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Abstract—The Bethe approximation is a well-known approx-
imation of the partition function used in statistical physics.
Recently, an equality relating the partition function and its
Bethe approximation was obtained for graphical models with
binary variables by Chertkov and Chernyak. In this equality, the
multiplicative error in the Bethe approximation is represented as
a weighted sum over all generalized loops in the graphical model.
In this paper, the equality is generalized to graphical models with
non-binary alphabet using concepts from information geometry.

Index Terms—Partition function, Bethe approximation, holo-
graphic transformation, loop calculus, information geometry.

I. I NTRODUCTION

COMPUTING the partition function is one of the central
problem in statistical physics, information theory, ma-

chine learning and computer science. While the exact compu-
tation of the partition function is generally#P-hard, the Bethe
approximation provides an easily computable estimate whose
accuracy is quite good for many problems [1], [2]. The Bethe
approximation is traditionally defined by a heuristic method
called the cluster variation method (CVM) [3]. However, it is
generally difficult to give theoretical guarantees on the Bethe
approximation from the idea of the CVM. Recently, Chertkov
and Chernyak showed an equality relating the partition func-
tion and its Bethe approximation for graphical models with
the binary alphabet, which is

Z(G) = ZBethe(G)



1 +
∑

γ∈G

K(γ)



 (1)

whereZ(G) is the partition function,ZBethe(G) is its Bethe
approximation,G is a set of subsets of edges called generalized
loops andK(γ) is a (possibly negative) weight of a generalized
loop γ ∈ G [4]. This equality means that the error in the
Bethe approximation can be expressed as the weighted sum
over all generalized loops in the graphical model. In contrast
to other well-known loop (or diagram) series expansions of
the Gibbs free energy and the entropy functionals [5], [6],
in Chertkov and Chernyak’s loop calculus (1), the error in
the Bethe approximation is represented by the loop series.
From this property, (1) is useful not only for improvement
of the Bethe approximation [7], [8] but also for bounding the
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error in the Bethe approximation [9], [10] although the exact
computation of the summation for generalized loops is still
#P-hard in general. The equality (1) is also generalized for
more general CVM approximation [11]. Similar expansion of
the error in the Bethe approximation is recently known in [12].

While (1) was derived based on some properties of fixed
point of belief propagation in [13], Chertkov and Chernyak
derived (1) based on a general equality, called holographic
transformation, with particular constraints that requires zero
weights for non-loop structures in [4], [14], [15]. Since the
Bethe approximation naturally appears from the constraints,
it gives a new characterization of the Bethe approximation.
Furthermore, in [15], (1) is generalized to graphical mod-
els with non-binary alphabets in a recursive way. However,
the representation of the equation is less explicit and there
sometimes exist difficulties in the recursive method. Based
on the derivation of Chernyak and Chertkov in [15] and
concepts from information geometry, this paper derives (1)
in an explicit form for general graphical models with non-
binary alphabets. Our equations cover all equations obtained
by Chertkov and Chernyak’s idea. This result is useful for
the Bethe approximation for graphical models with non-binary
alphabets and also for region-based approximation for binary
graphical models [11].

This paper is organized as follows. In Section II, the factor
graph model and notations used in this paper are defined.
In Section III, the Bethe approximation and belief propaga-
tion are defined. In Section IV, generalizations of the loop
calculus to non-binary alphabets are shown, which are the
main results of this paper. In the section, we use tools of
information geometry shown in Appendix A. In Section V,
it is shown that the weights of simple generalized loops for
non-binary alphabets can be represented as trace of product
of matrices. In Section VI, the loop calculus is generalized
to continuous alphabets, which is originally obtained by Xiao
and Zhou [16]. Furthermore, it is simplified for the Gaussian
model. In Section VII, simple examples of improvement of
the approximation using loop calculus are shown by numerical
calculations for the weighted coloring problem.

II. FACTOR GRAPH AND PRELIMINARIES

In this paper, we deal with a general graphical model called
a factor graph [17]. LetV andF be a set of variable nodes
and a set of factor nodes, respectively. LetE ⊆ V ×F be a set
of edges. Let∂i ⊆ F and∂a ⊆ V be neighborhoods ofi ∈ V
anda ∈ F , respectively. Letdi andda be a degree of variable
nodei ∈ V and a degree of factor nodea ∈ F , respectively.
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For each variable nodei ∈ V , there is a corresponding variable
xi taking a value on the alphabet setXi. The alphabet sets are
assumed to be finite unless otherwise stated. For the simplicity,
we assume that the alphabet set is common for alli ∈ V and
hence is denoted byX . Let q be the cardinality of the alphabet
X . For C ⊆ V , xC denotes(xi)i∈C . For each variable node
i ∈ V and a factor nodea ∈ F , there are corresponding
functionshi : X → R>0 and fa : X da → R≥0, respectively.
Here, it is assumed thatda ≥ 2 for all a ∈ F . Let N be
the number of variable nodes in a factor graph. Then, the
probability measure onXN defined by the factor graphG =
(V, F,E, (hi)i∈V , (fa)a∈F ) is

p(x;G) :=
1

Z(G)

∏

a∈F

fa(x∂a)
∏

i∈V

hi(xi)

whereZ(G) is a constant for the normalization defined by

Z(G) :=
∑

x∈XN

∏

a∈F

fa(x∂a)
∏

i∈V

hi(xi).

The constantZ(G) is called a partition function. Historically,
Z(G) has been defined for exponential families. Hence,Z(G)
can be regarded as a function of natural parameters (see also
Appendix A). This is the reason whyZ(G) is called a partition
function. Generally the computation of the partition function
is #P-hard. Hence, the efficient accurate approximation is a
worthwhile goal. An example of a factor graph is shown in
Fig. 1. If all variable nodes have degree 2, a factor graph is
also called a normal factor graph [18], [19]. General factor
graph can be transformed to a normal factor graph with
the same partition function by replacing edges by degree-2
variable nodes and by replacing variable nodes by the equality
constraints.

Let Sa ⊆ X da be the support offa, i.e., Sa := {x∂a ∈
X da | fa(x∂a) > 0} for all a ∈ F . Assume thatSa ∩ {x∂a ∈
X da | xi = z} 6= ∅ for any (i, a) ∈ E and z ∈ X . Let
S ⊆ XN be the support ofp, i.e., S :=

⋂

a∈F {x ∈ XN |
x∂a ∈ Sa}. Let P(Ω) be the set of probability measures on a
setΩ. Let 〈·〉p′ be the expectation with respect to a probability
measurep′. Let δ(x, y) be a function taking 1 ifx = y and
0 if x 6= y. Let |A| be the cardinality of a setA. For any
x, z ∈ A, let Lx,z be the(x, z)-element of a matrixL indexed
by an element of a setA. Let Lt be the transpose of a matrix
L.

III. B ETHE APPROXIMATION AND BELIEF PROPAGATION

In this section, the Bethe approximation is defined for an
approximation of the partition function of a factor graph.
The Bethe approximation is defined based on a variational
representation of the partition function.

Definition 1 (Gibbs free energy). For p′ ∈ P(S), the Gibbs
free energy of a factor graphG is defined as

FGibbs(p
′) := UGibbs(p

′)−HGibbs(p
′)

a1 a2 a3 a4 a5

i1 i2 i3 i4 i5 i6 i7

Fig. 1. An example of factor graph. Variable nodes and factornodes are
described by circles and squares, respectively. The set of variable nodes, the
set of factor nodes and the set of edges areV = {i1, i2, i3, i4, i5, i6, i7},
F = {a1, a2, a3, a4, a5} and E = {(i1, a1), (i1, a3), (i2, a2), (i2, a4),
(i3, a1), (i3, a4), (i4, a3), (i4, a5), (i5, a2), (i5, a4), (i5, a5),
(i6, a1), (i6, a2), (i7, a3), (i7, a5)}, respectively.

where

UGibbs(p
′) := −

∑

a∈F

∑

x∈S

p′(x) log fa(x∂a)

−
∑

i∈V

∑

x∈S

p′(x) log hi(xi)

HGibbs(p
′) := −

∑

x∈S

p′(x) log p′(x).

Here,UGibbs andHGibbs are called the Gibbs average energy
and the Gibbs entropy, respectively.

Then, it holds− logZ(G) = minp′ FGibbs(p
′). The min-

imum is achieved byp′ = p. Instead of approximating the
partition function directly, we consider an approximationfor
the Gibbs free energy. Since the domainP(S) of the Gibbs
free energy generally needs exponentially many variables and
inequalities, a polytope consisting of marginal distributions is
considered for approximations.

Definition 2 (Marginal polytope). The marginal polytope
M(G) ⊆ P(X )N ×

∏

a∈F P(Sa) is defined by

M(G) :=
{

((p′i ∈ P(X ))i∈V , (p
′
a ∈ P(Sa))a∈F ) |

∃p′ ∈ P(S), p′i(zi) =
∑

x∈S,xi=zi

p′(x), ∀i ∈ V, ∀zi ∈ X ,

p′a(z∂a) =
∑

x∈S,x∂a=z∂a

p′(x), ∀a ∈ F, ∀z∂a ∈ X da

}

.

In general, the marginal polytope still needs exponentially
many inequalities to guarantee the existence of a consistent
global distributionp′ ∈ P(XN ). For reducing the number of
variables and inequalities in the representation, a set of the
marginal distributions which only satisfies local constraints is
considered.

Definition 3 (Local marginal polytope). The local marginal
polytopeL(G) ⊆ P(X )N ×∏a∈F P(Sa) is defined by

L(G) :=
{

((bi ∈ P(X ))i∈V , (ba ∈ P(Sa))a∈F ) |
ba ∈ P(Sa), ∀a ∈ F,

bi(zi) =
∑

x∂a\{i},xi=zi

ba(x∂a), ∀(i, a) ∈ E, ∀zi ∈ X
}

.
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Obviously, the local marginal polytopeL(G) is a superset of
the marginal polytopeM(G), i.e.,M(G) ⊆ L(G). If a factor
graphG is cycle-free, it holdsL(G) = M(G) since one can
explicitly construct a global distributionp′ ∈ P(S) consistent
with the marginal distributions((bi ∈ P(X ))i∈V , (ba ∈
P(Sa))a∈F ) ∈ L(G).
Lemma 4 ([20]). If G is cycle-free,L(G) = M(G).

Proof: SinceG is cycle-free,L(G) has at leastq vertices.
It is sufficient to show that interior points ofL(G) are included
in M(G). Assume((bi ∈ P(X ))i∈V , (ba ∈ P(Sa))a∈F ) ∈
L(G) satisfiesba(x∂a) > 0 for all a ∈ F and x∂a ∈ Sa.
Then, we will show that

p′(x) =
∏

a∈F

ba(x∂a)
∏

i∈∂a bi(xi)

∏

i∈V

bi(xi), x ∈ XN (2)

is a valid distribution whose support isS, and is consistent
with the local marginals((bi)i∈V , (ba)a∈F ). It is obvious that
p′ is non-negative andp′(x) = 0 for x /∈ S. One can
also confirm that (2) is normalized, i.e.,

∑

x∈S p
′(x) = 1

as follows. First, (2) is expanded as

p′(x) =
∏

a∈F

(

1 +
ba(x∂a)−

∏

i∈∂a bi(xi)
∏

i∈∂a bi(xi)

)

∏

i∈V

bi(xi)

=
∑

F ′⊆F

∏

a∈F ′

ba(x∂a)−
∏

i∈∂a bi(xi)
∏

i∈∂a bi(xi)

∏

i∈V

bi(xi).

