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Abstract

Determining the achievable rate region for networks using routing, linear coding, or non-
linear coding is thought to be a difficult task in general, andfew are known. We describe the
achievable rate regions for four interesting networks (completely for three and partially for the
fourth). In addition to the known matrix-computation method for proving outer bounds for
linear coding, we present a new method which yields actual characteristic-dependent linear
rank inequalities from which the desired bounds follow immediately.
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1 Introduction

In this paper, anetworkis a directed acyclic multigraphG = (V,E), some of whose nodes are
information sources or receivers (e.g. see [22]). Associated with the sources arem generated
messages, where theith source message is assumed to be a vector ofki arbitrary elements of a fixed
finite alphabet,A, of size at least2. At any node in the network, each out-edge carries a vector ofn
alphabet symbols which is a function (called anedge function) of the vectors of symbols carried on
the in-edges to the node, and of the node’s message vectors ifit is a source. Each network edge is
allowed to be used at most once (i.e. at mostn symbols can travel across each edge). It is assumed
that every network edge is reachable by some source message.Associated with each receiver are
one or moredemands; each demand is a network message. Each receiver hasdecoding functions
which map the receiver’s inputs to vectors of symbols in an attempt to produce the messages
demanded at the receiver. The goal is for each receiver to deduce its demanded messages from
its in-edges and source messages by having information propagate from the sources through the
network.

A (k1, . . . , km, n) fractional codeis a collection of edge functions, one for each edge in the net-
work, and decoding functions, one for each demand of each node in the network. A(k1, . . . , km, n)
fractional solutionis a(k1, . . . , km, n) fractional code which results in every receiver being able to
compute its demands via its decoding functions, for all possible assignments of length-ki vectors
over the alphabet to theith source message, for alli.

Special codes of interest includelinear codes, where the edge functions and decoding func-
tions are linear, androuting codes, where the edge functions and decoding functions simply copy
specified input components to output components.1 Special networks of interest includemulticast
networks, where there is only one source node and every receiver demands all of the source mes-
sages, andmultiple-unicastnetworks, where each network message is generated by exactly one
source node and is demanded by exactly one receiver node.

For eachi, the ratioki/n can be thought of as the rate at which sourcei injects data into the
network. If a network has a(k1, . . . , km, n) fractional solution over some alphabet, then we say
that(k1/n, . . . , km/n) is anachievable rate vector, and we define theachievable rate regionof the
network as the following convex hull2

S = CHULL({r ∈ Qm : r is an achievable rate vector}).

Every vector in the achievable rate region can be effectively achieved by time-sharing between two
achievable points (since it is a convex combination of thoseachievable points).

Determining the achievable rate region of an arbitrary network appears to be a formidable
task. Alternatively, certain scalar quantities that reveal information about the achievable rates are

1 If an edge function for an out-edge of a node depends only on the symbols of a single in-edge of that node,
then, without loss of generality, we assume that the out-edge simply carries the same vector of symbols (i.e. routes the
vector) as the in-edge it depends on.

2 There is some variation in the definition and terminology in the literature. Some authors use the term “capacity
region” or “rate region”. Alternative definitions of the region have been defined as the topological closure ofS or
without the convex hull.
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typically studied. For any(k1, . . . , km, n) fractional solution, we call the scalar quantity

1

m

(

k1
n

+ · · ·+
km
n

)

anachievable average rateof the network. We define theaverage coding capacityof a network to
be the supremum of all achievable average rates, namely

Caverage = sup

{

1

m

m
∑

i=1

ri : (r1, . . . , rm) ∈ S

}

.

Similarly, for any(k1, . . . , km, n) fractional solution, we call the scalar quantity

min

(

k1
n
, . . . ,

km
n

)

anachievable uniform rateof the network. We define theuniform coding capacityof a network to
be the supremum of all achievable uniform rates, namely

Cuniform = sup {min(r1, . . . , rm) : (r1, . . . , rm) ∈ S} .

Note that for anyr ∈ S andr′ ∈ Rm, if each component ofr′ is nonnegative, rational, and less
than or equal to the corresponding component ofr, thenr′ ∈ S. In particular, if(r1, . . . , rm) ∈ S
andri = min

1≤j≤m
rj, then(ri, ri, . . . , ri) ∈ S, which implies

Cuniform = sup {ri : (r1, . . . , rm) ∈ S, r1 = · · · = rm} .

In other words, all messages can be restricted to having the same dimensionk1 = · · · = km when
consideringCuniform. Also, note that

Cuniform ≤ Caverage.

The quantitiesCaverage andCuniform are attained by points on the boundary ofS. It is known that
not every network has a uniform coding capacity which is an achievable uniform rate [7].

If a network’s edge functions are restricted to purely routing functions, then we write the ca-
pacities asCaverage

routing andCuniform
routing , and refer to them as theaverage routing capacityanduniform

routing capacity, respectively. Likewise, for solutions using only linear edge functions, we write
Caverage
linear andCuniform

linear and refer to them as theaverage linear capacityanduniform linear capacity,
respectively.

Given random variablesx1, . . . xi andy1, . . . , yj, we writex1, . . . xi −→ y1, . . . , yj to mean
thaty1, . . . , yj are deterministic functions ofx1, . . . xi. We say thatx1, . . . xi yield y1, . . . , yj.

In this paper, we study four specific networks, namely the Generalized Butterfly network, the
Fano network, the non-Fano network, and the Vámos network.The last three of these networks
were shown to be matroidal in [8] and various capacities of these networks have been computed.
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However, the full achievable rate regions of these networkshave not been previously determined,
to the best of our knowledge. Some other work on achievable rates and capacities has been done
in [5,15,21].

The Generalized Butterfly network (studied in Section 2 and illustrated in Figure 1) has the
same topology as the usual Butterfly network [2], but insteadof one source at each of nodesn1 and
n2, there are two sources at each of these nodes. For each of the source nodes, one of it’s source
messages is demanded by receivern5 and the other by receivern6. The usual Butterfly network is
the special case when messagesa andd do not exist (or are just not demanded by any receiver). A
large majority of network coding publications mention in some context the Butterfly network, so
it plays an important role in the field.

The Fano network (studied in Section 3 and illustrated in Figure 2) and the non-Fano network
(studied in Section 5 and illustrated in Figure 6) were used in [7] as components of a larger net-
work to demonstrate the unachievability of network coding capacity. Specifically, in [7] the Fano
network was shown to be solvable if and only if the alphabet size is a power of2 and the non-Fano
network was shown to be solvable if and only if the alphabet size is odd. In [9], the Fano and
non-Fano networks were used to build a solvable multicast network whose reverse (i.e. all edge
directions change, and sources and receivers exchange roles) was not solvable, in contrast to the
case of linear solvability, where reversals of linearly solvable multicast networks were previously
known to be linearly solvable [16, 17, 20]. In [6], the Fano and non-Fano networks were used to
construct a network which disproved a previously publishedconjecture asserting that all solvable
networks are vector linearly solvable over some finite field and some vector dimension.

The Vámos network (studied in Section 7 and illustrated in Figure 10) was used in [8] to
demonstrate that non-Shannon-type information inequalities could yield upper bounds on network
coding capacity which are tighter than the tightest possible bound theoretically achievable using
only Shannon-type information inequalities. Here we completely determine the routing and linear
rate regions for the Vámos network, but only give partial results for the non-linear rate region
(which indicate that it could be quite complicated).

Finally, we present a new method for proving bounds on achievable rate regions for linear
coding, which actually produces explicit linear rank inequalities which directly imply the desired
bounds.
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2 Generalized Butterfly network

1 2

3

4

5 6

b d

a d

a c

c b

x y z

Figure 1: The Generalized Butterfly network. Source noden1 generates messagesa andb, and
source noden2 generates messagesc andd. Receiver noden5 demands messagesa andc, and
receiver noden6 demands messagesb andd. The symbol vectors carried on edgese1,5, e2,4, and
e3,6 are denotedx, y, andz, respectively.

Theorem 2.1.The achievable rate regions for either linear or non-linearcoding are the same for
the Generalized Butterfly network and are equal to the closedpolytope inR4 whose faces lie on
the9 planes:

ra = 0

rb = 0

rc = 0

rd = 0

rb = 1

rc = 1

ra + rb + rc = 2

rb + rc + rd = 2

ra + rb + rc + rd = 3
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and whose vertices are the14 points:

(0, 0, 0, 0) (0, 0, 0, 2) (2, 0, 0, 0) (0, 1, 0, 0)

(0, 0, 1, 0) (2, 0, 0, 1) (1, 0, 0, 2) (0, 0, 1, 1)

(1, 1, 0, 0) (1, 0, 1, 1) (1, 1, 0, 1) (0, 1, 1, 0)

(0, 1, 0, 1) (1, 0, 1, 0).

Furthermore, the coding capacity and linear coding capacity are given by:

Cuniform = Cuniform
linear = 2/3

Caverage = Caverage
linear = 3/4.

Proof. Consider a network solution over an alphabetA and denote the source message dimensions
by ka, kb, kc, andkd, and the edge dimensions byn. Let each source be a random variable whose
components are independent and uniformly distributed overA. Then the solution must satisfy the
following inequalities:

ka ≥ 0 (1)

kb ≥ 0 (2)

kc ≥ 0 (3)

kd ≥ 0 (4)

kb = H(b) = H(y|a, c, d) ≤ n (5)

kc = H(c) = H(y|a, b, d) ≤ n (6)

ka + kb + kc = H(a, b, c) = H(x, y|d)

≤ H(x, y) ≤ 2n (7)

kb + kc + kd = H(b, c, d) = H(y, z|a)

≤ H(y, z) ≤ 2n (8)

ka + kb + kc + kd = H(a, b, c, d) = H(x, y, z)

≤ 3n. (9)

(1)–(4) are trivial; (5) follows becausec, d, y −→ y, z −→ b, d (at noden6), and therefore
a, c, d, y −→ a, b, c, d and thusH(a, b, c, d) = H(a, c, d, y); similarly for (6); (7) follows because
x, y −→ a, c (at noden5), c, d, y −→ b, d (at noden6), and therefored, x, y −→ a, c, d, y −→
a, b, c, d and thusH(a, b, c, d) = H(d, x, y); similarly for (8); (9) follows becausex, y, z −→
a, b, c, d (at nodesn5 andn6). Dividing each inequality in (1)–(9) byn gives the9 bounding
hyperplanes stated in the theorem.

