A Framework of Constructions of Minimal Storage Regenerating Codes with the Optimal Access/Update Property

Jie Li, Xiaohu Tang, Member, IEEE and Udaya Parampalli, Senior Member, IEEE

Abstract

In this paper, we present a generic framework for constructing systematic minimum storage regenerating codes with two parity nodes based on the invariant subspace technique. Codes constructed in our framework not only contain some best known codes as special cases, but also include some new codes with key properties such as the optimal access property and the optimal update property. In particular, for a given storage capacity of an individual node, one of the new codes has the largest number of systematic nodes and two of the new codes have the largest number of systematic nodes with the optimal update property.

Index Terms-Distributed storage, high rate, invariant subspace, MSR code, optimal access, optimal update.

I. Introduction

DISTRIBUTED storage systems with high reliability have wide applications in large data centers, peer-to-peer storage systems such as OceanStore [14], Total Recall [1], DHash++ [7], and storage in wireless networks. To ensure reliability, the redundancy is crucial for these systems. A popular option to add redundancy is to employ erasure codes which can efficiently store data and protect against node failures. Examples of several distributed storage systems that employ erasure codes are Facebook's coded Hadoop, Google Colossus and Microsoft Azure [10].

Recently, a new class of erasure codes for distributed storage systems called minimum storage regenerating (MSR) codes was introduced in [8]. Consider a file of size $\mathcal{M}=k \alpha$ symbols stored across a distributed storage system with n nodes, each keeping α symbols, that deploys an MSR code by storing the source data on the first k nodes, called systematic nodes, and mixtures of the source data on the other $n-k$ nodes, termed

[^0]parity nodes. To provide reliability, MSR codes must possess two abilities:
(a) Reconstruction ability: In particular, an MSR code has the MDS property that any k out of the n nodes suffice to reconstruct the whole source data.
(b) Repair ability: In practical distributed storage systems, the most common failure is failure of a single node. For this scenario, to maintain redundancy one has to repair the failed node by downloading $\beta \leq \alpha$ symbols from each of any $d \geq k$ surviving nodes. The repair bandwidth γ is defined as the amount of data downloaded during the repair procedure, i.e., $\gamma=d \beta$. In [8], MSR codes are shown to have the optimal repair property for the following values:
\[

$$
\begin{equation*}
(\alpha, \gamma)=\left(\frac{\mathcal{M}}{k}, \frac{\mathcal{M} d}{k(d-k+1)}\right) \tag{1}
\end{equation*}
$$

\]

Up to now, constructions of MSR codes have attracted a lot of attention [2], [4], [5], [6], [12], [13], [15], [16], [17], [18], [20], [21]. However, many constructions have strict constraints on the parameters n, k, d. For example, $d \geq 2 k-2$ in [13], [15], [16], [17], which corresponds to low rate (i.e., $\frac{k}{n} \leq \frac{1}{2}$) regime. For high rate (i.e., $\frac{k}{n} \geq \frac{1}{2}$) regime, most known constructions are built on the concept of interference alignment, which was originally introduced in the context of wireless communication networks [11], [3], and was later exploited for distributed storage systems [21].

In contrast to other known constructions of high rate MSR codes, the Zigzag code proposed by Tamo et al. [18] is an MSR code exhibiting two additional interesting properties: the optimal access property and the optimal update property, which either does not need computing during the download phase of repair or minimizes the reading/writing during update. The Zigzag code works for arbitrary parameters n, k and $d=n-1$, and requires a small finite field size q, for example, $q=3$ for $n-k=2$. It seems that the only shortcoming of the Zigzag code is the storage α of individual nodes, i.e., $\alpha=r^{k-1}$ grows sharply with the increase of k where $r=n-k$. In parallel to [18], the construction of the Zigzag code has also been discovered by Cadambe et al. in [5] via subspace interference alignment. In [20], Wang et al. presented another MSR code, named long MDS code, that increases the number k of the systematic nodes to nearly three times that of the Zigzag code but still maintains two parity nodes and the same node capacity α. However, a larger finite field size is required and none of the systematic nodes possess
the optimal access property and the optimal update property simultaneously.

In the literature, there are mainly two repair types: exact repair and functional repair. Compared with the latter, exact repair is preferred since it does not incur additional significant system overhead by regenerating the exact replicas of the lost data in the failed node [9]. Unfortunately, except for the one in [12], all the known MSR codes of high rate, including the aforementioned Zigzag code and long MDS code, can only exactly repair all the systematic nodes optimally with respect to the bound in (1), whereas repair the parity node trivially by downloading the whole original file from all the systematic nodes. For simplicity, throughout this paper we say that such MSR codes possess the optimal repair property and omit that the property is only valid for systematic nodes. It should be noted that this kind of code is acceptable for a practical system due to two aspects: (1) The number of parity nodes is quite smaller compared to that of systematic nodes; (2) The failures of systematic nodes and parity nodes are different since the omission of some raw information would affect the information access time for the former [18].

In this paper, we focus on high rate MSR codes. Obviously, high rate implies a large value of k for fixed n. When $k=$ $n-1$, the repair bandwidth is the highest, i.e., $\gamma=\mathcal{M}$ by (11). Then, when $k=n-2>1$ and $d=n-1$ (which can reduce the repair bandwidth since γ is a decreasing function of d in (1)), MSR codes are of great interest because they can achieve the highest rate $\frac{k}{k+2}$ for $\gamma=(k+1) \alpha / 2<\mathcal{M}$. Thus, it is very desirable to construct MSR codes with two parity nodes for arbitrary number of systematic nodes k.

The main contribution of this paper is to present a simple but generic framework to construct MSR codes with two parity nodes based on the invariant subspace technique. Our construction not only contains the modified Zigzag code (the code obtained from the Zigzag code [18] by deleting its first node), and the long MDS code [20] as special cases, but also generates some new MSR codes. Specifically, based on the modified Zigzag code with m systematic nodes, we can obtain three new MSR codes by adding $2 m$ or m more systematic nodes. When adding $2 m$ more systematic nodes without the optimal access property and the optimal update property, we can construct new code \mathcal{C}_{1} over a finite field of size $q \geq 2 m+1$. When adding m more systematic nodes, we can make a choice of either a smaller finite field or new nodes having the optimal update complexity. For the former, the finite field size can be reduced to $q \geq m+1$, which results in new code \mathcal{C}_{2}. For the latter, the resulting new code \mathcal{C}_{3} still requires a finite field size $q \geq 2 m+1$. In addition, another new code \mathcal{C}_{4} which has the same number of systematic nodes and requires the same size of finite field as those of \mathcal{C}_{2} can be derived. All the systematic nodes of \mathcal{C}_{4} have the optimal update property but none of them have the optimal access property. In this sense, we provide four code constructions with different parameters that allows for trading-off between the size of the finite field and the number of systematic nodes (with the optimal access/update property). In particular, given an α, the code \mathcal{C}_{1} has the largest number of systematic nodes, while \mathcal{C}_{3} and \mathcal{C}_{4} have the largest number of systematic nodes with the
optimal update property. For comparison, the parameters of the new codes, the Zigzag code, and the long MDS code are listed in Table \square

The rest of this paper is organized as follows. Section II gives preliminaries about the necessary and sufficient conditions for an erasure code with two parity nodes to be an MSR code, and presents the special partition for a given basis. Section III proposes the generic construction, by which some known codes are reinterpreted and four new MSR codes with the optimal access/update property are derived. Finally, Section IV draws concluding remarks.

II. Preliminaries

Let q be a prime power, \mathbf{F}_{q} be the finite field with q elements, and \mathbf{F}_{q}^{l} be the vector space of dimension l over \mathbf{F}_{q}. For simplicity, throughout this paper we do not specifically distinguish the vector space spanned by row vectors or column vectors if the context is clear.

Assume that a file of size $\mathcal{M}=k \alpha$ denoted by the column vector $f \in \mathbf{F}_{q}^{k \alpha}$ is partitioned in k parts $f=\left[f_{1}^{T} f_{2}^{T} \cdots f_{k}^{T}\right]^{T}$, each of size α, where T denotes the transpose operator. We encode f using an $(n=k+2, k)$ MSR code \mathcal{C} and store it across k systematic and two parity storage nodes. Precisely, the first k (systematic) nodes store the file parts $f_{1}, f_{2}, \cdots, f_{k}$ in an uncoded form respectively, and the parity nodes store linear combinations of $f_{1}, f_{2}, \cdots, f_{k}$. Without loss of generality, it is assumed that the nodes $k+1$ and $k+2$ respectively store $f_{k+1}=f_{1}+f_{2}+\cdots+f_{k}$ and $f_{k+2}=\sum_{i=1}^{k} A_{i} f_{i}$ for some $\alpha \times \alpha$ matrices A_{1}, \cdots, A_{k} over \mathbf{F}_{q}, where the matrix A_{i} is called the coding matrix for the i th systematic node, $1 \leq i \leq k$. Table Π illustrates the structure of a $(k+2, k)$ MSR code.

TABLE II
Structure of A $(k+2, k)$ MSR CODE

Systematic node	Systematic data
1	f_{1}
\vdots	\vdots
k	f_{k}
Parity node	Parity data
1	$f_{k+1}=f_{1}+\cdots+f_{k}$
2	$f_{k+2}=A_{1} f_{1}+\cdots+A_{k} f_{k}$

Note that reconstruction of the original file demands that (i) A_{i} is invertible when connecting nodes belong to the set $\{1,2, \cdots, k+1\} \backslash\{i\}$ (or $\{1,2, \cdots, k, k+2\} \backslash\{i\}$), for any $1 \leq i \leq k$ and (ii) $A_{i}-A_{j}$ is invertible when connecting nodes belong to the set $\{1,2, \cdots, k+2\} \backslash\{i, j\}$, for any $1 \leq$ $i \neq j \leq k$. In other words, the MSR code \mathcal{C} with the MDS property requires [20]
R1. A_{i} and $A_{i}-A_{j}$ are all invertible for any $1 \leq j \neq i \leq k$.
As mentioned in the last section, d is assumed to be $n-1$ for minimizing the repair bandwidth. Then in order to repair a failed node, only half of data is downloaded from each surviving node. When a systematic node i fails, we download data $S_{i, j} f_{j}$ from node $j \neq i$ using an $\frac{\alpha}{2} \times \alpha$ matrix $S_{i, j}$ of rank $\frac{\alpha}{2}$, where $S_{i, j}$ is referred to as the repair matrix of the j th node for the i th systematic node. To simplify the repair strategy, we

TABLE I
COMPARISON BETWEEN THE NEW CODES AND SOME KNOWN CODES WITH TWO PARITY NODES AND $\alpha=2^{m}$, WHERE k, k_{A}, k_{U} AND $k_{A \& U}$ DENOTE THE NUMBER OF SYSTEMATIC NODES, THE NUMBER OF SYSTEMATIC NODES WITH THE OPTIMAL ACCESS PROPERTY, THE NUMBER OF SYSTEMATIC NODES WITH THE OPTIMAL UPDATE PROPERTY AND THE NUMBER OF SYSTEMATIC NODES WITH BOTH THE OPTIMAL ACCESS PROPERTY AND THE OPTIMAL UPDATE PROPERTY RESPECTIVELY, AND q DENOTES THE SIZE OF THE FINITE FIELD REQUIRED.

