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Abstract

Determining the achievable rate region for networks usmging, linear coding, or non-
linear coding is thought to be a difficult task in general, & are known. We describe the
achievable rate regions for four interesting networks (gletely for three and partially for the
fourth). In addition to the known matrix-computation medhir proving outer bounds for
linear coding, we present a new method which yields actuatadteristic-dependent linear
rank inequalities from which the desired bounds follow inciagely.
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1 Introduction

In this paper, anetworkis a directed acyclic multigrapy = (V, E), some of whose nodes are
information sources or receivers (e.g. see [22]). Assediatith the sources are: generated
messagesvhere the'” source message is assumed to be a vectorarbitrary elements of a fixed
finite alphabetA, of size at leas?. At any node in the network, each out-edge carries a vector of
alphabet symbols which is a function (calledeatge functiohof the vectors of symbols carried on
the in-edges to the node, and of the node’s message vecibisafsource. Each network edge is
allowed to be used at most once (i.e. at mosymbols can travel across each edge). It is assumed
that every network edge is reachable by some source mes&ageciated with each receiver are
one or morademandseach demand is a network message. Each receivatdtasling functions
which map the receiver’s inputs to vectors of symbols in danapt to produce the messages
demanded at the receiver. The goal is for each receiver tocgeits demanded messages from
its in-edges and source messages by having informatioragete from the sources through the
network.

A (ki,..., ky,,n) fractional codds a collection of edge functions, one for each edge in the net
work, and decoding functions, one for each demand of each indtie network. Ak, ..., k., n)
fractional solutionis a(k, . . ., k,,, n) fractional code which results in every receiver being able t
compute its demands via its decoding functions, for all fdssssignments of length-vectors
over the alphabet to th&" source message, for all

Special codes of interest includieear codes where the edge functions and decoding func-
tions are linear, antbuting codeswhere the edge functions and decoding functions simply cop
specified input components to output compongrgecial networks of interest includeulticast
networks, where there is only one source node and everyweramands all of the source mes-
sages, andnultiple-unicastnetworks, where each network message is generated by \exaet!
source node and is demanded by exactly one receiver node.

For eachi, the ratiok;/n can be thought of as the rate at which sourggects data into the
network. If a network has &, ..., k,,,n) fractional solution over some alphabet, then we say
that(k,/n, ..., k,/n) is anachievable rate vectpand we define thachievable rate regionf the
network as the following convex hell

S = CHULL({r € Q™ : r is an achievable rate vecior

Every vector in the achievable rate region can be effegti@ehieved by time-sharing between two
achievable points (since it is a convex combination of ttaadgevable points).

Determining the achievable rate region of an arbitrary netwappears to be a formidable
task. Alternatively, certain scalar quantities that réwef@rmation about the achievable rates are

1 If an edge function for an out-edge of a node depends only ersyimbols of a single in-edge of that node,
then, without loss of generality, we assume that the oueailgply carries the same vector of symbols (i.e. routes the
vector) as the in-edge it depends on.

2 There is some variation in the definition and terminologyhie literature. Some authors use the term “capacity
region” or “rate region”. Alternative definitions of the lieg have been defined as the topological closuré afr
without the convex hull.
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typically studied. For anyk, ..., k., n) fractional solution, we call the scalar quantity

1 [k [

m n n
anachievable average rataf the network. We define theeverage coding capaciiyf a network to
be the supremum of all achievable average rates, namely

1 m
Caverage _ - S e Tm) € s\
sup{mZT (11 T'm) }

i=1

Similarly, for any(k;, .. ., k., n) fractional solution, we call the scalar quantity

mn | —,...,—
n n
anachievable uniform ratef the network. We define theniform coding capacitpf a network to

be the supremum of all achievable uniform rates, namely

Cuniform

=sup {min(ry,...,7n) : (ri,...,mm) € S}.

Note that for any- € S andr’ € R™, if each component of is nonnegative, rational, and less
than or equal to the corresponding component,dfenr’ € S. In particular, if(ry,...,7,) € S

andr; = I%anrj, then(r;, r;,...,r;) € S, which implies
Cuniform = sup {,r,i . (le o 7Tm) c 5'7 ry=-= 'r’m} .
In other words, all messages can be restricted to havinggtine simensiotk; = - - - = k,,, when

consideringziform - Also, note that

Cuniform < (average

The quantitiegverase andCiform gre attained by points on the boundary%flt is known that
not every network has a uniform coding capacity which is dnea@ble uniform rate [7].

If a network’s edge functions are restricted to purely nogitiunctions, then we write the ca-
pacities a<’;, i andCymiion®, and refer to them as thaverage routing capacitgnd uniform
routing capacity respectively. Likewise, for solutions using only lineaige functions, we write
Cirese andcpniferm gnd refer to them as theverage linear capacitgnduniform linear capacity
respectively.

Given random variables,,...z; andy,...,y;, we writezy,...z; — y1,...,y,; {0 mean
thaty,, ..., y; are deterministic functions af;, .. . z;. We say that,, ...z; yieldy,, ..., y;.

In this paper, we study four specific networks, namely thee®adized Butterfly network, the
Fano network, the non-Fano network, and the Vamos netwbhle last three of these networks

were shown to be matroidal inl[8] and various capacities e$¢hnetworks have been computed.
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However, the full achievable rate regions of these netwhek& not been previously determined,
to the best of our knowledge. Some other work on achievabds @nd capacities has been done
in [5,15/21].

The Generalized Butterfly network (studied in Secfion 2 dludtrated in Figuréll) has the
same topology as the usual Butterfly netwark [2], but inst#fazhe source at each of nodesand
ne, there are two sources at each of these nodes. For each afutee :10des, one of it's source
messages is demanded by receiveand the other by receiver;. The usual Butterfly network is
the special case when messagesdd do not exist (or are just not demanded by any receiver). A
large majority of network coding publications mention imsmcontext the Butterfly network, so
it plays an important role in the field.

The Fano network (studied in Section 3 and illustrated iruFé) and the non-Fano network
(studied in Sectiohl5 and illustrated in Figlile 6) were useffj as components of a larger net-
work to demonstrate the unachievability of network codiagaxcity. Specifically, in[7] the Fano
network was shown to be solvable if and only if the alphalsd & a power of and the non-Fano
network was shown to be solvable if and only if the alphabst $ odd. In([9], the Fano and
non-Fano networks were used to build a solvable multicastor& whose reverse (i.e. all edge
directions change, and sources and receivers exchang? was not solvable, in contrast to the
case of linear solvability, where reversals of linearlyable multicast networks were previously
known to be linearly solvable [16, 17,120]. In [6], the Fana aron-Fano networks were used to
construct a network which disproved a previously publisbecjecture asserting that all solvable
networks are vector linearly solvable over some finite field some vector dimension.

The Vamos network (studied in Sectibh 7 and illustrated igufe[10) was used in [8] to
demonstrate that non-Shannon-type information ineqesiitould yield upper bounds on network
coding capacity which are tighter than the tightest poesitnlund theoretically achievable using
only Shannon-type information inequalities. Here we catgly determine the routing and linear
rate regions for the Vamos network, but only give partiautes for the non-linear rate region
(which indicate that it could be quite complicated).

Finally, we present a new method for proving bounds on aelhievrate regions for linear
coding, which actually produces explicit linear rank inalifies which directly imply the desired
bounds.
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2 Generalized Butterfly network

ab cd

1 2
3

X y z
4

©) (&)

ac b d

Figure 1: The Generalized Butterfly network. Source nadgenerates messagesandb, and
source node, generates messagesindd. Receiver nodei; demands messagesandc¢, and
receiver nodeys demands messagesndd. The symbol vectors carried on edgss, e, 4, and
e3¢ are denoted, y, andz, respectively.

Theorem 2.1. The achievable rate regions for either linear or non-lineading are the same for
the Generalized Butterfly network and are equal to the clge#gtope inR* whose faces lie on
the9 planes:

e =0
ry, =0
r. =10
rg =20
rp =1
r. =1

To+7p+7.=2
Ty +Te+rg=2
To+To+7.+19=23
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and whose vertices are thd points:

(0,0,0,0) (0,0,0,2) (2,0,0,0) (0,1,0,0)
(0,0,1,0) (2,0,0,1) (1,0,0,2) (0,0,1,1)
(1,1,0,0) (1,0,1,1) (1,1,0,1) (0,1,1,0)
(0,1,0,1) (1,0,1,0).

Furthermore, the coding capacity and linear coding capgaeite given by:

Cuniform — Cuniform — 2/3

linear

Caverage — Caverage — 3/4

linear

Proof. Consider a network solution over an alphaldeand denote the source message dimensions
by k., ki, k., andk,, and the edge dimensions hy Let each source be a random variable whose
components are independent and uniformly distributed @veéFhen the solution must satisfy the
following inequalities:

ko >0 1)
ky >0 ()
ke >0 3
kg >0 (4)
ky = H(b) = H(yla,c,d) <n (5)
.= H(c) = H(yla,b,d) <n (6)

ko + ky + ke = H(a,b,c) = H(z,y|d)
< H(z,y) <2n (7

ky + ke + kg = H(b,c,d) = H(y, z|a)
< H(y,2) < 2n (®)

ko + ko + ke + kg = H(a,b,c,d) = H(z,y, 2)

< 3n. 9)

@—(4) are trivial; [(b) follows becaused,y — v,z — b,d (at nodeng), and therefore
a,c,d,y — a,b,c,d and thusH (a, b, ¢, d) = H(a,c,d,y); similarly for (6); (7) follows because
x,y — a,c (at nodens), ¢,d,y — b, d (at nodeng), and thereforel, x,y — a,c,d,y —
a,b,c,d and thusH (a,b,c,d) = H(d,x,y); similarly for (8); (9) follows because,y,> —
a,b,c,d (at nodesn; andng). Dividing each inequality in[(1)E{9) by gives the9 bounding
hyperplanes stated in the theorem.