Let ra = ka/n, rb = kb/n, rc = kc/n, andrd = kd/n, and letP denote the polytope inR4

consisting of all4-tuples(ra, rb, rc, rd) satisfying (1)–(9). Then (1)–(4) and (9) ensure thatP is
bounded. One can easily calculate that each point inR4 that satisfies some independent set of four
of the inequalities (1)–(9) with equality and also satisfiesthe remaining five inequalities must be

Page 5 of 51



Dougherty-Freiling-Zeger November 18, 2013

one of the14 points stated in the theorem. Now we show that all14 such points do indeed lie in
the achievable rate region, and therefore their convex hullequals the achievable rate region. The
following 5 points are achieved by takingn = 1 with the following codes over any field (where, if
ka = 2, the two components ofa are denoteda1 anda2):

(2, 0, 0, 1): x = a1, y = a2, z = d

(1, 0, 0, 2): x = a, y = d1, z = d2

(1, 0, 1, 1): x = a, y = c, z = d

(1, 1, 0, 1): x = a, y = b, z = d

(0, 1, 1, 0): x = b, y = b+ c, z = c

and the remaining9 points are achieved by fixing certain messages to be0.
Since the above codes are all linear, the achievable rate regions for linear and non-linear codes

are the same.
By (9), we haveCaverage ≤ 3/4, and this upper bound is achievable by routing using the code

given above for the point(2, 0, 0, 1), namely takingx = a1, y = a2, andz = d. By (8), we have
Cuniform ≤ 2/3; since

(2/3)(1, 1, 1, 1) = (1/3)(1, 0, 1, 1)

+ (1/3)(1, 1, 0, 1)

+ (1/3)(0, 1, 1, 0)

the upper bound of2/3 is achievable by a convex combination of the linear codes given above for
the points(1, 0, 1, 1), (1, 1, 0, 1), and(0, 1, 1, 0), as follows. Takek = 2 andn = 3 and use the
(linear) code determined by:

x = (a1, a2, b2)

y = (c1, b1, b2 + c2)

z = (d1, d2, c2).

�

Theorem 2.2. The achievable rate region for routing for the Generalized Butterfly network is the
closed polytope inR4 bounded by the9 planes in Theorem 2.1 together with the plane

rb + rc = 1

and whose vertices are the13 points:

(0, 0, 0, 0) (0, 0, 0, 2) (2, 0, 0, 0) (0, 1, 0, 0)

(0, 1, 0, 1) (0, 0, 1, 0) (2, 0, 0, 1) (1, 0, 0, 2)

(0, 0, 1, 1) (1, 0, 1, 0) (1, 1, 0, 0) (1, 0, 1, 1)

(1, 1, 0, 1).
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Furthermore, the routing capacities are given by:

Cuniform
routing = 1/2

Caverage
routing = 3/4.

Proof. With routing, in addition to the inequalities (1)–(9), a solution must also satisfy

kb + kc ≤ n (10)

since all of the components of messagesb and c must be carried by the edge labeledy. One
can show that each point inR4 that satisfies with equality some independent set of four of the
inequalities (1)–(9) and (10) and also satisfies the remaining six inequalities must be one of the
13 points stated in this theorem (i.e.13 of the14 points stated in Theorem 2.1 by excluding the
point (0, 1, 1, 0)). The proof of Theorem 2.1 showed that all vertices ofP except(0, 1, 1, 0) were
achievable using routing.

By (10), we haveCuniform
routing ≤ 1/2, and this upper bound is achievable, for example, by taking a

convex combination of codes that achieve(1, 0, 1, 0) and(0, 1, 0, 1), as follows. Takek = 1 and
n = 2 and use the routing code determined by:

x = (0, a)

y = (b, c)

z = (d, 0).

The capacityCaverage
routing = 3/4 follows immediately from the proof of Theorem 2.1. �
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3 Fano network

b ac

a b c

5

7

1

9

12 13 14

2

8

10 11

4

3

6

zx

w y

Figure 2: The Fano network. Source nodesn1, n2, andn3 generate messagesa, b, andc, respec-
tively. Receiver nodesn12, n13, andn14 demand messagesc, b, anda, respectively. The symbol
vectors carried on edgese4,6, e8,10, e5,7, e9,11 are labeled asw, x, y, andz, respectively.

Theorem 3.1.The achievable rate regions for either linear coding over any finite field alphabet of
even characteristic or non-linear coding are the same for the Fano network and are equal to the
closed polyhedron inR3 whose faces lie on the7 planes (see Figure 3):

ra = 0

rb = 0

rc = 0

ra = 1

rc = 1

rb + rc = 2

ra + rb = 2
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and whose vertices are the8 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 2, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1).

Proof. Consider a network solution over an alphabetA and denote the source message dimensions
by ka, kb, andkc, and the edge dimensions byn. Let each source be a random variable whose
components are independent and uniformly distributed overA. Then the solution must satisfy the
following inequalities:

ka ≥ 0 (11)

kb ≥ 0 (12)

kc ≥ 0 (13)

ka = H(a) = H(z|b, c) ≤ H(z) ≤ n (14)

kc = H(c) = H(y|a, b) ≤ H(y) ≤ n (15)

kb + kc = H(b, c) = H(x, z|a) ≤ H(x, z) ≤ 2n (16)

ka + kb = H(a, b) = H(x, z|c) ≤ H(x, z) ≤ 2n. (17)

(11)–(13) are trivial; (14) follows becausez, b, c −→ z, y −→ a (at noden14), soz, b, c −→ a, b, c
and thusH(z, b, c) = H(a, b, c); (15) follows becausea, b, y −→ a, w, y −→ a, x −→ c (at node
n12), soa, b, y −→ a, b, c and thusH(a, b, y) = H(a, b, c); (16) follows becausea, x, z −→ a, b, c
(at nodesn12 andn13) and thusH(a, x, z) = H(a, b, x); (17) follows from: x, z −→ b (at node
n13), b, c −→ y (at noden5), x, z, c −→ z, b, c −→ y, z, b, c −→ a, b, c, soH(x, z, c) = H(a, b, c).
Dividing each inequality in (11)–(17) byn gives the7 bounding planes stated in the theorem.

Let ra = ka/n, rb = kb/n, andrc = kc/n, and letP denote the polygon inR3 consisting
of all 3-tuples(ra, rb, rc) satisfying (11)–(17). ThenP is bounded by (11)–(17). One can easily
calculate that each point inR3 that satisfies some set of three of the inequalities (11)–(17) with
equality and also satisfies the remaining four inequalitiesmust be one of the8 points stated in the
theorem. Now we show that all8 such points do indeed lie inP. The following5 points are seen
to lie inP by takingn = 1 and the following codes over any even-characteristic finitefield:

(0, 1, 1): x = y = c, w = z = b

(1, 0, 1): x = y = c, w = z = a

(1, 1, 0): x = y = b, w = z = a

(0, 2, 0): x = y = b1, w = z = b2

(1, 1, 1): w = a + b, y = b+ c, x = a+ c, z = a+ b+ c

and the remaining3 points are achieved by fixing certain messages to be0 (note that the codes
for (0, 1, 1), (1, 0, 1), and(1, 1, 0) can be obtained from the linear code for(1, 1, 1) but we gave
routing solutions for them here).
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Since the above codes are all linear, the achievable rate regions for linear and non-linear codes
are the same. �

It was shown in [6] that for the Fano network,Caverage = Cuniform = 1 andCuniform
linear = 1 for all

even-characteristic fields andCuniform
linear = 4/5 for all odd-characteristic fields. The calculation of

Cuniform
linear = 4/5 in [6] required a rather involved computation. We now extendthat computation to

give the following theorem.

(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)

(0,0,0)

(0,2,0)
B

A

C

Figure 3: The achievable coding rate region for the Fano network is a7-sided polyhedron with 8
vertices.

Theorem 3.2. The achievable rate region for linear coding over any finite field alphabet of odd
characteristic for the Fano network is equal to the closed polyhedron inR3 whose faces lie on the
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8 planes (see Figure 4):

ra = 0

rb = 0

rc = 0

ra = 1

rc = 1

ra + 2rb + 2rc = 4

2ra + rb + 2rc = 4

2ra + 2rb + rc = 4

and whose vertices are the10 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 2, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(2/3, 2/3, 1) (1, 2/3, 2/3) (4/5, 4/5, 4/5).

Proof. In addition to satisfying the conditions (11)–(17), the solution must satisfy the following
inequalities:

ka + 2kb + 2kc ≤ 4n (18)

2ka + kb + 2kc ≤ 4n (19)

2ka + 2kb + kc ≤ 4n (20)

The proofs of these inequalities are given in Section 4, and an alternate proof of (19) is given in
Section 8.1.

A straightforward argument as in previous theorems shows that the vertices of the (bounded)
region specified by inequalities (11)–(15) and (18)–(20) (inequalities (16) and (17) are now re-
dundant) are the ten vertices listed in the theorem. For the first seven of these, the codes given in
Theorem 3.1 work here as well; the remaining points are attained by the following three codes (the
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last of which was given in [6]):

(1, 2/3, 2/3): n = 3,

w = (a1 + b1, a2 + b2, a3)

x = (a1 − c1, a2 − c2, a2 + b2)

y = (b1 + c1, b2 + c2, b1)

z = (a1 + b1 − c1, a2 + b2 + c2, a3)

(2/3, 2/3, 1): n = 3,

w = (a1 + b1, a2 + b2, b2)

x = (a1 − c1, a2 − c2, c3)

y = (b1 + c1, b2 + c2, c3)

z = (a1 + b1 − c1, a2 − b2 − c2, c1)

(4/5, 4/5, 4/5): n = 5,

w = (a1 + b1, a2 + b2, a3 + b3, a4 + b4, b1 + b4)

x = (c1 + a1, c2 + a2, c3 − a3, c4 − a4, a3 + b3)

y = (c1 − b1, c2 − b2, c3 + b3, c4 + b4, b2)

z = (a1 + b1 + c1, a2 + b2 + c2, a3 + b3 + c3, a4 + b4 + c4, b1 + b4 + c4)

�

Theorem 3.3.The achievable rate region for routing for the Fano network is the closed polyhedron
in R3 whose faces lie on the6 planes (see Figure 5):

ra = 0

rb = 0

rc = 0

ra = 1

rc = 1

ra + rb + rc = 2

and whose vertices are the7 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 2, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0).

