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Abstract—In this paper, we present a generic framework for
constructing systematic minimum storage regenerating codes
with two parity nodes based on the invariant subspace technique.
Codes constructed in our framework not only contain some best
known codes as special cases, but also include some new codes
with key properties such as the optimal access property and
the optimal update property. In particular, for a given stor age
capacity of an individual node, one of the new codes has the
largest number of systematic nodes and two of the new codes
have the largest number of systematic nodes with the optimal
update property.

Index Terms—Distributed storage, high rate, invariant sub-
space, MSR code, optimal access, optimal update.

I. I NTRODUCTION

D ISTRIBUTED storage systems with high reliability have
wide applications in large data centers, peer-to-peer

storage systems such as OceanStore [14], Total Recall [1],
DHash++ [7], and storage in wireless networks. To ensure
reliability, the redundancy is crucial for these systems. A
popular option to add redundancy is to employ erasure codes
which can efficiently store data and protect against node
failures. Examples of several distributed storage systemsthat
employ erasure codes are Facebook’s coded Hadoop, Google
Colossus and Microsoft Azure [10].

Recently, a new class of erasure codes for distributed storage
systems calledminimum storage regenerating(MSR) codes
was introduced in [8]. Consider a file of sizeM = kα symbols
stored across a distributed storage system withn nodes, each
keepingα symbols, that deploys an MSR code by storing the
source data on the firstk nodes, calledsystematic nodes, and
mixtures of the source data on the othern− k nodes, termed
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parity nodes. To provide reliability, MSR codes must possess
two abilities:
(a) Reconstruction ability: In particular, an MSR code has

the MDS propertythat anyk out of then nodes suffice
to reconstruct the whole source data.

(b) Repair ability: In practical distributed storage systems, the
most common failure is failure of a single node. For this
scenario, to maintain redundancy one has to repair the
failed node by downloadingβ ≤ α symbols from each
of any d ≥ k surviving nodes. Therepair bandwidth
γ is defined as the amount of data downloaded during
the repair procedure, i.e.,γ = dβ. In [8], MSR codes
are shown to have the optimal repair property for the
following values:

(α, γ) =

(
M

k
,

Md

k(d− k + 1)

)

. (1)

Up to now, constructions of MSR codes have attracted
a lot of attention [2], [4], [5], [6], [12], [13], [15], [16],
[17], [18], [20], [21]. However, many constructions have strict
constraints on the parametersn, k, d. For example,d ≥ 2k−2
in [13], [15], [16], [17], which corresponds tolow rate (i.e.,
k
n

≤ 1
2 ) regime. Forhigh rate (i.e., k

n
≥ 1

2 ) regime, most
known constructions are built on the concept of interference
alignment, which was originally introduced in the context
of wireless communication networks [11], [3], and was later
exploited for distributed storage systems [21].

In contrast to other known constructions of high rate MSR
codes, the Zigzag code proposed by Tamoet al. [18] is an
MSR code exhibiting two additional interesting properties:
the optimal access property and the optimal update property,
which either does not need computing during the download
phase of repair or minimizes the reading/writing during update.
The Zigzag code works for arbitrary parametersn, k and
d = n−1, and requires a small finite field sizeq, for example,
q = 3 for n − k = 2. It seems that the only shortcoming
of the Zigzag code is the storageα of individual nodes,
i.e., α = rk−1 grows sharply with the increase ofk where
r = n− k. In parallel to [18], the construction of the Zigzag
code has also been discovered by Cadambeet al. in [5] via
subspace interference alignment. In [20], Wanget al.presented
another MSR code, named long MDS code, that increases
the numberk of the systematic nodes to nearly three times
that of the Zigzag code but still maintains two parity nodes
and the same node capacityα. However, a larger finite field
size is required and none of the systematic nodes possess
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the optimal access property and the optimal update property
simultaneously.

In the literature, there are mainly two repair types: exact
repair and functional repair. Compared with the latter, exact
repair is preferred since it does not incur additional significant
system overhead by regenerating the exact replicas of the lost
data in the failed node [9]. Unfortunately, except for the one
in [12], all the known MSR codes of high rate, including the
aforementioned Zigzag code and long MDS code, can only
exactly repair all the systematic nodes optimally with respect
to the bound in (1), whereas repair the parity node triviallyby
downloading the whole original file from all the systematic
nodes. For simplicity, throughout this paper we say that such
MSR codes possess the optimal repair property and omit that
the property is only valid for systematic nodes. It should
be noted that this kind of code is acceptable for a practical
system due to two aspects: (1) The number of parity nodes
is quite smaller compared to that of systematic nodes; (2)
The failures of systematic nodes and parity nodes are different
since the omission of some raw information would affect the
information access time for the former [18].

In this paper, we focus on high rate MSR codes. Obviously,
high rate implies a large value ofk for fixed n. Whenk =
n − 1, the repair bandwidth is the highest, i.e.,γ = M by
(1). Then, whenk = n − 2 > 1 and d = n − 1 (which can
reduce the repair bandwidth sinceγ is a decreasing function
of d in (1)), MSR codes are of great interest because they can
achieve the highest ratek

k+2 for γ = (k+1)α/2 < M. Thus,
it is very desirable to construct MSR codes with two parity
nodes for arbitrary number of systematic nodesk.

The main contribution of this paper is to present a simple
but generic framework to construct MSR codes with two
parity nodes based on the invariant subspace technique. Our
construction not only contains the modified Zigzag code (the
code obtained from the Zigzag code [18] by deleting its
first node), and the long MDS code [20] as special cases,
but also generates some new MSR codes. Specifically, based
on the modified Zigzag code withm systematic nodes, we
can obtain three new MSR codes by adding2m or m more
systematic nodes. When adding2m more systematic nodes
without the optimal access property and the optimal update
property, we can construct new codeC1 over a finite field of
sizeq ≥ 2m+ 1. When addingm more systematic nodes,we
can make a choice of either a smaller finite field or new nodes
having the optimal update complexity. For the former, the finite
field size can be reduced toq ≥ m + 1, which results in
new codeC2. For the latter, the resulting new codeC3 still
requires a finite field sizeq ≥ 2m + 1. In addition, another
new codeC4 which has the same number of systematic nodes
and requires the same size of finite field as those ofC2 can be
derived. All the systematic nodes ofC4 have the optimal update
property but none of them have the optimal access property. In
this sense, we provide four code constructions with different
parameters that allows for trading-off between the size of
the finite field and the number of systematic nodes (with the
optimal access/update property). In particular, given anα, the
codeC1 has the largest number of systematic nodes, whileC3
andC4 have the largest number of systematic nodes with the

optimal update property. For comparison, the parameters of
the new codes, the Zigzag code, and the long MDS code are
listed in Table I.

The rest of this paper is organized as follows. Section II
gives preliminaries about the necessary and sufficient con-
ditions for an erasure code with two parity nodes to be an
MSR code, and presents the special partition for a given
basis. Section III proposes the generic construction, by which
some known codes are reinterpreted and four new MSR codes
with the optimal access/update property are derived. Finally,
Section IV draws concluding remarks.

II. PRELIMINARIES

Let q be a prime power,Fq be the finite field withq
elements, andFl

q be the vector space of dimensionl overFq.
For simplicity, throughout this paper we do not specifically
distinguish the vector space spanned by row vectors or column
vectors if the context is clear.

Assume that a file of sizeM = kα denoted by the column
vectorf ∈ F

kα
q is partitioned ink partsf = [fT

1 fT
2 · · · fT

k ]T ,
each of sizeα, whereT denotes the transpose operator. We
encodef using an(n = k + 2, k) MSR codeC and store it
acrossk systematic and two parity storage nodes. Precisely, the
first k (systematic) nodes store the file partsf1, f2, · · · , fk in
an uncoded form respectively, and the parity nodes store linear
combinations off1, f2, · · · , fk. Without loss of generality, it
is assumed that the nodesk + 1 andk + 2 respectively store

fk+1 = f1+f2+ · · ·+fk andfk+2 =
k∑

i=1

Aifi for someα×α

matricesA1, · · · , Ak overFq, where the matrixAi is called
the coding matrix for the ith systematic node,1 ≤ i ≤ k.
Table II illustrates the structure of a(k + 2, k) MSR code.

