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Abstract—We present novel non-asymptotic or finite block-
length achievability bounds for three side-information problems
in network information theory. These include (i) the Wyner-
Ahlswede-Körner (WAK) problem of almost-lossless source cod-
ing with rate-limited side-information, (ii) the Wyner-Zi v (WZ)
problem of lossy source coding with side-information at the
decoder and (iii) the Gel’fand-Pinsker (GP) problem of channel
coding with noncausal state information available at the encoder.
The bounds are proved using ideas from channel simulation and
channel resolvability. Our bounds for all three problems improve
on all previous non-asymptotic bounds on the error probability of
the WAK, WZ and GP problems–in particular those derived by
Verdú. Using our novel non-asymptotic bounds, we recover the
general formulas for the optimal rates of these side-information
problems. Finally, we also present achievable second-order coding
rates by applying the multidimensional Berry-Esśeen theorem
to our new non-asymptotic bounds. Numerical results show that
the second-order coding rates obtained using our non-asymptotic
achievability bounds are superior to those obtained using existing
finite blocklength bounds.

Index Terms—Source coding, channel coding, side-information,
Wyner-Ahlswede-Körner, Wyner-Ziv, Gel’fand-Pinsker, finite
blocklength, non-asymptotic, second-order coding rates

I. I NTRODUCTION

The study ofnetwork information theory[1] involves char-
acterizing the optimal rate regions or capacity regions for
problems involving compression and transmission from multi-
ple sources to multiple destinations. Apart from a few special
channels or source models, optimal rate regions and capacity
regions for many network information theory problems are
still not known. In this paper, we revisit three coding problems
whose asymptotic rate characterizations are well known. These
include

• The Wyner-Ahlswede-K̈orner (WAK) problem of almost-
lossless source coding with rate-limited (aka coded) side-
information [2], [3],

• TheWyner-Ziv(WZ) problem of lossy source coding with
side-information at the decoder [4], and
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Fig. 1. Illustration of the WAK problem

• The Gel’fand-Pinsker(GP) problem of channel coding
with noncausal state information at the encoder [5].

These problems fall under the class of coding problems with
side-information. That is, a subset of terminals has access to
either a correlated source or the state of the channel. In most
cases, this knowledge helps to strictly improve the rates of
compression or transmission over the case where there is no
side-information.

While the study of asymptotic characterizations of network
information theory problems has been of key interest and
importance for the past50 years, it is important to analyze non-
asymptotic (or finite blocklength) limits of various network
information theory problems. This is because there may be
hard constraints on decoding complexity or delay in mod-
ern, heavily-networked systems. The paper derives new non-
asymptotic bounds on the error probability for the WAK and
GP problems as well as the probability of excess distortion for
the WZ problem. Our bounds improve on all existing finite
blocklength bounds for these problems such as those in [6].
In addition, we use these bounds to recover known general
formulas [7]–[10] and we also derive achievable second-order
coding rates [11], [12] for these side-information problems.

Traditionally, achievability proofs of the direct pats of these
coding problems are common and involve a covering step, a
packing step and the use of the Markov lemma [2] (also known
as conditional typicality lemma in El Gamal and Kim [1]).
As such to prove tighter bounds, it is necessary to develop
new proof techniques in place of these lemmas [1] and their
non-asymptotic versions [6], [7]. These new techniques are
based on the notion ofchannel resolvability[7], [13], [14]
and channel simulation[15]–[17]. We use the former in the
helper’s code construction.

To illustrate our idea at a high level, let us use the WAK
problem as a canonical example of all three problems of
interest. Recall that in the classical WAK problem, there
is an independent and identically distributed (i.i.d.) joint
sourcePn

XY (x
n, yn) =

∏n
i=1 PXY (xi, yi). The main source

Xn ∼ Pn
X is to be reconstructed almost losslessly from rate-

http://arxiv.org/abs/1301.6467v5
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Fig. 2. High level description of helper’s coding scheme forWAK. The
upper row is a virtual scheme in which the uniform random number L is sent
over channelPY |U . The lower row is the corresponding actual scheme in
which messagêL is stochastically generated viaP

L|Ỹ .

limited versions of bothXn andY n, whereY n is a correlated
random variable regarded as side-information. See Fig. 1. The
compression rates ofXn andY n are denoted asR1 andR2

respectively. The optimal rate region is the set of rate pairs
(R1, R2) for which there exists areliable code, that is one
whose error probability can be made arbitrarily small with
increasing blocklengths. WAK [2], [3] showed that the optimal
rate region is

R1 ≥ H(X |U), R2 ≥ I(U ;Y ) (1)

for some PU|Y . For the direct part, the helper encoder
compresses the side-information and transmits a description
represented byUn. By the covering lemma [1], this results
in the rate constraintR2 ≥ I(U ;Y ). The main encoder
then uses binning [18] as in the achievability proof of the
Slepian-Wolf theorem [19] to help the decoder recoverX
given the descriptionU . This results in the rate constraint
R1 ≥ H(X |U).

The main idea in our proof of the new non-asymptotic
upper bound on the error probability of the WAK problem
is as follows: In the channel resolvability problem, for given
channelPY |U and input distributionPU , the goal is to ap-
proximate the output distributionPY (induced by(PY |U , PU ))
by the output distributionPỸ of codewords for a codebook1

C = {u1, . . . , u|L|} and the uniform random numberL ∈ L.
Asymptotically, the approximation can be done successfully if
the rateR2 of the random numberL satisfiesR2 ≥ I(U ;Y ).
In our helper’s coding scheme (see Fig. 2), we use channel
resolvability as a virtual scheme that is applied to the reverse
test channelPY |U of a given test channel and the marginal
PU of the auxiliary random variable as the input distribution.
Then, we flip the roles of the input and the output, i.e.,
we construct the conditional distributionPL|Ỹ from the joint
distributionPLỸ . In the actual coding scheme, the message
L̂ on L is stochastically generated from helper’s sourceY
via PL|Ỹ , which is known as thelikelihood encoder[17].
Since the successful approximation in the channel resolvability
guaranteesPỸ ≃ PY , the joint distributions in the virtual
scheme and the actual scheme are also close, i.e.,

PL̂XY = PY PL|Ỹ PX|Y ≃ PỸ PL|Ỹ PX|Y = PLX̃Ỹ . (2)

The decoder reproducesX via a Slepian-Wolf decoder by
usinguL̂ as the side-information. Because of (2), the analysis

1Usually, the codebook is randomly generated according to the input
distributionPU .

of error probability can be done as if the decoder’s observation
is uL and the underlying distribution is the virtual onePLX̃Ỹ .
Moreover, by taking the average over the randomly generated
codebookC, since the codeworduL is distributed according to
PU , (X̃, uL) behaves like(X,U). Thus, the analysis of error
probability can be done in the same manner as the Slepian-
Wolf coding with full side-informationU . The above argument
enables us to circumvent the need to use the so-called piggy-
back coding lemma (PBL) and the Markov lemma [2] which
result in much poorer estimates on the error probability.

A. Main Contributions

We now describe the three main contributions in this paper.
Our first main contribution in this paper is to show improved

bounds on the probabilities of error for WAK, WZ and GP
coding. We briefly describe the form of the bound for WAK
coding here. The primary part of the new upper bound on
the error probabilityPe(Φ) for WAK coding depends on two
positive constantsγb andγc and is essentially given by

Pe(Φ) . Pr(Ec ∪ Eb) (3)

where thecovering erroris

Ec :=
{

log
PY |U (U |Y )

PY (Y )
≥ γc

}

(4)

and thebinning error is

Eb :=

{

log
1

PX|U (X |U)
≥ γb

}

. (5)

The notation. is not meant to be precise and, in fact, we
are dropping several residual terms that do not contribute to
the second-order coding rates in then-fold i.i.d. setting if γb
andγc are chosen appropriately. This result is stated precisely
in Theorem 5. From (3), we deduce that in then-fold i.i.d.
setting, if we chooseγc andγb to be fixed numbers that are
strictly larger than the mutual informationI(U ;Y ) and the
conditional entropyH(X |U) respectively, we are guaranteed
that the error probabilityPe(Φ) decays to zero. This follows
from Khintchine’s law of large numbers [7, Ch. 1]. Thus, we
recover the direct part of WAK’s result. In fact, we can take
this one step further (Theorem 12) to obtain an achievable
general formula(in the sense of Verdú-Han [7], [20]) for
the WAK problem with general source [7, Ch. 1]. This was
previously done by Miyake-Kanaya [8] but their derivation
is based on a different non-asymptotic formula more akin to
Wyner’s PBL. Also, since we have the freedom to design
γc and γb as sequences instead of fixed positive numbers,
if we let them beO( 1√

n
)-larger thanI(U ;Y ) andH(X |U),

then the error probability is smaller than a prescribed constant
depending on the implied constants in theO( · )-notations.
This follows from the multivariate Berry-Esséen theorem [21].
This bound is useful because it is aunion of two events and
Ec andEb are both information spectrum [7] events which are
easy to analyze.

Secondly, the preceding discussion shows that the bound
in (3) also yields an achievable second-order coding rate [11],
[12]. However, unlike in the point-to-point setting [11], [12],
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[22], the achievable second-order coding rate is expressedin
terms of a so-calleddispersion matrix[23]. We can easily
show that ifRWAK(n, ε) is the set of all rate pairs(R1, R2) for
which there exists a length-n WAK code with error probability
not exceedingε > 0 (i.e., the (n, ε)-optimal rate region), then
for anyPU|Y , the set

[

I(U ;Y )
H(X |U)

]

+
S (V, ε)√

n
+O

(

logn

n

)

12 (6)

is an inner bound toRWAK(n, ε). In (6), S (V, ε) ⊂ R
2

denotes the analogue of theQ−1 function [23] and it depends
on the covariance matrix of the so-called information-entropy
density vector

[

log
PY |U (U|Y )

PY (Y ) log 1
PX|U (X|U)

]T

. (7)

The precise statement for the second-order coding rate for the
WAK problem is given in Theorem 15. We see from (6) that
for a fixed test channelPU|Y , the redundancy at blocklength
n in order to achieve an error probabilityε > 0 is governed
by the termS (V,ε)√

n
. The pre-factor of this termS (V, ε), is

likened to thedispersion[22], [24]–[26], and depends not only
the variances of the information and entropy densities but also
their correlations.

Thirdly, we note that the same flavour of non-asymptotic
bounds and second-order coding rates hold verbatim for the
WZ and GP problems. In addition, since the canonical rate-
distortion problem [27] is a special case of the WZ problem,
we show that our non-asymptotic achievability bound for the
WZ problem, when suitably specialized, yields the correct
dispersion for lossy source coding [25], [26]. We do so using
two methods: (i) the method of types [28] and (ii) results
involving theD-tilted information [26]. Finally, we not only
improve on the existing bounds for the GP problem [6], [10],
but we also consider an almost sure cost constraint on the
channel input.

B. Related Work

Wyner [2] and Ahlswede-Körner [3] were the first to
consider and solve (in the first-order sense) the problem of
almost-lossless source coding with coded side information.
Weak converses were proved in [2], [3] and a strong converse
was proved in [29] using the “blowing-up lemma”. An in-
formation spectrum characterization was provided by Miyake
and Kanaya [8] and Kuzuoka [30] leveraged on the non-
asymptotic bound which can be extracted from [8] to derive the
redundancy for the WAK problem. Verdú [6] strengthened the
non-asymptotic bound and showed that the error probability
for the WAK problem is essentially bounded as

Pe(Φ) . Pr(Ec) + Pr(Eb), (8)

which is the result upon using the union bound on our bound
in (3). The notation. means that the residual terms do not
affect the second-order coding rates.

Wyner and Ziv [4] derived the rate-distortion function for
lossy source coding with decoder side-information. However,
they do not consider the probability of excess distortion.
Rather, the quantity of interest is the expected distortion.

The generalization of the WZ problem for general correlated
sources was considered by Iwata and Muramatsu [9] who
showed that the general WZ function can be written as a
difference of a limit superior in probability and a limit inferior
in probability, reflecting the covering and packing components
in the classical achievability proof.

The problem of channel coding with noncausal random state
information was solved by Gel’fand and Pinsker [5]. A general
formula for the GP problem (with general channel and general
state) was provided by Tan [10]. Tyagi and Narayan [31]
proved the strong converse for this problem and used it to
derive a sphere-packing bound. For both the WZ and GP
problems, Verdú [6] used generalizations of the packing and
covering lemmas in [1] to derive non-asymptotic bounds on
the probability of excess distortion (for WZ) and the average
error probability (for GP). However, they yield worse second-
order rates because the main part of the bound is a sum of
two or three probabilities as in (8), rather than the probability
of the union as in (3).

In our work, we derive tight non-asymptotic bounds by
using ideas from channel resolvability [13] [7, Ch. 6] and
channel simulation [15]2 to replace the covering part and
Markov lemma. It was shown by Han and Verdú [13] that this
problem is closely connected to channel coding and channel
identification. Hayashi also studied the channel resolvability
problem [14] and derived a non-asymptotic formula. We
leverage on a key lemma in Hayashi [14] (and also Cuff [17])
to derive our bounds.

In [15], Bennettet al. proposed a problem to simulate a
channel by the aid of common randomness. An application
of the channel simulation to simulate the test channel in
the rate-distortion problem was first investigated by Winter
[16], and then extensively studied mainly in the field of the
quantum information. Cuff investigated the trade-off between
the rates of the message and common randomness for the
channel simulation [17] (see also [33]). For a thorough listof
literatures related to the channel simulation, see [17], [33]. In
these works, channel resolvability is used as a building block
for channel simulation. In particular, a code constructionand
analysis techniques that do not rely on the typicality argument
were developed in [17]. The idea to use channel simulation
instead of the Markov lemma is motivated by aforementioned
papers, and our code construction and analysis are based on
the ones in [17]. However, we stress that the derivations of our
non-asymptotic bounds are not straightforward applications of
channel simulation and channel resolvability. Indeed, ourcode
construction is tailored to derive the bound as in (3), and we
also introduce bounding techniques that have not appeared
previously to the best of our knowledge.

Recently, Yassaee-Aref-Gohari (YAG) [34] proposed an
alternative approach for channel simulation, in which they
exploited the (multi-terminal version of) intrinsic randomness
[7, Ch. 2] instead of channel resolvability. This approach is
coinedoutput statistics of random binning(OSRB). Although
their approach is also used to replace the Markov lemma [2], it

2Steinberg and Verdú also studied the channel simulation problem [32].
However, their problem formulation is slightly different from the one in [15].
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was nota priori yet clear when [34] was published whether our
bounds can be also derived from the OSRB approach [34]. One
of difficulties to apply the OSRB approach for non-asymptotic
analysis is that the amount of common randomness that can be
used in the channel simulation is limited by the randomness
of sources involved in a coding problem, which is not the
case with the approach using the channel resolvability. It was
shown more recently by YAG [35] that a modification of the
OSRB framework can, in fact, be used to obtain achievable
dispersions of Marton’s region for the broadcast channel [36]
and the wiretap channel [37]. In fact, in another concurrent
work by YAG [38], the authors derived very similar second-
order results to the ones presented here. They derive boundson
the probability of error for Gel’fand-Pinsker, Heegard-Berger
and multiple description coding [1] among others. The main
idea in their proofs is to use thestochastic likelihood coder
(SLC) and exploit the convexity of(x1, x2) 7→ 1/(x1x2)
(for x1, x2 > 0) to lower bound the probability of correct
detection. Although the results in this paper and those in
[38] partly overlap, the approaches to derive the results are
different. To the best of our knowledge, this paper is the first
to demonstrate usefulness of the channel simulation in non-
asymptotic analysis of network information theory problems,
which we believe to be interesting in its own right.

Our main motivation in this work is to derive tight non-
asymptotic bounds on the error probabilities. We are also
interested in second-order coding rates. The study of the
asymptotic expansion of the logarithm of the maximum num-
ber codewords that are achievable forn uses a channel with
maximum error probability no larger thanε was first done
by Strassen [39]. This was re-popularized in recent times
by Kontoyiannis [40], Baron-Khojastepour-Baraniuk [41],
Hayashi [11], [12], and Polyanskiy-Poor-Verdú [22] among
others. Second-order analysis for network information theory
problems were considered in Tan and Kosut [23] as well
as other authors [42]–[45]. However, this is the first work
that considers second-order rates for problems with side-
information.

C. Paper Organization

In Section II, we state our notation and formally define
the three coding problems with side-information. We then
review existing first-order asymptotic results in Section III.
In Section IV, we state our new non-asymptotic bounds
for the three problems. We then use these bounds to re-
derive (direct parts of) known general formulas [8]–[10] in
Section V. Following that, we present achievable second-order
coding rates for these coding problems. We will see that
just as in the Slepian-Wolf setting [23], [44], the dispersion
is in fact a matrix. In Section VII, we show via numerical
examples that our non-asymptotic bounds lead to larger(n, ε)-
rate regions compared with [6]. Concluding remarks and
directions for future work are provided Section VIII. This
paper only contains achievability bounds. In the conclusion,
we also discuss the difficulties associated with obtaining non-
asymptotic converse bounds. To ensure that the main ideas
are seamlessly communicated in the main text, we relegate all
proofs to the appendices.

II. PRELIMINARIES

In this section, we introduce our notation and recall the
WAK, WZ and GP problems.

A. Notations

Random variables (e.g.,X) and their realizations (e.g.,
x) are in capital and lower case respectively. All random
variables take values in some alphabets which are denoted
in calligraphic font (e.g.,X ). The cardinality ofX , if finite, is
denoted as|X |. Let the random vectorXn := (X1, . . . , Xn)
and similarly for a realizationxn = (x1, . . . , xn). The set
of all distributions supported on alphabetX is denoted as
P(X ). The set of all channels with the input alphabetX
and the output alphabetY is denoted byP(Y|X ). We will
at times use the method of types [28]. The joint distribution
induced by a marginal distributionP ∈ P(X ) and a channel
V ∈ P(Y|X ) is denoted interchangeably asP × V or PV .
This should be clear from the context.

For a sequencexn = (x1, . . . , xn) ∈ Xn in which |X |
is finite, its type or empirical distribution is the probability
mass functionP (x) = 1

n

∑n
i=1 1{x = xi} where the indicator

function 1{x ∈ A} = 1 if x ∈ A and 0 otherwise.
The set of types with denominatorn supported on alphabet
X is denoted asPn(X ). The type classof P is denoted
as TP := {xn ∈ Xn : xn has typeP}. For a sequence
xn ∈ TP , the set of sequencesyn ∈ Yn such that(xn, yn)
has joint typePV = P (x)V (y|x) is theV -shellTV (xn). Let
Vn(Y;P ) be the family of stochastic matricesV : X → Y
for which the V -shell of a sequence of typeP ∈ Pn(X )
is not empty. Information-theoretic quantities are denoted in
the usual way. For example,I(X ;Y ) andI(P, V ) denote the
mutual information where the latter expression makes clear
that the joint distribution of(X,Y ) is PV . All logarithms are
with respect to base2 so information quantities are measured
in bits.

The multivariate normal distribution with meanµ and
covariance matrixΣ is denoted asN (µ,Σ). The comple-
mentary Gaussian cumulative distribution functionQ(t) :=
∫∞
t

1√
2π
e−u2/2 du and its inverse is denoted asQ−1(ε) :=

min{t ∈ R : Q(t) ≤ ε}. Finally, |z|+ := max{z, 0}.

B. The Wyner-Ahlswede-Körner (WAK) Problem

In this section, we recall the WAK problem of lossless
source coding with coded side-information [2], [3]. Let us
consider a correlated source(X,Y ) taking values inX × Y
and having joint distributionPXY . Throughout,X , a discrete
random variable, is the main source whileY is the helper or
side-information. The WAK problem involves reconstructing
X losslessly given rate-limited (or coded) versions of bothX
andY . See Fig. 1.

Definition 1. A (possibly stochastic)source coding with side-
information code or Wyner-Ahlswede-Körner (WAK) code
Φ = (f, g, ψ) is a triple of mappings that includes two
encodersf : X → M and g : Y → L and a decoder
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ψ : M × L → X . The error probabilityof the WAK code
Φ is defined as

Pe(Φ) := Pr {X 6= ψ(f(X), g(Y ))} . (9)

In the following, we may callf as the main encoder andg
the helper.