Proof. With routing, in addition to the inequalities (11)–(17), a solution must also satisfy

ka + kb + kc ≤ 2n (21)
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(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)

(0,0,0)

(0,2,0)
B

A

C

(2/3,2/3,1)

(4/5,4/5,4/5)

(1,2/3,2/3)

Figure 4: The achievable linear coding rate region over even-characteristic finite fields for the Fano
network is a8-sided polyhedron with 8 vertices.

since all of the components of messagesa, b, andc must be carried by the edges labeledx and
z. One can easily check that the extreme points of the new region with the inequality (21) added
are the7 points stated in this theorem (i.e., the points stated in Theorem 3.1 excluding the point
(1, 1, 1)); see figure 5. The proof of Theorem 3.1 showed that all vertices ofP other than(1, 1, 1)
were achievable using routing.

�
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(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)

(0,0,0)

(0,2,0)
B

A

C

Figure 5: The achievable routing rate region for the Fano network is a6-sided polyhedron with 7
vertices.

4 Proofs of remaining bounds for the Fano network

For the case of linear coding over a finite field of odd characteristic, we want to prove the bounds:

ka + 2kb + 2kc ≤ 4n (22)

2ka + kb + 2kc ≤ 4n (23)

2ka + 2kb + kc ≤ 4n. (24)

We will do this by following and extending the arguments fromSection IV of [6], with minor
modifications needed because we now have separate source message dimensionska, kb, kc instead
of a single message dimensionk.

We already have the boundska ≤ n andkc ≤ n (but we donot necessarily havekb ≤ n).
Therefore, we can think of the length-n symbol vectorsw andz (referred to in [6] ase13,17 and
e22,30) as coming in two parts, one of lengthka and one of lengthδa = n − ka. Similarly, we can
think of the symbol vectorsx andy (referred to in [6] ase21,29 ande14,18) as coming in two parts,
one of lengthkc and one of lengthδc = n − kc. In order to consider what happens to these parts
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separately, we decompose each of the transition matricesMi from [6] in the form

Mi =

[

Ri Si

Ti Ui

]

where the submatricesRi, Si, Ti, Ui are of appropriate sizes (or are omitted altogether if appropri-
ate). For instance, fori = 2 we have thatR2 is ka × kb, T2 is δa × kb, andS2 andU2 are omitted;
for i = 5 we have thatR5 is kc × ka, S5 is kc × δa, T5 is δc × ka, andU5 is δc × δa.

We can now follow the arguments on pages 2752–2755 of [6] and verify that they apply in
this new context with no further changes. In particular, thefollowing formulas from pages 2754
and 2755 of [6] still hold:

(U7 + T8S5)T2b+ T8R5R2b, T3b −→

(I +R8R5)R2b+ (S7 +R8S5)T2b (25)

and

T5a + T5R2b+ U5T2b+ U6T3b,

a+R2b+ S7T2b− R8R5a,

U7T2b− T8R5a

−→ b. (26)

Since the field has odd characteristic, we can leta′ = a + 2−1R2b and then rewrite (26) in the
following form:

T5a
′ + 2−1T5R2b+ U5T2b+ U6T3b,

(I − R8R5)a
′ + 2−1((I +R8R5)R2b

+ (S7 +R8S5)T2b+ (S7 − R8S5)T2b),

U7T2b+ 2−1T8R5R2b− T8R5a
′

−→ b. (27)

Note thata′ haska independent components and is independent ofb, just likea is, becausea′, b −→
a, b.

The three vectors on the left-hand side of (26) have respective dimensionsδc, ka, andδa; these
add up to2n − kc. From these vectors we can compute all ofb by (26), and then we can also
reconstruct some information abouta, namely(I − R8R5)a from the second of the three vectors
andT8R5a from the third vector. (We can also getT5a from the first vector, but this will not be
used below.) This gives a total of

kb + rank

([

I −R8R5

T8R5

])

Page 15 of 51



Dougherty-Freiling-Zeger November 18, 2013

independent components reconstructed from these three vectors, so we must have

kb + rank

([

I − R8R5

T8R5

])

≤ 2n− kc. (28)

Now, using (25), we see that

T2b, T3b, T8R5R2b −→ (I +R8R5)R2b. (29)

But we can add(I + R8R5)R2b and(I − R8R5)R2b to get2R2b, which yieldsR2b because the
field has odd characteristic. And (26) implies

a, T2b, T3b, R2b −→ a, b. (30)

Putting these together, we get

a, T2b, T3b,

[

I −R8R5

T8R5

]

R2b −→ a, b.

Now, using (28) and the known sizes of the vectorsa, T2b, andT3b, we get the inequality

ka + n− ka + n− kc + 2n− kc − kb ≥ ka + kb,

which reduces to (22).
Using (25) and (27) together, we get

a′, T2b, T3b, T8R5R2b, T5R2b −→ a′, b

−→ a, b,

yielding the inequality

ka + n− ka + n− kc + n− ka + n− kc ≥ ka + kb,

which is (23).
For the remaining inequality (24), we will use the followingfact: if M is ak× k matrix andN

is anr × k matrix, then

rank

([

M
N

])

+ rank

([

M − I
N

])

+ rank

([

M + I
N

])

≥ 2k + rank (N) . (31)

Since1 6= −1 in a field of odd characteristic, (31) is a special case of:

Lemma 4.1. If M is a k × k matrix andN is an r × k matrix, and the scalarsλ1, . . . , λt are
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distinct, then

t
∑

i=1

rank

([

M − λiI
N

])

≥ (t− 1)k + rank (N) . (32)

We thank Nghi Nguyen for supplying the following clean proofof this result.

Proof. Let Ei be the null space ofM − λiI, and letE be the null space ofN . Then

rank

([

M − λiI
N

])

= k − dim(Ei ∩ E)

and

rank (N) = k − dim(E).

So (32) is equivalent to

tk −
∑

i

dim(Ei ∩ E) ≥ tk − dim(E)

and hence to
∑

i

dim(Ei ∩ E) ≤ dim(E),

and the latter inequality is true because the subspaces(Ei ∩ E) are linearly independent inE. (If
v ∈ E is the sum of vectorsvi ∈ Ei ∩ E for 1 ≤ i ≤ t, then we can recover the vectorsvi from v

using formulas such as

(λ1 − λ2) . . . (λ1 − λt)v1 = (M − λ2I) . . . (M − λtI)v.)

�

Now, we have

rank

([

R8R5 − I
T8R5

])

≤ 2n− kc − kb

from (28). Since
[

R8R5

T8R5

]

=

[

R8

T8

]

R5,
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we have

rank

([

R8R5

T8R5

])

≤ rank (R5) ≤ kc.

Now, as stated on page 2756 of [6], we can find a matrixQ such that

rank









I +R8R5

T8R5

Q







 = ka (33)

and

rank (Q) = ka − rank

([

I +R8R5

T8R5

])

,

so

rank

([

I +R8R5

T8R5

])

= ka − rank (Q) .

Substituting these facts into (31) gives

2n− kc − kb + kc + ka − rank (Q)

≥ 2ka + rank (T8R5) . (34)

But (33) implies that




I +R8R5

T8R5

Q



R2b −→ R2b; (35)

combining this with (29) and (30) yields

T2b, T3b, T8R5R2b, QR2b −→ b.

Using this with the bound onrank (T8R5) obtained from (34), we get

n− ka + n− kc + 2n− ka − kb − rank (Q) + rank (Q)

≥ kb,

which reduces to the desired inequality (24).
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5 Non-Fano network

c cab

ba c

4

6 7

9 10 11

12 13 14 15

21 3

5

8

w x y

z

Figure 6: The non-Fano network. Source nodesn1, n2, andn3 generate messagesa, b, andc,
respectively. Receiver nodesn12, n13, n14, andn15 demand messagesc, b, a, andc, respectively.
The symbol vectors carried on edgese6,9, e7,10, e8,11, e4,5 are labeled asw, x, y, andz, respectively.

Theorem 5.1. The achievable rate region for either linear coding over anyfinite field alphabet of
odd characteristic or non-linear coding are the same for thenon-Fano network and are equal to
the closed cube inR3 whose faces lie on the6 planes (see Figure 7):

ra = 0

rb = 0

rc = 0

ra = 1

rb = 1

rc = 1
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and whose vertices are the8 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 1, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1).

Proof. Consider a network solution over an alphabetA and denote the source message dimensions
by ka, kb, andkc, and the edge dimensions byn. Let each source be a random variable whose
components are independent and uniformly distributed overA. Then the solution must satisfy the
following inequalities:

ka ≥ 0 (36)

kb ≥ 0 (37)

kc ≥ 0 (38)

ka = H(a) = H(z|b, c) ≤ H(z) ≤ n (39)

kb = H(b) = H(z|a, c) ≤ H(z) ≤ n (40)

kc = H(c) = H(z|a, b) ≤ H(z) ≤ n. (41)

(36)–(38) are trivial; (39) follows becausez, b, c −→ z, y −→ a (at noden14), soz, b, c −→ a, b, c
and thusH(a, b, c) = H(z, b, c). (40) follows becausez, a, c −→ z, x −→ b (at noden13), so
z, a, c −→ a, b, c and thusH(a, b, c) = H(z, a, c). (41) follows becausez, a, b −→ z, w −→ c
(at noden12), soz, a, b −→ a, b, c and thusH(a, b, c) = H(z, a, b). Dividing each inequality in
(36)–(41) byn gives the8 bounding planes stated in the theorem.