TABLE II
STRUCTURE OF A(k + 2, k) MSR CODE

Systematic node Systematic data
1 f1
...

...
k fk

Parity node Parity data
1 fk+1 = f1 + · · ·+ fk
2 fk+2 = A1f1 + · · ·+ Akfk

Note that reconstruction of the original file demands that
(i) Ai is invertible when connecting nodes belong to the set
{1, 2, · · · , k + 1}\{i} (or {1, 2, · · · , k, k + 2}\{i}), for any
1 ≤ i ≤ k and (ii) Ai − Aj is invertible when connecting
nodes belong to the set{1, 2, · · · , k + 2}\{i, j}, for any1 ≤
i 6= j ≤ k. In other words, the MSR codeC with the MDS
property requires [20]
R1. Ai andAi −Aj are all invertible for any1 ≤ j 6= i ≤ k.

As mentioned in the last section,d is assumed to ben− 1
for minimizing the repair bandwidth. Then in order to repair
a failed node, only half of data is downloaded from each
surviving node. When a systematic nodei fails, we download
dataSi,jfj from nodej 6= i using anα

2 ×α matrixSi,j of rank
α
2 , whereSi,j is referred to as therepair matrixof thejth node
for the ith systematic node. To simplify the repair strategy, we
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TABLE I
COMPARISON BETWEEN THE NEW CODES AND SOME KNOWN CODES WITH TWOPARITY NODES ANDα = 2m , WHEREk, kA , kU AND kA&U DENOTE

THE NUMBER OF SYSTEMATIC NODES, THE NUMBER OF SYSTEMATIC NODES WITH THE OPTIMAL ACCESS PROPERTY, THE NUMBER OF SYSTEMATIC
NODES WITH THE OPTIMAL UPDATE PROPERTY AND THE NUMBER OF SYSTEMATIC NODES WITH BOTH THE OPTIMAL ACCESS PROPERTY AND THE

OPTIMAL UPDATE PROPERTY RESPECTIVELY, AND q DENOTES THE SIZE OF THE FINITE FIELD REQUIRED.

New New New New The Zigzag The Long MDS
codeC1 codeC2 codeC3 codeC4 code [18] code [20]

k 3m 2m 2m 2m m+ 1 3m
kA m m m 0 m+ 1 2m
kU m m 2m 2m m+ 1 m

kA&U m m m 0 m+ 1 0
q ≥ 2m+ 1 ≥ m+ 1 ≥ 2m + 1 ≥ m+ 1 3 ≥ 2m + 1

assumeSi,j = Si for all 1 ≤ i ≤ k, 1 ≤ j 6= i ≤ k + 2. Then
during the repair process of a nodei, one downloadsSifj
from each node1 ≤ j 6= i ≤ k + 2, and eventually gets the
following system of linear equations
(

Sifk+1

Sifk+2

)

=

(
Si

SiAi

)

fi
︸ ︷︷ ︸

useful data

+

k∑

j=1,j 6=i

(
Si

SiAj

)

fj
︸ ︷︷ ︸

interference by fj

.

Remark 1. A (k + 2, k) MSR code withfk+1 = f1 + f2 +
· · ·+ fk andSi,j = Si can be viewed as a kind of canonical
form [5], [12], [18], [19], [20]. Firstly, if fk+1 = B1f1 +
B2f2 + · · ·+Bkfk for some nonsingularα ∗ α matricesBj ,
1 ≤ j ≤ k, then the code can be equivalently converted to the
following code

Systematic node Systematic data
1 f ′

1
...

...
k f ′

k

Parity node Parity data
1 f ′

k+1 = f ′
1 + · · ·+ f ′

k

2 f ′
k+2 = A′

1f
′
1 + · · ·+A′

kf
′
k

where f ′
i = Bifi and A′

i = AiB
−1
i for any 1 ≤ i ≤ k

by using repair matricesS′
i,j = Si,jB

−1
j , 1 ≤ j 6= i ≤

k, S′
i,k+1 = Si,k+1 and S′

i,k+2 = Si,k+2. Secondly, as shown
in [19], such a (k + 2, k) MSR code can be transformed to
a (k + 1, k − 1) MSR code in canonical form. Thus we only
consider MSR codes in canonical form since the difference
between the numbers of their nodesk + 2 and k + 1 is
negligible.

Then, the optimal repair property needs to cancel all the
interference terms by R2 and then recover the original datafi
by R3 [20]:

R2. rank

((
Si

SiAj

))

= α
2 for any 1 ≤ j 6= i ≤ k.

R3. rank

((
Si

SiAi

))

= α for all 1 ≤ i ≤ k.

The repair procedure firstly computesSifj , 1 ≤ j 6=
i ≤ k + 2, and then transmits the result to the newcomer
storage node. A systematic node is said to have theoptimal
access propertyif the computation within the surviving nodes
is not required during the repair procedure [20]. For some
applications such as data centers, the access to information
is more costly than the transmission, which may cause a

bottleneck if the amount of the former is larger than that of
latter [19]. Hence, an MSR code with more systematic nodes
possessing the optimal access property is preferred. It is easy
to verify that theith systematic node with the optimal access
property requires

R4. Each row ofSi has only one nonzero element, which
equals to1.

In addition, when a symbol in a systematic node is rewritten,if
only the symbol itself and one symbol at each parity node need
an update, then the systematic node is said to have theoptimal
update property, which achieves the minimum reading/writing
during writing of information [18]. Therefore, an MSR code
with more systematic nodes possessing the optimal update
property is desired especially in a system where updates are
frequent. In fact, theith systematic node with the optimal
update property is equivalent to that every parity element is
a linear combination of exactly one element from theith
systematic node, i.e.,

R5. Each column ofAi has only one nonzero element.

Usually, it is favorable for a code to have more systematic
nodes for a givenα. Recall that the numberk of systematic
nodes of the Zigzag code is much less than that of the long
MDS code. In this paper, we therefore mainly aim at increasing
k of the Zigzag code. According to R1, R4 and R5, however, a
systematic node has the optimal update property if and only if
its coding matrixAi is either a diagonal matrix or product of
a diagonal matrix and a permutation matrix; a systematic node
has the optimal access property if and only if its repair matrix
Si is an α

2 ×α submatrix of anα×α permutation matrix. The
number of distinct such matrices satisfying R2 and R3 appears
to be greatly limited. In [18], [19], it is shown that the largest
number of systematic nodes of an MSR code with the optimal
access property (resp. both the optimal access property and
the optimal update property) is2 log2 α (resp.log2 α+ 1).

In what follows, we introduce two useful tools: invariant
subspaces and partition sets, which enable us to construct our
generic coding matrices and repair matrices satisfying R2 and
R3.

A. Invariant subspaces

In this subsection, we determine the coding matrices by
using invariant subspaces.

For a matrixA, denote by span(A) the vector space spanned
by its rows, obviously dim(span(A)) = rank(A). Recall that
Si is a matrix of rankα2 . Then, R2 implies that span(SiAj) ⊆
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span(Si). Moreover, it follows from R1 thatAj is of full rank
α and consequently we have rank(SiAj) = rank(Si). Hence,
dim(span(SiAj)) = dim(span(Si)), i.e.,

span(SiAj) = span(Si) (2)

which indicates that span(Si) is an invariant subspaceof
vector space span(Aj) = F

α
q with respect to the linear

transformationT defined by

T (x) = xAj , for anyx ∈ F
α
q . (3)

Firstly let us look at a simple example. LetS =

(
e0
e1

)

wheree0, e1 are two arbitrary row vectors of lengthα over
Fq, and they are linearly independent. Then by (2), span(S) is
an invariant subspace of span(A) with respect toT : x 7→ xA
if and only if
(

e0
e1

)

A =

(
ae0 + be1
ce0 + de1

)

andad 6= bc, a, b, c, d ∈ Fq.

