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Abstract—Lower dimensional signal representation schemes
frequently assume that the signal of interest lies in a single
vector space. In the context of the recently developed theory
of compressive sensing (CS), it is often assumed that the signal
of interest is sparse in an orthonormal basis. However, in many
practical applications, this requirement may be too restrictive.
A generalization of the standard sparsity assumption is that the
signal lies in a union of subspaces. Recovery of such signalsfrom
a small number of samples has been studied recently in several
works. Here, we consider the problem of subspace recovery in
which our goal is to identify the subspace (from the union)
in which the signal lies using a small number of samples, in
the presence of noise. More specifically, we derive performance
bounds and conditions under which reliable subspace recovery
is guaranteed using maximum likelihood (ML) estimation. We
begin by treating general unions and then obtain the results
for the special case in which the subspaces have structure
leading to block sparsity. In our analysis, we treat both general
sampling operators and random sampling matrices. With general
unions, we show that under certain conditions, the number of
measurements required for reliable subspace recovery in the
presence of noise via ML is less than that implied using the
restricted isometry property which guarantees signal recovery.
In the special case of block sparse signals, we quantify the
gain achievable over standard sparsity in subspace recovery. Our
results also strengthen existing results on sparse supportrecovery
in the presence of noise under the standard sparsity model.

Index terms- Maximum likelihood estimation, union of
linear subspaces, subspace recovery, compressive sensing,
block sparsity

I. I NTRODUCTION

The compressive sensing (CS) framework has established
that a small number of measurements acquired via random
projections are sufficient for signal recovery when the signal of
interest is sparse in a certain basis. Consider a length-N signal
x which can be represented in a basisV such thatx = Vc.
The signalx is said to bek-sparse in the basisV if c has
only k nonzero coefficients wherek is much smaller thanN .
It has been shown in [1]–[3] thatO(k log(N/k)) compressive
measurements are sufficient to recoverx when the elements
of the measurement matrix are random. Signal recovery can
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be performed via optimization or greedy based approaches. A
detailed overview of CS can be found in [4].

There are a variety of applications in which complete signal
recovery is not necessary. The problem of sparse support
recovery (equivalently sparsity pattern recovery or finding the
locations of nonzero coefficients of a sparse signal) arisesin
a wide variety of areas including source localization [5], [6],
sparse approximation [7], subset selection in linear regression
[8], [9], estimation of frequency band locations in cognitive
radio networks [10]–[12], and signal denoising [13]. In these
applications, often finding the sparsity pattern of the signal is
more important than approximating the signal itself. Further,
in the CS framework, once the sparse support is identified,
the signal can be estimated using standard techniques. For the
problem of complete sparse signal recovery, there is a signifi-
cant amount of work in the literature that focuses on deriving
recovery guarantees and stability with respect to variouslq
norms of the reconstruction error. However, as pointed out
in [14], recovery guarantees derived for sparse signals do not
always imply exact recovery of the sparse support. The criteria
used for sparse support recovery and exact signal recovery are
generally different. Although a signal estimate can be close
to the original sparse signal, the estimated signal may havea
different support compared to the true signal support [14].For
example, Lasso has been shown to be information theoretically
optimal in certain regimes of the signal-to-noise ratio (SNR)
for sparse support recovery, while in other regimes of SNR,
the Lasso fails with high probability in recovering the sparsity
pattern [14], [15]. Thus, investigation of recovery conditions
for sparse support at any given SNR is an important problem.
Performance limits on reliable recovery of the sparsity pattern
have been derived by several authors in recent work exploiting
information theoretic tools [14], [16]–[22]. Most of these
works focus on deriving necessary and sufficient conditions
for reliable sparsity pattern recovery assuming the standard
sparsity model.

There are practical scenarios where structured propertiesof
the signal are available. Reduced dimensional signal process-
ing for several signal models which go beyond simple sparsity
has been treated in recent literature [23]–[28]. One general
model that can describe many structured problems is that of a
union of subspaces. In this setting, the signal is known to lie in
one out of a possible set of subspaces but the specific subspace
chosen is unknown. Examples include wideband spectrum
sensing [11], time delay estimation with overlapping echoes
[24], [29], [30], and signals having finite rate innovation [31],
[32]. Conditions under which stable sampling and recovery is
possible in a general union of subspaces model are derived in
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[23]–[26]. However, the problem of recovering the subspacein
which the signal lies without completely recovering the signal
(or the problem of subspace recovery) has not been treated in
this more general setting.

In this paper, our goal is to investigate the problem of
subspace recovery in the union of subspaces model with
a given sampling operator. We consider subspace recovery
based on the optimal ML decoding scheme in the presence
of noise. While ML is computationally intractable as the
signal dimension increases, the analysis gives a benchmarkfor
the optimal performance that is achievable with any practical
algorithm. We derive performance in terms of probability of
error of the ML decoder when sampling is performed via an
arbitrary linear sampling operator. Based on an upper bound
on the probability of error, we derive the minimum number
of samples required for asymptotically reliable recovery of
subspaces in terms of a SNR measure, the dimension of
each subspace in the union and a term which quantifies the
dependence or overlap among the subspaces. In the special
case where sampling is performed via random projections
and the subspaces in the union have a specific structure such
that each subspace is a sum of some otherk0 subspaces, we
obtain a more explicit expression for the minimum number
of measurements. This number depends on the number of
underlying subspaces, the dimension of each subspace, and
the minimum nonzero block SNR (defined in Section IV.B).
We note that the conventional sparsity model is a special case
of this structure.

The asymptotic probability of error of the ML decoder
for sparse support recovery in the presence of noise for the
standard sparsity model was first investigated in [14] followed
by several other authors [16], [17], [22]. In [14], sufficient
conditions were derived on the number of noisy compressive
measurements needed to achieve a vanishing probability of
error asymptotically for sparsity pattern recovery while neces-
sary conditions were considered in [17]. The analyses in both
[14] and [17] are based on the assumption that the sampling
operator is random. Here, we follow a similar path assuming
the union of subspaces model. However, there are some key
differences between our derivations and that in [14]. First, we
treat arbitrary (not necessarily random) sampling operators and
assume a general union of subspaces model as opposed to
the standard sparsity model. Further, the results in [14] were
derived based on weak bounds on the probability of error,
thus there is a gap between those results and the number
of measurements required for the exact probability of error
to vanish asymptotically at finite SNR. We consider tighter
bounds on the probability error leading to tighter results.

The rest of the paper is organized as follows. In Section II,
the problem of subspace recovery from a union of subspace
model is introduced. In Section III, performance limits with
ML decoder for subspace recovery in terms of the probability
of error are derived with a given linear sampling operator
considering a general union of subspaces model. Conditions
under which asymptotically reliable subspace recovery in the
presence of noise is guaranteed are obtained based on the
derived upper bound. The results are extended in Section IV to
the setting where structured properties of the subspaces inthe

union are available. We also derive sufficient conditions for
subspace recovery when sampling is performed via random
projections. In Section V, we compare our results with some
existing results in the literature. Practical algorithms to recover
subspaces in the union of subspace model and numerical
results to validate the theoretical claims are presented in
Section VI.

Throughout the paper, we use the following notation. Ar-
bitrary vectors in a Hilbert spaceH, are denoted by lower
case letters, e.g.,x. Calligraphic letters, e.g.,S, are used
to represent subspaces inH. Vectors inR

N are written in
boldface lower case letters, e.g.x. Scalars (inR) are also
denoted by lower case letters, e.g.,x, when there is no
confusion. Matrices are written in boldface upper case letters,
e.g., A. Linear operators and a set of basis vectors for a
given subspaceS are denoted by upper case letters, e.g., A.
The notationx ∼ N (µ,Σ) means that the random vectorx
is distributed as multivariate Gaussian with meanµ and the
covariance matrixΣ; x ∼ X 2

m(λ) denotes that the random
variablex is distributed as Chi squared withm degrees of
freedom and non centrality parameterλ. (The central Chi
squared distribution is denoted byX 2

m). By 0, we denote a
vector with appropriate dimension in which all elements are
zeros, andIk is the identity matrix of sizek. The conjugate
transpose of a matrixA is denoted byA∗. Finally, ||.||2
denotes thel2 norm and|.| is used for both the cardinality (of
a set) and the absolute value (of a scalar). Special functions
used in the paper are: GaussianQ-function:

Q(x) =
1√
2π

∫ ∞

x

e−
t2

2 dt (1)

Gamma function:

Γ(x) =

∫ ∞

0

tx−1e−tdt (2)

and modified Bessel function with real arguments:

Kν(x) =

∫ ∞

0

e−xcoshtcosh(νt)dt. (3)

II. PROBLEM FORMULATION

II.A Union of subspaces

As discussed in [23]–[26], there are many practical scenar-
ios where the signals of interest lie in a union of subspaces.