Let ra = ka/n, rb = kb/n, andrc = kc/n, and letP denote the polyhedron inR3 consisting
of all 3-tuples(ra, rb, rc) satisfying (36)–(41). ThenP is simply the unit cube shown in Figure 7,
and its extreme points are the8 points stated in the theorem. To show that the8 points lie in the
achievable rate region, letn = ka = kb = kc = 1 and use the following linear code for(1, 1, 1)
over any odd-characteristic finite field:

w = a+ b, y = b+ c, x = a+ c, z = a+ b+ c

(where noden15 can recover its demand viac = (w−y+x) ·2−1). The other7 points are obtained
by setting certain messages to0 in the code for(1, 1, 1). Since the above codes are all linear, the
achievable rate regions for linear and non-linear codes arethe same. �

Theorem 5.2. The achievable rate region for linear coding over any finite field alphabet of even
characteristic for the non-Fano network is equal to the closed polyhedron inR3 whose faces lie on
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the7 planes (see Figure 8):

ra = 0

rb = 0

rc = 0

ra = 1

rb = 1

rc = 1

ra + rb + rc = 5/2

and whose vertices are the10 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 1, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(1, 1, 1/2) (1, 1/2, 1) (1/2, 1, 1).

Proof. The six inequalities from Theorem 5.1 still apply here; the proof that the additional inequal-
ity

2ka + 2kb + 2kc ≤ 5n (42)

must also hold in the case of even-characteristic finite fields is given in Section 6 (and another
proof is given in Section 8.2).

The new inequality (42) cuts down the achievable rate regionto the polyhedron shown in
Figure 8, whose extreme points are the 10 points listed in thetheorem. The point(1, 1, 1/2) is
achieved by the following code withn = ka = kb = 2 andkc = 1, which works over any finite
field:

w = (a1, b1), y = (b1 + c, b2), x = (a1 + c, a2), z = (a1 + b1 + c, a2 + b2).

The other two new extreme points are achieved by permuting the variables in the above code.�

Note that both the uniform capacity and average capacity are5/6 for the non-Fano network,
for any even-characteristic finite field.

Theorem 5.3.The achievable rate region for routing for the non-Fano network is the closed tetra-
hedron inR3 whose faces lie on the4 planes (see Figure 9):

ra = 0

rb = 0

rc = 0

ra + rb + rc = 1
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(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)
A

C

(0,0,0)

(0,1,0)

B

Figure 7: The achievable coding rate region for the Fano network is a cube inR3.

and whose vertices are the4 points:

(0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0).

Proof. In addition to satisfying (36)–(41), a routing solution must also satisfy

ka + kb + kc ≤ n (43)

since the edge labeledz must carry all3 messagesa, b, andc. The inequality (43) makes the
inequalities (39)–(41) redundant, and, in fact, the vertices of the polygon determined by (36)–(38)
and (43) are the4 listed in the theorem. These are achievable using the following routing codes:

(0, 0, 1): y = z = c

(1, 0, 0): z = a

(0, 1, 0): z = b.

�
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(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)
A

C

(0,0,0)

(0,1,0)

B

(1,1/2,1)

(1,1,1/2)

(1/2,1,1)

Figure 8: The achievable linear coding rate region over even-characteristic finite fields for the
non-Fano network is a7-sided polyhedron with10 vertices.

6 Proof of remaining bound for the non-Fano network

For the case of linear coding over a finite field of characteristic 2, we want to prove the bound:

2ka + 2kb + 2kc ≤ 5n (44)

We will again do this by following the arguments from SectionIV of [6], with minor modifications.
(Those arguments were for a different network which was two copies of the non-Fano network with
one demand node merged, but a number of them concentrated on just the left half of that network
and hence will be directly applicable to the non-Fano network.)

The matricesM1 throughM15 will be the same as they are on pages 2756–2757 of [6]; they
label a part of the network there which is identical to the non-Fano network. Again here, instead
of one valueδ = n− k we have three valuesδa = n− ka, δb = n− kb, andδc = n− kc. When we
talk about thinking of an edge vector as one part of lengthk followed by one part of lengthn− k,
we will usek = kc here; so, for instance,R7 is akc × ka matrix, whileR9 is kc × kc.

Now follow the argument from pages 2756–2757 of [6] as written, except thatL is just the five
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(0,0,1)

(1,0,0) A

C

(0,0,0)

B

(0,1,0)

Figure 9: The achievable routing rate region for the Fano network is a tetrahedron inR3.

vectors

M3a+M4c,

M5b+M6c,

Q13(M7a+M9c),

Q15(M8b+M9c),

Q10(M1a+M2b)

without any “corresponding five objects” from the other side. The same argument then yields
L −→ a, b, c. SinceM15M7 = Ika , we haverank (M15) ≥ ka and hencerank (Q15) ≤ δa;
similarly, rank (Q13) ≤ δb. Therefore, following the computation on page 2757 of [6], we find that
L has only

n+ n + [δa + δb − (kc − α)] + [n− α]

= 2n+ δa + δb + δc

independent entries. Therefore,

2n+ δa + δb + δc ≥ ka + kb + kc,
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so

2ka + 2kb + 2kc ≤ 5n.
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7 Vámos network

abcd

ab

cd

d c

d dd a bc

1

2

3

7

129 10 11 13

8

6

5

4
bc

bc a a

b a bc

x

w

y

z

Figure 10: The Vámos network. A message variablea, b, c, ord labeled above a node indicates an
in-edge (not shown) from the source node (not shown) generating the message. Demand variables
are labeled below the receiversn9–n13 demanding them. The edgese1,2, e3,4, e5,6, ande7,8 are
denoted byw, x, y, andz, respectively.

Theorem 7.1.The achievable rate region for routing for the Vámos network is the polytope inR4

whose faces lie on the6 planes:

ra = 0

rb = 0

rc = 0

rd = 0

2ra + rb + 2rd = 2

ra + rb + rc + 2rd = 2
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and whose vertices are the points

(0, 0, 0, 0) (1, 0, 0, 0) (0, 0, 0, 1)

(1, 0, 1, 0) (0, 2, 0, 0) (0, 0, 2, 0)

Proof. The first4 planes are trivial.
Now, notice that in a routing solution,y must carry all ofa andd in order to meet the demands

at nodesn10 andn12, respectively. Thus,x must carry all ofa andd too. Also,x andy together
must carry all ofb in order to meet the demand at noden9. In summary,x andy together must
carry at least2 copies ofa, 2 copies ofd, and one copy ofb. This implies2ka + kb + 2kd ≤ 2n,
and therefore2ra + rb + 2rd ≤ 2.

Similarly,w must carry all ofd in order to meet the demand at noden12, andw andy together
must carry all ofb andc in order to meet the demands at nodesn11 andn13. Sincey must carry
all of a andd, we conclude thatw andy together must carry at least one copy ofa, one copy
of b, one copy ofc, and two copies ofd. This implieska + kb + kc + 2kd ≤ 2n, and therefore
ra + rb + rc + 2rd ≤ 2.

It is easy to check that the vertices of the polytope bounded by the 6 planes listed in the theorem
are the 6 vertices listed in the theorem. Each of the6 vertices can be achieved as follows:(0000)
trivially; (1000) with x = y = z = a; (0001) with w = x = y = z = d; (1010) with w = c
andx = y = z = a; (0200) with w = x = b1 andy = z = b2; (0020) with w = x = c1 and
y = z = c2.

�

The following theorem uses only Shannon-type information inequalities to obtain a polytopal
outer bound inR4 to the achievable rate region.

Theorem 7.2. The achievable rate region for the Vámos network lies inside the polytope inR4

whose faces lie on the9 planes:

ra = 0

rb = 0

rc = 0

rd = 0

ra = 1

rd = 1

rb + rc = 2

ra + rb = 2

rc + rd = 2
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and whose vertices are the points:

(0, 2, 0, 1) (0, 2, 0, 0) (1, 1, 1, 0) (1, 1, 0, 0)

(1, 1, 0, 1) (1, 0, 0, 1) (0, 0, 0, 1) (0, 0, 0, 0)

(1, 0, 0, 0) (1, 0, 1, 1) (0, 0, 1, 1) (0, 1, 1, 1)

(1, 0, 2, 0) (0, 0, 2, 0) (1, 1, 1, 1).

Proof. Consider a network solution over an alphabetA and denote the source message dimensions
by ka, kb, kc, andkd, and the edge dimensions byn. Let each source be a random variable whose
components are independent and uniformly distributed overA. Then the solution must satisfy the
following inequalities:

ka ≥ 0 (45)

kb ≥ 0 (46)

kc ≥ 0 (47)

kd ≥ 0 (48)

ka = H(a) ≤ H(z|b, c, d) ≤ n (49)

kd = H(d) ≤ H(y|a, b, c) ≤ n (50)

kb + kc = H(b, c) ≤ H(w, z|a, d)

≤ H(w, z) ≤ 2n (51)

ka + kb = H(a, b) ≤ H(x, z|c, d)

≤ H(y, z) ≤ 2n (52)

kc + kd = H(c, d) ≤ H(w, y|a, b)

≤ H(w, y) ≤ 2n. (53)

(45)–(48) are trivial; (49) follows becauseb, c, d, z −→ a; (50) follows becausea, b, c, y −→ d;
(51) follows becausea, d, w, z −→ b, c; (52) follows becausex, z, c, d −→ a, b; (53) follows
becausew, y, a, b −→ c, d; Dividing each inequality in (45)–(53) byn gives the9 bounding hyper-
planes stated in the theorem.

Let ra = ka/n, rb = kb/n, rc = kc/n, andrd = kd/n, and letP denote the polytope inR4

consisting of all4-tuples(ra, rb, rc, rd) satisfying (1)–(9). Then (45)–(48) and (52)–(53) ensure that
P is bounded. One can easily calculate that each point inR4 that satisfies some independent set
of four of the inequalities (45)–(53) with equality and alsosatisfies the remaining five inequalities
must be one of the15 points stated in the theorem. �

For further bounds, we use the following result from [10]:
Suppose thatA, B, C, andD are random variables and we have an information inequality of
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the form

a1I(A;B)

≤ a2I(A;B|C) + a3I(A;C|B) + a4I(B;C|A)

+ a5I(A;B|D) + a6I(A;D|B) + a7I(B;D|A)

+ a8I(C;D) + a9I(C;D|A) + a10I(C;D|B). (54)

Then we get the following bound on the Vámos message and edgeentropies:

(a2 + a3 + a4)H(a)

+ (a2 + a3 + a8 + a9 + a10)H(b)

+ (a5 + a7 + a8 + a9 + a10)H(c)

+ (a5 + a6 + a7)H(d)

+ (a2 − a1 − a7)I(c; y)

+ (a4 + a7 − a10)I(b; x)

≤ (a5 + a6 + a7 + a8 + a9 + a10)H(w)

+ (a2 + a3 + a4 + a7)H(x)

+ (−a1 + a2 + a5 + a9)H(y)

+ (a3 + a8 + a10)H(z). (55)

And by the same argument, if (54) is a linear rank inequality (for a particular characteristic), then
(55) holds for any linear (for that characteristic) fractional code for the Vámos network.