In details, there are 7 cases as below:

Case 1:b = c = 0 anda, d 6= 0,

Case 2:a = d = 0 andb, c 6= 0,

Case 3:b = 0 anda, c, d 6= 0,

Case 4:a = 0 andb, c, d 6= 0,

Case 5:a, b, c, d 6= 0 andad 6= bc,

Case 6:c = 0 anda, b, d 6= 0,

Case 7:d = 0 anda, b, c 6= 0.

Note that if we interchangee0 with e1, Case 3 (respectively,
4) will become Case 6 (respectively, 7). Besides, the coding
matrix corresponding to Case 5 is a summation of two coding
matrices corresponding to Cases 3 and 4, which would cause
higher update complexity for its corresponding systematic
node than that for the latter two. Therefore, we mainly consider
Cases 1-4. Specifically, we say that the pair(e0, e1) with
respect toA is

• type I if

(
e0
e1

)

A =

(
ae0
de1

)

,

• type II if

(
e0
e1

)

A =

(
be1
ce0

)

,

• type III if

(
e0
e1

)

A =

(
ae0

ce0 + de1

)

,

• type IV if

(
e0
e1

)

A =

(
be1

ce0 + de1

)

.

Now we extend the analysis to the general case. From now
on, let {e0, · · · , e2m−1} be the standard basis ofFα

q where
α = 2m, i.e., ith basis vector

ei = (0, · · · , 0, 1, 0, · · · , 0), 0 ≤ i ≤ 2m − 1,

with only the ith entry being nonzero. Divide the basis into
2m−1 pairs, i.e.,

(ei1 , ej1), (ei2 , ej2), · · · , (ei2m−1
, ej

2m−1
), (4)

where 0 ≤ i1 < i2 < · · · < i2m−1 ≤ 2m − 1, 0 ≤ j1 <
j2 < · · · < j2m−1 ≤ 2m − 1 and is 6= jt for any 1 ≤ s, t ≤

2m−1. For simplicity, assume that any pair forms an invariant
subspace ofFα

q with respect toT and all the pairs are of the
same type, i.e.,












ei1
...

ei
2m−1

ej1
...

ej
2m−1













A =













ai1ei1 + bj1ej1
...

ai
2m−1

ei
2m−1

+ bj
2m−1

ej
2m−1

ci1ei1 + dj1ej1
...

ci
2m−1

ei
2m−1

+ dj
2m−1

ej
2m−1













where ai, bi, ci and di are some constants, then the coding
matrixA can be uniquely determined. Accordingly, we callA
type I, II, III, IV coding matrix respectively. By convenience,
write

(
V0

V1

)

A =

(
aV0 + bV1

cV0 + dV1

)

wherea, b, c andd can be coefficients inFq or α
2 ×

α
2 diagonal

matrices overFq and

V0 =






ei1
...

ei
2m−1




 , V1 =






ej1
...

ej
2m−1




 , (5)

and still useV0 andV1 to represent their corresponding sets
{ei1 , ei2 , · · · , ei2m−1

} and{ej1 , ej2 , · · · , ej2m−1
} respectively

in the following sections if the context is clear.

B. Partition of the basis{e0, · · · , e2m−1}

In this subsection, we present a class of partition sets of the
basis ofFα

q to obtainV0 andV1 in (5) , which had been used
in [20], and will be crucial to our constructions as well.

Assume that there arem partition sets of the basis ofFα
q

as follows

{e0, e1, · · · , e2m−1} = V1,0 ∪ V1,1 = · · · = Vm,0 ∪ Vm,1 (6)

such that

|Vi1,j1 ∩ Vi2,j2 ∩ · · · ∩ Vil,jl | = 2m−l (7)

for any 1 ≤ i1 < i2 < · · · < il ≤ m, jt = 0, 1, 1 ≤ t ≤
l ≤ m. It should be noted that (7) is useful when designing
the code satisfying R2 and R3. Clearly,|V1,j1 ∩ V2,j2 ∩ · · · ∩
Vm,jm | = 1 for any j1, j2, · · · , jm ∈ {0, 1} by (7). Without
loss of generality, we can set

{ej} = {e(j1,j2,··· ,jm)} = V1,j1 ∩ V2,j2 ∩ · · · ∩ Vm,jm ,

where(j1, j2, · · · , jm) is the binary expansion of the integer
j. Recursively applying (7) tol = m− 1, · · · , 1, we then get

Vi,t = {ej |ji = t} (8)

for 1 ≤ i ≤ m and t = 0, 1. Table III gives two examples of
the set partitions that satisfy (6) and (7).

Based on them partition sets in (8), define

Vi+sm,t = Vi,t, i = 1, 2, · · · ,m, s ∈ N
∗, t = 0, 1. (9)



5

TABLE III
(A) AND (B) DENOTE THEm SET PARTITIONS OFV THAT SATISFY (6) AND

(7) FORm = 2 AND m = 3, RESPECTIVELY.

i 1 2 i 1 2

Vi,0
e0 e0 Vi,1

e2 e1
e1 e2 e3 e3

(A)

i 1 2 3 i 1 2 3

Vi,0

e0 e0 e0

Vi,1

e4 e2 e1
e1 e1 e2 e5 e3 e3
e2 e4 e4 e6 e6 e5
e3 e5 e6 e7 e7 e7

(B)

For any 1 ≤ i1, i2 ≤ sm and i1 6≡ i2 modm, define
Vi1,i2,j1,j2 = Vi2,i1,j2,j1 = Vi1,j1 ∩ Vi2,j2 for j1, j2 = 0, 1.
Then

Vi1,j1 = (Vi1,j1 ∩ Vi2,0)
⋃

(Vi1,j1 ∩ Vi2,1)

= Vi1,i2,j1,0 ∪ Vi1,i2,j1,1, (10)

and thus we have the following results, which will be fre-
quently used in the sequel.

Lemma 1. For any i, j ≥ 1 and i 6≡ j modm, we have

(i)

rank(Ai −Aj)

= rank

((
Vi,0

Vi,1

)

(Ai −Aj)

)

= rank













Vi,j,0,0

Vi,j,0,1

Vi,j,1,0

Vi,j,1,1







(Ai −Aj)







,

(ii)

rank

((
Vi,0 + uiVi,1

(Vi,0 + uiVi,1)Aj

))

= rank













Vi,j,0,0 + uiVi,j,1,0

Vi,j,0,1 + uiVi,j,1,1

(Vi,j,0,0 + uiVi,j,1,0)Aj

(Vi,j,0,1 + uiVi,j,1,1)Aj













whereui ∈ Fq.

Proof: The proof is given in Appendix.

III. G ENERIC CONSTRUCTION OF CODES WITH2 PARITY

NODES

In this section, we construct MSR codes with parameters
n = k + 2 and k = tm, wheret,m are some integers and
α = 2m, with the coding matrices being the types defined in
subsection 2.1.

Generic Construction: The (n = k + 2, k) code C has
α × α coding matricesAi and α

2 × α repair matricesSi for
1 ≤ i ≤ k, such that

1)

(
Vi,0

Vi,1

)

Ai =

(
aiVi,0 + biVi,1

ciVi,0 + diVi,1

)

for 1 ≤ i ≤ k,

2) Si = Vi,1 or Vi,0 + tiVi,1 for 1 ≤ i ≤ k,

whereai, bi, ci, di andti can be coefficients inFq or α
2 × α

2
diagonal matrices overFq such that

(
aiVi,0 + biVi,1

ciVi,0 + diVi,1

)

is invertible for1 ≤ i ≤ k.
As for Generic Construction, we have the following propo-

sition.

