
1

The Third-Order Term in the Normal
Approximation for the AWGN Channel

Vincent Y. F. Tan† and Marco Tomamichel∗

Abstract

This paper shows that, under the average error probability formalism, the third-order term in the normal
approximation for the additive white Gaussian noise channel with a maximal or equal power constraint is at least
1
2 log n+O(1). This matches the upper bound derived by Polyanskiy-Poor-Verdú (2010).

I. INTRODUCTION

The most important continuous alphabet channel in communication systems is the discrete-time additive white
Gaussian noise (AWGN) channel in which at each time i, the output of the channel Yi is the sum of the input Xi

and Gaussian noise Zi. Shannon showed in his original paper [1] that launched the field of information theory that
the capacity of the AWGN channel is

C(P ) =
1

2
log(1 + P ), (1)

where P is the signal-to-noise ratio (SNR). More precisely, let M∗(Wn, ε, P ) be the maximum number of codewords
that can be transmitted over n independent uses of an AWGN channel with SNR P and average error probability
not exceeding ε ∈ (0, 1). Then, combining the direct part in [1] and the strong converse by Shannon in [2] (also
see Yoshihara [3] and Wolfowitz [4]), one sees that

lim
n→∞

1

n
logM∗(Wn, ε, P ) = C(P ) bits per channel use (2)

holds for every ε ∈ (0, 1).
Recently, there has been significant renewed interest in studying the higher-order terms in the asymptotic

expansion of non-asymptotic fundamental limits such as logM∗(Wn, ε, P ). This line of analysis was pioneered by
Strassen [5, Theorem 1.2] for discrete memoryless channels (DMCs) and is useful because it provides key insights
into the amount of backoff from channel capacity for block codes of finite length n. For the AWGN channel,
Hayashi [6, Theorem 5] showed that

logM∗(Wn, ε, P ) = nC(P ) +
√
nV(P )Φ−1(ε) + o(

√
n) (3)

where Φ−1(·) is the inverse of the Gaussian cumulative distribution function and

V(P ) = log2 e · P (P + 2)

2(P + 1)2
bits2 per channel use (4)

is termed the Gaussian dispersion function [7]. The first two terms in the expansion in (3) are collectively known the
normal approximation. The functional form of V(P ) was already known to Shannon [2, Section X] who analyzed
the behavior of the reliability function of the AWGN channel at rates close to capacity. Subsequently, the o(

√
n)

remainder term in the expansion in (3) was refined by Polyanskiy-Poor-Verdú [7, Theorem 54, Eq. (294)] who
showed that

O(1) ≤ logM∗(Wn, ε, P )−
(
nC(P ) +

√
nV(P )Φ−1(ε)

)
≤ 1

2
log n+O(1). (5)

The same bounds hold under the maximum probability of error formalism.
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Despite these impressive advances in the fundamental limits of coding over a Gaussian channel, the gap in the
third-order term beyond the normal approximation in (5) calls for further investigations. The authors of the present
paper showed for DMCs with positive ε-dispersion that the third-order term is no larger than 1

2 log n + O(1) [8,
Theorem 1], matching a lower bound by Polyanskiy [9, Theorem 53] for non-singular channels (also called channels
with positive reverse dispersion [9, Eq. (3.296)]). Altuğ and Wagner [10] showed for singular, symmetric DMCs
that the third-order term is O(1). Moulin [11] recently showed for a large class of channels (but not the AWGN
channel) that the third-order term is 1

2 log n + O(1). In light of these existing results for DMCs, a reasonable
conjecture would be that the third-order term for the Gaussian case is either O(1) or 1

2 log n+O(1). In this paper,
we show that in fact, the lower bound in (5) is loose. In particular, we establish that it can be improved to match
the upper bound 1

2 log n+O(1). Our proof technique is similar to that developed by Polyanskiy [9, Theorem 53]
to show that 1

2 log n+O(1) is achievable for non-singular DMCs. However, our proof is more involved due to the
presence of power constraints on the codewords.

II. PROBLEM SETUP AND DEFINITIONS

Let W be an AWGN channel where the noise variance1 is 1, i.e.