In Section VI, we considern-fold i.i.d. extensions ofX and
Y , denoted asXn andY n. In this case, we use the subscriptn
to specify the blocklength, i.e., the code isΦn = (fn, gn, ψn)
and the compression index sets areMn = fn(Xn) andLn =
gn(Yn). In this case, we can define the pair of rates of the
codeΦn as

R1(Φn) :=
1

n
log |Mn|, (10)

R2(Φn) :=
1

n
log |Ln|. (11)

Definition 2. The (n, ε)-optimal rate region for the WAK
problemRWAK(n, ε) is defined as the set of all pairs of rates
(R1, R2) for which there exists a blocklength-n WAK code
Φn with rates at most(R1, R2) and with error probability not
exceedingε. In other words,

RWAK(n, ε) :=

{

(R1, R2) ∈ R
2
+ :∃Φn s.t.

1

n
log |Mn| ≤ R1,

1

n
log |Ln| ≤ R2,

Pe(Φn) ≤ ε

}

(12)

We also define theasymptotic rate regions

RWAK(ε) := cl

[

⋃

n≥1

RWAK(n, ε)

]

, (13)

RWAK :=
⋂

0<ε<1

RWAK(ε). (14)

wherecl denotes set closure inR2.

In the following, we will provide an inner bound to
RWAK(n, ε) that improves on inner bounds that can be
derived from previously obtained non-asymptotic bounds on
Pe(Φn) [6], [30].

C. The Wyner-Ziv (WZ) Problem

In this section, we recall the WZ problem of lossy source
coding with full side-information at the decoder [4]. Here,as in
the WAK problem, we have a correlated source(X,Y ) taking
values inX × Y and having joint distributionPXY . Again,
X is the main source andY is the helper or side-information.
NeitherX norY has to be a discrete random variable. Unlike
the WAK problem, it is not required to reconstructX exactly,
rather a distortionD betweenX and its reproductionX̂ is
allowed. LetX̂ be the reproduction alphabet and letd : X ×
X̂ → [0,∞) be a bounded distortion measure such that for
everyx ∈ X there exists âx ∈ X̂ such thatd(x, x̂) = 0 and
maxx,x̂ d(x, x̂) = Dmax <∞. See Fig. 3.

✲ ✲

✻

✲

Y

X M X̂

Pr(d(X, X̂) > D)

f ψ

Fig. 3. Illustration of the WZ problem with probability of excess distortion
criterion

Definition 3. A (possibly stochastic) lossy source coding with
side-information or Wyner-Ziv (WZ) codeΦ = (f, ψ) is a
pair of mappings that includes an encoderf : X → M and a
decoderψ : M×Y → X̂ . Theprobability of excess distortion
for the WZ codeΦ at distortion levelD is defined as

Pe(Φ;D) := Pr{d(X,ψ(f(X), Y )) > D}. (15)

We will again considern-fold extensions ofX and Y ,
denoted asXn and Y n in Section VI. The code is indexed
by the blocklength asΦn = (fn, ψn). Furthermore, the
compression index set is denoted asMn = fn(Xn). The rate
of the codeΦn is defined as

R(Φn) :=
1

n
log |Mn|. (16)

The distortion between two length-n sequencesxn ∈ Xn and
x̂n ∈ X̂n is defined as

dn(x
n, x̂n) :=

1

n

n
∑

i=1

d(xi, x̂i). (17)

Definition 4. The (n, ε)-Wyner-Ziv rate-distortion region
RWZ(n, ε) ⊂ R

2
+ is the set of all rate-distortion pairs

(R,D) for which there exists a blocklength-n WZ codeΦn

at distortion levelD with rate at mostR and probability of
excess distortion not exceedingε. In other words,

RWZ(n, ε) :=

{

(R,D) ∈ R
2
+ :∃Φn s.t.

1

n
log |Mn| ≤ R,

Pe(Φn;D) ≤ ε

}

(18)

We also define theasymptotic rate-distortion regions

RWZ(ε) := cl

[

⋃

n≥1

RWZ(n, ε)

]

, (19)

RWZ :=
⋂

0<ε<1

RWZ(ε). (20)

The(n, ε)-Wyner-Ziv rate-distortion functionRWZ(n, ε,D) is
defined as

RWZ(n, ε,D) := inf{R : (R,D) ∈ RWZ(n, ε)} (21)

We also define theasymptotic rate-distortion functions

RWZ(ε,D) = inf{R : (R,D) ∈ RWZ(ε)} (22)

RWZ(D) = lim
ε→0

RWZ(ε,D) (23)

Note that the use of the limit (as opposed to the limit supe-
rior or limit inferior) in (23) is justified becauseRWZ(ε,D)
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Fig. 4. Illustration of the GP problem. The channel inputX must satisfy
(25).

is, from its definition, monotonically non-increasing inε. In
the sequel, we will provide an inner bound toRWZ(n, ε)
and thus an upper bound onRWZ(n, ε,D) by appealing to a
new non-asymptotic upper bound on the probability of excess
distortionPe(Φn;D). In addition, note that ifY = ∅, i.e., side-
information is not available, this reduces to the point-to-point
rate-distortion (lossy source coding) problem.

Conventionally [1], [4], the WZ problem is stated not
with the probability of excess distortion criterion but with
the average fidelity criterion. That is, the requirement that
Pe(Φn;D) → 0 (implicit in (23)) is replaced by

lim sup
n→∞

E[dn(X
n, ψn(fn(X

n), Y n))] ≤ D. (24)

D. The Gel’fand-Pinsker (GP) Problem

In the previous two subsections, we dealt exclusively with
source coding problems, either lossless (WAK) or lossy (WZ).
In this section, we review the setup of the GP problem [5]
which involves channel coding with noncausal state informa-
tion at the encoder. It is the dual to the WZ problem [46].
In this problem, there is a state-dependent channelW :
X × S → Y and a random variable representing the stateS
with distributionPS taking values in some setS. A message
M chosen uniformly at random fromM is to be sent and the
encoder has information about which message is to be sent
as well as the channel state informationS, which is known
noncausally. (Noncausality only applies when the blocklength
is larger than1.) It is assumed that the message and the state
are independent. Letg : X → [0,∞) be some cost function.
The encoderf encodes the message and state into a codeword
(channel input)X = f(M,S) that satisfies the cost constraint

g(X) ≤ Γ, (25)

for someΓ ≥ 0 with high probability. See precise defini-
tion/requirement in (26) as well as Proposition 1. The decoder
receives the channel outputY |{X = x, S = s} ∼ W ( · |x, s)
and decides which message was sent via a decoderψ :
Y → M. See Fig. 4. More formally, we have the following
definition.

Definition 5. A (possibly stochastic) code for the channel
coding problem with noncausal state information or Gel’fand-
Pinsker (GP) codeΦ = (f, ψ) is a pair of mappings that
includes an encoderf : M × S → X and a decoder

ψ : Y → M. The average probability of error for the GP
code is defined as

Pe(Φ; Γ) :=
1

|M|
∑

m∈M

∑

s∈S
PS(s)

∑

y∈Y
W (y|f(m, s), s)

1
{

g(f(m, s)) > Γ ∪ y ∈ Y \ ψ−1(m)
}

. (26)

More simply,Pe(Φ; Γ) = Pr({g(f(M,S)) > Γ} ∪ {M̂ 6=
M}) whereM is uniform onM and independent ofS ∼ PS ,
M̂ := ψ(Y ) andY is the random variable whose conditional
distribution givenM = m andS = s is W ( · |f(m, s), s).

The following proposition, which will be proved in Ap-
pendix A, guarantees that we can always convert a code in
the sense of Definition 5 into a code in the sense of an almost
sure cost constraint.

Proposition 1 (Expurgated Code). Let the set of admissible
inputs inX be

T GP
g (Γ) := {x ∈ X : g(x) ≤ Γ} . (27)

For any (stochastic) encoderPX|MS (this plays the role off
in Definition 5) and decoderPM̂ |Y (this plays the role ofψ

in Definition 5), there exists an encoder̃PX|MS such that

P̃X

(

T GP
g (Γ)

)

= 1 (28)

and

P̃MSXY M̂ [m 6= m̂] ≤ PMSXY M̂ [g(x) > Γ ∪m 6= m̂] , (29)

where

PMSXY M̂ := PMPSPX|MSWPM̂|Y , (30)

P̃MSXY M̂ := PMPSP̃X|MSWPM̂|Y . (31)

From Proposition 1, noting thatPe((PX|MS , PM̂|Y ); Γ) =
PMSXY M̂ [g(x) > Γ ∪m 6= m̂], we see that the constraint in
(25) is equivalent tog(X) ≤ Γ almost surely(implied by
(28)). For the purposes of deriving channel simulation-based
bounds in Section IV-C, it is easier to work with the error
criterion in (26) so we adopt Definition 5.

In order to obtain achievable second-order coding rates
for the GP problem, we considern-fold i.i.d. extensions
of the channel and state. Hence, for every(sn, xn, yn), we
haveWn(yn|xn, sn) =

∏n
i=1W (yi|xi, si) and the stateSn

evolves in a stationary, memoryless fashion according toPS .
For blocklengthn, the code and message set are denoted as
Φn = (fn, ψn) and Mn respectively. The cost function is
denoted asgn : Xn → [0,∞) and is defined as the average
of the per-letter costs, i.e.,

gn(x
n) :=

1

n

n
∑

i=1

g(xi) (32)

For example, in the Gaussian GP problem (which is also
known asdirty paper coding[47]), g(x) = x2. This corre-
sponds to a power constraint andΓ is the upper bound on
the permissible power. The rate of the code is the normalized
logarithm of the number of messages, i.e.,

R(Φn) :=
1

n
log |Mn|. (33)
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Definition 6. The(n, ε)-GP capacity-cost regionCGP(n, ε) ⊂
R

2
+ is the set of all rate-cost pairs(R,Γ) for which there exists

a blocklength-n GP codeΦn with cost not exceedingΓ, with
rate at leastR and probability of error not exceedingε. In
other words,

CGP(n, ε) :=

{

(R,Γ) ∈ R
2
+ :∃Φn s.t.

1

n
log |Mn| ≥ R,

Pe(Φn; Γ) ≤ ε

}

. (34)

We also define theasymptotic capacity-cost regions

CGP(ε) := cl





⋃

n≥1

CGP(n, ε)



 , (35)

CGP :=
⋂

0<ε<1

CGP(ε). (36)

The (n, ε)-capacity-cost functionCGP(n, ε,Γ) is defined as

CGP(n, ε,Γ) := sup {R : (R,Γ) ∈ CGP(n, ε)} (37)

We also define theasymptotic capacity-cost functions

CGP(ε,Γ) := sup {R : (R,Γ) ∈ CGP(ε)} (38)

CGP(Γ) := lim
ε→0

CGP(ε,Γ) (39)

If the cost constraint(25) is absent (i.e., every codeword
in Xn is admissible), we will writeCGP(n, ε) instead of
CGP(n, ε,∞), Pe(Φn) instead ofPe(Φn;∞) and so on.

Once again, the limit in (39) exists because the function
CGP(ε,Γ) is monotonically non-decreasing inε. In the sequel,
we will provide a lower bound onCGP(n, ε,Γ) by appealing
to a new non-asymptotic upper bound on the average proba-
bility of error Pe(Φn; Γ).

III. R EVIEW OF EXISTING FIRST-ORDER RESULTS

A. First-Order Result for the WAK Problem

Let P(PXY ) be the set of all joint distributionsPUXY ∈
P(U ×X ×Y) such that theX ×Y-marginal ofPUXY is the
source distributionPXY , U − Y −X forms a Markov chain
in that order and3 |U| ≤ |Y|+ 1. Define

R
∗
WAK :=

⋃

PUXY ∈P(PXY )

{(R1, R2) ∈ R
2
+ :R1 ≥ H(X |U),

R2 ≥ I(U ;Y )}.
(40)

Wyner [2] and Ahlswede-Körner [3] proved the following:

Theorem 2 (Wyner [2], Ahlswede-Körner [3]). For every0 <
ε < 1, we have

RWAK(ε) = RWAK = R
∗
WAK, (41)

3The cardinality bound onU in the definition ofP(PXY ) is applied when
we consider the single letter characterizationR∗

WAK
and the inner bound

to the (n, ε)-optimal rate regionRWAK(n, ε). It is not applied when we
consider non-asymptotic analysis. Similar remarks are also applied for the
WZ and GP problems.

where RWAK(ε) and RWAK are defined in(13) and (14)
respectively.

To prove the direct part, Wyner used the PBL and the
Markov lemma [2] while Ahlswede-Körner [3] used a maximal
code construction. Only weak converses were provided in [2]
and [3]. Ahlswede-Gács-Körner [29] proved the strong con-
verse using entropy and image-size characterizations [28,Ch.
15], which are based on the so-called blowing-up lemma [28,
Ch. 5]. See [28, Thm. 16.4].

B. First-Order Result for the WZ Problem

Let PD(PXY ) be the set of all pairs(PUXY , g) where
PUXY ∈ P(U×X×Y) is a joint distribution andg : U×Y →
X̂ is a (reproduction) function such that theX × Y-marginal
of PUXY is the source distributionPXY , U −X−Y forms a
Markov chain in that order,|U| ≤ |X | + 1 and the distortion
constraint is satisfied, i.e.,

E[d(X, g(U, Y ))] =
∑

u,x,y

PUXY (u, x, y)d(x, g(u, y)) ≤ D.

(42)
In Section VI-B, we allowg to be stochastic (i.e., represented
by a conditional probability mass functionPX̂|UY ) but we still
retain the use of the notationPD(PXY ). Define the function

R∗
WZ(D) := min

(PUXY ,g)∈PD(PXY )
I(U ;X)− I(U ;Y ). (43)

Note from Markovity thatI(U ;X)− I(U ;Y ) = I(U ;X |Y ).
Then, we have the following asymptotic characterization of
the WZ rate-distortion function.

Theorem 3 (Wyner-Ziv [4]). We have

RWZ(D) = R∗
WZ(D), (44)

whereRWZ(D) is defined in(23).

The direct part of the proof of the theorem in the original
Wyner-Ziv paper [4] is based on the average fidelity criterion
in (24). It relies on thecompress-binidea. That is, binning is
used to reduce the rate of the description of the main source
to the receiver. The encoder transmits the bin index and the
decoder searches within that bin for the transmitted codeword.
The reproduction functiong is then used to reproduce the
source to within a distortionD. To prove Theorem 3 for the
probability of excess distortion criterion, we may use the new
non-asymptotic bound in Section IV-B or the weaker non-
asymptotic bounds in [9] or [6].

C. First-Order Result for the GP Problem

We conclude this section by stating the capacity of the GP
problem [5]. Recall that in the GP problem, we have a channel
W : X ×S → Y and a state distributionPS ∈ P(S). Assume
for simplicity that all alphabets are finite sets. LetPΓ(W,PS)
be the collection of all joint distributionsPUXSY ∈ P(U ×
X × S × Y) such that theS-marginal isPS , the conditional
distributionPY |XS = W , U − (X,S) − Y forms a Markov
chain in that order,

E[g(X)] ≤ Γ (45)
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and4 |U| ≤ min{|X‖S|, |S|+ |Y|}. Define the quantity

C∗
GP(Γ) := max

PUXSY ∈PΓ(W,PS)
I(U ;Y )− I(U ;S), (46)

whereI(U ;Y ) andI(U ;S) are computed with respect to the
joint distributionPUXSY . If there is no cost constraint (45),
we simply writeC∗

GP instead ofC∗
GP(∞). Then, we have the

following asymptotic characterization.

Theorem 4 (Gel’fand-Pinsker [5]). If the alphabetsS,X and
Y are discrete, for every0 < ε < 1, we have

CGP(ε) = CGP = C∗
GP (47)

whereCGP(ε) andCGP are defined in(38) and (39) respec-
tively.

The direct part was proved using a covering-packing ar-
gument as well as the conditional typicality lemma (using the
notion of strong typicality). Essentially, each messagem ∈ M
is uniquely associated to a subcodebook of sizeL. To send
messagem, the encoder looks in them-th subcodebook for
a codeword that is jointly typical with the noncausal state.
The decoder then searches for the unique subcodebook which
contains at least one codeword that is jointly typical with the
channel output. The weak converse in the original Gel’fand-
Pinsker paper was proved using the Csiszár-sum-identity.See
[1, Thm. 7.3]. In fact the weak converse shows that encoding
function PX|US can be restricted to the set of deterministic
functions. Tyagi and Narayan proved a strong converse [31]
using entropy and image-size characterizations via judicious
choices of auxiliary channels. Their proof only applies to
discrete memoryless channels with discrete state distribution
without cost constraints.

IV. M AIN RESULTS: NOVEL NON-ASYMPTOTIC

ACHIEVABILITY BOUNDS

In this section, we describe our results concerning novel
non-asymptotic achievability bounds for the WAK, WZ and
GP problems. We show using ideas from channel resolvabil-
ity [7, Ch. 6] [13] [14] and channel simulation [15]–[17] that
the bounds obtained by Verdú in [6] can be refined so as
to obtain better second-order coding rates. The definition of
and techniques involving channel resolvability and channel
simulation are reviewed in Appendices B and C respectively.
These are concepts that form crucial components of the
proofs of the Channel-Simulation-type (CS-type) bounds in
the sequel.

The following quantity, introduced in [17], will be used
extensively in this section so we provide its definition here. For
a joint distributionPUY ∈ P(U ×Y) and a positive constant
γc, define

∆(γc, PUY ) :=
∑

y∈Y
PY (y)

×
√

√

√

√

∑

u∈U
PU|Y (u|y)

PY |U (y|u)
PY (y)

1

{

log
PY |U (y|u)
PY (y)

≤ γc

}

(48)

4Because of cost constraint, the second entry of the cardinality bound is
increased by one compared to the case without cost constraint [1, Thm. 7.3].

By applying the Jensen inequality, we find that∆(γc, PUY )
has the property that

∆(γc, PUY ) ≤
√
2γc . (49)

A. Novel Non-Asymptotic Achievability Bound for the WAK
Problem

Fix an auxiliary alphabetU and a joint distributionPUXY ∈
P(PXY ). See definition ofP(PXY ) prior to (40). For
arbitrary non-negative constantsγb andγc, define two sets

T WAK
b (γb) :=

{

(u, x) ∈ U × X : log
1

PX|U (x|u)
≤ γb

}

,

(50)

T WAK
c (γc) :=

{

(u, y) ∈ U × Y : log
PY |U (y|u)
PY (y)

≤ γc

}

.

(51)

These sets are similar to thetypical sets used extensively in
network information theory [1] but note that these sets onlyin-
volve the entropy and information densities. Consequently, the
probabilities of these sets (events) are entropy and information
spectrum quantities [7]. The subscriptsb and c refer respec-
tively to binningandcovering. Similar subscripts and will be
used in the sequel for the other side-information problems to
demonstrate the similarities between the proof techniquesall
of which leverage on ideas from channel resolvability [7, Ch.
6] [14] and channel simulation [15]–[17].

Theorem 5 (CS-type bound for WAK coding). For arbitrary
γb, γc ≥ 0, there exists a WAK codeΦ with error probability
satisfying

Pe(Φ) ≤PUXY

[

(u, x) ∈ T WAK
b (γb)

c ∪ (u, y) ∈ T WAK
c (γc)

c
]

+
1

|M|
∑

(u,x̃)∈T WAK
b (γb)

PU (u) +
∆(γc, PUY )

2
√

|L|
.

(52)

See Appendix D for the proof of Theorem 5. Observe
that the primary novelty of the bound in (52) lies in the
fact that both error events{(u, x) ∈ T WAK

b (γb)
c} and

{(u, y) ∈ T WAK
c (γc)

c} lie under thesameprobability and
so can be bounded together (as a vector) in second-order
coding analysis. The sum of the information spectrum terms
(first two terms) in Verdú’s bound in [6, Thm. 1] is the result
upon invoking the union bound on the first term in (52). We
illustrate the differences in the resulting second-order coding
rates numerically in Section VII. The bound in (52) is rather
unwieldy. We can simplify it without losing too much. Indeed,
using the definition ofT WAK

b (γb), we observe that the second
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term in (52) can be bounded as

1

|M|
∑

(u,x̃)∈T WAK
b (γb)

PU (u) (53)

=
1

|M|
∑

(u,x̃)∈T WAK
b

(γb)

PU (u)
PX|U (x̃|u)
PX|U (x̃|u)

(54)

≤ 1

|M|
∑

(u,x̃)∈T WAK
b (γb)

PU (u)PX|U (x̃|u)2γb (55)

≤ 2γb

|M| . (56)

Together with (49), we have the following simplified CS-type
bound, which resembles a Feinstein-type [48] achievability
bound (but average instead of maximum error probability).

