOTIC BOUND FOR

WAK IN THEOREM[G P; vy (E1U &)
A. Code Construction = Prxy((w,z) € &12) _ (196)
1= P s (LxX <)
We construct a WAK code by using the stochastic map— Ppyy((w, @) € E12) + 9
!ntroduced in AppendiXLC. LeZ =Y an(_j Z =Y, that +d(Pj vy, P xy) (197)
is, let Pyz = Pyy, where Pyy is the marginal of the given B - (L x X xY)
distribution Py xy € Z(Pxy). Also let Z = Y per [I72). = P, vy ((u,z) € E12) + LXY 5
It should be noted here that, in this cage(y.) defined in
&) +d(P;y Px|y, Py Pxy) (198)

(I73) is equivalent ta7, V2K (+.) defined in [(BLL). Now, let us
consider the stochastic mag constructed from the smoothed < Py o ((u,z) € E2) + 1- fo/(ﬁ X X xY)
measureP, ;- (cf. (I79)). LXy AT 2

By using e, we construct a WAK cod@ as follows. The +d(Ppy. Pry) (199)
main encoder uses a random bin codiigX — M. The < P, o ((u,2) ¢ TV ¥ (1))
helper uses the stochastic map: Y — L. That is, when + =P st ) € TWAK
the side information igy € ), the helper generatdsc £ Lxvl37 72:17 ¥ f(@) = (@), (w, ) € T, ()]
according topc( - |y) and sendd to the decoder. For given — Py (£ x X %) +d(P;y, Pys) (200)
m € M andl € L, the decoder outputs the uniqdec X 2 WAK WAK

Pp ey ((u, ) & 7" () 0 (u,9) € T ()

such thatf (&) = m and = b
Bi#x st f(7) = f(x), (w, T) € To(m)]
)

XY
—P S(LXxX XY
L ( +d(Ppy, Pry) (201)

)—l"U\
><

_l’_
(ur, &) € Ty ™ (). (191) N

If no such uniquet exists, or if there is more than one such

#, then a decoding error is declared. where [19V) follows from[(185) foi, vy = P,y Px|y in
the role of Q, and [I99) follows from the data-processing
inequality [16%). By taking average ovér the first term in

B. Analysis of Error Probability (201) is given by

Let L be the random index chosen by the helper via the]E P WAK WAK
stochastic mago¢( - |Y'). Note that the joint distribution of. ¢ [Prxy ((u,2) ¢ o Ow) 0 () € T ()]

andY is given as follows; cf.[(180) = Eg [ Z Z |£| u] Py (v (yu) Pxy (z]y)

u,x,y 1
P (o) = P )zedtly B e ¢ T ) A () € T (0] (202

and then, the joint distribution of,Y and X is given as
’ ? = Puxy((u,2) ¢ TV () 1 (u,) € TV (30),

203
Py (La,y) = Py (Ly) Py (ely).  (193) (203)
) ) . . W is gi
The smoothed versionB; - and P; - are given by substi- the third term in[(201) is given by
tuting Py in (92) with Py; cf. (181). Ee [1- (£ x X x y)}
If the decoding error occurs, at least one of the following Puxy(
events occurs: =1- { Z Z |£| u] Py v (y|w) Px |y (z|y)
u,z,y 1
&1 = {(w, x) ¢ TV ()}
. 1[(u,y) € T.VAK (4, ] 204
£ 1= {38 # 2 SL f(2) = f(). (w0, ) € T ()} X eng) € 70 (209
_p ", TWAK (4 )), 205
Hence, the error probability averaged over random coding oy ((wy) ¢ () (209)
and the random codebo@kcan be bounded as and the fourth term i {201) is upper bounded as
EfEc [Pe(q))] = EfEc [Pﬁxy(‘gl U 52)] . (194) B P, u,y TWAK Ye
Let
A(ve, PUY)’ (206)

1 =] (,2)  (u,2) ¢ TV () 0r 32 £ 1£1

st f(7) = f(2), (u, &) € RWAK(%)} (195) where we used Lemnfa 26 and Lemma 27. Furthermore, by

taking average ovef andC, the second term ifn_(2D1) is upper



bounded as
EfEC {pny[Eif? # x S.t.

1) = F(@), (u, 7) € T ()]

=Byt 30 3 gyt =

u,x,y 1

ul Py v (ylu) Px |y (]y)

187 45 St f(7) = f(x), (u,7) € 7@“%)}]
(207)
= Ej |: Z pny(u,:Z?,y)

U,y

137 # 5 St f(7) = f(x), (u,7) € nWAKm)J]

(208)
< Z Pyxy (u,z,y)
x Z Esl1 F@1(u,7) € TV(y,)] (209)
z;ﬁm
E W Y Potw) Y1) e WG] (@10)
1
~ M >, P (211)

(u,Z)ETVAR (1)

where we used the fac}_, PUXy(u z,y) < Py(u) in

(210). Hence, by[(@l)HZDS)l:(ZOS):(ZOG) and (211), we

have
EfEc[Pe(®)]
= EfEc [PKLUXY & U 52)} (212)
< Puxy((u,z) & T () U (u,) ¢ TV (7))
(%PUY) RS "
Z M Z Py(u). (213)

(u,2) ETYVAK ()
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for somej € J satisfyingx(j) = [. If no such uniquez
exists, or if there is more than one sughthen a decoding
error is declared.