	New code \mathcal{C}_{1}	New code \mathcal{C}_{2}	New code \mathcal{C}_{3}	New code \mathcal{C}_{4}	The Zigzag code [18]	The Long MDS code [20]
k	$3 m$	$2 m$	$2 m$	$2 m$	$m+1$	$3 m$
k_{A}	m	m	m	0	$m+1$	$2 m$
k_{U}	m	m	$2 m$	$2 m$	$m+1$	m
$k_{A \& U}$	m	m	m	0	$m+1$	0
q	$\geq 2 m+1$	$\geq m+1$	$\geq 2 m+1$	$\geq m+1$	3	$\geq 2 m+1$

assume $S_{i, j}=S_{i}$ for all $1 \leq i \leq k, 1 \leq j \neq i \leq k+2$. Then during the repair process of a node i, one downloads $S_{i} f_{j}$ from each node $1 \leq j \neq i \leq k+2$, and eventually gets the following system of linear equations

$$
\binom{S_{i} f_{k+1}}{S_{i} f_{k+2}}=\underbrace{\binom{S_{i}}{S_{i} A_{i}} f_{i}}_{\text {useful data }}+\sum_{j=1, j \neq i}^{k} \underbrace{\binom{S_{i}}{S_{i} A_{j}} f_{j}}_{\text {interference by } f_{j}}
$$

Remark 1. $A(k+2, k)$ MSR code with $f_{k+1}=f_{1}+f_{2}+$ $\cdots+f_{k}$ and $S_{i, j}=S_{i}$ can be viewed as a kind of canonical form [5], [12], [18], [19], [20]. Firstly, if $f_{k+1}=B_{1} f_{1}+$ $B_{2} f_{2}+\cdots+B_{k} f_{k}$ for some nonsingular $\alpha * \alpha$ matrices B_{j}, $1 \leq j \leq k$, then the code can be equivalently converted to the following code

Systematic node	Systematic data
l	f_{1}^{\prime}
\vdots	\vdots
k	f_{k}^{\prime}
Parity node	Parity data
l	$f_{k+1}^{\prime}=f_{1}^{\prime}+\cdots+f_{k}^{\prime}$
2	$f_{k+2}^{\prime}=A_{1}^{\prime} f_{1}^{\prime}+\cdots+A_{k}^{\prime} f_{k}^{\prime}$

where $f_{i}^{\prime}=B_{i} f_{i}$ and $A_{i}^{\prime}=A_{i} B_{i}^{-1}$ for any $1 \leq i \leq k$ by using repair matrices $S_{i, j}^{\prime}=S_{i, j} B_{j}^{-1}, 1 \leq j \neq i \leq$ $k, S_{i, k+1}^{\prime}=S_{i, k+1}$ and $S_{i, k+2}^{\prime}=S_{i, k+2}$. Secondly, as shown in [19], such a $(k+2, k) M S R$ code can be transformed to a $(k+1, k-1)$ MSR code in canonical form. Thus we only consider MSR codes in canonical form since the difference between the numbers of their nodes $k+2$ and $k+1$ is negligible.

Then, the optimal repair property needs to cancel all the interference terms by R 2 and then recover the original data f_{i} by R3 [20]:
R2. $\operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right)=\frac{\alpha}{2}$ for any $1 \leq j \neq i \leq k$.
R3. $\operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{i}}\right)=\alpha$ for all $1 \leq i \leq k$.
The repair procedure firstly computes $S_{i} f_{j}, 1 \leq j \neq$ $i \leq k+2$, and then transmits the result to the newcomer storage node. A systematic node is said to have the optimal access property if the computation within the surviving nodes is not required during the repair procedure [20]. For some applications such as data centers, the access to information is more costly than the transmission, which may cause a
bottleneck if the amount of the former is larger than that of latter [19]. Hence, an MSR code with more systematic nodes possessing the optimal access property is preferred. It is easy to verify that the i th systematic node with the optimal access property requires
R4. Each row of S_{i} has only one nonzero element, which equals to 1.
In addition, when a symbol in a systematic node is rewritten, if only the symbol itself and one symbol at each parity node need an update, then the systematic node is said to have the optimal update property, which achieves the minimum reading/writing during writing of information [18]. Therefore, an MSR code with more systematic nodes possessing the optimal update property is desired especially in a system where updates are frequent. In fact, the i th systematic node with the optimal update property is equivalent to that every parity element is a linear combination of exactly one element from the i th systematic node, i.e.,
R5. Each column of A_{i} has only one nonzero element.
Usually, it is favorable for a code to have more systematic nodes for a given α. Recall that the number k of systematic nodes of the Zigzag code is much less than that of the long MDS code. In this paper, we therefore mainly aim at increasing k of the Zigzag code. According to R1, R4 and R5, however, a systematic node has the optimal update property if and only if its coding matrix A_{i} is either a diagonal matrix or product of a diagonal matrix and a permutation matrix; a systematic node has the optimal access property if and only if its repair matrix S_{i} is an $\frac{\alpha}{2} \times \alpha$ submatrix of an $\alpha \times \alpha$ permutation matrix. The number of distinct such matrices satisfying R2 and R3 appears to be greatly limited. In [18], [19], it is shown that the largest number of systematic nodes of an MSR code with the optimal access property (resp. both the optimal access property and the optimal update property) is $2 \log _{2} \alpha$ (resp. $\log _{2} \alpha+1$).

In what follows, we introduce two useful tools: invariant subspaces and partition sets, which enable us to construct our generic coding matrices and repair matrices satisfying R2 and R3.

A. Invariant subspaces

In this subsection, we determine the coding matrices by using invariant subspaces.

For a matrix A, denote by $\operatorname{span}(A)$ the vector space spanned by its rows, obviously $\operatorname{dim}(\operatorname{span}(A))=\operatorname{rank}(A)$. Recall that S_{i} is a matrix of rank $\frac{\alpha}{2}$. Then, R2 implies that $\operatorname{span}\left(S_{i} A_{j}\right) \subseteq$
$\operatorname{span}\left(S_{i}\right)$. Moreover, it follows from R1 that A_{j} is of full rank α and consequently we have $\operatorname{rank}\left(S_{i} A_{j}\right)=\operatorname{rank}\left(S_{i}\right)$. Hence, $\operatorname{dim}\left(\operatorname{span}\left(S_{i} A_{j}\right)\right)=\operatorname{dim}\left(\operatorname{span}\left(S_{i}\right)\right)$, i.e.,

$$
\begin{equation*}
\operatorname{span}\left(S_{i} A_{j}\right)=\operatorname{span}\left(S_{i}\right) \tag{2}
\end{equation*}
$$

which indicates that $\operatorname{span}\left(S_{i}\right)$ is an invariant subspace of vector space $\operatorname{span}\left(A_{j}\right)=\mathbf{F}_{q}^{\alpha}$ with respect to the linear transformation T defined by

$$
\begin{equation*}
T(x)=x A_{j}, \quad \text { for any } x \in \mathbf{F}_{q}^{\alpha} \tag{3}
\end{equation*}
$$

Firstly let us look at a simple example. Let $S=\binom{e_{0}}{e_{1}}$ where e_{0}, e_{1} are two arbitrary row vectors of length α over \mathbf{F}_{q}, and they are linearly independent. Then by (2), $\operatorname{span}(S)$ is an invariant subspace of $\operatorname{span}(A)$ with respect to $T: x \mapsto x A$ if and only if

$$
\binom{e_{0}}{e_{1}} A=\binom{a e_{0}+b e_{1}}{c e_{0}+d e_{1}} \text { and } a d \neq b c, a, b, c, d \in \mathbf{F}_{q}
$$

In details, there are 7 cases as below:
Case 1: $b=c=0$ and $a, d \neq 0$,
Case 2: $a=d=0$ and $b, c \neq 0$,
Case 3: $b=0$ and $a, c, d \neq 0$,
Case 4: $a=0$ and $b, c, d \neq 0$,
Case 5: $a, b, c, d \neq 0$ and $a d \neq b c$,
Case 6: $c=0$ and $a, b, d \neq 0$,
Case 7: $d=0$ and $a, b, c \neq 0$.
Note that if we interchange e_{0} with e_{1}, Case 3 (respectively, 4) will become Case 6 (respectively, 7). Besides, the coding matrix corresponding to Case 5 is a summation of two coding matrices corresponding to Cases 3 and 4, which would cause higher update complexity for its corresponding systematic node than that for the latter two. Therefore, we mainly consider Cases 1-4. Specifically, we say that the pair $\left(e_{0}, e_{1}\right)$ with respect to A is

- type I if $\binom{e_{0}}{e_{1}} A=\binom{a e_{0}}{d e_{1}}$,
- type II if $\binom{e_{0}}{e_{1}} A=\binom{b e_{1}}{c e_{0}}$,
- type III if $\binom{e_{0}}{e_{1}} A=\binom{a e_{0}}{c e_{0}+d e_{1}}$,
- type IV if $\binom{e_{0}}{e_{1}} A=\binom{b e_{1}}{c e_{0}+d e_{1}}$.

Now we extend the analysis to the general case. From now on, let $\left\{e_{0}, \cdots, e_{2^{m}-1}\right\}$ be the standard basis of \mathbf{F}_{q}^{α} where $\alpha=2^{m}$, i.e., i th basis vector

$$
e_{i}=(0, \cdots, 0,1,0, \cdots, 0), 0 \leq i \leq 2^{m}-1
$$

with only the i th entry being nonzero. Divide the basis into 2^{m-1} pairs, i.e.,

$$
\begin{equation*}
\left(e_{i_{1}}, e_{j_{1}}\right),\left(e_{i_{2}}, e_{j_{2}}\right), \cdots,\left(e_{i_{2^{m-1}}}, e_{j_{2^{m-1}}}\right) \tag{4}
\end{equation*}
$$

where $0 \leq i_{1}<i_{2}<\cdots<i_{2^{m-1}} \leq 2^{m}-1,0 \leq j_{1}<$ $j_{2}<\cdots<j_{2^{m-1}} \leq 2^{m}-1$ and $i_{s} \neq j_{t}$ for any $1 \leq s, t \leq$
2^{m-1}. For simplicity, assume that any pair forms an invariant subspace of \mathbf{F}_{q}^{α} with respect to T and all the pairs are of the same type, i.e.,

$$
\left(\begin{array}{c}
e_{i_{1}} \\
\vdots \\
e_{i_{2} m-1} \\
e_{j_{1}} \\
\vdots \\
e_{j_{2} m-1}
\end{array}\right) A=\left(\begin{array}{c}
a_{i_{1}} e_{i_{1}}+b_{j_{1}} e_{j_{1}} \\
\vdots \\
e_{i_{2^{m} m-1}}+b_{j_{2} m-1} e_{j_{2} m-1} \\
c_{i_{1}} e_{i_{1}}+d_{j_{1}} e_{j_{1}} \\
\vdots \\
c_{i_{2} m-1} \\
e_{i_{2} m-1}+d_{j_{2 m-1}} e_{j_{2} m-1}
\end{array}\right)
$$

where a_{i}, b_{i}, c_{i} and d_{i} are some constants, then the coding matrix A can be uniquely determined. Accordingly, we call A type I, II, III, IV coding matrix respectively. By convenience, write

$$
\binom{V_{0}}{V_{1}} A=\binom{a V_{0}+b V_{1}}{c V_{0}+d V_{1}}
$$

where a, b, c and d can be coefficients in \mathbf{F}_{q} or $\frac{\alpha}{2} \times \frac{\alpha}{2}$ diagonal matrices over \mathbf{F}_{q} and

$$
V_{0}=\left(\begin{array}{c}
e_{i_{1}} \tag{5}\\
\vdots \\
e_{i_{2^{m-1}}}
\end{array}\right), V_{1}=\left(\begin{array}{c}
e_{j_{1}} \\
\vdots \\
e_{j_{2^{m-1}}}
\end{array}\right)
$$

and still use V_{0} and V_{1} to represent their corresponding sets $\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{2 m-1}}\right\}$ and $\left\{e_{j_{1}}, e_{j_{2}}, \cdots, e_{j_{2 m-1}}\right\}$ respectively in the following sections if the context is clear.

B. Partition of the basis $\left\{e_{0}, \cdots, e_{2^{m}-1}\right\}$

In this subsection, we present a class of partition sets of the basis of \mathbf{F}_{q}^{α} to obtain V_{0} and V_{1} in (5), which had been used in [20], and will be crucial to our constructions as well.