Corollary 6 (Simplified CS-type bound for WAK coding). For
arbitrary γb, γc ≥ 0, there exists a WAK codeΦ with error
probability satisfying

Pe(Φ) ≤PUXY

[

(u, x) ∈ T WAK
b (γb)

c ∪ (u, y) ∈ T WAK
c (γc)

c
]

+
2γb

|M| +
1

2

√

2γc

|L| . (57)

If (Xn, Y n) is drawn from the product distributionPn
XY ,

then by designingγb and γc appropriately, we see that the
dominating term in (57) is the first one. The other terms vanish
with n.

By modifying the helper in the proof of Theorem 5, we can
show the following theorem.

Theorem 7 (Modified CS-type bound for WAK coding). For
arbitrary γb, γc ≥ 0, and positive integerJ , there exists a
WAK codeΦ with error probability satisfying

Pe(Φ) ≤PUXY

[

(u, x) ∈ T WAK
b (γb)

c ∪ (u, y) ∈ T WAK
c (γc)

c
]

+
1

|M|
∑

(u,x̃)∈T WAK
b (γb)

PU (u)

+
J

|M||L|
∑

(u,x̃)∈T WAK
b (γb)

PU (u) +
∆(γc, PUY )

2
√
J

.

(58)

See Appendix E for the proof of Theorem 7. By letting
J = |L| in (58), we recover (52) up to an additional residual
term, which is unimportant in second-order analysis. A close
inspection of the proof reveals that the additional term is due
to additional random bin coding at the helper, which is not
needed ifJ = |L|.
Remark 1. For the special case such that test channelPU|Y is
noiseless, we can show that there exists a WAK code satisfying

Pe(Φ) ≤PXY

[

(x, y) ∈ T WAK
b (γb)

c ∪ T WAK
s (γs)

c
]

+
2γb

|M| +
2γs

|M||L| (59)

for any γb, γs ≥ 0, where

T WAK
s (γs) :=

{

(x, y) ∈ X × Y : log
1

PXY (x, y)
≤ γs

}

.

(60)

We can prove the bound(59) by using the standard Slepian-
Wolf type bin coding for both the main encoder and the
helper [23], [44]. As it will turn out later in Section VI-A,
this simple bound gives tighter second-order achievability in
some cases.

B. Novel Non-Asymptotic Achievability Bound for the WZ
Problem

We now turn our attention to the WZ problem where we
derive a similar bound as in Theorem 5. This improves on
Verdú’s bound in Theorem [6, Thm. 2]. It again uses the same
CS idea for the covering part.

Define the three sets for fixed(PUXY , g) ∈ PD(PXY ) and
non-negative constantsγp andγc:

T WZ
p (γp) :=

{

(u, y) ∈ U × Y : log
PY |U (y|u)
PY (y)

≥ γp

}

(61)

T WZ
c (γc) :=

{

(u, x) ∈ U × X : log
PX|U (x|u)
PX(x)

≤ γc

}

(62)

T WZ
d (D) := {(u, x, y) ∈ U × X × Y : d(x, g(u, y)) ≤ D} .

(63)

These sets have intuitive explanations:T WZ
c (γc)

c represents
thecoveringerror thatU is unable to describeX to the desired
level indicated byγc; T WZ

p (γp)
c represents thepackingerror

in which the decoder is unable to decode the correct codeword
U given Y using a threshold test based on the information
density statistic andγp; T WZ

d (D)c represents thedistortion
error in which the the reproduction̂X not within a distortion
of D of the sourceX .

In the following, we allow the reproduction functiong : U×
Y → X̂ to be stochastic; i.e., we consider a reproduction
channelPX̂|UY : U ×Y → X̂ . When we consider a stochastic
function instead of a deterministic one, we will use the set

T WZ
d,st (D) :=

{

(x, x̂) ∈ X × X̂ : d(x, x̂) ≤ D
}

(64)

instead ofT WZ
d (D); see (66) and Remark 2 below.

In this subsection, a pair(PU|X , PX̂|UY ) of a test channel
PU|X : X → U and a reproduction channelPX̂|UY : U ×
Y → X̂ is fixed. Note that the joint distributionPUXY X̂ of
U,X, Y, X̂ is also fixed as

PUXY X̂(u, x, y, x̂) = PXY (x, y)PU|X(u|x)PX̂|UY (x̂|u, y).
(65)

Theorem 8 (CS-type bound for WZ coding). For arbitrary
constantsγp, γc ≥ 0 and positive integerL, there exists a WZ
codeΦ with probability of excess distortion satisfying

Pe(Φ;D) ≤ PUXY X̂ [(u, x) ∈ T WZ
c (γc)

c

∪ (x, x̂) ∈ T WZ
d,st (D)c ∪ (u, y) ∈ T WZ

p (γp)
c]

+
L

|M|
∑

(u,y)∈T WZ
p (γp)

PU (u)PY (y) +
∆(γc, PUX)

2
√
L

.

(66)

where∆(γc, PUX) is defined in(48).
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Remark 2. If PX̂|UY is deterministic and represented by

g : U × Y → X̂ then the event{(x, x̂) ∈ T WZ
d,st (D)c} can be

replaced by{(u, x, y) ∈ T WZ
d (D)c}. In fact, by an application

of the functional representation lemma [1, Appendix A], the
assumption that the reproduction channelPX̂|UY is determin-
istic can be made without any loss of generality.

The proof of Theorem 10 is provided in Appendix F. As
with Theorem 5, the main novelty of our bound lies in the
fact that the three error events lie under the same probability,
making it amendable to treat all three error eventsjointly. The
residual terms in (66) (namely, the second, third and fourth
terms) are relatively small with a proper choice of constants
γp, γc andL ∈ N as we shall see in the sequel. We can again
relax the somewhat cumbersome second and third terms in
(66) by noting the definition ofT WZ

p (γp) and by going through
the same steps to upper bound∆; cf. (49). We thus obtain:

Corollary 9 (Simplified CS-type bound for WZ coding). For
arbitrary constantsγp, γc ≥ 0 and positive integerL, there
exists a WZ codeΦ with probability of excess distortion
satisfying

Pe(Φ;D) ≤ PUXY X̂ [(u, y) ∈ T WZ
p (γp)

c

∪ (u, x) ∈ T WZ
c (γc)

c ∪ (x, x̂) ∈ T WZ
d,st (D)c]

+
L

2γp |M| +
1

2

√

2γc

L
. (67)

To obtain achievable second-order coding rates for the WZ
problem, we evaluate the bound in (67) for appropriate choices
of γp, γc ≥ 0 and L ∈ N in Section VI-B. Since the
lossy source coding problem is a special case of WZ coding,
we use a specialization of the bound in (67) to derive an
achievable dispersion (or second-order coding rate) of lossy
source coding [25], [26], which turns out to be tight.

C. Novel Non-Asymptotic Achievability Bound for the GP
Problem

This section presents with a novel non-asymptotic achiev-
ability bound for the GP problem, which is the dual of the WZ
problem [46]. Our bound improves on Verdú’s non-asymptotic
bound for GP coding [6, Thm. 3] and uses the same Channel-
Simulation idea for the covering part.

To state the bound, we define the sets

T GP
p (γp) :=

{

(u, y) ∈ U × Y : log
PY |U (y|u)
PY (y)

≥ γp

}

(68)

T GP
c (γc) :=

{

(u, s) ∈ U × S : log
PS|U (s|u)
PS(s)

≤ γc

}

(69)

These are analogous to the typical sets used extensively in
network information theory [1] but they only involve the
information densities. The first set in (68) representspacking
event while the second in (69) representscoveringevent. Also
recall the definition of the setT GP

g (Γ) in (27) which represents
satisfaction of the cost constraints.

In the following, the distributionPUSXY ∈ P(U × S ×
X × Y) satisfying (i) theS-marginal ofPUSXY is PS , (ii)
PY |XS =W and (iii) U − (X,S)− Y forms a Markov chain

is fixed. Note the encoding functionPX|US is allowed to be
stochastic but just as in Remark 2, there is no loss in assum-
ing PX|US is deterministic by the functional representation
lemma. We prefer to usePX|US for convenience.

Theorem 10 (CS-type bound for GP coding). For arbitrary
constantsγp, γc ≥ 0 and positive integerL, there exists a GP
codeΦ with average error probability satisfying

Pe(Φ; Γ) ≤ PUSXY [(u, y) ∈ T GP
p (γp)

c

∪ (u, s) ∈ T GP
c (γc)

c ∪ x ∈ T GP
g (Γ)c]

+ L|M|
∑

(u,y)∈T GP
p (γp)

PU (u)PY (y) +
∆(γc, PUS)

2
√
L

(70)

where∆(γc, PUS) is defined in(48).

Because the technique to prove Theorem 10 is similar to
that for Theorems 5 and 8, we only sketch the code construc-
tion in Appendix G. In the second-order asymptotics sense,
Theorem 10 improves on [6, Thm. 3] because the error events
are under thesameerror probability. Notice that unlike the
existing asymptotic and non-asymptotic results for GP coding
[6], [10], [49], the channel inputx satisfies the cost constraint
(25) or its almost sure equivalent (cf. Proposition 1). Direct
application of (49) to bound∆(γc, PUS) and the definition of
T GP
p (γp) in (68) yields the following:

Corollary 11 (Simplified CS-type bound for GP coding). For
arbitrary constantsγp, γc ≥ 0 and positive integerL, there
exists a GP codeΦ with average error probability satisfying

Pe(Φ; Γ) ≤ PUSXY [(u, y) ∈ T GP
p (γp)

c

∪ (u, s) ∈ T GP
c (γc)

c ∪ x ∈ T GP
g (Γ)c]

+
L|M|
2γp

+
1

2

√

2γc

L
. (71)

To obtain achievable second-order coding rates for the GP
problem, we evaluate the bound in (71) for appropriate choices
of γp, γc andL ∈ N in Section VI-C.

V. GENERAL FORMULAS

In this section, we use the simplified CS-type bounds in
Corollaries 6, 9 and 11 to derive achievable general formulas
for the optimal rate region of the WAK problem, the rate-
distortion function of the WZ problem and the capacity of
the GP problem. This allows us to recover known results
in [8]–[10]. By general formula, we mean that we consider
sequences of these problems and do not place any underlying
structure such as stationarity, memorylessness and ergodicity
on the source and channel [7], [20]. To state our results,
let us first recall the following probabilistic limit operations.
Their properties are similar to the limit superior and limit
inferior for numerical sequences in mathematical analysisand
are summarized in [7].

Definition 7. LetU := {Un}∞n=1 be a sequence of real-valued
random variables. Thelimit superior in probabilityof U is
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defined as

p-lim sup
n→∞

Un := inf
{

α ∈ R : lim
n→∞

Pr(Un > α) = 0
}

.

(72)
The limit inferior in probability of U is defined as

p-lim inf
n→∞

Un := − p-lim sup
n→∞

(−Un) (73)

We also recall the following definitions from Han [7]. These
definitions play a prominent role in the rest of this section.

Definition 8. Given a pair of stochastic processes(X,Y) =
{Xn, Y n}∞n=1 with joint distributions{PXn,Y n}∞n=1, thespec-
tral sup-mutual information rateis defined as

I(X;Y) := p-lim sup
n→∞

1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
. (74)

The spectral inf-mutual information rateI(X;Y) is defined
as in (72) with p-lim inf in place ofp-lim sup . Thespectral
sup- and inf-conditional mutual information ratesare defined
similarly.

Thespectral sup-conditional entropy ratesis defined as

H(Y|X) := p-lim sup
n→∞

1

n
log

1

PY n|Xn(Y n|Xn)
. (75)

Thespectral inf-conditional entropy ratesis defined as in(75)
with p-lim inf in place ofp-lim sup .

A. General Formula for the WAK problem

In this section, we consider sequences of the WAK problem
indexed by the blocklengthn where the sequence of source
distributions{PXnY n}∞n=1 is general, i.e., we do not place any
assumptions on the structure of the source such as stationarity,
memorylessness and ergodicity. We aim to characterize an
inner bound to the optimal rate region defined in (14). We
show that our inner bound coincides with that derived by
Miyake and Kanaya [8] but is derived based on the upper
bound on the error probability provided in our CS-type bound
in Corollary 6. The choice of the parametersγb, γc andδ plays
a crucial role and guides our choice of these parameters for
second-order coding analysis in the following section.

Let P({PXnY n}∞n=1) be the set of all sequences of
distributions {PUnXnY n}∞n=1 such that for everyn ≥ 1,
Un − Y n −Xn forms a Markov chain and the(Xn × Yn)-
marginal ofPUnXnY n is PXnY n . Define the set

R̂
∗
WAK :=

⋃

{PUnXnY n}∞
n=1∈P({PXnY n}∞

n=1)
{

(R1, R2) ∈ R
2
+ : R1 ≥ H(X|U), R2 ≥ I(U;Y)

}

(76)

Theorem 12 (Inner Bound to the Optimal Rate Region for
WAK [8]) . We have

R̂
∗
WAK ⊂ RWAK. (77)

We remark that by using techniques from [32], Miyake
and Kanaya [8] showed that (77) is in fact an equality,
i.e., R̂

∗
WAK is also an outer bound toRWAK. In addition,

when the source distributions{PXnY n}∞n=1 are stationary

and memoryless (and the alphabetsX and Y are discrete
and finite),R̂∗

WAK reduces to the single-letter regionR∗
WAK

defined in (40). This follows easily from the law of large
numbers. The proof of Theorem 12 follows directly from the
finite blocklength bound in Corollary 6. In fact, the weaker
bounds in [30] and [6] suffice for this purpose.

Proof: Consider (57) and let us fix a process
{PUnXnY n}∞n=1 ∈ P({PXnY n}∞n=1) and a constantη > 0.
Set

1

n
log |M| := H(X|U) + 2η (78)

1

n
log |L| := I(U;Y) + 2η (79)

γb := n(H(X|U) + η) (80)

γc := n(I(U;Y) + η) (81)

Then for blocklengthn, the probability on the RHS of (57)
can be written as

PUnXnY n

[{

1

n
log

1

PXn|Un(Xn|Un)
≥ H(X|U) + η

}

⋃

{

1

n
log

PY n|Un(Y n|Un)

PY n(Y n)
≥ I(U;Y) + η

}]

(82)

By the definition of the spectral sup-entropy rate and the
spectral sup-mutual information rate, the probabilities of both
events in (82) tend to zero. Further,

2γb

|M| = 2−nη → 0, and
1

2

√

2γc

|L| =
1

2
· 2−nη/2 → 0.

(83)

Hence,Pe(Φn) → 0. Since η > 0 is arbitrary, from (78)
and (79) we deduce that any pair of rates(R1, R2) satisfying
R1 > H(X|U) andR2 > I(U;Y) is achievable.

B. General Formula for the WZ problem

In a similar way, we can recover the general formula for WZ
coding derived by Iwata and Muramatsu [9]. Note however,
that we directly work with the probability of excess distortion,
which is related to but different from the maximum-distortion
criterion employed in [9]. Once again, we assume that the
source is{PXnY n}∞n=1 is general in the sense explained in
Section V-A.

Let PD({PXnY n}∞n=1) be the set of all sequences of
distributions{PUnXnY n}∞n=1 and reproduction functions{gn :
Un ×Yn → X̂n} such that for everyn ≥ 1, Un −Xn − Y n

forms a Markov chain, the(Xn ×Yn)-marginal ofPUnXnY n

is PXnY n and

p-lim sup
n→∞

dn(X
n, gn(U

n, Y n)) ≤ D (84)

Define the rate-distortion function

R̂∗
WZ(D) := inf

{

I(U;X) − I(U;Y)
}

(85)

where the infimum is over all{PUnXnY n , gn}∞n=1 ∈
PD({PXnY n}∞n=1).
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Theorem 13 (Upper Bound to the Rate-Distortion Function
for WZ [9]). We have

RWZ(D) ≤ R̂∗
WZ(D). (86)

Iwata and Muramatsu [9] showed in fact that (86) is an
equality by proving a converse along the lines of [32]. It can
be shown that the general rate-distortion function defined in
(85) reduces to the one derived by Wyner and Ziv [4] in the
case where the alphabets are finite and the source is stationary
and memoryless. Also Iwata and Muramatsu [9] showed that
deterministic reproduction functionsgn : Un × Yn → X̂n

suffice and we do not need the more general stochastic
reproduction functionsPX̂n|UnY n .

Proof: Let η > 0. We start from the bound on the
probability of excess distortion in (67), where we first consider
D + η instead ofD. Let us fix the sequence of distribu-
tion and the sequence of functions{(PUnXnY n , gn)}∞n=1 ∈
PD({PXnY n}∞n=1). Set

1

n
log |M| := I(U;X)− I(U;Y) + 4η (87)

1

n
logL := I(U;X) + 2η (88)

γp := n(I(U;Y) − η) (89)

γc := n(I(U;X) + η). (90)

Then, the probability in (67) for blocklengthn can be written
as

PUnXnY n

[{

1

n
log

PY n|Un(Y n|Un)

PY n(Y n)
≤ I(U;Y)− η

}

⋃

{

1

n
log

PXn|Un(Xn|Un)

PXn(Xn)
≥ I(U;X) + η

}

⋃

{

dn(X
n, gn(U

n, Y n)) ≥ D + η

}]

(91)

By the definition of the spectral sup- and inf-mutual informa-
tion rates and the distortion condition in (84), we observe that
the probability in (91) tends to zero asn grows. By a similar
calculation as in (83), the other terms in (67) also tend to zero.
Hence, the probability of excess distortionPe(Φn;D+η) → 0
asn grows. This holds for everyη > 0. By (87), the any rate
below I(U;X) − I(U;Y) + 4η is achievable. In order to
complete the proof, we choose a positive sequence satisfying
η1 > η2 > · · · > 0 and ηk → 0 as k → ∞. Then, by using
the diagonal line argument[7, Thm. 1.8.2], we complete the
proof of (86).

C. General Formula for the GP problem

We conclude this section by showing that the non-
asymptotic bound on the average probability of error derived
in Corollary 11 can be adapted to recover the general for-
mula for the GP problem derived in Tan [10]. Here, both
the state distribution{PSn ∈ P(Sn)}∞n=1 and the channel
{Wn : Xn × Sn → Yn}∞n=1 are general. In particular, the
only requirement on the stochastic mappingWn is that for
every(xn, sn) ∈ Xn × Sn,

∑

yn∈Yn

Wn(yn|xn, sn) = 1. (92)

Let PΓ({Wn, PSn}∞n=1) be the family of joint distributions
PUnSnXnY n such that for everyn ≥ 1, Un − (Xn, Sn)−Y n

forms a Markov chain, theSn-marginal of PUnSnXnY n is
PSn , the channel lawPY n|Xn,Sn =Wn and

p-lim sup
n→∞

gn(X
n) ≤ Γ (93)

Define the quantity

Ĉ∗
GP(Γ) := sup

{

I(U;Y) − I(U;S)
}

(94)

where the supremum is over all joint distributions
{PUnSnXnY n}∞n=1 ∈ PΓ({Wn, PSn}∞n=1).

Theorem 14(Lower Bound to the GP capacity [10]). We have

CGP(Γ) ≥ Ĉ∗
GP(Γ). (95)

Tan [10] also showed that the inequality in (95) is, in fact,
tight. However, unlike in the general WZ scenario, the encod-
ing functionPXn|UnSn cannot be assumed to be deterministic
in general. When the channel and state are discrete, stationary
and memoryless, Tan [10] showed that the general formula
in (94) reduces to the conventional one derived by Gel’fand-
Pinsker [5] in (46). The proof of Theorem 14 parallels that
for Theorem 13 and thus, we omit it.

VI. A CHIEVABLE SECOND-ORDER CODING RATES

In this section, we demonstrate achievable second-order
coding rates [11], [12], [22], [39], [40] for the three side-
information problems of interest. Essentially, we are interested
in characterizing the(n, ε)-optimal rate region for the WAK
problem, the(n, ε)-Wyner-Ziv rate-distortion function and the
(n, ε)-capacity of GP problem up to the second-order term.
We do this by applying the multidimensional Berry-Esséen
theorem [21], [50] to the finite blocklength CS-type bounds
in Corollaries 6, 9 and 11. Throughout, we will not concern
ourselves with optimizing the third-order terms.