Definition 1. Union of subspaces: A signalx ∈ H lies in a
union of subspaces ifx ∈ X whereX is defined as

X =
⋃

i

Si (4)

and Si’s are subspaces ofH which are assumed to be finite
dimensional. A signalx ∈ X if and only if there existsi0 such
that x ∈ Si0 .

Let Vi = {vim}k−1
m=0 be a basis for the finite dimensional

subspaceSi wherek is the dimension ofSi (it is noted that
while we assume all subspaces to have the same dimension,
the analysis can be easily extended for the case where different
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subspaces have different dimensions). Then eachx ∈ Si can
be expressed in terms of a basis expansion

x =

k−1
∑

m=0

ci(m)vim

where ci(m)’s for m = 0, 1, · · ·k − 1 are the coefficients
corresponding to the basisVi. We assume that the subspaces
are distinct (i.e. there are no subspaces such thatSi ⊆ Sj

for i 6= j in the union (4)) and each subspaceSi is uniquely
determined by the basisVi. We denote byT < ∞ the number
of subspaces in the unionX .

II.B Structured union of subspaces leading to block sparsity

There are certain scenarios in which the signals can be
assumed to lie in more structured union of subspaces as
considered in [25], [28], [33]. Suppose that each subspace in
the union (4) can be represented as a sum ofk0 (out of L)
disjoint subspaces [25], [33]. More specifically,

Si = ⊕
j∈Σk0

Vj (5)

where{Vj}L−1
j=0 ’s are disjoint subspaces, andΣk0

containsk0
indices from{0, 1, · · · , L − 1}. Let dj = dim(Vj) andN =
∑L−1

j=0 dj . Then there areT =
(

L
k0

)

subspaces in the union.
Under this formulation, the dimension of each subspace in (4)
is k =

∑

j∈Σk0

dj . In the special case wheredj = d for all j,

k = k0d.
Now takingVj as a basis forVj, a signal in the union can

be written as

x =
∑

j∈Σk0

Vjcj (6)

where cj = [cj(0), · · · , cj(dj − 1)]T ∈ R
dj is a dj × 1

coefficient vector corresponding to the basisVj . It is worth
mentioning that we use the same notationVj to denote a basis
of the subspaceSj in (4) for j = 0, 1, · · · , T − 1 (when
discussing the general union of subspaces model) and also to
denote a basis of the subspaceVj in (5) for j = 0, 1, · · · , L−1
(when discussing the structured union of subspace model). Let
V be a matrix constructed by concatenatingVi’s column wise,
such thatV = [V0|V1| · · · |VL−1] andc be aN×1 vector with
c = [cT0 | · · · |cTL−1]

T . As defined in [25], the vectorc ∈ R
N

is called blockk-sparse overI = {d0, d1, · · · , dL−1} if all
the elements inci are zeros for all butk0 indices where
N =

∑L−1
j=0 dj . In this paper, we assumedj = d for all j

so thatN = Ld.
The standard sparsity model used in the CS literature is

a special case of this structured union of subspaces model
when d = 1. In the standard CS framework,x = x is a
length-N signal vector which isk-sparse in anN -dimensional
orthonormal basisV so thatx can be represented asx = Vc

with c having onlyk ≪ N significant coefficients. This fits our
framework whend = 1 andVj is chosen as thej-th column
vector of the orthonormal basisV for j = 0, 1, · · · , N − 1. In
this case, we haveL = N and there areT =

(

N
k

)

subspaces
in the union.

II.C Observation model: Linear sampling

Consider a sampling operator via a bounded linear mapping
of a signalx that lies in an ambient Hilbert spaceH. Let
the linear sampling operatorA be specified by a set of
unique sampling vectors{am}M−1

m=0 . With these notations,
noisy samples are given by,

y = Ax+w (7)

where y is the M × 1 measurement vector, and them-th
element of the vectorAx is given by,(Ax)m = 〈x, am〉 for
m = 0, 1, · · · ,M − 1 where〈., .〉 denotes the inner product.
The noise vectorw is assumed to be Gaussian with mean0

and covariance matrixσ2
wIM .

When x ∈ Si for somei in the model (4), the vector of
samples can be equivalently represented in the form of a matrix
vector multiplication,

y = Bici +w (8)

where

Bi = AVi =











〈a0, vi0〉 〈a0, vi1〉 · · · 〈a0, vi(k−1)〉
〈a1, vi0〉 〈a1, vi1〉 · · · 〈a1, vi(k−1)〉

...
...

...
...

〈aM−1, vi0〉 〈aM−1, vi1〉 · · · 〈aM−1, vi(k−1)〉











andci = [ci(0) ci(1) · · · ci(k − 1)]T is the coefficient vector
with respect to the basisVi. Further, letbim denote them-
th column vector of the matrixBi for m = 0, 1, · · · , k − 1
and i = 0, 1, · · · , T − 1. We assume that the linear sampling
operatorA is a one-to-one mapping betweenX and AX .
Since{vi0, · · · , vi(k−1)} is a set of linearly independent basis
vectors, then{bi0, · · · ,bi(k−1)} are also linearly independent
for eachi = 0, 1, · · · , T −1. It is worth noting that, while this
one-to-one condition ensures uniqueness, stronger conditions
are required to recoverx in a stable manner as discussed in
[24].

II.D Subspace recovery from the union of subspaces model

As discussed in the Introduction, there are applications
where it is sufficient to recover the subspace in which the
signal of interest lies from the union of subspaces model (4)
instead of complete signal recovery. Moreover, if there is a
procedure to correctly identify the subspace with vanishing
probability of error, then the signalx can be reconstructed
with a smalll2 norm error using standard techniques. However,
the other way would not be always true, i.e., if an algorithm
developed for complete signal recovery is used for subspace
recovery, it may not give an equivalent performance guarantee.
This is because, even if such an estimate of the signal may
be close to the true signal with respect to the considered
performance metric (e.g.,l2 norm error), the subspace in
which the estimated signal lies may be different from the true
subspace. This can happen especially when the SNR is not
sufficiently large. Thus, investigating the problem of subspace
recovery is important and is the main focus of this paper.

The problem of subspace recovery is to identify the sub-
space in which the signalx lies. The estimated subspace,Ŝ,
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via any recovery scheme can be expressed in the following
form:

Ŝ = ζ(y) (9)

whereζ(·) is a mapping from the observation vectory to an
estimated subspacêS ∈ {S0, · · · ,ST−1}. The performance
metric used to evaluate the quality of the estimate (9) is taken
as the average probability of error defined as

Pe =
∑

S
Pr(ζ(y) 6= S|S)Pr(S) (10)

for a given recovery schemeζ(y). We say that the mapping
ζ(y) is capable of providingasymptotically reliablesubspace
recovery ifPe → 0 asM → ∞. In this paper, we consider
subspace recovery via the ML estimation. Our goal is to
address the following issues.

• Performance of the ML estimation scheme in terms of
the probability of error in recovering the subspaces from
the union of subspaces model (4) in the presence of
noise. We are also interested in conditions under which
asymptotically reliable subspace recovery in the union is
guaranteed with a given sampling operator.

• How much gain in terms of the number of samples
required for subspace recovery can be achieved if further
information on structures is available for the subspaces in
(4) compared to the case when no additional structured
information is available (i.e. compared to the standard
sparsity model used in CS).

• Illustration of the performance gap between the ML
estimation and computationally tractable algorithms for
subspace recovery from the union of subspaces model at
finite SNR.