Since a graphG is assumed to be cycle-free, for any non-
emptyF ′ ⊆ F , there existaF ′ ∈ F ′ and iF ′ ∈ ∂aF ′ such
that (∂aF ′ \ {iF ′}) ∩ ∂a = ∅ for all a ∈ F ′ \ {aF ′}. Hence,
∑

x∈XN p′(x) is equal to

∑

F ′⊆F

∑

x∈XN

∏

a∈F ′

ba(x∂a)−
∏

i∈∂a bi(xi)
∏

i∈∂a bi(xi)

∏

i∈V

bi(xi)

= 1 +
∑

F ′⊆F,F ′ 6=∅

∑

x∈XN

baF ′ (x∂aF ′ )−
∏

i∈∂aF ′
bi(xi)

biF ′ (xiF ′ )

·
∏

a∈F ′\{aF ′}

ba(x∂a)−
∏

i∈∂a bi(xi)
∏

i∈∂a bi(xi)

∏

i∈V \(∂aF ′\{iF ′})

bi(xi)

= 1.

The last equality holds since
∑

x∂a
F ′ \{iF ′ }

[baF ′ (x∂aF ′ ) −
∏

i∈∂aF ′
bi(xi)] = 0 holds from the definition of the local

marginal polytope. Hence,p′ ∈ P(S). In a similar way, it can
be also shown that((bi)i∈V , (ba)a∈F ) are marginal distribu-
tions ofp′, which concludes((bi)i∈V , (ba)a∈F ) ∈ M(G) and
L(G) = M(G) for a cycle-free factor graphG.

For a cycle-free factor graphG, the global distribution (2)
is a unique consistent distribution among all distributions onS
which can be factorized into the formq(x) =

∏

a∈F f
′
a(x∂a)

for some (f ′
a : Sa → R>0)a∈F since ((bi)i∈V , (ba)a∈F )

can be regarded as the expectation parameters for an
appropriate exponential family [21]. On the other hand, the
local marginal polytope is strictly larger than the marginal
polytope if a factor graph includes a cycle. For example,
let X = {0, 1}, V = {i1, i2, i3}, F = {a12, a23, a31}, E =
{(i1, a12), (i1, a31), (i2, a12), (i2, a23), (i3, a23), (i3, a31)}

and Sa = {0, 1}2 for all a ∈ F . Let us consider
((bi)i∈V , (ba)a∈F ) defined by bi(0) = bi(1) = 1/2
for all i ∈ V , and ba(0, 1) = ba(1, 0) = 1/2 and
ba(0, 0) = ba(1, 1) = 0 for all a ∈ F . Then, it satisfies all
of the local constraints, and hence is an element of the local
marginal polytope. However, there is no global distribution
consistent with((bi)i∈V , (ba)a∈F ) since in any assignment
on the three binary variables, at least one of the three pairs
must take the same values.

Since it holdsM(G) ( L(G) in general, each element
((bi)i∈V , (ba)a∈F ) in L(G) is called pseudo-marginals. There
are only few known exceptions of graphical modelG which in-
cludes cycles butL(G) = M(G). The most popular example
would be perfect matching on the complete bipartite graph, for
which the local marginal polytope coincides with the marginal
polytope although the corresponding factor graph includes
many cycles. This fact is known as Birkhoff-von Neumann
theorem, which states that the set of doubly stochastic matrices
is equal to the convex hull of the set of the permutation
matrices [22]. Note that it is recently shown that for perfect
matching on the (non-bipartite) complete graph, the marginal
polytope needs exponentially many inequalities [23].

The Bethe free energy is an approximation of the Gibbs free
energy, which can be understood from the above observations
of the local marginal polytope and exactness for cycle-free
factor graphs,

Definition 5 (Bethe free energy [1], [24]). The Bethe free
energy is defined for pseudo-marginals((bi)i∈V , (ba)a∈F ) ∈
L(G) as

FBethe((bi)i∈V , (ba)a∈F )

:= UBethe((bi)i∈V , (ba)a∈F )−HBethe((bi)i∈V , (ba)a∈F )

where

UBethe((bi)i∈V , (ba)a∈F )

:= −
∑

a∈F

∑

x∂a∈Sa

ba(x∂a) log fa(x∂a)

−
∑

i∈V

∑

xi∈X

bi(xi) log hi(xi)

HBethe((bi)i∈V , (ba)a∈F )

:= −
∑

a∈F

∑

x∂a∈Sa

ba(x∂a) log ba(x∂a)

+
∑

i∈V

(di − 1)
∑

xi∈X

bi(xi) log bi(xi).

Since for a cycle-free factor graphG, it holds L(G) =
M(G) and (2) is the unique consistent global distribution,
the minimization of the Gibbs free energy is equivalent to the
minimization of the Bethe free energy. From this property,
the minimum of the Bethe free energy would be considered
also for factor graphs with cycles as an approximation of the
minimum of the Gibbs free energy. The Bethe free energy
is often explained by the CVM [3]. There are also other
characterizations by the Plefka expansion [5], [25], the method
of graph covers [26] and the loop calculus [15], which is the
main topic of this paper. Since the minimum of the Gibbs free
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energy is− logZ(G), the minimum of the Bethe free energy
is regarded as an approximation for− logZ(G).

Definition 6 (Bethe approximation). The Bethe approximation
for the partition function of the factor graphG is defined as

ZBethe(G)

:= exp

{

− min
((bi)i∈V ,(ba)a∈F )∈L(G)

FBethe((bi)i∈V , (ba)a∈F )

}

.

The Bethe approximationZBethe((bi)i∈V , (ba)a∈F ) at pseudo-
marginals((bi)i∈V , (ba)a∈F ) ∈ L(G) is defined as

exp {−FBethe((bi)i∈V , (ba)a∈F )} .
When the factor graphG is cycle-free, the Bethe free

energy is convex and has the unique minimum which is
exactly− logZ(G) since the Bethe free energy is essentially
equivalent to the Gibbs free energy due to the representa-
tion (2) of the unique consistent global distribution. Since the
Bethe entropy is generally neither convex nor concave, it is
difficult to solve the minimization problem of the Bethe free
energy. On the other hand, one can consider the stationary
condition for the Lagrangian of the minimization problem,
which is a necessary condition of the minimum of the Bethe
free energy. The stationary condition for the Lagrangian of
the minimization problem can be shown by using internal
variables((mi→a,ma→i) ∈ P(X )2)(i,a)∈E as follows.

Lemma 7 (Stationary condition of the Bethe free energy [27]).
A pseudo-marginal((bi)i∈V , (ba)a∈F ) ∈ L(G) is a stationary
point of the Bethe free energy if and only if there exists a
representation

ba(x∂a) =
1

Za((mi→a)i∈∂a)
f(x∂a)

∏

i∈∂a

mi→a(xi)

bi(xi) =
1

Zi((ma→i)a∈∂i)
hi(xi)

∏

a∈∂i

ma→i(xi) (3)

=
1

Zi,a(mi→a,ma→i)
mi→a(xi)ma→i(xi), ∀a ∈ ∂i

where

Za((mi→a)i∈∂a) :=
∑

x∂a∈Sa

f(x∂a)
∏

i∈∂a

mi→a(xi)

Zi((ma→i)a∈∂i) :=
∑

xi∈X

hi(xi)
∏

a∈∂i

ma→i(xi)

Zi,a(mi→a,ma→i) :=
∑

xi∈X

mi→a(xi)ma→i(xi).

Here,(mi→a(x))(i,a)∈E and (ma→i(x))(i,a)∈E are any prob-
ability measures onX satisfying

mi→a(x) ∝ hi(x)
∏

a′∈∂i\{a}

ma′→i(x)

ma→i(x) ∝
∑

x∂a∈Sa,xi=x

fa(x∂a)
∏

j∈∂a\{i}

mj→a(xj).
(4)

Although an efficient algorithm finding the exact minimum
the Bethe free energy has not been known, one can consider
the following simple heuristic algorithm which tries to find
the minimum of the Bethe free energy.

Definition 8 (Belief propagation (BP)). Belief propagation is a
message-passing algorithm starting from some initial condition
(m

(0)
a→i(x))(i,a)∈E in which messages are updated according

to the following rules fort = 1, 2, . . .

m
(t)
i→a(x) ∝ hi(xi)

∏

a′∈∂i\{a}

m
(t−1)
a′→i (x)

m
(t)
a→i(x) ∝

∑

x∂a∈Sa,xi=x

fa(x∂a)
∏

j∈∂a\{i}

m
(t−1)
j→a (xj).

If BP converges to a fixed point, which is not guaranteed,
then one obtains a stationary point of the Bethe free energy.
Also, the fixed point is not necessarily the global minimum of
the Bethe free energy.

By elementary calculations, the following clear representa-
tion of the Bethe free energy is obtained at stationary points.

Lemma 9. For ((bi)i∈V , (ba)a∈F ) ∈ L(G) satisfying the
stationary condition, it holds that

FBethe((bi)i∈V , (ba)a∈F ) = −
∑

a∈F

logZa((mi→a)i∈∂a)

−
∑

i∈V

logZi((ma→i)a∈∂i) +
∑

(i,a)∈E

logZi,a(mi→a,ma→i)

and hence

ZBethe((bi)i∈V , (ba)a∈F ) =
∏

a∈F

Za((mi→a)i∈∂a)

·
∏

i∈V

Zi((ma→i)a∈∂i)
∏

(i,a)∈E

1

Zi,a(mi→a,ma→i)
. (5)

The condition(4) is also the stationary condition for the right-
hand sides of the above two equations [2, Proposition 14.8].

Let IS(FBethe) be the set of stationary points of the Bethe
free energy in the interior
{

((bi ∈ P(X ))i∈V , (ba ∈ P(Sa))a∈F ) ∈ L(G) |
bi(xi) > 0, ∀i ∈ V, xi ∈ X , ba(x∂a) > 0, ∀a ∈ F,x∂a ∈ Sa

}

of L(G).
Note that there is a dual definition of the Bethe approxima-

tion using the Legendre transformation from the log-partition
function to the minus entropy while the above definition uses
the Legendre transformation from the minus entropy to the
log-partition function [28], [29], [30]. Although it is also an
interesting characterization of the Bethe approximation,we
only introduce the following result, which is related to the
dual definition, and is easily confirmed by using the equations
in Lemma 7.

Lemma 10 ([31]). For any ((bi)i∈V , (ba)a∈F ) ∈ IS(FBethe),
it holds

∏

a∈F

fa(x∂a)
∏

i∈V

hi(xi) = ZBethe((bi)i∈V , (ba)a∈F )

·
∏

a∈F

ba(x∂a)
∏

i∈∂a bi(xi)

∏

i∈V

bi(xi), for x ∈ XN

Z(G) = ZBethe((bi)i∈V , (ba)a∈F )

·
∑

x∈XN

∏

a∈F

ba(x∂a)
∏

i∈∂a bi(xi)

∏

i∈V

bi(xi). (6)
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The equation (1) can be proved by expanding the right-
hand side of (6) [13]. On the other hand, the proof of (1)
based on a general equality was shown in [15], in which the
Bethe approximations at stationary points naturally appear on
some conditions. In other word, the proof of (1) in [15] gives
a new characterization of the Bethe approximation. In the next
section, (1) is generalized using the idea shown in [15].

