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Abstract—In this paper, we present a generic framework for parity nodes To provide reliability, MSR codes must possess
constructing systematic minimum storage regenerating coes two abilities:
with two parity nodes based on the invariant subspace techgue. . _— .
Codes constructed in our framework not only contain some bds (2) Reconstruction ability: In particular, an MSR cod_e has
known codes as special cases, but also include some new codes the MDS propertythat anyk out of then nodes suffice

with key properties such as the optimal access property and to reconstruct the whole source data.
the optimal update property. In particular, for a given storage (b) Repair ability: In practical distributed storage syssethe
capacity of an individual node, one of the new codes has the most common failure is failure of a single node. For this

largest number of systematic nodes and two of the new codes 0 t intai dund has t i th
have the largest number of systematic nodes with the optimal scenario, to maintain redundancy one has to repair the

update property. failed node by downloading < « symbols from each
of any d > k surviving nodes. Theepair bandwidth
~ is defined as the amount of data downloaded during
the repair procedure, i.ey, = dj3. In [8], MSR codes
are shown to have the optimal repair property for the

Index Terms—Distributed storage, high rate, invariant sub-
space, MSR code, optimal access, optimal update.

ISTRIBUTED storage systems with high reliability have (a,7) = <M, L) . (1)
wide applications in large data centers, peer-to-peer k" k(d—k+1)
storage systems such as OceanStbre [14], Total Reédall [1]Up to now, constructions of MSR codes have attracted
DHash++ [[T], and storage in wireless networks. To ensugelot of attention [[2], [[4], [[5], [[6], [12], [18], [[15], [[16],
reliability, the redundancy is crucial for these systems. E7], [18], [20], [21]. However, many constructions havecdt
popular option to add redundancy is to employ erasure codemstraints on the parametersk, d. For exampled > 2k —2
which can efficiently store data and protect against nodfe[13], [15], [16], [17], which corresponds tlow rate (i.e.,
failures. Examples of several distributed storage systirais % < %) regime. Forhigh rate (i.e., % > %) regime, most
employ erasure codes are Facebook’s coded Hadoop, Godgiewn constructions are built on the concept of interfeeenc
Colossus and Microsoft Azuré [10]. alignment, which was originally introduced in the context
Recently, a new class of erasure codes for distributedgeor®f wireless communication networks [11[.] [3], and was later
systems calledninimum storage regeneratinViSR) codes exploited for distributed storage systerns|[21].
was introduced i [8]. Consider a file of sizAd = ko symbols  In contrast to other known constructions of high rate MSR
stored across a distributed storage system witindes, each codes, the Zigzag code proposed by Taetcal. [18] is an
keepinga: symbols, that deploys an MSR code by storing thdSR code exhibiting two additional interesting properties
source data on the firdt nodes, calledystematic nodesand the optimal access property and the optimal update prgperty
mixtures of the source data on the other k& nodes, termed Which either does not need computing during the download
phase of repair or minimizes the reading/writing during aied
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the optimal access property and the optimal update propeofgtimal update property. For comparison, the parameters of

simultaneously. the new codes, the Zigzag code, and the long MDS code are
In the literature, there are mainly two repair types: exatisted in Tablel.

repair and functional repair. Compared with the latter,cexa The rest of this paper is organized as follows. Section Il

repair is preferred since it does not incur additional sigant gives preliminaries about the necessary and sufficient con-

system overhead by regenerating the exact replicas of e lditions for an erasure code with two parity nodes to be an

data in the failed nodé [9]. Unfortunately, except for theeonMSR code, and presents the special partition for a given

in [22], all the known MSR codes of high rate, including théasis. Section Il proposes the generic construction, bighkvh

aforementioned Zigzag code and long MDS code, can ordgme known codes are reinterpreted and four new MSR codes

exactly repair all the systematic nodes optimally with extp with the optimal access/update property are derived. Fjinal

to the bound in[{l1), whereas repair the parity node trivially Section IV draws concluding remarks.

downloading the whole original file from all the systematic

nodes. For simplicity, throughout this paper we say thahsuc 1. PRELIMINARIES

MSR codes possess the optimal repair property and omit thaf o q be a prime powerF, be the finite field withq

the property is only valid for systematic nodes. It shouldiements, and be the vector space of dimensiboverF,.
be noted that this kind of code is acceptable for a practiggh, simplicity, throughout this paper we do not specifically

system due to two aspects: (1) The number of parity nod§ginguish the vector space spanned by row vectors or golum
is quite smaller compared to that of systematic nodes; (Zdciors if the context is clear.

The failures of systematic nodes and parity nodes are differ  Assume that a file of sizé/t — ko denoted by the column
since the omission of some raw information would affect tr\gectorf € Fko is partitioned ink partsf = [fTfT - 1|7
p ,

information access time for the former [18]. ~ each of sizen, whereT denotes the transpose operator. We
_In this paper, we focus on high rate MSR codes. Obwous@ncodef using an(n = k + 2, k) MSR codeC and store it

high rate implies a large value df for fixed n. Whenk = 401054 systematic and two parity storage nodes. Precisely, the

n — 1, the repair bandwidth is the highest, |.a.,:./\/l bY  first & (systematic) nodes store the file pafis fo, - - - , fx in

@. Then, whenk = n —2 > 1 andd = n — 1 (which can 4, yncoded form respectively, and the parity nodes stoeeiin

reduce the repair bandwidth singeis a decreasing function .o mpinations off1, fa,--- , fr. Without loss of generality, it

of d in (@), MSR codes are of great interest because they Galyssumed that the nodést 1 and k + 2 respectively store
achieve the highest ratgt for v = (k+ 1)a/2 < M. Thus, k

it is very desirable to construct MSR codes with two parityk+1 = f1+f2+- -+ fc @and fuo = > A fi for somea x

. . i=1
nodes for .arbltrar)./ nu_mber of.systema'.uc nodes _ matricesA, - - - , A, overF,, wherez the matrix4; is called
The main contribution of this paper is to present a simpi@ie coding matrixfor the ith systematic nodel < i < k.