The main results of the paper can be summarized as follows.
With the general union of subspaces model as defined in
(4), and for a given sampling operator, the minimum number
of samples required for asymptotically reliable recovery of
subspaces in the presence of noise is

M > k +
η3

f(SNR)
log(T̄0) (11)

where k is the dimension of each subspace,f(SNR) is a
measure of the minimum SNR of the sampled signal projected
onto the null space of any subspace in the union,T̄0 is
a measure of the number of subspaces in the union with
maximum dependence wherēT0 ≤ T (formal definitions of
all these terms are given in Section III), andη3 is a constant.
We simplify (11) for the special case where each subspace
in the union (4) can be expressed as a sum ofk0 subspaces
out ofL where each such subspace isd-dimensional such that
k = k0d. Then, the problem of subspace recovery reduces
to the problem of block sparsity pattern recovery. Further,
assuming that the sampling operator is represented by random
projections, the number of samples required for asymptotically
reliable block sparsity pattern recovery is given by

M > k +
η4

BSNRmin
log(L− k0) (12)

whereBSNRmin is the minimum nonzero block SNR andη4
is a constant. Whend = 1 andL = N whereN is the signal

dimension, the block sparsity model reduces to the standard
sparsity model. Then, our result shows that

M > k +
η2

CSNRmin
log(N − k) (13)

measurements are required for reliable sparsity pattern recov-
ery whereCSNRmin(≤ BSNRmin

d ) is the minimum compo-
nent SNR of the signal. Thus, from (12) and (13), we observe
that the number of measurements required for asymptotically
reliable subspace recovery beyond the sparsity index (i.e.,
M − k) reduces approximatelyd times with a block sparsity
model (so thatk = k0d) compared to the standard sparsity
model. A detailed comparison between our results and existing
results in the literature is given in Section V.

III. SUBSPACERECOVERY WITH GENERAL UNIONS

The problem of finding the true subspace from the union
(4) based on the observation model (8) via the ML estimation
becomes finding the index̂i such that,

î = argmax
i=0,··· ,T−1

p(y|Bi).

When x ∈ Si in (4) for somei, and using the observation
model (8), we havep(y|Bi) = N (Bici, σ

2
wIM ). The signal

x is assumed to be deterministic but unknown. Thus, when
x ∈ Si, the coefficient vectorci with respect to a given basis
Bi is unknown. Assuming that eachBi has rankk for i =
0, · · · , T − 1, the ML estimate ofci such thatp(y|Bi) is
maximized can be found as,̂ci = (B∗

iBi)
−1B∗

iy. This results
in

log(max
ci

p(y|Bi)) = log

(

1

(2πσ2
w)

M/2

)

− 1

2σ2
w

||y −Piy||22

= log

(

1

(2πσ2
w)

M/2

)

− 1

2σ2
w

||P⊥
i y||22

wherePi = Bi(B
∗
iBi)

−1B∗
i is the orthogonal projector onto

the span of{bim}k−1
m=0 andP⊥

i = I−Pi. Thus, the estimated
index of the subspace by the ML estimation is,

î = argmin
i=0,··· ,T−1

||P⊥
i y||22. (14)

The probability of error of the ML estimation is given by,

Pe = Pr(Bestimated 6= Btrue) =
∑

i

Pr(̂i 6= i|Bi)Pr(Bi)

≤
∑

i

∑

j 6=i

Pr(̂i = i|B = Bj)Pr(B = Bj) (15)

wherePr(̂i = i|B = Bj) is the probability of selectingSi

when the true subspace isSj . Since the ML estimation decides
the subspaceSi over Sj when ||P⊥

i y||22 − ||P⊥
j y||22 < 0,

Pr(̂i = i|B = Bj) is given by

Pr(̂i = i|B = Bj) = Pr(||P⊥
i y||22 − ||P⊥

j y||22 < 0)

for i 6= j.
Let ∆ij(y) = ||P⊥

i y||22 − ||P⊥
j y||22 for i 6= j. When the

true subspace isSj so thatAx = Bjcj , we have||P⊥
j y||22 =

||P⊥
j w||22 and

P⊥
i y = P⊥

i Ax +P⊥
i w

= P⊥
i Bjcj +P⊥

i w = P⊥
i Bj\icj\i +P⊥

i w(16)
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whereBj\icj\i =
∑

bjm /∈R(Bi)

bjmcj(m) and R(A) denotes

the range space of the matrixA. More specifically, theM × l
matrix Bj\i contains the columns ofBj which are not in
the range space of the matrixBi where l is the number of
columns inBj\i. The l× 1 vectorcj\i contains the elements
of cj corresponding to the column vectors inBj\i.

We conclude that, the decision statistic for selectingSi over
Sj is given by∆ij(y) = ||P⊥

i (Bj\icj\i +w)||22 − ||P⊥
j w||22

andPr(∆ij(y) < 0) = Pr
(

||P⊥
i (Bj\icj\i+w)||2

2

||P⊥
j w||2

2

< 1
)

. When

Bj is given, the random variableg1 = ||P⊥
i (Bj\icj\i +

w)||22/σ2
w is a non-central Chi squared random variable

with M − k degrees of freedom and non-centrality pa-
rameter ||P⊥

i (Bj\icj\i)||22/σ2
w. The random variableg2 =

||P⊥
j w||22/σ2

w is a (central) Chi-squared random variable with
M − k degrees of freedom. The two random variablesg1 and
g2 are, in general, correlated and the computation of the exact
value ofPr (∆ij(y) < 0) is difficult. In the following we find
an upper bound for the quantityPr (∆ij(y) < 0) following
techniques similar to those proposed in [14].

III.A Upper bound onPr (∆ij(y) < 0)

For clarity, we introduce the following notation. LetWj\i
be the set consisting of column indices ofBj such thatbjm /∈
R(Bi) for m = 0, 1, · · ·k− 1 andi 6= j (i, j,= 0, 1, · · · , T −
1). We then have that|Wj\i| = l wherel can take values from
1, 2, · · · , k.

Lemma 1. Assume that the sampling operatorA is known. For
any given signalx ∈ Sj so thatAx = Bjcj , the probability of
error in selecting the subspaceSi over Sj , Pr(∆ij(y) < 0),
is upper bounded by,

Pr(∆ij(y) < 0) ≤ Q

(

1

2
(1− 2η0)

√

λj\i

)

+Ψ
(

l, λj\i
)

(17)

where λj\i = 1
σ2
w
||P⊥

i Bj\icj\i||22, Ψ
(

l, λj\i
)

=
√
2

2lΓ(l/2)
(η0λj\i)

l/2−1/2Kl/2−1/2

(

η0λj\i

2

)

, Q(x) is the

GaussianQ function (1),Γ(x) is the Gamma function (2),
Kν(x) is the modified Bessel function (3), and0 < η0 < 1

2 .

Proof: See Appendix A.

Theorem 1. Assuming that the true subspace is chosen
uniformly at random fromT subspaces in the union (4), the
average probability of error of the ML estimation for subspace
recovery is upper bounded by,

Pe ≤
1

T

T−1
∑

i=0

T−1
∑

j=0

Q

(

1

2
(1 − 2η0)

√

λj\i

)

+Ψ
(

l, λj\i
)

(18)

whereλj\i, η0, Q, Ψ are as defined in Lemma 1.

Proof: The proof follows from Lemma 1 and (15).
In general, the subspacesSi andSj can overlap; i.e. there

can be elements inSj which are also inSi. However, one
subspace can not lie in another subspace entirely; i.e. all
subspacesSi’s are distinct fori = 0, 1, · · · , T − 1. As defined
before,Wj\i contains the column indices ofBj which are
not in R(Bi) and |Wj\i| = l for any i 6= j where l takes

values from1, 2, · · · , k. As l increases, the overlap of the two
subspaces decreases resulting in more separable subspaces.
In the special case whereSj and Si do not intersect at all,
we havel = k. Thus, l can be considered as a measure of
overlap between any two subspacesSj and Si for i 6= j in
the union (4). For givenl, the probabilityPr(∆ij(y) < 0)
in (17) monotonically decreases asλj\i, defined in Lemma 1,
increases. This implies that whenλj\i is large, the probability
of selectingSi as the true subspace (given that the true
subspace isSj) decreases. In other words,λj\i, is used to
characterize the error in selecting the subspaceSi overSj for
i 6= j (or how distinguishable the subspaceSi is with respect
to Sj) when the true subspace isSj . It is, therefore, of interest
to further investigate the quantityλj\i.