IV. H OLOGRAPHIC TRANSFORMATION AND LOOP

CALCULUS FOR FINITE ALPHABET

A. Holographic transformation and Holant theorem

To introduce loop calculus, we use the idea of local linear
transformations in [15]. This idea can be recognized as a
holographic transformation (also called gauge transformation
in physics). Holographic transformations were introducedby
Valiant [32] and simplified in [18]. The explanation of (1) by
holographic transformation is also mentioned in [19]. First, we
assume thatfa(x∂a) has the following representation

fa(x∂a) =
∑

y∂a∈Yda

f̂a(y∂a)
∏

i∈∂a

φi,a(xi, yi) (7)

for each a ∈ F for some setY and φi,a : X × Y → R.
Generally, this representation can be obtained when|Y| ≥ |X |
by letting

f̂a(y∂a) =
∑

x∂a∈X da

fa(x∂a)
∏

i∈∂a

φ̂i,a(yi, xi) (8)

for someφ̂i,a : Y × X → R whereφi,a and φ̂i,a satisfy
∑

y∈Y

φi,a(x, y)φ̂i,a(y, z) = δ(x, z) (9)

for all (i, a) ∈ E. The linear transformation (8) is called
the holographic transformation. When|Y| < |X |, there is no
choice ofφi,a andφ̂i,a satisfying (9). Even for this latter case,
if it holds that

fa(x∂a) =
∑

z∂a∈X da

fa(z∂a)
∏

i∈∂a

ψi,a(xi, zi)

whereψi,a(x, z) :=
∑

y∈Y φi,a(x, y)φ̂i,a(y, z), i.e., fa(x∂a)
is an eigenvector of

∏

i∈∂a ψi,a(x, z) corresponding to an
eigenvalue 1, it also holds (7) and (8). When we have the
representation (7) offa(x∂a) for all a ∈ F , one obtains

Z(G) =
∑

x∈XN

∏

a∈F

fa(x∂a)
∏

i∈V

hi(xi)

=
∑

x∈XN

∏

a∈F





∑

y∂a∈Yda

f̂a(y∂a)
∏

i∈∂a

φi,a(xi, yi)





∏

i∈V

hi(xi)

=
∑

x∈XN

∑

y∈Y|E|

∏

a∈F

(

f̂a(y∂a,a)
∏

i∈∂a

φi,a(xi, yi,a)

)

∏

i∈V

hi(xi)

=
∑

y∈Y|E|

∏

a∈F

f̂a(y∂a,a)
∏

i∈V

(

∑

x∈X

hi(x)
∏

a∈∂i

φi,a(x, yi,a)

)

.

Here,y∂a,a := (yi,a)i∈∂a. By letting

ĥi(yi,∂i) :=
∑

x∈X

hi(x)
∏

a∈∂i

φi,a(x, yi,a)

hi fa

(a)

hi faδ

(b)

hi faφi,a φ̂i,a

(c)

ĥi f̂a

(d)

Fig. 2. A graphical explanation of the Holant theorem on the condition
|Y| ≥ |X |. (a) A pair of connected variable node and factor node in a factor
graph. (b) The equality constraint and new variable node areinserted to an
edge. (c) The equality constraint is separated intoφi,a and φ̂i,a. Here, for
every edge in the factor graph, an original edge (a) is transformed to (c).
Then, the summations for all of the filled variable nodes in the factor graph
are taken. (d) The new representation for the partition function is obtained.

one obtains

Z(G) =
∑

y∈Y|E|

∏

a∈F

f̂a(y∂a,a)
∏

i∈V

ĥi(yi,∂i) (10)

where yi,∂i := (yi,a)a∈∂i. The equation (10) is called the
Holant theorem in [32], [18]. A graphical explanation of the
Holant theorem is shown in Fig. 2. Even if the original weights
fa and hi are non-negative, new weightŝfa and ĥi are not
necessarily non-negative. Note that (10) holds on any com-
mutative ring once one has (7). Many equalities including (1)
in information theory, machine learning and computer science
can be understood by the Holant theorem [19].

B. Loop calculus for the binary alphabet

In the following, we assumeY = X . In this case, the
condition (9) is equivalent to

∑

x∈X

φ̂i,a(y, x)φi,a(x,w) = δ(y, w) (11)

i.e.,φi,a represents the inverse matrix of a matrix represented
by φ̂i,a. Let 0 be an arbitrary fixed element inX . In (10),
variables assigned not to0 is regarded as chosen edges. In
order to fixφi,a and φ̂i,a explicitly for the loop calculus, we
employ the following additional conditions for alli ∈ V and
a ∈ F

f̂a(y∂a,a) = 0, whenyi,a = 0 for all but onei ∈ ∂a (12)

ĥi(yi,∂i) = 0, whenyi,a = 0 for all but onea ∈ ∂i. (13)

The conditions (12) and (13) are considered in [15]. When the
conditions (12) and (13) are satisfied, onlyy ∈ X |E| satisfying

{(i, a) ∈ E | yi,a 6= 0}
∈ {E′ ⊆ E | di(E′) 6= 1, ∀i ∈ V, da(E

′) 6= 1, ∀a ∈ F} =: G

can have non-zero weight in (10) wheredi(E′) := |{a ∈ F |
(i, a) ∈ E′}| andda(E′) := |{i ∈ V | (i, a) ∈ E′}|. Elements
in G are called generalized loops. An example of generalized
loop is shown in Fig. 3. From (12), it holds

∑

x∂a∈X da



fa(x∂a)
∏

j∈∂a\{i}

φ̂j,a(0, xj)



 φ̂i,a(y, xi) = 0

(14)
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Fig. 3. Generalized loops on a connected factor graph. Five generalized
loops are shown. The sets of red thick edges correspond to generalized loops.

for any y ∈ X \ {0} and any(i, a) ∈ E. The equation (14)
means

∑

x∂a\{i}∈X da

fa(x∂a)
∏

j∈∂a\{i}

φ̂j,a(0, xj) (15)

must be orthogonal with[φ̂i,a(y, xi)]xi∈X for all y ∈ X \{0}.
Sinceq−1 q-dimensional vectors{[φ̂i,a(y, xi)]xi∈X }y∈X\{0}

are linearly independent, theq-dimensional vector (15) is
uniquely determined up to a constant factor. From the con-
dition (11), the same condition is also required forφi,a(xi, 0).
Hence, (15) must be proportional toφi,a(xi, 0). From the
diagonal constraints of (11), one obtains

φi,a(xi, 0) =
1

f̂a(0)

∑

x∂a\{i}∈X da

fa(x∂a)
∏

j∈∂a\{i}

φ̂j,a(0, xj)

(16)
where0 is the all-0 assignment. For the same reason, from (11)
and (13), one obtains

φ̂i,a(0, x) =
1

ĥi(0)
hi(x)

∏

b∈∂i\{a}

φi,b(x, 0). (17)

Conversely, if the conditions (11), (16) and (17) are sat-
isfied then the conditions (12) and (13) are also satisfied.
Hence, the set of conditions (11), (16) and (17) is equiv-
alent to the set of conditions (11), (12) and (13). In the
following, we considerφi,a and φ̂i,a satisfying the con-
ditions (11), (16) and (17). From the conditions (16) and
(17), (φ̂i,a(0, x), φi,a(x, 0))(i,a)∈E must be proportional to
(mi→a(x),ma→i(x))(i,a)∈E which is a fixed point of BP
equations (4). Although any complex solution of BP equa-
tions (4) is allowed, here, only non-negative real solutions are
considered for the simplicity. Then, one obtains

φi,a(x, 0) = ci,ama→i(x), φ̂i,a(0, x) = ĉi,ami→a(x) (18)

whereci,a andĉi,a are arbitrary constants satisfyingci,aĉi,a =
1/Zi,a(mi→a,ma→i). The choice of the constants does
not change each weight ofy ∈ X |E| in (10) since the
constants appear in (10) as the productci,aĉi,a. For the
same reason, the transformation(φi,a(x, y), φ̂i,a(y, x))x∈X →
(ci,a(y)φi,a(x, y), 1/ci,a(y)φ̂i,a(y, x))x∈X does not change
each of the weight in (10) for any constantci,a(y) and
any y ∈ X , and hence we do not have to distinguish
(φi,a(x, y), φ̂i,a(y, x))x∈X up to the constant factor for each
y ∈ X . Since it holds

f̂a(0) = Za ((mi→a)i∈∂a)
∏

i∈∂a

ĉi,a

ĥi(0) = Zi ((ma→i)a∈∂i)
∏

a∈∂i

ci,a

and from (5), the weight of the all-0 assignment in (10)
is ZBethe((bi)i∈V , (ba)a∈F )). In this context, the stationary
condition (4) of the Bethe free energy and the Bethe parti-
tion function naturally appear only from the conditions (12)
and (13). Hence, this story gives a new characterization of
the Bethe approximation. The significant result was obtained
in [15].

On the other hand, there is no constraint for
(φi,a(x, y), φ̂i,a(y, x))x∈X ,y∈X\{0} except for (11). Hence,
there still exist degrees of freedom for the choices of
(φi,a(x, y), φ̂i,a(y, x))x∈X ,y∈X\{0}. For the binary alphabet,
i.e., X = {0, 1}, the vectors(φi,a(x, 1), φ̂i,a(1, x))x∈X are
uniquely determined up to a constant factor, e.g.,

φi,a(x, 1) = (−1)x̄ci,ami→a(x̄)

φ̂i,a(1, x) = (−1)x̄ĉi,ama→i(x̄)
(19)

where 0̄ := 1 and 1̄ := 0. From (18) and (19), Chertkov
and Chernyak’s result for the binary alphabet is obtained as
follows.

Lemma 11 (Loop calculus for the binary alphabet [4]).
Assume that the alphabet is binary, i.e.,X = {0, 1}. For any
((bi)i∈V , (ba)a∈F ) ∈ IS(FBethe), it holds

Z(G) = ZBethe((bi)i∈V , (ba)a∈F )
∑

E′⊆E

KG(E
′) (20)

where

KG(E
′) :=

∏

a∈F

〈

∏

i∈∂a, (i,a)∈E′

Xi − ηi
√

〈(Xi − ηi)2〉bi

〉

ba

·
∏

i∈V

〈(

Xi − ηi
√

〈(Xi − ηi)2〉bi

)di(E
′)〉

bi

.