W (y|x) =
1√
2π

exp
(
− (y − x)2

2

)
. (6)

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in Rn. Let Wn(y|x) =
∏n
i=1W (yi|xi) be the n-fold

memoryless extension of W . An (n,M, ε, P )av-code for the AWGN channel W is a system {(x(m),Dm)}Mm=1

where x(m) ∈ Rn,m ∈ {1, . . . ,M}, are the codewords satisfying the maximal power constraint ‖x(m)‖22 ≤ nP ,
the sets Dm ⊂ Rn are disjoint decoding regions and the average probability of error does not exceed ε, i.e.

1

M

M∑
m=1

Wn
(
Dcm

∣∣x(m)
)
≤ ε. (7)

Define M∗(Wn, ε, P ) := max
{
M ∈ N : ∃ an (n,M, ε, P )av-code for W

}
.

We also employ the Gaussian cumulative distribution function

Φ(a) :=

∫ a

−∞

1√
2π

exp
(
− u2

2

)
du (8)

and define its inverse as Φ−1(ε) := sup{a ∈ R : Φ(a) ≤ ε}, which evaluates to the usual inverse for 0 < ε < 1
and continuously extends to take values ±∞ outside that range.

III. MAIN RESULT AND REMARKS

Let us reiterate our main result.

Theorem 1. For all 0 < ε < 1 and P ∈ (0,∞),

logM∗(Wn, ε, P ) ≥ nC(P ) +
√
nV(P )Φ−1(ε) +

1

2
log n+O(1) (9)

where C(P ) and V(P ) are the Gaussian capacity and dispersion functions respectively.

We make the following remarks before proving the theorem in the following section.
1) As mentioned in the Introduction, the upper bound on logM∗(Wn, ε, P ) in (5) was first established by

Polyanskiy-Poor-Verdú [7, Theorem 65]. They evaluated the meta-converse [7, Theorem 28] and appealed
to the spherical symmetry in the Gaussian problem. The third-order term in the normal approximation was
shown to be upper bounded by 1

2 log n+O(1) (under the average or maximum error probability formalism).
Thus, one has

logM∗(Wn, ε, P ) = nC(P ) +
√
nV(P )Φ−1(ε) +

1

2
log n+O(1). (10)

1The assumption that the noise variance is 1 does not entail any loss of generality because we can simply scale the admissible power
accordingly to ensure that the SNR is P .
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The technique developed by the present authors in [8] can also be used to prove the 1
2 log n + O(1) upper

bound on the third-order term.
2) Our strategy for proving (9) parallels that for non-singular DMCs without cost constraints by Polyanskiy [9,

Theorem 53]. It leverages on the random-coding union (RCU) bound [7, Theorem 16] and uses the log-
likelihood ratio as the decoding metric, i.e. we do maximum likelihood decoding. However, the Gaussian
problem involves cost (power) constraints and our random codebook generation strategy (which is similar to
Shannon’s [2]) involves drawing codewords independently and uniformly at random from the power sphere.
Thus, a more delicate analysis (vis-à-vis [9, Theorem 53]) is required. In particular, one cannot directly employ
the refined large-deviations result stated in [7, Lemma 47] which is crucial in showing the achievability of
1
2 log n+O(1). This is because [7, Lemma 47] requires independence of a collection random variables whereas
the independence structure is lacking in the AWGN problem.

3) In Theorem 1, we considered a maximal power constraint on the codewords, i.e. ‖x(m)‖22 ≤ nP for all m. It is
easy to show that the third-order term is the same for the case of equal power constraints, i.e. ‖x(m)‖22 = nP
for all m. However, the strong converse does not even hold [9, Theorem 77] under the average probability
of error formalism and the average power constraint across the codebook, i.e. 1

M

∑M
m=1 ‖x(m)‖22 ≤ nP .

The ε-capacity depends on ε. We do not consider this case in this paper. Nonetheless, the strong converse
and normal approximation do hold [7, Theorem 54] under the maximum probability of error formalism and
average power constraint across the codebook but we do not consider this setup here. It is known [7, Eq. (295)]
that the third-order term is sandwiched between O(1) and 3

2 log n+O(1).
4) A straightforward extension of our proof technique (in particular, the application of Lemma 2 in Section IV-E)

shows that the achievability of 1
2 log n + O(1) also holds for the problem of information transmission over

parallel Gaussian channels [12, Section 9.4] in which the capacity is given by the well-known water-filling
solution. See Appendix A for a description of the modifications to the proof of Theorem 1 to this setting.
This improves on the result in [9, Theorem 81] by 1

2 log n. However, this third-order achievability result does
not match the converse bound given in [9, Theorem 80] in which it is shown that the third-order term is
upper bounded by k+1

2 log n+O(1) where k ≥ 1 is the number of parallel Gaussian channels. We leave the
closing of this gap for future research.