III.B Evaluation ofλj\i

For any given signalx ∈ Sj , as defined in Lemma 1,λj\i
is given by,

λj\i =
1

σ2
w

||P⊥
i Ax||22 =

1

σ2
w

||P⊥
i Bj\icj\i||22.

When the true subspace is assumed to beSj , the quantity
||P⊥

i Bj\icj\i||22 (= ||P⊥
i Bjcj ||22 = ||P⊥

i Ax||22) denotes the
energy of the sampled signalAx projected onto the null space
of Bi; i.e., the energy of the sampled signal which is unac-
counted for bySi for i 6= j. Therefore, when||P⊥

i Bj\icj\i||22
is large, the probability that the subspaceSi is selected as the
true subspace becomes small. Further, ifSj ⊆ Si for anySi,
we have||P⊥

i Bj\icj\i||22 = 0. However, this cannot happen
based on our assumption that there is no subspace in the union
which completely overlaps another. Thus,λj\i > 0.

Let the eigendecomposition ofP⊥
i be P⊥

i = QiΛiQ
T
i

whereQi is a unitary matrix consisting of eigenvectors ofP⊥
i

andΛi is a diagonal matrix in which the diagonal elements
represent eigenvalues ofP⊥

i which areM − k ones andk
zeros. Then, for givenl,

λj\i =
1

σ2
w

||P⊥
i Bj\icj\i||22 =

∑

m∈Qi

α2
m,i(l) ≥ (M − k)α2

min,l (19)

whereαm,i(l) =
1
σw

〈qm,i,Bj\icj\i〉 for given l, qm,i is the
m-th eigenvector ofP⊥

i , Qi is the set containing indices
corresponding to nonzero eigenvalues where|Qi| = M − k
andαmin,l = min

i;i6=j
|αm,i(l)|.

Note that(M−k)α2
min,l is a measure of the minimum SNR

of the sampled signal,Ax, projected onto the null space of any
subspaceSi for i 6= j, i = 0, 1, · · · , T−1 such that|Wj\i| = l
given that the true subspace in which the signal lies isSj .

For a given subspaceSj , defineTj(l) to be the number of
subspacesSi such that|Wj\i| = l. With these notations, the
probability of error in (18) can be further upper bounded by,

Pe ≤ 1

T

T−1
∑

j=0

k
∑

l=1

Tj(l)

(

Q

(

1

2
(1 − 2η0)

√

(M − k)α2
min,l

)

+ Ψ
(

l, (M − k)α2
min,l

))

(20)

where Ψ
(

l, (M − k)α2
min,l

)

=
√
2

2lΓ(l/2)
(η0(M −

k)α2
min,l)

l/2−1/2Kl/2−1/2(η0(M − k)α2
min,l/2). To obtain
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(20) we used the facts thatQ(x) is monotonically non
increasing inx andΨ(s, x) is monotonically non increasing
in x for given s when x > 0. The quantityTj(l) is a
measure of the overlap betweenSj and any subspaceSi

for i 6= j, i = 0, 1, · · · , T − 1. To computeTj(l) explicitly,
the specific structures of the subspaces should be known.
For example, in the standard sparsity model used in CS
in which the union in (4) consists ofT =

(

N
k

)

subspaces
from an orthonormal basisV of dimensionN , there are
(

k
l

)(

N−k
l

)

number of sets such that|Wj\i| = l, thus
Tj(l) =

(

k
l

)(

N−k
l

)

. In that particular case,Tj(l) is the same
for all j = 0, 1, · · · , T − 1. To further upper bound (20), we
let

T0(l) = max
j=0,1,··· ,T−1

Tj(l). (21)

Then,

Pe ≤
k
∑

l=1

T0(l)

(

Q

(

1

2
(1− 2η0)

√

(M − k)α2
min,l

)

+ Ψ
(

l, (M − k)α2
min,l

))

. (22)

Theorem 2. Let α2
min,l and T0(l) be as defined in (19) and

(21), respectively. Suppose that sampling is performed viaa
sampling operatorA. ThenPe in (22) vanishes asymptotically
(i.e., lim

(M−k)→∞
Pe → 0) if the following condition is satisfied:

M > k +max{M1,M2}
where

M1 = max
l=1,··· ,k

{f1(l)

=
8

(1− 2η0)2α2
min,l

{log(T0(l)) + log(1/2)}
}

(23)

M2 = max
l=1,··· ,k

{f2(l)

=
2(k/2 + r0 − 1)

r0η0α2
min,l

{

log(T0(l)) + log

(

2b0√
π

)}

}

(24)

with 0 < η0 < 1/2, b0 =
√
2π
4 and r0 > 0.

Proof: See Appendix B.
Let li ∈ {1, · · · , k} be the value ofl which maximizesfi(l)

as defined in Theorem 2 fori = 1, 2. ForM2, it can be verified
that we can find constantsη0 and r0 in the defined regimes
such that 8

(1−2η0)2
> 2(k/2+r0−1)

r0η0

if k is fairly small. Then the
dominant factor ofM1 andM2 can be written in the form of
η3

ᾱ2

min

log(T̄0) whereᾱ2
min andT̄0 are the corresponding values

of α2
min,l and T0(l) when l = l0 for l0 ∈ {l1, l2} and η3 is

an appropriate constant. Since, most of the scenarios we are
interested in are for the case wherek is sufficiently small,
we get the minimum number of samples required for reliable
subspace recovery as

M ≥ k +
η3

ᾱ2
min

log(T̄0). (25)

It is further noted thatT0(l) ≤ T for all l and thusT̄0 ≤ T
whereT is the total number of subspaces in the union (4).

III.C Random sampling

Next, we consider the special case where the sampling
operator is aM × N matrix in which the elements are
realizations of a random variable (e.g. Gaussian). Then we
have Bi = AVi in (8) whereA is the random sampling
matrix andVi = [vi0| · · · |vi(k−1)] is the N × k matrix in
which columns consist of the basis vectors of the subspace
Si for i = 0, 1, · · · , T − 1. The only term which depends on
the sampling operator in the expression for the upper bound
on the probability of error in (18) isλj\i. When the sampling
operator is a random projection matrix,λj\i can be evaluated
as follows.

Proposition 1. Consider that the sampling matrixA consists
of elements drawn from a Gaussian ensemble with mean zero
and variance 1. WhenM − k is sufficiently large, we may
approximateλj\i as

λj\i →
1

σ2
w

(M − k)||
∑

m∈Wj\i

vjmcj(m)||22

where as defined before,Wj\i (l = |Wj\i|) denotes the set
consisting of indices of basis vectors inSj which are not in
Si.

Proof: See Appendix C.
The quantity

∑

m∈Wj\i

vjmcj(m) is the portion of the orig-

inal signal x that is unaccounted for by the subspaceSi

when the true subspace isSj for j 6= i. Let α̃2
min,l =

1
σ2
w

min
i,j,j 6=i

|| ∑

m∈Wj\i

vjmcj(m)||22 be the minimum (overi, j =

0, 1, · · · , T − 1) SNR of the original signalx which is
unaccounted for by the subspaceSi when the true subspace
is Sj such that|Wj\| = l for j 6= i. Then, with random
sampling, the upper bound on the probability of error of the
ML estimation in (18) reduces to (22) after replacingα2

min,l

in (22) by α̃2
min,l. It is worth mentioning thatα2

min,l in (22) is
a measure of SNR after sampling whilẽα2

min,l is a measure
of SNR before sampling the signal.

IV. SUBSPACERECOVERY FROMSTRUCTURED UNION OF

SUBSPACES

In this section, we simplify the results obtained in Section
III when the subspaces in the union (4) have structured
properties leading to block sparsity.

IV.A Block sparsity

With the block sparsity model as discussed in Subsection
II.B, the observation vectory can be written in the form of

y = AV c+w = Bc+w (26)

whereB = AV is a M × N matrix, V = [V0|V1| · · · |VL−1]
is as defined in Subsection II.B andc has L blocks (of
size d each) in which all butk0 blocks are zeros; i.e.,c
is a block k0-sparse vector. Further lettingB[i] = AVi be
a M × d matrix, we can representB as a concatenation of
column blocksB[i] for i = 0, 1, · · · , L− 1. With this specific
structure, the subspace recovery problem reduces to findingthe
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indices of blocks inc such that the elements inside that block
are nonzero, i.e., the problem of finding the block sparsity
pattern. In addition to the structured union of subspaces model
considered here in which the block sparsity pattern is observed,
there are other instances where block sparsity arises such
as in multiband signals [34], and in measurements of gene
expression levels [27] [35].