but generic framework to construct MSR codes with twgable[T] illustrates the structure of (@& + 2, k) MSR code.
parity nodes based on the invariant subspace technique. Our

construction not only contains the modified Zigzag code (the TABLE Il

code obtained from the Zigzag code [18] by deleting its STRUCTURE OF A(k +2, k) MSR cope
first node), and the long MDS cod& [20] as special cases, Systematic nodej Systematic data
but also generates some new MSR codes. Specifically, based ! i

on the modified Zigzag code withn systematic nodes, we : :

can obtain three new MSR codes by addihg or m more k Jr
systematic nodes. When addifg: more systematic nodes Par't{ node y Ea}'tyf_a.t? 7
without the optimal access property and the optimal update > fk+§+:1;1fi +...+Akkfk

property, we can construct new code over a finite field of
sizeq > 2m + 1. When addingn more systematic nodes,we ) o ]
can make a choice of either a smaller finite field or new nodesNOte that reconstruction of the original file demands that
having the optimal update complexity. For the former, thizgdin () i is invertible when connecting nodes belong to the set
field size can be reduced ip > m + 1, which results in {1’27_"' ok 1} (or {1,2,--- &, k + 2}\{i}), for any
new codeC,. For the latter, the resulting new codg still | < ¢ < kand (i) 4; — A; is mvertlble.vv_hen connecting
requires a finite field sizg > 2m + 1. In addition, another N°des belong to the sgt, 2,--- , k + 2}\{i, j}, for any 1 <
new codeC, which has the same number of systematic nodés” J < k- In other words, the MSR code with the MDS
and requires the same size of finite field as thosé,afan be Property requires [20]

derived. All the systematic nodes®f have the optimal update R1. A; and 4; — A; are all invertible for anyt < j #i <k.
property but none of them have the optimal access property. | As mentioned in the last sectiod,is assumed to be — 1

this sense, we provide four code constructions with difierefor minimizing the repair bandwidth. Then in order to repair
parameters that allows for trading-off between the size af failed node, only half of data is downloaded from each
the finite field and the number of systematic nodes (with ttsirviving node. When a systematic nodtails, we download
optimal access/update property). In particular, givemathe datas; ; f; from nodej # i using ang x o matrix S; ; of rank
codeC; has the largest number of systematic nodes, whjle 5, wheresS; ; is referred to as theepair matrixof the jth node
andC, have the largest number of systematic nodes with tiier theith systematic node. To simplify the repair strategy, we



TABLE |
COMPARISON BETWEEN THE NEW CODES AND SOME KNOWN CODES WITH TWPARITY NODES ANDa = 2™, WHEREK, ka, kiy AND kg7 DENOTE
THE NUMBER OF SYSTEMATIC NODESTHE NUMBER OF SYSTEMATIC NODES WITH THE OPTIMAL ACCESS PRORHY, THE NUMBER OF SYSTEMATIC
NODES WITH THE OPTIMAL UPDATE PROPERTY AND THE NUMBER OF SYSEMATIC NODES WITH BOTH THE OPTIMAL ACCESS PROPERTY AND THE
OPTIMAL UPDATE PROPERTY RESPECTIVELYAND ¢ DENOTES THE SIZE OF THE FINITE FIELD REQUIRED

New New New New The Zigzag | The Long MDS
codeC codeCs codeCs codeCy code [18] code [[20]
k 3m 2m 2m 2m m+1 3m
ka m m m 0 m+1 2m
ku m m 2m 2m m+1 m
kagu m m m 0 m+1 0
q >2m+1 | >m+1 | >2m+1 | >m+1 3 >2m+1

assumeS; ; = S; forall 1 <i <k, 1<j+#i<k+2 Then bottleneck if the amount of the former is larger than that of
during the repair process of a nodeone downloadsS;f; latter [19]. Hence, an MSR code with more systematic nodes
from each nodd < j # i < k + 2, and eventually gets the possessing the optimal access property is preferred. Hsg e

following system of linear equations to verify that theith systematic node with the optimal access
& property requires
( ??H ) _ ( SSA )fiJr Z ( SSA )fj ) R4. Each row ofS; has only one nonzero element, which
tJk+2 i =1 g Laig] equals tol.
useful data interference by f; In addition, when a symbol in a systematic node is rewritifen,

Remark 1. A (k + 2,k) MSR code withfys1 = f1 + fo + only the symbol itself and one symbol at each parity node need
.-+ frand S; ; = S; can be viewed as a kind of canonicaP" update, then the systematic node is said to haveptimal
form [5], [L2], [L8], [19], [20] Firstly, if fui 1 = Bif; + update propertywhich achieves the minimum reading/writing
By fs + --- + By.fi for some nonsingulai x o matricesB;, during writing of information [[18]. Therefore, an MSR code

1 < j < k, then the code can be equivalently converted to tiéth more systematic nodes possessing the optimal update
following code property is desired especially in a system where updates are

frequent. In fact, theith systematic node with the optimal

Systematic node System:amc data update property is equivalent to that every parity elemsnt i
1 fi a linear combination of exactly one element from tik
: : systematic node, i.e.,
k 1 R5. Each column of4; has only one nonzero element.
Parity node Parity data Usually, it is favorable for a code to have more systematic
1 fipi =+ + /i nodes for a giver. Recall that the numbet of systematic
2 Jiwo = AfL+--F AL nodes of the Zigzag code is much less than that of the long

MDS code. In this paper, we therefore mainly aim at incregasin
k of the Zigzag code. According to R1, R4 and R5, however, a

. . systematic node has the optimal update property if and énly i
k,Sf,kH =S k+1 and S;,HQ = S; k+2. Secondly, as shown y I - up property v

Lk its coding matrixA4; is either a diagonal matrix or product of
in [19], such a(k + 2, k) M.SR code_can be transformed 0 diagonal matrix and a permutation matrix; a systematienod
a(k+1,k—1) MSR code in canonical form. Thus we onl

. . i ) X Yhas the optimal access property if and only if its repair matr
consider MSR codes in canonical form since the differen ®is an2 x o submatrix of amy x o permutation matrix. The

betvyegn the numbers of their nodés+ 2 and & + 1 is number of distinct such matrices satisfying R2 and R3 agpear

negligible. to be greatly limited. In[[18],[[19], it is shown that the |ast
Then, the optimal repair property needs to cancel all tigimber of systematic nodes of an MSR code with the optimal

interference terms by R2 and then recover the original dataaccess property (resp. both the optimal access property and

where f/ = B;f; and A, = A;B;' forany1 < i < k
by using repair matricesS; ; = Sl-_,jB;l,l <j#i<

by R3 [20]: the optimal update property) Blog, « (resp.log, o + 1).
S; o o In what follows, we introduce two useful tools: invariant
R2. rank(( S;Aj )) =g foranyl <j#i<k. subspaces and partition sets, which enable us to constuct o
S generic coding matrices and repair matrices satisfying IRR a
R3. rank(( Si;li )) =aforall1<i<k. R3.