Proposition 1. For a (k + 2, k) MSR code generated by the
generic construction,

(i) Si 6= Sj for any 1 ≤ i 6= j ≤ k;
(ii) There do not exist four repair matricesSj1 , Sj2 , Sj3 and

Sj4 such thatSjl = Vi,0 + tlVi,1, 1 ≤ l ≤ 3, andSj4 =
Vi,1 or Vi,0 + t4Vi,1, for an integer1 ≤ i ≤ m where
j1, j2, j3, j4 are four distinct integers in{1, · · · , k} and
t1, t2, t3, t4 are four distinct elements or matrices over
Fq;

Proof: The proof is given in Appendix.
According to Proposition 1, in a(k + 2, k) MSR code

generated by the generic construction, there are at most three
repair matrices of the formSl = Vi,1 or Vi,0 + tlVi,1, each
appearing at most once, for any given1 ≤ i ≤ m, i.e., the
number of systematic nodes is bounded byk ≤ 3m. In the
following, through choosing some appropriate coding matrices
in our framework, several(k+2, k) MSR codes,k ≤ 3m, with
the optimal access property and/or the optimal update property
are obtained. This generates not only the known constructions
such as the Zigzag code (except for one node) [18] and the
long MDS code [20], but also some new codes.

A. Reinterpretation of known constructions

Based on coding matrices of type II, construct an(n =
k + 2, k = m) code by

•

(
Vi,0

Vi,1

)

Ai =

(
Λi,1Vi,1

Λi,0Vi,0

)

for 1 ≤ i ≤ m,

• Si = Vi,0, for 1 ≤ i ≤ m,

whereΛi,0 and Λi,1 are α
2 × α

2 diagonal matrices overFq.
In fact, it is a modification of the Zigzag code by deleting its
first node [18]. The modified Zigzag code has almost the same
properties as that of the Zigzag code, i.e., all the systematic
nodes of the modified Zigzag code possess both the optimal
access property and the optimal update property.

Through a combination of coding matrices of types I , III
and VI, the long MDS code [20] can also be constructed by

•

(
Vi,0

Vi,1

)

Ai

=







(
λi,0Vi,0 + kiVi,1

λi,1Vi,1

)

, if 1 ≤ i ≤ m

(
λi,0Vi,0

λi,1Vi,1 + kiVi,0

)

, if m+ 1 ≤ i ≤ 2m

(
λi,0Vi,0

λi,1Vi,1

)

, if 2m+ 1 ≤ i ≤ 3m
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• Si =







Vi,0, if 1 ≤ i ≤ m
Vi,1, if m+ 1 ≤ i ≤ 2m
Vi,0 + Vi,1, if 2m+ 1 ≤ i ≤ 3m

whereλi,0, λi,1 ∈ F
∗
q , kj = λj,0−λj,1 andkj+m = λj+m,1−

λj+m,0 for all 1 ≤ i ≤ k and1 ≤ j ≤ m.
Moreover, it is possible to chooseΛi,s andλj,s respectively

in the constructions of the modified Zigzag code and the long
MDS code [20] such that the conditions R1-R5 are satisfied.

B. New codeC1

Using the coding matrices of types II and III, we construct
the first new code.

Construction 1. The (n = k + 2, k = 3m) code C1 has
α × α coding matricesAi and α

2 × α repair matricesSi for
1 ≤ i ≤ k, such that

1)

(
Vi,0

Vi,1

)

Ai

=







(
λi,1Vi,1

λi,0Vi,0

)

, if 1 ≤ i ≤ m

(
λi,0Vi,0

λi,1Vi,1 + ki−mVi,0

)

, if m+ 1 ≤ i ≤ 3m

2) Si =

{
Vi,0, if 1 ≤ i ≤ m
Vi,0 + ti−mVi,1, if m+ 1 ≤ i ≤ 3m

whereλi,0, λi,1, kj , tj ∈ F
∗
q for all 1 ≤ i ≤ k and 1 ≤ j ≤

2m.

Theorem 1. C1 is a code with the MDS property if and only
if

(i) λi,0λi,1 6= λj,0λj,1 for any 1 ≤ i 6= j ≤ m,

(ii)

{
λi,s 6= λj,s, if j = i +m
λi,s 6= λj,t, if j 6= i +m

for anym+ 1 ≤ i < j ≤ 3m and s, t = 0, 1,

(iii)

{
λi,1(λi,0 − kj−m) 6= λj,0λj,1, if j = i+m, i+ 2m
λi,0λi,1 6= λ2

j,0, λ
2
j,1, otherwise

for any 1 ≤ i ≤ m andm+ 1 ≤ j ≤ 3m.

Proof: The proof is given in Appendix.

Theorem 2. C1 is a code with the optimal repair property if
and only if

(i) λi,1 = t2iλi,0 and ti = −ti+m for all 1 ≤ i ≤ m,
(ii) λi,1 = λi,0 + tiki−m and λi+m,1 = λi+m,0 + ti−mki

for all m+ 1 ≤ i ≤ 2m,
(iii) Fq is of odd characteristic.

Proof: The proof is given in Appendix.

Theorem 3. The firstm systematic nodes ofC1 have both the
optimal access property and the optimal update property.

Proof: The proof is given in Appendix.
According to item (ii) of Theorem 1 and items (ii) and (iii)

of Theorem 2 (which indicateλi,0 6= λi,1 for any m + 1 ≤
i ≤ 3m), a finite fieldFq of odd characteristic with at least
2m pairwise distinct nonzero elements is necessary to ensure
the codeC1 to be an MSR code. In the following theorem, a
class of concrete coefficients for codeC1 is given.

Theorem 4. The codeC1 in Construction 1 is an MSR code
if

ki = ki+m = −2γi, λi,0 = λi,1 = λi+m,0 = λi+2m,1 = γi,

λi+m,1 = λi+2m,0 = −γi, ti = −1, ti+m = 1

for 1 ≤ i ≤ m, whereγ is a primitive element of finite field
Fq of odd characteristic withq ≥ 2m+ 1. In particular, q =
min{pi ≥ 2m+ 1|p is an odd prime, i ≥ 1} is the optimal
alphabet size forC1 to be an MSR code.

Proof: The proof is given in Appendix.

Remark 2. For a given storage capacityα = 2m per node,
our codeC1 and the long MDS code in [20] have the biggest
size 3m among all the MSR codes with high rate. Unlike
the long MDS code,C1 has m systematic nodes possessing
the optimal access property and the optimal update property
simultaneously. However,C1 may require a larger alphabet
size than that of the long MDS code in certain situations since
only the finite field of odd characteristic is feasible for the
construction ofC1.

Finally, an illustrative example of codeC1 is given.

Example 1. For m = 2, the coding matrices and repair
matrices of the codeC1 are as follows:

A1 =







2e2
2e3
2e0
2e1







, A2 =







4e1
4e0
4e3
4e2







,

A3 =







2e0
2e1

e0 + 3e2
e1 + 3e3







, A4 =







4e0
2e0 + e1

4e2
2e2 + e3







,

A5 =







3e0
3e1

e0 + 2e2
e1 + 2e3







, A6 =







e0
2e0 + 4e1

e2
2e2 + 4e3







,

S1 =

(
e0
e1

)

, S2 =

(
e0
e2

)

, S3 =

(
e0 − e2
e1 − e3

)

,

S4 =

(
e0 − e1
e2 − e3

)

, S5 =

(
e0 + e2
e1 + e3

)

, S6 =

(
e0 + e1
e2 + e3

)

where2 is chosen as a primitive element ofF5 and all the
calculations are done overF5. It can be easily verified that R1-
R3 hold and R4-R5 hold for1 ≤ i ≤ m, which are consistent
with Theorems 4 and 3, respectively.