The following important definition will be used throughout
this section.

Definition 9. Let k be a positive integer. LetV ∈ R
k×k be

a positive-semidefinite matrix that is not the all-zeros matrix
but is allowed to be rank-deficient. Let the Gaussian random
vectorZ ∼ N (0,V). Define the set

S (V, ε) := {z ∈ R
k : Pr(Z ≤ z) ≥ 1− ε}. (96)

This set was introduced in [23] and is, roughly speaking,
the multidimensional analogue of theQ−1 function. Indeed,
for k = 1 and any standard deviationσ > 0,

S (σ2, ε) = [σQ−1(ε),∞). (97)

Also, 1k and0k×k denote the length-k all-ones column vector
and thek × k all-zeros matrix respectively.
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A. Achievable Second-Order Coding Rates for the WAK prob-
lem

In this section, we derive an inner bound toRWAK(n, ε)
in (12) by the use of Gaussian approximations. Instead of
simply applying the Berry-Esséen theorem to the information
spectrum term within the simplified CS-type bound in (57),
we enlarge our inner bound by using a “time-sharing” variable
T , which is independent of(X,Y ). This technique was also
used for the multiple access channel (MAC) by Huang and
Moulin [42]. Note that in the finite blocklength setting, the
regionRWAK(n, ε) does not have to be convex unlike in the
asymptotic case; cf. (40). For fixed finite setsU and T , let
P̃(PXY ) be the set of allPUTXY ∈ P(U×T ×X ×Y) such
that theX ×Y-marginal ofPUTXY is PXY , U − (Y, T )−X
forms a Markov chain andT is independent of(X,Y ).

Definition 10. Theentropy-information density vectorfor the
WAK problem forPUTXY ∈ P̃(PXY ) is defined as

j(U,X, Y |T ) :=
[

log 1
PX|UT (X|U,T )

log
PY |UT (Y |U,T )

PY (Y )

]

. (98)

Note that the mean of the entropy-information density vector
in (98) is the vector of the entropy and mutual information,
i.e.,

J(PUTXY ) := E[j(U,X, Y |T )] =
[

H(X |U, T )
I(U ;Y |T )

]

. (99)

The mutual informationI(U ;Y |T ) = I(U, T ;Y ) becauseT
andY are independent.

Definition 11. Theentropy-information dispersion matrixfor
the WAK problem for a fixedPUTXY ∈ P̃(PXY ) is defined
as

V(PUTXY ) := ET [Cov(j(U,X, Y |T ))] (100)

=
∑

t∈T
PT (t)Cov(j(U,X, Y |t)). (101)

We abbreviate the deterministic quantitiesJ(PUTXY ) ∈ R
2
+

and V(PUTXY ) � 0 as J and V respectively when the
distributionPUTXY ∈ P̃(PXY ) is obvious from the context.

Definition 12. If V(PUTXY ) 6= 02×2, define
Rin(n, ε;PUTXY ) to be the set of rate pairs(R1, R2)
such thatR := [R1, R2]

T satisfies

R ∈ J+
S (V, ε)√

n
+

2 logn

n
12. (102)

If V(PUTXY ) = 02×2, defineRin(n, ε;PUTXY ) to be the set
of rate pairs(R1, R2) such that

R ∈ J+
2 logn

n
12. (103)

From the simplified CS-type bound for the WAK problem
in Corollary 6, we can derive the following:

Theorem 15 (Inner Bound to(n, ε)-Optimal Rate Region).
For every0 < ε < 1 and all n sufficiently large, the(n, ε)-
optimal rate regionRWAK(n, ε) satisfies

⋃

PUTXY ∈P̃(PXY )

Rin(n, ε;PUTXY ) ⊂ RWAK(n, ε). (104)

Furthermore, the union overPUTXY can be restricted to those
distributions for which the supportsU and T of auxiliary
random variablesU and T satisfy that|U| ≤ |Y| + 4 and
|T | ≤ 5 respectively.

From the modified CS-type bound for the WAK problem in
Theorem 7, we can derive the following:

Theorem 16 (Modified Inner Bound to(n, ε)-Optimal Rate
Region). For every0 < ε < 1 and all n sufficiently large, the
(n, ε)-optimal rate regionRWAK(n, ε) satisfies

⋃

PUTXY ∈P̃(PXY )

R
′
in(n, ε;PUTXY ) ⊂ RWAK(n, ε), (105)

whereR′
in(n, ε;PUTXY ) is the set defined by replacing(102)

with

R ∈
⋃

ρ≥0

{

J+
S (V, ε) + [ρ,−ρ]T√

n
+

2 logn

n
12

}

. (106)

Remark 3. We can also restrict the cardinalities|U| and |T |
of auxiliary random variables in Theorem 16 in the same way
as in Theorem 15. The bound in Theorem 16 is at least as tight
as that in Theorem 15, and the former is strictly tighter than
the latter for a fixed test channel. However, it is not clear
whether the improvement is strict or not when we take the
union over the test channels.

By settingT = Y = U = ∅ andR2 = 0 in Theorem 16,5

we obtain a result first discovered by Strassen [39].

Corollary 17 (Achievable Second-Order Coding Rate for
Lossless Source Coding). Define thesecond-order coding rate
for lossless source codingto be

σ(PX , ε) := lim sup
n→∞

√
n(RX(n, ε)−H(X)) (107)

whereRX(n, ε) is the minimal rate of almost-lossless com-
pression of sourcePX at blocklengthn with error probability
not exceedingε. Then,

σ(PX , ε) ≤
√

Var(logPX(X))Q−1(ε). (108)

It is well-known that the result in Corollary 17 is tight, i.e.,
√

Var(logPX(X))Q−1(ε) is indeed the second-order coding
rate for lossless source coding [11], [39], [40].

We refer to the reader to Appendix I for the proof of
Theorem 15 (Appendix J for the proof of Theorem 16). The
proof is based on the CS-type bound in (57) and the non-
i.i.d. version of the multidimesional Berry-Esséen theorem by
Göetze [21]. The proof of the cardinality bounds is provided
in Appendix M. The interpretation of this result is clear: From
(102) which is the non-degenerate case, we see that the second-
order coding rate region for a fixedPUTXY is represented by
the setS (V(PUTXY ), ε)/

√
n. Thus, the(n, ε)-optimal rate

region converges to the asymptotic WAK region at a rate of
O(1/

√
n) which can be predicted by the central limit theorem.

More importantly, because our finite blocklength bound in
(57) treats both the covering and binning error eventsjointly,

5In fact, to be precise, we cannot derive Corollary 17 from Theorem 15
because there is the residual term2 log n

n
and we cannot setR2 = 0. However,

we can use Corollary 6 withU = ∅ to obtain Corollary 17 easily.
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this results in the coupling of the second-order rates through
the setS (V(PUTXY ), ε) and hence, the dispersion matrix
V(PUTXY ). This shows that the correlation between the
entropy and information densities matters in the determination
of the second-order coding rate.

More specifically, Theorems 15 and 16 are proved by
taking PUn|Y n(un|yn) to be equal toPn

U|TY (u
n|tn, yn) for

some fixed (time-sharing) sequencetn ∈ T n and some joint
distributionPUTXY ∈ P̃(PXY ). If T = ∅, this is essentially
using i.i.d. codes. Theorems 15 and 16 also show that|T |
can be upper bounded by5. An alternative to this proof
strategy is to use conditionally constant composition codes as
was done in Kelly-Wagner [51] to prove their error exponent
result. The advantage of this strategy is that it may yield
better dispersion matrices because the unconditional dispersion
matrix always dominates the conditional dispersion matrix[22,
Lemma 62] (in the partial order induced by semi-definiteness).
For using conditionally constant composition codes, we fix a
conditional typeVQY

∈ Vn(U ;QY ) for every marginal type
QY ∈ Pn(Y). Then, codewords are generated uniformly at
random fromTVQY

(yn) if yn ∈ TQY
. However, it does not

appear that this strategy yields improved second-order coding
rates compared to using i.i.d. codes as given in Theorems 15
and 16.

We emphasize here that the restriction of the sizes of the
alphabetsU andT only allows us to only preserve thesecond-
order regiondefined by the vectorJ(PUTXY ) and the matrix
V(PUTXY ) over allPUTXY ∈ P̃(PXY ). An optimized third-
order term in (102) might be dependent on higher-order statis-
tics of the entropy-information density vectorj(U,X, Y |T )
and the quantities that define this third-order term arenot
preservedby the bounds|U| ≤ |Y| + 4 and |T | ≤ 5. This
remark is also applicable to the second-order rate regions for
WZ and GP in Subsections VI-B and VI-C. However, we note
that for lossless source coding [39] or channel coding [22],
[52], under some regularity conditions, the third-order term is
neither dependent on higher-order statistics nor on the alphabet
sizes.

To compare our Theorems 15 and 16 to that of Verdú [6],
for a fixedPUXY ∈ P(PXY ), defineRV

in(n, ε;PUXY ) to be
the set of rate pairs that satisfy

R1 ≥ H(X |U) +

√

VH(X |U)

n
Q−1(λε) +

2 logn

n
(109)

R2 ≥ I(U ;Y ) +

√

VI(U ;Y )

n
Q−1((1− λ)ε) +

2 logn

n
(110)

for someλ ∈ [0, 1] where the marginal entropy and informa-
tion dispersions are defined as

VH(X |U) := Var

(

log
1

PX|U (X |U)

)

(111)

VI(U ;Y ) := Var

(

log
PY |U (Y |U)

PY (Y )

)

(112)

respectively. Note that ifT = ∅, thenVH(X |U) andVI(U ;Y )
are the diagonal elements of the matrixV(PUTXY ) in (100). It
can easily be seen that Verdú’s bound on the error probability

of the WAK problem (8) yields the following inner bound on
RWAK(n, ε).

⋃

PUXY ∈P(PXY )

R
V
in(n, ε;PUXY ) ⊂ RWAK(n, ε). (113)

This “splitting” technique ofε into λε and (1− λ)ε in (109)
and (110) was used by MolavianJazi and Laneman [43] in
their work on finite blocklength analysis for the MAC. In
Section VII, we numerically compare the inner bounds for
the WAK problem provided in (104), (105) and (113).

Remark 4. From the non-asymptotic bound in Remark 1, we
can also show that

R̂in(n, ε) ⊂ RWAK(n, ε), (114)

whereR̂in(n, ε) is the set of rate pairs(R1, R2) such that
[

R1

R1 +R2

]

∈
[

H(X |Y )
H(X,Y )

]

+
S (V̂, ε)√

n
+

2 logn

n
12 (115)

for the covariance matrix

V̂ = Cov

([

− logPX|Y (X |Y )
− logPXY (X,Y )

])

. (116)

B. Achievable Second-Order Coding Rates for the WZ prob-
lem

In this section, we leverage on the simplified CS-type bound
in Corollary 9 to derive an achievable second-order coding rate
for the WZ problem. We do so by first finding an inner bound
to the (n, ε)-Wyner-Ziv rate-distortion regionRWZ(n, ε) de-
fined in (18). Subsequently we find an upper bound to the
(n, ε)-Wyner-Ziv rate-distortion functionRWZ(n, ε) defined
in (21). We also show that the (direct part of the) dispersion
of lossy source coding found by Ingber-Kochman [25] and
Kostina-Verdú [26] can be recovered from the CS-type bound
in Corollary 9. This is not unexpected because the lossy source
coding (rate-distortion) problem is a special case of the Wyner-
Ziv problem where the side-information is absent.

We will again employ the “time-sharing” strategy used in
Section VI-A and show that the cardinality of the time-sharing
alphabetT can be bounded. Note again that in the finite-
blocklength settingRWZ(n, ε) does not have to be convex,
unlike in the asymptotic setting. For fixed finite setsU and
T , let P̃(PXY ) be the collection of all joint distributions
PUTXY ∈ P(U ×T ×X ×Y) such that theX ×Y-marginal
of PUTXY is PXY , U − (X,T ) − Y forms a Markov chain
and T is independent of(X,Y ). A pair (PUTXY , PX̂|UY T )

of a joint distributionPUTXY ∈ P̃(PXY ) and a reproduction
channelPX̂|UY T : U ×Y×T → X̂ defines a joint distribution
PUTXY X̂ such that

PUTXY X̂(u, t, x, y, x̂)

= PXY (x, y)PT (t)PU|Y T (u|y, t)PX̂|UY T (x̂|u, y, t). (117)

Further, a pair ofPUTXY ∈ P̃(PXY ) andPX̂|UY T induces
a random variable

d(X, X̂|T ) := d(XT , X̂T ) (118)



15

where(Xt, X̂t) for any t ∈ T has distributionPXX̂|T=t. In
other words, for fixedt ∈ T ,

Pr{d(X, X̂|T = t) = d}
=

∑

x,x̂:
d(x,x̂)=d

∑

u,y

PXY (x, y)PU|Y T (u|y, t)PX̂|UY T (x̂|u, y, t).

(119)

Definition 13. For a pair (PUTXY , PX̂|UY T ) of PUTXY ∈
P̃(PXY ) and PX̂|UY T , the information-density-distortion
vector for the WZ problem is defined as

j(U,X, Y, X̂|T ) :=







− log
PY |UT (Y |U,T )

PY (Y )

log
PX|UT (X|U,T )

PX (X)

d(X, X̂|T )






. (120)

Since E[d(X, X̂)] =
∑

t PT (t)EP
XX̂|T

[d(XT , X̂T )|T =

t], the expectation of information-density-distortion vector is
given by

J(PUTXY , PX̂|UY T ) := E[j(U,X, Y, X̂|T )] (121)

=





−I(U ;Y |T )
I(U ;X |T )
E[d(X, X̂)]



 . (122)

Observe that thesum of the first two components of (122)
resembles the Wyner-Ziv rate-distortion function defined in
(43). As such when stating an achievable(n, ε)-Wyner-Ziv
rate-distortion region, we project the first two terms onto an
affine subspace representing their sum. See (125) and (126)
below.

Definition 14. Theinformation-distortion dipersion matrixfor
the WZ problem for a pair ofPUTXY ∈ P̃(PXY ) and
PX̂|UY T is defined as

V(PUTXY , PX̂|UY T ) := ET

[

Cov(j(U,X, Y, X̂|T ))
]

.

(123)

Definition 15. Let M ∈ R
2×3 be the matrix

M :=

[

1 1 0
0 0 1

]

. (124)

If V(PUTXY , PX̂|UY T ) 6= 03×3, define
Rin(n, ε;PUTXY , PX̂|UY T ) to be the set of all rate-distortion
pairs (R,D) satisfying

[

R
D

]

∈ M

(

J+
S (V, ε)√

n
+

2 logn

n
13

)

. (125)

where J := J(PUTXY , PX̂|UY T ) and V :=
V(PUTXY , PX̂|UY T ). Else if V(PUTXY , PX̂|UY T ) 6= 03×3,
define Rin(n, ε;PUTXY , PX̂|UY T ) to be the set of all
rate-distortion pairs(R,D) satisfying

[

R
D

]

∈ M

(

J+
2 logn

n
13

)

. (126)

In (125), the matrixM serves project the three-dimensional
setJ + S (V, ε)/

√
n ⊂ R

3 onto two dimensions by linearly
combining the first two mutual information terms to give

I(U ;X |T )−I(U ;Y |T ) = I(U ;X |Y, T ) (by the Markov chain
U − (X,T )− Y ). From the simplified CS-type bound for the
WZ problem in Corollary 9 and the multidimensional Berry-
Esséen theorem [21], we can derive the following:

Theorem 18 (Inner Bound to the(n, ε)-Wyner-Ziv Rate-Dis-
tortion Region). For every0 < ε < 1 and all n sufficiently
large, the(n, ε)-Wyner-Ziv rate-distortion regionRWZ(n, ε)
satisfies

⋃

PUTXY ∈P̃(PXY ),P
X̂|UY T

Rin(n, ε;PUTXY , PX̂|UY T )

⊂ RWZ(n, ε). (127)

Furthermore, the union over a pair ofPUTXY and PX̂|UY T

can be restricted to those distributions for which the supports
U and T of auxiliary random variablesU andT satisfy that
|U| ≤ |X |+ 8 and |T | ≤ 9 respectively.

Remark 5. The assumption that the reproduction channel
PX̂|UTX is stochastic is used to establish bounds on the
cardinalities of the auxiliary random variablesU and T
(see Remark 10). This is because even though the functional
representation lemma [1, Appendix A] ensures that the first
two entries ofj(u, x, y, x̂|t) in (120) are preserved using a
deterministic reproduction channel and appropriate bounds on
|U| and |T |, the last entry concerning the distortiond(x, x̂|t)
may not be preserved using the same techniques.

The proof of this result is provided in Appendix K. Further
projecting onto the first dimension (the rate) for a fixed
distortion levelD yields the following:

Theorem 19(Upper Bound to the(n, ε)-Wyner-Ziv Rate-Dis-
tortion Function). For every 0 < ε < 1 and all n suf-
ficiently large, the(n, ε)-Wyner-Ziv rate-distortion function
RWZ(n, ε,D) satisfies

RWZ(n, ε,D) ≤ inf

{

R : (R,D) ∈
⋃

PUTXY ∈P̃(PXY ),P
X̂|UY T

Rin(n, ε;PUTXY , PX̂|UY T )

}

. (128)

Theorems 18 and 19 are very similar in spirit to the result on
the achievable second-order coding rate for the WAK problem.
The marginal contributions from the distortion error event,
the packing error event, the covering error event as well as
their correlations are all involved in the dispersion matrix
V(PUTXY , PX̂|UY T ).

It is worth mentioning why for the inner bound to the
second-order region in Theorem 18, we should, in general,
employ stochastic reproduction functionsPX̂|UY T instead of

a deterministic onesg : U ×Y → X̂ . The reasons are twofold:
First, this is to facilitate the bounding of the cardinalities
of the auxiliary alphabetsU and T in Theorem 18. This is
done using variants of the support lemma [1, Appendix A].
See Lemma 37 and 38 in Appendix M. The preservation of
the expected distortionEd(X, X̂) requires thatPX̂|UY T is
stochastic. See Theorem 35 in Appendix M. Second, and more
importantly, it is nota priori clear without a converse (outer)
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bound onRWZ(n, ε) that the second-order inner bound we
have in (127) cannot be enlarged via the use of a stochastic
reproduction functionPX̂|UY T . The same observation holds
verbatim for the GP problem where we usePX|US instead of
a deterministic encoding function fromU × S to X .

At this juncture, it is natural to wonder whether we are able
to recover the dispersion for lossy source coding [25], [26]as a
special case of Theorem 19 (like Corollary 17 is a special case
of Theorem 16). This does not seem straightforward because
of the distortion error event in (67). However, we can start
from the CS-type bound in (67), setY = ∅, U = X̂ and
use the method of types [28] or the notion of theD-tilted
information [26] to obtain the specialization for the direct part.
Before stating the result, we define a few quantities. Let the
rate-distortion function of the sourceX ∼ Q ∈ P(X ) be
denoted as

R(Q,D) := min
P

X̂,X
:PX=Q,Ed(X,X̂)≤D

I(X ; X̂), (129)

where Ed(X, X̂) :=
∑

x,x̂ PX̂,X(x̂, x)d(x, x̂). Also, define
theD-tilted informationto be

j(x,D) := − logE
[

exp
(

λ∗D − λ∗d(x, X̂∗
)]

(130)

where the expectation is with respect to the unconditional
distribution of X̂∗, the output distribution that optimizes the
rate-distortion function in (129) and

λ∗ := − ∂

∂D
R(PX , D). (131)

Theorem 20 (Achievable Second-Order Coding Rate for
Lossy Source Coding). Define thesecond-order coding rate
for lossy source codingto be

σ(PX , D, ε) := lim sup
n→∞

√
n(RX(n, ε;D)−R(PX , D))

(132)
where RX(n, ε;D) is the minimal rate of compression of
sourceX ∼ PX up to distortionD at blocklengthn and
probability of excess distortion not exceedingε. We have

σ(PX , D, ε) ≤
√

Var(j(X,D))Q−1(ε) (133)

Two proofs of Theorem 20 are provided in Appendix L,
one based on the method of types and the other based on the
D-tilted information in (130). For the former proof based on
the method of types, we need to assume thatQ 7→ R(Q,D)
is differentiable in a small neighborhood ofPX and PX is
supported on a finite set. For the second proof,X can be an
abstract alphabet. Note thatR(PX , D) = EX∼PX

[j(X,D)].
We remark that for discrete memoryless sources, theD-tilted
informationj(x,D) coincides with the derivative of the rate-
distortion function with respect to the source [25]

R′(x,D) =
∂

∂Q(x)
R(Q,D)

∣

∣

∣

∣

Q=PX

. (134)

C. Achievable Second-Order Coding Rates for the GP prob-
lem

We conclude this section by stating and achievable second-
order coding rate for the GP problem by presenting a lower

bound to the(n, ε,Γ)-capacityCGP(n, ε,Γ) defined in (37).
As in the previous two subsections, we start with definitions.
For two finite setsU and T , define P̃(W,PS) to be the
collection of all PUTSXY ∈ P(U × T × S × X × Y)
such that theS-marginal ofPUTSXY is PS , PY |XS = W ,
U−(X,S, T )−Y forms a Markov chain andT is independent
of S. Note thatPUTSXY does not necessarily have to satisfy
the cost constraint in (45).