The repair procedure firstly computesf;, 1 < j # )
i < k+ 2, and then transmits the result to the newcomék Invariant subspaces
storage node. A systematic node is said to haveoibtanal In this subsection, we determine the coding matrices by
access propertif the computation within the surviving nodesusing invariant subspaces.
is not required during the repair procedurel][20]. For some For a matrix4, denote by spam) the vector space spanned
applications such as data centers, the access to informatdy its rows, obviously dirfspar{4)) = rank'A). Recall that

is more costly than the transmission, which may causeSais a matrix of ranks. Then, R2 implies that spaf; A;) C



spariS;). Moreover, it follows from R1 thatl; is of full rank 2™~!. For simplicity, assume that any pair forms an invariant
« and consequently we have rdiskA;) = rank(S;). Hence, subspace oFy with respect tdl’ and all the pairs are of the

dim(spar{S;4,)) = dim(spar{S;)), i.e., same type, i.e.,
spaniS;A;) = span.s;) 2 €i ai €i, + bj, €5,
which indicates that sp&f;) is an invariant subspaceof : ;
vector space spad;) = F{ with respect to the linear Cigm | g— | %igm—1Cigm— + 0jyn 1 €y
transformatiorl” defined by €, Cir€iy +dj e,
T(x) =xA;, foranyz e Fy. 3) ; ;
€Jym—1 Cigpm—1Cigm_1 + dj2m71 €om—1
€0

Firstly let us look at a simple example. L&t= ) where a;, b;, ¢; and d; are some constants, then the coding
whereeg, e; are two arbitrary row vectors of length over matrix A can be uniquely determined. Accordingly, we call

F,, and they are linearly independent. Then[By (2), $pams type I, II, lll, IV coding matrix respectively. By convenies,
an invariant subspace of sgalh) with respect tal'" : z — A write
if and only if ( v aVo + bV4
V; ) - ( Vo + dV; )
(eo )A:(aeoi—sel ) andad # be, a,b,c,d € Fy,. ! o !
1 ceoaa wherea, b, ¢ andd can be coefficients i, or ¢ x ¢ diagonal
In details, there are 7 cases as below: matrices oveiF', and
Case 1b=c=0 anda,d # 0, .. .
Case 2:a = d = 0 andb, ¢ # 0 ! "
e = T o= & | V= , (5)

Case 3b =0 anda,c,d # 0,

Case 4.a = 0 andb,c,d # 0, _ . _
Case 54, b,¢,d # 0 andad # be and still usel, and Vi to represent their corresponding sets
T ' {€irs€in, e yand{ej,,e;, -+ ,e; .} respectively
Case 6:c =0 anda,b,d # 0 - e T Jam
e ' in the following sections if the context is clear.

Case 7.d =0 anda,b,c # 0.
Note that if we interchange, with e¢;, Case 3 (respectively, . -
4) will become Case 6 (respectively, 7). Besides, the codir?g Partition of the basigeo, -+, eam -1}
mautrix Corresponding to Case 5 is a summation of two Codingln th|S Subsection, we present a CIaSS Of partition SetSEDf th
matrices corresponding to Cases 3 and 4, which would cal@sis ofF to obtainV, and Vi in (§) , which had been used
higher update complexity for its corresponding systematie [20], and will be crucial to our constructions as well.
node than that for the latter two. Therefore, we mainly cdmisi  Assume that there arex partition sets of the basis dfy
Cases 1-4. Specifically, we say that the péi,e,) with as follows
respect toA is

Ciym_1 Clym—1

e aco {eo,e1, -+ eam 1} =VipUVig ==V o0UVu1 (6)
P ( el ) ( dey ) such that
° typeII if ( 2? )A: ( I;Z(l) ), |‘/i1-,j1m‘/i27j2m"'ﬂ‘/il,jl|:2mil (7)
. e foranyl < i1 <ig < --- <y <m,j; =0,1,1 <t <
o type Ill if < 60 ) A= < co +0de ) I < m. It should be noted thaf](7) is useful when designing
! 0 ! the code satisfying R2 and R3. Clearly; j, NV, N---N

. type IV if < ZO )A_ < be1 > Vin,jm | = 1 for any ji, ja, -, jm € {0,1} by (@). Without
1

ceg + dey loss of generality, we can set
Now we extend the analysis to the general case. From now
on, let{eg,--,eam_1} be the standard basis & where {eit ={eGijogmt =V N V2o NN Vi,
a =2", i.e.th basis vector where (jy, j2, - ,jm) is the binary expansion of the integer
ei=(0,---,0,1,0,---,0), 0 <i<2m™—1, j. Recursively applying{7) té =m —1,--- ,1, we then get
with only the ith entry being nonzero. Divide the basis into Vi = {ejldi =t} (8)

m—1 H H
2 pairs, 1.€., for 1 <i <m andt = 0, 1. Table Ill gives two examples of

(€ir€51)s (€1 €55)s s (€ipy €1 (4) the set partitions that satisfyl(6) arid (7).
Based on then partition sets in[(B), define
where( < i3 < ig < - < dgm-1 < 2" —1,0 < j; <
Jo < s < Jom—1 < 2™ — 1 andig #£ j; forany 1l < st < Vidsme =Vig, 1=1,2,--- . m, seN* t=0,1. (9)



(6]

TABLE Il .- .
(A) AND (B) DENOTE THEm SET PARTITIONS OFV THAT saTIsFy (@) ano ~ Wherea;, b, ¢;, d; andt; can be coefficients il or 5 x 5

(7) FORM = 2 AND m = 3, RESPECTIVELY diagonal matrices ovef, such that
i 1] 2 i 1] 2
Vi e eo Vi €9 el ai‘/’i,() + bi‘/'i,l
PO lelea| P |es | oes ¢iVio +d;iVi1
)
is invertible forl < i < k.
i 1273 i 1273 As for Generic Construction, we have the following propo-
eo | eo | eo eq | €2 | €1 sition.
Vio |G| 2|y, ||| -
' ez | eq | eq | " € | ¢ | €5 Proposition 1. For a (k + 2,k) MSR code generated by the
es3 es €6 er e7 e7 . .
® generic construction,

(i) Si#S;foranyl <i#j<k;
(i) There do not exist four repair matrices;, , S;,,.S;, and
S;, such thatS;, = Vio+ Vi1, 1 <1<3,ands;, =

For any1l < 4y,is < and 4 i, modm, define . )
yl s iz & sm i # i m Vi1 or Vig +t,Viy, for an integerl < i < m where

Vivsissjrge = Vissivsjaun = Virn 0 Via g for ji,j52 = 0,1.