Define the support set of the block sparse signalc as

U := {i ∈ {0, 1, · · · , L− 1}|ci 6= 0}
which consists of the indices of the subspaces in the sum in
(6) or the indices of the nonzero blocks inc. With the above
formulation, there areT =

(

L
k0

)

such support sets and thej-th
support set is denoted byUj for j = 0, 1, · · · , T − 1.

Given that the true block support set isUj , the measurement
vector in (26) can be written as,

y = B̄j c̄j +w

where B̄j = AV̄j , V̄j = [Vu0

j
| · · · |V

u
k0−1

j

] and um
j denotes

the m-th index in the setUj for m = 0, 1, · · · , k0 − 1.
Similar interpretation holds for the vector̄cj . To compute
the minimum number of samples required for asymptotically
reliable subspace recovery with this structured union of sub-
spaces model based on ML estimation, we can follow a
similar approach as in Theorem 2 with appropriate notation
changes. In this case, we can explicitly findT0(l) required in
Theorem 2. More specifically, for givenl, there are

(

k0

l

)(

L−k0

l

)

number of sets such that|Uj\i| = l for any given Uj .
Then Tj(l) = T0(l) =

(

k0

l

)(

L−k0

l

)

. In the next section, we
extend the analysis to the case where the sampling operator is
represented by random projections.

IV.B Sampling via random projections

We assume that the signal of interestx is a N × 1 vector
and the sampling operator is aM × N matrix with random
elements. Further, assume that theN × N basis matrixV
defined in Section II.B is orthonormal.

When the sampling operator is aM ×N random matrixA,
the block sparse observation model in (26), can be rewritten
as,

y = Bc+w (27)

whereB = AV, V is a N × N orthonormal matrix,c is a
block sparse signal withk0 nonzero blocks each of lengthd
and elements inA are drawn from a random ensemble.

Compared to the analysis in Subsection III.C with general
unions when the sampling operator is a random projection
matrix, with the block sparsity model, we can further simplify
the expression obtained forλj\i in Proposition 1. We define
the minimum nonzero block SNR as follows:

Definition 2. The minimum nonzero block SNR is defined as
BSNRmin = min

m∈U
||cm||2

2

σ2
w

whereU is the set containing the

indices corresponding to nonzero blocks of the block sparse
signal as defined in Section IV.A.

Proposition 2. LetBSNRmin be the minimum nonzero block
SNR of a block sparse signal. When the matrixA consists

of elements drawn from a Gaussian ensemble with mean zero
and variance 1, for anyUj andUi with l = |Uj\i| we have,

λj\i =
1

σ2
w

(M − k0d)

l−1
∑

m=0

||Vum
j\i

cum
j\i

||22 ≥ (M − k0d)lBSNRmin

where um
j\i denotes them-th index of the setUj\i which

contains the indices of the subspaces inUj which are not
in Ui.

Proof: Proof follows from Proposition 1 and the following
results:

||
l−1
∑

m=0

Vum
j\i

cum
j\i

||22 = 〈
l−1
∑

m=0

Vum
j\i

cum
j\i

,

l−1
∑

m=0

Vum
j\i

cum
j\i

〉

=

l−1
∑

m=0

〈Vum
j\i

cum
j\i

,Vum
j\i

cum
j\i

〉

+
∑

m 6=t

〈Vum
j\i

cum
j\i

,Vut
j\i

cut
j\i

〉

=

l−1
∑

m=0

||Vum
j\i

cum
j\i

||22 (28)

where the last equality is due to the fact that the columns of
V are orthogonal. Then (28) is lower bounded by,

||
l−1
∑

m=0

Vum
j\i

cum
j\i

||22 ≥ σ2
wlBSNRmin

which completes the proof.

Corollary 1. When the sampling operator is a random pro-
jection matrix where the elements are drawn from a Gaussian
ensemble with mean zero and the variance1, the upper bound
on the probability of error of the ML estimation in (18) for
block sparsity pattern recovery reduces to,

Pe ≤
k0
∑

l=1

(

k0
l

)(

L− k0
l

)

(

Q

(

1

2
(1− 2η0)

√

(M − k)lBSNRmin

)

+Ψ(l,BSNRmin)

)

(29)

where k0 = k/d, Ψ(l,BSNRmin) =√
2

2lΓ(l/2)
(η0(M − k0d)lBSNRmin)

l/2−1/2

Kl/2−1/2(η0(M − k0d)lBSNRmin/2) and 0 < η0 < 1/2.

Next, we investigate sufficient conditions which state how
the number of samplesM scales with the other parameters
(L, k0, d,BSNRmin) to ensure that the probability of error in
(29) vanishes asymptotically with the block sparse model (27).

Lemma 2. When(M − k)BSNRmin → ∞, the probability of
error of the ML estimation (29) in recovering the block sparsity
pattern vanishes asymptotically if the following conditions are
satisfied:

M > k +max{M̄1, M̄2} (30)

where

M̄1 =
16

BSNRmin(1− 2η0)2
(log(L − k0) + log

(

e√
2

)

) (31)
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M̄2 =
4(k0/2 + r0 − 1)

η0r0BSNRmin

{

log(L − k0) +
1

2
log

(

2b0e
2

√
π

)}

(32)

with 0 < η0 < 1
2 , r0 > 0 and b0 =

√
2π
4 are constants.

Proof: Proof follows from Theorem 2 and using the re-
lations, that

(

k0

l

)

≤
(

L−k0

l

)

for k0 ≤ L/2, andlog(
(

L−k0

l

)

) ≤
l log

(

e(L−k0)
l

)

.

From Lemma 2, we can write the minimum number of ran-
dom samples required for reliable block sparsity pattern recov-
ery asymptotically in the form ofO(k+ η4

BSNRmin

log(L−k0))
for some constantη4 in the case wherek0 is sufficiently small.

Remarks 1. WhenBSNRmin → ∞, M > k measurements
are sufficient for asymptotically reliable block sparsity pattern
recovery with ML estimation.

IV.C Revisiting the standard sparsity model

In the standard sparsity model considered widely in the CS
literature, the subspaces in the union (4) are assumed to be
k-dimensional subspaces of an orthonormal basis. This is a
special case of the block sparse model whend = 1. To have a
fair comparison to the performance of the ML estimation in the
presence of noise with the standard sparsity model and block
sparsity model, we introduce further notations. Define the min-
imum component SNR,CSNRmin = min

m∈U ,i=0,··· ,d−1

||cm(i)||2
2

σ2
w

so thatBSNRmin ≥ dCSNRmin. Then, when the sampling
is performed via random projections, the probability of error of
the ML estimation with the standard sparsity model is upper
bounded as in (33) whereΨ(l,CSNRmin) is as defined in
Corollary 1. With these notations, the probability of error
of the ML estimation with block sparsity model (29) can
be rewritten as in (34) whereL = N/d and k0 = k/d
as defined previously. By obtaining the conditions under
which Pe in (33) and (34) vanishes asymptotically, it can
be shown that the dominant part of the required number of
random samples for reliable subspace recovery asymptotically
in the presence of noise can be expressed in the form of
O(k+ 1

d
η̂1

CSNRmin

log(L−k0)) with block sparsity model and
O(k+ η̂2

CSNRmin
(log(N−k))) with the standard sparsity model

whereη̂1 and η̂2 are positive constants. Thus, when the signal
x exhibits block sparsity pattern withk = k0d wherek is the
total number of non zero coefficients of the sparse signal,k0
is the number of blocks andd is the block size, the required
number of random samples beyondk (i.e. in terms ofM−k) is
reduced by approximately a factor ofd compared to that with
the standard sparsity model. Note that the above analysis is
for the worst case, i.e. the upper bounds on the probability of
error are obtained considering the minimum block/component
SNR. The actual number of measurements required for reliable
subspace recovery can be less than that predicted in Lemma
2.