In addition, to facilitate the time-sharing for the cost func-
tion, we define

g(X |T ) := g(XT ) (135)

whereXt for any t ∈ T has distributionPX|T=t.

Definition 16. Theinformation-density-cost vectorfor the GP
problem forPUTSXY ∈ P̃(W,PS) is defined as

j(U, S,X, Y |T ) :=







log
PY |UT (Y |U,T )

PY |T (Y |T )

− log
PS|UT (S|U,T )

PS(S)

−g(X |T )






. (136)

Since
∑

t PT (t)EPX|T
[g(XT )|T = t] = E[g(X)], the

expectation of this vector with respect toPUTSXY is the vector
of mutual informations and the negative cost, i.e.,

J(PUTSXY ) := E[j(U, S,X, Y |T )] =





I(U ;Y |T )
−I(U ;S|T )
−E[g(X)]



 .

(137)

Definition 17. The information-dispersion matrixfor the GP
problem forPUTSXY ∈ P̃(W,PS) is defined as

V(PUTSXY ) := ET [Cov(j(U, S,X, Y |T ))]. (138)

Definition 18. Let M be the matrix defined in(124). If
V(PUTSXY ) 6= 03×3, define the setRin(n, ε;PUTSXY ) to
be the set of all rate-cost pairs(R,Γ) satisfying

[

R
−Γ

]

∈ M

(

J− S (V, ε)√
n

− 2 logn

n
13

)

(139)

where J := J(PUTSXY ) and V := V(PUTSXY ). Else if
V(PUTXY , g) 6= 03×3, defineRin(n, ε;PUTSXY ) to be the
set of all rate-cost pairs(R,Γ) satisfying

[

R
−Γ

]

∈ M

(

J− 2 logn

n
13

)

. (140)

By leveraging on our finite blocklength CS-type bound for
the GP problem in (71), we obtain the following:

Theorem 21 (Inner Bound to the(n, ε)-GP Capacity-Cost
Region). For every0 < ε < 1 and all n sufficiently large, the
(n, ε)-GP capacity-cost regionCGP(n, ε) satisfies

⋃

PUTSXY ∈P̃(W,PS)

Rin(n, ε;PUTSXY ) ⊂ CGP(n, ε). (141)

Furthermore, the union overPUTSXY can be restricted to
those distributions for which the supportsU andT of auxiliary
random variablesU andT satisfy that|U| ≤ |S||X |+ 6 and
|T | ≤ 9 respectively.

The assumption that the encoding functionPX|US is
stochastic appears to be necessary for establishing bounds
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on |U| and |T |. See Remark 5. By projecting onto the first
dimension (the rate) for a fixed costΓ ≥ 0, we obtain:

Theorem 22 (Lower Bound to the(n, ε)-GP Capacity). For
every0 < ε < 1 and all n sufficiently large, the(n, ε)-GP
capacity-cost functionCGP(n, ε,Γ) satisfies

CGP(n, ε,Γ) ≥ sup

{

R : (R,Γ) ∈
⋃

PUTSXY ∈P̃(W,PS)

Rin(n, ε;PUTSXY )

}

. (142)

The proof of Theorem 21 parallels that for the WZ case
in Theorem 18 so it is omitted for brevity. The matrixM
serves to project the first two components of each element in
the setJ + S (V, ε)/

√
n onto one dimension. Indeed, for a

fixed PUTSXY ∈ P̃(W,PS), the first two components read
I(U ;Y |T ) − I(U ;S|T ) which, if T = ∅ and the random
variables(U, S,X, Y ) are capacity-achieving, reduces to the
GP formula in (46). Hence, the setMS (V, ε)/

√
n ⊂ R quan-

tifies all possible backoffs from the asymptotic GP capacity-
cost regionCGP (defined in (36)) at blocklengthn and average
error probabilityε based on our CS-type finite blocklength
bound for the GP problem in (71). The bound in (142) is
clearly much tighter than the one provided in [10] which is
based on the use of Wyner’s PBL and Markov lemma.

Now by settingS = T = ∅, U = X and Γ = ∞ in
Theorem 22, we recover the direct part of the second-order
coding rate for channel coding without cost constraints [12],
[22], [39].

Corollary 23 (Achievable Second-Order Coding Rate for
Channel Coding). Fix a non-exotic [22] discrete memoryless
channelW : X → Y with channel capacityC(W ) =
maxPX

I(X ;Y ). Define the second-order coding rate for
channel codingto be

σ(W, ε) := lim sup
n→∞

√
n(C(W ) − CW (n, ǫ)) (143)

whereCW (n, ǫ) is the maximal rate of transmission over the
channelW at blocklengthn and average error probabilityε.
Then,

σ(W, ε) ≤ min
PX∗

√

Var

(

log
W (Y ∗|X∗)

PY ∗(Y ∗)

)

Q−1(ε) (144)

where(X∗, Y ∗) ∼ PX∗ ×W and the minimization is over all
capacity-achieving input distributions.

The bound in (144) is has long been known to be an
equality [39]. Note that the unconditional dispersion in (144)
Var

(

log W (Y ∗|X∗)
PY ∗(Y ∗)

)

coincides with the conditional disper-
sion [22] since it is being evaluated at a capacity-achieving
input distribution. As such, the converse can be proved using
the meta-converse in [22] or an modification of the Verdú-
Han converse [7, Lem. 3.2.2] with an judiciously chosen
output distribution as was done in [12]. In fact, we can also
derive a generalization of Corollary 23 with cost constraints
incorporated [12, Thm. 3] using similar techniques as in the
proof of Theorem 20. Namely, we use a uniform distribution

over a particular type class (constant composition codes) as
the input distribution. The type is chosen to be close to the
optimal input distribution (assuming it is unique).

VII. N UMERICAL EXAMPLES

A. Numerical Example for WAK Problem

In this section, we use an example to illustrate the inner
bound on(n, ε)-optimal rate region for the WAK problem

obtained in Theorem 15. We neglect the smallO
(

logn
n

)

term.
The source is taken to be a discrete symmetric binary source
DSBS(α), i.e.,

PXY =
1

2

[

1− α α
α 1− α

]

. (145)

In this case, the optimal rate region reduces to

R
∗
WAK =

{

(R1, R2) :R1 ≥ h(β ∗ α),

R2 ≥ 1− h(β), 0 ≤ β ≤ 1

2

}

, (146)

whereh(·) is the binary entropy function andβ ∗α := β(1−
α) + (1 − β)α is the binary convolution. The above region
is attained by setting the backward test channel fromU to
Y to be a BSC with some crossover probabilityβ. All the
elements in the entropy-information dispersion matrixV(β)
can be evaluated in closed form in terms ofβ. DefineJ(β) :=
[h(β∗α), 1−h(β)]T . In Fig. 5, we plot the second-order region

R̃in(n, ε) :=
⋃

0≤β≤ 1
2

{

(R1, R2) : R ∈ J(β) +
S (V(β), ε)√

n

}

.

(147)
The first-order regionR∗

WAK and the second-order region with
simple time-sharing (|T | = 2) are also shown for comparison.
More precisely, the simple time-sharing is betweenβ = 0
andβ = 1/2. As expected, as the block length increases, the
(n, ε)-optimal rate region tends to the first-order one. Interest-
ingly, at small block length, time-sharing makes the second-
order (n, ε)-optimal rate region in (147) larger compared to
that without time-sharing. Especially, the simple time-sharing
is better thanR̃in(n, ε) for n = 500 because the rank of the
entropy-information dispersion matrixλV(0)+(1−λ)V(1/2)
for 0 < λ ≤ 1 is one.6

We also consider the regioñRV
in(n, ε) which is the analogue

of R̃in(n, ε) but derived from Verdú’s bound in (8). In Fig. 6,
we compare the second-order coefficients, namely that derived
from our boundS (V(β), ε) and

S
V(V(β), ε) :=

⋃

0≤λ≤1

{

(z1, z2) : z1 ≥
√

VH(β)Q−1(λε),

z2 ≥
√

VI(β)Q
−1((1− λ)ε)

}

.

(148)

Note that the difference between the two regions is quite
small even forε = 0.5. This is because, for this example,
the covariance of the entropy- and information-density (off-
diagonal in the dispersion matrix) is negative so the difference

6It should be noted that the rank ofV(1/2) is zero.
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Fig. 5. A comparison betweeñRin(n, ε) without time-sharing (solid line)
and the time-sharing region (dashed line) forε = 0.1. The regions are to
the top right of the curves. The blue and red curves are forn = 500 and
n = 10, 000 respectively. The black curve is the first-order region (1).

0.2 0.4 0.6 0.8 1.0
z10.2

0.4
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0.8

1.0
z2

Fig. 6. A comparison betweenS (V(β), ε) (defined in (96)) and
S V(V(β), ε) (defined in (148)) forβ = h−1(0.5) and ε = 0.5. The
red and blue curves are the boundaries ofS (V(β), ε) and S V(V(β), ε)
respectively. The regions lie to the top right of the curves.

betweenPr(Z1 ≥ z1 or Z2 ≥ z2) and Pr(Z1 ≥ z1) +
Pr(Z2 ≥ z2) is small. In this case, the2-dimensional Gaussian
Z ∼ N (0,V(β)) has a negative covariance and hence the
probability mass in the first and third quadrants are small.
Hence, the union bound is not very loose in this case.

Next, we consider the binary joint source given by
PX|Y (1|0) = PX|Y (0|1) = α and PY (0) = p ≤ 1

2 , which
is a generalization of (145). This example was investigatedin
[53], and the optimal rate region reduces to

R
∗
WAK =

{

(R1, R2) :R1 ≥ h(β ∗ α),

R2 ≥ h(p)− h(β), 0 ≤ β ≤ p
}

.

(149)

The above region is attained by setting the backward test chan-
nel fromU to Y to be BSC with some crossover probability
0 ≤ β ≤ p. All the elements in the entropy-information
dispersion matrixV(β) can be evaluated in closed form in
terms ofβ. DefineJ(β) := [h(β∗α), h(p)−h(β)]T . In Fig. 7,

0.5 0.6 0.7 0.8 0.9 1.0
R10.0
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0.6

0.8
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R2

Fig. 7. A comparison betweeñRin(n, ε) (red solid curve) and the bound
from Remark 4 (blue solid curve) forε = 0.1 andn = 1000. The regions
are to the top right of the curves.

we plot the second-order region

R̃in(n, ε) :=
⋃

0≤β≤p

{

(R1, R2) : R ∈ J(β) +
S (V(β), ε)√

n

}

.

(150)
For comparison, we also plot the second-order region derived
from Remark 4. Around the corner point defined by the
entropies[H(X |Y ), H(Y )]T = [h(β), h(p)]T , we find that
the bound from Remark 4 is tighter than that given by (150).

B. Numerical Example for GP Problem

In this section, we use an example to illustrate the inner
bound on(n, ε)-optimal rate for the GP problem obtained
in Theorem 21. We do not consider cost constraints here,
i.e., Γ = ∞. We also neglect the smallO

(

logn
n

)

term. We
consider thememory with stuck-at faultsexample [54] (see
also [1, Example 7.3]). The stateS = 0 correspond to a
faculty memory cell that output0 independent of the input
value, the stateS = 1 corresponds to a faculty memory
cell that outputs1 independent of the input value, and the
stateS = 2 corresponds to a binary symmetric channel with
crossover probabilityα. The probabilities of these states are
p
2 , p

2 , and1− p respectively.
It is known [54] that the capacity is

C∗
GP = (1− p)(1 − h(α)). (151)

The above capacity is attained by settingU = {0, 1} and
PU|X(0|0) = PU|S(1|1) = 1−α,PU|S(u|2) = 1

2 , andX = U .
All the elements in the information dispersion matrixV can be
evaluated in closed form. In Fig. 8, we plot the second-order
capacity

R̃GP(n, ε; p, α) :=(1− p)(1− h(α))

− 1√
n
min{z1 + z2 : (z1, z2) ∈ S (V, ε)}.

(152)

For comparison, let us consider the case in which the
decoder, instead of the encoder, can access the stateS. In
this case, we can regardX as the channel input and(S, Y ) as
the channel output. It is known [54] that the capacityC(W )
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Fig. 8. A comparison betweeñRGP(n, ε; p, α) (red solid line) and
C̃(n, ε; p,α) (blue solid line) forε = 0.001, p = 0.1, and α = 0.11.
The black solid line is the first-order capacity (151).

of this channel is the same as (151). The dispersionV can
be evaluated in closed form by appealing to the law of total
variance [55]. In Fig. 8, we also plot the second order capacity

C̃(n, ε; p, α) := (1− p)(1− h(α)) −
√

V

n
Q−1(ε). (153)

From the figure, we can find that the lower bound
R̃GP(n, ε; p, α) on the GP(n, ε)-optimal rate is smaller than
the (n, ε)-optimal rate with decoder side-information though
the first order rates coincide.

VIII. C ONCLUSION AND FURTHER WORK

A. Summary

In this paper, we proved new non-asymptotic bounds on
the error probability for side-information coding problems,
including the WAK, WZ and GP problems. These bounds
then yield known general formulas as simple corollaries. In
addition, we used these bounds to provide achievable second-
order coding rates for these three side-information problems.
We argued that when evaluated using i.i.d. test channels, the
second-order rates evaluated using our non-asymptotic bounds
are the best known in the literature including [6].

B. Further Work on Non-Asymptotic and Second-Order
Achievability Bounds

Other challenging problems involving the derivation of non-
asymptotic achievability bounds for multi-terminal problems
include the Heegard-Berger [1, Sec. 11.4] problem, multiple
description coding [1, Ch. 13], Marton’s inner bound for
the broadcast channel [1, Thm. 8.3], and hypothesis testing
with multi-terminal data compression [56]. Achievable second-
order coding rate regions for some of these problems have
been derived independently and concurrently by Yassaee-Aref-
Gohari [35], [38] using a completely different technique as
discussed in the Introduction but it may be interesting to verify
if the technique contained in this paper can be adapted to the
above-mentioned coding problems.

C. Further Work on Non-Asymptotic and Second-Order Con-
verse Bounds

A natural question that arises from this work is whether
one can derive non-asymptotic converse bounds that, when
suitably specialized, coincide with the second-order achiev-
ability bounds in Section VI. Apart from the Slepian-Wolf
problem [23], [44] and the Gaussian MAC with degraded
message sets [57], this has not been done for other problems
in network information theory. Because second-order converse
bounds imply the strong converse, it appears that first estab-
lishing a strong converse provides intuition for establishing
non-asymptotic converse bounds that are tight in the second-
order sense after asymptotic evaluation.

To the best of the authors’ knowledge, there are only
three approaches that may be used to obtain second-order
converses for network problems whose first-order (capacity
region) characterization involve auxiliary random variables.
The first is the information spectrum method. For example
[58, Lem. 2] provides a non-asymptotic converse bound for
the asymmetric broadcast channel. However, the evaluation
is not efficiently computable for large (or even moderate)n
as one has to perform an exhaustive search over the space
of all n-letter auxiliary random variables (or equivalentlyn-
letter joint distributions). The second is the entropy and image
size characterization technique [29] based on the blowing-up
lemma [28, Ch. 5]. This has been used to prove the strong
converse for the WAK problem [29] and the GP problem [31].
However, the use of the blowing-up approach to obtain second-
order converse bounds is not straightforward. The third method
involves a non-standard change-of-measure argument and was
used in the work of Kelly and Wagner [51, Thm. 2] to prove an
upper bound on the error exponent for WAK coding. Again, it
does not appear, at first glance, that this argument is amenable
to second-order analysis.

APPENDIX A
PROOF OFPROPOSITION1 (EXPURGATED CODE)

Proof: Let x0 ∈ X be a prescribed constant satisfying
g(x0) ≤ Γ, and letP ∗

X be the distribution such thatP ∗
X(x0) =

1, i.e.,P ∗
X(x) = 1[x = x0]. Then, we define

P̃X|MS(x|m, s) :=PX|MS(x|m, s)1 [g(x) ≤ Γ]

+ PX|MS

(

T GP
g (Γ)c|m, s

)

P ∗
X(x).

(154)

Then, it is obvious that̃PX

(

T GP
g (Γ)

)

= 1. We also have

P̃MSXY M̂ [m 6= m̂]

=
∑

m,m̂
m 6=m̂

∑

s,x,y

PM (m)PS(s)P̃X|MS(x|m, s)

×W (y|x, s)PM̂ |Y (m̂|y) (155)

=
∑

m,m̂
m 6=m̂

∑

s,x,y

PM (m)PS(s)PX|MS(x|m, s)

×W (y|x, s)PM̂ |Y (m̂|y)1 [g(x) ≤ Γ]
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+
∑

m,m̂
m 6=m̂

∑

s,x,y

PM (m)PS(s)PX|MS

(

T GP
g (Γ)c|m, s

)

× P ∗
X(x)W (y|x, s)PM̂ |Y (m̂|y) (156)

≤
∑

m,m̂
m 6=m̂

∑

s,x,y

PM (m)PS(s)PX|MS(x|m, s)

×W (y|x, s)PM̂ |Y (m̂|y)1 [g(x) ≤ Γ]

+
∑

m,m̂

∑

s,x,y

PM (m)PS(s)PX|MS

(

T GP
g (Γ)c|m, s

)

× P ∗
X(x)W (y|x, s)PM̂ |Y (m̂|y) (157)

=
∑

m,m̂
m 6=m̂

∑

s,x,y

PM (m)PS(s)PX|MS(x|m, s)

×W (y|x, s)PM̂ |Y (m̂|y)1 [g(x) ≤ Γ]

+
∑

m,s

PM (m)PS(s)PX|MS

(

T GP
g (Γ)c|m, s

)

(158)

= PMSXY M̂ [g(x) ≤ Γ ∩m 6= m̂] + PMSXY M̂ [g(x) > Γ]
(159)

= PMSXY M̂ [g(x) > Γ ∪m 6= m̂] (160)

as desired.

APPENDIX B
CHANNEL RESOLVABILITY

In this appendix, we review notations and known results for
channel resolvability [7, Ch. 6] [13] [14] [17].

As a start, we first review the properties of the variational
distance. LetP ′(U) be the set of all sub-normalized non-
negative functions (not necessarily probability distribution un-
less otherwise stated) on a finite setU . Note that ifP ∈ P ′(U)
is normalized thenP ∈ P(U), i.e.,P is a distribution onU .
ForP,Q ∈ P

′(U), we define the variational distance (divided
by 2) as

d(P,Q) =
1

2

∑

u∈U
|P (u)−Q(u)|. (161)

For two setsU and Z, let P ′(Z|U) be the set of all sub-
normalized non-negative functions indexed byu ∈ U . When
W ∈ P ′(Z|U) is normalized, it is a channel. In this section,
we denote the joint distribution induced byP ∈ P(U)
andW ∈ P ′(Z|U) as PW ∈ P ′(U × Z). The following
properties are useful in the proof of theorems. Since the proofs
are almost the same as well known properties of the variational
distance for normalized distributions, we omit the proofs.

Lemma 24. The variational distance satisfies the following
properties.