If the inequalities

a2 ≥ a1 + a7

a4 + a7 ≥ a10 (56)

are satisfied, then the inequality (55) directly leads to a V´amos achievable rate region bound, by
neglecting the (nonnegative) terms involvingI(c; y) and I(b; x). Specifically, in this case, by
substituting

H(a) = ka

H(b) = kb

H(c) = kc

H(d) = kd

H(w) = H(x) = H(y) = H(z) = n
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into (55), we obtain

ka(a2 + a3 + a4)

+ kb(a2 + a3 + a8 + a9 + a10)

+ kc(a5 + a7 + a8 + a9 + a10)

+ kd(a5 + a6 + a7)

≤ n(−a1 + 2a2 + 2a3 + a4 + 2a5

+ a6 + 2a7 + 2a8 + 2a9 + 2a10). (57)

Theorem 7.3. The achievable rate region for linear coding over any finite field alphabet for the
Vámos network is the polytope inR4 whose faces lie on the10 planes:

ra = 0

rb = 0

rc = 0

rd = 0

ra = 1

rd = 1

rb + rc = 2

ra + rb = 2

rc + rd = 2

ra + 2rb + 2rc + rd = 5

and whose vertices are the points

(0, 0, 2, 0) (0, 0, 1, 1) (1, 0, 1, 1) (1, 0, 0, 0)

(0, 0, 0, 0) (0, 0, 0, 1) (1, 0, 0, 1) (1, 1, 0, 1)

(1, 1, 0, 0) (0, 2, 0, 0) (1, 1, 1/2, 1) (1, 1/2, 1, 1)

(0, 2, 0, 1) (1, 1, 1, 0) (0, 1, 1, 1) (1, 0, 2, 0).

Proof. The first nine bounding planes come from Theorem 7.2. The tenth bounding plane is shown
by letting (54) be the Ingleton inequality [14], which can bewritten in the form

I(A;B) ≤ I(A;B|C) + I(A;B|D) + I(C;D)

and which is a linear rank inequality for all characteristics, to get the Vámos linear rate region
bound

H(a) + 2H(b) + 2H(c) +H(d) ≤ 2H(w) +H(x) +H(y) +H(z)
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from (55).
The proof that the extreme points of the polytope bounded by these planes are the 16 points

listed above is left as an exercise for the reader’s computer(we usedcddlib [11]).
Here are linear codes over an arbitrary field) achieving six of the extreme points:

(1, 1, 1, 0): n = 1,

w = a+ c

x = a

y = z = a+ b

(0, 1, 1, 1): n = 1,

w = x = b+ d

y = b+ c+ d

z = c

(1, 0, 2, 0): n = 1,

w = c1

x = a

y = z = a+ c2

(0, 2, 0, 1): n = 1,

w = x = b1 + d

y = z = b2 + d

(1, 1, 1/2, 1): n = 2,

w = (b2 + d1, c+ d2)

x = (a1 + d1, a2 + b2 + c+ d2)

y = (a1 + b1 + d1, a2 + d2)

z = (a1 + b1, a2 + c)

(1, 1/2, 1, 1): n = 2,

w = (c1 + d1, b+ d2)

x = (a1 + c1 + d1, a2 + d2)

y = (a1 + d1, a2 + b+ c2 + d2)

z = (a1 + c2, a2 + b)

The remaining10 points are achieved by fixing certain messages to be0. �

The following theorem uses the non-Shannon-type Zhang-Yeung information inequality to ob-
tain an additional outer bound inR4 to the achievable rate region.

Theorem 7.4.The achievable rate region for non-linear coding for the Vámos network is bounded
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by the inequalities:

4ra + 4rb + 2rc + rd ≤ 10 (58)

2ra + 2rb + 4rc + 4rd ≤ 11 (59)

ra + 2rb + 4rc + 5rd ≤ 11 (60)

5ra + 6rb + 6rc + 5rd ≤ 20. (61)

Proof. If we let (54) be the Zhang-Yeung inequality [23], which can be written in the form

I(A;B) ≤ 2I(A;B|C) + I(A;C|B) + I(B;C|A) + I(A;B|D) + I(C;D), (62)

then we get the Vámos network bound

4H(a) + 4H(b) + 2H(c) +H(d) + I(c; y) ≤ 2H(w) + 4H(x) + 2H(y) + 2H(z) (63)

from (55). This immediately gives the inequality (58) (we can simply discard theI(c; y) term).
Also, we can let (54) be (62) with variablesC andD interchanged; then the result from (55) is

H(a) + 2H(b) + 4H(c) + 4H(d)− I(c; y) + I(b; y) ≤ 5H(w) + 2H(x) + 2H(y) +H(z).
(64)

This does not directly give a rate region bound, because the term−I(c; y) cannot be simply dis-
carded. However, if we add (63) and (64), we get an inequalitythat yields (61); if we add to (64)
the inequalityH(a) + I(c; y) ≤ H(y) (which, as noted in [10], holds in the Vámos network be-
causeb, c, d, y −→ a), we get (59); and if we add to (64) the inequalityH(d) + I(c; y) ≤ H(y)
(which, as noted in [10], holds in the Vámos network becausea, b, c, y −→ d), we get (60). �

Many additional non-Shannon-type information inequalities are given in [10]. These can be
used as above to give additional bounds on the achievable rate region for non-linear coding for
the Vámos network. In fact, the inequalities from [10] using at most four copy variables with
at most three copy steps yield 158 independent constraints on this achievable rate region. (Note:
inequalities (58)–(61) are superseded by these new inequalities.) One of these is used in [10] to
show that the uniform coding capacity of the Vámos network is at most19/21.

Since there are infinitely many information inequalities onfour random variables [18], it is
quite possible that the achievable rate region for non-linear coding for the Vámos network is not a
polytope. On the other hand, this rate region could be quite simple; to date, no fractional solution
is known for the Vámos network which lies outside the achievable rate region for linear coding.
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8 New Linear Rank Inequalities from Networks

We now give a new method for producing bounds on achievable rate regions for linear coding.
Unlike the previous method using matrix algebra, this method actually produces explicit linear
rank inequalities (perhaps only true for some characteristics) which directly imply the bounds in
question. However, it is not clear yet that this new method can produce all results obtained from
the matrix algebra method.

In particular, we produce an explicit linear rank inequality valid only for odd-characteristic
fields, and another linear rank inequality valid only for even-characteristic fields. Such inequalities
have also been produced by Blasiak, Kleinberg, and Lubetzky[3] (also by use of the Fano and
non-Fano matroids), but those inequalities do not directlygive bounds for the networks here.

We start by giving some basic results in linear algebra.
If A is a subspace of a finite-dimensional vector spaceV , then we denote the codimension of

A in V by codimV (A) = dim(V )− dim(A).

Lemma 8.1. For any subspacesA1, . . . , Am of finite-dimensional vector spaceV ,

codimV

(

m
⋂

i=1

Ai

)

≤

m
∑

i=1

codimV (Ai) .

Lemma 8.2. LetA andB be finite-dimensional vector spaces, letf : A → B be a linear function,
and letB′ be a subspace ofB. ThencodimA (f−1(B′)) ≤ codimB (B′).

Proof. Let S = f−1(B′) and letT be a subspace ofA such thatS + T = A andS ∩ T = {0}. Let
g : T → B be a linear function such thatg = f onT . Then we have

codimA (S) = dim(T ) [from S + T = A andS ∩ T = {0}]

= dim(g(T )) + nullity(g)

= dim(g(T )) [from g−1({0}) = {0}]

≤ codimB (B′) . [from B′ ∩ g(T ) = {0}]

�

Lemma 8.3. LetA1, . . . , Ak, B be subspaces of a finite-dimensional vector spaceV . There exist
linear functionsfi : B → Ai (for i = 1, . . . , k) such thatf1 + · · ·+ fk = I on a subspace ofB of
codimensionH(B|A1, . . . , Ak) in B.

Proof. The subspace isW = (A1+ · · ·+Ak)∩B. For eachwj in a basis forW , choosexi,j ∈ Ai

for i = 1, . . . , k such thatwj = x1,j + · · ·+ xk,j. Define linear mapsgi : W → Ai for i = 1, . . . , k
so thatgi(wj) = xi,j for all i andj; then extend eachgi arbitrarily to a linear mapfi : B → Ai.
We haveH(B|A1, . . . , Ak) = dim(B)− dim(B ∩ (A1 + · · ·+ Ak)) = dim(B)− dim(W ). �

Lemma 8.4. LetA,B,C be subspaces of a finite-dimensional vector spaceV , and letf : A → B
andg : A → C be linear functions such thatf + g = 0 onA. Thenf = g = 0 on a subspace ofA
of codimension at mostI(B;C) in A.
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Proof. For allu ∈ A, g(u) ∈ B sof(u) = −g(u) ∈ B and thereforef mapsA intoB ∩C. Thus,
dim(A)− nullity(f) = rank (f) ≤ dim(B ∩ C) = I(B;C), so the kernel off has codimension at
mostI(B;C) in A. �

Lemma 8.5. LetA,B1, . . . , Bk be subspaces of a finite-dimensional vector spaceV , and letfi :
A → Bi be linear functions such thatf1 + · · · + fk = 0 on A. Thenf1 = · · · = fk = 0 on a
subspace ofA of codimension at mostH(B1) + · · ·+H(Bk)−H(B1, . . . , Bk) in A.