5) Finally, we make an observation concerning the relation between prefactors in the error exponents regime
and the third-order terms in the normal approximation. In [2], Shannon derived exponential bounds on the
average error probability of optimal codes over a Gaussian channel using geometric arguments. For high rates
(i.e. rates above the critical rate and below capacity), he showed that [2, Eqs. (4)–(5)]

P∗e(M,n) = Θ
(exp(−nF (ϕ))√

n

)
(11)

where P∗e(M,n) is the optimal average probability of error of a length-n block code of size M ∈ N, ϕ = ϕ(R)
is a cone angle related to the signaling rate R := 1

n logM as follows [2, Eq. (28)]

exp(−nR) =

(
1 +O

(
1
n

))
sinn ϕ

√
2πn sinϕ cosϕ

, (12)

and the exponent in (11) is defined as

F (ϕ) :=
P

2
−
√
P G cosϕ

2
− log

(
G sinϕ

)
, where (13)

G = G(ϕ) :=
1

2

(√
P cosϕ+

√
P cos2 ϕ+ 4

)
. (14)

Furthermore for high rates, the error exponent (reliability function) of an AWGN channel is known and equals
the sphere-packing exponent [13, Eq. (7.4.33)]

E(R) =
P

4β

(
(β + 1)− (β − 1)

√
1 +

4β

P (β − 1)

)
+

1

2
log

(
β − P (β − 1)

2

[√
1 +

4β

P (β − 1)
− 1

])
(15)
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where β := exp(2R). Simple algebra shows that F (θ) = E(R̃(θ)) when R̃(θ) := − log sin θ. Thus,

F
(
ϕ(R)

)
= E

(
R̃(ϕ(R))

)
(16)

= E
(
− log sin(ϕ(R))

)
(17)

= E
(
R− log n

2n
+ Θ

( 1

n

))
(18)

= E(R)− E′(R)
log n

2n
+ Θ

( 1

n

)
, (19)

where (18) follows from (12) and (19) follows by Taylor expanding the continuously differentiable function
E(R). Note that E′(R) ≤ 0. This leads to the conclusion that for high rates,

P∗e(M,n) = Θ
(exp(−nE(R))

n(1+|E′(R)|)/2

)
. (20)

Thus, the prefactor of the AWGN channel is Θ(n−(1+|E′(R)|)/2). We showed in Theorem 1 that the third-order
term is 1

2 log n+O(1). Somewhat surprisingly, this is analogous to the symmetric, discrete memoryless case.
Indeed for non-singular, symmetric DMCs (such as the binary symmetric channel) the prefactor in the error
exponents regime for high rates is Θ(n−(1+|E′(R)|)/2) [14]–[17] and for DMCs with positive ε-dispersion, the
third-order term is 1

2 log n+O(1) (combining [8, Theorem 1] and [9, Theorem 53]). (Actually symmetry is
not required for the third-order term to be 1

2 log n+O(1).) On the other hand, for singular, symmetric DMCs
(such as the binary erasure channel), the prefactor is Θ(n−1/2) [14]–[17] and the third-order term is O(1)
(combining [10, Proposition 1] and [7, Theorem 45]). Also see [18, Theorem 23]. These results suggest a
connection between prefactors and third-order terms. Indeed, a precise understanding of this connection is a
promising avenue for further research.

IV. PROOF OF THEOREM 1

The proof, which is based on random coding, is split into several steps.