C. New codeC2

Deleting the lastm systematic nodes inC1, we can get the
second new code.

Construction 2. The (n = k + 2, k = 2m) code C2 has
α× α coding matricesAi and α

2 × α repair matricesSi for
1 ≤ i ≤ k, such that

1)

(
Vi,0

Vi,1

)

Ai
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=







(
λi,1Vi,1

λi,0Vi,0

)

, if 1 ≤ i ≤ m

(
λi,0Vi,0

λi,1Vi,1 + ki−mVi,0

)

, if m+ 1 ≤ i ≤ 2m

2)

(
Vi,0

Vi,1

)

Ai

=







(
λi,1Vi,1

λi,0Vi,0

)

, if 1 ≤ i ≤ m

(
λi,0Vi,0

λi,1Vi,1 + ki−mVi,0

)

, if m+ 1 ≤ i ≤ 2m

3) Si =

{
Vi,0, if 1 ≤ i ≤ m
Vi,0 + ti−mVi,1, if m+ 1 ≤ i ≤ 2m

whereλi,0, λi,1, kj , tj ∈ F
∗
q for all 1 ≤ i ≤ k and1 ≤ j ≤ m.

Hereafter we state the results ofC2 without proofs since
they are included in those given in the last subsection.

Theorem 5. C2 is a code with the MDS property if and only
if

(i) λi,0λi,1 6= λj,0λj,1 for any 1 ≤ i 6= j ≤ m,
(ii) λi,s 6= λj,t for anym+1 ≤ i 6= j ≤ 2m ands, t = 0, 1,

(iii)

{
λi,1(λi,0 − ki) 6= λj,0λj,1, if j = i+m
λi,0λi,1 6= λ2

j,0, λ
2
j,1, if j 6= i+m

for any 1 ≤ i ≤ m andm+ 1 ≤ j ≤ 2m.

Theorem 6. C2 is a code with the optimal repair property if
and only if

(i) λi,1 = t2iλi,0 for all 1 ≤ i ≤ m,
(ii) λi,1 6= λi,0 + ti−mki−m for anym+ 1 ≤ i ≤ 2m.

Theorem 7. The firstm systematic nodes ofC2 have both the
optimal access property and the optimal update property.

According to item (i) of Theorem 5 and item (i) of Theorem
6, a finite fieldFq with at leastm pairwise distinct nonzero
square elements is necessary to ensure the codeC2 to be an
MSR code. Letq = pi wherep is a prime andi is a positive
integer. It is well known that all the nonzero elements inFq are
square elements forp = 2 but only half the nonzero elements
in Fq are square elements forp > 2. Then, the MSR code
C2 requiresq ≥ m + 1 for p = 2 or q ≥ 2m + 1 for p >
2. Straightforwardly, there exits a positive integeri such that
q = 2i lies betweenm + 1 and2m. That is, a finite field of
characteristic 2 is more suitable to construct the MSR code
C2. In the following theorem, a class of concrete coefficients
for codeC2 is given.

Theorem 8. The codeC2 in Construction 2 is an MSR code
if

λi,0 = λi,1 = λi+m,0 = λi+m,1 = γi, and ti = ki = 1

for all 1 ≤ i ≤ m, whereγ is a primitive element of finite
field Fq of characteristic 2 withq ≥ m + 1. In particular,
q = min{2i ≥ m+ 1|i ≥ 1} is the optimal alphabet size for
C2 to be an MSR code.

An illustrative example of codeC2 is given as follows.

Example 2. For m = 3, the coding matrices and repair

matrices of the codeC2 are as follows:

A1 =















γe4
γe5
γe6
γe7
γe0
γe1
γe2
γe3















, A2 =















γ2e2
γ2e3
γ2e0
γ2e1
γ2e6
γ2e7
γ2e4
γ2e5















,

A3 =















e1
e0
e3
e2
e5
e4
e7
e6















, A4 =















γe0
γe1
γe2
γe3
γe4 + e0
γe5 + e1
γe6 + e2
γe7 + e3















,

A5 =















γ2e0
γ2e1
γ2e2 + e0
γ2e3 + e1
γ2e4
γ2e5
γ2e6 + e4
γ2e7 + e5















, A6 =















e0
e1 + e0
e2
e3 + e2
e4
e5 + e4
e6
e7 + e6















,

S1 =







e0
e1
e2
e3







, S2 =







e0
e1
e4
e5







,

S3 =







e0
e2
e4
e6







, S4 =







e0 + e4
e1 + e5
e2 + e6
e3 + e7







,

S5 =







e0 + e2
e1 + e3
e4 + e6
e5 + e7







, S6 =







e0 + e1
e2 + e3
e4 + e5
e6 + e7







whereγ is chosen as a primitive element ofF22 and all the
calculations are done overF22 . It can be verified that R1-R3
hold and R4-R5 hold for1 ≤ i ≤ m, which are consistent
with Theorems 8 and 7, respectively.

D. New CodeC3
By means of combination of coding matrices of types I and

II, we propose the third new code.

Construction 3. The (n = k + 2, k = 2m) code C3 has
α× α coding matricesAi and α

2 × α repair matricesSi for
1 ≤ i ≤ k, such that

1)

(
Vi,0

Vi,1

)

Ai =







(
λi,1Vi,1

λi,0Vi,0

)

, if 1 ≤ i ≤ m

(
λi,0Vi,0

λi,1Vi,1

)

, if m+ 1 ≤ i ≤ 2m
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2) Si =

{
Vi,0, if 1 ≤ i ≤ m
Vi,0 + ti−mVi,1, if m+ 1 ≤ i ≤ 2m

whereλi,0, λi,1, tj ∈ F
∗
q for all 1 ≤ i ≤ k and 1 ≤ j ≤ m.

Theorem 9. C3 is a code with the MDS property if and only
if

(i) λi,0λi,1 6= λj,0λj,1 for any 1 ≤ i 6= j ≤ m,
(ii) λi,s 6= λj,t for any m + 1 ≤ i 6= j ≤ 2m and s, t = 0

or 1,

(iii) λi,0λi,1 6=

{
λj,0λj,1, if j = i+m
λ2
j,0, λ

2
j,1, if j 6= i+m

for any 1 ≤ i ≤ m andm+ 1 ≤ j ≤ 2m.

Proof: The proof is given in Appendix.

Theorem 10. C3 is a code with the optimal repair property if
and only if

(i) λi,1 = t2iλi,0 for all 1 ≤ i ≤ m,
(ii) λi,0 6= λi,1 for anym+ 1 ≤ i ≤ 2m.

Proof: The proof is given in Appendix.

Theorem 11. The2m systematic nodes ofC3 have the optimal
update property and the firstm nodes have the optimal access
property.

According to item (ii) of Theorem 9 and item (ii) of
Theorem 10, a finite fieldFq with at least2m pairwise distinct
nonzero elements is required to guarantee the codeC3 to be
an MSR code. Specifically, overFq with q ≥ 2m+1, we can
give a class of concrete coefficients for codeC3 as follows.

Theorem 12. The codeC3 in Construction 3 is an MSR code
if

λi,0 = λi,1 = λi+m,0 = γi, λi+m,1 = γ⌊ q

2
⌋+i, and ti = 1

for all 1 ≤ i ≤ m, whereγ is a primitive element ofFq

with q ≥ 2m + 1. In particular, q = min{pi ≥ 2m +
1|p is a prime, i ≥ 1} is the optimal alphabet size forC3
to be an MSR code.

Proof: The proof is given in Appendix.
Finally to illustrate the construction of codeC3, we give an

example.