Proof. Use induction onk. The claim is trivially true fork = 1, and is true fork = 2 by
Lemma 8.4. Let us assume it is true up tok − 1 for k ≥ 3. Apply Lemma 8.4 withB = Bk,
C = B1 + · · · + Bk−1, f = fk, andg = f1 + · · · + fk−1 to getf1 + · · · + fk−1 = fk = 0 on a
subspaceS of A satisfying

codimA (S) ≤ H(B1, . . . , Bk−1) +H(Bk)−H(B1, . . . , Bk).

By the induction hypothesis,f1 = · · · = fk−1 = 0 on a subspaceS ′ of S satisfying

codimS (S
′) ≤ H(B1) + · · ·+H(Bk−1)−H(B1, . . . , Bk−1).

Adding these two inequalities gives us the desired result for subspaceS ′. �
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8.1 A Linear Rank Inequality from the Fano Network

Theorem 8.6. Let A,B,C,D,W,X, Y, Z be subspaces of a finite-dimensional vector spaceV
over a scalar field of odd characteristic. Then, the following linear rank inequality holds:

2H(A) +H(B) + 2H(C)

≤ H(W ) +H(X) +H(Y ) +H(Z)

+ 2H(A|Z, Y ) +H(B|X,Z) + 2H(C|A,X)

+ 3H(X|W,Y ) + 3H(Z|W,C)

+ 5H(W |A,B) + 5H(Y |B,C)

+ 5(H(A) +H(B) +H(C)−H(A,B,C)). (65)

Proof. We will use the Fano network in Figure 2, derived in [8], from the Fano matroid, to help
guide the proof. By Lemma 8.3, there exist linear functions

f1 : W → A f2 : W → B

f3 : Y → B f4 : Y → C

f5 : X → W f6 : X → Y

f7 : Z → W f8 : Z → C

f9 : C → A f10 : C → X

f11 : B → X f12 : B → Z

f13 : A → Z f14 : A → Y

such that

f1 + f2 = I on a subspaceW ′ of W with codimW (W ′) ≤ H(W |A,B) (66)

f3 + f4 = I on a subspaceY ′ of Y with codimY (Y ′) ≤ H(Y |B,C) (67)

f5 + f6 = I on a subspaceX ′ of X with codimX (X ′) ≤ H(X|W,Y )

f7 + f8 = I on a subspaceZ ′ of Z with codimZ (Z ′) ≤ H(Z|W,C) (68)

f9 + f10 = I on a subspaceC ′ of C with codimC (C ′) ≤ H(C|A,X)

f11 + f12 = I on a subspaceB′ of B with codimB (B′) ≤ H(B|X,Z)

f13 + f14 = I on a subspaceA′ of A with codimA (A′) ≤ H(A|Z, Y ). (69)

Combining these, we get maps

f1f7f13 : A → A (70)

f2f7f13 + f3f14 : A → B (71)

f8f13 + f4f14 : A → C. (72)
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Note that

f1f7f13 + f2f7f13 = f7f13 on the subspacef−1
13 f

−1
7 (W ′) of A

f7f13 + f8f13 = f13 on the subspacef−1
13 (Z

′) of A

f3f14 + f4f14 = f14 on the subspacef−1
14 (Y

′) of A

so the sum of the functions in (70)–(72) is equal toI on the subspace

A′′ .
= A′ ∩ f−1

13 (Z ′) ∩ f−1
13 f

−1
7 (W ′) ∩ f−1

14 (Y
′)

and we get

codimA (A′′)

≤ codimA (A′) + codimA

(

f−1
13 (Z

′)
)

+ codimA

(

f−1
13 f

−1
7 (W ′)

)

+ codimA

(

f−1
14 (Y

′)
)

[from Lemma 8.1]

≤ codimA (A′) + codimZ (Z ′) + codimW (W ′) + codimY (Y ′) [from Lemma 8.2]

≤ H(A|Z, Y ) +H(Z|W,C) +H(W |A,B) +H(Y |B,C). [from (66), (67), (68),(69)]

Applying Lemma 8.5 tof1f7f13 − I, f2f7f13 + f3f14, andf8f13 + f4f14, we get a subspacēA of
A′′ such that

codimA

(

Ā
)

= codimA (A′′) + codimA′′

(

Ā
)

≤ ∆A (73)
.
= H(A|Z, Y ) +H(Z|W,C) +H(W |A,B) +H(Y |B,C)

+H(A) +H(B) +H(C)−H(A,B,C) (74)

on which

f1f7f13 = I (75)

f2f7f13 + f3f14 = 0

f8f13 + f4f14 = 0.

Similarly, we get a subspacēC of C such that

codimC

(

C̄
)

≤ ∆C (76)
.
= H(C|A,X) +H(X|W,Y ) +H(W |A,B) +H(Y |B,C)

+H(A) +H(B) +H(C)−H(A,B,C) (77)
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on which

f4f6f10 = I (78)

f2f5f10 + f3f6f10 = 0

f9 + f1f5f10 = 0

and a subspacēB of B such that

codimB

(

B̄
)

≤ ∆B (79)
.
= H(B|X,Z) +H(X|W,Y ) +H(Z|W,C) +H(W |A,B)

+H(Y |B,C) +H(A) +H(B) +H(C)−H(A,B,C) (80)

on which

f2f5f11 + f2f7f12 + f3f6f11 = I

f1f5f11 + f1f7f12 = 0

f4f6f11 + f8 + f12 = 0.

Note: There is only oneH(W |A,B) in (80) because we can write

fif5f11 + fif7f12 = fi(f5f11 + f7f12)

for i = 1, 2.
Let us define the following subspaces ofB:

S1 = {u ∈ B : f11u ∈ f10C̄}

S2 = {u ∈ B : f12u ∈ f13Ā}

S3 = {u ∈ B : f5f11u ∈ f7f13Ā}

S4 = {u ∈ B : f14f1f7f12u ∈ f6f10C̄}

S = B̄ ∩ S1 ∩ S2 ∩ S3 ∩ S4. (81)
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Then we have the following:

codimB (S1) ≤ codimX

(

f10C̄
)

[from Lemma 8.2]

= dim(X)− dim(C̄) [from (78)−→ f10 injective]

= codimC

(

C̄
)

+H(X)−H(C)

≤ ∆C +H(X)−H(C) [from (76)] (82)

codimB (S2) ≤ codimZ

(

f13Ā
)

[from Lemma 8.2]

= dim(Z)− dim(Ā) [from (75)−→ f13 injective]

= codimA

(

Ā
)

+H(Z)−H(A)

≤ ∆A +H(Z)−H(A) [from (73)] (83)

codimB (S3) ≤ codimW

(

f7f13Ā
)

[from Lemma 8.2]

= dim(W )− dim(Ā) [from (75)−→ f7, f13 injective]

= codimA

(

Ā
)

+H(W )−H(A)

≤ ∆A +H(W )−H(A) [from (73)] (84)

codimY (S4) ≤ codimY

(

f6f10Ā
)

[from Lemma 8.2]

= dim(Y )− dim(C̄) [from (78)−→ f6, f10 injective]

= codimC

(

C̄
)

+H(Y )−H(C)

≤ ∆C +H(Y )−H(C). [from (76)] (85)

Supposet ∈ S. Then,

f2f5f11t + f2f7f12t = f2f7f13f1f5f11t+ f2f7f12t

[ we havef5f11t = f7f13u for someu ∈ Ā,

andf7f13f1f7f13u = f7f13u sincef1f7f13u = u]

= f2f7f13f1f5f11t+ f2f7f13f1f7f12t

[ sincef12t ∈ f13Ā]

= f2f7f13(f1f5f11 + f1f7f12)t

= 0 (86)

[ sincet ∈ B̄]

f2f5f11t+ f3f6f11t = f2f5f10f4f6f11t + f3f6f10f4f6f11t

[ sincef11t ∈ f10C̄]

= (f2f5f10t+ f3f6f10)f4f6f11t

= 0 (87)

[ sincef11t ∈ f10C̄ and hence

f4f6f11t ∈ f4f6f10C̄ = C̄]
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f2f7f12t+ f3f6f11t = f2f7f12t+ f3f6f10f4f6f11t

= f2f7f12t− f3f6f10f8f12t

= f2f7f12t− f3f6f10f8f13f1f7f12t

= f2f7f12t+ f3f6f10f4f14f1f7f12t

= f2f7f12t+ f3f14f1f7f12t

= f2f7f13f1f7f12t + f3f14f1f7f12t

= (f2f7f13 + f3f14)f1f7f12t

= 0. (88)

We therefore obtain

2t = 2(f2f5f11t+ f2f7f12t+ f3f6f11t)

= (f2f5f11t+ f2f7f12t) + (f2f5f11t + f3f6f11t) + (f2f7f12t+ f3f6f11t)

= 0 + 0 + 0 = 0. [from (86),(87),(88)]

Since the field has odd characteristic, we must havet = 0. Thus,S = {0}, and therefore

H(B) = codimB (S)

≤ codimB

(

B̄
)

+
4
∑

i=1

codimB (Si) [from (81), Lemma 8.1]

≤ ∆B + 2∆A + 2∆C

+H(W ) +H(X) +H(Y ) +H(Z)− 2H(A)− 2H(C). [from (79),(82)–(85)]

The result then follows from (74), (77), and (80). �

In the context of the Fano network, all of the compound terms at the end of inequality (65) are
zero, so this inequality directly implies inequality (19).

By replacingW with W ∩ (A + B + C + X + Y + Z) and similarly forX, Y , andZ, one
can improve the inequality to a balanced form whereH(W ) becomesI(W ;A,B,C,X, Y, Z),
H(W |A,B) becomesI(W ;C,X, Y, Z|A,B), and similarly forX, Y , andZ.