1) The monotonicity with respect to marginalization: For
P,Q ∈ P ′(U) and W,V ∈ P ′(Z|U), let P ′, Q′ ∈
P

′(Z) be

P ′(z) :=
∑

u∈U
P (u)W (z|u), Q′(z) :=

∑

u∈U
Q(u)V (z|u).

(162)
Then,

d(P ′, Q′) ≤ d(PW,QV ). (163)

2) The data-processing inequality: ForP,Q ∈ P ′(U) and
W ∈ P ′(Z|U),

d(PW,QW ) ≤ d(P,Q). (164)

In particular, whenW ∈ P(Z|U), the equality holds
in (164).

3) For a distributionP ∈ P(U), a sub-normalized mea-
sureQ ∈ P ′(U), and any subsetΓ ⊂ U ,

P (Γ) ≤ Q(Γ) + d(P,Q) +
1−Q(U)

2
. (165)

Remark 6. Combining(163) for V =W and (164), we have

d(P ′, Q′) ≤ d(P,Q). (166)

Although the above inequality is usually referred as the data-
processing inequality, we will use(164) in the proofs of non-
asymptotic bounds.

Next, we introduce the concept ofsmoothingof a distribu-
tion [59]. For a distributionP ∈ P(U) and a subsetT ⊂ U ,
a smoothed sub-normalized function̄P of P is derived by

P̄ (u) := P (u)1[u ∈ T ]. (167)

Note that the distance between the original distribution and a
smoothed one is

d(P, P̄ ) =
P (T c)

2
. (168)

Similarly, for a channelW : U → Z and a subsetT ⊂ U ×Z,
a smoothed onēW ∈ P ′(Z|U) is derived by

W̄ (z|u) :=W (z|u)1[(u, z) ∈ T ] (169)

and it satisfies

d(PW,PW̄ ) =
PW (T c)

2
, (170)

wherePW ∈ P(U × Z) is the joint distribution induced by
P andW .

Now, we consider the problem of channel resolvability. Let
a channelPZ|U : U → Z and an input distributionPU be
given. We would like to approximate the output distribution

PZ(z) =
∑

u∈U
PU (u)PZ|U (z|u) (171)

by using PZ|U and as small an amount of randomness as
possible. This is done by means of a designing a deterministic
map from a finite setI to a codebookC = {ui}i∈I ⊂ U . For
a given resolvability codeC, let

PZ̃(z) =
∑

i∈I

1

|I|PZ|U (z|ui) (172)

be the simulated output distribution. The approximation error
is evaluated by the distanced(PZ̃ , PZ).

We consider using the random coding technique as fol-
lows. We randomly and independently generate codewords
u1, u2, . . . , u|I| according toPU . To derive an upper bound
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on the averaged approximation errorEC [d(PZ̃ , PZ)], it is con-
venient to consider a smoothing operation defined as follows.
For the set

Tc(γc) :=
{

(u, z) : log
PZ|U (z|u)
PZ(z)

≤ γc

}

, (173)

let

P̄Z|U (z|u) := PZ|U (z|u)1[(u, z) ∈ Tc(γc)]. (174)

Moreover, for fixed resolvability codeC = {u1, . . . , u|I|}, let

P̄Z̃(z) :=
∑

i∈I

1

|I| P̄Z|U (z|ui). (175)

Then, we have the following lemma known assoft covering,
which is an improvement of [14, Lemma 2].

Lemma 25 (Corollary 7.2 of [17]). For any γc ≥ 0, we have

EC
[

d(P̄Z̃ , P̄Z)
]

≤ ∆(γc, PUZ)

2
√

|I|
(176)

whereP̄Z(z) =
∑

u PU (u)P̄Z|U (z|u).
Remark 7. Although the statement of [17, Corollary 7.2]
consists of two terms, the second term corresponds to the
right hand side of(176). Since our target distribution̄PZ is
smoothed, the first term of [17, Corollary 7.2] does not appear
in (176).

APPENDIX C
SIMULATION OF TEST CHANNEL

In this appendix, we develop two lemmas which form
crucial components of the proof of all CS-type bounds. To
do this, we consider the problem related to channel simu-
lation [15]–[17], [60], [61]. Roughly speaking, the problem
is described as follows. For a given message setL and a
codeC = {u1, . . . , u|L|}, our goal is to construct a stochastic
map ϕ : Z → L such that the joint distributionPL̂Z of
(ϕ(Z), Z) is indistinguishable fromPLZ̃ , wherePLZ̃ is the
joint distribution such thatuL is sent over the channelPZ|U
for the uniform random numberL on L. This is done by
the argument of thelikelihood encoder[17] (see also [62]).
However, we need to modify the argument in [17] since our
goal is, in fact, to approximate a smoothed version ofPLZ̃ .
We will use notations introduced in Appendix B.

Remark 8. In the earlier version of this paper [63], we
were considering exactly the problem of channel simulation,
where we simulate the joint distributionPUZ by the aid of the
common randomness. However, simulating the marginalPU is
unnecessary to derive bounds on WAK, WZ, and GP problems.
Thus, we consider approximation ofPLZ̃ in this paper, which
enables us to remove a residual term in [63] that stems from
the use of the common randomness.

To construct a stochastic map fromZ to L, we first consider
the channel resolvability code as follows. Let us generate a
codebookC = {u1, . . . , u|L|}, where each codewordul is
randomly and independently generated fromPU , which is the
marginal ofPUZ . LetL be the uniform random numbers onL.

Moreover, letP̄Z|U be a smoothed version ofPZ|U defined
in (174). Then,C, L, and P̄Z|U induce the sub-normalized
measure

P̄LZ̃(l, z) :=
1

|L| P̄Z|U (z|ul). (177)

Marginal P̄Z̃ is also induced as

P̄Z̃(z) =
∑

l

1

|L| P̄Z|U (z|ul). (178)

Now, we define a stochastic mapϕC : Z → L as7

ϕC(l|z) =
P̄LZ̃(l, z)

P̄Z̃(z)
. (179)

Let L̂ be the output of the stochastic mapϕC for the inputZ.
Then, the joint distribution of̂L andZ is given by

PL̂Z(l, z) = PZ(z)ϕC(l|z). (180)

We also introduce a smoothed version ofPL̂Z as follows:

P̄L̂Z(l, z) = P̄Z(z)ϕC(l|z), (181)

whereP̄Z is the marginal ofP̄UZ := PU P̄Z|U ; i.e. P̄Z(z) :=
∑

u PU (u)P̄Z|U (z|u).
Now, we prove two lemmas which can be used to evaluate

the performance of the approximation ofP̄LZ̃ .

Lemma 26. We have

d(PL̂Z , P̄LZ̃) ≤
PUZ((u, z) /∈ Tc(γc))

2
+ d(P̄L̂Z , P̄LZ̃).

(182)

Proof: By the triangular inequality, we have

d(PL̂Z , P̄LZ̃) ≤ d(PL̂Z , P̄L̂Z) + d(P̄L̂Z , P̄LZ̃). (183)

Further, we can bound the first term of the right hand side of
the above inequality as

d(PL̂Z , P̄L̂Z) = d(PZϕC , P̄ZϕC) (184)

= d(PZ , P̄Z) (185)

≤ d(PUZ , P̄UZ) (186)

=
PUZ((u, z) ∈ Tc(γc)c)

2
(187)

where (185) follows the data-processing inequality (164),
(186) follows from the monotonicity property in (163), and
(187) follows from (170).

Lemma 27. We have

EC [d(P̄L̂Z , P̄LZ̃)] ≤
∆(γc, PUZ)

2
√

|L|
. (188)

Proof: By noting that the definition ofϕC in (179) implies
P̄LZ̃ = P̄Z̃ϕC , we have

d(P̄L̂Z , P̄LZ̃) = d(P̄ZϕC , P̄Z̃ϕC) (189)

= d(P̄Z , P̄Z̃). (190)

Then, by taking the expectation with respect to the codebook
C and by invoking Lemma 25, we have the desired bound.

7When P̄
Z̃
(z) = 0, we defineϕC(l|z) arbitrarily.
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APPENDIX D
PROOF OF THEFIRST NON-ASYMPTOTIC BOUND FOR

WAK IN THEOREM 5

A. Code Construction

We construct a WAK code by using the stochastic map
introduced in Appendix C. LetZ = Y and Z = Y , that
is, let PUZ = PUY , wherePUY is the marginal of the given
distributionPUXY ∈ P(PXY ). Also let Z̃ = Ỹ per (172).
It should be noted here that, in this case,Tc(γc) defined in
(173) is equivalent toT WAK

c (γc) defined in (51). Now, let us
consider the stochastic mapϕC constructed from the smoothed
measureP̄LỸ (cf. (179)).

By usingϕC , we construct a WAK codeΦ as follows. The
main encoder uses a random bin codingf : X → M. The
helper uses the stochastic mapϕC : Y → L. That is, when
the side information isy ∈ Y, the helper generatesl ∈ L
according toϕC( · |y) and sendsl to the decoder. For given
m ∈ M and l ∈ L, the decoder outputs the uniquêx ∈ X
such thatf(x̂) = m and

(ul, x̂) ∈ T WAK
b (γb). (191)

If no such uniquêx exists, or if there is more than one such
x̂, then a decoding error is declared.

B. Analysis of Error Probability

Let L̂ be the random index chosen by the helper via the
stochastic mapϕC( · |Y ). Note that the joint distribution of̂L
andY is given as follows; cf. (180)

PL̂Y (l, y) = PY (y)ϕC(l|y) (192)

and then, the joint distribution of̂L, Y andX is given as

PL̂XY (l, x, y) = PL̂Y (l, y)PX|Y (x|y). (193)

The smoothed versions̄PL̂Y and P̄L̂XY are given by substi-
tuting PY in (192) with P̄Y ; cf. (181).

If the decoding error occurs, at least one of the following
events occurs:

E1 :=
{

(ul, x) /∈ T WAK
b (γb)

}

E2 :=
{

∃ x̃ 6= x s.t. f(x̃) = f(x), (ul, x̃) ∈ T WAK
b (γb)

}

Hence, the error probability averaged over random codingf
and the random codebookC can be bounded as

EfEC [Pe(Φ)] = EfEC
[

PL̂XY (E1 ∪ E2)
]

. (194)

Let

E12 :=
{

(u, x) : (u, x) /∈ T WAK
b (γb) or ∃ x̃ 6= x

s.t. f(x̃) = f(x), (u, x̃) ∈ T WAK
b (γb)

}

. (195)

Then, for fixedf andC, we have

PL̂XY (E1 ∪ E2)
= PL̂XY ((ul, x) ∈ E12) (196)

≤ P̄LXỸ ((ul, x) ∈ E12) +
1− P̄LXỸ (L × X × Y)

2
+ d(PL̂XY , P̄LXỸ ) (197)

= P̄LXỸ ((ul, x) ∈ E12) +
1− P̄LXỸ (L × X × Y)

2
+ d(PL̂Y PX|Y , P̄LỸ PX|Y ) (198)

≤ P̄LXỸ ((ul, x) ∈ E12) +
1− P̄LXỸ (L × X × Y)

2
+ d(PL̂Y , P̄LỸ ) (199)

≤ P̄LXỸ ((ul, x) /∈ T WAK
b (γb))

+ P̄LXỸ [∃ x̃ 6= x s.t. f(x̃) = f(x), (ul, x̃) ∈ T WAK
b (γb)]

+
1− P̄LXỸ (L × X × Y)

2
+ d(PL̂Y , P̄LỸ ) (200)

= PLXỸ ((ul, x) /∈ T WAK
b (γb) ∩ (ul, y) ∈ T WAK

c (γc))

+ P̄LXỸ [∃ x̃ 6= x s.t. f(x̃) = f(x), (ul, x̃) ∈ Tb(γb)]

+
1− P̄LXỸ (L × X × Y)

2
+ d(PL̂Y , P̄LỸ ) (201)

where (197) follows from (165) for̄PLXỸ = P̄LỸ PX|Y in
the role ofQ, and (199) follows from the data-processing
inequality (164). By taking average overC, the first term in
(201) is given by

EC
[

PLXỸ ((ul, x) /∈ T WAK
b (γb) ∩ (ul, y) ∈ T WAK

c (γc))
]

= EC

[

∑

u,x,y

∑

l

1

|L|1[ul = u]PY |U (y|u)PX|Y (x|y)

× 1[(u, x) /∈ T WAK
b (γb) ∩ (u, y) ∈ T WAK

c (γc)]

]

(202)

= PUXY ((u, x) /∈ T WAK
b (γb) ∩ (u, y) ∈ T WAK

c (γc)),
(203)

the third term in (201) is given by

EC
[

1− P̄LXỸ (L × X × Y)
]

= 1− EC

[

∑

u,x,y

∑

l

1

|L|1[ul = u]PY |U (y|u)PX|Y (x|y)

× 1[(u, y) ∈ T WAK
c (γc)]

]

(204)

= PUY ((u, y) /∈ T WAK
c (γc)), (205)

and the fourth term in (201) is upper bounded as

EC
[

d(PL̂Y , P̄LỸ )
]

≤PUY ((u, y) /∈ T WAK
c (γc))

2

+
∆(γc, PUY )

2
√

|L|
, (206)

where we used Lemma 26 and Lemma 27. Furthermore, by
taking average overf andC, the second term in (201) is upper
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bounded as

EfEC
[

P̄LXY [∃ x̃ 6= x s.t.

f(x̃) = f(x), (ul, x̃) ∈ T WAK
b (γb)]

]

= EfEC

[

∑

u,x,y

∑

l

1

|L|1[ul = u]P̄Y |U (y|u)PX|Y (x|y)

× 1[∃ x̃ 6= x s.t. f(x̃) = f(x), (u, x̃) ∈ T WAK
b (γb)]

]

(207)

= Ef

[

∑

u,x,y

P̄UXY (u, x, y)

× 1[∃ x̃ 6= x s.t. f(x̃) = f(x), (u, x̃) ∈ T WAK
b (γb)]

]

(208)

≤
∑

u,x,y

P̄UXY (u, x, y)

×
∑

x̃ 6=x

Ef [1[f(x̃) = f(x)]]1[(u, x̃) ∈ T WAK
b (γb)] (209)

≤ 1

|M|
∑

u

PU (u)
∑

x̃

1[(u, x̃) ∈ T WAK
b (γb)] (210)

=
1

|M|
∑

(u,x̃)∈T WAK
b (γb)

PU (u) (211)

where we used the fact
∑

x,y P̄UXY (u, x, y) ≤ PU (u) in
(210). Hence, by (201), (203), (205), (206), and (211), we
have

EfEC [Pe(Φ)]

= EfEC
[

PKL̂ÛXY (E1 ∪ E2)
]

(212)

≤ PUXY ((u, x) /∈ T WAK
b (γb) ∪ (u, y) /∈ T WAK

c (γc))

+
∆(γc, PUY )

2
√

|L|
+

1

|M|
∑

(u,x̃)∈T WAK
b (γb)

PU (u). (213)

Consequently, there exists at least one code(f, C) such that
Pe(Φ) is smaller than the right-hand-side of the inequality
above. This completes the proof of Theorem 5.

APPENDIX E
PROOF OF THESECOND NON-ASYMPTOTIC BOUND FOR

WAK IN THEOREM 7

To prove Theorem 7, we modify the proof of Theorem 5 as
follows. Since the analysis of error can be done in a similar
manner as Appendix D, we only show the code construction.

First, we useJ = {1, . . . , J} instead ofL in the construc-
tion of ϕC , whereJ is the given integer. Then, the helper
and the decoder are modified as follows. The helper first
uses the stochastic mapϕC : Y → J . That is, it generates
j ∈ J according toϕC( · |y) when the side information is
y ∈ Y. Then, the helper sendsj by using random bin coding
κ : J → L. This means that to everyj ∈ J , it independently
and uniformly assigns a random indexl ∈ L. For given
m ∈ M and l ∈ L, the decoder outputs the uniquêx ∈ X
such thatf(x̂) = m and

(uj , x̂) ∈ T WAK
b (γb) (214)

for somej ∈ J satisfyingκ(j) = l. If no such uniquex̂
exists, or if there is more than one suchx̂, then a decoding
error is declared.

APPENDIX F
PROOF OF THENON-ASYMPTOTIC BOUND FORWZ IN

THEOREM 8

A. Code Construction

Similar to WAK coding in the previous two sections, we use
the stochastic map introduced in Appendix C. Also, the proof
is rather similar to the WAK one so we just highlight the key
steps, pointing the reader to various points of Appendix D for
the details of the calculations.

In WZ coding, letZ = X andPUZ = PUX . Also let Z̃ =
X̃ per (172). Note thatTc(γc) defined in (173) is equivalent to
T WZ
c (γc) defined in (62). Now, let us consider the stochastic

mapϕC defined in (179).
By usingϕC , we construct a WZ codeΦ as follows. The

encoder first uses the stochastic mapϕC : X → L. That is,
it generatesl ∈ L according toϕC( · |x) when the source
output isx ∈ X . Then, the encoder sendsl by using random
bin codingκ : L → M. This means that to everyl ∈ L, it
independently and uniformly assigns a random indexm ∈ M.
For givenm ∈ M, y ∈ Y, the decoder finds the unique index
l ∈ L such thatκ(l) = m and

(ul, y) ∈ T WZ
p (γp). (215)

Then, decoder outputŝx ∈ X̂ according toPX̂|UY ( · |ul, y).
We assume that we use thestochasticreproduction function
PX̂|UY throughout. If thedeterministicreproduction function

g : U × Y → X̂ is used, the decoder outputŝx = g(ul, y).
If no uniquel satisfying (215) exists, or if there is more than
one suchl satisfying (215), then a decoding error is declared.

B. Analysis of Probability of Excess Distortion

Let L̂ be the random index chosen by the encoder via the
stochastic mapϕC( · |X). Note that the joint distribution of
L̂,X is given as follows; cf. (180)

PL̂X(l, x) = PX(x)ϕC(l|x). (216)

Next, the joint distribution of̂L,X, Y, X̂ is given as

PL̂XY X̂(l, x, y, x̂) = PL̂X(l, x)PY |X(y|x)PX̂|UY (x̂|ul, y).
(217)

The smoothed versions̄PL̂X and P̄L̂XY X̂ are given by sub-
stitutingPX in (216) with P̄X ; cf. (181).

If the distortion exceedsD, at least one of the following
events occurs:

E0 :=
{

(x, x̂) /∈ T WZ
d,st (D)

}

(218)

E1 :=
{

(ul, y) /∈ T WZ
p (γp)

}

(219)

E2 :=
{

∃ l̃ 6= l s.t. κ(l̃) = κ(l), (ul̃, y) ∈ T WZ
p (γp)

}

. (220)

Hence, the probability of excess distortion averaged over the
random codingκ and the random codebookC can be bounded
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as

EκEC [Pe(Φ;D)]

≤ EκEC
[

PL̂XY X̂(E0 ∪ E1 ∪ E2)
]

(221)

≤ EC
[

PL̂XY X̂(E0 ∪ E1)
]

+ EκEC
[

PL̂XY (E2)
]

. (222)

At first, we evaluate the first term in (222). For fixedC,

PL̂XY X̂(E0 ∪ E1)

≤ P̄LX̃Y X̂(E0 ∪ E1) +
1− P̄LX̃Y X̂(L × X × Y × X̂ )

2
+ d(PL̂XY X̂ , P̄LX̃Y X̂) (223)

≤ P̄LX̃Y X̂(E0 ∪ E1) +
1− P̄LX̃Y X̂(L × X × Y × X̂ )

2
+ d(PL̂X , P̄LX̃) (224)

= PLXY X̂((ul, x) ∈ T WZ
c (γc) ∪ (x, x̂) /∈ T WZ

d,st (D)

∪ (ul, y) /∈ T WZ
p (γp))

+
1− P̄LX̃Y X̂(L × X × Y × X̂ )

2
+ d(PL̂X , P̄LX̃) (225)

where (223) follows from (165), (224) follows from the same
reasoning that led to (199) and (225) from the same reasoning
that led to (201).

By the same reasoning that led to (203) for the WAK
problem, the expectation of the first term in (225) can be
expressed as

EC
[

PLXY X̂((ul, x) ∈ T WZ
c (γc) ∪ (x, x̂) /∈ T WZ

d,st (D)

∪ (u, y) /∈ T WZ
p (γp))

]

(226)

= PUXY X̂((u, x) ∈ T WZ
c (γc) ∪ (x, x̂) /∈ T WZ

d,st (D)

∪ (u, y) /∈ T WZ
p (γp)) (227)

By the same reasoning that led to (205) for the WAK problem,
the expectation of the second term in (225) can be evaluated
as

EC [1− P̄LX̃Y X̂(L×X ×Y×X̂ )] = PUX((u, x) /∈ T WZ
c (γc)).