Example 3. For m = 2, the coding matrices and repair
matrices of the codeC3 are as follows:

A1 =







2e2
2e3
2e0
2e1







, A2 =







4e1
4e0
4e3
4e2







,

A3 =







2e0
2e1
3e2
3e3







, A4 =







4e0
e1
4e2
e3







,

S1 =

(
e0
e1

)

, S2 =

(
e0
e2

)

,

S3 =

(
e0 + e2
e1 + e3

)

, S4 =

(
e0 + e1
e2 + e3

)

,

where2 is chosen as a primitive element ofF5 and all the
calculations are done overF5. It can be easily verified that
R1-R3 hold and R4 holds for1 ≤ i ≤ m and R5 holds for
1 ≤ i ≤ 2m, which are consistent with Theorems 12 and
11, respectively. Moreover, this example can be illustrated in
another way as in Table IV.

TABLE IV
COLUMNS 1, 2, 3, 4 ARE SYSTEMATIC NODES AND COLUMNSR AND Z

ARE PARITY NODES. EACH ELEMENT IN COLUMN R IS A LINEAR

COMBINATION OF THE SYSTEMATIC ELEMENTS IN THE SAME ROW, WHILE
EACH ELEMENT IN COLUMN Z IS A LINEAR COMBINATION OF THE

SYSTEMATIC ELEMENTS WITH THE SAME SYMBOL. FOR INSTANCE, THE

FIRST ELEMENT IN COLUMN R IS A LINEAR COMBINATION OF THE
ELEMENTS IN THE FIRST ROW AND IN COLUMNS1,2,3AND 4, AND THE ♣

IN COLUMN Z IS A LINEAR COMBINATION OF ALL THE ♣ ELEMENTS IN

COLUMNS 1,2,3AND 4.

1 2 3 4 R Z
0 ♠ ♥ ♣ ♣ ♣

1 ♦ ♣ ♥ ♥ ♥

2 ♣ ♦ ♠ ♠ ♠

3 ♥ ♠ ♦ ♦ ♦

E. New codeC4
Based on the coding matrices of type II, we can present the

fourth new code.

Construction 4. The (n = k + 2, k = 2m) code C4 has
α× α coding matricesAi and α

2 × α repair matricesSi for
1 ≤ i ≤ k, such that

1)

(
Vi,0

Vi,1

)

Ai =

(
λi,1Vi,1

λi,0Vi,0

)

for 1 ≤ i ≤ k,

2) Si = Vi,0 + tiVi,1 for 1 ≤ i ≤ k,
whereλi,0, λi,1, ti ∈ F

∗
q for all 1 ≤ i ≤ k.

Theorem 13. C4 is a code with the MDS property if and only
if

(i) λi,0λi,1 6= λj,0λj,1 for any 1 ≤ i < j ≤ k and i 6=
j −m,

(ii) λi,s 6= λi+m,s for any 1 ≤ i ≤ m and s = 0, 1.

Proof: The proof is given in Appendix.

Theorem 14. C4 is a code with the optimal repair property if
and only if

(i) λi,1 = t2i+mλi,0 andλi+m,1 = t2iλi+m,0 for all 1 ≤ i ≤
m,

(ii) λi,1 6= t2i λi,0 for any 1 ≤ i ≤ k.

Proof: The proof is given in Appendix.

Theorem 15. The2m systematic nodes ofC4 have the optimal
update property.

According to item (i) of Theorem 13 and item (i) of
Theorem 14, a finite fieldFq with at leastm pairwise distinct
nonzero square elements is necessary to ensure the codeC4 to
be an MSR code. Similar to codeC2, we have the following
concrete construction for the new codeC4.

Theorem 16. The codeC4 in Construction 4 is an MSR code
if

λi,0 = γi, λi,1 = γi+2, λi+m,0 = λi+m,1 = γi+1, ti = 1, ti+m = γ
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for all 1 ≤ i ≤ m, whereγ is a primitive element of finite
field Fq of characteristic 2 withq ≥ m + 1. In particular,
q = min{2i ≥ m+ 1|i ≥ 1} is the optimal alphabet size for
C4 to be an MSR code.

Remark 3. In [18], 2-duplication of the Zigzag code with
parameters(n = k + 2, k = 2m + 2) was proposed, which
has the similar coding matrices as those ofC4. Although the
number of systematic nodes ofC4 is two less than that of 2-
duplication of the Zigzag code, it has better repair bandwidth.
When repairing a failed systematic node, only half of the data
need to be downloaded from each surviving node ofC4, while
the fraction of the data need to be downloaded from each
surviving node of 2-duplication of the Zigzag code ism+1

2m+1 .

Finally to illustrate the construction of codeC4, we give an
example.

Example 4. For m = 2, the coding matrices and repair
matrices of the codeC4 are as follows:

A1 =







e2
e3
γe0
γe1







, A2 =







γe1
γ2e0
γe3
γ2e2







,

A3 =







γ2e2
γ2e3
γ2e0
γ2e1







, A4 =







e1
e0
e3
e2







,

S1 =

(
e0 + e2
e1 + e3

)

, S2 =

(
e0 + e1
e2 + e3

)

,

S3 =

(
e0 + γe2
e1 + γe3

)

, S4 =

(
e0 + γe1
e2 + γe3

)

whereγ is chosen as a primitive element ofF22 and all the
calculations are done overF22 . It can be verified that R1-R3
hold and R5 holds for1 ≤ i ≤ 2m, which are consistent with
Theorems 16 and 15, respectively. Moreover, this example can
be illustrated in another way as in the following table.

1 2 3 4 R Z
0 ♠ ♥ ♠ ♥ ♣
1 ♦ ♣ ♦ ♣ ♥
2 ♣ ♦ ♣ ♦ ♠
3 ♥ ♠ ♥ ♠ ♦

F. Other new codes

Combined coding matrices of types I and IV (with repair
matricesVi,0 + tiVi,1 andVi,0), types II and IV (with repair
matricesVi,0 + tiVi,1), types III and IV (with repair matrices
Vi,0+tiVi,1 andVi,0), types III, III and IV (with repair matrices
Vi,0 + tiVi,1, Vi,0 + ti+mVi,1 andVi,0), four new MSR codes
with k = 2m or 3m can be obtained, but the other properties
(eg. optimal access, optimal update, the size of the finite fields
required) are not as good as the aforementioned new codesC1,
C2, C3 andC4.

IV. CONCLUDING REMARKS

In this paper, we proposed a simple but generic framework
to construct high rate MSR codes with two parity nodes. The
framework can not only generate the modified Zigzag code and
the long MDS code, but also generate four new MSR codes
C1, C2 , C3 and C4 with the optimal access/update property.
The optimal sizes of the finite fields required for the four
codes were also determined. Notably, by these four new MSR
codes, we could get a tradeoff between the size of the finite
field and the number of systematic nodes (with the optimal
access/update property).

Our construction can be generalized to the(k+ r, k = 3m)
or (k + r, k = 2m) MSR code with arbitraryr > 2
parity nodes forα = rm. For this generalization, we firstly
need to partition the basis{e0, e1, · · · , erm−1} of F

α
q into

r subsetsV0, V1, · · · , Vr with equal sizes. Then, types I-IV
coding matrices can be similarly determined based on invariant
subspaces of dimensionr but with complicated forms. By
means of these matrices, we can obtain the generalized codes
C1, C2, C3 andC4 with r > 2 parity nodes, which still possesses
the optimal access/update property. The optimal alphabet size
q, however, is difficult to determine and hence will be left for
future research.

APPENDIX

Proof of Lemma 1: (i) According to (10), in ma-

trix notation, Vi,0, Vi,1 are equivalent to

(
Vi,j,0,0

Vi,j,0,1

)

and
(

Vi,j,1,0

Vi,j,1,1

)

under elementary row transformation, respec-

tively, i.e.,

(
Vi,0

Vi,1

)

is equivalent to







Vi,j,0,0

Vi,j,0,1

Vi,j,1,0

Vi,j,1,1







under

elementary row transformation. Thus

rank

((
Vi,0

Vi,1

))

= rank













Vi,j,0,0

Vi,j,0,1

Vi,j,1,0

Vi,j,1,1













.