Letr, = ko/n, 1y = ky/n, . = k./n, andry = kyq/n, and letP denote the polytope iRR*
consisting of alk-tuples(r, ry, 7, rq) satisfying [1)-4(®). Ther {1)H4) and](9) ensure tRais
bounded. One can easily calculate that each poiRt'ithat satisfies some independent set of four
of the inequalities[{1)£(9) with equality and also satisfles remaining five inequalities must be
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one of thel4 points stated in the theorem. Now we show thatldlsuch points do indeed lie in
the achievable rate region, and therefore their convexdguhls the achievable rate region. The
following 5 points are achieved by taking= 1 with the following codes over any field (where, if
k, = 2, the two components af are denoted; andas):

(2,0,0,1): z=a1, y=as, z=4d
(1,0,0,2): z=a, y=d;, z=ds
(1,0,1,1): z=a,y=c, z=d
(1,1,0,1): z=a,y=0b, 2=d
(0,1,1,0): z=b,y=b+c, z=c¢

and the remaining points are achieved by fixing certain messages t0.be

Since the above codes are all linear, the achievable ratnetpr linear and non-linear codes
are the same.

By (@), we haveC*er2e¢ < 3/4, and this upper bound is achievable by routing using the code
given above for the point2, 0,0, 1), namely takingr = a;, y = a2, andz = d. By (8), we have
Cuniferm < 9 /3: since

(2/3)(1,1,1,1) = (1/3)(1,0,1,1)
+(1/3)(1,1,0,1)
+(1/3)(0,1,1,0)
the upper bound at/3 is achievable by a convex combination of the linear codesrgabove for
the points(1,0,1,1), (1,1,0,1), and(0,1, 1,0), as follows. Také: = 2 andn = 3 and use the
(linear) code determined by:
xr = (Cll, a2, bZ)
y = (c1,b1,b2 4 c2)
Z = (dl, dg, CQ).

Theorem 2.2. The achievable rate region for routing for the GeneralizedtBrfly network is the
closed polytope ilR* bounded by thé planes in Theoreiin 2.1 together with the plane

rp+1r.=1
and whose vertices are th8 points:
(0,0,0,0) (0,0,0,2) (2,0,0,0) (0,1,0,0)
(0,1,0,1) (0,0,1,0) (2,0,0,1) (1,0,0,2)
(0,0,1,1) (1,0,1,0) (1,1,0,0) (1,0,1,1)
(1,1,0,1).
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Furthermore, the routing capacities are given by:

Cuniform — 1/2

routing

Caverage — 3/4

routing

Proof. With routing, in addition to the inequalitielsl (1)+(9), awstddbn must also satisfy
ky+ k. <n (10)

since all of the components of messagesnd ¢ must be carried by the edge labelgd One
can show that each point R* that satisfies with equality some independent set of fouhef t
inequalities[(IL)-£(9) and_(10) and also satisfies the remgigix inequalities must be one of the
13 points stated in this theorem (i.@3 of the 14 points stated in Theorem 2.1 by excluding the
point (0,1, 1,0)). The proof of Theorern 2.1 showed that all vertice§Poéxcept(0, 1, 1,0) were
achievable using routing.

By (@0), we have?;g{}{?g‘g“ < 1/2, and this upper bound is achievable, for example, by taking a

convex combination of codes that achigve0, 1,0) and(0, 1,0, 1), as follows. Taket = 1 and
n = 2 and use the routing code determined by:

x=(0,a)
= (b,¢)
z=(d,0)
The capacityC;, ;v = 3/4 follows immediately from the proof of Theorem 2.1. |
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3 Fano network

Figure 2: The Fano network. Source noagsn,, andns generate messagesb, andc, respec-
tively. Receiver nodes,, ny3, andn;, demand messagesb, anda, respectively. The symbol
vectors carried on edgesg, es 10, €5.7, €911 are labeled as, z, y, andz, respectively.

Theorem 3.1.The achievable rate regions for either linear coding ovey &nite field alphabet of
even characteristic or non-linear coding are the same fe FHano network and are equal to the
closed polyhedron iiR? whose faces lie on tHeplanes (see Figuilg 3):

e =0
=0
re =10
e =1
r. =1
Ty + 1. =2
re +1p =2
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and whose vertices are tlgepoints:

(0,0,0) (0,0,1) (1,0,0) (0,2,0)
(0,1,1) (1,0,1) (1,1,0) (1,1,1)

Proof. Consider a network solution over an alphaldeand denote the source message dimensions
by k., k,, andk., and the edge dimensions by Let each source be a random variable whose
components are independent and uniformly distributed gverhen the solution must satisfy the
following inequalities:

ko >0 (11)

ky >0 (12)

ke >0 (13)

ko = H(a) = H(z|b,c) < H(z) <n (14)
c=H(c)=H(yla,b) < H(y) <n (15)

ky+ k.= H(b,c) = H(z,zla) < H(z,z) < 2n (16)
ko + ky = H(a,b) = H(z, z|c) < H(x, z) < 2n. (17)

@ID)-(13) are trivial;[(14) follows becauseb, c — z,y — a (at nodeny,), S0z, b,¢c — a, b, ¢
and thusH (z, b, ¢) = H(a, b, ¢); (15) follows because, b,y — a,w,y — a,z —> ¢ (at node
nis), S0a, b,y — a, b, c and thusH (a, b, y) = H(a, b, c); (L6) follows because, z, 2 — a,b, ¢
(at nodes;, andnys) and thusH (a, z, z) = H(a,b,z); (L7) follows from: z, 2 — b (at node
nis), b,c — y (atnodens), x, z,c — z,b,¢c — y, z,b,¢c — a, b, ¢, SOH (z, z,¢) = H(a, b, c).
Dividing each inequality in(11)E(17) by gives the7 bounding planes stated in the theorem.

Letr, = ko/n, 1, = ky/n, andr, = k./n, and letP denote the polygon ilR? consisting
of all 3-tuples(r,, 4, r.) satisfying [(I1)+(17). Thef® is bounded by[{11)E(17). One can easily
calculate that each point iR? that satisfies some set of three of the inequalifies (LI)-dfh
equality and also satisfies the remaining four inequalimest be one of th8 points stated in the
theorem. Now we show that alsuch points do indeed lie iR. The following5 points are seen
to lie in P by takingn = 1 and the following codes over any even-characteristic fiingdd:

( ) r=y=c,w=z=b

( ) r=y=c,w=z=a

(1,1,0): z=y=bw=z=a

( ) z=y="b, w=2z=b

( ) w=a+b y=b+c,r=a+c, z=a+b+c

and the remaining points are achieved by fixing certain messages t0 f@ote that the codes
for (0,1,1), (1,0,1), and(1,1,0) can be obtained from the linear code far 1, 1) but we gave
routing solutions for them here).
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Since the above codes are all linear, the achievable ratenefpr linear and non-linear codes
are the same. [

It was shown in[[6] that for the Fano netwoiverase = cuniform — 1 gndcuniferm — 1 for all

linear

even-characteristic fields aggj»ir™ = 4/5 for all odd-characteristic fields. The calculation of

near

Cpniform — 4 /5 in [6] required a rather involved computation. We now extérat computation to

linear

give the following theorem.

(1,0,1)

Figure 3: The achievable coding rate region for the Fano orkve a7-sided polyhedron with 8
vertices.

Theorem 3.2. The achievable rate region for linear coding over any finigddfialphabet of odd
characteristic for the Fano network is equal to the closetypedron inR? whose faces lie on the
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8 planes (see Figure 4):

Ty =
rb—O
re =10
Ty =
Te =

o +2ry+2r. =4
2rg+ 1y +2r. =4
2r, 4+ 2ry +1r. =4

and whose vertices are thi@ points:

(0,0,0) (0,0,1) (1,0,0) (0,2,0)
(0,1,1) (1,0,1) (1,1,0)
(2/3,2/3,1) (1,2/3,2/3) (4/5,4/5,4/5).