(228)
Similarly to (206) for the WAK problem, the expectation of
the third term in (225) can be bounded as

EC [d(PL̂X , P̄LX̃)] ≤ PUX((u, x) /∈ T WZ
c (γc))

2
+

∆(γc, PUX)

2
√

|L|
.

(229)

Now we bound the final term in (222) using steps similar to

the ones leading to (211) for the WAK problem. We have

EκEC
[

PL̂XY (E2)
]

= EκEC

[

∑

u,x,y,l

1

|L|1[ul = u]PL̂XY U (l, x, y, u)1[∃ l̃ 6= l

s.t. κ(l̃) = κ(l), (ul̃, y) ∈ T WZ
p (γp)]

]

(230)

≤ EκEC

[

∑

u,x,y,l

1

|L|1[ul = u]PL̂XY U (l, x, y, u)

∑

l̃ 6=l

1[κ(l̃) = κ(l)] · 1[(ul̃, y) ∈ T WZ
p (γp)]

]

(231)

≤ 1

|M|EC

[

∑

u,x,y,l

1

|L|1[ul = u]PL̂XY U (l, x, y, u)

∑

l̃ 6=l

1[(ul̃, y) ∈ T WZ
p (γp)]

]

(232)

≤ |L|
|M|

∑

u,y

PU (u)PY (y)1
[

(u, y) ∈ T WZ
p (γp)]

]

(233)

=
|L|
|M|

∑

(u,y)∈T WZ
p (γp)

PU (u)PY (y). (234)

By uniting (222), (225), (227), (228), (229) and (234), we
obtain the final bound

EκEC [Pe(Φ;D)]

≤ PUXY X̂((u, x) /∈ T WZ
c (γc) ∪ (x, x̂) /∈ T WZ

d,st (D)

∪ (u, y) /∈ T WZ
p (γp))

+
∆(γc, PUX)

2
√

|L|
+

|L|
|M|

∑

(u,y)∈T WZ
p (γp)

PU (u)PY (y).

(235)

This implies there is a deterministic code whose probability
of excess distortion is no greater than the right-hand-sideof
(235). This completes the proof of Theorem 8.

APPENDIX G
PROOF OF THENON-ASYMPTOTIC BOUND FOR GP IN

THEOREM 10

Since the analysis of error probability can be done in an
almost similar manner as those of WAK and WZ, we only
show the code construction for GP.

A. Code Construction

As in WAK, we use the stochastic map introduced in
Appendix C. In GP coding, letZ = S andPUZ = PUS . Note
that that,Tc(γc) defined in (173) is equivalent toT GP

c (γc)
defined in (69) in this case.

For GP coding, we construct|M| stochastic maps. Each
stochastic map corresponds to a message inM. For each mes-
sagem ∈ M, generate a codebookC(m) = {u(m)

1 , . . . , u
(m)
|L| }

where eachu(m)
l is independently drawn according toPU .

Then, for eachC(m) (m ∈ M), construct a stochastic map
ϕC(m) as defined in (179).
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By using {ϕC(m)}m∈M, we construct a GP codeΦ as
follows. Given the messagem ∈ M and the channel state
s ∈ S, the encoder first generatesl ∈ L according to
ϕC(m)( · |s). Then, the encoder generatesx ∈ X according
to PX|US( · |u(m)

l , s) and inputsx into the channel. If the
randomly generatedx results ing(x) > Γ (i.e., the channel
input does not satisfy the cost constraint), declare an cost-
constraint violation error.8 Given the channel outputy ∈ Y,
the decoder finds the unique index̂m ∈ M such that

(u
(m̂)
l , y) ∈ T GP

p (γp) (236)

for somel ∈ L. If there is no unique index̂m ∈ M or more
than one, declare a decoding error. This is a Feinstein-like
decoder [7] for average probability of error. If no such unique
m̂ exists, or if there exists more than one suchm̂, then a
decoding error is declared.

APPENDIX H
PRELIMINARIES FOR PROOFS OF THESECOND-ORDER

CODING RATE

In this appendix, we provide some technical results that will
be used in Appendices I and K. More specifically, we will use
the following multidimensional Berry-Esséen theorem andits
corollary.

Theorem 28 (Göetze [21]). Let U1, . . . ,Un be independent
random vectors inRk with zero mean. LetSn = 1√

n
(U1 +

· · ·+Un), Cov(Sn) = I, and ξ = 1
n

∑n
i=1 E[‖Ui‖32]. Let the

standard Gaussian random vectorZ ∼ N (0, I). Then, for all
n ∈ N, we have

sup
C∈Ck

|Pr{Sn ∈ C } − Pr{Z ∈ C }| ≤ Ckξ√
n
, (237)

whereCk is the family of all convex, Borel measurable subsets
of R

k, and whereCk is a constant that depends on the
dimensionk.

It should be noted that Theorem 28 can be applied for ran-
dom vectors that are independent but not necessarily identical.

We will frequently encounter random vectors with non-
identity covariance matrices. Thus, we slightly modify The-
orem 28 in a similar manner as [23, Corollary 7] as follows.

Corollary 29. Let U1, . . . ,Un be independent random vec-
tors in R

k with zero mean. LetSn = 1√
n
(U1 + · · · + Un),

Cov(Sn) = V ≻ 0, and ξ = 1
n

∑n
i=1 E[‖Ui‖32]. Let the

Gaussian random vectorZ ∼ N (0,V). Then, for alln ∈ N,

sup
C∈Ck

|Pr{Sn ∈ C } − Pr{Z ∈ C }| ≤ Ckξ

λmin(V)3/2
√
n
,

(238)
whereCk is the family of all convex, Borel measurable subsets
of Rk, whereCk is a constant that depends on the dimension
k, and whereλmin(V) is the smallest eigenvalue ofV.

8Even if g(x) > Γ occurs, we still sendx through the channel. The error
event for this occurrence must be taken into accounted in theerror analysis.

APPENDIX I
ACHIEVABILITY PROOF OF THESECOND-ORDER CODING

RATE FOR WAK IN THEOREM 15

Proof: It suffices to show the inclusion
Rin(n, ε;PUTXY ) ⊂ RWAK(n, ε) for fixed
PUTXY ∈ P̃(PXY ).

We first consider the case such thatV = V(PUTXY ) ≻ 0.
First, note thatR ∈ Rin(n, ε;PUTXY ) implies

z̃ :=
√
n

(

R− J− 2 logn

n
12

)

∈ S (V, ε). (239)

We fix a time-sharing sequencetn ∈ T n with type Ptn ∈
Pn(T ) such that

|Ptn(t)− PT (t)| ≤
1

n
(240)

for every t ∈ T [42]. Then, we consider the test channel
given by PUn|Y n(un|yn) = Pn

U|TY (u
n|tn, yn), and we use

Corollary 6 for PUnXnY n = Pn
XY PUn|Y n by settingγb =

log |Mn| − logn, γc = log |Ln| − logn, and δ = 1
n . Then,

there exists a WAK codeΦn such that

1− Pe(Φn)

≥ Pr

{

n
∑

i=1

j(Ui, Xi, Yi|ti) ≤ nR− logn12

}

− 2

n
−
√

1

n

(241)

= Pr

{

1√
n

n
∑

i=1

(j(Ui, Xi, Yi|ti)− J) ≤ z̃+
logn√
n

12

}

− 2

n
−
√

1

n
. (242)

By using Corollary 29 to the first term of (242), we have

1− Pe(Φn) ≥ Pr

{

Z ≤ z̃+
logn√
n

12

}

−O

(

1√
n

)

(243)

= Pr{Z ≤ z̃}+O

(

logn√
n

)

(244)

≥ 1− ε (245)

for sufficiently largen, where (244) follows from the Taylor’s
approximation, and (245) follows from (239).

Next, we consider the case withV is singular but not0. In
this case, we cannot apply Corollary 29 becauseλmin(V) = 0.
Since rank(V) = 1, we can writeV = vvT by using the
vectorv. Let Ai = j(Ui, Xi, Yi|ti) − J. Then we can write
Ai = vBi by using the scalar independent random variables
{Bi}ni=1. Thus, by using the ordinary Berry-Esséen theorem
[64, Ch. XVI] for {Bi}ni=1, we can derive (245).

Finally, we consider the case whereV = 0. In this case,
by settingz̃ = 0 in (242), we can find that the right hand side
converges to1.

For the bounds on the cardinalities of auxiliary random
variables, see Appendix M.
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APPENDIX J
ACHIEVABILITY PROOF OF THESECOND-ORDER CODING

RATE FOR WAK IN THEOREM 16

Proof: We only provide a sketch of the proof because
most of the steps are the same as Appendix I. The only
modification is that we use Theorem 7 instead of Corollary
6 by settingγb = log |Mn| − ρ

√
n− logn, γc = log |Ln| +

ρ
√
n− logn, Jn = |Ln|2ρ

√
n, andδ = 1

n .

APPENDIX K
ACHIEVABILITY PROOF OF THESECOND-ORDER CODING

RATE FOR WZ IN THEOREM 18

Proof: It suffices to show the inclusion
Rin(n, ε;PUTXY , PX̂|UY T ) ⊂ RWZ(n, ε) for fixed pair

(PUTXY , PX̂|UY T ) of PUTXY ∈ P̃(PXY ) andPX̂|UY T . We
assume thatV = V(PUTXY , PX̂|UY T ) ≻ 0, since the case
whereV is singular can be handled in a similar manner as
Appendix I (see also [23, Proof of Theorem 5]).

First, note that [R,D]T ∈ Rin(n, ε;PUTXY , PX̂|UY T )
implies

z̃ :=
√
n









− 1
n log Ln

|Mn|
1
n logLn

D



− J− 2 logn

n
13



 ∈ S (V, ε)

(246)

for some positive integerLn. We fix a sequencetn ∈
T n satisfying (240) for every t ∈ T . Then, we
consider the test channel given byPUn|Xn(un|xn) =
Pn
U|TX(un|tn, xn) and the reproduction channel given by
PX̂n|UnY n(x̂n|un, yn) = Pn

X̂|UY T
(x̂n|un, yn, tn). Then,

Corollary 9 forPUnXnY nX̂n = Pn
XY PUn|XnPX̂n|UnY n with

γp = log Ln

|Mn| +logn, γc = logLn− logn, andδ = 1
n shows

that there exists a WZ code such that

1− Pe(Φn;D) ≥

Pr







n
∑

i=1

j(Ui, Xi, Yi, X̂i|ti) ≤





− log Ln

|Mn|
logLn

nD



− logn13







− 2

n
−
√

1

n
(247)

= Pr

{

1√
n

n
∑

i=1

(

j(Ui, Xi, Yi, X̂i|ti)− J
)

≤ z̃+
logn√
n

13

}

− 2

n
−
√

1

n
. (248)

Now the rest of the proof proceeds by using the multidimen-
sional Berry-Esséen theorem as in (243) to (245) for the WAK
problem.

For the bounds on the cardinalities of auxiliary random
variables, see Appendix M.

APPENDIX L
ACHIEVABILITY PROOF OF THESECOND-ORDER CODING

RATE FOR LOSSYSOURCE CODING IN THEOREM 20

We slightly modify a special case of Corollary 9 as follows,
which will be used in both Appendices L-A and L-B.

Corollary 30. For arbitrary distribution QX̂ ∈ P(X̂ ), and
for arbitrary constantsγc, ν ≥ 0 and δ, δ̃ > 0, there exists
a lossy source codeΦ with probability of excess distortion
satisfying

Pe(Φ;D) ≤ PX̂X

[

log
PX̂|X(x̂|x)
QX̂(x̂)

> γc − ν or d(x, x̂) > D

]

+ δ̃ +

√

2γc

δ̃|M|
+ δ + 2−ν . (249)

Proof: As a special case of Corollary 9, we have

Pe(Φ;D) ≤ PX̂X

[

log
PX̂|X(x̂|x)
PX̂(x̂)

> γc or d(x, x̂) > D

]

+ δ̃ +

√

2γc

δ̃|M|
+ δ, (250)

where we setγp = 0 andL = δ̃|M|. We can further upper
bound the first term of (250) as

PX̂X

[

log
PX̂|X(x̂|x)
PX̂(x̂)

> γc or d(x, x̂) > D

]

(251)

= PX̂X

[

log
PX̂|X(x̂|x)
QX̂(x̂)

+ log
QX̂(x̂)

PX̂(x̂)
> γc

or d(x, x̂) > D

]

(252)

≤ PX̂X

[

log
PX̂|X(x̂|x)
QX̂(x̂)

> γc − ν or log
QX̂(x̂)

PX̂(x̂)
> ν

or d(x, x̂) > D

]

(253)

≤ PX̂X

[

log
PX̂|X(x̂|x)
QX̂(x̂)

> γc − ν or d(x, x̂) > D

]

+ PX̂X

[

log
QX̂(x̂)

PX̂(x̂)
> ν

]

(254)

= PX̂X

[

log
PX̂|X(x̂|x)
QX̂(x̂)

> γc − ν or d(x, x̂) > D

]

+ PX̂

[

log
QX̂(x̂)

PX̂(x̂)
> ν

]

(255)

≤ PX̂X

[

log
PX̂|X(x̂|x)
QX̂(x̂)

> γc − ν or d(x, x̂) > D

]

+ 2−ν .

(256)

This completes the proof.

Remark 9. By showing Corollary 30 directly instead of via
Corollary 9, we can eliminate the residual term̃δ.

A. Proof Based on the Method of Types

To prove Theorem 20 by the method of types, we use the
following lemma.

Lemma 31 (Rate-Redundancy [25]). Suppose thatR(PX , D)
is differentiable w.r.t.D and twice differentiable w.r.t.PX at
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some neighbourhood of(PX , D). Let ε be given probability
and let∆R be any quantity chosen such that

Pn
X [R(Pxn , D)−R(PX , D) > ∆R] = ε+ gn, (257)

wheregn = O
(

log n√
n

)

. Then, asn grows,

∆R =

√

Var(j(X,D))

n
Q−1(ε) +O

(

logn

n

)

. (258)

Note that the quantityj(x,D) has an alternative represen-
tation as the derivative ofQ 7→ R(Q,D) with respect toQ(x)
evaluated atPX(x); cf. (134).

We also use the following lemma, which is a consequence
of the argument right after [65, Theorem 1].

Lemma 32. For a typeq ∈ Pn(X ), suppose that
∣

∣

∣

∂R(q,D)
∂D

∣

∣

∣ <

C for a constantC > 0 in some neighbourhood ofq. Then,
there exists a test channelV ∈ Vn(Y; q) such that

∑

x,x̂

q(x)V (x̂|x)d(x, x̂) ≤ D (259)

and

I(q, V ) ≤ R(q,D) +
τ

n
, (260)

whereτ is a constant depending onC, |X |, |X̂ |, andDmax.

Using Lemmas 31 and 32, we prove Theorem 20.
Proof: We construct a test channelPX̂n|Xn as follows.

For a fixed constant̃τ > 0, we set

Ωn =

{

q ∈ Pn(X ) : ‖Px − q‖2 ≤ τ̃ logn

n

}

. (261)

Since we assumed thatR(PX , D) is differentiable w.r.t.D
at PX , the derivative is bounded over any small enough
neighbourhood ofPX . In particular, it is bounded by some
constantC overΩn for sufficiently largen. For eachq ∈ Ωn,
we choose test channelVq ∈ Vn(Y; q) satisfying the statement
of Lemma 32. Then, we define the test channel

PX̂n|Xn(x̂
n|xn) =

{

1
|TVPxn

(xn)| if x̂n ∈ TVPxn
(xn)

0 else
(262)

for xn satisfying Pxn ∈ Ωn, and otherwise we define
PX̂n|Xn(x̂n|xn) arbitrarily as long as the channel only outputs

x̂n satisfyingdn(xn, x̂n) ≤ D. Let Pq ∈ Pn(X̂ ) be such that

Pq(x̂) =
∑

x

q(x)Vq(x̂|x). (263)

Then, letP̃n
q ∈ P(X̂n) be the uniform distribution onTPq

.
Furthermore, letQX̂n ∈ P(X̂n) be the distribution given by

QX̂n(x̂
n) =

∑

q∈Ωn

1

|Ωn|
P̃n
q (x̂

n). (264)

We now use Corollary 30 forPX = Pn
X , PX̂|X = PX̂n|Xn ,

andQX̂ = QX̂n . Then, by noting that

dn(x
n, x̂n) =

∑

x,x̂

Pxn(x)VPxn (x̂|x)d(x, x̂) > D (265)

never occurs for the test channelPX̂n|Xn , we have

Pe(Φn;D) ≤ PX̂nXn

[

log
PX̂n|Xn(x̂n|xn)

QX̂n(x̂n)
> γc − ν

]

+ δ̃ +

√

2γc

δ̃|Mn|
+ δ + 2−ν (266)

= PX̂nXn

[

1

n
log

PX̂n|Xn(x̂n|xn)
QX̂n(x̂n)

> γ̃ − logn

n

]

+

√

n2γ̃n

|Mn|
+

3

n
, (267)

where we setγc = γ̃n, δ̃ = δ = 1
n , and ν = logn.

Furthermore, by noting that

QX̂n(x̂
n) ≥ 1

|Ωn|
P̃n
q (x̂

n) (268)

for any q ∈ Ωn, we have

PX̂nXn

[

1

n
log

PX̂n|Xn(x̂n|xn)
QX̂n(x̂n)

> γ̃ − logn

n

]

(269)

≤ PX̂nXn

[

1

n
log

PX̂n|Xn(x̂n|xn)
QX̂n(x̂n)

> γ̃ − logn

n
, Pxn ∈ Ωn

]

+ PXn [Pxn /∈ Ωn] (270)

≤ PX̂nXn

[

1

n
log

PX̂n|Xn(x̂n|xn)
QX̂n(x̂n)

> γ̃ − logn

n
, Pxn ∈ Ωn

]

+
2τ̃

n2
(271)

≤ PX̂nXn

[

1

n
log

PX̂n|Xn(x̂n|xn)
P̃n
Pxn

(x̂n)

> γ̃ − logn

n
− |X | log(n+ 1)

n
, Pxn ∈ Ωn

]

+
2τ̃

n2
,

(272)

where (271) follows from [25, Lemma 2] and (272) follows
from (268) and the fact that|Ωn| ≤ |Pn(X )| ≤ (n+ 1)|X |.

Furthermore, we also have

log
PX̂n|Xn(x̂n|xn)
P̃n
Pxn

(x̂n)
= log

|TPPxn
|

|TVPxn (xn)|
(273)

= nI(Pxn , VPxn ) + O(log n). (274)

Thus, forµn = O
(

log n
n

)

, we have

Pe(Φn;D) ≤ PX̂nXn [I(Pxn , VPxn ) > γ̃ − µn, Pxn ∈ Ωn]

+O

(

1

n

)

+

√

n2γ̃n

|Mn|
(275)

≤ PX̂nXn

[

R(Pxn , D) > γ̃ − µn − τ

n
, Pxn ∈ Ωn

]

+O

(

1

n

)

+

√

n2γ̃n

|Mn|
(276)

≤ PX̂nXn

[

R(Pxn , D) > γ̃ − µn − τ

n

]
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+O

(

1

n

)

+

√

n2γ̃n

|Mn|
(277)

≤ PXn

[

R(Pxn , D) > γ̃ − µn − τ

n

]

+O

(

1

n

)

+

√

n2γ̃n

|Mn|
. (278)

Thus, by setting̃γ = R(PX , D) + ∆R, 1
n log |Mn| = γ̃ +

2 log n
n and by using Lemma 31 (withgn = O

(

logn√
n

)

being
the residual terms in (278)), we have

R(n, ε;D) ≤ R(PX , D) +

√

Var(j(X,D))

n
Q−1(ε)

+O

(

logn

n

)

(279)

for sufficiently largen, which implies the statement of the
theorem.

B. Proof Based on theD-tilted Information

Let

BD(xn) := {x̂n : dn(x
n, x̂n) ≤ D} (280)

be theD-sphere, and letPX̂⋆ be the output distribution of the
optimal test channel of

min
P
X̂|X

E[d(X,X̂)]≤D

I(X ; X̂). (281)

To prove Theorem 20 by theD-tilted information, we use the
following lemma.