In the first factor of the weight,(Xi)i∈∂a is a random variable
takingx∂a ∈ {0, 1}da with probabilityba(x∂a). In the second
factor of the weight,Xi is a binary random variable taking
0 and 1 with probabilitybi(0) and bi(1), respectively. In the
above equation,ηi := 〈Xi〉bi = bi(1).
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Proof: It holds

Z(G) =
∑

y∈{0,1}|E|

∏

a∈F

f̂a(y∂a,a)
∏

i∈V

ĥi(yi,∂i)

= ZBethe

∑

y∈{0,1}|E|

∏

a∈F

〈

∏

i∈∂a

φ̂i,a(Xi, yi,a)

φ̂i,a(Xi, 0)

〉

ba

·
∏

i∈V

〈

∏

a∈∂i

φi,a(Xi, yi,a)

φi,a(Xi, 0)

〉

bi

= ZBethe

∑

E′⊆E

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′

φ̂i,a(Xi, 1)

φ̂i,a(Xi, 0)

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

φi,a(Xi, 1)

φi,a(Xi, 0)

〉

bi

= ZBethe

∑

E′⊆E

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′

(−1)X̄imi→a(X̄i)ma→i(X̄i)

mi→a(0)mi→a(1)

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

(−1)X̄imi→a(X̄i)ma→i(X̄i)

ma→i(0)ma→i(1)

〉

bi

.

Finally, (3),Xi − ηi = (−1)X̄ibi(X̄i) and 〈(Xi − ηi)2〉bi =
bi(0)bi(1) complete the proof.

Obviously,Xi is not necessarily(0, 1)-binary random vari-
able and can be regarded as any(ui, vi)-binary random
variable forui 6= vi for every i ∈ V .

C. Loop calculus for non-binary finite alphabets

For non-binary alphabets, as mentioned before, there still
exist degrees of freedom for the choices of(φi,a(x, y),
φ̂i,a(y, x))x∈X ,y∈X\{0}. When the fixed point of the BP
equation chosen for (18) is inIS(FBethe), without loss of
generality,(φi,a(x, y), φ̂i,a(y, x))x∈X ,y∈X\{0} can be written
in the form

φi,a(x, y) = φi,a(x, 0)A
i,a
y (x)

φ̂i,a(y, x) = φ̂i,a(0, x)B
i,a
y (x)

for some (Ai,a
y (x))x∈X ,y∈X\{0} and (Bi,a

y (x))x∈X ,y∈X\{0}

sinceφi,a(x, 0) and φ̂i,a(0, x) are non-zero for all(i, a) ∈ E
andx ∈ X . Then, the condition (11) is equivalent to a set of
conditions

∑

x∈X

φ̂i,a(0, x)φi,a(x, y) =
〈

Ai,a
y (Xi)

〉

bi
= 0

∑

x∈X

φ̂i,a(y, x)φi,a(x, 0) =
〈

Bi,a
y (Xi)

〉

bi
= 0

(21)

for y ∈ X \ {0} and
∑

x∈X

φ̂i,a(y, x)φi,a(x,w) =
〈

Ai,a
w (Xi)B

i,a
y (Xi)

〉

bi
= δ(y, w)

(22)

for y, w ∈ X \ {0}. From the conditions (21),Ai,a
y (x) and

Bi,a
y (x) can be written in the forms

Ai,a
y (x) =

∂ log bi(x)

∂ηi,ay

, Bi,a
y (x) =

∂ log bi(x)

∂θi,ay

(23)

wherebi is regarded as a point of two parametric families with
parametersθi,a and ηi,a representing an open set ofP(X )
(See also [21, Section 2.5]). Obviously, the conditions (21)
are satisfied by (23). Conversely, any full-rankAi,a

y (x) and
Bi,a

y (x) satisfying (21) can be written in the forms (23) since
both of them have the degrees of freedom represented by
invertible(q− 1)× (q− 1) real matrix. On the forms (23), the
condition (22) is

〈

∂ log bi(Xi)

∂θi,ay

∂ log bi(Xi)

∂ηi,aw

〉

bi

= δ(y, w). (24)

This condition implies thatθi,a andηi,a are affine coordinate
systems for dual connections [21, Section 3.3]. Indeed, the
natural parameterθi,a and the expectation parameterηi,a for
an exponential family satisfies (24), which is shown in (45)
in Appendix A. The following theorem is obtained from (18)
and

φi,a(x, y) = φi,a(x, 0)
∂ log bi(x)

∂ηi,ay

φ̂i,a(y, x) = φ̂i,a(0, x)
∂ log bi(x)

∂θi,ay

(25)

whereθi,a andηi,a are the natural parameter and the expec-
tation parameter, respectively, ofbi as a(q − 1)-dimensional
exponential family representingP(X ) using arbitrary chosen
sufficient statisticti,a(x).

Theorem 12 (Loop calculus for non-binary finite alphabets).
For any ((bi)i∈V , (ba)a∈F ) ∈ IS(FBethe), (20) holds where

KG(E
′) :=

∑

yE′∈(X\{0})|E′|

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′

∂ log bi(Xi)

∂θi,ayi,a

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

∂ log bi(Xi)

∂ηi,ayi,a

〉

bi

. (26)

Proof: Similarly to the proof of Lemma 11, one obtains

Z = ZBethe

∑

y∈X |E|

∏

a∈F

〈

∏

i∈∂a

φ̂i,a(Xi, yi,a)

φ̂i,a(Xi, 0)

〉

ba

·
∏

i∈V

〈

∏

a∈∂i

φi,a(Xi, yi,a)

φi,a(Xi, 0)

〉

bi

.

The equation (26) is obtained by substituting (25) into the
above formula.

Remark1. Although this paper only uses algebraic aspects
of the tangent vectors of exponential family of distributions
on a finite set, since the relationship (24) plays a key role
in the theory of duality in information geometry, and since
the representation using the tangent vectors for loop calculus
gives meaning of weights as in the next lemma and also as
in Section V, the author would like to emphasize that the
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concepts from information geometry plays an important role
in this paper.

Let us confirm that for any choice of(φi,a(x, y),
φ̂i,a(y, x))x∈X ,y∈X\{0} satisfying (11), there exists the choice
of sufficient statistics such that (25) holds, i.e., (25) covers all
linear transformations satisfying the conditions (11), (12) and
(13). LetLi,a be an arbitrary invertible(q−1)×(q−1) real (or
possibly complex as mentioned at the end of this subsection)
matrix whose rows and columns are indexed byX \ {0}, and
let

t
′i,a
y (x) :=

∑

w∈X\{0}

Li,a
y,wt

i,a
w (x) (27)

for all y ∈ X \ {0}. Since any functiont(x) : X → R can be
represented by linear combination of{ez(x) := I{x = z} |
z ∈ X \ {0}} up to translations, we only have to consider
linear transformations between sufficient statistics. Thelinear
transformation of sufficient statistic affects to the coordinate
systems as

θ
′i,a
y =

∑

w∈X\{0}

Ri,a
y,wθ

i,a
w , η

′i,a
y =

∑

w∈X\{0}

Li,a
y,wη

i,a
w

whereRi,a := (Li,a−1)t. The linear transformation of suffi-
cient statistic affects to the tangent vectors as

∂ log bi(x)

∂η
′i,a
y

=
∑

w∈X\{0}

∂ log bi(x)

∂ηi,aw

∂ηi,aw

∂η
′i,a
y

=
∑

w∈X\{0}

∂ log bi(x)

∂ηi,aw

Ri,a
y,w (28)

∂ log bi(x)

∂θ
′i,a
y

=
∑

w∈X\{0}

∂ log bi(x)

∂θi,aw

∂θi,aw

∂θ
′i,a
i,y

=
∑

w∈X\{0}

∂ log bi(x)

∂θi,aw

Li,a
y,w. (29)

Hence, the degrees of freedom for(φi,a(x, y),
φ̂i,a(y, x))x∈X ,y∈X\{0} in the form of (25) can be represented
by (q−1)×(q−1) invertible matrices. The degrees of freedom
for (φi,a(x, y), φ̂i,a(y, x))x∈X ,y∈X\{0} satisfying (18) and
(11) also can be represented by(q − 1) × (q − 1) invertible
matrices. Hence, the forms (18) and (25) can express all
choices satisfying the conditions (11), (12) and (13).

From (28) and (29), it can be confirmed that the weight
KG(E

′) in (26) does not depend on the choice of sufficient

statistics as follows

∑

yE′∈(X\{0})|E′|

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′

∂ log bi(Xi)

∂θ
′i,a
yi,a

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

∂ log bi(Xi)

∂η
′i,a
yi,a

〉

bi

=
∑

yE′∈(X\{0})|E′|

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′





∑

w∈X\{0}

∂ log bi(Xi)

∂θi,aw

Li,a
yi,a,w





〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′





∑

v∈X\{0}

∂ log bi(Xi)

∂ηi,av

Ri,a
yi,a,v





〉

bi

=
∑

wE′∈(X\{0})|E′|,vE′∈(X\{0})|E′|

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′

∂ log bi(Xi)

∂θi,awi,a

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

∂ log bi(Xi)

∂ηi,avi,a

〉

bi

·
∏

(i,a)∈E′





∑

y∈X\{0}

Li,a
y,wi,a

Ri,a
y,vi,a



 .

In the last factor of the above equation, it holds
∑

y∈X\{0} L
i,a
y,wi,a

Ri,a
y,vi,a = δ(wi,a, vi,a), and henceKG(E

′)
is independent of the choice of sufficient statistics. The
above equalities mean that the two representations can be
transformed to each other via holographic transformation on
KG(E

′). Note that the weight of generalized loop coincides
with what is obtained in [16] for continuous alphabets. The
details are shown in Appendix C. The expression (26) can be
further simplified by carefully choosing the sufficient statistics.

Lemma 13. If one chooses a common sufficient statisticti(x)
for ti,a(x) for eachi ∈ V and all a ∈ ∂i such that the Fisher
information matrix is diagonal atbi for all i ∈ V , then it
holds

KG(E
′) =

∑

yE′∈(X\{0})|E′|

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′

tiyi,a
(Xi)− ηiyi,a

√

〈(

tiyi,a
(Xi)− ηiyi,a

)2〉

bi

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

tiyi,a
(Xi)− ηiyi,a

√

〈(

tiyi,a
(Xi)− ηiyi,a

)2〉

bi

〉

bi

.

Proof: Let θi andηi be the natural parameters and the
expectation parameters with respect toti(x). For the weight
of factor nodes, it always holds

∂ log bi(xi)

∂θiyi,a

= tiyi,a
(xi)− ηiyi,a

.
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For the weight of variable nodes, it also always holds

∂ log bi(xi)

∂ηiyi,a

=
∑

w∈X\{0}

∂θiw
∂ηiyi,a

∂ log bi(xi)

∂θiw
.

From Appendix A, ∂θi
w

∂ηi
yi,a

is the(w, yi,a)-element of the Fisher

information matrix Jbi(η
i). When the Fisher information

matrix is diagonal, it holds

∂ log bi(xi)

∂ηiyi,a

=
1

Jbi(θ
i)yi,a,yi,a

∂ log bi(xi)

∂θiyi,a

=
tiyi,a

(xi)− ηiyi,a
〈

(

tiyi,a
(Xi)− ηiyi,a

)2
〉

bi

.