Immediately, the assertion follows from the fact that the matrix(
Vi,0

Vi,1

)

is of full rank.

(ii) It follows from that the matrix

(
Vi,0 + uiVi,1

(Vi,0 + uiVi,1)Aj

)

is equivalent to







Vi,j,0,0 + uiVi,j,1,0

Vi,j,0,1 + uiVi,j,1,1

(Vi,j,0,0 + uiVi,j,1,0)Aj

(Vi,j,0,1 + uiVi,j,1,1)Aj







under elemen-

tary row transformation. �

Proof of Proposition 1: (i) It is obvious otherwise R2
and R3 can not be satisfied simultaneously for repair matrices
Si, Sj and coding matrixAi.

(ii) If there exist such four repair matrices, according to the
generic construction, then the coding matrixAj4 satisfies

(
Vi,0

Vi,1

)

Aj4 =

(
aVi,0 + bVi,1

cVi,0 + dVi,1

)
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wherea, b, c andd can be coefficients inFq or α
2 ×

α
2 diagonal

matrices overFq. Consider

rank

(
Vi,0 + tlVi,1

(Vi,0 + tlVi,1)Aj4

)

= rank

(
Vi,0 + tlVi,1

(a+ ctl)Vi,0 + (b + dtl)Vi,1

)

=
α

2
, l = 1, 2, 3.

Then we have that the equation

ct2 + (a− d)t− b = 0

has three distinct rootst = t1, t2 and t3, which is possible
only if b = c = 0 and a = d 6= 0, in this case,Aj4 is a
diagonal matrix, therefore

rank

(
Sj4

Sj4Aj4

)

=
α

2
for anySj4

and then R3 can not be satisfied. �

Proof of Theorem 1: C1 has the MDS property if and only if
R1 holds. Obviously,Ai is invertible for all1 ≤ i ≤ k since
λi,0, λi,1 6= 0. In what follows, by means of Lemma 1 we
establish the necessary and sufficient conditions of rank(Ai −
Aj) = α for any 1 ≤ i 6= j ≤ k in the following three cases.

Case 1: When1 ≤ i 6= j ≤ m,







Vi,j,0,0

Vi,j,0,1

Vi,j,1,0

Vi,j,1,1







(Ai −Aj) =







λi,1Vi,j,1,0 − λj,1Vi,j,0,1

λi,1Vi,j,1,1 − λj,0Vi,j,0,0

λi,0Vi,j,0,0 − λj,1Vi,j,1,1

λi,0Vi,j,0,1 − λj,0Vi,j,1,0







i.e., rank(Ai −Aj) = α ⇔ λi,0λi,1 6= λj,0λj,0.

Case 2: Whenm+ 1 ≤ i < j ≤ 3m, if j = i+m, by (9)

(
Vi,0

Vi,1

)

(Ai −Aj)

=

(
λi,0Vi,0

λi,1Vi,1 + ki−mVi,0

)

−

(
λj,0Vi,0

λj,1Vi,1 + kj−mVi,0

)

=

(
(λi,0 − λj,0)Vi,0

(λi,1 − λj,1)Vi,1 + (ki−m − kj−m)Vi,0

)

i.e., rank(Ai−Aj) = α ⇔ λi,s 6= λj,s for s = 0, 1; Otherwise,







Vi,j,0,0

Vi,j,0,1

Vi,j,1,0

Vi,j,1,1







(Ai −Aj)

=







(λi,0 − λj,0)Vi,j,0,0

(λi,0 − λj,1)Vi,j,0,1 − kj−mVi,j,0,0

(λi,1 − λj,0)Vi,j,1,0 + ki−mVi,j,0,0

(λi,1 − λj,1)Vi,j,1,1 + ki−mVi,j,0,1 − kj−mVi,j,1,0







i.e., rank(Ai −Aj) = α ⇔ λi,s 6= λj,t for s, t = 0, 1.

Case 3: When1 ≤ i ≤ m andm+1 ≤ j ≤ 3m, if j = i+m

or i+ 2m, according to (9)

(
Vi,0

Vi,1

)

(Ai −Aj)

=

(
λi,1Vi,1

λi,0Vi,0

)

−

(
λj,0Vi,0

λj,1Vi,1 + kj−mVi,0

)

=

(
λi,1Vi,1 − λj,0Vi,0

(λi,0 − kj−m)Vi,0 − λj,1Vi,1

)

,

i.e., rank(Ai − Aj) = α ⇔ λi,1(λi,0 − kj−m) 6= λj,0λj,1;
Otherwise,







Vi,j,0,0

Vi,j,0,1

Vi,j,1,0

Vi,j,1,1







(Ai −Aj)

=







λi,1Vi,j,1,0 − λj,0Vi,j,0,0

λi,1Vi,j,1,1 − λj,1Vi,j,0,1 − kj−mVi,j,0,0

λi,0Vi,j,0,0 − λj,0Vi,j,1,0

λi,0Vi,j,0,1 − λj,1Vi,j,1,1 − kj−mVi,j,1,0







i.e., rank(Ai −Aj) = α ⇔ λi,0λi,1 6= λ2
j,0, λ

2
j,1. �

Proof of Theorem 2: C1 is a code with the optimal repair
property if and only if R2 and R3 hold. Firstly, by means of
Lemma 1 we establish the necessary and sufficient conditions
for R2 according to the following three cases.

Case 1: For1 ≤ i ≤ m,

(a) When1 ≤ j 6= i ≤ m,

rank

((
Si

SiAj

))

= rank













Vi,j,0,0

Vi,j,0,1

Vi,j,0,0Aj

Vi,j,0,1Aj













= rank













Vi,j,0,0

Vi,j,0,1

λj,1Vi,j,0,1

λj,0Vi,j,0,0













= α/2,

(b) Whenm+1 ≤ j ≤ 3m, if j = i+m or i+2m, by (9)

rank

((
Si

SiAj

))

= rank

((
Vi,0

Vi,0Aj

))

= rank

((
Vj,0

λj,0Vj,0

))

= α/2;
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Otherwise,

rank

((
Si

SiAj

))

= rank













Vi,j,0,0

Vi,j,0,1

Vi,j,0,0Aj

Vi,j,0,1Aj













= rank













Vi,j,0,0

Vi,j,0,1

λj,0Vi,j,0,0

λj,1Vi,j,0,1 + kj−mVi,j,0,0













= α/2.

Case 2: Form+ 1 ≤ i ≤ 2m,

(a) When1 ≤ j ≤ m, if j = i−m, by (9)

rank

((
Si

SiAj

))

= rank

((
Vj,0 + tjVj,1

(Vj,0 + tjVj,1)Aj

))

= rank

((
Vj,0 + tjVj,1

λj,1Vj,1 + tjλj,0Vj,0

))

= α/2
⇔ λj,1 = t2jλj,0;

Otherwise,

rank

((
Si

SiAj

))

= rank













Vi,j,0,0 + ti−mVi,j,1,0

Vi,j,0,1 + ti−mVi,j,1,1

(Vi,j,0,0 + ti−mVi,j,1,0)Aj

(Vi,j,0,1 + ti−mVi,j,1,1)Aj













= rank













Vi,j,0,0 + ti−mVi,j,1,0

Vi,j,0,1 + ti−mVi,j,1,1

λj,1(Vi,j,0,1 + ti−mVi,j,1,1)
λj,0(Vi,j,0,0 + ti−mVi,j,1,0)













= α/2.