Assume that there are m partition sets of the basis of \mathbf{F}_{q}^{α} as follows

$$
\begin{equation*}
\left\{e_{0}, e_{1}, \cdots, e_{2^{m}-1}\right\}=V_{1,0} \cup V_{1,1}=\cdots=V_{m, 0} \cup V_{m, 1} \tag{6}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left|V_{i_{1}, j_{1}} \cap V_{i_{2}, j_{2}} \cap \cdots \cap V_{i_{l}, j_{l}}\right|=2^{m-l} \tag{7}
\end{equation*}
$$

for any $1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq m, j_{t}=0,1,1 \leq t \leq$ $l \leq m$. It should be noted that (7) is useful when designing the code satisfying R2 and R3. Clearly, $\mid V_{1, j_{1}} \cap V_{2, j_{2}} \cap \cdots \cap$ $V_{m, j_{m}} \mid=1$ for any $j_{1}, j_{2}, \cdots, j_{m} \in\{0,1\}$ by (7). Without loss of generality, we can set

$$
\left\{e_{j}\right\}=\left\{e_{\left(j_{1}, j_{2}, \cdots, j_{m}\right)}\right\}=V_{1, j_{1}} \cap V_{2, j_{2}} \cap \cdots \cap V_{m, j_{m}}
$$

where $\left(j_{1}, j_{2}, \cdots, j_{m}\right)$ is the binary expansion of the integer j. Recursively applying (7) to $l=m-1, \cdots, 1$, we then get

$$
\begin{equation*}
V_{i, t}=\left\{e_{j} \mid j_{i}=t\right\} \tag{8}
\end{equation*}
$$

for $1 \leq i \leq m$ and $t=0,1$. Table III gives two examples of the set partitions that satisfy (6) and (7).

Based on the m partition sets in (8), define

$$
\begin{equation*}
V_{i+s m, t}=V_{i, t}, \quad i=1,2, \cdots, m, \quad s \in \mathbf{N}^{*}, \quad t=0,1 \tag{9}
\end{equation*}
$$

TABLE III
(A) AND (B) DENOTE THE m SET PARTITIONS OF V THAT SATISFY (6) AND (7) FOR $m=2$ AND $m=3$, RESPECTIVELY.

i	1	2	i	1	2
$V_{i, 0}$	e_{0}	e_{0}	$V_{i, 1}$	e_{2}	e_{1}
	e_{1}	e_{2}		e_{3}	e_{3}

i	1	2	3	i	1	2	3
$V_{i, 0}$	e_{0}	e_{0}	e_{0}		e_{4}	e_{2}	e_{1}
	e_{1}	e_{1}	e_{2}	$V_{i, 1}$	e_{5}	e_{3}	e_{3}
	e_{2}	e_{4}	e_{4}		e_{6}	e_{6}	e_{5}
	e_{3}	e_{5}	e_{6}		e_{7}	e_{7}	e_{7}

For any $1 \leq i_{1}, i_{2} \leq s m$ and $i_{1} \not \equiv i_{2} \bmod m$, define $V_{i_{1}, i_{2}, j_{1}, j_{2}}=V_{i_{2}, i_{1}, j_{2}, j_{1}}=V_{i_{1}, j_{1}} \cap V_{i_{2}, j_{2}}$ for $j_{1}, j_{2}=0,1$. Then

$$
\begin{align*}
V_{i_{1}, j_{1}} & =\left(V_{i_{1}, j_{1}} \cap V_{i_{2}, 0}\right) \bigcup\left(V_{i_{1}, j_{1}} \cap V_{i_{2}, 1}\right) \\
& =V_{i_{1}, i_{2}, j_{1}, 0} \cup V_{i_{1}, i_{2}, j_{1}, 1} \tag{10}
\end{align*}
$$

and thus we have the following results, which will be frequently used in the sequel.
Lemma 1. For any $i, j \geq 1$ and $i \not \equiv j \bmod m$, we have
(i)

$$
\begin{aligned}
& \operatorname{rank}\left(A_{i}-A_{j}\right) \\
= & \operatorname{rank}\left(\binom{V_{i, 0}}{V_{i, 1}}\left(A_{i}-A_{j}\right)\right) \\
= & \operatorname{rank}\left(\left(\begin{array}{c}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
V_{i, j, 1,0} \\
V_{i, j, 1,1}
\end{array}\right)\left(A_{i}-A_{j}\right)\right),
\end{aligned}
$$

(ii)

$$
\left.\left.\begin{array}{rl}
& \operatorname{rank}(\\
= & \left.\operatorname{rank}\binom{V_{i, 0}+u_{i} V_{i, 1}}{\left(V_{i, 0}+u_{i} V_{i, 1}\right) A_{j}}\right) \\
\left(\begin{array}{l}
V_{i, j, 0,0}+u_{i} V_{i, j, 1,0} \\
V_{i, j, 0,1}+u_{i} V_{i, j, 1,1} \\
\left(V_{i, j, 0,0}+u_{i} V_{i, j, 1,0}\right) A_{j} \\
\left(V_{i, j, 0,1}+u_{i} V_{i, j, 1,1}\right) A_{j}
\end{array}\right)
\end{array}\right)\right)
$$

where $u_{i} \in \mathbf{F}_{q}$.
Proof: The proof is given in Appendix.

III. GEnERIC CONStRUCTION OF CODES WITH 2 parity NODES

In this section, we construct MSR codes with parameters $n=k+2$ and $k=t m$, where t, m are some integers and $\alpha=2^{m}$, with the coding matrices being the types defined in subsection 2.1.

Generic Construction: The $(n=k+2, k)$ code \mathcal{C} has $\alpha \times \alpha$ coding matrices A_{i} and $\frac{\alpha}{2} \times \alpha$ repair matrices S_{i} for $1 \leq i \leq k$, such that

1) $\binom{V_{i, 0}}{V_{i, 1}} A_{i}=\binom{a_{i} V_{i, 0}+b_{i} V_{i, 1}}{c_{i} V_{i, 0}+d_{i} V_{i, 1}}$ for $1 \leq i \leq k$,
2) $S_{i}=V_{i, 1}$ or $V_{i, 0}+t_{i} V_{i, 1}$ for $1 \leq i \leq k$,
where $a_{i}, b_{i}, c_{i}, d_{i}$ and t_{i} can be coefficients in \mathbf{F}_{q} or $\frac{\alpha}{2} \times \frac{\alpha}{2}$ diagonal matrices over \mathbf{F}_{q} such that

$$
\binom{a_{i} V_{i, 0}+b_{i} V_{i, 1}}{c_{i} V_{i, 0}+d_{i} V_{i, 1}}
$$

is invertible for $1 \leq i \leq k$.
As for Generic Construction, we have the following proposition.

Proposition 1. For a $(k+2, k) M S R$ code generated by the generic construction,
(i) $S_{i} \neq S_{j}$ for any $1 \leq i \neq j \leq k$;
(ii) There do not exist four repair matrices $S_{j_{1}}, S_{j_{2}}, S_{j_{3}}$ and $S_{j_{4}}$ such that $S_{j_{l}}=V_{i, 0}+t_{l} V_{i, 1}, 1 \leq l \leq 3$, and $S_{j_{4}}=$ $V_{i, 1}$ or $V_{i, 0}+t_{4} V_{i, 1}$, for an integer $1 \leq i \leq m$ where $j_{1}, j_{2}, j_{3}, j_{4}$ are four distinct integers in $\{1, \cdots, k\}$ and $t_{1}, t_{2}, t_{3}, t_{4}$ are four distinct elements or matrices over \mathbf{F}_{q};

Proof: The proof is given in Appendix.
According to Proposition 1 in a $(k+2, k)$ MSR code generated by the generic construction, there are at most three repair matrices of the form $S_{l}=V_{i, 1}$ or $V_{i, 0}+t_{l} V_{i, 1}$, each appearing at most once, for any given $1 \leq i \leq m$, i.e., the number of systematic nodes is bounded by $k \leq 3 m$. In the following, through choosing some appropriate coding matrices in our framework, several $(k+2, k)$ MSR codes, $k \leq 3 m$, with the optimal access property and/or the optimal update property are obtained. This generates not only the known constructions such as the Zigzag code (except for one node) [18] and the long MDS code [20], but also some new codes.

A. Reinterpretation of known constructions

Based on coding matrices of type II, construct an ($n=$ $k+2, k=m)$ code by

- $\binom{V_{i, 0}}{V_{i, 1}} A_{i}=\binom{\Lambda_{i, 1} V_{i, 1}}{\Lambda_{i, 0} V_{i, 0}}$ for $1 \leq i \leq m$,
- $S_{i}=V_{i, 0}$, for $1 \leq i \leq m$,
where $\Lambda_{i, 0}$ and $\Lambda_{i, 1}$ are $\frac{\alpha}{2} \times \frac{\alpha}{2}$ diagonal matrices over \mathbf{F}_{q}. In fact, it is a modification of the Zigzag code by deleting its first node [18]. The modified Zigzag code has almost the same properties as that of the Zigzag code, i.e., all the systematic nodes of the modified Zigzag code possess both the optimal access property and the optimal update property.

Through a combination of coding matrices of types I, III and VI, the long MDS code [20] can also be constructed by

- $\binom{V_{i, 0}}{V_{i, 1}} A_{i}$

$$
= \begin{cases}\binom{\lambda_{i, 0} V_{i, 0}+k_{i} V_{i, 1}}{\lambda_{i, 1} V_{i, 1}}, & \text { if } 1 \leq i \leq m \\ \binom{\lambda_{i, 0} V_{i, 0}}{\lambda_{i, 1} V_{i, 1}+k_{i} V_{i, 0}}, & \text { if } m+1 \leq i \leq 2 m \\ \binom{\lambda_{i, 0} V_{i, 0}}{\lambda_{i, 1} V_{i, 1}}, & \text { if } 2 m+1 \leq i \leq 3 m\end{cases}
$$

- $S_{i}= \begin{cases}V_{i, 0}, & \text { if } 1 \leq i \leq m \\ V_{i, 1}, & \text { if } m+1 \leq i \leq 2 m \\ V_{i, 0}+V_{i, 1}, & \text { if } 2 m+1 \leq i \leq 3 m\end{cases}$
where $\lambda_{i, 0}, \lambda_{i, 1} \in \mathbf{F}_{q}^{*}, k_{j}=\lambda_{j, 0}-\lambda_{j, 1}$ and $k_{j+m}=\lambda_{j+m, 1}-$ $\lambda_{j+m, 0}$ for all $1 \leq i \leq k$ and $1 \leq j \leq m$.

Moreover, it is possible to choose $\Lambda_{i, s}$ and $\lambda_{j, s}$ respectively in the constructions of the modified Zigzag code and the long MDS code [20] such that the conditions R1-R5 are satisfied.

B. New code \mathcal{C}_{1}

Using the coding matrices of types II and III, we construct the first new code.

Construction 1. The $(n=k+2, k=3 m)$ code \mathcal{C}_{1} has $\alpha \times \alpha$ coding matrices A_{i} and $\frac{\alpha}{2} \times \alpha$ repair matrices S_{i} for $1 \leq i \leq k$, such that

1) $\binom{V_{i, 0}}{V_{i, 1}} A_{i}$

$$
= \begin{cases}\binom{\lambda_{i, 1} V_{i, 1}}{\lambda_{i, 0} V_{i, 0}}, & \text { if } 1 \leq i \leq m \\ \binom{\lambda_{i, 0} V_{i, 0}}{\lambda_{i, 1} V_{i, 1}+k_{i-m} V_{i, 0}}, & \text { if } m+1 \leq i \leq 3 m\end{cases}
$$

2) $S_{i}= \begin{cases}V_{i, 0}, & \text { if } 1 \leq i \leq m \\ V_{i, 0}+t_{i-m} V_{i, 1}, & \text { if } m+1 \leq i \leq 3 m\end{cases}$
where $\lambda_{i, 0}, \lambda_{i, 1}, k_{j}, t_{j} \in \mathbf{F}_{q}^{*}$ for all $1 \leq i \leq k$ and $1 \leq j \leq$ $2 m$.