Theorem 8.7.The linear rank inequality in Theorem 8.6 holds for any scalar field if dim(V ) ≤ 2,
but may not hold if the scalar field has characteristic2 anddim(V ) ≥ 3.
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Proof. In V = GF (2)3, define the following subspaces ofV :

A = 〈(1, 0, 0)〉

B = 〈(0, 1, 0)〉

C = 〈(0, 0, 1)〉

W = 〈(1, 1, 0)〉

X = 〈(1, 0, 1)〉

Y = 〈(0, 1, 1)〉

Z = 〈(1, 1, 1)〉

It is easily verified that the inequality in Theorem 8.6 is notsatisfied in this case.
Next we show the inequality indeed holds ifdim(V ) ≤ 2. One way to do this is to show

(using software such asXitip [19]) that the inequality becomes a Shannon inequality under the
assumption thatH(A) = 0, or under the assumptionH(B|A) = 0, or under the assumption
H(C|A,B) = 0. If all three of these assumptions fail, then we must have

dim(V ) ≥ H(A,B,C) > H(A,B) > H(A) > 0 (89)

and hencedim(V ) ≥ 3.
Or one can give a direct argument by cases. Assume to the contrary that there exist subspaces

A,B,C,W,X, Y, Z of vector spaceV such that

2H(A) +H(B) + 2H(C)

> H(W ) +H(X) +H(Y ) +H(Z)

+ 2H(A|Z, Y ) +H(B|X,Z) + 2H(C|A,X)

+ 3H(X|W,Y ) + 3H(Z|W,C)

+ 5H(W |A,B) + 5H(Y |B,C)

+ 5(H(A) +H(B) +H(C)−H(A,B,C)). (90)

LetQ = (H(A), H(B), H(C), H(A,B,C)) andR = H(A) +H(B) +H(C)−H(A,B,C). Let
LHS andRHS denote the left and right sides of inequality (90). We will obtain contradictions for
all the possible values ofQ.

Case (i): dim(V ) = 1

All entropies are0 or 1. SinceLHS ≤ 5, at most one ofH(A), H(B), H(C) can equal1, for
otherwiseR ≥ 1 would implyRHS ≥ 5.

(1001): LHS = 2 impliesH(A|Z, Y ) = 0 which impliesH(Z) = 1 or H(Y ) = 1. Also, we must
haveH(Z|W,C) = H(Y |B,C) = 0, the latter implyingH(Y ) = 0. So we must have
H(Z) = 1 which in turn impliesH(W ) = 1 and thereforeRHS ≥ 2.

(0101): LHS = 1 impliesH(B|X,Z) = 0 which impliesH(X) = 1 or H(Z) = 1, and therefore
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RHS ≥ 1.

(0011): LHS = 2 impliesH(C|A,X) = 0 andH(X|W,Y ) = 0, which implyH(X) = 1, which
impliesH(W ) = 1 orH(Y ) = 1 and thereforeRHS ≥ 2.

Case (ii): dim(V ) = 2

All entropies are0, 1, or 2. LHS ≤ 10 impliesRHS ≤ 9, and thereforeR ≤ 1. LHS ≥ 1
impliesH(A,B,C) > 0 and thereforeH(A,B,C) ∈ {1, 2}.

(1011): LHS ≤ 4 andR = 1 imply RHS ≥ 5.

(1101): Same.

(0111): Same.

(2001): Same.

(0201): Same.

(0021): Same.

(2012): LHS = 6. R = 1 implies RHS ≥ 5 which impliesH(A|Z, Y ) = 0 which implies
H(Z, Y ) ≥ 1 and thereforeRHS ≥ 6.

(1022): Same.

(1112): LHS = 5. R = 1 impliesRHS ≥ 5.

(0122): Same.

(2102): Same.

(0212): LHS = 4. R = 1 impliesRHS ≥ 5.

(1202): Same.

(1001): LHS = 2 impliesH(A|Z, Y ) = 0 which impliesH(Z) = 1 or H(Y ) = 1. If H(Z) = 1,
thenH(Z|W,C) = 0 which would implyH(W ) = 1 and thereforeRHS ≥ 2. If H(Y ) = 1,
thenH(Z|W,C) = 1 which would implyRHS ≥ 5.

(0101): LHS = 1 implies H(X) = H(Z) = 0 which impliesH(B|X,Z) = 1 and therefore
RHS ≥ 1.

(0011): LHS = 2 impliesH(C|A,X) = 0 which impliesH(X) = 1. Also, H(X|W,Y ) = 0
impliesH(W,Y ) ≥ 1 and thereforeRHS ≥ 2.

(0202): LHS = 2 implies H(X) + H(Z) ≤ 1 which impliesH(B|X,Z) ≥ 1 which implies
H(B|X,Z) = 1 which impliesH(X,Z) = 1 which impliesH(X) + H(Z) = 1 and
thereforeRHS ≥ 2.
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(0022): LHS = 4 impliesH(W |A,B) = 0 which impliesH(W ) = 0. Also, H(C|A,X) ≤ 1
impliesH(X) ≥ 1 which impliesH(X|W,Y ) = 0 which impliesH(Y ) ≥ H(X). Thus,
H(C|A,X) = 0 which impliesX = C which impliesH(Y ) ≥ H(C) = 2 and therefore
RHS ≥ 4.

(2002): LHS = 4 impliesH(Y |B,C) = 0 which impliesH(Y ) = 0. Also,H(A|Z, Y ) ≤ 1 which
impliesH(Z) ≥ 1. Additionally, H(Z|W,C) = 0 which impliesH(W ) ≥ H(Z) which
impliesH(A|Z, Y ) = 0 which impliesH(Z) = 2 and thereforeRHS ≥ 4.

(1102): H(A,B,C) = 2 implies thatA 6= B. LHS = 3 impliesH(A|Z, Y ) = 0 or H(B|X,Z) =
0. If H(B|X,Z) = 0, thenH(X) + H(Z) ≥ 1 which impliesRHS ≥ 1 and therefore
H(A|Z, Y ) = 0. So it suffices to assumeH(A|Z, Y ) = 0. We haveH(Y |B,C) = 0 which
impliesY is a subspace ofB, which impliesH(Z) ≥ 1. Thus,H(Z|W,C) = 0 which
impliesH(W ) ≥ 1, soRHS ≥ 2. Hence,H(B|X,Z) = 0 andH(X) = 0 which imply
Z = B and thereforeH(A|Z, Y ) 6= 0.

(0112): H(A,B,C) = 2 impliesB 6= C. LHS = 3 impliesH(B|X,Z) = 0 or H(C|A,X) =
0. If H(B|X,Z) = 0, thenH(X) + H(Z) ≥ 1 which impliesRHS ≥ 1 and therefore
H(C|A,X) = 0. So it suffices to assumeH(C|A,X) = 0. Thus we haveH(X) ≥ 1. Also,
H(X|W,Y ) = 0 which impliesH(W )+H(Y ) ≥ H(X) and soRHS ≥ 2. Thus,H(X) = 1
which impliesX = C, and thereforeH(W ) = 1 or H(Y ) = 1. SinceH(W |A,B) = 0, W
is a subspace ofB and thereforeY = C. Finally,H(B|X,Z) = 0 which impliesH(Z) ≥ 1
and thereforeRHS ≥ 3.

(1012): H(A,B,C) = 2 impliesA 6= C. LHS = 4 impliesH(A|Z, Y ) = 0 orH(C|A,X) = 0.

Case (1): SupposeH(C|A,X) = 0. ThenH(X) ≥ 1 andX 6= A which implyRHS ≥ 1.
Thus,H(X|W,Y ) = 0 which impliesH(W ) + H(Y ) ≥ H(X), which impliesRHS ≥ 2
and thereforeH(A|Z, Y ) = 0. We haveH(W |A,B) = 0 which impliesW is a subspace of
A, which impliesH(Y ) ≥ 1 andY 6= A. Also,H(Y |B,C) = 0 which impliesY = C and
thereforeH(Z) ≥ 1 andZ 6= C. Finally,H(Z|W,C) = 0 which impliesH(W ) ≥ 1 and
thereforeRHS ≥ 4.

Case (2): SupposeH(A|Z, Y ) = 0. We knowH(Y |B,C) = 0, which impliesY is a
subspace ofC which impliesH(Z) ≥ 1 andZ 6= C and thereforeRHS ≥ 1. Thus,
H(Z|W,C) = 0 which impliesH(W ) ≥ 1 which impliesRHS ≥ 2. So,H(C|A,X) = 0
which impliesH(X) ≥ 1 andX 6= A and thereforeRHS ≥ 3. Also, H(W |A,B) = 0
which impliesW = A. Finally,H(X|W,Y ) = 0 which impliesH(Y ) ≥ 1 and therefore
RHS ≥ 4.

�
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8.2 A Linear Rank Inequality from the non-Fano Network

Theorem 8.8.LetA,B,C,W,X, Y, Z be subspaces of a finite-dimensional vector spaceV over a
scalar field of even characteristic. Then, the following linear rank inequality holds:

2H(A) + 3H(B) + 2H(C)

≤ H(W ) +H(X) +H(Y ) + 3H(Z)

+ 2H(A|Y, Z) + 3H(B|X,Z) +H(C|W,Z)

+ 2H(W |A,B) + 4H(X|A,C) + 3H(Y |B,C)

+ 6H(Z|A,B,C) +H(C|W,X, Y )

+ 7(H(A) +H(B) +H(C)−H(A,B,C)). (91)

Proof. We will use the non-Fano network in Figure 6, derived in [8], from the non-Fano matroid,
to help guide the proof. By Lemma 8.3, there exist linear functions

f1 : W → A f2 : W → B

f3 : X → A f4 : X → C

f5 : Y → B f6 : Y → C

f7 : Z → A f8 : Z → B f9 : Z → C

f10 : C → W f11 : C → Z

f12 : B → X f13 : B → Z

f14 : A → Y f15 : A → Z

f16 : C → W f17 : C → X f18 : C → Y

such that

f1 + f2 = I on a subspaceW ′ of W with codimW (W ′) ≤ H(W |A,B) (92)

f3 + f4 = I on a subspaceX ′ of X with codimX (X ′) ≤ H(X|A,C) (93)

f5 + f6 = I on a subspaceY ′ of Y with codimY (Y ′) ≤ H(Y |B,C) (94)

f7 + f8 + f9 = I on a subspaceZ ′ of Z with codimZ (Z ′) ≤ H(Z|A,B,C) (95)

f10 + f11 = I on a subspaceC ′ of C with codimC (C ′) ≤ H(C|W,Z) (96)

f12 + f13 = I on a subspaceB′ of B with codimB (B′) ≤ H(B|X,Z) (97)

f14 + f15 = I on a subspaceA′ of A with codimA (A′) ≤ H(A|Y, Z) (98)

f16 + f17 + f18 = I on a subspaceC ′′ of C with codimC (C ′′) ≤ H(C|W,X, Y ). (99)
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Combining these, we get maps

f7f15 : A → A (100)

f5f14 + f8f15 : A → B (101)

f6f14 + f9f15 : A → C. (102)