(b) Whenm+ 1 ≤ j 6= i ≤ 3m, if j = i+m, by (9)

rank

((

Si

SiAj

))

= rank

((

Vj,0 + ti−mVj,1

(Vj,0 + ti−mVj,1)Aj

))

= rank

((

Vj,0 + ti−mVj,1

(λj,0 + ti−mkj−m)Vj,0 + ti−mλj,1Vj,1

))

= α/2

⇔ λj,1 = λj,0 + ti−mkj−m

⇔ λi+m,1 = λi+m,0 + ti−mki;

Otherwise,

rank

((

Si

SiAj

))

= rank





















Vi,j,0,0 + ti−mVi,j,1,0

Vi,j,0,1 + ti−mVi,j,1,1

(Vi,j,0,0 + ti−mVi,j,1,0)Aj

(Vi,j,0,1 + ti−mVi,j,1,1)Aj





















= rank





























Vi,j,0,0 + ti−mVi,j,1,0

Vi,j,0,1 + ti−mVi,j,1,1

λj,0(Vi,j,0,0 + ti−mVi,j,1,0)

λj,1(Vi,j,0,1 + ti−mVi,j,1,1)

+kj−m(Vi,j,0,0 + ti−mVi,j,1,0)





























= α/2.

Case 3: For2m+ 1 ≤ i ≤ 3m, similarly to that of Case 2,

rank

((
Si

SiAj

))

= α/2 for 1 ≤ j 6= i ≤ 3m

⇔ λl,1 =

{
t2l+mλl,0, if 1 ≤ l ≤ m,
λl,0 + tlkl−m, if m+ 1 ≤ l ≤ 2m.

Combing all the cases above, we have that R2 holds if and
only if

λi,1 = t2i λi,0 for 1 ≤ i ≤ m,

t2i = t2i+m for 1 ≤ i ≤ m, (11)

and

λi,1 = λi,0 + tiki−m, λi+m,1 = λi+m,0 + ti−mki (12)

for m+ 1 ≤ i ≤ 2m.
Secondly, we determine the necessary and sufficient condi-

tions for R3. It is easy to verify that rank

((
Si

SiAi

))

= α

for 1 ≤ i ≤ m. For m+ 1 ≤ i ≤ 3m,

rank

((
Si

SiAi

))

= rank

((
Vi,0 + ti−mVi,1

(Vi,0 + ti−mVi,1)Ai

))

= rank

((
Vi,0 + ti−mVi,1

(λi,0 + ti−mki−m)Vi,0 + ti−mλi,1Vi,1

))

= α

⇔ λi,1 6= λi,0 + ti−mki−m,

which together with (12) givestj 6= tj+m for any1 ≤ j ≤ m,
and further, associated with (11) implies thattj = −tj+m

for all 1 ≤ j ≤ m and Fq should be a finite field of odd
characteristic. This finishes the proof. �

Proof of Theorem 3: It is easy to verify that R4 and R5
are satisfied for the firstm nodes due to (8) and the fact that
{e0, · · · , e2m−1} is the standard basis. �

Proof of Theorem 4: We only prove item (iii) of Theorem
1 hereafter since the other items of Theorems 1 and 2 can be
easily verified.

Given two integers1 ≤ i ≤ m andm + 1 ≤ j ≤ 3m, if
j ≡ i (mod m), then

λi,1(λi,0 − kj−m) = γi(γi + 2γi) 6= −γ2i = λj,0λj,1
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since4γi 6= 0; Otherwise, definej′ = j− lm wherelm+1 ≤
j ≤ (l + 1)m for 1 ≤ l ≤2, i.e., 1 ≤ j′ 6= i ≤ m, then we
have

λi,0λi,1 = γ2i 6= γ2j′ = λ2
j,s for s = 0, 1.

Thus, item (iii) of Theorem 1 is satisfied. �

Proof of Theorem 9: C3 has the MDS property if and only
if R1 holds. In what follows, we only prove it for the case that
1 ≤ i ≤ m,m+ 1 ≤ j ≤ 2m. The other cases can be proven
similarly as those of Cases 1-2 in the proof of Theorem 1.

When1 ≤ i ≤ m andm+ 1 ≤ j ≤ 2m, if j = i +m, by
(9) we have

(
Vi,0

Vi,1

)

(Ai −Aj) =

(
λi,1Vi,1 − λj,0Vi,0

λi,0Vi,0 − λj,1Vi,1

)

,

which together with Lemma 1 gives

rank(Ai −Aj) = α ⇔ λi,1λi,0 6= λj,0λj,1;

Otherwise,






Vi,j,0,0

Vi,j,0,1

Vi,j,1,0

Vi,j,1,1







(Ai −Aj) =







λi,1Vi,j,1,0 − λj,0Vi,j,0,0

λi,1Vi,j,1,1 − λj,1Vi,j,0,1

λi,0Vi,j,0,0 − λj,0Vi,j,1,0

λi,0Vi,j,0,1 − λj,1Vi,j,1,1







associated with Lemma 1, which implies that

rank(Ai −Aj) = α ⇔ λi,0λi,1 6= λ2
j,0, λ

2
j,1.

�

Proof of Theorem 10: C3 is a code with the optimal repair
property if and only if R2 and R3 hold. Form+1 ≤ i ≤ 2m,
we have

rank

((
Si

SiAi

))

= rank

((
Vi,0 + ti−mVi,1

λi,0Vi,0 + λi,1ti−mVi,1

))

= α

⇔ λi,0 6= λi,1.

The analysis for the remainder cases are omitted herein since
they are similar to those ofC1. �

Proof of Theorem 12: Since the other items of Theorems
9 and 10 can be easily satisfied, we only verify item (iii) of
Theorem 9 herein.

Given two integers1 ≤ i ≤ m and m + 1 ≤ j ≤ 2m,
definej′ = j−m. Obviously,1 ≤ j′ ≤ m. If j′ = i, we have
λi,0λi,1 = γ2i 6= γ⌊ q

2
⌋+2i = λj,0λj,1; Otherwise,

λ2
j,0

λi,0λi,1
=

γ2j′

γ2i
= γ2j′−2i 6= 1,

and

λ2
j,1

λi,0λi,1
= γ2⌊ q

2
⌋+2j′−2i =

{
γ2j′−2i, q odd

γ2j′−2i+1, q even
6= 1

where we use the facts that1 ≤ |2j′−2i+1| ≤ 2m−1 ≤ q−2
andγl = 1 if and only if l ≡ 0 (mod q − 1). Thus, item (iii)
of Theorem 9 is satisfied. �

Proof of Theorem 13: C4 has the MDS property if and only
if R1 holds.

When1 ≤ i < j ≤ k, if j 6= i +m, similarly as Case 1 in
the proof of Theorem 1, we have

rank(Ai −Aj) = α ⇔ λi,0λi,1 6= λj,0λj,1;

Otherwise, by (9) we have
(

Vi,0

Vi,1

)

(Ai −Aj) =

(
λi,1Vi,1

λi,0Vi,0

)

−

(
λj,1Vi,1

λj,0Vi,0

)

=

(
(λi,1 − λj,1)Vi,1

(λi,0 − λj,0)Vi,0

)

,

which together with Lemma 1 implies

rank(Ai −Aj) = α ⇔ λi,s 6= λj,s for s = 0, 1.

�

Proof of Theorem 14: C4 is a code with the optimal repair
property if and only if R2 and R3 hold.

For 1 ≤ i ≤ k, we have

rank

((
Si

SiAi

))

= rank

((
Vi,0 + tiVi,1

λi,1Vi,1 + tiλi,0Vi,0

))

= α

⇔ λi,1 6= t2iλi,0.

Similar to Case 2(a) in the proof of Theorem 2, we can get

rank

((
Si

SiAj

))

=
α

2
for any 1 ≤ i 6= j ≤ k

⇔ λi,1 = t2i+mλi,0, λi+m,1 = t2iλi+m,0 for all 1 ≤ i ≤ m.

�
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