A. Random Codebook Generation And Encoding

We first start by defining the random coding distribution

fX(x) :=
δ(‖x‖22 − nP )

Sn(
√
nP )

(21)

where δ(·) is the Dirac delta and Sn(r) = 2πn/2

Γ(n/2)r
n−1 is the surface area of a radius-r sphere in Rn. We sample

M length-n codewords independently from fX. In other words, we draw codewords uniformly at random from the
surface of the sphere in Rn with radius

√
nP . The number of codewords M will be specified at the end of the

proof in (81). These codewords are denoted as x(m) = (x1(m), . . . , xn(m)),m ∈ {1, . . . ,M}. To send message
m, transmit codeword x(m).

B. Maximum-Likelihood Decoding

Let the induced output density be fXWn, i.e.

fXW
n(y) :=

∫
x′
fX(x′)Wn(y|x′) dx′. (22)

Given y = (y1, . . . , yn), the decoder selects the message m satisfying

q(x(m),y) > max
m̃∈{1,...,M}\{m}

q(x(m̃),y), (23)

where the decoding metric is the log-likelihood ratio defined as

q(x,y) := log
Wn(y|x)

fXWn(y)
. (24)

If there is no unique m ∈ {1, . . . ,M} satisfying (23), declare an error. (This happens with probability zero.)
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Since the denominator in (24), namely fXW
n(y), is constant across all codewords, this is simply maximum-

likelihood or, in this Gaussian case, minimum-Euclidean distance decoding. We will take advantage of the latter
observation in our proof, more precisely the fact that

q(x,y) =
n

2
log

1

2π
+ 〈x,y〉 − nP − ‖y‖22 − log fXW

n(y) (25)

only depends on the codeword through the inner product 〈x,y〉 =
∑n

i=1 xiyi. In fact, q(x,y) is equal to 〈x,y〉 up
to a shift that only depends on ‖y‖22.

Note that because fXWn is not a product density, q(x,y) is not separable (into a sum of n terms) unlike in the
i.i.d. random coding case [9, Theorem 53].

C. The Random Coding Union (RCU) Bound

All the randomly drawn codewords satisfy the cost constraints with probability one. By using the same proof
technique as that for the RCU bound [7, Theorem 16], we may assert that there exists an (n,M, ε′, P )av-code
satisfying

ε′ ≤ E
[
min

{
1,M Pr

(
q(X̄,Y) ≥ q(X,Y)|X,Y

)}]
(26)

where the random variables (X̄,X,Y) are distributed as fX(x̄)× fX(x)×Wn(y|x). Now, introduce the function

g(t,y) := Pr
(
q(X̄,Y) ≥ t

∣∣Y = y
)
. (27)

Since X̄ is independent of X, the probability in (26) can be written as

Pr
(
q(X̄,Y) ≥ q(X,Y)|X,Y

)
= g(q(X,Y),Y). (28)

Furthermore, by Bayes rule, we have fX|Y(x|y)× fXWn(y) = fX(x)×Wn(y|x) and so

fX(x̄) = fX(x̄)
fX|Y(x̄|y)

fX|Y(x̄|y)
= fX|Y(x̄|y) exp(−q(x̄,y)). (29)

For a fixed sequence y ∈ Rn and a constant t ∈ R, multiplying both sides by 1{q(x̄,y) ≥ t} and integrating over
all x̄ yields the following alternative representation of g(t,y):

g(t,y) = E
[

exp(−q(X,Y))1{q(X,Y) ≥ t}
∣∣Y = y

]
. (30)

D. A High-Probability Set

Consider the set of “typical” channel outputs whose norms are approximately
√
n(P + 1). More precisely, define

F :=
{
y ∈ Rn :

1

n
‖y‖22 ∈ [P + 1− δ, P + 1 + δ]

}
. (31)

We claim that the probability of Y ∈ F is large. First the union bound yields

Pr(Y ∈ Fc) ≤ Pr

(
1

n
‖X + Z‖22 > P + 1 + δ

)
+ Pr

(
1

n
‖X + Z‖22 < P + 1− δ

)
. (32)

Since the bounding of both probabilities can be done in a similar fashion, we focus on the first which may be
written as

Pr

(
1

n
‖X + Z‖22 > P + 1 + δ

)
= Pr

(
1

n

(
2〈X,Z〉+ ‖Z‖22

)
> 1 + δ

)
. (33)

Define the following “typical” set of noises

G :=
{
z ∈ Rn :