Then J1, Je, Js, ja are four distinct integers if{1,--- ,k} and
t1,t9,t3,t4 are four distinct elements or matrices over
‘/;:l g1 = (‘/;1 g1 Vviz,o) U(‘/;l g1 Vviz,l) Fq;
= Viiyizj1,0 Y Vigin a1 (10) Proof: The proof is given in Appendix. ]

and thus we have the following results, which will be fre- According to Propositior[ll, in E(k +2,k) MSR code
quently used in the sequel. generated by the generic construction, there are at ma=s thr

repair matrices of the forn$; = V;; or V; o + ;V; 1, each

Lemma 1. For anyi,j > 1 andi # j modm, we have appearing at most once, for any givén< i < m, i.e., the
0] number of systematic nodes is boundediy 3m. In the
following, through choosing some appropriate coding rnoafi

rank(4; — 4;) in our framework, severdk +2, k) MSR codesk < 3m, with

_ rank<< Vio > (A — A _>> the optimal access property and/or the optimal update ptppe
Via ! ! are obtained. This generates not only the known constmngtio
V;.j.0.0 such as the Zigzag code (except for one node) [18] and the
- long MDS code , but also some new codes.
= rank Vijoa (A —A4)) |, g (120]
%,7,1,0
Vij . . .
) Sl A. Reinterpretation of known constructions
(i) Based on coding matrices of type Il, construct @n =
(( Vio 4+ uiVia )) k+ 2,k =m) code by
rank
(Vio +uiVi1)4; Vio Ai1Vip :
. ’ A = ’ ’ forl1 <i<m,
Vijoo0+uiVijiio Vi AioVio
= rank Vigoa+ uiViga o Si =V, forl <i<m,
(Vij,0,0 +uiVij1,0)4; here A dA o a g | matri o
(Vi 5o + Vi1 1)As where A;o and A;, are 5 x 5 diagonal matrices oveF,.
o S In fact, it is a modification of the Zigzag code by deleting its
whereu; € F,. first node [18]. The modified Zigzag code has almost the same
Proof: The proof is given in Appendix. m Properties as that of the Zigzag code, i.e., all the systemat

nodes of the modified Zigzag code possess both the optimal
access property and the optimal update property.
Through a combination of coding matrices of types | , llI

and VI, the long MDS codé [20] can also be constructed by
In this section, we construct MSR codes with parameters ( Vio ) N

n = k+ 2 andk = tm, wheret, m are some integers and Vi,

IIl. GENERIC CONSTRUCTION OF CODES WITH PARITY
NODES

a = 2™, with the coding matrices being the types defined in

subsection 2.1. ( AioVio +kiVia ) L if 1<i<m
Generic Construction: The (n = k + 2,k) codeC has AiaVia

a x « coding matricesd; and § x « repair matricesS; for

1 <i <k, such that -

,0Vi,0
i1Vi1i+kiVio

A
A
Vio a;Vio+biVia ,
1 K A; = i ’ for1 <i <k, ioVi . ,
) (Vi,l) (CiVi,o—l-diVm) == (i,ov,o)’ if 2m+1<i<3m

i1Vii
2) Si=Vi10rVig+t;Viq forl <i<k,

), if m+1<i<2m




Vi, if 1<i<m Theorem 4. The codeC; in Constructior L is an MSR code

-Siz %71, if m—|—1§z§2m if
Vio+ Vi1, if 2m+1<i<3m _ _
whereX; o, A1 € F, kj = Ajo—Aj1 andkjpm = Ajym,1 — ki = kitm = =27", Xijo = Aix = Aigm,0 = Aitam,1 =7,
)\jer,O for all 1 <i<k and1 < j < m. )\i+m,l = Ai+2m,0 = —’}/i,ti = _1ati+m =1

Moreover, it is possible to choosg ; and\; ; respectively ) ) o L
in the constructions of the modified Zigzag code and the Iorgﬁr 1 < i <m, wherey is a primitive element of finite field
MDS code [20] such that the conditions R1-R5 are satisfiedl.a ©f 0dd characteristic withy > 2m +1. In particular, ¢ =

min{p’ > 2m + 1|p is an odd prime, i > 1} is the optimal
alphabet size fo’; to be an MSR code.

B. New code; o . ]
Using the coding matrices of types Il and Ill, we construct Proof: The proof is given in Appendix. -
the first new code. Remark 2. For a given storage capacitg@ = 2™ per node,

our codeC; and the long MDS code in [20] have the biggest

) . o : . size 3m among all the MSR codes with high rate. Unlike
a x « coding matricesd; and £ x « repair matricess; for . .
1 <i<k such that 2 the long MDS code¢; hasm systematic nodes possessing

v the optimal access property and the optimal update property
b (4 )

simultaneously. Howeve€; may require a larger alphabet
( AiaVin ) ’ it 1<i<m only the finite field of odd characteristic is feasible for the

Construction 1. The (n = k + 2,k = 3m) code(C; has

size than that of the long MDS code in certain situationsesinc

AioVio construction ofC;.
< iul)“;ul) o ) Cif m+1<i<3m Finally, an illustrative example of codg is given.
T Example 1. For m = 2, the coding matrices and repair
2) S, = { Vi, if 1<i<m matrices of the cod€; are as follows:
! Vio+timmVip, if m4+1<i<3m
where; o, Ai 1, kj,t; € Fiforall 1 <i<kandl <j< 382 361
2m. A = €3 Ay = €o
260 ’ 463 ’
Theorem 1. C; is a code with the MDS property if and only 261 dey
if
(i) Nioli1 # NjoAji foranyl <i##j <m, 360 4eo
) ) ] A3 _ €1 7 A4 _ 260 + €1 7
(ii) Ais #* A If ] = Z +m eg + 3eo deo
Xis # Nje, 0f j#i+m e1 + 3es 2e9 + e3

foranym+1<i<j<3mands,t=0,1,

. . 3eo €o
)\i,l(/\i,O — kj_m) 75 /\j70)\j,1, if J=1+m,1+ 2m
(III) { )\i,O/\i,l 75 )\?_’0, )\?_’1, otherwise A5 = 3_612 , A6 = 2e0 +dey ,
foranyl <i<mandm+1<j < 3m. €o T s€2 €2
€1 + 283 282 —|— 463