Proof. In addition to satisfying the conditions (11)—{17), thewmn must satisfy the following
inequalities:

ko 4 2k, + 2k, < 4n (18)
2k, + ky + 2k, < 4n (29
2k 4+ 2k, + k. < 4n (20)

The proofs of these inequalities are given in Sedfibn 4, andl@rnate proof of (19) is given in
Sectior 8.1

A straightforward argument as in previous theorems showassttte vertices of the (bounded)
region specified by inequalities (11)—{(15) afdl (18)+(2aegualities[(16) and (17) are now re-
dundant) are the ten vertices listed in the theorem. For tbesieven of these, the codes given in
Theorem 3.1 work here as well; the remaining points areratthby the following three codes (the
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last of which was given in |6]):

(1,2/3,2/3): n=3,
w = (ay + by, az + by, as)
r = (a1 — ¢1,a9 — g, a3 + by)
y = (by + c1, by + 2, by)
z=(a; + by —c1,as + by + o, a3)
(2/3,2/3,1): n=3,
w = (aj + by, as + be, by)
x = (a1 — ¢1,a9 — C9,C3)
y = (b1 + c1,be + o, ¢3)
z=(a;+by —c1,a3 — by — o, 1)
(4/5,4/5,4/5): n =5,
w = (aj + by, as + be, ag + bs, ay + by, by + by)
x = (c1+ ay, ey + ag, c3 — as, cqy — ay, az + b3)
y = (cy — by, co — by, 3+ b3, cqy + by, by)
z=(a1 + b +c1,a0 + by + co,a3 + bg + ¢3,a4 + by + 4, b1 + by + ¢4)

Theorem 3.3.The achievable rate region for routing for the Fano netwarthie closed polyhedron
in R3 whose faces lie on thiplanes (see Figurg 5):

e =0
Ty = 0
r. =0
re =1
re=1
Tg+Th+7Te=2
and whose vertices are tligpoints:
(0,0,0) (0,0,1) (1,0,0) (0,2,0)
(0,1,1) (1,0,1) (1,1,0).

Proof. With routing, in addition to the inequalities (11)—{17),@gion must also satisfy

ko + Ky + k. < 2n (21)
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Figure 4: The achievable linear coding rate region over @raracteristic finite fields for the Fano
network is a8-sided polyhedron with 8 vertices.

since all of the components of message$, andc must be carried by the edges labelednd
z. One can easily check that the extreme points of the newmegiih the inequality[(2]1) added
are the7 points stated in this theorem (i.e., the points stated inofdma[3.1 excluding the point
(1,1,1)); see figuréb. The proof of Theorém 3.1 showed that all vestafP other than(1, 1, 1)
were achievable using routing.
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(1,0,1)

Figure 5: The achievable routing rate region for the Fanwost is a6-sided polyhedron with 7
vertices.

4 Proofs of remaining bounds for the Fano network

For the case of linear coding over a finite field of odd charéstte, we want to prove the bounds:

ko + 2Ky + 2k, < 4n (22)
%o + ki + 2k, < 4n (23)
2k, + 2ky + ko < 4An. (24)

We will do this by following and extending the arguments fr&@action IV of [6], with minor
modifications needed because we now have separate soursageekmensions,, &, k. instead
of a single message dimensibn

We already have the bounds < n andk. < n (but we donot necessarily havé, < n).
Therefore, we can think of the lengthsymbol vectorsy andz (referred to in[[6] as;3,7 and
ea2.30) @S coming in two parts, one of length and one of lengtld, = n — k,. Similarly, we can
think of the symbol vectors andy (referred to in[[6] ass; 29 andey4 15) as coming in two parts,
one of length%. and one of lengtlhh, = n — k.. In order to consider what happens to these parts
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separately, we decompose each of the transition matkiGésom [6] in the form

)

;U

where the submatrices;, S;, T;, U; are of appropriate sizes (or are omitted altogether if gmpro
ate). For instance, far= 2 we have that?, is k, x ky, T5 is 9, x ky, andS; andU; are omitted;
for i = 5 we have thaf?s is k. X k., S5 1Sk, X 04, T5 1S 0. X ko, andUs IS 6, X 9.

We can now follow the arguments on pages 2752-2755]of [6] @nidyvthat they apply in
this new context with no further changes. In particular, fiiilowing formulas from pages 2754
and 2755 of{[6] still hold:

(U7 + TgS5)T2b + T8R5R2b, Tgb —
(I + RsR5)R2b+ (S7 + RsS5)Tsb (25)

and

Tya + TsRob + UsTob + UsTib,
a+ Rob+ S:Tob — RgRsa,

UrTob — Ty Rsa

—b. (26)

Since the field has odd characteristic, we camlet a + 271 R,b and then rewrite[(26) in the
following form:

Tsa' + 27 ' Ts Rob + UsTob + UgTsb,
(I — RsRs)d’ + 27 (I + RsRs5)Ryb
+ (S7 4+ RgS5)Tob + (S7 — RgS5)Thb),
Ur;Tob + 27" T5 Rs Rob — Ty Rsa’
— . (27)

Note that:’ hask, independent components and is independehtjabt likea is, because’, b —
a, b.

The three vectors on the left-hand side[ofl (26) have resgedimensions,, k,, andd,; these
add up to2n — k.. From these vectors we can compute albddy (26), and then we can also
reconstruct some information abauytnamely(/ — RsRs)a from the second of the three vectors
and Tz Rsa from the third vector. (We can also géta from the first vector, but this will not be
used below.) This gives a total of

I — RgR;
kb—l—rank({ TuRs })
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independent components reconstructed from these thréarseso we must have

I — RsR;
l{:b+rank<[ TuRs ]) < 2n — k.. (28)

Now, using [25), we see that
Tgb, Tgb, T8R5R2b — (I —+ R8R5)R2b. (29)

But we can add/ + RgRs5)R2b and (I — RgR5)Ryb to get2Rsb, which yields R;b because the
field has odd characteristic. And (26) implies

a, Tgb, Tgb, Rob — a, b. (30)
Putting these together, we get
I — RgR;
a, Tgb, Tgb, |: TuR: } Rob —> a, b.

Now, using[(Z8) and the known sizes of the vectarg,b, andT3b, we get the inequality
ko+n—Fky+n—Fk.+2n—k.—ky > k, + ky,

which reduces td (22).
Using (25) and((27) together, we get

CL/, Tgb, Tgb, T8R5R2b, TsRob —> a/,b
— a,b,

yielding the inequality
ko+n—ko+n—k.4+n—ky+n—k.>ky+ ky,

which is [23).
For the remaining inequality (24), we will use the followifegt: if M is ak x k& matrix andN

is anr x k& matrix, then
M M—-1
rank([N])—l—rank<[ N ])

(| M)

> 2k +rank (N). (31)
Sincel # —1 in afield of odd characteristid, (B1) is a special case of:

Lemma 4.1.If M is ak x k matrix andN is anr x k matrix, and the scalars, ..., \; are
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distinct, then

grank ({ . ]—V)\il D > (t— 1)k +rank (N). (32)

We thank Nghi Nguyen for supplying the following clean probthis result.
Proof. Let E; be the null space o/ — A;1, and letE be the null space aV. Then

rank ([ M]_VM D =k —dim(E; N E)

and
rank (V) = k — dim(E).
So (32) is equivalent to

tk =Y dim(E; N E) > tk — dim(E)

and hence to
> dim(E; N E) < dim(E),
and the latter inequality is true because the subspdces F) are linearly independent ifs. (If

v € F isthe sum of vectors; € E; N E for 1 < i < ¢, then we can recover the vectorsfrom v
using formulas such as

(A= X2) .o O = A)vi = (M = AoI) ... (M = NI)V.)

Now, we have

RsRs — 1
rank<[ TuRs }) <2n-—k.—k

from (28). Since

RsRs | _ | Rs R
Ty R Ty 5
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we have

RgRs
rank <[ TuRs }) < rank (Rj) < k..

Now, as stated on page 2756 of [6], we can find a maprsuch that
I + RgRs
rank T3R5 =k,
Q
. I + RgRs
rank (Q) = k, — rank <[ TuRs ]) ,

rank ({ ! ;8};8?5 ]) =k, —rank (Q).

Substituting these facts into (31) gives

and

SO

2n — k. — ky + ke + ky — rank (Q)
> 2k, + rank (T3 R5) .

But (33) implies that

I 4+ RgR;
T8R5 Rgb — Rgb,
Q

combining this with[(2B) and_(30) yields
Tgb, Tgb, T8R5R2b, QRQb — b.

Using this with the bound orank (73 R5) obtained from[(34), we get

n—ke+n—ke+2n—k, — ky — rank (Q) + rank (Q)

> ky,

which reduces to the desired inequalityl(24).
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5 Non-Fano network

Figure 6: The non-Fano network. Source nodesn,, andns generate messagesb, andc,
respectively. Receiver nodes,, n13, n14, andn;; demand messagesb, a, andc, respectively.
The symbol vectors carried on edges, e7.10, €s,11, €45 are labeled as), x, y, andz, respectively.

Theorem 5.1. The achievable rate region for either linear coding over &njte field alphabet of
odd characteristic or non-linear coding are the same for ttoe-Fano network and are equal to
the closed cube ilR? whose faces lie on theplanes (see Figurlg 7):

e =0
ry =0
r. =0
T = 1
rpy =1
re =1
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and whose vertices are tlgepoints:

Proof. Consider a network solution over an alphaldeand denote the source message dimensions
by k., k,, andk., and the edge dimensions by Let each source be a random variable whose
components are independent and uniformly distributed gverhen the solution must satisfy the
following inequalities:

ko >0 (36)
ky, >0 (37)
ke>0 (38)
ko = H(a) = H(z|b,c) < H(z) <n (39)
ky=H(b) = H(z|la,c) < H(z) <n (40)
k.= H(c) = H(z|la,b) < H(z) <n (41)

(36)-[38) are trivial;[(39) follows becauseb, c —> z,y — a (at nodeny,), s0z,b,¢ — a, b, ¢
and thusH (a,b,c¢) = H(z,b,c). (40) follows because,a,c — z,&x — b (at noden;s), SO
z,a,¢c — a,b,c and thusH (a,b,c) = H(z,a,c). (41) follows because,a,b — z,w — ¢
(at noden,,), soz,a,b — a,b,c and thusH (a,b,c) = H(z,a,b). Dividing each inequality in
(38)-(41) byn gives the’ bounding planes stated in the theorem.