Since the Fisher information matrixJbi(θ
i) is symmetric

real and positive-definite, there exists an orthogonal matrix U
such thatUJbi(θ

i)U t =: D is a positive diagonal matrix.
By the transformation (27), the Fisher information matrix
is transformed toJbi(θ

′i) = LiJbi(θ
i)Li t. Hence, if one

choosesLi = D′V D−1/2U for some orthogonal matrix
V and some diagonal matrixD′, it holds J (θ′i) = D′2.
The above discussion shows the existence of the choice of
sufficient statistics for the diagonal Fisher information matrix.
The degrees of freedom for the choice of sufficient statistics
for Lemma 13 are represented by the(q−1)×(q−1) diagonal
matrix D′ and the(q − 1) × (q − 1) orthogonal matrixV
for each variable node. Since as mentioned before, a constant
multiplication to each[tiy(x)]x∈X does not change the weight
of eachyE′ ∈ (X \ {0})|E′|, one may regard that the degrees
of freedom are represented by a(q − 1)× (q − 1) orthogonal
matrix for each variable node.

Although the expressions

φi,a(x, y) = φi,a(x, 0)
∂ log bi(x)

∂θi,ay

φ̂i,a(y, x) = φ̂i,a(0, x)
∂ log bi(x)

∂ηi,ay

(30)

also satisfy (11), we use the representation (25) in this paper
since (25) gives a clear representation of weights of certain
types of generalized loops as shown in Section V. Note that
even when one chooses common sufficient statistics for all
i ∈ V anda ∈ F for (25), it does not generally hold that the
corresponding sufficient statistics for the representation (30)
are the common for alli ∈ V anda ∈ F .

As mentioned in Section IV-A, (10) holds on an arbitrary
commutative ring. As a simple example, let us consider the
generalization of Theorem 12 to the complex field. For given
stationary point of the Bethe free energy, complex matricescan
be used in (27). It gives a simple generalization of Theorem 12
to the complex field. More generally, the complex solutions
of the BP equation (4) can be used for Theorem 12. Since at
least in the author’s knowledge, no one has been considered the
complex solutions of the BP equation, it may be an interesting
direction of research. When the local functionshi andfa take
values in the complex field or finite field, if one has a solution
of the BP equation (4), one obtains equations similarly to

Theorem 12 although the degrees of freedom for(φi,a(x, y),

φ̂i,a(y, x))x∈X ,y∈X\{0} cannot be expressed by using tangent
vectors on the information manifold. In that case, there also
exists a difficulty that the constantsZa, Zi andZi,a can be
zero. This problem may also appear in the recursive approach
of loop calculus for non-binary alphabets [15]. Some tech-
niques used in statistical physics, e.g., Hubbard-Stratonovich
transformation and representation of the equality constraint
by an integral of auxiliary variable [14], may be regarded
as a holographic transformation usingY = R. Relationship
between the holographic transformation and the field theory
in physics seems interesting.

D. Loop calculus for marginal distributions

In this subsection, Lemma 11 and Theorem 12 are gen-
eralized to marginal distributions. Letg : X |C| → C be an
arbitrary function forC ⊆ V . Then, it holds

Z(G)〈g(XC)〉p =
∑

x∈XN

g(xC)
∏

a∈F

fa(x∂a)
∏

i∈V

hi(xi).

If g takes a real non-negative value,Z(G)〈g(XC)〉p can be
regarded as a partition function of a modified factor graph
in which new factor node corresponding tog is added to
the original factor graph. Hence, Lemma 11 and Theorem 12
can be applied to the modified factor graph. On the other
hand, the same holographic transformation in Lemma 11 and
Theorem 12 can be used forZ(G)〈g(XC)〉p. From this idea,
the following Lemmas are obtained.

Lemma 14. Assume that the alphabet is binary, i.e.,X =
{0, 1}. Let C ⊆ V , FC := {a ∈ F | ∂a ⊆ C},
E(FC) := {(i, a) ∈ E | a ∈ FC} and g : X |C| → C. For
any ((bi)i∈V , (ba)a∈F ) ∈ IS(FBethe),

Z(G)〈g(XC)〉p
= ZBethe((bi)i∈V , (ba)a∈F )

∑

E′⊆E\E(FC)

Kg
G(E

′) (31)

where

Kg
G(E

′) :=
∏

a∈F\FC

〈

∏

i∈∂a, (i,a)∈E′

Xi − ηi
√

〈(Xi − ηi)2〉bi

〉

ba

·
∏

i∈V \C

〈(

Xi − ηi
√

〈(Xi − ηi)2〉bi

)di(E
′)〉

bi

·
〈

g(XC)
∏

i∈C

(

Xi − ηi
√

〈(Xi − ηi)2〉bi

)di(E
′)〉

bC

.

Here, 〈·〉bC is a pseudo-expectation with respect to an un-
normalized distribution

bC(xC) =
∏

i∈C

bi(xi)
∏

a∈FC

ba(x∂a)
∏

i∈∂a bi(xi)
.
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Proof: By transformingfa only for a /∈ FC , one obtains

Z(G)〈g(XC)〉p
=

∑

yE\E(FC )∈{0,1}|E\E(FC)|

∏

a∈F\FC

f̂a(y∂a)
∏

i∈V \C

ĥi(y∂i)

·
(

∑

xC

g(xC)
∏

i∈C



hi(xi)
∏

a∈∂i,a/∈FC

φi,a(xi, yi,a)





·
∏

a∈FC

fa(x∂a)

)

.

One obtains the lemma from the proof of Lemma 11 and

∏

i∈C



hi(xi)
∏

a∈∂i,a/∈FC

ma→i(xi)





∏

a∈FC

fa(x∂a)

=
∏

i∈C

Zi

∏

a∈FC

Za
∏

i∈∂a Zi,a

∏

i∈C

bi(xi)
∏

a∈FC

ba(x∂a)
∏

i∈∂a bi(xi)
.

The un-normalized distributionbC is regarded as the Bethe
approximation for marginal distribution onxC [2, Chapter 19].
The weightKg

G(∅) of the empty graph is the Bethe approx-
imation 〈g(XC)〉bC of expectation ofg(xC). Lemma 14 for
single variable, i.e.,|C| = 1, was obtained in [7] and [29].
Lemma 14 can be generalized to non-binary alphabets as
follows.

Lemma 15. Let C ⊆ V and g : X |C| → C. For any
((bi)i∈V , (ba)a∈F ) ∈ IS(FBethe), it holds (31) where

Kg
G(E

′) :=
∑

yE′∈(X\{0})|E′|

∏

a∈F\FC

〈

∏

i∈∂a,(i,a)∈E′

∂ log bi(Xi)

∂θi,ayi,a

〉

ba

·





∏

i∈V \C

〈

∏

a∈∂i,(i,a)∈E′

∂ log bi(Xi)

∂ηi,ayi,a

〉

bi





·
〈

g(XC)
∏

i∈C,(i,a)∈E′

∂ log bi(Xi)

∂ηi,ayi,a

〉

bC

.

If one chooses a common sufficient statisticti(xi) for ti,a(xi)
for eachi ∈ V and alla ∈ ∂i such that the Fisher information
matrix is diagonal atbi for all i ∈ V , then it holds

Kg
G(E

′) =
∑

yE′∈(X\{0})|E′|

∏

a∈F\FC

〈

∏

i∈∂a,(i,a)∈E′

tiyi,a
(Xi)− ηiyi,a

√

〈(

tiyi,a
(Xi)− ηiyi,a

)2〉

bi

〉

ba

·
∏

i∈V \C

〈

∏

a∈∂i,(i,a)∈E′

tiyi,a
(Xi)− ηiyi,a

√

〈(

tiyi,a
(Xi)− ηiyi,a

)2〉

bi

〉

bi

·
〈

g(XC)
∏

i∈C,(i,a)∈E′

tiyi,a
(Xi)− ηiyi,a

√

〈(

tiyi,a
(Xi)− ηiyi,a

)2〉

bi

〉

bC

.

Proof of Lemma 15 is omitted since it is straightforward
from the proofs of Theorem 12 and Lemma 14. While in
Lemma 11 and Theorem 12, only generalized loops have
non-zero weight, in Lemmas 14 and 15, the weight is non-
zero only forE′ ∈ {E′ ⊆ E \ E(FC) | di(E′) 6= 1, ∀i ∈
V \ C, da(E′) 6= 1, ∀a ∈ F \ FC}, i.e., the weightKg

G(E
′)

can be non-zero even ifdi(E′) = 1 for i ∈ C. Let 1(x) = 1
for x ∈ X |C|. Then, one also obtains from Lemma 15 that

〈g(XC)〉p =

∑

E′⊆E\E(FC) K
g
G(E

′)
∑

E′⊆E\E(FC) K1

G(E
′)

= 〈g(XC)〉bC

+

∑

E′⊆E\E(FC)

(

Kg
G(E

′)− 〈g(XC)〉bCK1

G(E
′)
)

∑

E′⊆E\E(FC)K1

G(E
′)

. (32)

This expression is useful for considering a relationship be-
tween〈g(XC)〉p and 〈g(XC)〉bC .

V. SIMPLIFICATIONS FOR SIMPLE GENERALIZED LOOPS

Generally, it needs exponential time to take the summation
in (26). In this subsections, simple expressions of weights
KG(E

′) andKg
G(E

′) are obtained for some simpleE′ ⊆ E.
They allow efficient computation of the weights. The weights
of a one-dimensional factor graph can be calculated by the
transfer matrix method.

Lemma 16 (Transfer matrix). Let S be aq× q matrix whose
(x1, xN )-element is

Sx1,xN
:=

∑

(x2,...,xN−1)∈XN−2

N−1
∏

i=1

fi(xi, xi+1)

for N ≥ 2. Then,S = F1F2 · · ·FN−1 whereFi is a q × q
matrix whose(x, z)-element isfi(x, z).

Proof: The lemma is proved by induction. The lemma is
trivial for N = 2. The induction step is shown by

Sx1,xN
=
∑

x2∈X

f1(x1, x2)
∑

(x3,...,xN−1)∈XN−3

N−1
∏

i=2

fi(xi, xi+1)

=
∑

x2∈X

f1(x1, x2) (F2F3 · · ·FN−1)x2,xN
.

As a corollary of Lemma 16, a partition function of a
cycle graph in which variablesx1 and xN are identified is
∑

x∈X Sx,x = tr(F1 · · ·FN−1). Hence, the weightKG(E
′)

of a generalized loopE′ ∈ {E′ ⊆ E | di(E′) ∈ {0, 2}, ∀i ∈
V, da(E

′) ∈ {0, 2} ∀a ∈ F,E′ is connected} =: S can be
represented as a trace of the product of matrices. Here, a
generalized loop inS is called a simple generalized loop. In
the following, we assume that a common sufficient statistic
ti(x) is used forti,a(x) in (26). Then, in (26), the weight
of degree-two variable node is an element of the Fisher
information matrixJbi(η

i) with respect to the expectation
parameterηi, which is the inverse matrix of the Fisher infor-
mation matrixJbi(θ

i) with respect to the natural parameter
θi. Since (y, w)-element of the Fisher information matrix
Jbi(θ

i) with respect to the natural parameterθi is
〈

(tiy(Xi)−
ηiy)(t

i
w(Xi)− ηiw)

〉

bi
, Jbi(θ

i) is called a variance matrix and
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denoted byVarbi [t
i(Xi)]. Similarly, the weight of degree-two

factor node is
〈

(tiyi,a
(Xi)− ηiyi,a

)(tjyj,a
(Xj)− ηjyj,a

)
〉

ba
. The

corresponding matrix is called a covariance matrix and denoted
by Covba [t

i(Xi), t
j(Xj)]. Then, from the transfer matrix

method, the weightKG(E
′) of a simple generalized loop

E′ = {(i1, a1), (i2, a1), (i2, a2), . . . , (iℓ, aℓ), (i1, aℓ)} ∈ S is

tr
(

Varbi1 [t
i1(Xi1 )]

−1Covb(i1,i2)
[ti1(Xi1), t

i2 (Xi2)]

·Varbi2 [t
i2 (Xi2)]

−1 · · ·Covb(iℓ,i1)
[tiℓ (Xiℓ), t

i1 (Xi1)]
)

.