APPENDIXF
PROOF OF THENON-ASYMPTOTIC BOUND FORWZ IN
THEOREM[G

A. Code Construction

Similar to WAK coding in the previous two sections, we use
the stochastic map introduced in Appendix C. Also, the proof
is rather similar to the WAK one so we just highlight the key
steps, pointing the reader to various points of Appeadix D fo
the details of the calculations.

In WZ coding, letZ = X and Py, = Pyx. Also let Z =
X per [I72). Note thaf.(v.) defined in[I7B) is equivalent to
TWZ(4.) defined in [6R). Now, let us consider the stochastic
map ¢ defined in [(I7D).

By using ¢, we construct a WZ codé as follows. The
encoder first uses the stochastic map: X — L. That is,
it generates € L according topc(-|z) when the source
output isz € X. Then, the encoder sendidy using random
bin codingx: £ — M. This means that to everye L, it
independently and uniformly assigns a random index M.

For givenm € M, y € ), the decoder finds the unique index
l € £ such thats(l) = m and

(u1,9) € TV ().

Then, decoder outputs € X according toPg iy (- [ur,y).
We assume that we use tiséochasticreproduction function

P oy throughout. If thedeterministicreproduction function
g:UxY — X is used, the decoder outputs= g(u;, ).
If no uniquel satisfying [21b) exists, or if there is more than
one suchl satisfying [2I5), then a decoding error is declared.

(215)

Consequently, there exists at least one cofl€) such that B- Analysis of Probability of Excess Distortion
P.(®) is smaller than the right-hand-side of the inequality Let L be the random index chosen by the encoder via the

above. This completes the proof of Theorgm 5.

APPENDIXE
PROOF OF THESECOND NON-ASYMPTOTIC BOUND FOR
WAK IN THEOREM[7]

To prove Theorerhl7, we modify the proof of Theorem 5 a
follows. Since the analysis of error can be done in a S|mllauD
manner as Append{xID, we only show the code construction.

,J} instead ofL in the construc- The smoothed versionB: % x and P

First, we use7 = {1,.

stochastic mappc(-|X). Note that the joint distribution of
L, X is given as follows; cf.[(180)

P; x(l,z) = Px (2)pc(l|2).

Next the joint distribution ofL, X, Y, X is given as

(216)

Pix (L) Py x (y|2) Py (E|w, y).
(217)

't xy % are given by sub-

YX(laxaya )

tion of ¢c, where J is the given integer. Then, the helpestituting Px in (Z18) with Py cf. @81[)
and the decoder are modified as follows. The helper first|f the distortion exceed®, at least one of the following

uses the stochastic map:: YV — J. That is, it generates events occurs:

j € J according tope(-|y) when the side information is
y € . Then, the helper sendsby using random bin coding o := {(z,2) ¢ 7% (D)}
k: J — L. This means that to everyec 7, it independently g, .= { u,y
and uniformly assigns a random indéxe L. For given

m € M andl € L, the decoder outputs the uniquec X
such thatf () = m and

(uj, &) € TV () (214)

(218)
)& TV ()} (219)
&= {31 £1str(l) = K1), (g y) € TPWZ(%)} . (220)

Hence, the probability of excess distortion averaged dver t
random coding: and the random codebodkcan be bounded



as

E,Ec[Pe(®; D))
< E.Ec [P xyx(EoUEUE)]
< Ec [P} xy 5 (0 U&)] + ExEe [Pr xy (E2)] -

(221)
(222)

At first, we evaluate the first term i (222). For fixé€d

Pj vy x(EoU&r)
1—PLXYX(£><X><3)><23)
2

< PLXYX(EO Ué&)+

Wi Fuxrs) (223)
_ B (rw p
SPpgyx(EUé) + Liyx( 2>< x Y x X)
+d(Pyx, Prg)
= Py ((u,2) € TV (30) U (2,2) ¢ TINAD)
U (ug,y) ¢ sz(%))
1-Pgyg(LxXxYxX)
2

(224)

+ +d(PﬁX7PL5{) (225)
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the ones leading td_(2IL1) for the WAK problem. We have
EyEc [Pﬁxy(&)]

1 .
=E,.Ec [ Z ml[ul =ulP; vy Lz, y,u)1[31 #1

u,z,y,l

st () = w(1). (ury) € 7;WZ<~yp>1} (230)

1
SEKEC[ Z ml[ul:u]PﬁXYU(laIayvu)

U, Y5l

S 10w(0) = £(0)] - 1], y) € nwzwp)]] (231)

I#1
< ﬁﬂic L”czyl %l[ul =u|P; vy (Lz,y,u)
S 1l(u0) € T30y 232
T4l
< % S PR () €T ) @39
~ T mwrw. (234)

(w,y) €TV (vp)

By uniting (222), [22b), [(227),[(228)[(2P9) and (234), we

obtain the final bound

where [22B) follows from[{185)[(224) follows from the same
reasoning that led t¢_(IP9) arld (225) from the same reasoning E,E¢[P.(®; D)]

that led to [(200).