Letr, = ko/n, 1, = ky/n, andr, = k./n, and letP denote the polyhedron iR? consisting
of all 3-tuples(r,, 3, r.) satisfying [36)-£(411). The® is simply the unit cube shown in Figuré 7,
and its extreme points are tBeooints stated in the theorem. To show that &ghaoints lie in the
achievable rate region, let= k, = k, = k. = 1 and use the following linear code fét, 1, 1)
over any odd-characteristic finite field:

w=a+b y=b+c,r=a+c,z=a+b+c

(where node5 can recover its demand via= (w —y + ) -27!). The other7 points are obtained
by setting certain messages(tdn the code for(1, 1,1). Since the above codes are all linear, the
achievable rate regions for linear and non-linear codetharsame. [ |

Theorem 5.2. The achievable rate region for linear coding over any finigtdfialphabet of even
characteristic for the non-Fano network is equal to the ebpolyhedron iR? whose faces lie on
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the 7 planes (see Figullg 8):

Ty =
rb—O
re =10
Ty =
rb—l
re =1

re+ry+1.="5/2

and whose vertices are th@ points:

0,0,0) (0,0,1) (1,0,0) (0,1,0)
(0,1,1) (1,0,1) (1,1,0)
(1,1,1/2) (1,1/2,1) (1/2,1,1).

Proof. The six inequalities from Theorem 5.1 still apply here; thegh that the additional inequal-
ity

%o + 2Ky + 2k, < 5n (42)

must also hold in the case of even-characteristic finite digddgiven in Sectiofl6 (and another
proof is given in Section 812).

The new inequality[(42) cuts down the achievable rate regiothe polyhedron shown in
Figure[8, whose extreme points are the 10 points listed irttberem. The pointl,1,1/2) is
achieved by the following code with = k, = k, = 2 andk. = 1, which works over any finite
field:

w = (a'lybl)v Yy = (bl +Cv b2)7 xr = (al +Cv &2),2 = (al + bl + C, a2 + bz)

The other two new extreme points are achieved by permutegdhables in the above codell

Note that both the uniform capacity and average capacity g dor the non-Fano network,
for any even-characteristic finite field.

Theorem 5.3. The achievable rate region for routing for the non-Fano ratuis the closed tetra-
hedron inR? whose faces lie on theplanes (see Figure 9):

e =0
’I“bZO
r. =10

re+1mp+r.=1
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(1,0,1)

, (1,1,0)

Figure 7: The achievable coding rate region for the Fano oitis a cube irR>.

and whose vertices are tiepoints:

(0,0,0), (0,0,1), (1,0,0), (0,1,0).

Proof. In addition to satisfying (36)£(41), a routing solution rhako satisfy

since the edge labeledmust carry all3 messages, b, andc. The inequality [(48) makes the
inequalities[(3P)-£(41) redundant, and, in fact, the vesiaf the polygon determined Hy {36)(38)
and [43) are the listed in the theorem. These are achievable using the fallpwouting codes:

(0,0,1): y=z=c¢
(1,0,0): z=a
(0,1,0): z=b.
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hc
1(0,0.1) (1,0,1)
(1/2,1,1)
o (11/2.0)
0.1,1
(1,00) A

(0,1,0)
/ (1,1,0)
Y (@1112)
B

Figure 8: The achievable linear coding rate region over -@aracteristic finite fields for the
non-Fano network is &sided polyhedron with0 vertices.

6 Proof of remaining bound for the non-Fano network
For the case of linear coding over a finite field of charactier’s we want to prove the bound:
2k, + 2kp + 2k, < 5n (44)

We will again do this by following the arguments from Sectigrof [6], with minor modifications.
(Those arguments were for a different network which was tewes of the non-Fano network with
one demand node merged, but a number of them concentratedtahg left half of that network
and hence will be directly applicable to the non-Fano netvwor

The matrices\/; throughM 5 will be the same as they are on pages 2756-2757| of [6]; they
label a part of the network there which is identical to the-fk@mo network. Again here, instead
of one value = n — k£ we have three values = n — k,, 6, = n — k;, andd. = n — k.. When we
talk about thinking of an edge vector as one part of lerigitbllowed by one part of length — £,
we will usek = k. here; so, for instance?; is ak. x k, matrix, while Rg is k. x k..

Now follow the argument from pages 27562757 of [6] as wmitexcept thaL is just the five
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Figure 9: The achievable routing rate region for the Fanwoek is a tetrahedron iR .

vectors

Msa + Myc,
Msb + Mg,
Q13(Mr7a + Myc),
Q15(Msb + Myc),
Q10(Mia + Msb)

without any “corresponding five objects” from the other sidehe same argument then yields
L — a,b,c. Since Mi5M; = Iy, we haverank (M;5) > k, and henceank (Q15) < dq;
similarly, rank (Q13) < d,. Therefore, following the computation on page 2757 of [63,fimd that

L has only

n+4+n+[0a+ % — (ke —a)] + [n — q]
=2n+0,+ 0 + 0.

independent entries. Therefore,

2n+5a+5b+502ka+kb+kc,
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2kq + 2ky + 2k, < n.
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7 Vamos network

abcd

(8)
bd\ad
PO @«

Figure 10: The Vamos network. A message variablg c, or d labeled above a node indicates an
in-edge (not shown) from the source node (not shown) gangrtte message. Demand variables
are labeled below the receivers—n,; demanding them. The edges,, es 4, 56, ande; g are
denoted byw, x, y, andz, respectively.

Theorem 7.1. The achievable rate region for routing for théivios network is the polytope Rt
whose faces lie on theplanes:

rq =0
=0
re =10
rq =20

2rg + 1+ 2rg = 2
To +1p+7c+2rg =2
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and whose vertices are the points

(0,0,0,0) (1,0,0,0) (0,0,0,1)
(1,0,1,0) (0,2,0,0) (0,0,2,0)

Proof. The first4 planes are trivial.

Now, notice that in a routing solutiop,must carry all otz andd in order to meet the demands
at nodesh;y andn,, respectively. Thusy must carry all ofe andd too. Also,z andy together
must carry all ofb in order to meet the demand at nodge In summary,: andy together must
carry at leas® copies ofa, 2 copies ofd, and one copy ob. This implies2k, + k;, + 2k, < 2n,
and therefor@r, + r, + 2rq < 2.

Similarly, w must carry all ofd in order to meet the demand at nadg, andw andy together
must carry all ofb andc in order to meet the demands at nodgs andn3. Sincey must carry
all of « andd, we conclude thatv andy together must carry at least one copyapfone copy
of b, one copy ofc, and two copies ofl. This impliesk, + k, + k. + 2k < 2n, and therefore
T +1p+ 7.+ 2rg < 2.

Itis easy to check that the vertices of the polytope boungdtdn6 planes listed in the theorem
are the 6 vertices listed in the theorem. Each ofitlvertices can be achieved as follow8000)
trivially; (1000) with z = y = z = a; (0001) with w = 2 = y = z = d; (1010) with w = ¢
andz = y = z = qa; (0200) with w = & = by andy = z = by; (0020) with w = = = ¢, and
Y=z =cCa.

The following theorem uses only Shannon-type informatmmyualities to obtain a polytopal
outer bound iR* to the achievable rate region.

Theorem 7.2. The achievable rate region for theaxhos network lies inside the polytopeRt
whose faces lie on theplanes:

rq =0
=0
re =10
rqg =20
T =1
rg=1
Ty + 1. =2
Ta +7p =2
re+1rq=2
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and whose vertices are the points:

(0,2,0,1) (0,2,0,0) (1,1,1,0) (1,1,0,0)
(1,1,0,1) (1,0,0,1) (0,0,0,1) (0,0,0,0)
(1,0,0,0) (1,0,1,1) (0,0,1,1) (0,1,1,1)
(1,0,2,0) (0,0,2,0) (1,1,1,1).

Proof. Consider a network solution over an alphaldeand denote the source message dimensions
by k., ks, k., andk,, and the edge dimensions hy Let each source be a random variable whose
components are independent and uniformly distributed gvefhen the solution must satisfy the
following inequalities:

ko >0 (45)
ky >0 (46)
ke >0 (47)
ka >0 (48)
ko = H(a) < H(z|b,c,d) <n (49)
ka= H(d) < H(yla,b,c) <n (50)
ky+ k.= H(b,c) < H(w, z|a, d)
< H(w,z) <2n (51)
ko + ky = H(a,b) < H(x, z|c,d)
< H(y,z) <2n (52)
ke+ kg = H(c,d) < H(w,yla,b)
< H(w,y) < 2n. (53)

(45)-(48) are trivial;[(49) follows becausec, d, 2 — «; (&B0) follows because, b, c,y — d;

(1) follows because, d, w,z — b,c; (52) follows because;, z,c,d — a,b; (E3) follows
becausev, y,a,b — ¢, d; Dividing each inequality in[(45)E(53) by gives thed bounding hyper-
planes stated in the theorem.