Proof: The proof is given in Appendix. [ |

. . . . . S, — [ €0 S, — [ €0 G, — [ o€
Theorem 2. C; is a code with the optimal repair property if T= e )0 27 ey ) P37 L ep—es /)0
and only if

() At = 2o andt, = —tiap, forall 1< i< m, S — ( co el ) S, — ( co + e ) S, — ( co+er )
(i) X1 = Xijo + tikim @and Ay 1 = Nigm,0 + ticmki 27 €1t es ez +e3
forall m+1 <i <2m, where?2 is chosen as a primitive element Bf and all the
(i) F, is of odd characteristic. calculations are done ovéF. It can be easily verified that R1-
Proof: The proof is given in Appendix. s R3 hold and R4-R5 hold for < i < m, which are consistent

with Theorem§l4 and 3, respectively.
Theorem 3. The firstm systematic nodes @f have both the

optimal access property and the optimal update property. C. New code’s

Proof: The proof is given in Appendix. B Deleting the lastn systematic nodes id;, we can get the
According to item (ii) of Theoreriil1 and items (ii) and (iii)second new code.

of Theoren[2 (which indicate\; o # \;1 for anym + 1 < _

i < 3m), a finite fieldF, of odd characteristic with at leastConstruction 2. The (n = k + 2,k = 2m) code(C; has
2m pairwise distinct nonzero elements is necessary to ensgr& @ coding matricesd; and 5 x « repair matricess; for
the codeC; to be an MSR code. In the following theorem, & < ¢ < k, such that

class of concrete coefficients for code is given. 1) ( Ki,o )Ai
0,1



( ;\i,lgi,l ) : if 1<i<m matrices of the codé, are as follows:
1,0 V4,0
= NV ! 72
2,0 V4,0 . .
P , if m4+1<i<2m ves e
V< AiaVia +ki—mVio ) veg yz
4,0 } ver e
2) Via A; A= vyeg |’ Ay = 72 ’
)\1‘ 1Vi 1 . . el 72
s <i<
( Ai,oVio ) ’ i l<ism ez 72
2
- ves e
AioVio : .
B <i<
( AiiVia +ki—mVio ) , EmAl<is2m €1 Yeo
3 5 — | Vio if 1<i<m 0 o
o Vot tiom Vi, if m+1<i<2m s e
) A3 _ €9 A4 _ Yes
where; o, Ai1, kj, t; € i forall 1 <i<kandl <j<m. es |’ vea + e
. . e es+e
Hereafter we state the results 6§ without proofs since ej ?yez +e;
they are included in those given in the last subsection. es ~er + ez
Theorem 5. Cs is a code with the MDS property if and only
|f ’}/2 €0
. 2
(i) AioXin # AjoAj1 foranyl <i#j <m, 72 e1 + eo
(ii) )\ZS;é)\»tforanmerlgz';éj§2mands,t=0,1, 2e2+60 €2
(iii) Ai, (/\10 2) #2/\70)%1’ !f ] :2.—|—m Ag = 263+el , Ag = €3+ e2
i ,\115&)\07)\]1, if j#£i+m ’72 ey
forany1<z<mandm+1<]<2m ve €5+ ¢4
2
. . . . . v 66 + ey €6
Theorem _6. C, is a code with the optimal repair property if V2er + es er + eg
and only if
(l) )\1‘71 = t?ALQ for all 1 <1 <m, €0 €0
(i) N1 # Nio + timki_m foranym +1 < i < 2m. Si=| |, s,=] |,
€9 €4
Theorem 7. The firstm systematic nodes 6% have both the €3 es
optimal access property and the optimal update property.
e ep+ eq
According to item (i) of Theorefl5 and item (i) of Theorem s e1 + e
[6, a finite fieldF, with at leastm pairwise distinct nonzero S3 = e4 Sy = es+es |7
square elements is necessary to ensure the €ode be an s es + er
MSR code. Lety = p* wherep is a prime and is a positive
integer. It is well known that all the nonzero element¥jnare €o + €2 o+ el
square elements fgr = 2 but only half the nonzero elements Sy = e1+es3 , Sg = €2+ €3
in F, are square elements fgr > 2. Then, the MSR code eates eates
Cy requiresq > m+1forp =2 orq > 2m+ 1 for p > e t+er €6 +e7

2. Straightforwardly, there exits a positive integesuch that where is chosen as a primitive element Bf. and all the
q = 2' lies betweenn + 1 and2m. That is, a finite field of calculations are done oveF,:. It can be verified that R1-R3
characteristic 2 is more suitable to construct the MSR co#éleld and R4-R5 hold foi < i < m, which are consistent

Ca. In the following theorem, a class of concrete coefficientgith Theorem§I8 anid 7, respectively.
for codeCs is given.

Theorem 8. The codels in Construction? is an MSR codeD. New CodeCs

if By means of combination of coding matrices of types | and

- I, we propose the third new code.
Ai0 = Xl = Aigm,0 = Aigm,1 =7, andt; =k =1 prop

Construction 3. The (n = k + 2,k = 2m) codeCs; has

forall 1 <4 < m, wherey is a primitive element of finite , . ,, coding matrices; and ¢ x a repair matricesS; for
field F, of characteristic 2 withg > m + 1. In particular, | < ; < 1 such that

q= mm{QZ > m+ 1] > 1} is the optimal alphabet size for (

Ai1Via
C> to be an MSR code.

Vio

Vi (

AioVio

Ai,oVio
AiVia

>, if 1<:<m

An illustrative example of codé, is given as follows. )
>, if m+1<i<2m

Example 2. For m = 3, the coding matrices and repair



2) S; = { Vi, if l<i< m where2 is chosen as a primitive element Bf and all the
Vio+tiomVig, |if m+l<is 2””" calculations are done oveFs. It can be easily verified that
where; o, Ai;1,t; € Fyforall 1 <i<kandl <j<m. R1-R3 hold and R4 holds fdr < i < m and R5 holds for