By defining a correlation matrix as

Corba [t
i(Xi), t

j(Xj)] := Varbi [t
i(Xi)]

−1/2

· Covba [ti(Xi), t
j(Xj)]Varbj [t

j(Xj)]
−1/2

the following lemma is obtained.

Lemma 17. The weightKG(E
′) of a simple generalized loop

E′ = {(i1, a1), (i2, a1), (i2, a2), . . . , (iℓ, aℓ), (i1, aℓ)} is

tr

(

Corba1
[ti1 (Xi1), t

i2 (Xi2)]Corba2
[ti2 (Xi2), t

i3 (Xi3)]

· · ·Corbaℓ
[tiℓ(Xiℓ), t

i1 (Xi1)]

)

.

The following corollary is obtained for a single-cycle factor
graph.

Corollary 18. For a single-cycle factor graph, it holds

Z(G) = ZBethe((bi)i∈V , (ba)a∈F )

·
(

1 + tr
(

Corba1
[ti1(Xi1), t

i2 (Xi2)]

· · ·Corbaℓ
[tiℓ(Xiℓ), t

i1(Xi1)]
))

.

The transfer matrix method is also useful for the weight
of one-dimensionalE′ in Lemma 15. For a tree factor graph,
Theorem 12 simply means the Bethe approximation is exact.
However, Lemma 15 is useful even for a tree factor graph.

Corollary 19 (Correlation matrix on a tree factor graph [29,
Proposition B.1]). For a tree factor graphG, the correlation
matrix for i, j ∈ V is decomposed to

Corp[t
i(Xi), t

j(Xj)] = Corp[t
i(Xi), t

i1 (Xi1)]

· Corp[ti1 (Xi1), t
i2(Xi2)] · · ·Corp[tiℓ(Xiℓ), t

j(Xj)]

where (i, i1 ∈ V, i2 ∈ V, . . . , iℓ ∈ V, j) is the unique path
from i to j.

Proof: Whenℓ = 0, i.e., i andj are adjacent, the lemma
is trivial. For ℓ ≥ 1, it is sufficient to prove

Covp[t
i(Xi), t

j(Xj)] = Covp[t
i(Xi), t

i1 (Xi1)]

· Corp[ti1(Xi1 ), t
i2(Xi2)]

· · ·Corp[til−1 (Xil−1
), tiℓ(Xiℓ)]Covp[t

iℓ(Xiℓ), t
j(Xj)].

Recall that for a tree factor graph, the set of pseudo-marginals
((bi)i∈V , (ba)a∈F ) on the stationary point of the Bethe free

energy is unique and consists of exact marginal distributions.
Let C = {i, j} and

g(xi, xj) = (tik(xi)− ηik)(t
j
l (xj)− ηjl )

=
∂ log bi(xi)

∂θik

∂ log bj(xj)

∂θjl

for arbitrary fixedk, l ∈ X \ {0} for Lemma 15. In this case,
FC = ∅. SinceZG(E

′) = 0 for E′ ⊆ E generating degree-
one variable node or degree-one factor node except fori and
j, ZG(E

′) can be non-zero only forE′ = ∅ andE′ being
the set of edges in the unique path betweeni and j. Since
bC(xi, xj) = bi(xi)bj(xj), the weight of the empty set is
zero. The corollary is obtained from Lemmas 15 and 16 and
〈

g(XC)
∂ log bi(Xi)

∂ηiyi,a

∂ log bj(Xj)

∂ηjyj,a′

〉

bC

=

〈

∂ log bi(Xi)

∂θik

∂ log bi(Xi)

∂ηiyi,a

〉

bi

·
〈

∂ log bj(Xj)

∂θjl

∂ log bj(Xj)

∂ηjyj,a′

〉

bj

= δ(k, yi,a)δ(l, yj,a′).

Lemma 15 can be also used for generalizing Corollary 19
to correlation among more than two variables and to general
factor graphs. Lemma 15 may be also useful for bounding
correlations by a sum of weights among all paths like [33]
and [34].

VI. L OOP CALCULUS FOR CONTINUOUS ALPHABETS

In this section, loop calculus is generalized to continuous
alphabets. A generalization of loop calculus to continuous
alphabet was originally obtained by Xiao and Zhou [16].

Lemma 20. For any ((bi)i∈V , (ba)a∈F ) ∈ IS(FBethe),

Z(G) = ZBethe((bi)i∈V , (ba)a∈F )
∑

E′⊆E

K̄G(E
′)

where

K̄G(E
′) =

∫

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)
√

bi(vi,a)

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)
√

bi(vi,a)

〉

bi

∏

(i,a)∈E′

dvi,a.

The proof of the above lemma is shown in Appendix B
using Lemma 27, which was obtained by Xiao and Zhou [16].
Lemma 28 in Appendix C for finite alphabets shows that the
weight in Lemma 20 is equal to the weight in Theorem 12.
Similarly, loop calculus for marginal distribution is alsoob-
tained.

Lemma 21. Let C ⊆ V and g : X |C| → C. For any
((bi)i∈V , (ba)a∈F ) ∈ IS(FBethe),

Z(G)〈g(XC)〉p
= ZBethe((bi)i∈V , (ba)a∈F )

∑

E′⊆E\E(FC)

K̄g
G(E

′)
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where

K̄g
G(E

′) :=

∫

∏

(i,a)∈E′

dvi,a

·
∏

a∈F\FC

〈

∏

i∈∂a,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)
√

bi(vi,a)

〉

ba

·
∏

i∈V \C

〈

∏

a∈∂i,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)
√

bi(vi,a)

〉

bi

·
〈

g(XC)
∏

a∈∂i,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)
√

bi(vi,a)

〉

bC

.

Similarly to Section V for finite alphabets, the expressions
of weights of simple generalized loops can be simplified.

Lemma 22. For a simple generalized loopE′ =
{(i1, a1), (i2, a1), (i2, a2), . . . , (iℓ, aℓ), (i1, aℓ)}, it holds

K̄G(E
′) =

∫

bi1,E′(v, v)− bi1(v)
2

bi1(v)
dv (33)

where

bi1,E′(xi1 , x
′
i1 ) :=

∫ ℓ
∏

s=2

dxs

ba1(xi1 , xi2) · · · baℓ−1
(xiℓ−1

, xiℓ)baℓ
(xiℓ , x

′
i1
)

∏ℓ
s=2 bis(xis )

.

For C = {i1}, it holds

K̄g
G(E

′) =

∫

bi1,E′(v, v)− bi1(v)
2

bi1(v)
g(v)dv. (34)

Proof: The proof is similar to the proof of Lemma 16. It
holds
∫

dvi,a
δ(xi − vi,a)− bi(vi,a)

√

bi(vi,a)

·
〈

(δ(Xi − vi,a)− bi(vi,a)) (δ(Xi − vi,a′)− bi(vi,a′))
√

bi(vi,a)bi(vi,a′ )

〉

bi

=
δ(xi − vi,a′)− bi(vi,a′)

√

bi(vi,a′)
. (35)

Hence, from Lemma 20, it holds

K̄G(E
′) =

∫ ℓ
∏

s=1

dvis

ℓ
∏

s=1

〈

δ(Xis − vis)− bis(vis)
√

bis(vis)

· δ(Xis+1 − vis+1)− bis+1(vis+1)
√

bis+1(vis+1)

〉

bas

=

∫ ℓ
∏

s=1

bas
(vis , vis+1)− bis(vis)bis+1(vis+1)

√

bis(vis)bis+1(vis+1)

ℓ
∏

s=1

dvis

(36)

whereiℓ+1 is regarded asi1. Here, it holds
∫

bas
(vis , vis+1)− bis(vis)bis+1(vis+1)

√

bis(vis )bis+1(vis+1)

· bas+1(vis+1 , vis+2)− bis+1(vis+1)bis+2(vis+2)
√

bis+1(vis+1)bis+2(vis+2)
dvis+1

=
bas,s+1(vis , vis+2)− bis(vis )bis+2(vis+2)

√

bis(vis)bis+2(vis+2)
(37)

where

bas,s+1(vis , vis+2)

:=

∫

bas
(vis , vis+1)bas+1(vis+1 , vis+2)

bis+1(vis+1)
dvis+1 . (38)

By applying (37) recursively to (36), one obtains (33). The
equation (34) is also obtained in the same way.

The above lemma can be further simplified for the Gaussian
model, which is defined by

p(x;G) :=
1

Z(G)
exp







−1

2

∑

i,j∈{1,2,...,N}

Ji,jxixj +

N
∑

i=1

hixi







for a positive-definite symmetric matrixJ , h ∈ RN and
x ∈ RN . The partition function of the Gaussian model is
√

det(J)/(2π)N . Similarly, the variance covariance matrix
and the expectation ofX ∈ RN obeying p are J−1 and
−J−1h, respectively. Although these three quantities can be
computed inO(N3) time by the Gaussian elimination, it is
often desired to approximate them more efficiently.

Lemma 23. For the Gaussian model, a weight of a sim-
ple generalized loopE′ = {(i1, a1), (i2, a1), (i2, a2), . . . ,
(iℓ, aℓ), (i1, aℓ)} in Lemma 22 is

K̄G(E
′) =

Corbi1,E′ [Xi1 , X
′
i1 ]

1− Corbi1,E′ [Xi1 , X
′
i1
]

(39)

K̄g
G(E

′) =
1

1− Corbi1,E′ [Xi1 , X
′
i1
]
〈g(Xi1)〉b̄i1 − 〈g(Xi1)〉bi1

(40)

where

Corbi1,E′ [Xi1 , X
′
i1 ] :=

Covba1
[Xi1 , Xi2 ] · · ·Covbaℓ

[Xiℓ , X
′
i1 ]

∏ℓ
s=1 Varbis [Xis ]

and wherēbi is a Gaussian distribution with the same expec-
tation asbi and a variance

Varbi1 [Xi1 ]
1 + Corbi1,E′ [Xi1 , X

′
i1 ]

1− Corbi1,E′ [Xi1 , X
′
i1
]
.