Letr, = ko./n, 1y = ky/n, r. = k./n, andry = ky/n, and letP denote the polytope iR*
consisting of alli-tuples(r,, 4, 1., r4) satisfying[(1)-4(®). Thern (45)=(48) arid (52)-(53) ensuat th
P is bounded. One can easily calculate that each poiRt‘ithat satisfies some independent set
of four of the inequalitied (45)E(53) with equality and atstdisfies the remaining five inequalities
must be one of thé5 points stated in the theorem. [ |

For further bounds, we use the following result from|[10]:
Suppose that, B, C, andD are random variables and we have an information inequdlity o
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the form

a11(A; B)
< asl(A; B|C) + a3zl (A; C|B) + ayI(B; C|A)
+ a5I(A; B|D) + agl (A; D|B) + a7z1(B; D|A)
+ asI(C; D) + agI(C; D|A) + arol(C; D|B). (54)

Then we get the following bound on the Vamos message andexdgwpies:

(as + as + as)H(a)
+ (ag + ag + ag + ag + a19) H(b)
+ (a5 + a7 + ag + ag + a10) H(c)
(as + ag + a7)H(d)
(ag —ay —ar)I(c;y)
(a4 + ar — ar0)I(b; )
< (a5 + ag + a7 + ag + ag + a10) H(w)
+ (a2 + a3 + aq + a7)H(x)
+ (—a1 + as + as + ag)H(y)
+ (a3 + ag + a10) H(2). (55)

_|_
+
_|_

And by the same argument, if (54) is a linear rank inequafiy & particular characteristic), then
(B5) holds for any linear (for that characteristic) fraatbcode for the Vamos network.
If the inequalities

a9 Z a; + ay
Qg + ay Z Q10 (56)
are satisfied, then the inequalify [55) directly leads toaand$ achievable rate region bound, by

neglecting the (nonnegative) terms involvid¢; y) and I(b; x). Specifically, in this case, by
substituting

H(a) =k,
H(b) =k
H(c) =k,
H(d) = ky
H(w) = H(z) = H(y) = H(z) = n
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into (58), we obtain

ko(ag + as + ay)
+ ky(as + az + ag + ag + ao)
+ k.(as + a7 + ag + ag + aqg)
+ kq(as + ag + ar)
< n(—ay + 2as + 2a3 + a4 + 2as
+ ag + 2a7 + 2ag + 2a9 + 2a10). (57)

Theorem 7.3. The achievable rate region for linear coding over any finiegdfialphabet for the
Vamos network is the polytope R* whose faces lie on the) planes:

e =0
=0
re =0
rq =10
rq =1
rg =1
Ty + 1o =2
Tq +1p =2
e+ 19 =2

Te +2ry+2r.+r3=>5

and whose vertices are the points

(0,0,2,0) (0,0,1,1) (1,0,1,1) (1,0,0,0)
(0,0,0,0) (0,0,0,1) (1,0,0,1) (1,1,0,1)
(1,1,0,0) (0,2,0,0) (1,1,1/2,1) (1,1/2,1,1)
(0,2,0,1) (1,1,1,0) (0,1,1,1) (1,0,2,0).

Proof. The first nine bounding planes come from Theorem 7.2. Thétamtinding plane is shown
by letting (54) be the Ingleton inequality [14], which canvegtten in the form

I(A; B) < I(A; BIC) + I(A; BID) + 1(C; D)

and which is a linear rank inequality for all characteristito get the Vamos linear rate region

bound

H(a)+2H(b) +2H(c)+ H(d) < 2H(w)+ H(z) + H(y) + H(z)
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from (55).
The proof that the extreme points of the polytope boundechbgéd planes are the 16 points

listed above is left as an exercise for the reader's comgweused-ddl1ib [11]]).
Here are linear codes over an arbitrary field) achieving stk®extreme points:

(1,1,1,0): n=1,

w=a-+c
r=a
y=z=a-+b
0,1,1,1): n=1,
w=x=b+d
y=b+c+d
z=c
(1,0,2,0): n=1,
w=c
r=a
Yy=z=a+C

0,2,0,1): n=1,

w=xz=0b +d
y=z=by+d

(1,1,1/2,1): n=2,
w = (by + dy,c+ ds)
x = (a1 +dy,as + by + c+ ds)
y = (a1 + by + dy,as + da)
z = (a1 +by,as + ¢)

(1,1/2,1,1): n =2,
w = (c; +dy, b+ ds)
x = (a1 + ¢+ dy,as + do)
y= (a1 +di,as+b+co+ds)
z = (a1 + cg, a9 + b)

The remainingdl 0 points are achieved by fixing certain messages t0. be |

The following theorem uses the non-Shannon-type Zhangwy@uormation inequality to ob-
tain an additional outer bound iR* to the achievable rate region.

Theorem 7.4.The achievable rate region for non-linear coding for thenvos network is bounded

Page 31 of 51



Dougherty-Freiling-Zeger November 18, 2013

by the inequalities:

drg +4ry + 2r. +rg < 10 (58)
2r, + 2ry + 4r, + 4ry < 11 (59)
ro + 21y + 4r. +brg < 11 (60)
5rg + 67 + 67, + Hrg < 20. (61)

Proof. If we let (54) be the Zhang-Yeung inequality [23], which caMaitten in the form
I(A; B) < 2I(A; B|C) + I(A;C|B) + I(B; C|A) 4+ I(A; B|D) + I1(C; D), (62)
then we get the Vamos network bound
AH(a) +4H (D) + 2H(c) + H(d) + I(c;y) < 2H(w) + 4H(z) + 2H(y) + 2H(z)  (63)

from (58). This immediately gives the inequality {58) (wencamply discard thé (c; y) term).
Also, we can let[(54) bé (62) with variablésand D interchanged; then the result from [55) is

H(a)+2H(b) +4H(c)+4H(d) — I(c;y) + I(b;y) < bH(w) +2H(z) + 2H (y) + H(z).
(64)

This does not directly give a rate region bound, becauseetine-t/(c; y) cannot be simply dis-
carded. However, if we ad@ (63) and [64), we get an inequtiay yields [(611); if we add td (64)
the inequalityH (a) + I(c;y) < H(y) (which, as noted in_[10], holds in the Vamos network be-
causeh, ¢, d,y — a), we get[(59); and if we add t6 (64) the inequaliy(d) + I(c;y) < H(y)
(which, as noted in [10], holds in the Vamos network becausec, y — d), we get[([6D). H

Many additional non-Shannon-type information inequaditare given in [10]. These can be
used as above to give additional bounds on the achievaldeegion for non-linear coding for
the Vamos network. In fact, the inequalities from|[10] st most four copy variables with
at most three copy steps yield 158 independent constraintisi® achievable rate region. (Note:
inequalities[(5B)-£(61) are superseded by these new inicigagdl One of these is used in [10] to
show that the uniform coding capacity of the Vamos netwer&timostl9/21.

Since there are infinitely many information inequalitiesfoar random variables [18], it is
quite possible that the achievable rate region for noralimeding for the Vamos network is not a
polytope. On the other hand, this rate region could be quitele; to date, no fractional solution
is known for the Vamos network which lies outside the acale rate region for linear coding.
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8 New Linear Rank Inequalities from Networks

We now give a new method for producing bounds on achievaliéeregions for linear coding.
Unlike the previous method using matrix algebra, this metactually produces explicit linear
rank inequalities (perhaps only true for some charactesistvhich directly imply the bounds in
guestion. However, it is not clear yet that this new methadmaduce all results obtained from
the matrix algebra method.

In particular, we produce an explicit linear rank inequalmlid only for odd-characteristic
fields, and another linear rank inequality valid only forexaharacteristic fields. Such inequalities
have also been produced by Blasiak, Kleinberg, and Lubg@k{also by use of the Fano and
non-Fano matroids), but those inequalities do not diregithg bounds for the networks here.

We start by giving some basic results in linear algebra.

If Ais a subspace of a finite-dimensional vector spacéhen we denote the codimension of
AinV by codimy (A) = dim(V) —dim(A).

Lemma 8.1. For any subspacedy, . .., A,, of finite-dimensional vector spaéég

codimy, <ﬁ Ai> < icodimv (A
i=1

i=1

Lemma 8.2. Let A and B be finite-dimensional vector spaces, fet A — B be a linear function,
and letB’ be a subspace d8. Thencodim, (f~1(B’)) < codimp (B').

Proof. Let S = f~'(B’) and letT" be a subspace of suchthatS + T'= AandSN7T = {0}. Let
g : T — B be alinear function such that= f on7T". Then we have

codimy (S) = dim(7) [fromS+7T =AandSNT = {0}]
= dim(g(7T")) + nullity(g)
= dim(g(T)) [from g~'({0}) = {0}
< codimg (B'). [from B’ N g(T) = {0}]
H
Lemma 8.3. Let Ay, ..., A, B be subspaces of a finite-dimensional vector sgac&here exist

linear functionsf; : B — A, (fori=1,...,k) suchthatf, + --- + f, = I on a subspace aB of
codimensior (B| A, ..., Ax) in B.