By the same reasoning that led o _(R03) for the WAK
problem, the expectation of the first term in_(P25) can be

expressed as

Ec|Ppxys((u,2) € TVA(30) U (2,2) ¢ TaS(D)
U (u,y) & TV ()]

= Pyxys((u2) € TV?(3) U (. 2) ¢ TINE(D)
U () ¢ TV ()

(226)

(227)

By the same reasoning that led o (R05) for the WAK problem,
the expectation of the second term [in_(R25) can be evaluat

as

Ec[l—Pp gy 3 (Ex X xYx X)] = Pux ((u,z) & TV (7c))-
(228)

< Pryyx((u,2) ¢ TV (7e) U (2, &) ¢ T'st (D)
U (u,y) ¢ T,V ()
Alve, Pux) | |£] T

+ ="+ Fu(u) Py ().
(w,y) €TV (vp)

2/|L] |M|
(235)
This implies there is a deterministic code whose probabilit

of excess distortion is no greater than the right-hand-efde
(238). This completes the proof of Theoréin 8.

APPENDIX G
PROOF OF THENON-ASYMPTOTIC BOUND FORGP IN
THEOREM[IO

d‘jince the analysis of error probability can be done in an
aﬁmost similar manner as those of WAK and WZ, we only
show the code construction for GP.

A. Code Construction
As in WAK, we use the stochastic map introduced in

Similarly to (206) for the WAK problem, the expectation Oprpendi@. In GP coding, le€ = S and Py, = Pyg. Note

the third term in[(225) can be bounded as

_ u,x) & TV (e A%,
Ecld(P; x, Ppz)] < Pox(( )f 0e) (; |P£U|X)
(229)

that that, 7.(v.) defined in [(I7B) is equivalent .5 (v.)
defined in [[GP) in this case.
For GP coding, we constru¢iM| stochastic maps. Each

. stochastic map corresponds to a messagetirFor each mes-

sagem € M, generate a codeboagk™ = {u!™ ... ,um)

where eachul(m) is independently drawn according 1.
Then, for eachC™ (m € M), construct a stochastic map

Now we bound the final term ifi.(ZR2) using steps similar tg..., as defined in[{179).
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By using {¢cem) }mem, We construct a GP cod® as APPENDIX |
follows. Given the message: € M and the channel state ACHIEVABILITY PROOF OF THESECOND-ORDER CODING

s € &, the encoder first generatds € L according to RATE FORWAK IN THEOREM[IH
wewm (+18). Then, the encoder generatese X according
to PX‘US(-|ul(m),s) and inputsz into the channel. If the Proof: It  suffices to show the inclusion
randomly generated results ing(z) > T (i.e., the channel %in(n,&; Purxy) - Fwax(n,e)  for  fixed
input does not satisfy the cost constraint), declare an-cosvrxy € P (Pxy).
constraint violation errdf. Given the channel output € Y, We first consider the case such that= V(Pyrxy) = 0.
the decoder finds the unique indéxe M such that First, note thaR € %, (n,¢; Purxy) implies

(™ y) € T () (236) 5= <R ~3- 21?”12) € S(V,e).  (239)

for somel € L. If there is no unique index» € M or more

than one, declare a decoding error. This is a Feinstein-likge fix a time-sharing sequene¢é& € 7™ with type Pyn €
decoder([V] for average probability of error. If no such weq 22,(7) such that

m exists, or if there exists more than one suéh then a

i i 1
decoding error is declared. |Pon () — Pp(t)] < > (240)
APPENDIXH for everyt € T [42]. Then, we consider the test channel
PRELIMINARIES FOR PROOFS OF THESECOND-ORDER  giVen by Py v« (u"[y") = Py (u”[t",y"), and we use
CODING RATE Corollary[8 for Pynxnyn = Py Pynjyn by settlng% =
log |[M,,| —logn, v = log|L,| — logn, andé = <. Then,
In this appendix, we provide some technical results thdt Wthere exists a WAK codé,, such that
be used in Appendicés | ahd K. More specifically, we will use
the following multidimensional Berry-Esséen theorem #sd | _ P.(®,)
corollary. n
1
ARk H 1 i=1 n
random vectors irR* with zero mean. LeS§,, = \/—H(Ul + (241)

-+ U,), Cov(S,) =1, and¢ = L Y E[||U;[|3]. Let the
standard Gaussian random vectd@r~ A(0,I). Then, for all
n € N, we have

S

-

2
Theorem 28 (Goetze [21]) Let Uy,..., U, be independent = Pr{ iU, X, Yilti) <nR — 10g”12} oV

logn
J(Us, X5, Y|t <7z 1
;:1 t:) —J) <z+ NG 2}

sup [Pr{S, € €} — Pr{Z € ¥}| < Zx& (242)

CeCy \/ﬁ

where¢;, is the family of all convex, Borel measurable subsefy using Corollary 2P to the first term of (242), we have
of R*, and whereC}, is a constant that depends on the

Si=

2
(237) -

dimension. 1 — Pe(®,) > Pr {z <#+ ki/g_nlg} ~0 <%) (243)
n n
It should be noted that Theordm]|28 can be applied for ran- log n
dom vectors that are independent but not necessarily wnti =Pr{Z<z}+0 ( NG ) (244)

We will frequently encounter random vectors with non-
identity covariance matrices. Thus, we slightly modify The

orem[28 in a similar manner as 23, Corollary 7] as follows,
for sufficiently largen, where [24%) follows from the Taylor's