Lemma 33 (Lemma 2 of [26]). Under some regularity con-
ditions, which are explicitly given in [26, Lemma 2] and
satisfied by discrete memoryless sources, there exists constants
n0, c,K > 0 such that

Pn
X

[

log
1

Pn
X̂⋆

(BD(xn))
≤

n
∑

i=1

j(xi, D) + C logn+ c

]

≥ 1− K√
n

(282)

for all n ≥ n0, whereC > 0 is a constant given by [26,
Equation (86)].

Proof: We construct test channelPX̂n|Xn as

PX̂n|Xn(x̂
n|xn) =

{

Pn

X̂⋆ (x̂
n)

Pn

X̂⋆ (BD(xn)) if x̂n ∈ BD(x
n)

0 else
.(283)

We now use Corollary 30 forPX = Pn
X , PX̂|X = PX̂n|Xn ,

QX̂ = Pn
X̂⋆

, γc = γ̃n, δ̃ = δ = 1
n and ν = logn. Then, by

noting thatdn(xn, x̂n) > D never occur for the test channel

PX̂n|Xn , we have

Pe(Φn;D)

≤ PX̂nXn

[

log
PX̂n|Xn(x̂n|xn)

Pn
X̂⋆

(x̂n)
> γ̃n− logn

]

+

√

n2γ̃n

|Mn|
+

3

n
(284)

≤ PX̂nXn

[

log
1

Pn
X̂⋆

(BD(xn))
> γ̃n− logn

]

+

√

n2γ̃n

|Mn|
+

3

n
(285)

= Pn
X

[

log
1

Pn
X̂⋆

(BD(xn))
> γ̃n− logn

]

+

√

n2γ̃n

|Mn|
+

3

n

(286)

≤ Pn
X

[

n
∑

i=1

j(xi, D) > γ̃n− (C + 1) logn− c

]

+ Pn
X

[

log
1

Pn
X̂⋆

(BD(xn))
>

n
∑

i=1

j(xi, D) + C logn+ c

]

+

√

n2γ̃n

|Mn|
+

3

n
(287)

≤ Pn
X

[

n
∑

i=1

j(xi, D) > γ̃n− (C + 1) logn− c

]

+
K√
n
+

√

n2γ̃n

|Mn|
+

3

n
, (288)

where (288) follows from Lemma 33. Thus, by settingγ̃ =
1
n log |Mn|− 2 logn

n and by applying the Berry-Esséen theorem
[64], we have (279) for sufficiently largen, which implies the
statement of the theorem.

APPENDIX M
CARDINALITY BOUND FOR SECOND-ORDER CODING

THEOREMS

The following three theorems allow us to restrict the cardi-
nalities of auxiliary random variables in second-order coding
theorems.

Theorem 34 (Cardinality Bound for WAK). For any
PUTXY ∈ P̃(PXY ), whereP̃(PXY ) is defined in VI-A, there
existsPU ′T ′XY with |U ′| ≤ |Y|+4 and |T ′| ≤ 5 such that (i)
X × Y-marginal ofPU ′T ′XY is PXY , (ii) U ′ − (Y, T ′) −X
forms a Markov chain, (iii)T ′ is independent of(X,Y ), and
(iv) PU ′T ′XY preserves the meanJ of the entropy-information
density vector and the entropy-information dispersion matrix
V, i.e.,

J(PUTXY ) = J(PU ′T ′XY ) (289)

V(PUTXY ) = V(PU ′T ′XY ). (290)

Theorem 35 (Cardinality Bound for WZ). For any pair of
PUTXY ∈ P̃(PXY ) andPX̂|UY T , whereP̃(PXY ) is defined
in VI-B, there existPU ′T ′XY andPX̂′|U ′Y T ′ : U ′×Y×T ′ →



29

X̂ with |U ′| ≤ |Y| + 8 and |T ′| ≤ 9 such that (i)X × Y-
marginal of PU ′T ′XY is PXY , (ii) U ′ − (X,T ′) − Y forms
a Markov chain, (iii)T ′ is independent of(X,Y ), and (iv)
PU ′T ′XY andPX̂′|U ′Y T ′ preserveJ andV, i.e.,

J(PUTXY , PX̂|UY T ) = J(PU ′T ′XY , PX̂′|U ′Y T ′) (291)

V(PUTXY , PX̂|UY T ) = V(PU ′T ′XY , PX̂′|U ′Y T ′). (292)

Theorem 36(Cardinality Bound for GP). For anyPUTSXY ∈
P̃(W,PS), whereP̃(W,PS) is defined in VI-C, there exists
PU ′T ′SXY with |U ′| ≤ |Y|+6 and |T ′| ≤ 9 such that (i)S ×
X×Y-marginal ofPU ′T ′SXY isPSXY , (ii) U ′−(X,S, T ′)−Y
forms a Markov chain, (iii)T ′ is independent ofS, and (iv)
PU ′T ′SXY preservesJ andV, i.e.,

J(PUTSXY ) = J(PU ′T ′SXY ) (293)

V(PUTSXY ) = V(PU ′T ′SXY ). (294)

We can prove all of the three theorems in the same manner.
Because the proof for Wyner-Ziv problem is most complicated,
we prove Theorem 35 in M-A, and then, give proof sketches
for Theorems 34 and 36 in M-B.

A. Proof of Cardinality Bound for WZ problem

To prove Theorem 35, we use variations of the support
lemma. Note that we can identifyP(X ) × P(X̂ |Y) with
a connected compact subset of|X ||X̂ ||Y|-dimensional Eu-
clidean space. Hence, as a consequence of the Fenchel-
Eggleston-Carathéodory theorem (see, e.g. [1, Appendix A]),
we have the following lemma.

Lemma 37. Let fj (j = 1, 2, . . . , k) be real-valued con-
tinuous functions onP(X ) × P(X̂ |Y). Then, for any
PU ∈ P(U) and any collection{(PX|U (·|u), PX̂|Y U (·|·, u)) :
u ∈ U} ⊂ P(X ) × P(X̂ |Y), there exist a distribu-
tion PU ′ ∈ P(U ′) with |U ′| ≤ k and a collection
{(PX′|U ′(·|u′), PX̂′|Y ′U ′(·|·, u′)) : u′ ∈ U ′} ⊂ P(X ) ×
P(X̂ |Y) such that forj = 1, 2, . . . , k,
∫

U
fj

(

PX|U (·|u), PX̂|Y U (·|·, u)
)

dPU (u)

=
∑

u′∈U ′

fj

(

PX′|U ′(·|u′), PX̂′|Y ′U ′(·|·, u′)
)

PU ′ (u′). (295)

Remark 10. Let us consider applying Lemma 37 to a case
where PX̂|Y U is a deterministic function. In this case,PU

appearing in the left hand side of(295) satisfiesPU (u) > 0
only if PX̂|Y U (·|·, u) is deterministic, i.e., for eachy there
exists x̂ satisfyingPX̂|Y U (x̂|y, u) = 1. On the other hand,
Lemma 37 does not guarantee that we can chooseU ′ and a
collection of distributions so thatPX̂′|Y ′U ′(·|·, u′) ∈ P(Y|X )
is deterministic for allu′ ∈ U ′. That is why we use a stochastic
reproduction function to establish bounds on the cardinalities
of the auxiliary random variables.

Similarly, by identifyingP(U|X ) × P(X̂ |U × Y) with a
connected compact subset of Euclidean space, we have another
variation of the support lemma.

Lemma 38. Letfj (j = 1, 2, . . . , k) be real-valued continuous
functions onP(U|X ) × P(X̂ |U × Y). Then, for anyPT ∈
P(T ) and any collection{(PU|XT (·|·, t), PX̂|UY T (·|·, ·, t)) :
t ∈ T } ⊂ P(U|X ) × P(X̂ |U × Y), there exist a dis-
tribution PT ′ ∈ P(T ′) with |T ′| ≤ k and a collec-
tion {(PU ′|X′T ′(·|·, t′), PX̂′|U ′Y ′T ′(·|·, ·, t′)) : t′ ∈ T ′} ⊂
P(U|X )× P(X̂ |U × Y) such that forj = 1, 2, . . . , k,

∫

T
fj

(

PU|XT (·|·, t), PX̂|UY T (·|·, ·, t)
)

dPT (t)

=
∑

t′∈T ′

fj

(

PU ′|X′T ′(·|·, t′), PX̂′|U ′Y ′T ′(·|·, ·, t′)
)

PT ′(t′).

(296)

Proof of Theorem 35:
1) Bound on|U ′|: Fix PUTXY ∈ P̃(PXY ). Without loss

of generality, we assume thatX = {1, 2, . . . , |X |}. Let us
consider the following|X |+8 functions: For(Q, q) ∈ P(X )×
P(X̂ |Y),

fj(Q, q) := Q(j), j = 1, 2, . . . , |X | − 1 (297)

f|X |(Q, q) := −
∑

y∈Y

[

∑

x∈X
PY |X(y|x)Q(x)

]

× log

[

∑

x∈X
PY |X(y|x)Q(x)

]

(298)

f|X |+1(Q, q) := −
∑

x∈X
Q(x) logQ(x) (299)

f|Y|+2(Q, q) :=
∑

x∈X

∑

y∈Y

∑

x̂∈X̂

Q(x)PY |X(y|x)q(x̂|y)d (x, x̂)

(300)

f|X |+3(Q, q) :=
∑

y∈Y

[

∑

x∈X
PY |X(y|x)Q(x)

]

×
{

log

[
∑

x∈X PY |X(y|x)Q(x)
]

PY (y)

}2

(301)

f|X |+4(Q, q) :=
∑

x∈X
Q(x)

{

log
Q(x)

PX(x)

}2

(302)

f|X |+5(Q, q) :=
∑

x∈X

∑

y∈Y

∑

x̂∈X̂

Q(x)PY |X(y|x)q(x̂|y)

× {d (x, x̂)}2 (303)

f|X |+6(Q, q) :=
∑

x∈X

∑

y∈Y
Q(x)PY |X(y|x)

×
(

log
PY (y)

∑

x̄∈X Q(x̄)PY |X(y|x̄)

)

×
(

log
Q(x)

PX(x)

)

(304)

f|X |+7(Q, q) :=
∑

x∈X

∑

y∈Y

∑

x̂∈X̂

Q(x)PY |X(y|x)q(x̂|y)

×
(

log
PY (y)

∑

x̄∈X Q(x̄)PY |X(y|x̄)

)

d (x, x̂)

(305)
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f|X |+8(Q, q) :=
∑

x∈X

∑

y∈Y

∑

x̂∈X̂

Q(x)PY |X(y|x)q(x̂|y)

×
(

log
Q(x)

PX(x)

)

d (x, x̂) . (306)

Fix t ∈ T . Then, Lemma 37 guarantees that there exist
PU ′|T (·|t) ∈ P(U ′) with |U ′| ≤ |X | + 8 and a collec-
tion {(PX′|U ′T (·|u′, t), PX̂′|Y ′U ′T (·|·, u′, t)) : u′ ∈ U ′} ⊂
P(X )× P(X̂ |Y) such that for allj = 1, 2, . . . , |X |+ 8,
∑

u∈U
fj

(

PX|UT (·|u, t), PX̂|Y UT (·|·, u, t)
)

PU|T (u|t)

=
∑

u′∈U ′

fj

(

PX′|U ′T (·|u′, t), PX̂′|Y ′U ′T (·|·, u′, t)
)

PU ′|T (u
′|t).

(307)

Now, we havePU ′|T , PX′|U ′T , PX̂′|Y ′U ′T satisfying (307)

for each t ∈ T . Let U ′, T,X ′, Y ′, X̂ ′ be random variables
induced byPU ′|T , PX′|U ′T , PX̂′|Y ′U ′T , andPY |X , PT , i.e., for

each(u′, t, x, y, x̂) ∈ U ′ × T × X × Y × X̂ ,

PU ′TX′Y ′X̂′(u
′, t, x, y, x̂)

:= PT (t)PU ′|T (u
′|t)PX′|U ′T (x|u′, t)PY |X(y|x)

× PX̂′|Y ′U ′T (x̂|y, u′, t). (308)

Observe thatU ′ − (T ′, Y ′) − X ′ forms a Markov chain and
that T is independent of(X ′, Y ′). Further, (307) withj =
1, . . . , |X |−1 guarantees thatPX′Y ′ = PXY . Hence, we have
PTX′Y ′ = PTPXY , and thus, we can writePU ′TX′Y ′X̂′ =
PU ′TXY X̂′ .

On the other hand, some calculations show that, for each
t ∈ T ,

H(Y |U, T = t)

=
∑

u∈U
f|X |(PX|UT (·|u, t), PX̂|Y UT (·|·, u, t))PU|T (u|t)

(309)

H(X |U, T = t)

=
∑

u∈U
f|X |+1(PX|UT (·|u, t), PX̂|Y UT (·|·, u, t))PU|T (u|t)

(310)

E[d(X, X̂|t)]
=

∑

u∈U
f|X |+2(PX|UT (·|u, t), PX̂|Y UT (·|·, u, t))PU|T (u|t)

(311)

Var

(

− log
PY |UT (Y |U, t)

PY (Y )

)

=
∑

u∈U
f|X |+3(PX|UT (·|u, t), PX̂|Y UT (·|·, u, t))PU|T (u|t)

− {H(Y )−H(Y |U, T = t)}2 (312)

Var

(

log
PX|UT (X |U, t)

PY (Y )

)

=
∑

u∈U
f|X |+4(PX|UT (·|u, t), PX̂|Y UT (·|·, u, t))PU|T (u|t)

− {H(X)−H(X |U, T = t)}2 (313)

Var
(

d(X, X̂|t)
)

=
∑

u∈U
f|X |+5(PX|UT (·|u, t), PX̂|Y UT (·|·, u, t))PU|T (u|t)

− E[d(X, X̂ |t)]2 (314)

and

Cov

(

− log
PY |UT (Y |U, t)

PY (Y )
, log

PX|UT (X |U, t)
PX(X)

)

=
∑

u∈U
f|X |+6(PX|UT (·|u, t), PX̂|Y UT (·|·, u, t))PU|T (u|t)

+ {H(Y )−H(Y |U, T = t)} {H(X)−H(X |U, T = t)} ,
(315)

Cov

(

− log
PY |UT (Y |U, t)

PY (Y )
, d(X, X̂|t)

)

=
∑

u∈U
f|X |+7(PX|UT (·|u, t), PX̂|Y UT (·|·, u, t))PU|T (u|t)

+ {H(Y )−H(Y |U, T = t)}E[d(X, X̂|t)], (316)

Cov

(

log
PX|UT (Y |U, t)

PX(X)
, d(X, X̂|t)

)

=
∑

u∈U
f|X |+8(PX|UT (·|u, t), PX̂|Y UT (·|·, u, t))PU|T (u|t)

− {H(X)−H(X |U, T = t)}E[d(X, X̂ |t)]. (317)

Thus, equations (307) and (310)–(317) guarantee that a pair
PU ′XY X̂′|T=t preserves all components ofJ andV for each
t ∈ T . By taking the average with respect toT , we can show
that the pair(PU ′TXY , PX̂′|U ′Y T ) satisfies the all conditions
of the theorem except the cardinality ofT .

2) Bound on|T ′|: Fix PUTXY X̂ ∈ P̃(PXY ) andPX̂|UY T .
By the first part of the proof, we can assume thatU = U ′

and |U| = |U ′| ≤ |X | + 8. Let us consider the following 9
functions onP(U × X × Y × X̂ ):

F1(PUXY X̂) := I(Y ;U) (318)

F2(PUXY X̂) := I(X ;U) (319)

F3(PUXY X̂) := E[d(X, X̂)] (320)

F4(PUXY X̂) := Var

(

− log
PY |U (Y |U)

PY (Y )

)

(321)

F5(PUXY X̂) := Var

(

log
PX|U (X |U)

PY (X)

)

(322)

F6(PUXY X̂) := Var
(

d(X, X̂)
)

(323)

F7(PUXY X̂) := Cov

(

− log
PY |U (Y |U)

PY (Y )
, log

PX|U (X |U)

PX(X)

)

(324)

F8(PUXY X̂) := Cov

(

− log
PY |U (Y |U)

PY (Y )
, d(X, X̂)

)

(325)

F9(PUXY X̂) := Cov

(

log
PX|U (X |U)

PX(X)
, d(X, X̂)

)

(326)

and a functionF : P(U|X )× P(X̂ |U × Y) → P(U ×X ×
Y × X̂ ) such asPUXY X̂ = F (PU|X , PX̂|UY ) satisfies

PUXY X̂(u, x, y, x̂) = PXY (x, y)PU|X(u|x)PX̂|Y U (x̂|y, u).
(327)
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Then, by applying Lemma 38 tofj(·) := Fj(F (·))
(j = 1, 2, . . . , 9), we have PT ′ ∈ P(T ′) with
|T ′| ≤ 9 and {(PU ′|X′T ′(·|·, t′), PX̂′|U ′Y ′T ′(·|·, ·, t′)) :

t′ ∈ T ′} ⊂ P(U|X ) × P(X̂ |U × Y) satisfying (296).
By PT ′ , (PU ′|X′T ′ , PX̂′|U ′Y ′T ′) and PXY , let us define
PU ′T ′X′Y ′X̂′ = PU ′T ′XY X̂′ as

PU ′T ′XY X̂′(u
′, t′, x, y, x̂′)

= PXY (x, y)PT ′ (t)PU ′|X′T ′(u′|x, t′)PX̂′|U ′Y ′T ′(x̂
′|u′, y, t′).

(328)

We can verify that the pair(PU ′T ′XY , PX̂′|U ′Y T ′) derived
from PU ′T ′XY X̂′ satisfies the conditions of the theorem.

B. Proof Sketches of Cardinality Bounds for WAK and GP
problems

Proof of Theorem 34:We fix t ∈ T and then consider
the following |Y|+4 quantities:|Y| − 1 elementsPY (y) (y =
1, 2, . . . , |Y|−1) of PY , the conditional entropyH(X |U, T =
t), the mutual informationI(U ;Y |T = t), two variances
on the diagonals ofCov(j(U,X, Y |t)), and the covariance
in the upper part ofCov(j(U,X, Y |t)). Then, in the same
manner as the first part of the proof for Wyner-Ziv problem,
we can choose a random variableU ′ ∼ PU ′|T=t ∈ P(U)
with |U ′| ≤ |Y|+4 which preserves the marginal distribution
PXY |T=t, E[j(U,X, Y |t)], andCov(j(U,X, Y |t)). By taking
the average with respect toT , we can show thatU ′ satisfies
the conditions of the theorem. Further, in the same way as the
second part of the proof for Wyner-Ziv problem, we can show
that T ′ with |T ′| ≤ 5 preserves the following five quantities:
two elements ofJ, two variances along the diagonals ofV,
and the covariance in the upper part ofV.

Proof of Theorem 36: We fix t ∈ T and then con-
sider the following |S||X | + 6 quantities: |S||X | − 1 ele-
mentsPSX(s, x) of PSX , two mutual informationsI(U ;Y |t),
I(U ;S|t), two variancesVar(logPY |UT (Y |U, t)/PY |T (Y |t)),
Var(− logPS|UT (S|U, t)/PS(S)), and three covariances in the
strict upper triangular part ofCov(j(U, S,X, Y |t)). Note that,
if the marginal distributionPSXY |T=t is preserved then the
averageE[g(XT )|T = t] and the varianceVar(g(XT )|T = t)
of g(XT ) with respect to the distributionPX|T=t is auto-
matically preserved. Hence, in the same manner as the first
part of the proof for Wyner-Ziv problem, we can choose
a random variableU ′ ∼ PU ′|T=t ∈ P(U) with |U ′| ≤
|S||X |+6 which preserves the marginal distributionPSX|T=t,
E[j(U, S,X, Y |t)], and Cov(j(U, S,X, Y |t)). By taking the
average with respect toT , we can show thatU ′ satisfies the
conditions of the theorem. Further, in the same way as the
second part of the proof for Wyner-Ziv problem, we can show
thatT ′ with |T ′| ≤ 5 preserves the following nine quantities:
three elements ofJ, three variances along the diagonals ofV,
and three covariances in the strict upper triangular part ofV.
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