Proof. The subspace 8" = (A; +- - -+ Aj) N B. For eachw, in a basis foiV, chooser; ; € A,
fori =1,..., ksuchthat; =z, ; +-- -+ z; ;. Define linearmapg, : W — A;fori =1,... k
so thatg;(w;) = x;; for all i andj; then extend each; arbitrarily to a linear mayf; : B — A,.
We haveH (B|A;, ..., Ay) =dim(B) —dim(BN (A1 + -+ 4;)) =dim(B) —dim(W). N

Lemma 8.4. Let A, B, C be subspaces of a finite-dimensional vector sgacend letf : A — B
andg : A — C be linear functions such thgt+ g = 0 on A. Thenf = g = 0 on a subspace ot
of codimension at mos{ B; C) in A.

Page 33 of 51



Dougherty-Freiling-Zeger November 18, 2013

Proof. Forallu € A, g(u) € Bsof(u) = —g(u) € B and thereforef mapsA into BN C. Thus,
dim(A) — nullity(f) = rank (f) < dim(BNC) = I(B;C), so the kernel of has codimension at

most/(B; C) in A. [
Lemma 8.5. Let A, By, ..., B, be subspaces of a finite-dimensional vector sgacand letf; :
A — B, be linear functions such thgty +--- 4+ fr = 0on A. Thenf; =--- = f, =00na

subspace oft of codimension at mos{ (B;) + - - -+ H(By) — H(B4, ..., By) in A.

Proof. Use induction onk. The claim is trivially true fork = 1, and is true fork = 2 by
Lemmal8.4. Let us assume it is true upktoe- 1 for & > 3. Apply Lemmal8.4 withB = By,
C=DB+-+By,f=frnandg = fi +---+ frtogetfi+---+ fr_1 = fr =0o0na
subspacé of A satisfying

codimA (S) < H(Bl, ceey Bkz—l) + H(Bk) — H(Bl, cee, Bk)
By the induction hypothesig; = --- = f,_1 = 0 on a subspac#’ of S satisfying
codimg (S/) < H(Bl) + -+ H(Bk—l) — H(Bl, cee Bkz—l)-

Adding these two inequalities gives us the desired resulidbspace’. [ |
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8.1 A Linear Rank Inequality from the Fano Network

Theorem 8.6.Let A, B,C, D, W, X, Y, Z be subspaces of a finite-dimensional vector spdce
over a scalar field of odd characteristic. Then, the follogvimear rank inequality holds:

2H(A)+ H(B) 4+ 2H(C)
<HW)+HX)+HY)+H(2)
+2H(A|Z,Y)+ H(B|X,Z) +2H(C|A, X)
+3H(X|W,Y) + 3H(Z|W,C)
+5H(W|A, B) +5H(Y|B,C)
+5(H(A)+ H(B)+ H(C) — H(A, B,C)). (65)

Proof. We will use the Fano network in Figuré 2, derived|in [8], frohe tFano matroid, to help
guide the proof. By Lemma 8.3, there exist linear functions

fi:W—=A fo: W —B
f3:Y—B fi:Y =C
f5: X =W fe: X =Y
fr:Z—->W fs: Z —=C
fo:C— A fio: C—> X
fu:B—X fio: B— 2
fizs: A= 272 flu: A=Y
such that
f1+ f2 = I onasubspacE” of W with codimy, (W') < H(W|A, B) (66)
fs + f1 = I on asubspack’ of Y with codimy (Y') < H(Y|B, C) (67)
f5s + fe = I on a subspac&” of X with codimy (X') < H(X|W,Y)
f7+ fs = I on a subspacg&’ of Z with codim (2') < H(Z|W,C) (68)
fo + fio = I on a subspac€’ of C with codim (C') < H(C|A, X)
fi1 + fi2 = I on a subspac&’ of B with codimp (B') < H(B|X, Z)
f13 + f1a = I on a subspacd’ of A with codim4 (A") < H(A|Z,Y). (69)
Combining these, we get maps
Jififizs: A— A (70)
Jofefis+ fafiu: A— B (71)
Jefis+ fafuu: A— C. (72)
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Note that

fifrfis + fofzfis = frfi3 onthe subspacg;' f-1 (W) of A
f2f13 + fsf13 = f13 on the subspacg;' (Z) of A
fafia + fafia = f1a On the subspacg,'(Y”) of A

so the sum of the functions in ([70)=(72) is equal ton the subspace
A= A0 (20 fE V) 0
and we get

codim 4 (A”)
< codimy (A') 4 codimy (f15'(Z"))
+ codima (fi5' f7'(W")) + codima (fi;' (Y")) [from Lemmd 8.1l
< codimy (A') + codimy (Z") + codimy (W') + codimy (Y’)  [from Lemmd8.P
< H(AZ)Y)+ HZW,C)+ HW|A,B)+ H(Y|B,C). [from (€86), [67), [(68)(619)

Applying Lemmd 8.5 tof; f7f13 — I, fofzfis + fafia, @ndfs fis + fuif14, We get @ subspace of
A" such that

codimy (A) = codimy (A”) 4 codim 4 (A)

< Ay (73)
= H(A|Z,Y) + H(Z|W,C) + H(W|A, B) + H(Y|B, C)
+ H(A)+ H(B) + H(C) — H(A, B,C) (74)
on which
Jifefiz=1 (75)

Jafrfiz+ fafia =0
Jsfi13 + fafia = 0.

Similarly, we get a subspace of C' such that

codim¢ (C’) < Ac¢ (76)
=HCIAX)+ HX|W,Y)+ HW|A,B)+ H(Y|B,C)
+ H(A)+ HB)+ H(C)— H(A,B,C) (77)
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on which

fafefio=1 (78)
f2f5f10+f3f6f10 =0
Jo+ fifsfio=0

and a subspack of B such that

codimp (B) < Ap (79)
=H(B|X,Z)+ HXW,Y)+ H(Z|W,C)+ H(W|A, B)
+H(Y|B,C)+ HA)+HB)+ H(C)— H(A,B,C) (80)

on which

fofsfii + fofrfio+ fafefui =1
fifsfu+ fififia=0
fafefin + fs+ fio=0.

Note: There is only oné/ (W|A, B) in (80) because we can write

fifsfu + fifrfio = fil fs.fun + frfi2)

fori=1,2.
Let us define the following subspacesif

Sl = {u € B: f11u - floc}
Sy ={u€ B: fiau € fi3A}
Sy ={u€ B: fsfuu € frfi3A}

Sy=A{u€ B: fusfifrfiou € f6f1oé}
S=BNS NS NS5NS,. (81)
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Then we have the following:

codimp (1) < codimy (f10C) [from Lemm& 8.P

= dim(X) — dim(C) [from (Z8) — fio injective]

= codim¢ (C) + H(X) — H(CO)

<Ac+H(X)—-H(C) [from (76) (82)
codimp (S2) < codimy (f134) [from Lemmd 8.P

=dim(Z) — dim(A) [from (ZB) — fi3 injective]

= codimy (A) + H(Z) — H(A)

<As+H(Z)—H(A) [from (73) (83)
codimp (S3) < codimyy (f7f134) [from Lemmd8.P

= dim(W) — dim(A) [from (ZB) — f, fi3 injective]

= codimy (A) + H(W) — H(A)

< Ay + HW) — H(A) [from (73) (84)
codimy (S4) < codimy (fsfi0A) [from Lemmd.8.P

=dim(Y) — dim(C) [from (Z8) — fs, fi0 injective]

= codim¢ (C) + H(Y) — H(CO)

<Ac+HY)—-H(C). [from (76) (85)

Suppose € S. Then,
fafsfut + fafrfiot = fofrfisfifsfut + fafrfiot

[ we havefs f11t = f7fizu for someu € A,
and f7 f13 f1fr fisu = fr fizu sincef, fr fisu = u]
= fafrfisfifsfut + fofrfizfifzfiat
[ sincefiot € fi34]
= foftfis(fifsfu + fifrfi2)t
=0 (86)
[ sincet € B]

fafsfut + fsfefuit = fofsfiofafefut + fafefiofafefrit
[ sincefiit € f1oC]

= (fafsfiot + fafefi0) fafsfuit
=0 (87)
[ sincefiit € f1,C and hence

fafsfut € fafefioC = C]
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fafrfiat + fafefut = fofrfiot + fsfo frofafe fuit
= fafrf12t — f3f6S10 s 12t
= fafrfr2t — f3fefr0fs 1317 f1at
= fafrfiat + f3fefrofaS1af1 f7 12t
= fafrfiat + f3fraf1 7 12t
= fofrfisfifrfiot + fafiafifrfrot

= (fafrfiz + fsfia) frfr frot
=0. (88)

We therefore obtain

2t = 2(fofs fuit + fofrfrot + fsfefint)
= (fafsfut + fofrfiat) + (fafsfut + fafefut) + (fafrfrot + fsfefurt)
=0+0+0=0. [from (88),(87)/(88)

Since the field has odd characteristic, we must ltave). Thus,S = {0}, and therefore

H(B) = codimp (5)

4
< codimp (B) + ZcodimB (S:) [from (81), Lemma8JL

< Ap+2A4 +2A¢
+HW)+ HX)+ HY)+ H(Z)—-2H(A)—2H(C). [from (79),(82)-(8b)

The result then follows from (74), (¥7), arild {(80). [ |

In the context of the Fano network, all of the compound terntkeend of inequality (65) are
zero, so this inequality directly implies inequality {19).