Theorem 9. C; is a code with the MDS property if and onlyl = @ = 2m, which are consistent with Theorers] 12 and

if [I7, respectively. Moreover, this example can be illusttate
() Aot £ Ajod foranyl <i#j<m, another way as in Table IV.
(i) Nis # Njp foranym+1<i#j<2mands,t=0 TABLE IV
or1 COLUMNS 1,2,3,4 ARE SYSTEMATIC NODES AND COLUMNSR AND Z
, Aiohit if j —it+m ARE PARITY NODES EACH ELEMENT IN COLUMN R IS A LINEAR
(iii) AioNi1 # %’ -772 ! LY . COMBINATION OF THE SYSTEMATIC ELEMENTS IN THE SAME ROWWHILE
Y )\j,oa)\j,p if j#i+m EACH ELEMENT IN COLUMN Z IS A LINEAR COMBINATION OF THE
foranyl <i<mandm-+1<j<2m. SYSTEMATIC ELEMENTS WITH THE SAME SYMBOL FOR INSTANCE, THE
FIRST ELEMENT IN COLUMNR IS A LINEAR COMBINATION OF THE
Proof: The proof is given in Appendix. B ELEMENTS IN THE FIRST ROW AND IN COLUMNSL,2,3AND 4, AND THE &
IN COLUMN Z IS A LINEAR COMBINATION OF ALL THE & ELEMENTS IN
Theorem 10. Cs is a code with the optimal repair property if COLUMNS 1,2,3AND 4,
and only if

R

(l) )\i,l = t?/\@o forall 1 <i<m,
(i) Xio# Xip foranym +1<i <2m.

LSk JhesE i
E Zheik JRE/IN
|| Gl e| w
[k Rk JEN
Rk ZReE N

WIN[ O

Proof: The proof is given in Appendix. |

Theorem 11. The2m systematic nodes 6§ have the optimal
update property and the first nodes have the optimal accesg= Ny code’,

property. Based on the coding matrices of type Il, we can present the
According to item (ii) of Theoreni]9 and item (ii) of fourth new code.

Theoreni 1D, a finite field, with at leasm pairwise distinct

nonzero elements is required to guarantee the cd® be

an MSR code. Specifically, ové, with ¢ > 2m + 1, we can

give a class of concrete coefficients for calleas follows.

Vio AiVin ,
. . . 1 ’ A= (. for1 <i <k,
Theorem 12. The code&; in Constructior B is an MSR code ) ( Via ) ( AioVio > orL=rs
it 2) Si=Vio+tiVipfor1 <i <k,
Xio =Xt = im0 = Aipm1 = AL+ andt; =1 where\; o, Ai1,t; € Fyy forall 1 <i <k,

Construction 4. The (n = k + 2,k = 2m) code(Cy has
a x o coding matricesd; and § x « repair matricessS; for
1 < ¢ <k, such that

forall 1 < i < m, where~ is a primitive element of F, Theorem 13. (4 is a code with the MDS property if and only

. . - if
with ¢ > 2m + 1. In particular, ¢ = min{p* > 2m + _ . . _
1|pis a prime,i > 1} is the optimal alphabet size faf; 0 Ai o1 # Ajodja foranyl < <j < kandi#

to be an MSR code. J—m,
(i) Nis # Nigm,s foranyl <i<m ands=0,1.

Proof: The proof is given in Appendix. [ |

Finally to illustrate the construction of codhg, we give an Proof: The proof is given in Appendix. -
example. Theorem 14.C, is a code with the optimal repair property if
. . . and only if
Example 3. For m = 2, the coding matrices and repair . 9 9 .
matrices of the codé; are as follows: (i) i\r;l =t Ao @nd X1 = t¥ Aipmo forall 1 <i <
2e9 4eq (ll) )\1‘71 7§ t?ALQ for anyl <i<k.
A = 2es , Ag = deo , Proof: The proof is given in Appendix. [ |
260 463
2eq deq Theorem 15. The2m systematic nodes ¢f, have the optimal
update property.
260 460 . . . . .
%, e According to item (i) of Theoreni 13 and item (i) of
As=1| 3, [» A= 4, | Theoreni I}, a finite field", with at leastn pairwise distinct
nonzero square elements is necessary to ensure theCgade

3
“ s be an MSR code. Similar to cod®, we have the following

( €o ) ( €o ) concrete construction for the new code
Sl = s 52 e ,
€2 Theorem 16. The codeC, in Constructior # is an MSR code

if
G, — eg + e g, — eog + e _ ) )
3 no ea+es )’ o =75 00 =7 im0 = Xigma =7 Tt = Litigm =7



for all 1 < i < m, where~ is a primitive element of finite IV. CONCLUDING REMARKS

field ¥, Ofl_ characteristic 2 withg > m + 1. In particular, |, this paper, we proposed a simple but generic framework
¢ = min{2" > m +1[i > 1} is the optimal alphabet size for, ¢onstruct high rate MSR codes with two parity nodes. The
Cy to be an MSR code. framework can not only generate the modified Zigzag code and

Remark 3. In [18], 2-duplication of the Zigzag code withthe long MDS code, but also generate four new MSR codes
parameters(n = k + 2,k = 2m + 2) was proposed, which C1, C2 , C3 and C, with the optimal access/update property.
has the similar coding matrices as thosef Although the The optimal sizes of the finite fields required for the four
number of systematic nodes @f is two less than that of 2- codes were also determined. Notably, by these four new MSR
duplication of the Zigzag code, it has better repair bandtvid codes, we could get a tradeoff between the size of the finite
When repairing a failed systematic node, only half of theadafield and the number of systematic nodes (with the optimal
need to be downloaded from each surviving nodé,pfwhile access/update property).

the fraction of the data need to be downloaded from eachOur construction can be generalized to thet r, k = 3m)

surviving node of 2-duplication of the Zigzag codedss;. or (k + .k = 2m) MSR code with arbitraryr > 2
parity nodes fora = ™. For this generalization, we firstly

Finally to illustrate the construction of codk, we give an peed to partition the basiéco, e1, - ,e,m_1} of F into
) ) ) - q
example. r subsetsVy, Vi, -+, V.. with equal sizes. Then, types I-IV
Example 4. For m = 2, the coding matrices and repairCOding matrices can be_z similarly_determine_zd based on ianari
subspaces of dimension but with complicated forms. By

matrices of the codé, are as follows: ) i )
means of these matrices, we can obtain the generalized codes

es vey Cy1, Cs, C3 andCy with » > 2 parity nodes, which still possesses
e3 €o e optimal access/update property. The optimal alpha s
s A — 72 the optimal /update property. The optimal alphdbet
P72 ovee |0 72 ves ’ q, however, is difficult to determine and hence will be left for
ey ~v2eq future research.
7262 €1 APPENDIX
Az = 1223 , Ay = 20 , Proof of Lemma 1 (i) According to [10), in ma-
0 3 A
A2eq es trix notation, V; o, V;, are equivalent to Vii00 ) and
,5,0,1
_ [ eote o _ [ cote ( “231? ) under elementary row transformation, respec-
! e1+es )’ ext+ez )’ o Vi,j.0,0
{ eo+yes { eo+ner tively, i.e., “f’o is equivalent to “;1:,3:,0,1 under
53 = s S, = 7,1 %,7,1,0
ertnes 2 +7€3 Vi