Corollary 29. Let Uy, ..., U, be independent random vec-approximation, and {245) follows frorh (239).
tors in R* with zero mean. LeS, = —=(Us + -+ Uy),  Next, we consider the case wili is singular but nod. In
Cov(S,) = V = 0, and ¢ = 13" E[||U,||3]. Let the this case, we cannot apply Coroll&ry 29 becagg (V) = 0.
Gaussian random vectdt ~ N(0,V). Then, for alln € N,  Sincerank(V) = 1, we can writeV = vv’ by using the
vectorv. Let A; = j(U;, X;,Y;|t;) — J. Then we can write
sup |Pr{S, € €} —Pr{Z € €}| < ﬁ, A, = vB,; by using the scalar independent random variables
Cety Amin(V)3/2y/n {B;}"_,. Thus, by using the ordinary Berry-Esséen theorem
_ i (238) [64 Ch XVI] for {B;}*_,, we can derive[{245).
where€,, is the family of all convex, Borel measurable subse
Finally, we consider the case whek = 0. In this case,

of R*, whereC, is a constant that depends on the dimensign
k, and where\,,,;, (V) is the smallest eigenvalue &f. qsgnsveetﬁg]g:tc_i 0in (242), we can find that the right hand side

8Even if g(x) > T occurs, we still send: through the channel. The error EOI’ the bounds on the cardinalities of auxiliary random
event for this occurrence must be taken into accounted irette analysis. variables, see AppendixIM. |

>1-e (245)
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APPENDIXJ Corollary 30. For arbitrary distribution Q ¢ € 2(X), and
ACHIEVABILITY PROOF OF THESECOND-ORDER CODING  for arbitrary constantsy.,~ > 0 and 4,0 > 0, there exists
RATE FORWAK IN THEOREM[IE a lossy source cod@ with probability of excess distortion

Proof: We only provide a sketch of the proof becausgatisfying
most of the steps are the same as Appemdlix . The only

P (3
modification is that we use Theordm 7 instead of CorollarE/C(cp;D) < Pgy |log X|X(zj|x) >, —vord(z,i) > D]
by settingy, = log|M,,| — pv/n — logn, 7. = log|L,| + Qx (%)
py/n —logn, J, = |£,]2°V", andé = L. | . 97
+o+, [ =—+5+27". (249)
APPENDIXK oIM|
ACHIEVABILITY PROOF OF THESECOND-ORDER CODING Proof: As a special case of Corollafy 9, we have
RATE FORWZ IN THEOREM[18 R
Proof: It suffices to show the inclusion p (g.p)< P, |log Pgx (@) > ye ord(z,#) > D
Fin(n,€; Purxy, Pryyr) C %:wz(n,a) for fixed pair - X Py (2)
(PUTXY’PX\UYT) of Purxy € gz(ny) and_ijUYT. We _ Ve
assume thaV = V(Purxy, Pgyyr) > 0, since the case +6+ M| + 6, (250)

whereV is singular can be handled in a similar manner as

Appendix[] (see alsc [ZST’ Proof of Theorem 5]). where we sety, = 0 and L = §|M|. We can further upper
. F'I.rSt’ note that[R, DI" € %i(n. & Purxy; Pxjuyr)  pound the first term of{250) as
implies

Py ix (&)
—llOg Ly, X|X ~
n 108 TA] Py |log ———— >~y ord(z,&) > D (251)
z:=n LlogL, |—-J- 210gn13 e sV, N Py (2)
b ' = Py _logPXIX(Alx)—l-log X(:E) > 7,
e e ) Pe@) ~ "
for some positive integer,,. We fix a sequenceg™ € R |
Tn satisfying [24D) for everyt € 7. Then, we ord(z,z) > D (252)
consider the test channel given l_)?Un‘Xn (u"|:c”)_ = - PX|X(A|$) Q. (2)
P{}ITX(u"|t",:c”) and the reproduction channel given by < Py | log NG > . — v or log PX(A) > v
AN, T n SN|,Mm oM 4T X ¢\ L
PX"‘U"Y" (I |U Y ) = PX UYT(:C |'LL Y 7t ) Then' ; X - X
Corollary[9 for Py gn = Py Ponjxn Pgn|gnyn With ord(z,#) > D (253)
p = log If%/l—nnl +logn, v. = log L, —logn, andd = % shows o
that there exists a WZ code such that Py x(2]z)
|
< Pgy |log — >, —vord(z,z) > D
1 —Po(®,; D) > Qx(2)
" A —log I/\L/{LI + Pgy {log Qs (gf) > V:| (254)
Pr Zj(UiaXiaYiaXi|ti) < log L,, —lognls ) Pg (%) )
i=1 nD PXIX(:ﬂx) )
) - = P |log NE) >y, —vord(z,z) > D
= Va @ [ o) '
n n (T
> A logn + Py [log PX(:i:) > U] (255)
=Pr{ — (U, Xa, Vi, Xalt) —J) <2+ 1 ! X .
{ﬁ 2 (i -1) <3+ } Py x (i) A )
) : <Py logw>%—uord(x,x)>D +27"
—-Z /= 248 : X :
n Vn (248) (256)
Now the rest of 'Ehe proof proceeds by using the multidimer;g completes the proof. -
sional Berry-Esséen theorem as[in (243) 1o (245) for the WAK
problem. Remark 9. By showing Corollary 30 directly instead of via
For the bounds on the cardinalities of auxiliary randororollary[d, we can eliminate the residual tern
variables, see Appendix]M. ]
APPENDIX L A. Proof Based on the Method of Types
ACHIEVABILITY PROOF OF THESECOND-ORDER CODING To prove Theorerl 20 by the method of types, we use the
RATE FORLOSSY SOURCE CODING IN THEOREMZ0O following lemma.