V. COMPARISON WITH EXISTING RESULTS

V.A Existing results for support recovery with the standard
sparsity model

The most related existing work on deriving sufficient condi-
tions for the ML estimation to succeed in the presence of noise

with the standard sparsity model is presented in [14]. There,
taking the canonical basis as the sparsifying basis, the results
are derived based on the following bound on the probability
of error:

Pe ≤
k
∑

l=1

(

k

l

)(

N − k

l

)

4 exp

{

− (M − k)lCSNRmin

64(lCSNRmin + 8)

}

. (35)

WhenCSNRmin → ∞, it can be easily seen that this upper
bound is bounded away from zero (i.e. it is bounded by
4e−(M−k)/64

(

(

Ld
k

)

− 1
)

> 0). Based on the upper bound
(35), it was shown in [14] that

M > k + (η1 + 2048)max

{

M̃1 = log

((

N − k

k

))

,

M̃2 =
log(N − k)

CSNRmin

}

(36)

measurements are required for asymptotically reliable sparsity
pattern recovery whereη1 is a constant (which is different
from the one used earlier in the paper). When the minimum
component SNR,CSNRmin → ∞, the ML estimation re-
quires k + (η1 + 2048)k log((N − k)/k) measurements for
asymptotically reliable recovery, which is much larger than k.
However, as shown in [17], [36], when the measurement noise
power is negligible (or in the no noise case), the exhaustive
search decoder is capable of recovering the sparsity pattern
with M = k + 1 measurements with high probability. Thus,
the limits predicted by the existing results in the literature for
sparsity pattern recovery in terms of the minimum number
of measurements show a gap with what is actually required.
When d = 1, V is the standard canonical basis, andA is
a random Gaussian matrix, the structured union of subspaces
model considered in Section IV (specifically the equation (27))
is the same as the model considered in [14]. Our results show
that whenCSNRmin → ∞, the upper bound on the probabil-
ity of error in (33) vanishes with the standard sparsity model
when M > k. More specifically, whenCSNRmin → ∞,
our results imply thatO(k) measurements are sufficient for
asymptotically reliable sparsity pattern recovery with the ML
estimation which is intuitive. Further, at finiteCSNRmin,
whenM̃2 dominatesM̃1 in (36) the lower bound in [14] has
the same scaling with respect toL, k, d andCSNRmin to that
is obtained in this paper with the standard sparsity model.

V.B Existing results for signal recovery with union of sub-
spaces

The problem of stable recovery of signals that lie in a union
of subspaces model is addressed in [23]–[26], [28]. In these
works, the main focuss is to derive sufficient conditions that
ensure reliable recovery of the complete signals while in this
paper, our focus is only in identifying the low dimensional
subspace in which the signal lies. Nevertheless, it is interesting
to compare the results since it will provide insights into
identifying the regions of the parameters (L, k, SNR, etc..)
that ensure asymptotically reliable subspace recovery using the
existing algorithms developed for exact signal recovery.

The following result is shown in [26].
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Pe ≤
k
∑

l=1

(

k

l

)(

N − k

l

)(

Q

(

1

2
(1− 2η0)

√

(M − k)lCSNRmin

)

+Ψ(l,CSNRmin)

)

(33)

Pe ≤
k0
∑

l=1

(

k0
l

)(

L− k0
l

)(

Q

(

1

2
(1− 2η0)

√

(M − k)ldCSNRmin

)

+Ψ(l, dCSNRmin)

)

(34)

Theorem 3 ( [26]). For any givent > 0, if

M >
2

cδ

(

log(2T ) + k log

(

12

δ

)

+ t

)

(37)

then, the matrixA in (7) satisfies the restricted isometry
property (RIP) with the restricted isometry constantδ (for
formal definition of RIP readers may refer to [26]).

In [27], the authors derived the sufficient conditions for
complete signal recovery in the block sparsity model. When
the samples are acquired via random projections (elements in
A are Gaussian) with the notations used in Section IV.B, the
minimum number of samples required for the sampling matrix
to satisfy block RIP with high probability is given by (from
Theorem 3 and [27])

M ≥ 36

7δ

(

log

(

2

(

L

k0

))

+ k log

(

12

δ

)

+ t

)

(38)

for some t > 0 and 0 < δ < 1 is the restricted isometry
constant. This is roughly in the order ofη̃1k+ η̃2k0 log(L/k0)
for some positive constants̃η1 andη̃2. Thus, block sparse sig-
nals can be reliably recovered using computationally tractable
algorithms (e.g. extension of BP - mixedl2/l1 norm recovery
algorithms) with η̃1k + η̃2k0 log(L/k0) measurements when
there is no noise. In the presence of noise, the BP based
algorithm developed in [25] is shown to be robust so that
the norm of the recovery error is bounded by the noise level.
As shown in Section IV.B, it requires roughly the order of
k + (η4/BSNRmin) log(L − k0) measurements (whenk0 is
fairly small) for reliable block sparsity pattern recoverywith
ML estimation. Here, the second term is significant at finite
BSNRmin while it vanishes whenBSNRmin → ∞. At finite
BSNRmin, whenk0 is sublinear w.r.t.L, it can be shown that
k0 log(L/k0) >> log(L− k0). Thus, in that region ofk0, the
relevant scaling obtained in (38) is larger than what is required
by the optimal ML estimation derived in this paper at finite
BSNRmin. The exact difference between them depends on
the value ofBSNRmin and the relevant constants.

VI. N UMERICAL RESULTS

Several computationally tractable algorithms for sparsity
pattern recovery with standard sparsity have been derived and
discussed quite extensively in the literature. Extensionsof such
algorithms for model based or structured CS have also been
considered in several recent works. For example, extensions
of CoSamp and iterative hard thresholding algorithms for
model based CS were considered in [23]. Extensions of OMP
algorithm for block sparsity pattern recovery (BOMP) were

considered in [27], [37] while [25], [38], [39] considered the
Group Lasso algorithm for block sparse signal recovery.

Our goal in this section is to validate the tightness of
the derived upper bounds on the probability of error of the
ML estimation and provide numerical results to illustrate the
performance gap when employing practical algorithms for
subspace recovery. Simulating the ML algorithm is difficult
due to its high computational complexity in the high dimen-
sions. Nevertheless, we show the performance for reasonably
sized signal dimensions and samples just to demonstrate the
tightness of the probability of error bound. For the structured
union of subspaces model considered in Section IV.A, the
problem reduces to recovering the block sparsity pattern ofa
block sparse signal. The performance of the ML algorithm is
compared to block-OMP as proposed in [27] which is provided
in Algorithm 1 where the set̂U contains the estimated indices
of the nonzero blocks of a block sparse signal.

Algorithm 1 Block-OMP (B-OMP) for block sparsity pattern
recovery
Input: y, B, k0

1) Initialize t = 1, Û(0) = ∅, residual vectorr0 = y

2) Find the index λ(t) such that λ(t) =
arg max
i=0,··· ,L−1

||B[i]∗rt−1||2
3) SetÛ(t) = Û(t− 1) ∪ {λ(t)}
4) Compute the projection operatorP(t) =

B(Û(t))
(

B(Û(t))TB(Û(t))
)−1

B(Û(t))T . Update

the residual vector:rt = (I − P(t))y (note: B(Û(t))
denotes the submatrix ofB in which columns are taken
from B corresponding to the indices in̂U(t))

5) Incrementt = t+1 and go to step 2 ift ≤ k0, otherwise,
stop and set̂U = Û(t− 1)

Results in Figures 1 and 2, are based on the special structure
as considered in (5) for subspaces leading to block sparsity
and the sampling operator is assumed to be a random matrix
in which elements are drawn from a Gaussian ensemble with
mean zero and variance1. Further, we letN×N matrixV be
the standard canonical basis. In Fig 1 (a), the exact probability
of error of the ML estimation (obtained via simulation) and
the upper bound on the probability of error derived in (29)
vs M/N are shown. In the block sparsity model, we let
N = 50, d = 2, L = 25, BSNRmin = 13dB and three
different plots correspond tok0 = 3, 4, 5. In Fig. 1 (b), we
let d = 1 (i.e. the standard sparsity model) so that the upper
bound on the probability of error reduces to (33). We also
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Fig. 1. Exact probability of error and the derived upper bound on the
probability of error of the ML recovery for block sparsity pattern recovery

let CSNRmin = 10dB and different curves correspond to
different values ofk in Fig.1 (b). The exact probability of error
of the ML estimation is obtained via Monte Carlo simulations
with 105 runs. In the upper bounds (29) and (33), we let
η0 = 1/4. It can be seen from Fig. 1(a) and 1(b) that the
derived upper bound on the probability of error is fairly a tight
bound on the exact probability of error especially asM/N
increases and the tightness is more significant in Fig. 1(a).
It should be noted that ford = 2, we havek = k0d, thus
the total number of non zero coefficients is larger in Fig. 1(a)
than that withd = 1 in Fig. 1(b). Thus, it is seen that derived
upper bound becomes tighter ask increases. It is also worth
mentioning that the derived upper bound on the probability
of error in [14] with the standard sparsity model (as in (35))
is bounded away from1 for the selected parameter values
mentioned above.