. - elementary row transformation. Thus
where~ is chosen as a primitive element Bf- and all the y

calculations are done ovdr,:. It can be verified that R1-R3 Vi.3,0,0
hold and R5 holds fot < i < 2m, which are consistent with rank Vio _ rank Vigo.1
Theorem§ 116 anld 15, respectively. Moreover, this exampie ca Via n Vii1,0
be illustrated in another way as in the following table. Vijia
1123 |4|R|Z Immediately, the assertion follows from the fact that therira
0|6V 60 hod Yio ) is of full rank.
EIEIEEE Y Via
2| S |0 d]|O Lo (ii) It follows from that the matrix( Vio + Vi )
AR AR > (Vio +uiVi1)A;

Vijoo+uiVijio
Vijoi1+uiVijin
(Vij00 +uiVijio0)A;
(Vijo1 +uiViji1)A;
fary row transformation. |
Proof of Proposition 1 (i) It is obvious otherwise R2
and R3 can not be satisfied simultaneously for repair matrice

is equivalent to under elemen-

F. Other new codes

Combined coding matrices of types | and IV (with repai
matricesV; o + t;V; 1 andV; ), types Il and IV (with repair
matricesV; o +t;V; 1), types Il and IV (with repair matrices
Vio+t: Vi1 andV o), types Il Il and IV (with repair matrices S.,5; and coding matrixd,.
Vio+tiVix, Vio+tiym Vi1 andV; ), four new MSR codes ~* . If th . ht . . dinal
with & = 2m or 3m can be obtained, but the other properties (i) : there EXISt. such ourhrepa|crj.matr|ces, acco_rf.mg ot
(eg. optimal access, optimal update, the size of the finildsfie generic construction, then the coding maty, satisfies
required) are not as good as the aforementioned new chdes Vio A — aVio+ bV
Ca, C3 andCy. Vii )77t eVio +dVin



10

wherea, b, c andd can be coefficients ilf, or § x § diagonal or i + 2m, according to[(P)
matrices ovetF,. Consider

Vio+tVia < Vio > (A; — Aj)
rank( (Vio+tVi1)A;, ) VZ 1
O C (et ) (ot >
= fran (a+ ct))Vio + (b+ dt)Via AioVio XiaVii+ki—mVio
o AiaVii — A oVio
= 2 =123 - AYeL = A0 ,
2 < (Nijo = kjem)Vio — NjaVia )

Then we have that the equation
e., ranKAl- — AJ) = o <& )\1'_’1()\1'_’0 — kjfm) # )\j,())\j,l;
ct* +(a—dt—b=0 Otherwise,

has three distinct roots = t;,¢2 and t3, which is possible
only if b = ¢ =0anda = d # 0, in this case,4;, is a Vijo0

diagonal matrix, therefore Vig.0. (Ai — Aj)
Vii1,0
S a Vigina
rank 7 = — foranys;
( SiiAj, ) 2 Y ois Ai1Vij1,0 = Aj0Vi5,0,0
o _ Ai1Vija1 —AaVigo1 — kj—mVijo0.0
and then R3 can not be satisfied. | - XioVij0.0 = NioVijio
Proof of Theorem[l C; has the MDS property if and only if NioVij01 —NaVijia — kji—mViji0

R1 holds. ObviouslyA; is invertible for all1 < i < k since
AXio,Aia1 # 0. In what follows, by means of Lemnid 1 we

establish the necessary and sufficient conditions of(ank -6+ ranKA; — 4;) = a & XjoXix # AJ g, A7 1. u
A;)=aforanyl <i# j <k in the following three cases. Proof of Theorem[2 C; is a code with the optimal repair
Case 1: When < i # j < m, property if and only if R2 and R3 hold. Firstly, by means of
Lemmall we establish the necessary and sufficient conditions
Vi.4,0,0 AiaVig1,0 —AjiaVijoa for R2 according to the following three cases.
Vi1 (A — A,) = Ai1tVigi1 — NjoVij00 Case 1: For <i < m,
Viji,0 J Ai,0Vi5,00 = NjaVijia
Vigia Ai,oVig01 — AjoVig10 () Whenl <j#i<m,
ie., ranKAi — AJ) = <= /\i,O)\i,l 75 )\j,O)\j,O-
Si
Case 2: Whenn + 1 <i < j < 3m, if j =i+ m, by (9) rank(( SiA; >)
V .
%70 ,7,0,0
( Via ) (i = 4y) — rank| | Vidos
’ Vij0,04;
_ Ai,oVio o AioVio ViionA;
XiaVia +Eki—mVio AaVii +kji—mVio VJ’ Y
,7,0,0
_ ((/\zo—)\Jo)Vzo ) ) Vij’OI
Nix = Aj) Vi + (Kimm — kj—m)Vio - ran Aj1Vij0.
i.e.,rankKA;—A;) = a < \; s # A\ for s = 0, 1; Otherwise, /2 5:074,3,0,0
= « y
Vij00
“;,7,01 (b) Whenm +1<j < 3m, if j =i+m ori+2m, by @)
%,7,1,0
Vijin
()\i,O - )\J,O) ,7,0,0 rank(( SSA ))
_ | Qa0 =X Vigoa — kj—mVijo0 i3
(N1 = X0)Vijio+kiemVijoo — rank Vio
(Mg = X)) Vi +FkicmVigor —kji—mVijgao VioA;

Vio
e, rankA;, — A;) =a e N\ s # \j, for s,t =0,1. rank(( NioVio ))

Case 3: When <i <mandm+1 <5 <3m,if j =i+m = a2



Otherwise,

()

Case 2:

rank

= rank

= «/2.