Theorem 1. \mathcal{C}_{1} is a code with the MDS property if and only if
(i) $\lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0} \lambda_{j, 1}$ for any $1 \leq i \neq j \leq m$,
(ii) $\begin{cases}\lambda_{i, s} \neq \lambda_{j, s}, & \text { if } j=i+m \\ \lambda_{i, s} \neq \lambda_{j, t}, & \text { if } j \neq i+m\end{cases}$
for any $m+1 \leq i<j \leq 3 m$ and $s, t=0,1$,
(iii) $\left\{\begin{array}{l}\lambda_{i, 1}\left(\lambda_{i, 0}-k_{j-m}\right) \neq \lambda_{j, 0} \lambda_{j, 1}, \quad \text { if } j=i+m, i+2 m \\ \lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0}^{2}, \lambda_{j, 1}^{2}, \\ \text { otherwise }\end{array}\right.$ for any $1 \leq i \leq m$ and $m+1 \leq j \leq 3 m$.
Proof: The proof is given in Appendix.
Theorem 2. \mathcal{C}_{1} is a code with the optimal repair property if and only if
(i) $\lambda_{i, 1}=t_{i}^{2} \lambda_{i, 0}$ and $t_{i}=-t_{i+m}$ for all $1 \leq i \leq m$,
(ii) $\lambda_{i, 1}=\lambda_{i, 0}+t_{i} k_{i-m}$ and $\lambda_{i+m, 1}=\lambda_{i+m, 0}+t_{i-m} k_{i}$ for all $m+1 \leq i \leq 2 m$,
(iii) \mathbf{F}_{q} is of odd characteristic.

Proof: The proof is given in Appendix.
Theorem 3. The first m systematic nodes of \mathcal{C}_{1} have both the optimal access property and the optimal update property.

Proof: The proof is given in Appendix.
According to item (ii) of Theorem 1 and items (ii) and (iii) of Theorem 2 (which indicate $\lambda_{i, 0} \neq \lambda_{i, 1}$ for any $m+1 \leq$ $i \leq 3 m$), a finite field \mathbf{F}_{q} of odd characteristic with at least $2 m$ pairwise distinct nonzero elements is necessary to ensure the code \mathcal{C}_{1} to be an MSR code. In the following theorem, a class of concrete coefficients for code \mathcal{C}_{1} is given.

Theorem 4. The code \mathcal{C}_{1} in Construction 1 is an MSR code if

$$
\begin{aligned}
& k_{i}=k_{i+m}=-2 \gamma^{i}, \lambda_{i, 0}=\lambda_{i, 1}=\lambda_{i+m, 0}=\lambda_{i+2 m, 1}=\gamma^{i} \\
& \lambda_{i+m, 1}=\lambda_{i+2 m, 0}=-\gamma^{i}, t_{i}=-1, t_{i+m}=1
\end{aligned}
$$

for $1 \leq i \leq m$, where γ is a primitive element of finite field \mathbf{F}_{q} of odd characteristic with $q \geq 2 m+1$. In particular, $q=$ $\min \left\{p^{i} \geq 2 m+1 \mid p\right.$ is an odd prime, $\left.i \geq 1\right\}$ is the optimal alphabet size for \mathcal{C}_{1} to be an MSR code.

Proof: The proof is given in Appendix.
Remark 2. For a given storage capacity $\alpha=2^{m}$ per node, our code \mathcal{C}_{1} and the long MDS code in [20] have the biggest size 3 m among all the MSR codes with high rate. Unlike the long MDS code, \mathcal{C}_{1} has m systematic nodes possessing the optimal access property and the optimal update property simultaneously. However, \mathcal{C}_{1} may require a larger alphabet size than that of the long MDS code in certain situations since only the finite field of odd characteristic is feasible for the construction of \mathcal{C}_{1}.

Finally, an illustrative example of code \mathcal{C}_{1} is given.
Example 1. For $m=2$, the coding matrices and repair matrices of the code \mathcal{C}_{1} are as follows:

$$
\begin{gathered}
A_{1}=\left(\begin{array}{l}
2 e_{2} \\
2 e_{3} \\
2 e_{0} \\
2 e_{1}
\end{array}\right), A_{2}=\left(\begin{array}{c}
4 e_{1} \\
4 e_{0} \\
4 e_{3} \\
4 e_{2}
\end{array}\right), \\
A_{3}=\left(\begin{array}{c}
2 e_{0} \\
2 e_{1} \\
e_{0}+3 e_{2} \\
e_{1}+3 e_{3}
\end{array}\right), A_{4}=\left(\begin{array}{c}
4 e_{0} \\
2 e_{0}+e_{1} \\
4 e_{2} \\
2 e_{2}+e_{3}
\end{array}\right), \\
A_{5}=\left(\begin{array}{c}
3 e_{0} \\
3 e_{1} \\
e_{0}+2 e_{2} \\
e_{1}+2 e_{3}
\end{array}\right), A_{6}=\left(\begin{array}{c}
e_{0} \\
2 e_{0}+4 e_{1} \\
e_{2} \\
2 e_{2}+4 e_{3}
\end{array}\right), \\
S_{1}=\binom{e_{0}}{e_{1}}, S_{2}=\binom{e_{0}}{e_{2}}, \quad S_{3}=\binom{e_{0}-e_{2}}{e_{1}-e_{3}}, \\
S_{4}=\binom{e_{0}-e_{1}}{e_{2}-e_{3}}, S_{5}=\binom{e_{0}+e_{2}}{e_{1}+e_{3}}, S_{6}=\binom{e_{0}+e_{1}}{e_{2}+e_{3}}
\end{gathered}
$$

where 2 is chosen as a primitive element of \mathbf{F}_{5} and all the calculations are done over \mathbf{F}_{5}. It can be easily verified that R1$R 3$ hold and R4-R5 hold for $1 \leq i \leq m$, which are consistent with Theorems 4 and 3 respectively.

C. New code \mathcal{C}_{2}

Deleting the last m systematic nodes in \mathcal{C}_{1}, we can get the second new code.
Construction 2. The $(n=k+2, k=2 m)$ code \mathcal{C}_{2} has $\alpha \times \alpha$ coding matrices A_{i} and $\frac{\alpha}{2} \times \alpha$ repair matrices S_{i} for $1 \leq i \leq k$, such that

1) $\quad\binom{V_{i, 0}}{V_{i, 1}} A_{i}$

$$
\left.\begin{array}{l}
= \begin{cases}\binom{\lambda_{i, 1} V_{i, 1}}{\lambda_{i, 0} V_{i, 0}}, & \text { if } 1 \leq i \leq m \\
\binom{\lambda_{i, 0} V_{i, 0}}{\lambda_{i, 1} V_{i, 1}+k_{i-m} V_{i, 0}}, & \text { if } m+1 \leq i \leq 2 m\end{cases} \\
\text { 2) } \left.\begin{array}{l}
V_{i, 0} \\
V_{i, 1}
\end{array}\right) A_{i}
\end{array} \quad \begin{array}{ll}
\binom{\lambda_{i, 1} V_{i, 1}}{\lambda_{i, 0} V_{i, 0}}, & \text { if } 1 \leq i \leq m \\
\left(\begin{array}{ll}
\lambda_{i, 0} V_{i, 0} & \\
\lambda_{i, 1} V_{i, 1}+k_{i-m} V_{i, 0}
\end{array}\right), & \text { if } m+1 \leq i \leq 2 m
\end{array}\right\}
$$

where $\lambda_{i, 0}, \lambda_{i, 1}, k_{j}, t_{j} \in \mathbf{F}_{q}^{*}$ for all $1 \leq i \leq k$ and $1 \leq j \leq m$.
Hereafter we state the results of \mathcal{C}_{2} without proofs since they are included in those given in the last subsection.

Theorem 5. \mathcal{C}_{2} is a code with the MDS property if and only if
(i) $\lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0} \lambda_{j, 1}$ for any $1 \leq i \neq j \leq m$,
(ii) $\lambda_{i, s} \neq \lambda_{j, t}$ for any $m+1 \leq i \neq j \leq 2 m$ and $s, t=0,1$,
(iii) $\begin{cases}\lambda_{i, 1}\left(\lambda_{i, 0}-k_{i}\right) \neq \lambda_{j, 0} \lambda_{j, 1}, & \text { if } j=i+m \\ \lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0}^{2}, \lambda_{j, 1}^{2}, & \text { if } j \neq i+m\end{cases}$
for any $1 \leq i \leq m$ and $m+1 \leq j \leq 2 m$.
Theorem 6. \mathcal{C}_{2} is a code with the optimal repair property if and only if
(i) $\lambda_{i, 1}=t_{i}^{2} \lambda_{i, 0}$ for all $1 \leq i \leq m$,
(ii) $\lambda_{i, 1} \neq \lambda_{i, 0}+t_{i-m} k_{i-m}$ for any $m+1 \leq i \leq 2 m$.

Theorem 7. The first m systematic nodes of \mathcal{C}_{2} have both the optimal access property and the optimal update property.

According to item (i) of Theorem 5 and item (i) of Theorem 6 a finite field \mathbf{F}_{q} with at least m pairwise distinct nonzero square elements is necessary to ensure the code \mathcal{C}_{2} to be an MSR code. Let $q=p^{i}$ where p is a prime and i is a positive integer. It is well known that all the nonzero elements in \mathbf{F}_{q} are square elements for $p=2$ but only half the nonzero elements in \mathbf{F}_{q} are square elements for $p>2$. Then, the MSR code \mathcal{C}_{2} requires $q \geq m+1$ for $p=2$ or $q \geq 2 m+1$ for $p>$ 2. Straightforwardly, there exits a positive integer i such that $q=2^{i}$ lies between $m+1$ and $2 m$. That is, a finite field of characteristic 2 is more suitable to construct the MSR code \mathcal{C}_{2}. In the following theorem, a class of concrete coefficients for code \mathcal{C}_{2} is given.
Theorem 8. The code \mathcal{C}_{2} in Construction \downarrow is an MSR code if

$$
\lambda_{i, 0}=\lambda_{i, 1}=\lambda_{i+m, 0}=\lambda_{i+m, 1}=\gamma^{i}, \text { and } t_{i}=k_{i}=1
$$

for all $1 \leq i \leq m$, where γ is a primitive element of finite field \mathbf{F}_{q} of characteristic 2 with $q \geq m+1$. In particular, $q=\min \left\{2^{i} \geq m+1 \mid i \geq 1\right\}$ is the optimal alphabet size for \mathcal{C}_{2} to be an MSR code.

An illustrative example of code \mathcal{C}_{2} is given as follows.
Example 2. For $m=3$, the coding matrices and repair
matrices of the code \mathcal{C}_{2} are as follows:

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{c}
\gamma e_{4} \\
\gamma e_{5} \\
\gamma e_{6} \\
\gamma e_{7} \\
\gamma e_{0} \\
\gamma e_{1} \\
\gamma e_{2} \\
\gamma e_{3}
\end{array}\right), \quad A_{2}=\left(\begin{array}{c}
\gamma^{2} e_{2} \\
\gamma^{2} e_{3} \\
\gamma^{2} e_{0} \\
\gamma^{2} e_{1} \\
\gamma^{2} e_{6} \\
\gamma^{2} e_{7} \\
\gamma^{2} e_{4} \\
\gamma^{2} e_{5}
\end{array}\right), \\
& A_{3}=\left(\begin{array}{l}
e_{1} \\
e_{0} \\
e_{3} \\
e_{2} \\
e_{5} \\
e_{4} \\
e_{7} \\
e_{6}
\end{array}\right), \quad A_{4}=\left(\begin{array}{l}
\gamma e_{0} \\
\gamma e_{1} \\
\gamma e_{2} \\
\gamma e_{3} \\
\gamma e_{4}+e_{0} \\
\gamma e_{5}+e_{1} \\
\gamma e_{6}+e_{2} \\
\gamma e_{7}+e_{3}
\end{array}\right), \\
& A_{5}=\left(\begin{array}{l}
\gamma^{2} e_{0} \\
\gamma^{2} e_{1} \\
\gamma^{2} e_{2}+e_{0} \\
\gamma^{2} e_{3}+e_{1} \\
\gamma^{2} e_{4} \\
\gamma^{2} e_{5} \\
\gamma^{2} e_{6}+e_{4} \\
\gamma^{2} e_{7}+e_{5}
\end{array}\right), \quad A_{6}=\left(\begin{array}{l}
e_{0} \\
e_{1}+e_{0} \\
e_{2} \\
e_{3}+e_{2} \\
e_{4} \\
e_{5}+e_{4} \\
e_{6} \\
e_{7}+e_{6}
\end{array}\right), \\
& S_{1}=\left(\begin{array}{l}
e_{0} \\
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right), \quad S_{2}=\left(\begin{array}{l}
e_{0} \\
e_{1} \\
e_{4} \\
e_{5}
\end{array}\right) \text {, } \\
& S_{3}=\left(\begin{array}{l}
e_{0} \\
e_{2} \\
e_{4} \\
e_{6}
\end{array}\right), \quad S_{4}=\left(\begin{array}{l}
e_{0}+e_{4} \\
e_{1}+e_{5} \\
e_{2}+e_{6} \\
e_{3}+e_{7}
\end{array}\right), \\
& S_{5}=\left(\begin{array}{l}
e_{0}+e_{2} \\
e_{1}+e_{3} \\
e_{4}+e_{6} \\
e_{5}+e_{7}
\end{array}\right), \quad S_{6}=\left(\begin{array}{l}
e_{0}+e_{1} \\
e_{2}+e_{3} \\
e_{4}+e_{5} \\
e_{6}+e_{7}
\end{array}\right)
\end{aligned}
$$

where γ is chosen as a primitive element of $\mathbf{F}_{2^{2}}$ and all the calculations are done over $\mathbf{F}_{2^{2}}$. It can be verified that R1-R3 hold and R4-R5 hold for $1 \leq i \leq m$, which are consistent with Theorems 8 and 7 respectively.