Proof: For the Gaussian model, the pseudo-marginals at a
stationary point are also Gaussian distribution. The covariance
of (Xis , Xis+1) obeyingbas,s+1, defined in (38) is

Covbas,s+1
[Xis , Xis+2 ]

=
Covbas

[Xis , Xis+1 ]Covbas+1
[Xis+1 , Xis+2 ]

Varbis+1
[Xis+1 ]

.
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Hence,bi1,E′(xi1 , x
′
i1
) in (33) is a Gaussian distribution with

a covariance

Covbi1,E′ [Xi1 , X
′
i1 ] =

Covba1
[Xi1 , Xi2 ] · · ·Covbaℓ

[Xiℓ , X
′
i1
]

∏ℓ
s=2 Varbis [Xis ]

and variancesVarbi1,E′ [Xi1 ] = Varbi1,E′ [X
′
i1
] = Varbi1 [Xi1 ].

Finally, (39) is obtained from
∫

bi1,E′(v, v)− bi1(v)
2

bi1(v)
dv =

c

1− c

where c := Covbi1,E′ [Xi1 , X
′
i1
]/Varbi1 [Xi1 ]. The equa-

tion (40) is also obtained in a similar way.

Corollary 24. For a single-cycle factor graph, it holds

Z(G) =
ZBethe((bi)i∈V , (ba)a∈F )

1− Corbi1 ,E′ [Xi1 , X
′
i1
]

〈g(Xi1)〉p = 〈g(Xi1)〉b̄i1 . (41)

From (41),bi at the stationary point of the Bethe free energy
has the correct mean〈X〉p for single-cycle factor graphs.
Indeed, the fixed point of BP gives the exact means for any
Gaussian model [35].

Remark2 (Verification by the walk-sum formula). For vari-
ances obtained by the Bethe approximation, from (41), it holds

Varp[Xi1 ] = Varbi1 [Xi1 ]
1 + Corbi1,E′ [Xi1 , X

′
i1
]

1− Corbi1,E′ [Xi1 , X
′
i1
]

= Varbi1 [Xi1 ] + 2Varbi1 [Xi1 ]
Corbi1,E′ [Xi1 , X

′
i1
]

1− Corbi1,E′ [Xi1 , X
′
i1
]

(42)

for a single-cycle factor graph. In this remark, this equation is
confirmed by the walk-sum formula [36]. This remark is less
self-contained. See also [36] for details. It holds

J =
√
D(I −W )

√
D

whereD is a diagonal matrix whose(i, i)-element isJi,i and
whereW = I − D−1/2JD−1/2 is a symmetric matrix with
zero diagonal. If the spectral radius ofW is smaller than 1, it
holds

J−1 = D−1/2
(

I +W +W 2 + · · ·
)

D−1/2.

Hence, ifJ is walk-summable, i.e., the spectral radius of|W |,
in which elements are replaced by their absolute value, is
smaller than 1 (See [36] for details), it holds

Varp[Xi] =
1

Ji,i

∑

w : i−→
G

i

φ(w)

Covp[Xi, Xj ] =
1

√

Ji,iJj,j

∑

w : i−→
G

j

φ(w)

where w : i −→
G

j denotes a walk fromi to j on G

and whereφ(w) := Wi,i1Wi1,i2 · · ·Wiℓ,j for a walk w =
(i, i1, i2, . . . , iℓ, j). Since BP is an exact algorithm on the

computation tree, it holds

Varbi [Xi] =
1

Ji,i

∑

w : i−→
Ti

i

φ(w)

Covba [Xi, Xj ] =
1

√

Ji,iJj,j

∑

w : i−−→
Ti,j

j

φ(w)

wherew : i −→
Ti

i is a walk from i to i, both being the root

variable on the computation treeTi for i ∈ V and where
w : i −−→

Ti,j

j is a walk fromi to j, both on the root edge on

the computation treeTi,j for (i, j) ∈ V 2. Any walk from i
on G can be naturally identified with a walk fromi on the
computation treeTi. Hence, for confirming (42) we should
verify

1

Ji1,i1

∑

w : i1−→
G

i1

w : not i1−−→
Ti1

i1

φ(w)

= 2Varbi1 [Xi1 ]
Corbi1,E′ [Xi1 , X

′
i1 ]

1− Corbi1,E′ [Xi1 , X
′
i1
]
. (43)

From

Covba [Xi, Xj ]

Varbi [Xi]
=

√

Ji,i
Jj,j

∑

w : i
\i−−→

Ti,j

j

φ(w)

wherew : i
\i−−→
Ti,j

j is a walk fromi to j which does not visit

i except as initial place, it holds

Corbi1,E′ [Xi1 , X
′
i1 ] =

∑

w : i1
\i1−−→
Ti

i′1

φ(w)

and hence

Varbi1 [Xi1 ]Corbi1,E′ [Xi1 , X
′
i1 ] =

1

Ji1,i1

∑

w : i1−→
Ti

i′1

φ(w)

which express the weight of walks fromi1 to i′1 which is one
of the nearest copies ofi1 in the computation treeTi1 . The
weight of walks fromi1 to secondary nearest copies ofi1 is
2Varbi1 [Xi1 ]Corbi1,E′ [Xi1 , X

′
i1
]2. Hence, finally, one obtains

1

Ji1,i1

∑

w : i1−→
G

i1

w : not i1−−→
Ti1

i1

φ(w)

= 2Varbi1 [Xi1 ]
(

Corbi1,E′ [Xi1 , X
′
i1 ] + Corbi1,E′ [Xi1 , X

′
i1 ]

2

+Corbi1,E′ [Xi1 , X
′
i1 ]

3 + · · ·
)

.

Hence, (43) is verified.

For the Gaussian model, the multiplicative error in the Bethe
approximation is expressed by an infinite product in [37]. The
loop calculus for the Fermion model whose partition function
can express a determinant of any square matrix is obtained
in [38].
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VII. B ETHE APPROXIMATION AND LOOP CALCULUS FOR

WEIGHTED GRAPH COLORING ON A REGULAR GRAPH

In this section, simple examples of loop calculus for non-
binary graphical models are shown. The partition function for
weighted graphq-coloring problem for a parameterw > 0 is

Z(G) =
∑

x∈XN

∏

i∈V

wδ(xi,0)
∏

a∈F

(1− δ(xi1(a), xi2(a)))

where {i1(a), i2(a)} := ∂a for a ∈ F . The fixed point
equation of belief propagation for the weighted graphq-
coloring is

mi→a(x) ∝ wδ(x,0)
∏

a′∈∂i\{a}

ma′→i(x)

ma→i(x) =
1

q − 1
(1−mj→a(x)) .

Assume thatw = 1 and that the messages are common for all
edges. Then, obviously the uniform distribution is the unique
fixed point of the belief propagation. In that case, by applying
Theorem 12 for(ty(x) = δ(x, y))y∈X\{0}, one obtains

Z(G) = qN
(

1− 1

q

)|E|
∑

E′⊆E

∑

y∈(X\{0})|E′|

∏

a∈F ′

[

(1 − δ(yi1(a), yi2(a)))
1

q(q − 1)
− 1

q2

]

·
∏

i∈V

[

qdi(E
′)−1((−1)di + δ(y∂i))

]

.

The above equation can be also obtained from the well-
known high temperature expansion for the Potts model [39].
For w 6= 1, if a graph is k-regular, we can also assume
that all messages are common although such messages does
not necessarily minimize the Bethe free energy. On the as-
sumption, the normalized Bethe free energy is equivalent
to the annealed free energy for random regular graph, i.e.,
(1/N)FBethe = − limN→∞(1/N) logE[Z] [40]. Hence, the
Bethe approximation only depends on the size and independent
of the connections of edges. On the assumption of the common
messages, all probabilities of nonzero element must be the
same at the fixed point. Hence, the messages are restricted
in the exponential family with a single parameter for the
sufficient statistict(x) = δ(x, 0). The fixed point equation
is

θv→f = logw + (k − 1)θ (ηf→v)

ηf→v =
1

q − 1
(1− η (θv→f))

where

η(θ) :=
exp{θ}

q − 1 + exp{θ} , θ(η) := log
(q − 1)η

1− η
.

Note that for largew, the unique fixed point of the above
equations is not stable with respect to the forward substitution
of the above equations. In that case, the backward substitution
yields the convergence to the unique fixed point.

Fig. 4. A 3-regular graph of size 16.

Results of numerical calculation for the graph in Fig. 4 of
size 16, which is generated randomly, is shown in Table I. The
approximationsZBethe+loops andZBethe×loops are defined as

ZBethe+loops := ZBethe

(

1 +
∑

E′∈S

KG(E
′)

)

ZBethe×loops := ZBethe

∏

E′∈S

(1 +KG(E
′)) .

In Table I, except for the casesq = 3, the approximations using
loop corrections are better than the original Bethe approxima-
tion. The new approximations are accurate especially for large
q. For the casew = 1.5, q = 3, the fixed point is unstable
with respect to the forward substitution. The approximation
using the edge zeta function suggested in [41] is similar to
ZBethe×loops, and can be efficiently computed. It may also
give an efficient and accurate approximation.
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APPENDIX A
EXPONENTIAL FAMILY

Definition 25 (Exponential family). The exponential family is
a parametric family of probability measures. LetΘ ⊆ Rd be a
space of parameter andX be a sample space. Then, probability
mass function (or probability density function) of exponential
family is expressed as

p(x; θ) :=
1

Z(θ)
exp

{

d
∑

k=1

θktk(x)

}

for θ ∈ Θ using a set of functions(tk : X → R)k=1,...,d called
a sufficient statistic where

Z(θ) :=
∑

x∈X

exp

{

d
∑

k=1

θktk(x)

}

.
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TABLE I
ERROR OF THEBETHE APPROXIMATION WITH LOOP CORRECTIONS FOR THE3-REGULAR GRAPH INFIG. 4

Z(G) ZBethe/Z(G) ZBethe+loops/Z(G) ZBethe×loops/Z(G)

w = 1, q = 3 2628 0.973 1.117 1.060

w = 1, q = 4 4143720 1.040 1.011 1.003

w = 1, q = 9 108384232602240 1.012 1.00007 1.00001

w = 1.5, q = 3 25035.75 0.952 1.130 1.070

w = 1.5, q = 4 23205262.5 1.035 1.013 1.004

w = 1.5, q = 9 244818663513163.34 1.013 1.00008 1.00002

Here, the parameterθ is called a natural parameter.

The mapθ 7→ p(x; θ) is injection if and only if functions
t1(x), . . . , td(x), and1 are linearly independent. In this paper,
when we deal with exponential families, the linear indepen-
dence is always assumed. For an exponential family, there is
a dual parameterη = (ηk := 〈tk(X)〉p)k=1,...,d called an
expectation parameter.

Example 26 (Distribution on a finite set). The family of
distributions on a finite setX = {0, 1, . . . , q − 1} can be
regarded as(q − 1)-dimensional exponential family with a
sufficient statistic(tx(x′) = δ(x, x′))x∈X\{0}. In this case,
θx = log[p(x | θ)/p(0 | θ)] andηx = p(x | θ) for x ∈ X\{0}.