Vi .00

Vijo.1

Vi5,0,04;5

Vijo.14,;

Vi .00

Vigo,1

Aj,0Vi 50,0

AiiVijor +ki—mVijoo

Form +1 <1< 2m,

(@) Whenl < j <m,if j =i—m, by (9

S;
an{( %))
Vio+1t;Vja
= rank J) I
<< (Vio +1Vi1)A; ))

Vio+t;Via
= rank b 7
<< AjVia +tA0Vi0 >)

a2

=4 /\j71 = t?/\jyo;

Otherwise,

(@)

(b) Whenm +1 < j #i < 3m, if j =i+m, by @

rank

rank

= a2

Si
rank<< SiA,

Vij00 +ticmVijio
Vigo1+tiomVijin
(Vij,0,0 + timmViji1,0)A4;
(Vi1 +timmViji1)A;
Vij0.0+ti—mVijio
Vijo1 +timmVijia
Aia1(Vigo1+timmViji)
Ajo(Vig00 +tiemViji0)

)

V' 0 + tzfmv 1
rank Js Js
<< (Vio +timmVin)A; ))

rank( < Vio+ti—mVija

(Aj,0 + ticmkj—m)Vj0 + tiemAj1 Vi

/2

Aj1 = N0+ ticmkj—m

Xigtm,1 = Nitm,0 + ti—mki;

11

Otherwise,

(<))

Vij0,0+ti—mViji0
Vijo1+ti—mVijia

(Vij00 +timmViji,0)A;
(Vijo1+timmViji1)A;
Vijo0,0+ti-mViji0
Vijo1+ti—mVijin

rank 23,0(Vi,j,0,0 + timm Vi j1,0)

X1 (Vigon + ticm Vi)

+kj—m(Vijg,00 + ti—mViji1,0)

rank

= a/2.

Case 3: Foem + 1 < i < 3m, similarly to that of Case 2,

S; L
rank<< SiA, )) =qaf2for1 <j#i<3m

DY tE im0, If 1< T <m,
P Aotk 1 m+ 1< < 2m.

Combing all the cases above, we have that R2 holds if and
only if
Ail = tlz)\i,o for1 <i<m,

t2 =12, for1<i<m, (11)

i+m
and
Ai1 = Ai0 +tikicm, Aitma = Aigmo +ticmks (12)

form+1<i<2m.
Secondly, we determine the necessary and sufficient condi-
tions for R3. It is easy to verify that rar‘éV SSA

for1 <i<m.Form+1<1:<3m,

S
rank<( SiA; )>
B ‘/7;70 + ti—m‘/;,l
— rank(( (Viio + timmVin ) As )>

_ Vio+ti—mVia

B rank(( (Ao + timmkiom)Vio + timmAi1 Vi ))
= «a

S A1 F NioFticmkiom,

which together with[(12) gives; # ¢;4,,, foranyl < j <m,
and further, associated witli {11) implies that= —t;,,
forall 1 < j < m andF, should be a finite field of odd
characteristic. This finishes the proof. |
Proof of Theorem[3 It is easy to verify that R4 and R5
are satisfied for the first: nodes due td{8) and the fact that
{eg, -+ ,eam_1} is the standard basis. [ |
Proof of Theorem[4 We only prove item (iii) of Theorem
[ hereafter since the other items of Theoréins 1[dnd 2 can be
easily verified.
Given two integersl < i < m andm +1 < 5 < 3m, if
j =i (mod m), then

Ait(Mio — kjom) =7 (7 4+ 27") # =7 = XjoAja

=
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since4y® # 0; Otherwise, defing’ = j —Im wherelm +1 < Otherwise, by[(P) we have

j<(+1)mforl<l<2/ie,1<j #i<m,then we
have . )
AioNi1 = 2 £ A2 = /\iS for s =0, 1.

Thus, item (iii) of Theoreni]1 is satisfied. |
Proof of Theorem[@ C3 has the MDS property if and only

if R1 holds. In what follows, we only prove it for the case thaf/

1<i<m,m+1<j<2m. The other cases can be proven

similarly as those of Cases 1-2 in the proof of Theofém 1.
Whenl <i<mandm+1<j <2m,if j =i+ m, by

@ we have

(

hich together with Lemm@l 1 implies

property if and only

Vio
Vi

AiaVii |
Ai,oVio

(N1 — A1) Vi
(Mo — Aj,0)Vio

AV
AjoVio

).

rankA; — Aj) =a e N\is # A for s=0,1.

) (Ai —4;) =

(
(

)

[
Proof of Theorem[12 C, is a code with the optimal repair
if R2 and R3 hold.

Vio (A; — Aj) = AiaVin = Aj0Vio For1 < i <k, we have
Vi ! J XioVio—XaVin )7 g VootV
which together with Lemm@l1 gives rank<< Sij‘li )) = rank<< /\212%7114—1;511-)\1-,0%70 >)
rank(Al- — AJ) = = /\i,l)\i,() # /\j,O)\j,l; = «a
) 2y
Otherwise, & A # Ao,
Viioo AiaViito — AioVijio0 Similar to Case 2(a) in the proof of Theoréin 2, we can get
Vijo1 AN /\i,lvi.,lj,l.,l = Aj1Vijoa S a L
Viji0 (Ai = 4) = Ai0Vig.00 — AjoVigto rank SiA; ) foranyl <i#j<k
‘/i’j’l’l /\i,OV;,j,O,l - )\j’lw’j’l’l ~ /\i,l = t12+m)\i,07 )\H—m,l = t?)\i-i-m,o forall 1 <i<m.

associated with Lemn{d 1, which implies that
rank(Ai — Aj) == )\i,O/\i,l 75 /\?70, )\511.

[ |
Proof of Theorem[1Q C3 is a code with the optimal repair
property if and only if R2 and R3 hold. Fen +1 < i < 2m,

we have
S; B Vio+ti—mVia
rank<< SiA; )) rank<< AioVio + XiatiomVia >)
= «
< Ao # A1 (1]

The analysis for the remainder cases are omitted hereie sinc
they are similar to those df;. | 2]
Proof of Theorem[12 Since the other items of Theorems
and[I0 can be easily satisfied, we only verify item (iii) of
Theoren® herein.

) - [3]

Given two integersl < ¢ < m andm +1 < j < 2m,
definej’ = j —m. Obviously,1 < 5/ < m. If 7/ =i, we have 4
Niohin =% #3142 = \; (), 1; Otherwise, [l

2 24’
A0 _7 J‘ — 22 L
Xiohii [5]
and

2 i —2i [6]

A J2LE1H25 2 7_213 %, qodd £1
Ai 0N 1 ~% =21 g even -
7

where we use the facts that< 2/ —2i+1| < 2m—1 < ¢—2
and~! = 1 if and only if { = 0 (mod ¢ — 1). Thus, item (iii) 8]

of Theoren]® is satisfied. [ ]
Proof of Theorem[I3 C, has the MDS property if and only
if R1 holds.
Whenl <i < j <k, if j # i+ m, similarly as Case 1 in
the proof of Theorerhl1, we have

rankA; — Aj) = a & XioAin # AjoAjs

9]
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