D. New Code \mathcal{C}_{3}

By means of combination of coding matrices of types I and II, we propose the third new code.

Construction 3. The $(n=k+2, k=2 m)$ code \mathcal{C}_{3} has $\alpha \times \alpha$ coding matrices A_{i} and $\frac{\alpha}{2} \times \alpha$ repair matrices S_{i} for $1 \leq i \leq k$, such that

1) $\binom{V_{i, 0}}{V_{i, 1}} A_{i}= \begin{cases}\binom{\lambda_{i, 1} V_{i, 1}}{\lambda_{i, 0} V_{i, 0}}, & \text { if } 1 \leq i \leq m \\ \binom{\lambda_{i, 0} V_{i, 0}}{\lambda_{i, 1} V_{i, 1}}, & \text { if } m+1 \leq i \leq 2 m\end{cases}$
2) $S_{i}= \begin{cases}V_{i, 0}, & \text { if } 1 \leq i \leq m \\ V_{i, 0}+t_{i-m} V_{i, 1}, & \text { if } m+1 \leq i \leq 2 m\end{cases}$ where $\lambda_{i, 0}, \lambda_{i, 1}, t_{j} \in \mathbf{F}_{q}^{*}$ for all $1 \leq i \leq k$ and $1 \leq j \leq m$.
Theorem 9. \mathcal{C}_{3} is a code with the MDS property if and only if
(i) $\lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0} \lambda_{j, 1}$ for any $1 \leq i \neq j \leq m$,
(ii) $\lambda_{i, s} \neq \lambda_{j, t}$ for any $m+1 \leq i \neq j \leq 2 m$ and $s, t=0$ or 1 ,
(iii) $\lambda_{i, 0} \lambda_{i, 1} \neq \begin{cases}\lambda_{j, 0} \lambda_{j, 1}, & \text { if } j=i+m \\ \lambda_{j, 0}^{2}, \lambda_{j, 1}^{2}, & \text { if } j \neq i+m\end{cases}$ for any $1 \leq i \leq m$ and $m+1 \leq j \leq 2 m$.
Proof: The proof is given in Appendix.
Theorem 10. \mathcal{C}_{3} is a code with the optimal repair property if and only if
(i) $\lambda_{i, 1}=t_{i}^{2} \lambda_{i, 0}$ for all $1 \leq i \leq m$,
(ii) $\lambda_{i, 0} \neq \lambda_{i, 1}$ for any $m+1 \leq i \leq 2 m$.

Proof: The proof is given in Appendix.
Theorem 11. The $2 m$ systematic nodes of \mathcal{C}_{3} have the optimal update property and the first m nodes have the optimal access property.

According to item (ii) of Theorem 9 and item (ii) of Theorem 10 a finite field \mathbf{F}_{q} with at least $2 m$ pairwise distinct nonzero elements is required to guarantee the code \mathcal{C}_{3} to be an MSR code. Specifically, over \mathbf{F}_{q} with $q \geq 2 m+1$, we can give a class of concrete coefficients for code \mathcal{C}_{3} as follows.

Theorem 12. The code \mathcal{C}_{3} in Construction 3 is an $M S R$ code if

$$
\lambda_{i, 0}=\lambda_{i, 1}=\lambda_{i+m, 0}=\gamma^{i}, \lambda_{i+m, 1}=\gamma^{\left\lfloor\frac{q}{2}\right\rfloor+i}, \text { and } t_{i}=1
$$

for all $1 \leq i \leq m$, where γ is a primitive element of \mathbf{F}_{q} with $q \geq 2 m+1$. In particular, $q=\min \left\{p^{i} \geq 2 m+\right.$ $1 \mid p$ is a prime , $i \geq 1\}$ is the optimal alphabet size for \mathcal{C}_{3} to be an MSR code.

Proof: The proof is given in Appendix.
Finally to illustrate the construction of code \mathcal{C}_{3}, we give an example.
Example 3. For $m=2$, the coding matrices and repair matrices of the code \mathcal{C}_{3} are as follows:

$$
\begin{gathered}
A_{1}=\left(\begin{array}{c}
2 e_{2} \\
2 e_{3} \\
2 e_{0} \\
2 e_{1}
\end{array}\right), \quad A_{2}=\left(\begin{array}{c}
4 e_{1} \\
4 e_{0} \\
4 e_{3} \\
4 e_{2}
\end{array}\right), \\
A_{3}=\left(\begin{array}{c}
2 e_{0} \\
2 e_{1} \\
3 e_{2} \\
3 e_{3}
\end{array}\right), \quad A_{4}=\left(\begin{array}{c}
4 e_{0} \\
e_{1} \\
4 e_{2} \\
e_{3}
\end{array}\right), \\
S_{1}=\binom{e_{0}}{e_{1}}, \quad S_{2}=\binom{e_{0}}{e_{2}}, \\
S_{3}=\binom{e_{0}+e_{2}}{e_{1}+e_{3}}, \quad S_{4}=\binom{e_{0}+e_{1}}{e_{2}+e_{3}},
\end{gathered}
$$

where 2 is chosen as a primitive element of \mathbf{F}_{5} and all the calculations are done over \mathbf{F}_{5}. It can be easily verified that R1-R3 hold and R4 holds for $1 \leq i \leq m$ and $R 5$ holds for $1 \leq i \leq 2 m$, which are consistent with Theorems 12 and [1] respectively. Moreover, this example can be illustrated in another way as in Table IV.

TABLE IV

Columns $1,2,3,4$ are systematic nodes and columns R and Z ARE PARITY NODES. EACH ELEMENT IN COLUMN R IS A LINEAR COMBINATION OF THE SYSTEMATIC ELEMENTS IN THE SAME ROW, WHILE EACH ELEMENT IN COLUMN Z IS A LINEAR COMBINATION OF THE SYSTEMATIC ELEMENTS WITH THE SAME SYMBOL. FOR INSTANCE, THE FIRST ELEMENT IN COLUMN R IS A LINEAR COMBINATION OF THE ELEMENTS IN THE FIRST ROW AND IN COLUMNS 1,2,3 AND 4, AND THE In Column Z is a linear combination of all the elements in COLUMNS 1,2,3 AND 4.

	1	2	3	4	R	Z
0	¢	\bigcirc	9	\%		\%
1	\diamond	$\%$	\bigcirc	\bigcirc		\bigcirc
2	8	\diamond	¢	-		¢
3	\bigcirc	¢	\diamond	\diamond		\diamond

E. New code \mathcal{C}_{4}

Based on the coding matrices of type II, we can present the fourth new code.
Construction 4. The $(n=k+2, k=2 m)$ code \mathcal{C}_{4} has $\alpha \times \alpha$ coding matrices A_{i} and $\frac{\alpha}{2} \times \alpha$ repair matrices S_{i} for $1 \leq i \leq k$, such that

1) $\binom{V_{i, 0}}{V_{i, 1}} A_{i}=\binom{\lambda_{i, 1} V_{i, 1}}{\lambda_{i, 0} V_{i, 0}}$ for $1 \leq i \leq k$,
2) $S_{i}=V_{i, 0}+t_{i} V_{i, 1}$ for $1 \leq i \leq k$,
where $\lambda_{i, 0}, \lambda_{i, 1}, t_{i} \in \mathbf{F}_{q}^{*}$ for all $1 \leq i \leq k$.
Theorem 13. \mathcal{C}_{4} is a code with the MDS property if and only if
(i) $\lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0} \lambda_{j, 1}$ for any $1 \leq i<j \leq k$ and $i \neq$ $j-m$,
(ii) $\lambda_{i, s} \neq \lambda_{i+m, s}$ for any $1 \leq i \leq m$ and $s=0,1$.

Proof: The proof is given in Appendix.
Theorem 14. \mathcal{C}_{4} is a code with the optimal repair property if and only if
(i) $\lambda_{i, 1}=t_{i+m}^{2} \lambda_{i, 0}$ and $\lambda_{i+m, 1}=t_{i}^{2} \lambda_{i+m, 0}$ for all $1 \leq i \leq$ m,
(ii) $\lambda_{i, 1} \neq t_{i}^{2} \lambda_{i, 0}$ for any $1 \leq i \leq k$.

Proof: The proof is given in Appendix.
Theorem 15. The $2 m$ systematic nodes of \mathcal{C}_{4} have the optimal update property.

According to item (i) of Theorem 13 and item (i) of Theorem 14 a finite field \mathbf{F}_{q} with at least m pairwise distinct nonzero square elements is necessary to ensure the code \mathcal{C}_{4} to be an MSR code. Similar to code \mathcal{C}_{2}, we have the following concrete construction for the new code \mathcal{C}_{4}.
Theorem 16. The code \mathcal{C}_{4} in Construction 4 is an MSR code if
$\lambda_{i, 0}=\gamma^{i}, \lambda_{i, 1}=\gamma^{i+2}, \lambda_{i+m, 0}=\lambda_{i+m, 1}=\gamma^{i+1}, t_{i}=1, t_{i+m}=\gamma$
for all $1 \leq i \leq m$, where γ is a primitive element of finite field \mathbf{F}_{q} of characteristic 2 with $q \geq m+1$. In particular, $q=\min \left\{2^{i} \geq m+1 \mid i \geq 1\right\}$ is the optimal alphabet size for \mathcal{C}_{4} to be an MSR code.

Remark 3. In 18], 2-duplication of the Zigzag code with parameters ($n=k+2, k=2 m+2$) was proposed, which has the similar coding matrices as those of \mathcal{C}_{4}. Although the number of systematic nodes of \mathcal{C}_{4} is two less than that of 2duplication of the Zigzag code, it has better repair bandwidth. When repairing a failed systematic node, only half of the data need to be downloaded from each surviving node of \mathcal{C}_{4}, while the fraction of the data need to be downloaded from each surviving node of 2-duplication of the Zigzag code is $\frac{m+1}{2 m+1}$.

Finally to illustrate the construction of code \mathcal{C}_{4}, we give an example.