By replacing with W N (A+ B+ C + X +Y + Z) and similarly forX, Y, andZ, one
can improve the inequality to a balanced form whéféV) becomesl/ (W; A, B,C, X,Y, Z),
H(W|A, B) becomed (W;C, X,Y, Z|A, B), and similarly forX, Y, andZ.

Theorem 8.7.The linear rank inequality in Theorelm 8.6 holds for any scéiked if dim(1) < 2,
but may not hold if the scalar field has characterigtianddim(V) > 3.
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Proof. In V = GF(2)3, define the following subspaces 6f

It is easily verified that the inequality in Theoréml8.6 is gatisfied in this case.

Next we show the inequality indeed holdsdiin(V) < 2. One way to do this is to show
(using software such asitip [19]) that the inequality becomes a Shannon inequality utitee
assumption that/(A) = 0, or under the assumptioHd (B|A) = 0, or under the assumption
H(C|A, B) = 0. If all three of these assumptions fail, then we must have

dim(V) > H(A, B,C) > H(A, B) > H(A) > 0 (89)

and hencelim(V') > 3.

Or one can give a direct argument by cases. Assume to theacptitiat there exist subspaces
A, B,C,W, X,Y, Z of vector spacé” such that

2H(A)+ H(B) 4+ 2H(C)

>HW)+HX)+HY)+ H(Z)

+2H(A|Z,Y)+ H(B|X, Z) +2H(C|A, X)

+3H(X|W,Y)+3H(Z|W,C)

+5H(W|A,B)+5H(Y|B,C)

+5(H(A)+ H(B)+ H(C)— H(A,B,()). (90)
LetQ = (H(A),H(B),H(C),H(A,B,C))andR = H(A)+ H(B)+ H(C)— H(A, B,C). Let
LHS andRHS denote the left and right sides of inequality](90). We wiltah contradictions for

all the possible values @).
Case (i) dim(V) =1

All entropies ard) or 1. SinceLHS < 5, at most one of{ (A), H(B), H(C') can equall, for
otherwiseR > 1 would imply RHS > 5.

(1001): LHS = 2 impliesH(A|Z,Y) = 0 which impliesH(Z) = 1 or H(Y') = 1. Also, we must
have H(Z|W,C) = H(Y|B,C) = 0, the latter implyingH(Y) = 0. So we must have
H(Z) = 1 which in turn impliesd (W) = 1 and therefor&R HS > 2.

(0101): LHS = 1 implies H(B|X, Z) = 0 which impliesH (X) = 1 or H(Z) = 1, and therefore
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RHS > 1.

(0011): LHS = 2 impliesH(C|A,X) = 0andH(X|W,Y) = 0, which imply H(X) = 1, which
impliesH(W) =1or H(Y) = 1 and therefor&RHS > 2.

Case (iiy dim(V) =2

All entropies are), 1, or 2. LHS < 10 impliesRHS < 9, and thereforeR < 1. LHS > 1
impliesH (A, B,C) > 0 and thereforg? (A, B,C) € {1,2}.

(1011): LHS <4 andR = 1 imply RHS > 5.
(1101): Same.
(0111): Same.
(2001): Same.
(0201): Same.
(0021): Same.

(2012): LHS = 6. R = 1 implies RHS > 5 which implies H(A|Z,Y) = 0 which implies
H(Z,Y) > 1 and therefor& HS > 6.

(1022): Same.
(1112): LHS = 5. R = 1 impliesRHS > 5.
(0122): Same.
(2102): Same.
(0212): LHS = 4. R = 1 impliesRHS > 5.
(1202): Same.

(1001): LHS = 2 impliesH(A|Z,Y) = 0 which impliesH(Z) = 1orH(Y) = 1. If H(Z) = 1,
thenH (Z|W, C)) = 0 which would implyH (W) = 1 and therefor&HS > 2. If H(Y) = 1,
thenH (Z|W, C') = 1 which would implyRHS > 5.

(0101): LHS = 1 implies H(X) = H(Z) = 0 which impliesH(B|X,Z) = 1 and therefore
RHS > 1.

(0011): LHS = 2 implies H(C|A, X) = 0 which impliesH(X) = 1. Also, H(X|W,Y) =0
impliesH(W,Y’) > 1 and therefor&k HS > 2.

(0202): LHS = 2 implies H(X) + H(Z) < 1 which impliesH(B|X,Z) > 1 which implies
H(B|X,Z) = 1 which impliesH(X,Z) = 1 which impliesH(X) + H(Z) = 1 and
thereforeRHS > 2.
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(0022): LHS = 4 implies H(W|A, B) = 0 which impliesH(W) = 0. Also, H(C|A,X) <1
implies H(X) > 1 which impliesH (X |W,Y’) = 0 which impliesH(Y) > H(X). Thus,
H(C|A, X) = 0 which impliesX = C which impliesH(Y) > H(C) = 2 and therefore
RHS > 4.

(2002): LHS = 4 implies H(Y'|B,C) = 0 which impliesH(Y) = 0. Also, H(A|Z,Y) < 1 which
implies H(Z) > 1. Additionally, H(Z|W,C) = 0 which impliesH (W) > H(Z) which
impliesH (A|Z,Y) = 0 which impliesH (Z) = 2 and therefor& HS > 4.

(1102): H(A, B,C) = 2 implies thatA # B. LHS = 3impliesH(A|Z,Y) =0or H(B|X,Z) =
0. If H(B|X,Z) = 0, thenH(X) + H(Z) > 1 which impliesRHS > 1 and therefore
H(A|Z,Y) = 0. So it suffices to assumié(A|Z,Y) = 0. We haveH (Y| B, C') = 0 which
impliesY is a subspace aB, which impliesH(Z) > 1. Thus,H(Z|W,C) = 0 which
implies H(W) > 1, soRHS > 2. Hence,H(B|X,Z) = 0 and H(X) = 0 which imply
Z = B and thereford (A|Z,Y") # 0.

(0112): H(A,B,C) = 2 impliesB # C. LHS = 3 impliesH(B|X,Z) = 0 or H(C|A,X) =
0. If H(B|X,Z) = 0, thenH(X) + H(Z) > 1 which impliesRHS > 1 and therefore
H(C|A, X) = 0. So it suffices to assumié(C'|A, X) = 0. Thus we have{ (X ) > 1. Also,
H(X|W,Y) = 0whichimpliesd(W)+H(Y) > H(X)andsoRHS > 2. Thus,H(X) =1
which impliesX = C, and thereford? (W) = 1or H(Y) = 1. SinceH(W|A,B) =0, W
is a subspace @8 and therefor&” = C. Finally, H(B|X, Z) = 0 which impliesH (Z) > 1
and therefor& HS > 3.

(1012): H(A, B,C) =2 impliesA # C. LHS = 4impliesH(A|Z,Y) =0o0r H(C|A, X) = 0.

Case (1) SupposeH (C|A, X) = 0. ThenH(X) > 1 andX # A which imply RHS > 1.
Thus, H(X|W,Y) = 0 which impliesHd (W) + H(Y) > H(X), which impliesRHS > 2
and therefordd (A|Z,Y) = 0. We haveH (WW|A, B) = 0 which impliesiV is a subspace of
A, which impliesH (Y) > 1 andY # A. Also, H(Y'|B, C') = 0 which impliesY = C and
thereforeH (Z) > 1 andZ # C. Finally, H(Z|W,C) = 0 which impliesH (W) > 1 and
thereforeRHS > 4.

Case (2) SupposeH (A|Z,Y) = 0. We know H(Y'|B,C) = 0, which impliesY is a
subspace of” which impliesH(Z) > 1 andZ # C and thereforeRHS > 1. Thus,
H(Z|W,C) = 0 which impliesH (W) > 1 which impliesRHS > 2. So,H(C|A4,X) =0

which impliesH(X) > 1 and X # A and thereforeRHS > 3. Also, H(W|A,B) = 0

which impliesW = A. Finally, H(X|W,Y) = 0 which impliesH (Y") > 1 and therefore
RHS > 4.
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8.2 A Linear Rank Inequality from the non-Fano Network

Theorem 8.8.Let A, B, C, W, X, Y, Z be subspaces of a finite-dimensional vector spacwer a
scalar field of even characteristic. Then, the followingehn rank inequality holds:

2H(A)+3H(B) +2H(C)
<HW)+HX)+H(Y)+3H(Z)
+2H(A|Y, Z)+3H(B|X, Z) + H(C|W, Z)
+2H(WIA, B) + 4H(X|A,C) + 3H(Y|B, C)
+6H(Z|A,B,C)+ H(C|W, X,Y)
+7(H(A)+ H(B) + H(C) — H(A, B,C)). (91)

Proof. We will use the non-Fano network in Figure 6, derived_in [8nh the non-Fano matroid,
to help guide the proof. By Lemnia 8.3, there exist linear fioms

fi:W—=A fo:W—B
f3: X—=A fi: X —=>C
fs:Y —>B fe: Y = C
fr:Z—A fs:Z—B fo: 2 —=C
fio: C—>W fm:C—2Z7
fio: B— X fis: B—Z
flu: A=Y fistA—=>Z
fie : C =W fir: C—=X fis: C =Y

such that

f1+ fo = I onasubspacB’” of W with codimy, (W') < H(W|A, B) (92)
f3+ fa = I on asubspac&”’ of X with codimy (X') < H(X|A,C) (93)