We slightly modify a special case of Corolldry 9 as follows,.emma 31 (Rate-Redundancy [25])Suppose thaR(Px, D)
which will be used in both Appendicés T}A ahd 1I-B. is differentiable w.r.t.D and twice differentiable w.r.tPx at
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some neighbourhood dfPx, D). Let e be given probability never occurs for the test chanr@kn‘xn, we have
and letAR be any quantity chosen such that
Pguxn (@"™]a™)

P% [R(Pyn,D) — R(Px,D) > AR] =¢+gn, (257) Po(®y; D) < Pguyn 10gw > Ye — V}
X'Vl

whereg, = O (1"8"). Then, asn grows,

v 5 vt (266)
Var(§(X,D)) _ 1
AR = /UK. D)) 1(5)+0<°g”>. (258) |I ) |
n n Xn|Xn - ogn
Note that the quantity(x, D) has an alternative represen- %
tation as the derivative @) — R(Q, D) with respect taQ(z)
evaluated atPx (z); cf. (I34). + + —, (267)

We also use the following lemma, which is a consequence

of the argument right aftef [65, Theorem 1]. where we setye = An, 6 = 6 = L, andv = logn
c ) - - n? - .

OR(¢.D i
Lemma 32. For a typeg € 2, (X), suppose that?ie-2) | - Furthermore, by noting that

C for a constantC' > 0 in some neighbourhood af Then, n 1 5, 268
there exists a test chann®l € 7,(); ¢) such that Qxn(3") 2 Q] (") (268)
Z q(z)V(&|z)d(z,&) < D (259) for anyq € Q,, we have
o 1 P xn @"z")  _ logn
and Psrwn | —1lo — > 5 — (269)
T o l Qo (27) n
< — B XA o) T
I(Qa V) = R(QvD) + n’ (260) 1 PXn‘Xn (I |:1; ) ~ logn
. S PXan - log N > ’7 - ,P;En E Qn
wherer is a constant depending off, |X|, |X|, and D, ax. Rk Qxn (@) |
Using Lemmag 31 and B2, we prove Theofferh 20. + Pxn [PI ¢ (] (279)
Proof: We construct a test channél, as follows. 1. Pgaxn(@"[z") logn
Kn|xn R Do XX\ ). 108 .
For a fixed constant > 0, we set < Pgnxn n log Q5n(27) >  Pon € O
71 2% )
0, = {qe%m P — gl < %} (261)  + (271)
. N . Pioixn (@™ 2™
Since we assumed thdt(Px, D) is differentiable w.rt.D < p. llogM
at Py, the derivative is bounded over any small enough n Pg (@)
neighbourhood ofPx. In particular, it is bounded by some _ logn |X|log(n+1) 27
constantC' over(),, for sufficiently largen. For eachy € Q,, T n s Pon € +
we choose test channi] € #;,(); q) satisfying the statement (272)

of Lemma[32. Then, we define the test channel
where [2711) follows from[[25, Lemma 2] and (272) follows

T oy 2" € Tvp, (27) from (268) and the fact thaf),,| < |22,(X)| < (n+1)1¥1,
Pinxn(@"|2") = (262)
0 else Furthermore, we also have
for z" satisfying P,» € €,, and otherwise we define Pgnxn (@"]2") [TPp., |
ol s T og——=———— =log —="— (273)
P xn (Z™|a™) arbitrarily as long as the channel only outputs pPr (i) |Tvp @]
@™ satisfyingd,, (z",2") < D. Let P, € 2,(X) be such that ’ = nI(Pyn,Vp,,) + O(logn). (274)
Py (i) = gjq@)mwlw)- (263) Tpus. forp, — O (2£2), we have
Then, IetPgl € 9(2@") be the uniform distribution ofp,. Pe(®y,; D) < Py [[(Pon, Ve, ) > — pin, Pen € )]
Furthermore, leQ) ., € 2(X™) be the distribution given by 1 o
1 . +O<ﬁ)+ ] (275)
Qun(@) = ) =P (@"). (264) " T
9€0n S PXan |:R(P$naD) >/§/_Mn - EaPLE" S Q’ﬂ:|
We now use Corollarf 30 foPx = P¥, P XX = = Py n|xn -~
andQ ¢ = Q.. Then, by noting that +0 (l) + |”27 | (276)
n M,

ZPW Ve, (i|z)d(z,2) > D (265) { T]
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1 97n Perivn, We h
+0 (—) + |7j\4 | (277) A WENAVE
" n i P.(®,; D)
< Pxn [R(PW,D) > A — i — ﬂ

")
A'Vl n —/\ 0! _1
N o ] O R
+O<—)+ ner (278) L
n

R owh: (284)
Thus, by settingy = R(Px, D) + AR, Llog|M,| = 7 + "
QIC;g_" and by using LemmBa_31 (with,, = O (lc\’/gﬁ") being < Py, . |log 7 Bl — >gn — 1ogn]
the residual terms i (278)), we have % (Bp(a"))
n2m 3
Var(j(X,D + + 2 (285)
R(n,:D) < R(Py, D) + 1/ VU)o VMl
logn [ 1 ~ n2in 3
O 279) =P% |log———+——— >An—logn| + 4/ — + =
i ( n ) @79) = |8 pr B, T T T M T
» o (286)
for sufficiently largen, which implies the statement of the -
theorem. B <pp Zj(gci,D) >Aqn — (C +1)logn — ¢
Lim1
B. Proof Based on thé-tilted Information + P% |log P Bola) > Z](Ii, D)+ Clogn+c
X* =1
Let .
27 3
+ 6\4 R (287)
Bp(z") = {&" : d,(a",&") < D} (280) nlo
be theD-sphere, and leP,.. be the output distribution of the = X Zj(xi’ D) >4n—(C+1)logn — C}
optimal test channel of =t
K n2m 3
min  I(X;X). (281) + NG + |My| + n’ (288)
Px1x
E[(X,X)]<D where [288) follows from Lemm@a_B3. Thus, by settifig=