Example 4. For $m=2$, the coding matrices and repair matrices of the code \mathcal{C}_{4} are as follows:

$$
\begin{gathered}
A_{1}=\left(\begin{array}{c}
e_{2} \\
e_{3} \\
\gamma e_{0} \\
\gamma e_{1}
\end{array}\right), \quad A_{2}=\left(\begin{array}{c}
\gamma e_{1} \\
\gamma^{2} e_{0} \\
\gamma e_{3} \\
\gamma^{2} e_{2}
\end{array}\right), \\
A_{3}=\left(\begin{array}{l}
\gamma^{2} e_{2} \\
\gamma^{2} e_{3} \\
\gamma^{2} e_{0} \\
\gamma^{2} e_{1}
\end{array}\right), \quad A_{4}=\left(\begin{array}{l}
e_{1} \\
e_{0} \\
e_{3} \\
e_{2}
\end{array}\right), \\
S_{1}=\binom{e_{0}+e_{2}}{e_{1}+e_{3}}, \quad S_{2}=\binom{e_{0}+e_{1}}{e_{2}+e_{3}}, \\
S_{3}=\binom{e_{0}+\gamma e_{2}}{e_{1}+\gamma e_{3}}, \quad S_{4}=\binom{e_{0}+\gamma e_{1}}{e_{2}+\gamma e_{3}}
\end{gathered}
$$

where γ is chosen as a primitive element of $\mathbf{F}_{2^{2}}$ and all the calculations are done over $\mathbf{F}_{2^{2}}$. It can be verified that R1-R3 hold and $R 5$ holds for $1 \leq i \leq 2 m$, which are consistent with Theorems 16 and 15 respectively. Moreover, this example can be illustrated in another way as in the following table.

	1	2	3	4	R	Z
0	¢	\bigcirc	¢	\bigcirc		9
1	\diamond	\&	\diamond	\%		\bigcirc
2	9	\diamond	9	\diamond		¢
3	\bigcirc	-	\bigcirc	¢		\diamond

F. Other new codes

Combined coding matrices of types I and IV (with repair matrices $V_{i, 0}+t_{i} V_{i, 1}$ and $V_{i, 0}$), types II and IV (with repair matrices $V_{i, 0}+t_{i} V_{i, 1}$), types III and IV (with repair matrices $V_{i, 0}+t_{i} V_{i, 1}$ and $V_{i, 0}$), types III, III and IV (with repair matrices $V_{i, 0}+t_{i} V_{i, 1}, V_{i, 0}+t_{i+m} V_{i, 1}$ and $V_{i, 0}$), four new MSR codes with $k=2 m$ or $3 m$ can be obtained, but the other properties (eg. optimal access, optimal update, the size of the finite fields required) are not as good as the aforementioned new $\operatorname{codes} \mathcal{C}_{1}$, $\mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathcal{C}_{4}.

IV. Concluding remarks

In this paper, we proposed a simple but generic framework to construct high rate MSR codes with two parity nodes. The framework can not only generate the modified Zigzag code and the long MDS code, but also generate four new MSR codes $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathcal{C}_{4} with the optimal access/update property. The optimal sizes of the finite fields required for the four codes were also determined. Notably, by these four new MSR codes, we could get a tradeoff between the size of the finite field and the number of systematic nodes (with the optimal access/update property).

Our construction can be generalized to the $(k+r, k=3 m)$ or $(k+r, k=2 m)$ MSR code with arbitrary $r>2$ parity nodes for $\alpha=r^{m}$. For this generalization, we firstly need to partition the basis $\left\{e_{0}, e_{1}, \cdots, e_{r^{m}-1}\right\}$ of \mathbf{F}_{q}^{α} into r subsets $V_{0}, V_{1}, \cdots, V_{r}$ with equal sizes. Then, types I-IV coding matrices can be similarly determined based on invariant subspaces of dimension r but with complicated forms. By means of these matrices, we can obtain the generalized codes $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathcal{C}_{4} with $r>2$ parity nodes, which still possesses the optimal access/update property. The optimal alphabet size q, however, is difficult to determine and hence will be left for future research.

Appendix

Proof of Lemma 1: (i) According to (10), in matrix notation, $V_{i, 0}, V_{i, 1}$ are equivalent to $\binom{V_{i, j, 0,0}}{V_{i, j, 0,1}}$ and $\binom{V_{i, j, 1,0}}{V_{i, j, 1,1}}$ under elementary row transformation, respectively, i.e., $\binom{V_{i, 0}}{V_{i, 1}}$ is equivalent to $\left(\begin{array}{c}V_{i, j, 0,0} \\ V_{i, j, 0,1} \\ V_{i, j, 1,0} \\ V_{i, j, 1,1}\end{array}\right)$ under elementary row transformation. Thus

$$
\operatorname{rank}\left(\binom{V_{i, 0}}{V_{i, 1}}\right)=\operatorname{rank}\left(\left(\begin{array}{c}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
V_{i, j, 1,0} \\
V_{i, j, 1,1}
\end{array}\right)\right)
$$

Immediately, the assertion follows from the fact that the matrix $\binom{V_{i, 0}}{V_{i, 1}}$ is of full rank.
(ii) It follows from that the matrix $\binom{V_{i, 0}+u_{i} V_{i, 1}}{\left(V_{i, 0}+u_{i} V_{i, 1}\right) A_{j}}$
is equivalent to $\left(\begin{array}{l}V_{i, j, 0,0}+u_{i} V_{i, j, 1,0} \\ V_{i, j, 0,1}+u_{i} V_{i, j, 1,1} \\ \left(V_{i, j, 0,0}+u_{i} V_{i, j, 1,0}\right) A_{j} \\ \left(V_{i, j, 0,1}+u_{i} V_{i, j, 1,1}\right) A_{j}\end{array}\right)$ under elementary row transformation.

Proof of Proposition 1: (i) It is obvious otherwise R2 and R3 can not be satisfied simultaneously for repair matrices S_{i}, S_{j} and coding matrix A_{i}.
(ii) If there exist such four repair matrices, according to the generic construction, then the coding matrix $A_{j_{4}}$ satisfies

$$
\binom{V_{i, 0}}{V_{i, 1}} A_{j_{4}}=\binom{a V_{i, 0}+b V_{i, 1}}{c V_{i, 0}+d V_{i, 1}}
$$

where a, b, c and d can be coefficients in \mathbf{F}_{q} or $\frac{\alpha}{2} \times \frac{\alpha}{2}$ diagonal matrices over \mathbf{F}_{q}. Consider

$$
\begin{aligned}
& \operatorname{rank}\binom{V_{i, 0}+t_{l} V_{i, 1}}{\left(V_{i, 0}+t_{l} V_{i, 1}\right) A_{j_{4}}} \\
= & \operatorname{rank}\binom{V_{i, 0}+t_{l} V_{i, 1}}{\left(a+c t_{l}\right) V_{i, 0}+\left(b+d t_{l}\right) V_{i, 1}} \\
= & \frac{\alpha}{2}, l=1,2,3
\end{aligned}
$$

Then we have that the equation

$$
c t^{2}+(a-d) t-b=0
$$

has three distinct roots $t=t_{1}, t_{2}$ and t_{3}, which is possible only if $b=c=0$ and $a=d \neq 0$, in this case, $A_{j_{4}}$ is a diagonal matrix, therefore

$$
\operatorname{rank}\binom{S_{j_{4}}}{S_{j_{4}} A_{j_{4}}}=\frac{\alpha}{2} \text { for any } S_{j_{4}}
$$

and then R3 can not be satisfied.
Proof of Theorem $1 \mathcal{C}_{1}$ has the MDS property if and only if R1 holds. Obviously, A_{i} is invertible for all $1 \leq i \leq k$ since $\lambda_{i, 0}, \lambda_{i, 1} \neq 0$. In what follows, by means of Lemma 1 we establish the necessary and sufficient conditions of $\operatorname{rank}\left(A_{i}-\right.$ $\left.A_{j}\right)=\alpha$ for any $1 \leq i \neq j \leq k$ in the following three cases.

Case 1: When $1 \leq i \neq j \leq m$,

$$
\left(\begin{array}{c}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
V_{i, j, 1,0} \\
V_{i, j, 1,1}
\end{array}\right)\left(A_{i}-A_{j}\right)=\left(\begin{array}{l}
\lambda_{i, 1} V_{i, j, 1,0}-\lambda_{j, 1} V_{i, j, 0,1} \\
\lambda_{i, 1} V_{i, j, 1,1}-\lambda_{j, 0} V_{i, j, 0,0} \\
\lambda_{i, 0} V_{i, j, 0,0}-\lambda_{j, 1} V_{i, j, 1,1} \\
\lambda_{i, 0} V_{i, j, 0,1}-\lambda_{j, 0} V_{i, j, 1,0}
\end{array}\right)
$$

i.e., $\operatorname{rank}\left(A_{i}-A_{j}\right)=\alpha \Leftrightarrow \lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0} \lambda_{j, 0}$.

Case 2: When $m+1 \leq i<j \leq 3 m$, if $j=i+m$, by (9)

$$
\begin{aligned}
& \binom{V_{i, 0}}{V_{i, 1}}\left(A_{i}-A_{j}\right) \\
= & \binom{\lambda_{i, 0} V_{i, 0}}{\lambda_{i, 1} V_{i, 1}+k_{i-m} V_{i, 0}}-\binom{\lambda_{j, 0} V_{i, 0}}{\lambda_{j, 1} V_{i, 1}+k_{j-m} V_{i, 0}} \\
= & \binom{\left(\lambda_{i, 0}-\lambda_{j, 0}\right) V_{i, 0}}{\left(\lambda_{i, 1}-\lambda_{j, 1}\right) V_{i, 1}+\left(k_{i-m}-k_{j-m}\right) V_{i, 0}}
\end{aligned}
$$

i.e., $\operatorname{rank}\left(A_{i}-A_{j}\right)=\alpha \Leftrightarrow \lambda_{i, s} \neq \lambda_{j, s}$ for $s=0,1$; Otherwise,

$$
\begin{aligned}
& \left(\begin{array}{l}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
V_{i, j, 1,0} \\
V_{i, j, 1,1}
\end{array}\right)\left(A_{i}-A_{j}\right) \\
= & \left(\begin{array}{l}
\left(\lambda_{i, 0}-\lambda_{j, 0}\right) V_{i, j, 0,0} \\
\left(\lambda_{i, 0}-\lambda_{j, 1}\right) V_{i, j, 0,1}-k_{j-m} V_{i, j, 0,0} \\
\left(\lambda_{i, 1}-\lambda_{j, 0}\right) V_{i, j, 1,0}+k_{i-m} V_{i, j, 0,0} \\
\left(\lambda_{i, 1}-\lambda_{j, 1}\right) V_{i, j, 1,1}+k_{i-m} V_{i, j, 0,1}-k_{j-m} V_{i, j, 1,0}
\end{array}\right)
\end{aligned}
$$

i.e., $\operatorname{rank}\left(A_{i}-A_{j}\right)=\alpha \Leftrightarrow \lambda_{i, s} \neq \lambda_{j, t}$ for $s, t=0,1$.

Case 3: When $1 \leq i \leq m$ and $m+1 \leq j \leq 3 m$, if $j=i+m$
or $i+2 m$, according to (9)

$$
\begin{aligned}
& \binom{V_{i, 0}}{V_{i, 1}}\left(A_{i}-A_{j}\right) \\
= & \binom{\lambda_{i, 1} V_{i, 1}}{\lambda_{i, 0} V_{i, 0}}-\binom{\lambda_{j, 0} V_{i, 0}}{\lambda_{j, 1} V_{i, 1}+k_{j-m} V_{i, 0}} \\
= & \binom{\lambda_{i, 1} V_{i, 1}-\lambda_{j, 0} V_{i, 0}}{\left(\lambda_{i, 0}-k_{j-m}\right) V_{i, 0}-\lambda_{j, 1} V_{i, 1}}
\end{aligned}
$$

i.e., $\operatorname{rank}\left(A_{i}-A_{j}\right)=\alpha \Leftrightarrow \lambda_{i, 1}\left(\lambda_{i, 0}-k_{j-m}\right) \neq \lambda_{j, 0} \lambda_{j, 1}$; Otherwise,

$$
\begin{aligned}
& \left(\begin{array}{l}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
V_{i, j, 1,0} \\
V_{i, j, 1,1}
\end{array}\right)\left(A_{i}-A_{j}\right) \\
& =\left(\begin{array}{l}
\lambda_{i, 1} V_{i, j, 1,0}-\lambda_{j, 0} V_{i, j, 0,0} \\
\lambda_{i, 1} V_{i, j, 1,1}-\lambda_{j, 1} V_{i, j, 0,1}-k_{j-m} V_{i, j, 0,0} \\
\lambda_{i, 0} V_{i, j, 0,0}-\lambda_{j, 0} V_{i, j, 1,0} \\
\lambda_{i, 0} V_{i, j, 0,1}-\lambda_{j, 1} V_{i, j, 1,1}-k_{j-m} V_{i, j, 1,0}
\end{array}\right)
\end{aligned}
$$

i.e., $\operatorname{rank}\left(A_{i}-A_{j}\right)=\alpha \Leftrightarrow \lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0}^{2}, \lambda_{j, 1}^{2}$.