/5 + f¢ = I on a subspac¥’ of Y with codimy (Y') < H(Y|B,C) (94)

f7 + fs + fo = I on a subspacg&’ of Z with codimz (Z') < H(Z|A, B,C) (95)
f10 + f11 = I on a subspac€”’ of C with codim¢ (C") < H(C|W, Z) (96)
fi2 + fi13 = I on a subspac&’ of B with codimp (B') < H(B|X, Z) 97)
fia + f15 = I on a subspacd’ of A with codim 4 (A") < H(A|Y, Z) (98)

fi6 + fir + fis = I on a subspac€” of C' with codim¢ (C") < H(C|W, X,Y).  (99)
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Combining these, we get maps

frfis: A= A (100)
fsfu+ fshs: A— B (101)
fofia+ fofis : A— C. (102)

Note that

fsf1a + fof1a = f1a On the subspacg],' (Y”) of A
fafis + fsfis + fofi5 = fis onthe SUbSPaCﬁl_sl(Z/) of A

so the sum of the functions ih_(1I00)=(102) is equal tn the subspace
A=A O SRY) 0 FRZ)
and we get

codimy (A”) < codimy (A) 4 codimy (fi7' (Y")) + codima (fi5'(Z")) [from Lemm&8]
< codimy (A") + codimy (Y') + codimy (Z') [from Lemmd8.P
< H(A|Y,Z)+ H(Y|B,C) + H(Z|A, B, C). [from (94),(95)[(98)

Applying Lemmd8.b tof; fis — I, fsfuu + fsfis, and fsfia + fofis, We get a subspacé of A”
such that

codimy (A) = codimy (A”) + codim 4» (A)

<Ay (103)
= H(A|Y,Z) + H(Y|B,C) + H(Z|A, B, C)
+ H(A) + H(B) + H(C) — H(A, B, C) (104)
on which
Jrfis =1 (105)
fsfia+ fsfi5 =0 (106)
fefia + fof15 = 0. (107)

Similarly, we get a subspade of B such that

codimp (B) < Ap (108)
= H(B|X,Z)+ H(X|A,C)+ H(Z|A, B,C)
+ HA)+ HB)+ H(C)—H(A,B,C) (109)
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on which
fsfis=1 (110)
fsfie+ f2f13=0 (111)
fafiz+ fofi3 =10 (112)
and a subspadg of C such that
codim¢ (C’) < Ac (113)
= H(CIW,Z)+ HW|A,B)+ H(Z|A, B,C)
+H(A)+H(B)+ H(C)— H(A,B,C) (114)
on which
Jofuu=1 (115)
fifio+ frfii =0 (116)
fafio+ fsfi1 =0 (117)
and a subspad@ of C' such that
codime <C) < A (118)
=H{CW,X,)Y)+ HW|A,B)+ H(X|A,C)+ HYY|B,C)
+ H(A)+ HB)+ H(C)— H(A,B,C) (119)
on which
fafir+ fofis =1 (120)
fifie+ f3fi7 =0 (121)
fafi6 + f5f18 = 0. (122)
Define the following subspaces &t
A" = fi5(A)
B* = fi3(B)
C* = fu(0).

By (108), the restriction mapg;|A : A — A* and f;|A* : A* — A are inverses of each other,
and hence are injective. Similarly, Hy (11¢}| B* is the inverse off3| B and, by by[(11b)/f,|C*
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is the inverse off;;|C, so these are all injective. In particular,

dim(A*) = dim(A) (123)
dim(B*) = dim(B) (124)
dim(C*) = dim(C). (125)

Now let
A = f,(A* N B*) C A,

Then fi5 is injective onA™ and fis(A*) = A* N B*, S0 fs f15 is injective onA*™*. But f5fi14 +
fsfis = 00n A, sofsfi4 is injective onA**, and hence so ig;4. This gives

dim(f14A™) = dim(A™) = dim(A* N B*). (126)

Similarly, let B
B™ = fs(A*n B*) C B;

then f; f13 is injective onB** and f5 f12 + f7f13 = 0 on B**, S0 f15 is injective onB** and
dim(f12B™) = dim(B™) = dim(A* N B). (127)

And let B
C™ = fo(B*NC*) C C;

then fs f11 is injective onC** and f> f1o + fsfi1 = 0 onC**, so fyq is injective onC** and
dim(f1oC™) = dim(C**) = dim(B* N C™). (128)
Let us define the following subspaces(of

Si={uecC: fisgu € fioC™}
Sy={ueC: firu € fruB™}
Sy ={ueC: figue f14A™}
S=CNS NSyNSs. (129)
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Then we have the following:

codime (S1) < codimyy (f1oC™")

— dim(W) — dim(B* N C*)
= codimyz (B*NC*) +dim(W) — dim(2)
< codimy (B*) 4 codimy (C*) 4+ dim(W) — dim(Z2)
= codimp (B) + codimg (C’)

+ dim(W) 4+ dim(Z) — dim(B) — dim(C)
<Ap+Ac+HW)+H(Z)—-H(B)—-H(C)

codime (Sz) < codimx (f12B™)

=dim(X) — dim(A* N BY)
= codimy (A* N B*) + dim(X) — dim(Z)
< codimy (A*) + codimy (B*) 4+ dim(X) — dim(Z)
= codimy (A) + codimp (B)

+dim(X) +dim(Z) — dim(A) — dim(B)
<As+Ap+H(X)+H(Z)—- H(A)— H(B)

codime (S3) < codimy (fi14A™)

=dim(Y) —dim(A* N BY)

= codimy (A" N B*) +dim(Y) — dim(2)

< codimy (A*) + codimy (B*) + dim(Y) — dim(Z)

= codimy (A) + codimg (B)
+dim(Y) + dim(Z) — dim(A) — dim(B)

<As+Ap+HY)+H(Z)— H(A)— H(B).

November 18, 2013

[from Lemmd8.P
[from (128)

[from Lemmd8.1L

from (124),(125)

[

[from (108),(11B)
[from Lemmd8.P
[

from (127)

[from Lemmd 8.1

from (123),(124)

[

[from (103),(108)
[from Lemmd 8.P
[

from (1286)

[from Lemmd 8.1

[from (123),(124)
[from (103),(108)

(130)

(131)

(132)

Suppose € S. Then thereAexisi € A*, b € B*, andc € C** such thatfi,a = fist, f12b = firt,
and fioc = fit. Sincet € C', we have from ((120))-4((122)) that

which gives

Jifiet + fafiit =0
Jafiet + f5fist =0
Jafirt + fofist =1

Jifioc + f3fi2b =0
fafioc + fsfua =0
Jaf12b + fofraa = 1.
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But we also have

fsfuua+ fsfisa =10 from (106) (136)
JeSf1aa + fofisa =10 from (107) (137)
f3f12b+ f7f130 =10 [from (111) (138)
fafi2b+ fofisb=0 [from (112) (139)
Jifioe + frfiic=0 from (116) (140)
fafioc+ fsfiic=10 [from (117) (141)
SO
frfuc+ frfi3b=10 [from (133),(138)[(140) (142)
fsfuc+ fsfisa=0 [from (134),(136)(1411) (143)
Jof13b+ fofisa = —t. [from (135),(13V)[(139) (144)

Sincef,;c andf5a are both inB*, and s is injective onB*, we get from[(14B) that,,c = — fi5a.
This implies thatf;;c is also inA*, and sincefi3b € A* and f; is injective onA*, we get from

@) thatfnc = —f13b and henc@tma = flgb.
Hence, since the field has characterigtieve have

t = —(fofisb + fofisa)
= —(fofisb + fofi3b)
=0.

Since the choice afwas arbitrary, this implies = {0}, and therefore

H(C) = codimg (S)
3
< codimg <C’) + Zcodimo (S;) [from (129), Lemmagil

< Ac+2A4+3A5 + Ao
+HW)+H(X)+H(Y)+3H(Z)
—2H(A) - 3H(B) — H(C) [from (118),(130)[(131),(132)
The result then follows froni (104), (109), (114). ahd (119). [

In the context of the non-Fano network, all of the compoumchseat the end of inequality (91)
are zero, so this inequality directly implies inequalit(4

Theorem 8.9. The linear rank inequality in Theorelm 8.8 holds for any scéiked if dim(1) < 2,
but may not hold if the scalar field has odd characteristic did(1") > 3.
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Proof. In V = GF(p)? for any odd primep, define the following subspaces '6f

It is easily verified that the inequality in Theorém18.8 is gatisfied in this case.

To show that the inequality indeed holdgliin(1") < 2, one can again show that the inequality
becomes a Shannon inequality under the assumptionAdid) = 0, or under the assumption
H(B|A) = 0, or under the assumptidi (C| A, B) = 0. If all three of these assumptions fail, then
we must have

dim(V) > H(A,B,C) > H(A,B) > H(A) > 0 (145)

and hencelim(V') > 3. Or one can give a case-by-case direct argument. [
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