Note that

f5f14 + f6f14 = f14 on the subspacef−1
14 (Y

′) of A

f7f15 + f8f15 + f9f15 = f15 on the subspacef−1
15 (Z

′) of A

so the sum of the functions in (100)–(102) is equal toI on the subspace

A′′ .
= A′ ∩ f−1

14 (Y
′) ∩ f−1

15 (Z ′)

and we get

codimA (A′′) ≤ codimA (A′) + codimA

(

f−1
14 (Y

′)
)

+ codimA

(

f−1
15 (Z

′)
)

[from Lemma 8.1]

≤ codimA (A′) + codimY (Y ′) + codimZ (Z ′) [from Lemma 8.2]

≤ H(A|Y, Z) +H(Y |B,C) +H(Z|A,B,C). [from (94),(95),(98)]

Applying Lemma 8.5 tof7f15 − I, f5f14 + f8f15, andf6f14 + f9f15, we get a subspacēA of A′′

such that

codimA

(

Ā
)

= codimA (A′′) + codimA′′

(

Ā
)

≤ ∆A (103)
.
= H(A|Y, Z) +H(Y |B,C) +H(Z|A,B,C)

+H(A) +H(B) +H(C)−H(A,B,C) (104)

on which

f7f15 = I (105)

f5f14 + f8f15 = 0 (106)

f6f14 + f9f15 = 0. (107)

Similarly, we get a subspacēB of B such that

codimB

(

B̄
)

≤ ∆B (108)
.
= H(B|X,Z) +H(X|A,C) +H(Z|A,B,C)

+H(A) +H(B) +H(C)−H(A,B,C) (109)
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on which

f8f13 = I (110)

f3f12 + f7f13 = 0 (111)

f4f12 + f9f13 = 0 (112)

and a subspacēC of C such that

codimC

(

C̄
)

≤ ∆C (113)
.
= H(C|W,Z) +H(W |A,B) +H(Z|A,B,C)

+H(A) +H(B) +H(C)−H(A,B,C) (114)

on which

f9f11 = I (115)

f1f10 + f7f11 = 0 (116)

f2f10 + f8f11 = 0 (117)

and a subspacêC of C such that

codimC

(

Ĉ
)

≤ ∆̂C (118)
.
= H(C|W,X, Y ) +H(W |A,B) +H(X|A,C) +H(Y |B,C)

+H(A) +H(B) +H(C)−H(A,B,C) (119)

on which

f4f17 + f6f18 = I (120)

f1f16 + f3f17 = 0 (121)

f2f16 + f5f18 = 0. (122)

Define the following subspaces ofZ:

A∗ = f15(Ā)

B∗ = f13(B̄)

C∗ = f11(C̄).

By (105), the restriction mapsf15|Ā : Ā → A∗ andf7|A∗ : A∗ → Ā are inverses of each other,
and hence are injective. Similarly, by (110),f8|B

∗ is the inverse off13|B̄ and, by by (115),f9|C∗
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is the inverse off11|C̄, so these are all injective. In particular,

dim(A∗) = dim(Ā) (123)

dim(B∗) = dim(B̄) (124)

dim(C∗) = dim(C̄). (125)

Now let
A∗∗ = f7(A

∗ ∩B∗) ⊆ Ā.

Thenf15 is injective onA∗∗ andf15(A∗∗) = A∗ ∩ B∗, sof8f15 is injective onA∗∗. But f5f14 +
f8f15 = 0 on Ā, sof5f14 is injective onA∗∗, and hence so isf14. This gives

dim(f14A
∗∗) = dim(A∗∗) = dim(A∗ ∩B∗). (126)

Similarly, let
B∗∗ = f8(A

∗ ∩B∗) ⊆ B̄;

thenf7f13 is injective onB∗∗ andf3f12 + f7f13 = 0 onB∗∗, sof12 is injective onB∗∗ and

dim(f12B
∗∗) = dim(B∗∗) = dim(A∗ ∩B∗). (127)

And let
C∗∗ = f9(B

∗ ∩ C∗) ⊆ C̄;

thenf8f11 is injective onC∗∗ andf2f10 + f8f11 = 0 onC∗∗, sof10 is injective onC∗∗ and

dim(f10C
∗∗) = dim(C∗∗) = dim(B∗ ∩ C∗). (128)

Let us define the following subspaces ofC:

S1 = {u ∈ C : f16u ∈ f10C
∗∗}

S2 = {u ∈ C : f17u ∈ f12B
∗∗}

S3 = {u ∈ C : f18u ∈ f14A
∗∗}

S = Ĉ ∩ S1 ∩ S2 ∩ S3. (129)
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Then we have the following:

codimC (S1) ≤ codimW (f10C
∗∗) [from Lemma 8.2]

= dim(W )− dim(B∗ ∩ C∗) [from (128)]

= codimZ (B∗ ∩ C∗) + dim(W )− dim(Z)

≤ codimZ (B∗) + codimZ (C∗) + dim(W )− dim(Z) [from Lemma 8.1]

= codimB

(

B̄
)

+ codimC

(

C̄
)

+ dim(W ) + dim(Z)− dim(B)− dim(C) [from (124),(125)]

≤ ∆B +∆C +H(W ) +H(Z)−H(B)−H(C) [from (108),(113)] (130)

codimC (S2) ≤ codimX (f12B
∗∗) [from Lemma 8.2]

= dim(X)− dim(A∗ ∩B∗) [from (127)]

= codimZ (A∗ ∩ B∗) + dim(X)− dim(Z)

≤ codimZ (A∗) + codimZ (B∗) + dim(X)− dim(Z) [from Lemma 8.1]

= codimA

(

Ā
)

+ codimB

(

B̄
)

+ dim(X) + dim(Z)− dim(A)− dim(B) [from (123),(124)]

≤ ∆A +∆B +H(X) +H(Z)−H(A)−H(B) [from (103),(108)] (131)

codimC (S3) ≤ codimY (f14A
∗∗) [from Lemma 8.2]

= dim(Y )− dim(A∗ ∩ B∗) [from (126)]

= codimZ (A∗ ∩ B∗) + dim(Y )− dim(Z)

≤ codimZ (A∗) + codimZ (B∗) + dim(Y )− dim(Z) [from Lemma 8.1]

= codimA

(

Ā
)

+ codimB

(

B̄
)

+ dim(Y ) + dim(Z)− dim(A)− dim(B) [from (123),(124)]

≤ ∆A +∆B +H(Y ) +H(Z)−H(A)−H(B). [from (103),(108)] (132)

Supposet ∈ S. Then there exista ∈ A∗∗, b ∈ B∗∗, andc ∈ C∗∗ such thatf14a = f18t, f12b = f17t,
andf10c = f16t. Sincet ∈ Ĉ, we have from ((120))–((122)) that

f1f16t+ f3f17t = 0

f2f16t+ f5f18t = 0

f4f17t+ f6f18t = t

which gives

f1f10c+ f3f12b = 0 (133)

f2f10c+ f5f14a = 0 (134)

f4f12b+ f6f14a = t. (135)
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But we also have

f5f14a+ f8f15a = 0 [from (106)] (136)

f6f14a+ f9f15a = 0 [from (107)] (137)

f3f12b+ f7f13b = 0 [from (111)] (138)

f4f12b+ f9f13b = 0 [from (112)] (139)

f1f10c+ f7f11c = 0 [from (116)] (140)

f2f10c+ f8f11c = 0 [from (117)] (141)

so

f7f11c+ f7f13b = 0 [from (133),(138),(140)] (142)

f8f11c+ f8f15a = 0 [from (134),(136)(141)] (143)

f9f13b+ f9f15a = −t. [from (135),(137),(139)] (144)

Sincef11c andf15a are both inB∗, andf8 is injective onB∗, we get from (143) thatf11c = −f15a.
This implies thatf11c is also inA∗, and sincef13b ∈ A∗ andf7 is injective onA∗, we get from
(142) thatf11c = −f13b and hencef15a = f13b.

Hence, since the field has characteristic2, we have

t = −(f9f13b+ f9f15a)

= −(f9f13b+ f9f13b)

= 0.

Since the choice oft was arbitrary, this impliesS = {0}, and therefore

H(C) = codimC (S)

≤ codimC

(

Ĉ
)

+
3
∑

i=1

codimC (Si) [from (129), Lemma 8.1]

≤ ∆̂C + 2∆A + 3∆B +∆C

+H(W ) +H(X) +H(Y ) + 3H(Z)

− 2H(A)− 3H(B)−H(C) [from (118),(130),(131),(132)].

The result then follows from (104), (109), (114). and (119). �

In the context of the non-Fano network, all of the compound terms at the end of inequality (91)
are zero, so this inequality directly implies inequality (42).

Theorem 8.9.The linear rank inequality in Theorem 8.8 holds for any scalar field if dim(V ) ≤ 2,
but may not hold if the scalar field has odd characteristic anddim(V ) ≥ 3.
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Proof. In V = GF (p)3 for any odd primep, define the following subspaces ofV :

A = 〈(1, 0, 0)〉

B = 〈(0, 1, 0)〉

C = 〈(0, 0, 1)〉

W = 〈(1, 1, 0)〉

X = 〈(1, 0, 1)〉

Y = 〈(0, 1, 1)〉

Z = 〈(1, 1, 1)〉

It is easily verified that the inequality in Theorem 8.8 is notsatisfied in this case.
To show that the inequality indeed holds ifdim(V ) ≤ 2, one can again show that the inequality

becomes a Shannon inequality under the assumption thatH(A) = 0, or under the assumption
H(B|A) = 0, or under the assumptionH(C|A,B) = 0. If all three of these assumptions fail, then
we must have

dim(V ) ≥ H(A,B,C) > H(A,B) > H(A) > 0 (145)

and hencedim(V ) ≥ 3. Or one can give a case-by-case direct argument. �
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