Proof of Theorem 2, \mathcal{C}_{1} is a code with the optimal repair property if and only if R2 and R3 hold. Firstly, by means of Lemma 1 we establish the necessary and sufficient conditions for R2 according to the following three cases.

Case 1: For $1 \leq i \leq m$,
(a) When $1 \leq j \neq i \leq m$,

$$
\begin{aligned}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right) \\
= & \operatorname{rank}\left(\left(\begin{array}{l}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
V_{i, j, 0,0} A_{j} \\
V_{i, j, 0,1} A_{j}
\end{array}\right)\right) \\
= & \operatorname{rank}\left(\left(\begin{array}{l}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
\lambda_{j, 1} V_{i, j, 0,1} \\
\lambda_{j, 0} V_{i, j, 0,0}
\end{array}\right)\right) \\
= & \alpha / 2
\end{aligned}
$$

(b) When $m+1 \leq j \leq 3 m$, if $j=i+m$ or $i+2 m$, by (9)

$$
\begin{aligned}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right) \\
= & \operatorname{rank}\left(\binom{V_{i, 0}}{V_{i, 0} A_{j}}\right) \\
= & \operatorname{rank}\left(\binom{V_{j, 0}}{\lambda_{j, 0} V_{j, 0}}\right) \\
= & \alpha / 2
\end{aligned}
$$

Otherwise,

$$
\begin{aligned}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right) \\
= & \operatorname{rank}\left(\left(\begin{array}{l}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
V_{i, j, 0,0} A_{j} \\
V_{i, j, 0,1} A_{j}
\end{array}\right)\right) \\
= & \operatorname{rank}\left(\left(\begin{array}{l}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
\lambda_{j, 0} V_{i, j, 0,0} \\
\lambda_{j, 1} V_{i, j, 0,1}+k_{j-m} V_{i, j, 0,0}
\end{array}\right)\right) \\
= & \alpha / 2
\end{aligned}
$$

Case 2: For $m+1 \leq i \leq 2 m$,
(a) When $1 \leq j \leq m$, if $j=i-m$, by (9)

$$
\begin{aligned}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right) \\
= & \operatorname{rank}\left(\binom{V_{j, 0}+t_{j} V_{j, 1}}{\left(V_{j, 0}+t_{j} V_{j, 1}\right) A_{j}}\right) \\
= & \operatorname{rank}\left(\binom{V_{j, 0}+t_{j} V_{j, 1}}{\lambda_{j, 1} V_{j, 1}+t_{j} \lambda_{j, 0} V_{j, 0}}\right) \\
= & \alpha / 2 \\
\Leftrightarrow & \lambda_{j, 1}=t_{j}^{2} \lambda_{j, 0}
\end{aligned}
$$

Otherwise,

$$
\begin{aligned}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right) \\
= & \operatorname{rank}\left(\left(\begin{array}{l}
V_{i, j, 0,0}+t_{i-m} V_{i, j, 1,0} \\
V_{i, j, 0,1}+t_{i-m} V_{i, j, 1,1} \\
\left(V_{i, j, 0,0}+t_{i-m} V_{i, j, 1,0}\right) A_{j} \\
\left(V_{i, j, 0,1}+t_{i-m} V_{i, j, 1,1}\right) A_{j}
\end{array}\right)\right) \\
= & \operatorname{rank}\left(\left(\begin{array}{l}
V_{i, j, 0,0}+t_{i-m} V_{i, j, 1,0} \\
V_{i, j, 0,1}+t_{i-m} V_{i, j, 1,1} \\
\lambda_{j, 1}\left(V_{i, j, 0,1}+t_{i-m} V_{i, j, 1,1}\right) \\
\lambda_{j, 0}\left(V_{i, j, 0,0}+t_{i-m} V_{i, j, 1,0}\right)
\end{array}\right)\right) \\
= & \alpha / 2
\end{aligned}
$$

(b) When $m+1 \leq j \neq i \leq 3 m$, if $j=i+m$, by (9)

$$
\begin{aligned}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right) \\
= & \operatorname{rank}\left(\binom{V_{j, 0}+t_{i-m} V_{j, 1}}{\left(V_{j, 0}+t_{i-m} V_{j, 1}\right) A_{j}}\right) \\
= & \operatorname{rank}\left(\binom{V_{j, 0}+t_{i-m} V_{j, 1}}{\left(\lambda_{j, 0}+t_{i-m} k_{j-m}\right) V_{j, 0}+t_{i-m} \lambda_{j, 1} V_{j, 1}}\right) \\
= & \alpha / 2 \\
\Leftrightarrow & \lambda_{j, 1}=\lambda_{j, 0}+t_{i-m} k_{j-m} \\
\Leftrightarrow & \lambda_{i+m, 1}=\lambda_{i+m, 0}+t_{i-m} k_{i}
\end{aligned}
$$

Otherwise,

$$
\left.\left.\begin{array}{rl}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right) \\
= & \operatorname{rank}\left(\left(\begin{array}{l}
V_{i, j, 0,0}+t_{i-m} V_{i, j, 1,0} \\
V_{i, j, 0,1}+t_{i-m} V_{i, j, 1,1} \\
\left(V_{i, j, 0,0}+t_{i-m} V_{i, j, 1,0}\right) A_{j} \\
\left(V_{i, j, 0,1}+t_{i-m} V_{i, j, 1,1}\right) A_{j}
\end{array}\right)\right.
\end{array}\right)\right), ~\left(\left(\begin{array}{l}
V_{i, j, 0,0}+t_{i-m} V_{i, j, 1,0} \\
V_{i, j, 0,1}+t_{i-m} V_{i, j, 1,1} \\
\lambda_{j, 0}\left(V_{i, j, 0,0}+t_{i-m} V_{i, j, 1,0}\right) \\
\lambda_{j, 1}\left(V_{i, j, 0,1}+t_{i-m} V_{i, j, 1,1}\right) \\
= \\
+k_{j-m}\left(V_{i, j, 0,0}+t_{i-m} V_{i, j, 1,0}\right)
\end{array}\right)\right), ~ \operatorname{rank} .
$$

Case 3: For $2 m+1 \leq i \leq 3 m$, similarly to that of Case 2 ,

$$
\begin{aligned}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right)=\alpha / 2 \text { for } 1 \leq j \neq i \leq 3 m \\
\Leftrightarrow & \lambda_{l, 1}=\left\{\begin{array}{l}
t_{l+m}^{2} \lambda_{l, 0}, \text { if } 1 \leq l \leq m, \\
\lambda_{l, 0}+t_{l} k_{l-m}, \text { if } m+1 \leq l \leq 2 m .
\end{array}\right.
\end{aligned}
$$

Combing all the cases above, we have that R2 holds if and only if

$$
\begin{gather*}
\lambda_{i, 1}=t_{i}^{2} \lambda_{i, 0} \text { for } 1 \leq i \leq m \\
t_{i}^{2}=t_{i+m}^{2} \text { for } 1 \leq i \leq m \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
\lambda_{i, 1}=\lambda_{i, 0}+t_{i} k_{i-m}, \lambda_{i+m, 1}=\lambda_{i+m, 0}+t_{i-m} k_{i} \tag{12}
\end{equation*}
$$

for $m+1 \leq i \leq 2 m$.
Secondly, we determine the necessary and sufficient conditions for R3. It is easy to verify that rank $\left(\binom{S_{i}}{S_{i} A_{i}}\right)=\alpha$ for $1 \leq i \leq m$. For $m+1 \leq i \leq 3 m$,

$$
\begin{aligned}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{i}}\right) \\
= & \operatorname{rank}\left(\binom{V_{i, 0}+t_{i-m} V_{i, 1}}{\left(V_{i, 0}+t_{i-m} V_{i, 1}\right) A_{i}}\right) \\
= & \operatorname{rank}\left(\binom{V_{i, 0}+t_{i-m} V_{i, 1}}{\left(\lambda_{i, 0}+t_{i-m} k_{i-m}\right) V_{i, 0}+t_{i-m} \lambda_{i, 1} V_{i, 1}}\right) \\
= & \alpha \\
\Leftrightarrow & \lambda_{i, 1} \neq \lambda_{i, 0}+t_{i-m} k_{i-m}
\end{aligned}
$$

which together with (12) gives $t_{j} \neq t_{j+m}$ for any $1 \leq j \leq m$, and further, associated with (11) implies that $t_{j}=-t_{j+m}$ for all $1 \leq j \leq m$ and \mathbf{F}_{q} should be a finite field of odd characteristic. This finishes the proof.

Proof of Theorem 3. It is easy to verify that R4 and R5 are satisfied for the first m nodes due to (8) and the fact that $\left\{e_{0}, \cdots, e_{2^{m}-1}\right\}$ is the standard basis.

Proof of Theorem 4 We only prove item (iii) of Theorem 1 hereafter since the other items of Theorems 1 and 2 can be easily verified.

Given two integers $1 \leq i \leq m$ and $m+1 \leq j \leq 3 m$, if $j \equiv i(\bmod m)$, then

$$
\lambda_{i, 1}\left(\lambda_{i, 0}-k_{j-m}\right)=\gamma^{i}\left(\gamma^{i}+2 \gamma^{i}\right) \neq-\gamma^{2 i}=\lambda_{j, 0} \lambda_{j, 1}
$$

since $4 \gamma^{i} \neq 0$; Otherwise, define $j^{\prime}=j-l m$ where $l m+1 \leq$ $j \leq(l+1) m$ for $1 \leq l \leq 2$, i.e., $1 \leq j^{\prime} \neq i \leq m$, then we have

$$
\lambda_{i, 0} \lambda_{i, 1}=\gamma^{2 i} \neq \gamma^{2 j^{\prime}}=\lambda_{j, s}^{2} \text { for } s=0,1
$$

Thus, item (iii) of Theorem 1 is satisfied.
Proof of Theorem $9, \mathcal{C}_{3}$ has the MDS property if and only if R1 holds. In what follows, we only prove it for the case that $1 \leq i \leq m, m+1 \leq j \leq 2 m$. The other cases can be proven similarly as those of Cases 1-2 in the proof of Theorem 1

When $1 \leq i \leq m$ and $m+1 \leq j \leq 2 m$, if $j=i+m$, by (9) we have

$$
\binom{V_{i, 0}}{V_{i, 1}}\left(A_{i}-A_{j}\right)=\binom{\lambda_{i, 1} V_{i, 1}-\lambda_{j, 0} V_{i, 0}}{\lambda_{i, 0} V_{i, 0}-\lambda_{j, 1} V_{i, 1}}
$$

which together with Lemma 1 gives

$$
\operatorname{rank}\left(A_{i}-A_{j}\right)=\alpha \Leftrightarrow \lambda_{i, 1} \lambda_{i, 0} \neq \lambda_{j, 0} \lambda_{j, 1} ;
$$

Otherwise,

$$
\left(\begin{array}{c}
V_{i, j, 0,0} \\
V_{i, j, 0,1} \\
V_{i, j, 1,0} \\
V_{i, j, 1,1}
\end{array}\right)\left(A_{i}-A_{j}\right)=\left(\begin{array}{c}
\lambda_{i, 1} V_{i, j, 1,0}-\lambda_{j, 0} V_{i, j, 0,0} \\
\lambda_{i, 1} V_{i, j, 1,1}-\lambda_{j, 1} V_{i, j, 0,1} \\
\lambda_{i, 0} V_{i, j, 0,0}-\lambda_{j, 0} V_{i, j, 1,0} \\
\lambda_{i, 0} V_{i, j, 0,1}-\lambda_{j, 1} V_{i, j, 1,1}
\end{array}\right)
$$

associated with Lemma 1, which implies that

$$
\operatorname{rank}\left(A_{i}-A_{j}\right)=\alpha \Leftrightarrow \lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0}^{2}, \lambda_{j, 1}^{2} .
$$

Proof of Theorem 10, \mathcal{C}_{3} is a code with the optimal repair property if and only if R 2 and R 3 hold. For $m+1 \leq i \leq 2 m$, we have

$$
\begin{aligned}
\operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{i}}\right) & =\operatorname{rank}\left(\binom{V_{i, 0}+t_{i-m} V_{i, 1}}{\lambda_{i, 0} V_{i, 0}+\lambda_{i, 1} t_{i-m} V_{i, 1}}\right) \\
& =\alpha \\
& \Leftrightarrow \lambda_{i, 0} \neq \lambda_{i, 1} .
\end{aligned}
$$

The analysis for the remainder cases are omitted herein since they are similar to those of \mathcal{C}_{1}.