Let H := {〈tk(X)〉p(x;θ), θ ∈ Θ} be the space of expo-
nential parameter. For each natural parameterθ there exists
corresponding expectation parameterη = η(θ). The function
η(θ) : Θ → H can be explicitly expressed as

η(θ)k =
∂ logZ(θ)

∂θk
. (44)

The functionlogZ(θ) is strictly convex since

∂2 logZ(θ)

∂θk∂θl
= 〈tk(x)tl(x)〉p − ηkηl

and since sufficient statistics are linearly independent. As con-
sequence, the mapη(θ) is injection since ifη(θ) = η(θ′) then
θ = θ′ due to the strict convexity oflogZ(θ). Hence, there is
a one-to-one correspondence betweenθ andη. From this view,
we regard the parametersθ andη as coordinate systems. The
inverse function ofη(θ) is denoted byθ(η). The probability
mass function (probability density function)p can be regarded
as a function ofη and denoted byp(x;η) := p(x; θ(η)).
From (44),θ(η) : H → Θ can be expressed as

θ(η) = argmax
θ

{

d
∑

k=1

θkηk − logZ(θ)

}

.

Let

ϕ(η) := max
θ

{

d
∑

k=1

θkηk − logZ(θ)

}

= 〈log p(X ;η)〉p(x;η).

Then, it holds

∂ϕ(η)

∂ηk
=
∂
∑d

l=1 θ(η)lηl − logZ(θ(η))

∂ηk

=

d
∑

l=1

∂θ(η)l
∂ηk

ηl + θ(η)k −
d
∑

l=1

∂ logZ(θ)

∂θl

∣

∣

∣

∣

θ=θ(η)

∂θ(η)l
∂ηk

= θ(η)k.

Since the Hessian matrix ofϕ(η) is also Jacobian matrix
dθ(η)
dη , which is the inverse matrix ofdη(θ)dθ , the Hessian matrix

of ϕ(η) is positive-definite, and henceϕ(η) is strictly convex.
Hence, it also holds

η(θ) = argmax
η

{

d
∑

k=1

θkηk − ϕ(η)

}

and

ψ(θ) := max
η

{

d
∑

k=1

θkηk − ϕ(η)

}

= logZ(θ)

In information geometry, the coordinate systemsθ andη are
said to be dual and are known to satisfy

〈

∂ log p(X ; θ)

∂θk

∂ log p(X ;η)

∂ηl

〉

p

= δ(k, l).

The above equality is easily confirmed via
〈

∂ log p(X ; θ)

∂θk

∂ log p(X ;η)

∂ηl

〉

p

=

〈

(tk(X)− ηk)
1

p(X ;η)

∂p(X ;η)

∂ηl

〉

p

=
∂ηk
∂ηl

. (45)

The Hessian matrixJ (θ) of ψ(θ) is called the Fisher infor-
mation matrix with respect to the natural parameter, whose
(k, l)-element is

Jp(θ)k,l =

〈

∂ log p(X ; θ)

∂θk

∂ log p(X ; θ)

∂θl

〉

p

.

Similarly, the Fisher information matrixJ (η) with respect to
the expectation parameter is defined as

Jp(η)k,l =

〈

∂ log p(X ;η)

∂ηk

∂ log p(X ;η)

∂ηl

〉

p

.

The Fisher information matrixJ (η) with respect to the
expectation parameter is the Hessian matrix ofϕ(η) and the
inverse matrix of the Fisher information matrixJ (θ) with
respect to the natural parameter.
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APPENDIX B
PROOF OFLEMMA 20

The following lemma was obtained by Xiao and Zhou.

Lemma 27 ([16]). For any ((bi)i∈V , (ba)a∈F ) ∈ IS(FBethe),

Z(G) = ZBethe((bi)i∈V , (ba)a∈F )
∑

E′⊆E

K̄G(E
′)

where

K̄G(E
′) :=

∫

∏

(i,a)∈E

dvi,a
∏

a∈F

ba(v∂a,a)

∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)

bi(vi,a)

〉

bi

.

Proof: The ratioZ(G)/ZBethe((bi)i∈V , (ba)a∈F ) is equal
to

∫

∏

a∈F

ba(x∂a)
∏

i∈∂a bi(xi)

∏

i∈V

bi(xi)
∏

i∈V

dxi

=

∫

∏

i∈V

dxi
∏

(i,a)∈E

dvi,a
∏

a∈F

ba(v∂a,a)
∏

i∈V

bi(xi)

·
∏

(i,a)∈E

δ(vi,a − xi)

bi(vi,a)

=

∫

∏

i∈V

dxi
∏

(i,a)∈E

dvi,a
∏

a∈F

ba(v∂a,a)
∏

i∈V

bi(xi)

·
∏

(i,a)∈E

[

1 +
δ(vi,a − xi)− bi(vi,a)

bi(vi,a)

]

=

∫

∏

i∈V

dxi
∏

(i,a)∈E

dvi,a
∏

a∈F

ba(v∂a,a)
∏

i∈V

bi(xi)

·
∑

E′⊆E

∏

(i,a)∈E′

δ(vi,a − xi)− bi(vi,a)

bi(vi,a)

=
∑

E′⊆E

∫

∏

(i,a)∈E

dvi,a
∏

a∈F

ba(v∂a,a)

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ(vi,a −Xi)− bi(vi,a)

bi(vi,a)

〉

bi

.

Proof of Lemma 20:The weightK̄G(E
′) is equal to

∫

∏

(i,a)∈E

dvi,a
∏

a∈F

ba(v∂a,a)

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)

bi(vi,a)

〉

bi

=

∫

∏

(i,a)∈E

dvi,a
∏

(i,a)∈E

dwi,a

∏

(i,a)∈E

δ(wi,a − vi,a)

·
∏

a∈F

ba(w∂a,a)
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)

bi(vi,a)

〉

bi

=

∫

∏

(i,a)∈E

dvi,a
∏

(i,a)∈E

dwi,a

·
∏

a∈F

ba(w∂a,a)
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)

bi(vi,a)

〉

bi

·
∏

(i,a)∈E

bi(vi,a)
∏

(i,a)∈E

[

1 +
δ(wi,a − vi,a)− bi(vi,a)

bi(vi,a)

]

=

∫

∏

(i,a)∈E

dvi,a
∏

(i,a)∈E

dwi,a

·
∏

a∈F

ba(w∂a,a)
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)

bi(vi,a)

〉

bi

·
∏

(i,a)∈E

bi(vi,a)
∑

E′′⊆E

∏

(i,a)∈E′′

δ(wi,a − vi,a)− bi(vi,a)

bi(vi,a)

=
∑

E′′⊆E

∫

∏

(i,a)∈E

dvi,a
∏

(i,a)∈E

bi(vi,a)

·
∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′′

δ(Xi − vi,a)− bi(vi,a)

bi(vi,a)

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ(Xi − vi,a)− bi(vi,a)

bi(vi,a)

〉

bi

.

In the last equation, the terms corresponding toE′′ 6= E′ are
zero.

Lemma 21 is also proved in similar way as the above
derivation and Lemma 14.

APPENDIX C
RELATIONSHIP WITH X IAO AND ZHOU’ S LOOP CALCULUS

FOR CONTINUOUS ALPHABETS

The weight (26) of generalized loop for non-binary finite
alphabets has the following form.

Lemma 28.

KG(E
′) =

∑

zE′∈X |E′|

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′

δ (zi,a, Xi)− bi(zi,a)
√

bi(zi,a)

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ (zi,a, Xi)− bi(zi,a)
√

bi(zi,a)

〉

bi

.
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Proof: Once one has

KG(E
′) =

∑

z∈X 2|E′|

∏

a∈F

〈

∏

i∈∂a,(i,a)∈E′

δ
(

z(i,a),a, Xi

)

− bi(z(i,a),a)
√

bi(z(i,a),a)

〉

ba

·
∏

i∈V

〈

∏

a∈∂i,(i,a)∈E′

δ
(

z(i,a),i, Xi

)

− bi(z(i,a),i)
√

bi(z(i,a),i)

〉

bi

·
∏

(i,a)∈E′

〈

δ
(

z(i,a),a, Xi

)

− bi(z(i,a),a)
√

bi(z(i,a),a)

· δ
(

z(i,a),i, Xi

)

− bi(z(i,a),i)
√

bi(z(i,a),i)

〉

bi

(46)

then the lemma is obtained by (46) and (35). The equality (46)
can be proved by using the Holant theorem (10) from (26)
using the alphabetX \ {0} to different representation using
the alphabetX . Let

φ(i,a),i(y, x) = bi(x)
∂ log bi(x)

∂θi,ay

, φ̂(i,a),i(x, y) =
∂ log bi(x)

∂ηi,ay

(47)

for y ∈ X \ {0} and x ∈ X . Then, (47) satisfies (9), i.e.,
∑

x∈X φ(i,a),i(y, x)φ̂(i,a),i(x,w) = δ(y, w) for anyy, w ∈ X\
{0}. Similarly, let

φ(i,a),a(y, x) = bi(x)
∂ log bi(x)

∂ηi,ay

, φ̂(i,a),a(x, y) =
∂ log bi(x)

∂θi,ay

(48)

for y ∈ X \ {0} andx ∈ X . Let q× q matricesM andM̂ be

Mx,0 := bi(x), Mx,y := bi(x)
∂ log bi(x)

∂θi,ay

M̂0,x := 1, M̂y,x :=
∂ log bi(x)

∂ηi,aw

.

Then, it holdsM̂M = I and henceMM̂ = I, i.e.,

bi(x) +
∑

y∈X\{0}

bi(x)
∂ log bi(x)

∂θi,ay

∂ log bi(z)

∂ηi,ay

= δ(x, z)

⇐⇒
∑

y∈X\{0}

∂ log bi(x)

∂θi,ay

∂ log bi(z)

∂ηi,ay

= δ(x, z)
1

bi(z)
− 1.

The equation (46) is obtained from the following three equal-
ities

∑

y∈(X\{0})da(E′)

〈

∏

i∈∂a,(i,a)∈E′

∂ log bi(Xi)

∂θi,ayi,a

〉

ba

·
∏

i∈∂a,(i,a)∈E′

∂ log bi(z(i,a),a)

∂ηi,ayi,a

=

〈

∏

i∈∂a,(i,a)∈E′

δ
(

z(i,a),a, Xi

)

− bi(z(i,a),a)

bi(z(i,a),a)

〉

ba

∑

y∈(X\{0})di(E
′)

〈

∏

a∈∂i,(i,a)∈E′

∂ log bi(Xi)

∂ηi,ayi,a

〉

bi

·
∏

a∈∂i,(i,a)∈E′

∂ log bi(z(i,a),i)

∂θi,ayi,a

=

〈

∏

a∈∂i,(i,a)∈E′

δ
(

z(i,a),i, Xi

)

− bi(z(i,a),i)

bi(z(i,a),i)

〉

bi

and
∑

yi,a∈X\{0}

bi(z(i,a),a)
∂ log bi(z(i,a),a)

∂θi,ayi,a

· bi(z(i,a),i)
∂ log bi(z(i,a),i)

∂ηi,ayi,a

= δ
(

z(i,a),a, z(i,a),i
)

bi(z(i,a),a)− bi(z(i,a),a)bi(z(i,a),i)

=
〈(

δ
(

z(i,a),a, Xi

)

− bi(z(i,a),a)
)

·
(

δ
(

z(i,a),i, Xi

)

− bi(z(i,a),i)
)〉

bi
.

Lemma 28 shows that the weight of generalized loop in
Theorem 12 is equal to the weight of generalized loop obtained
by Xiao and Zhou in Lemma 27 [16].
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