1

n
‖z‖22 ≤ 1 +

δ

2

}
. (34)
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Since Z = (Z1, . . . , Zn) ∼ N (0, In×n), by the Chernoff bound (or, more precisely, by Cramer’s theorem [19,
Theorem 2.2.3] for χ2

1 random variables), the probability that Z ∈ Gc is upper bounded by exp(−κ1nδ
2) for some

constant κ1 > 0. Now, we continue bounding the probability in (33) as follows:

Pr

(
1

n

(
2〈X,Z〉+ ‖Z‖22

)
> 1 + δ

)
≤ Pr

(
1

n

(
2〈X,Z〉+‖Z‖22

)
> 1 + δ

∣∣∣∣Z ∈ G)Pr(Z ∈ G)+Pr(Z ∈ Gc) (35)

≤ Pr

(
2

n
〈X,Z〉 > δ

2

∣∣∣∣Z ∈ G)Pr(Z ∈ G) + Pr(Z ∈ Gc) (36)

≤ Pr

(
1

n

n∑
i=1

XiZi >
δ

4

)
+ Pr(Z ∈ Gc), (37)

where in (36) we used the definition of G. By spherical symmetry, we may take X to be any point on the power
sphere {x : ‖x‖22 = nP}. We take X to be equal to (

√
nP , 0, . . . , 0). Then the first term reduces to

Pr

(
Z1 >

δ

4
·
√
n

P

)
= 1− Φ

(
δ

4
·
√
n

P

)
≤ exp(−κ2nδ

2), (38)

where κ2 > 0 is a constant. By putting all the bounds together and setting δ = n−1/3, we deduce that

Pr(Y ∈ F) ≥ 1− ξn (39)

where ξn := exp(−κ3n
1/3) for some κ3 > 0. Note that ξn decays faster than any polynomial.

E. Probability Of The Log-Likelihood Ratio Belonging To An Interval

We would like to upper bound g(t,y) in (27) to evaluate the RCU bound. This we do in the next section. As
an intermediate step, we consider the problem of upper bounding

h(y; a, µ) := Pr
(
q(X,Y) ∈ [a, a+ µ]

∣∣Y = y
)
, (40)

where a ∈ R and µ > 0 are some constants. Because Y is fixed to some constant vector y and ‖X‖22 is also
constant, h(y; a, µ) can be rewritten using (25) as

h(y; a, µ) := Pr
(
〈X,Y〉 ∈ [a′, a′ + µ]

∣∣Y = y
)
, (41)

for some other constant a′ ∈ R. It is clear that h(y; a, µ) depends on y through its norm and so we may define
(with an abuse of notation),

h(s; a, µ) := h(y; a, µ), if s =
1

n
‖y‖22. (42)

In the rest of this section, we assume that y ∈ F or, equivalently, s ∈ [P + 1− δ, P + 1 + δ].
By introducing the standard Gaussian random vector Z = (Z1, . . . , Zn) ∼ N (0, In×n), we have

h(s; a, µ) = Pr
(
〈X,X + Z〉 ∈ [a′, a′ + µ]

∣∣∣ ‖X + Z‖22 = ns
)

(43)

= Pr

( n∑
i=1

XiZi + nP ∈ [a′, a′ + µ]

∣∣∣∣ ‖X + Z‖22 = ns

)
(44)

where (44) follows by the observation that 〈X,X〉 = nP with probability one. Now, define

x0 :=
(√
nP , 0, . . . , 0

)
(45)

to be a fixed vector on the power sphere. By spherical symmetry, we may pick X in (44) to be equal to x0. Thus,
we have

h(s; a, µ) = Pr

(
Z1 +

√
nP ∈

[ a′√
nP

,
a′ + µ√
nP

] ∣∣∣∣ ‖x0 + Z‖22 = ns

)
. (46)

In other words, we are conditioning on the event that the random vector Z ∼ N (0, In×n) lands on the surface of a
sphere of radius

√
ns centered at −x0 = (−

√
nP , 0, . . . , 0). See Fig. 1. We are then asking what is the probability

that the first component plus
√
nP belongs to the prescribed interval of length proportional to µ/

√
n.
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z1

z2

0−
√
nP

−x0

Q

√
ns−
√
nP−

√
ns−
√
nP

√ ns

√
ns sinψ

√
ns cosψ −

√
nP

ψ uu u

u
{z : ‖x0 + z‖22 = ns}

Fig. 1. Illustration of the relation between Z1 and Ψ in (47) in two dimensions. The transformation of this figure to the U coordinate
system via (49) translates the sphere to the origin and scales its radius to be 1.