Proof of Theorem 12 Since the other items of Theorems 9 and 10 can be easily satisfied, we only verify item (iii) of Theorem 9 herein.

Given two integers $1 \leq i \leq m$ and $m+1 \leq j \leq 2 m$, define $j^{\prime}=j-m$. Obviously, $1 \leq j^{\prime} \leq m$. If $j^{\prime}=i$, we have $\lambda_{i, 0} \lambda_{i, 1}=\gamma^{2 i} \neq \gamma^{\left\lfloor\frac{q}{2}\right\rfloor+2 i}=\lambda_{j, 0} \lambda_{j, 1}$; Otherwise,

$$
\frac{\lambda_{j, 0}^{2}}{\lambda_{i, 0} \lambda_{i, 1}}=\frac{\gamma^{2 j^{\prime}}}{\gamma^{2 i}}=\gamma^{2 j^{\prime}-2 i} \neq 1
$$

and

$$
\frac{\lambda_{j, 1}^{2}}{\lambda_{i, 0} \lambda_{i, 1}}=\gamma^{2\left\lfloor\frac{q}{2}\right\rfloor+2 j^{\prime}-2 i}=\left\{\begin{array}{cc}
\gamma^{2 j^{\prime}-2 i}, & q \text { odd } \\
\gamma^{2 j^{\prime}-2 i+1}, & q \text { even }
\end{array} \neq 1\right.
$$

where we use the facts that $1 \leq\left|2 j^{\prime}-2 i+1\right| \leq 2 m-1 \leq q-2$ and $\gamma^{l}=1$ if and only if $l \equiv 0(\bmod q-1)$. Thus, item (iii) of Theorem 9 is satisfied.

Proof of Theorem 13, \mathcal{C}_{4} has the MDS property if and only if R1 holds.

When $1 \leq i<j \leq k$, if $j \neq i+m$, similarly as Case 1 in the proof of Theorem 1 we have

$$
\operatorname{rank}\left(A_{i}-A_{j}\right)=\alpha \Leftrightarrow \lambda_{i, 0} \lambda_{i, 1} \neq \lambda_{j, 0} \lambda_{j, 1}
$$

Otherwise, by (9) we have

$$
\begin{aligned}
\binom{V_{i, 0}}{V_{i, 1}}\left(A_{i}-A_{j}\right) & =\binom{\lambda_{i, 1} V_{i, 1}}{\lambda_{i, 0} V_{i, 0}}-\binom{\lambda_{j, 1} V_{i, 1}}{\lambda_{j, 0} V_{i, 0}} \\
& =\binom{\left(\lambda_{i, 1}-\lambda_{j, 1}\right) V_{i, 1}}{\left(\lambda_{i, 0}-\lambda_{j, 0}\right) V_{i, 0}}
\end{aligned}
$$

which together with Lemma 1 implies

$$
\operatorname{rank}\left(A_{i}-A_{j}\right)=\alpha \Leftrightarrow \lambda_{i, s} \neq \lambda_{j, s} \text { for } s=0,1
$$

Proof of Theorem 14, \mathcal{C}_{4} is a code with the optimal repair property if and only if R2 and R3 hold.

For $1 \leq i \leq k$, we have

$$
\begin{aligned}
\operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{i}}\right) & =\operatorname{rank}\left(\binom{V_{i, 0}+t_{i} V_{i, 1}}{\lambda_{i, 1} V_{i, 1}+t_{i} \lambda_{i, 0} V_{i, 0}}\right) \\
& =\alpha \\
& \Leftrightarrow \lambda_{i, 1} \neq t_{i}^{2} \lambda_{i, 0}
\end{aligned}
$$

Similar to Case 2(a) in the proof of Theorem 2, we can get

$$
\begin{aligned}
& \operatorname{rank}\left(\binom{S_{i}}{S_{i} A_{j}}\right)=\frac{\alpha}{2} \text { for any } 1 \leq i \neq j \leq k \\
\Leftrightarrow & \lambda_{i, 1}=t_{i+m}^{2} \lambda_{i, 0}, \lambda_{i+m, 1}=t_{i}^{2} \lambda_{i+m, 0} \text { for all } 1 \leq i \leq m .
\end{aligned}
$$

ACKNOWLEDGEMENT

The authors would like to thank the Associate Editor Professor Michael Langberg and the two anonymous referees for their helpful comments, which have greatly improved the presentation and quality of this paper.

References

[1] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, "Total recall: System support for automated availability management," presented at the Symp. Networked Systems Design and Implementation (NSDI), 2004.
[2] V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra, "Polynomial length MDS codes with optimal repair in distributed storage," in Proc. Conf. Rec. 45th Asilomar Conf. Signals, Syst. Comput., Nov. 6-9, 2011, pp. 1850-1854.
[3] V. R. Cadambe and S. A. Jafar, "Interference alignment and the degree of freedom for the K user interference channel," IEEE Trans. Inform. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008.
[4] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh, "Asymptotic interference alignment for optimal repair of MDS codes in distributed storage," IEEE Trans. Inform. Theory, vol. 59, no. 5, pp. 29742987, May 2013.
[5] V. R. Cadambe, C. Huang, S. A. Jafar, and J. Li, Optimal repair of MDS codes in distributed storage via subspace interference alignment [Online]. Available: arXiv: 1106.1250v1 [cs.IT]
[6] D. Cullina, A. G. Dimakis, and T. Ho, "Searching for minimum storage regenerating codes," in Proc. 47th Annu. Allerton Conf. Communication, Control, and Computing, Urbana-Champaign, IL, Sep. 2009.
[7] F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek, and R. Morris, "Designing a DHT for low latency and high throughput," presented at the Symp. Networked Systems Design and Implementation (NSDI), 2004.
[8] A. G. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, "Network coding for distributed storage systems," IEEE Trans. Inform. Theory, vol. 56, no. 9, pp. 4539-4551, Sep. 2010.
[9] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, "A survey on network codes for distributed storage," Proc. IEEE, vol. 99, no. 3, pp. 476-489, Mar. 2011.
[10] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin, "Erasure coding in Windows Azure storage," presented at the USENIX Annu. Tech. Conf., Boston, MA, USA, Jun. 2012.
[11] M. A. Maddah-Ali, S. A. Motahari, and A. K. Khandani, "Communication over MIMO X channels: Interference alignment, decomposition, and performance analysis," IEEE Trans. Inform. Theory, vol. 54, no. 8, pp. 3457-3470, Aug. 2008.
[12] D. S. Papailiopoulos, A. G. Dimakis, V. R. Cadambe, "Repair optimal erasure codes through hadamard designs," IEEE Trans. Inform. Theory, vol. 59, no. 5, pp. 3021-3037, May 2013.
[13] K. V. Rashmi, N. B. Shah, and P. V. Kumar, "Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a productmatrix construction," IEEE Trans. Inform. Theory, vol. 57, no. 8, pp. 5227-5239, Aug. 2011.
[14] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubiatowicz, "Maintenance-free global data storage," IEEE Internet Comput., pp. 40-49, Sep. 2001.
[15] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, "Explicit codes minimizing repair bandwidth for distributed storage," in Proc. IEEE Inf. Theory Workshop, Jan. 2010. pp. 1-5.
[16] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, "Interference alignment in regenerating codes for distributed storage: necessity and code constructions," IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 2134-2158, Apr. 2012.
[17] C. Suh and K. Ramchandran, "Exact-repair MDS code construction using interference alignment," IEEE Trans. Inform. Theory, vol. 57, no. 3, pp. 1425-1442, Mar. 2011.
[18] T. Tamo, Z. Wang and J. Bruck, "Zigzag codes: MDS array codes with optimal rebuilding," IEEE Trans. Inform. Theory, vol. 59, no. 3, pp. $1597-$ 1616, Mar. 2013.
[19] T. Tamo, Z. Wang and J. Bruck, "Access versus bandwidth in codes for storage," IEEE Trans. Inform. Theory, vol. 60, no. 4, pp. 2028-2037, Apr. 2014.
[20] Z. Wang, T. Tamo and J. Bruck, "Long MDS codes for optimal repair bandwidth," Tech. Rep. Available at http : //paradise.caltech.edu/etr.html.
[21] Y. Wu, A. G. Dimakis, "Reducing repair traffic for erasure coding-based storage via interference alignment," in Proc. Int. Symp. Inf. Theory, 2009, pp. 2276-2280.

Jie Li received the B.S. and M.S. degrees in mathematics from Hubei University, Wuhan, China, in 2009 and 2012, respectively. He is currently pursuing Ph.D. degree at Southwest Jiaotong University, Chengdu, China. His research interest includes coding for distributed storage and sequence design.

Xiaohu Tang (M'04) received the B.S. degree in applied mathematics from the Northwest Polytechnic University, Xi'an, China, the M.S. degree in applied mathematics from the Sichuan University, Chengdu, China, and the Ph.D. degree in electronic engineering from the Southwest Jiaotong University, Chengdu, China, in 1992, 1995, and 2001 respectively.

From 2003 to 2004, he was a research associate in the Department of Electrical and Electronic Engineering, Hong Kong University of Science and Technology. From 2007 to 2008, he was a visiting professor at University of Ulm, Germany. Since 2001, he has been in the School of Information Science and Technology, Southwest Jiaotong University, where he is currently a professor. His research interests include coding theory, network security, distributed storage and information processing for big data.

Dr. Tang was the recipient of the National excellent Doctoral Dissertation award in 2003 (China), the Humboldt Research Fellowship in 2007 (Germany), and the Outstanding Young Scientist Award by NSFC in 2013 (China). He serves as the Associate Editor of the IEICE Trans on Fundamentals, and Guest Editor/Associate-Editor for special section on sequence design and its application in communications.

Udaya Parampalli (M'90-SM'12) (aka Parampalli Udaya) obtained his doctoral degree in Electrical Engineering from Indian institute of Technology (I.I.T), Kanpur, in 1993. From 1992 to 1996, he worked in Industry as a Member Research Staff at Central Research Laboratory, Bharat Electronics, Bangalore. From 1997 to 2000, he was an ARC research associate at the Department of Mathematics, RMIT University, Melbourne, Australia. Since February 2000, he has been working at the Department of Computer Science and Software Engineering, the University of Melbourne, which in 2012 was merged with the newly formed Department of Computing and Information Systems. Currently he is an Associate Professor and Reader at the department. His research interests are in the area of coding theory, cryptography and sequences over finite fields and rings for communications and information security.

[^0]: Manuscript received November 19, 2013; revised November 23, 2014; accepted February 9, 2015. J. Li and X. Tang were supported in part by the National Science Foundation of China under Grant 61325005 and in part by the Major Frontier Project of Sichuan Province. U. Parampalli was supported in part by the Communications Sensing and Coding Research Network, in part by the International Research and Research Training Fund, and in part by the University of Melbourne, Melbourne, VIC, Australia.
 J. Li is with the Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, 610031, China (e-mail: jieli873@gmail.com).
 X.H. Tang is with the Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu 610031, China, and also with the Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048, China (e-mail: xhutang@swjtu.edu.cn).
 U. Parampalli is with the Department of Computer Science and Software Engineering, University of Melbourne, VIC 3010, Australia (email: udaya@unimelb.edu.au).