. . . Llog |Mn|—“’% and by applying the Berry-Esséen theorem
To prove Theorern 20 by thB-tilted information, we use the (6], we have[(279) for sufficiently large, which implies the
following lemma.

statement of the theorem. ]
Lemma 33 (Lemma 2 of [26]) Under some regularity con-
ditions, which are explicitly given in [26, Lemma 2] and APPENDIXM
satisfied by discrete memoryless sources, there existtamtsis ~ CARDINALITY BOUND FOR SECOND-ORDER CODING
ng, ¢, K > 0 such that THEOREMS

The following three theorems allow us to restrict the cardi-

n |y 1 . 1 nalities of auxiliary random variables in second-orderingd
Px |log P2 (Bp(a™)) = ;](Ii’ D)+ Clogn +c theorems.
51 K 282 Theorem 34 (Cardinality Bound for WAK) For any
= (282) Pyrxy € P(Pxy), whereZ(Pxy ) is defined i L VI-A, there

exists Py xy with || < |Y|+4 and|T’| < 5 such that (i)
for all n > no, whereC' > 0 is a constant given by [26, X x Y-marginal of Py xy is Pxy, (i) U — (Y, T') — X
Equation (86)]. forms a Markov chain, (iiiJI” is independent ofX,Y"), and
(iv) Py xy preserves the meahof the entropy-information
density vector and the entropy-information dispersionriat

V, ie.,
(283) J(Purxy) = J(Porrixy) (289)

V(Purxy) = V(Purrxy). (290)
We now use Corollary 30 foPx = P¥, Py x = Pgnjxn, Theorem 35 (Cardinality Bound for WZ) For any pair of
Qg =Pi ve=7n6=106= L andv = logn. Then, by Purxy € P(Pxy) and Pg ;y7, where Z(Pxy ) is defined

noting thatd,, (2", 2") > D never occur for the test channelin VI-B, there existPy v xy and Py, yyp s U x Y X T' —

Proof: We construct test channél;

i xn @S

P2, (@)

~n|.n B (B () if 2" e Bp(x"
PXn‘Xn(x |$ ):{ (I)DX*(BD(w ) ( )

else



X with [U'] < |Y| +8 and |T’| < 9 such that (i) x Y-
marginal of Py.p xy is Pxy, (i) U — (X,T') — Y forms
a Markov chain, (iii) 7" is independent of X,Y), and (iv)
Pyirixy andPA,|U,YT, preserveJ andV, i.e.,

(291) tribution Py

(292)

I(Purxy, Pyjyyr) = I(Porxy, Pyypryr)

V(Purxy, Pgyyr) = Vv xy, Pyygryr)-

Theorem 36(Cardinality Bound for GR)For any Pyrsxy €
P (W, Ps), where 2 (W, Ps) is defined if . VI-C, there exists
Pyrrrgxy With U] < |Y|+6 and|T’| < 9 such that (i)S x
Xxy-marginal OfPU’T/SXY is Psxy, (II) U/—(X, S, T/)—
forms a Markov chain, (iiiYT’ is independent ob, and (iv)
Pyirsxy preserves] andV, i.e.,

J(Pursxy)
V(Pyrsxy)

veT’

(293)
(294)

=J(Pyrrisxy)
=V(Pyrsxy)-

Lemma38.Letf; (j =1,2,...,
functions onZ?(U|X) x 2 (X|U x V). Then, for anyPr €

2(T) and any collection{(Py xr (‘| t), Pgyyr (] 1) :

t e T} ¢ 2U|X) x 2(X|U x V), there exist a dis-
e 2(T') with |T7]
tion {(Pus iz (-1 #), Py (-, 8)
PU|X) x P(X|U x V) such that forj = 1,2,.. .k,

29

k) be real-valued continuous

< k and a collec-
e T} C

13 (Purr (0. Pegoy ol -0) apr)

Z [ (PU’\X’T’( 58), Py (s

t’)) Pr(t).
(296)

Proof of Theoren 35:
1) Bound on|i/'|: Fix Pyrxy € £(Pxy). Without loss
of generality, we assume that = {1,2

,|X|}. Let us

We can prove all of the three theorems in the same mann&nsider the following.X’|+8 functions: For(Q q) € P(X)x

Because the proof for Wyner-Ziv problem is most compllcatedy(X|y)
we prove Theorerf 35 inTM3A, and then, give proof sketches
for Theorem$ 34 and 86 [n_MiB.

A. Proof of Cardinality Bound for WZ problem f121(Q, q)

To prove Theoreni 35, we use variations of the support
lemma. Note that we can identifg?(X) x 2(X|Y) with
a connected compact subset [of||.X||)|-dimensional Eu-
clidean space. Hence, as a consequence of the Fenchel-
Eggleston-Carathéodory theorem (see, €.g. [1, Appenflix A
we have the following lemma.