Let us now derive the conditional density of Z1 given the event E := {‖x0 +Z‖22 = ns}. Denote this density as
fZ1|E(z1). Note that the support of fZ1|E(z1) is [−

√
ns −

√
nP ,
√
ns −

√
nP ]. It is easier to find the conditional

density of the angle Ψ ∈ [0, 2π] given the event E where Ψ and Z1 are related as follows:

Z1 =
√
ns cos Ψ−

√
nP . (47)

Again see Fig. 1. Now, we have

fΨ|E(ψ) dψ ∝
(
sinn−2 ψ

)
exp

(
−n

2

[
(
√
s cosψ −

√
P )2 + s sin2 ψ

])
dψ. (48)

This follows because the area element (an (n − 1)-dimensional annulus of radius
√
ns sinψ and width dψ) is

proportional to sinn−2 ψ (similar to Shannon’s derivation in [2, Eq. (21)]) and the Gaussian weighting is proportional
to exp

(
− n

2

[
(
√
s cosψ−

√
P )2 +s sin2 ψ

])
. This is just exp(−d2/2) where d is the distance of the point described

by ψ (point Q in Fig. 1) to the origin. We are obviously leveraging heavily on the radial symmetry of the problem
around the first axis. Now, we consider the change of variables

U = cos Ψ (49)

resulting in
fU |E(u) du ∝ (1− u2)(n−3)/2 exp

(
n
√
Psu

)
du. (50)

Note that U takes values in [−1, 1]. More precisely, the conditional density of U given E is

fU |E(u) =
1

Fn
(1− u2)(n−3)/2 exp

(
n
√
Psu

)
1{u ∈ [−1, 1]}, (51)

where the normalization constant is

Fn :=

∫ 1

−1
(1− u2)(n−3)/2 exp

(
n
√
Psu

)
du. (52)

The conditional density we have derived in (51)–(52) reduces to that by Stam [20, Eq. (3)] for the limiting case
P = 0, i.e. the sphere is centered at the origin. It is of paramount importance to analyze how supu∈[−1,1] fU |E(u)
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scales with n. The answer turns out to be O(
√
n). More formally, we state the following lemma whose proof is

provided in Appendix B.

Lemma 2. Define the function

L(P, s) :=
(2Ps)2

√
2π
·

√
1 + 4Ps−

√
1 + 4Ps

(
√

1 + 4Ps− 1)5
. (53)

The following bound holds:

lim sup
n→∞

1√
n

sup
u∈[−1,1]

fU |E(u) ≤ L(P, s). (54)

Equipped with this lemma, let us consider the probability h(s; a, µ) in (46). We have

h(s; a, µ) = Pr

(√
nsU ∈

[ a′√
nP

,
a′ + µ√
nP

] ∣∣∣∣ E) (55)

=

∫ (a′+µ)/(n
√
Ps)

a′/(n
√
Ps)

fU |E(u) du (56)

≤
∫ (a′+µ)/(n

√
Ps)

a′/(n
√
Ps)

2L(P, s)
√
n du (57)

=
2L(P, s)µ√

nPs
, (58)

where (55) follows from the fact that Z1 =
√
nsU −

√
nP due to (47) and (49), and (57) holds for all sufficiently

large n (depending only on P and s) on account of Lemma 2.
Since s ∈ [P + 1 − δ, P + 1 + δ] and δ = n−1/3 → 0, we deduce that for all y ∈ F and n sufficiently large

(depending only on P ),
h(y; a, µ) ≤ K(P ) · µ√

n
, (59)

for some function K(P ). In fact, by the continuity of s 7→ L(P, s), the constant K(P ) can be taken to be

K(P ) =
3L(P, P + 1)√

P (P + 1)
. (60)