In Fig. 2, the performance of the block sparsity pattern
recovery with ML and B-OMP algorithms is shown when
BSNRmin varies. In Fig. 2, we letk0 = 5, L = 25, d = 2
andN = 50. For B-OMP,104 runs are performed for a given
projection matrix and averaged over100 runs. In Fig. 2, the
ratio between the minimum and maximum block SNR in both
cases considered is set at1.825. As observed in Fig. 1, from
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Fig. 2. Performance of the ML estimation and the B-OMP algorithm for
block sparsity pattern recovery;L = 25, k0 = 5, d = 2, and thusk = 10,
N = 50

Fig. 2 it can be seen that the derived upper bound on the
probability of error of the ML estimation is fairly closer tothe
exact probability error obtained via Monte Carlo simulations,
especially asBSNRmin increases. Further, for a given finite
BSNRmin, there seems to be a considerable performance gap
between the B-OMP and the ML estimation. That is the price
to pay for the computational complexity of the ML estimation
vs the computationally efficient B-OMP algorithm.

VII. C ONCLUSION

In this paper, we investigated the problem of subspace
recovery based on reduced dimensional samples when the
signal of interest lies in a union of subspaces. With a given
sampling operator, we derived the performance of the optimal
ML estimation for subspace recovery in the presence of noise
in terms of the probability of error. We further obtained con-
ditions under which asymptotically reliable subspace recovery
is guaranteed.

We extended the analysis to a special case of union of
subspaces model which reduces to block sparsity. When
the samples are obtained via random projections, sufficient
conditions required for asymptotically reliable block sparsity
pattern recovery with the ML estimation were derived. Per-
formance gain in terms of the minimum number of samples
required for asymptotically reliable subspace recovery with
the block sparse model was quantified compared to that with
the standard sparsity model. Our results further strengthen the
existing results for sparsity pattern recovery with the standard
sparsity model used in CS framework with random projections.
More specifically, our results for sufficient conditions for
asymptotically reliable subspace recovery are derived based
on a tighter bound on the probability of error of the ML
estimation compared to the existing results in the literature
with the standard sparsity model. We further discussed and
illustrated numerically the performance gap between the ML
estimation and the computationally tractable algorithms (e.g.
B-OMP) used for subspace recovery with the structured union
of subspaces model.

An interesting future direction will be to extend the analysis
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with the single node system to a multiple node system in
distributed networks.

APPENDIX A

Proof of Lemma 1

To prove Lemma 1, we consider a similar argument to that
considered in [14] with certain differences as noted in the
following. As shown in [14], we may write,

∆ij(y) = ||P⊥
i y||22 − ||P⊥

i w||22 + ||P⊥
i w||22 − ||P⊥

j y||22.
For any givenδ > 0, define the events

h1(δ) =

{

|
||P⊥

j y||22 − ||P⊥
i w||22

σ2
w

| ≥ δ

}

(39)

and

h2(δ) =

{ ||P⊥
i y||22 − ||P⊥

i w||22
σ2
w

≤ 2δ

}

. (40)

ThenPr(∆ij(y) < 0) implies that at least one event in (39)
and (40) is true. Based on the union bound, we can write

Pr(∆ij(y) < 0) ≤ Pr(h1(δ)) + Pr(h2(δ)).

With the standard sparsity model and assuming that the
sampling is performed via random projections, upper bounds
on the probabilitiesPr(h1(δ)) andPr(h2(δ)) are derived in
[14]. In contrast, in the following, we derive exact value for
Pr(h2(δ)) and a tighter bound forPr(h1(δ)) assuming that
the sampling operatorA is known. Thus, even for the standard
sparsity model, the results presented in this paper tightens the
results derived in [14].

We first evaluatePr(h1(δ)). Let ∆1
ij(y) =

1
σ2
w
(||P⊥

j y||22 −
||P⊥

i w||22). Assuming the true subspace isSj , ∆1
ij(y) reduces

to ∆1
ij(y) = 1

σ2
w
(||P⊥

j w||22 − ||P⊥
i w||22). As shown in [14],

the random variable∆1
ij(y) can be represented as∆1

ij(y) =
x1 − x2 wherex1 andx2 are independent andx1, x2 ∼ X 2

l

where l is the cardinality of the setWj\i as defined before.
With these notations, we can write

Pr(h1(δ)) = Pr(|x1 − x2| ≥ δ)

= Pr((x1 − x2) ≥ δ) + Pr((x1 − x2) < −δ).

The pdf of the random variablew = x1 − x2 is symmetric
around zero and thus we have,

Pr(h1(δ)) = 2Pr((x1 − x2) ≥ δ).

Proposition 3. Whenx1 ∼ X 2
l and x2 ∼ X 2

l , the random
variablew = x1 − x2 has the following pdf:

fw(w)

=







f+
w (w) = w

l
2
− 1

2√
π2lΓ(l/2)

K1/2−l/2

(

w
2

)

; if w ≥ 0

f−
w (w) = (−w)

l
2
− 1

2√
π2lΓ(l/2)

K1/2−l/2

(−w
2

)

; if w < 0
(41)

whereKν(x) is the modified Bessel function.

Proof: Sincex1 andx2 are independent, the pdf ofw =
x1 − x2 is given by [40]

fw(w) =

{ ∫∞
0 fx1

(w + x2)fx2
(x2)dx2; if w ≥ 0

∫∞
−w fx1

(w + x2)fx2
(x2)dx2; if w < 0

First consider the case wherew > 0. Then

f+
w (w) =

∫ ∞

0

(w + x2)
l/2−1e−(w+x2)/2

2l/2Γ(l/2)

x
l/2−1
2 e−x2/2

2l/2Γ(l/2)
dx2

=
e−w/2

2l(Γ(l/2))2

∫ ∞

0

x
l/2−1
2 (w + x2)

l/2−1e−x2dx2

=
e−w/2

2l(Γ(l/2))2
1√
π
wl/2−1/2ew/2Γ(l/2)K1/2−l/2(w/2)

=
wl/2−1/2K1/2−l/2(w/2)√

π2lΓ(l/2)

whereKν(x) is the modified Bessel function and the third
equality is obtained using the integral result

∫∞
0 xν−1(x +

β)ν−1e−µxdx = 1√
π

(

β
µ

)ν−1/2

eβµ/2Γ(ν)K1/2−ν

(

βµ
2

)

for
µ, ν > 0 in [41, p. 348].

Whenw < 0, we have,

f−
w (w) =

e−w/2

2l(Γ(l/2))2

∫ ∞

−w

x
l/2−1
2 (w + x2)

l/2−1e−x2dx2. (42)

Letting z = −w wherez > 0, (42) can be rewritten as,

f−
w (w) =

ez/2

2l(Γ(l/2))2

∫ ∞

z

x
l/2−1
2 (x2 − z)l/2−1e−x2dx2. (43)

Using the integral result,
∫∞
u

xν−1(x − u)ν−1e−µxdx =

1√
π

(

u
µ

)ν−1/2

e−µu/2Γ(ν)Kν−1/2

(

µu
2

)

in [41, p. 347] and

the relationKν(x) = K−ν(x), we get f−
w (w) as in (41),

completing the proof.

Proposition 4. For δ > 0, the probabilityPr(w > δ) is given
by,

Pr(w > δ) ≤
√
2

2l+1Γ(l/2)
δl/2−1/2Kl/2−1/2(δ/2)

whereKν(x) is the modified Bessel function, andΓ(.) is the
Gamma function.