Lemma 37. Let f; (j = 1,2,...,k) be real-valued con-
tinuous functions onZ?(X) x 2(X|Y). Then, for any
Py € 2(U) and any collectior{ (Px |y (-|u), Pgyy (-] u)) :

u € U C P(X) x P(X|Y), there exist a distribu-
tion Py € 2ZU') with [U'| < k and a collection
{(Pxo (W), Pgojyrge Gl w)) 2w € Uy © 2(X) x

P (X|Y) such that forj =1,2,...,k,

[ 85 (Pxiw . Py (o)) dPo(w)
u
= 3 55 (Prywr (1), Py (L)) Pos(u). (295)

u' ey’

|X|+1 (@Q,q)

fly\+2 Q,q)

fix1+3(@,q)

fia+4(Q, )

fix1+5(@,q)

Remark 10. Let us consider applying Lemnla]37 to a case
where PX|YU is a deterministic function. In this casé},
appearing in the left hand side df98) satisfiesPy (u) > 0
only if Py, (- |-,u) is deterministic, i.e., for eacly there
exists & sat|sfy|ngPX|YU(:c|y, u) = 1. On the other hand,
Lemma3FF does not guarantee that we can chad¢'sand a
collection of distributions so thaPX,|Y,U,( |-, u") € P(Y|X)

is deterministic for allu’ € U’. That is why we use a stochastic
reproduction function to establish bounds on the cardiiesi
of the auxiliary random variables.

Similarly, by identifying 2(U|X) x 2(X|U x V) with a
connected compact subset of Euclidean space, we have anothe
variation of the support lemma.

f\x|+6 Q,q)

fix1+7(Q,q)

[i(Q,q) ==

QGY), j=1,2,...,]x -1 (297)
Z Z Py x (y|z)Q )]
ye)Y LxeXx
x log Z PYX(QW)Q(CC)] (298)
reX
) Qx)log Q(x (299)
zeX

=33 Q) Prix (yla)a(aly)d (, 7)

reEX YEY s X
(300)

=2

yeY

. {1og S sea Prix(u2)Q()] } o)

Z Py x (ylr)Q )]

reX

Py (y)

- S {mpt)

reX

=Y D Q@)Prix(ylz)a(ily)

TEX YEY sc X
x {d (z,2)}*

Z ZQ z) Py x (y|z)

reX yey
Py (y)
. (k’g Y rex Q(f)Pyx(ylf))

Q)
s (k’g Py(a >)
=33 Q@) Prix(ylz)a(Ely)

TEX YEY s X

(302)

(303)

(304)

Py (y)
) <1°g > rex Q@) Py x (y]7)

) d(z,#)
(305)
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fares(@a) =32 3 37 Q) Pyix (yla)alily) Var (d(X, X[1))

reX YEY s X

Q(z) = Z favs(Pxjor (1w, t), Py pp (1w, t)) Pujr (ult)
X (10g P ) d(z, ). (306) ueld
) — E[d(X, X[t)]” (314)

Fix t € 7. Then, Lemmd_37 guarantees that there exighd
Pyir(-t) € 2U') with ('] < [X] + 8 and a collec-
tion {(PX/\U/'J:('|ulat)va/‘Y/U/T('|'7u/at)) s/ S u/} C Cov (—10g
P(X) x P(X|Y) such that for allj = 1,2,...,|X| + 8,

Pror(Y[U,t) PX|UT(X|U,t)>
Pr(Y) 8T Py(X)

= > fapeoPxjur(-lust), Py jyyp (1w, t) Poyr (ult)
>t (PX|UT('|uat)7PX|YUT('|'auvt)) Pyr(ult) ueU
=7 : ) F{H(Y) = HY|U,T = )} {H(X) — H(X|U,T :(5)1}5,)
= > i (Pxwr Gl 0), Pgoyrgop (1 s ) ) Ponr(u'[8).
=y (307) Cov (—1og Py ur(YU, t),d(X,X|t)>
Py(Y)

Now, we haveFy|r, Px/\uir; Py yp Satistying @Ear)y = Z S (Pxjor (|us 1), Py jypp (| w, 1) Poyr (ult)
for eacht € 7. Let U', T, X’,Y’, X’ be random variables =€/

induced byPy/|1, Px/|u/r, Py y o @0dPy | x, Pr, i.e., for +{H(Y)-HY|UT =)} E[d(X, X|t)], (316)

’ - ’ P Y|U,t -
each(v/,t,z,y,2) eU' X T x X x Y x X, Cov <log%,d(&){|i))
P ’ ’ /A/(u/;tv'rvy?j:)
U'TX'Y'X = Z f‘X|+8(Px|UT('|U,t),Pj(‘YUT('|'auvt))PU|T(u|t)

= PT(f)PU/|T(’U,/|t)PX/‘U/T((E|’U//, t)Py|X(y|.I') =
X Pgryre (Ely, u'st). (308)  _y{(X)— H(X|U,T = )} E[d(X, X|0)]. (317)

Observe that/’ — (7",Y") — X’ forms a Markov chain and Thus, equationd (307) and (310)=(B17) guarantee that a pair
that T is independent of X', Y”). Further, [307) withj = Py xy 57—, Preserves all components dfand 'V for each

1,...,|X|—1 guarantees thabxy» = Pxy. Hence, we have ¢ € T. By taking the average with respectT we can show
Prxryr = PrPxy, and thus, we can wWritd%,, .y 5, = that the paif(Pyrxy, Py yyr) satisfies the all conditions
Poirxy s of the theorem except the cardinality bt
On the other hand, some calculations show that, for each2) Bound on|7"[: Fix Pyryy 5 € &(Pxy) and Pg iy .
teT, By the first part of the proof, we can assume that= U’
and [U| = |U'| < |X|+ 8. Let us consider the following 9
HY|UT =1) functions onZ (U x X x Y x X):
= ;/{f|X\(PX\UT('|uvt)aPX\YUT('|'7UJat))PU\T(u|t) Fi(Pyyyg) = 1(Y;U) (318)
(309) F2(Pyxyx) :=I1(X;U) (319)
H(X|U,T =t) F3(Pyxy x) = E[d(X, X)] (320)
P Y|U
= 3 S (Pxr Chet). Pepypr(low ) Polt) — Fy(py o) i Var (_1og M) (321)
ucl PY(Y)
(310) Pxju(X]U)
N F5(P ¢):=Var | log ———— 322
Eld(X, X1 o) = Vo (1o 23 922
= 3" faproPror (). P ygr (1w ) Por(ult)  Fo(Pyyyx) i= Var (d(X, X)) (323)
et Py (YU Py (X|U
(311) Fr(Pyyy5) = Cov [ —lo viv (Y] ),1og x|u(X|U)
Py(Y) Px(X)
Pyur(Y|U,t)
Var | —log ————«-—= (324)
Pr(Y) e Py 1y (YU) 5 32
= Z f|X\+3(PX\UT('|u7t)uPX\YUTHH%t))PU\T(u|t) F8(PUXYX) = Cov { —log Py(Y) ,d(X, X)) (325)
ucl
P X|\U .
—{H(Y) ~ HY[U.T = 1) @12)  FulByys) = Cov (1og P 1) ) (a2e)
Pxjur (XU, 1) . .
Var 1ogTy) and a functionf": Z(U|X) x P (XU x V) — PU x X x
Y Y x X) such asP; xy = F(Py|x, Py yy) satisfies
= Zf|X\+4(PX\UT('|u7t)7P)A(‘YUT('"vuut))PU\T(u“) N N
wcl PnyX(uu z, yal') = PXY(xay)PU|X(u|‘T)PX\YU(x|y7 u)

—{H(X)- HX|U,T =t)}? (313) (327)



Then, by applying Lemmd 38 tof;(-) := F;(F(-))
G = 1,2,...,9), we have P» € Z(T') with
T < 9 and {(Pyrxir (15 1), Peoyryogs (L5 1)

¥ e T'} ¢ PUX) x P(X|U x V) satisfying [295).
By Pr, (Puix'rPgiyyirs) and Pxy, let us define
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PU/T/XY)”(/(UIa tla z,Y, jl)

= Pxy (z,y)Pr (t) Pur xr (W2, ) Py oy (2 |U y, 8).
(328)

We can verify that the paiPy/r xy, Py yyq0) derived

from P, vy . Satisfies the conditions 0# the theoremm

(1]
(2]
(3]

B. Proof Sketches of Cardinality Bounds for WAK and GP
problems 4

Proof of Theorenl 34:We fix ¢t € 7 and then consider
the following |Y|+4 quantities:|Y| — 1 elementsPy (y) (y =
1,2,...,|Y|-1) of Py, the conditional entropy (X |U, T =
t), the mutual information/ (U;Y|T t), two variances
on the diagonals ofCov(j(U, X,Y[t)), and the covariance [7]
in the upper part ofCov(j(U, X,Yt)). Then, in the same 8
manner as the first part of the proof for Wyner-Ziv problem,
we can choose a random varialdlg ~ Py -, € Z(U)
with |[U'| < |Y|+4 which preserves the marginal distribution
Pxy 1=t E[j(U, X, Y[t)], and Cov(j(U, X, Y|t)). By taking
the average with respect B, we can show thal/’ satisfies
the conditions of the theorem. Further, in the same way as
second part of the proof for Wyner-Ziv problem, we can showij
that 7’ with | 7’| < 5 preserves the following five quantities:
two elements ofJ, two variances along the diagonals vt
and the covariance in the upper part\6f

Proof of Theoreni_36: We fix ¢ € 7 and then con-
sider the following|S||X| + 6 quantities: |S||X| — 1 ele- [13]
mentsPsx (s, z) of Psx, two mutual informationd (U; Y[¢), [14]
I(U; S|t), two variances/ar(log Py |y (Y |U, t)/ Py (Y]t)),
Var(—log Psjyr(S|U,t)/Ps(S)), and three covariances in the
strict upper triangular part afov(j(U, S, X,Y|t)). Note that, [15]
if the marginal distributionPs xy|7—; is preserved then the
averageE[g(Xr)|T = t] and the varianc®ar(g(X1)|T = t)
of g(Xr) with respect to the distributiorPx|;—, is auto- [16]
matically preserved. Hence, in the same manner as the first
part of the proof for Wyner-Ziv problem, we can choost&”
a random variablel’ ~ Pyr—y € ZU) with [U'| < [1g]
|S||X|+6 which preserves the marginal distributi®l x| 7—,
E[j(U, S, X,Yt)], and Cov(j(U, S, X,Y|t)). By taking the 19]
average with respect t@, we can show thal/’ satisfies the
conditions of the theorem. Further, in the same way as ti?8]
second part of the proof for Wyner-Ziv problem, we can sho
that 7" with |7'| < 5 preserves the following nine quantities:
three elements af, three variances along the diagonals\af [22]
and three covariances in the strict upper triangular pai¥ of

[ |

(5]
(6]

El

[12]

[23]
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