Proof: Based on (41), we have

Pr(w > δ) =

∫ ∞

δ

f+
w (w)dw

=

∫ ∞

δ

wl/2−1/2K1/2−l/2(w/2)√
π2lΓ(l/2)

dw. (44)

Using the equivalent integral representation ofKν(az) =
zν

2

∫∞
0 e

−a
2

(

t+ z2

t

)

t−ν−1dt [41, p. 917], we can write the
integral in (44) as,

Pr(w > δ)

=
1√

π2l+1Γ(l/2)

∫ ∞

δ

∫ ∞

0

e
− 1

4

(

t+w2

t

)

tl/2−3/2dtdw.(45)

Since
∫∞
δ e−

w2

4t dw =
√
2πQ

(

δ√
2t

)

, (45) reduces to,

Pr(w > δ) =

√
2

2l+1Γ(l/2)

∫ ∞

0

e−t/4tl/2−3/2Q

(

δ√
2t

)

dt

≤
√
2

2l+2Γ(l/2)

∫ ∞

0

tl/2−3/2e−t/4− δ2

4t dt (46)

=

√
2

2l+1Γ(l/2)
δl/2−1/2Kl/2−1/2(δ/2) (47)
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where we used the inequalityQ(x) ≤ 1
2e

− x2

2 for x > 0, and

the relation,
∫∞
0 xν−1e−β/x−γxdx = 2

(

β
γ

)ν/2

Kν(2
√
βγ)

for β > 0 and γ > 0 [41, p. 368] while obtaining (46) and
(47), respectively, which completes the proof.

Then, we have

Pr(h1(δ)) =

√
2

2lΓ(l/2)
δl/2−1/2Kl/2−1/2(δ/2). (48)

Next we compute the quantityPr(h2(δ)). Let ∆2
ij(y) =

1
σ2
w
(||P⊥

i y||22 − ||P⊥
i w||22). Then we have,

∆2
ij(y) =

1

σ2
w

(||P⊥
i Bj\icj\i||22 + 2wTP⊥

i Bj\icj\i).

Since w ∼ N (0, σ2
wIM ), ∆2

ij(y) is a Gaussian random
variable with pdf,

∆2
ij(y) ∼ N

(

1

σ2
w

||P⊥
i Bj\icj\i||22,

4

σ2
w

||P⊥
i Bj\icj\i||22

)

.

Thus,

Pr(h2(δ)) = Pr
(

∆2
ij(y) ≤ 2δ

)

= 1−Q

(

2δ − 1
σ2
w
||P⊥

i Bj\icj\i||22
2
σw

||P⊥
i Bj\icj\i||2

)

= 1−Q

(

2δ − λj\i

2
√

λj\i

)

.

Since it is desired to controlδ such thatPr(h2(δ)) ≤ 1/2, we
selectδ∗ = η0λj\i whereη0 < 1

2 . With this choicePr(h2(δ))
reduces to,

Pr(h2(δ)) = Q

(

1

2

√

λj\i(1 − 2η0)

)

where we used the relation1 − Q(−x) = Q(x) for x > 0,
while Pr(h1(δ)) reduces to,

Pr(h1(δ)) =

√
2

2lΓ(l/2)
(η0λj\i)

l/2−1/2Kl/2−1/2(η0λj\i/2). (49)

APPENDIX B

Proof of Theorem 2

To obtain conditions under which the probability of error
bound in (22) asymptotically vanishes, we rely on the follow-
ing corollary.

Corollary 2. Let T0(l) andα2
min,l be as defined in Subsection

III.B. The probability of error of the ML estimation in (22) is
further upper bounded by

Pe ≤
k
∑

l=1

T0(l)

(

1

2
e−

1

8
(1−2η0)

2(M−k)α2

min,l + φl

)

(50)

where

φl =

√
2π

4Γ(l/2)

(

1

4
η0(M − k)α2

min,l

)l/2−1

e−
1

2
η0(M−k)α2

min,l (51)

when(M − k)α2
min,l >> (l/2 − 1/2) for all l = 1, 2, · · · , k

and 0 < η0 < 1/2.

Proof: Using the Chernoff bound for theQ function
where Q(x) ≤ 1

2e
−x2

2 , we can upper bound the term

Q
(

1
2 (1− 2η0)

√

(M − k)α2
min,l

)

as,

Q

(

1

2
(1− 2η0)

√

(M − k)α2
min,l

)

≤ 1

2
e−

1

8
(1−2η0)

2(M−k)α2

min,l

for η0 < 1
2 .

To obtain (51) we used the relationKν(z) ≈
√

π
2z e

−z when
ν << z, completing the proof.

It is further noted that whenk is fairly small andα2
min,l

is sufficiently large, the condition required for (51) is often
satisfied. We consider the conditions under which the each
term in (50) goes to0 asymptotically, equivalently logarithm
of each term→ −∞. First consider the first term in the
summation in (50) for which the logarithm gives,

logT0(l) + log(1/2)− 1

8
(1− 2η0)

2(M − k)α2
min,l

≤ max
l

{log(T0(l)) + log(1/2)

− 1

8
(1− 2η0)

2(M − k) {α2
min,l}

}

→ −∞

as (M − k) → ∞ when M > k + M1 where M1 =

max
l=1,··· ,k

{

8
(1−2η0)2α2

min,l

{log(T0(l)) + log(1/2)}
}

. Consider-

ing the second term in (50), let

Π1 = logT0(l) + log

(

b0
Γ(l/2)

)

+ (l/2− 1) log

(

1

4
η0(M − k)α2

min,l

)

− 1

2
η0(M − k)α2

min,l (52)

where b0 =
√
2π
4 . When 1

4η0(M − k)α2
min,l is suffi-

ciently large, we can find0 < q0 < 1
(k/2−1) such that

log
(

1
4η0(M − k)α2

min,l

)

< q0
1
2η0(M − k)α2

min,l. Then (52)
is upper bounded by

Π1 ≤ max
l=1,··· ,k

{

log(T0(l)) + log

(

b0
Γ(3/2)

)

−
(

1

2
η0(M − k)α2

min,l

)

(1 − q0(k/2− 1))

}

= Π2(53)

where 0 < q0 < 1
(k/2−1) . We can writeq0 in the form of

q0 = 1
2(k/2+r0−1) for somer0 > 0. Thus, (53) can be rewritten

as

Π2 = max
l=1,··· ,k

{

log(T0(l)) + log

(

2b0√
π

)

−
(

1

2
η0(M − k)α2

min,l

)

r0
r0 + k/2− 1

}

→ −∞

as (M − k) → ∞ when M > k + M2 where M2 =

max
l=1,··· ,k

{

2(k/2+r0−1)
r0η0α2

min,l

{

log(T0(l)) + log
(

2b0√
π

)}}

, 0 < η0 <

1/2, b0 =
√
2π
4 , andr0 > 0.
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APPENDIX C

Proof of Proposition 1

We rewriteλj\i =
1
σ2
w
||P⊥

i Bj\icj\i||22. The t-th element of
the vectorBj\icj\i can be written as〈at,

∑

m∈Wj\i

vjmcj(m)〉

whereat’s are row vectors ofA for t = 0, 1, · · · ,M − 1.
Assuming that the elements ofA are independent Gaus-
sian with mean zero and variance 1, it can be eas-
ily seen that 〈at,

∑

m∈Wj\i

vjmcj(m)〉 is a realization of a

Gaussian random variable with mean zero and variance
|| ∑

m∈Wj\i

vjmcj(m)||22. Further, the elements ofBj\icj\i are

independent of each other sinceat’s are independent for
t = 0, 1, · · · ,M − 1. Thus, the random vectorBj\icj\i ∼
N (0, || ∑

m∈Wj\i

vjmcj(m)||22IM ). With given realizations, con-

sider again the transformationQT
i Bj\icj\i whereQi is the

unitary matrix with eigenvectors ofP⊥
i . Since the elements

in Bj\icj\i are independent and identically distributed (iid),
the unitary transformation does not change the distribution
of Bj\icj\i. Then ||P⊥

i Bj\icj\i||22 = ||ΛiQ
T
i Bj\icj\i||22 is a

sum ofM−k iid random variables. Thus when(M−k) is suf-
ficiently large, invoking the law of large numbers, we may ap-
proximate||P⊥

i Bj\icj\i||22 → (M − k)|| ∑

m∈Wj\i

vjmcj(m)||22
which completes the proof.
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