F. Probability That The Decoding Metric Exceeds t For An Incorrect Codeword

We now return to bounding g(t,y) defined in (27). Again, we assume y ∈ F . The idea here is to consider the
second form of g(t,y) in (30) and to slice the interval [t,∞) into non-overlapping segments {[t+ lη, t+ (l+ 1)η) :
l ∈ N ∪ {0}} where η > 0 is a constant. Then we apply (59) to each segment. This is modelled after the proof of
[7, Lemma 47]. Indeed, we have

g(t,y) = E
[

exp(−q(X,Y))1{q(X,Y) ≥ t}
∣∣Y = y

]
≤
∞∑
l=0

exp(−t− lη) Pr
(
t+ lη ≤ q(X,Y) < t+ (l + 1)η

∣∣Y = y
)

(61)

≤
∞∑
l=0

exp(−t− lη) · K(P ) η√
n

(62)

=
exp(−t)

1− exp(−η)
· K(P ) η√

n
. (63)

Since η is a free parameter, we may choose it to be log 2 yielding

g(t,y) ≤ G exp(−t)√
n

(64)

where G = G(P ) = (2 log 2)K(P ).
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G. Evaluating The RCU Bound

We now have all the necessary ingredients to evaluate the RCU bound in (26). Consider,

ε′ ≤ E
[
min

{
1,Mg(q(X,Y),Y)

}]
≤ Pr(Y ∈ Fc) + E

[
min

{
1,Mg(q(X,Y),Y)

} ∣∣∣Y ∈ F] · Pr(Y ∈ F) (65)

≤ Pr(Y ∈ Fc) + E
[
min

{
1,
MG exp(−q(X,Y))√

n

} ∣∣∣∣Y ∈ F] · Pr(Y ∈ F) (66)

≤ ξn + E
[
min

{
1,
MG exp(−q(X,Y))√

n

} ∣∣∣∣Y ∈ F] · Pr(Y ∈ F) (67)

where (66) is due to (64) with t = q(X,Y) and (67) uses the bound in (39). Now we split the expectation into
two parts depending on whether q(x,y) > log(MG/

√
n) or otherwise, i.e.

E
[
min

{
1,
MG exp(−q(X,Y))√

n

} ∣∣∣∣Y ∈ F]
≤ Pr

(
q(X,Y) ≤ log

MG√
n

∣∣∣∣Y ∈ F)+
MG√
n
E
[
1

{
q(X,Y) > log

MG√
n

}
exp(−q(X,Y))

∣∣∣∣Y ∈ F] . (68)

By applying (64) with t = log(MG/
√
n), we know that the second term can be bounded as

MG√
n
E
[
1

{
q(X,Y) > log

MG√
n

}
exp(−q(X,Y))

∣∣∣∣Y ∈ F] ≤ G√
n
. (69)

Now let f∗Y (y) = N (y; 0, P + 1) be the capacity-achieving output distribution and f∗Y(y) =
∏n
i=1 f

∗
Y (yi) its n-fold

memoryless extension. In Step 1 of the proof of Lemma 61 in [7], Polyanskiy-Poor-Verdú showed that on F , the
ratio of the induced output density fXWn(y) and f∗Y(y) can be bounded by a finite constant J , i.e.

sup
y∈F

fXW
n(y)

f∗Y(y)
≤ J. (70)

Also see [21, Proposition 2]. We return to bounding the first term in (68). Using the definition of q(x,y) in (24)
and applying the bound in (70) yields

Pr

(
q(X,Y) ≤ log

MG√
n

∣∣∣∣Y ∈ F) = Pr

(
log

Wn(Y|X)

fXWn(Y)
≤ log

MG√
n

∣∣∣∣Y ∈ F) (71)

≤ Pr

(
log

Wn(Y|X)

f∗Y(Y)
≤ log

MGJ√
n

∣∣∣∣Y ∈ F) . (72)

Thus, when we multiply the first term in (68) by Pr(Y ∈ F), use Bayes rule and drop the event {Y ∈ F}, we
see that the product can be bounded as follows:

Pr

(
q(X,Y) ≤ log

MG√
n

∣∣∣∣Y ∈ F) · Pr(Y ∈ F) ≤ Pr

(
log

Wn(Y|X)

f∗Y(Y)
≤ log

MGJ√
n

)
. (73)

The right-hand-side of (73) can be written as an average over X ∼ fX, i.e.

Pr

(
log

Wn(Y|X)

f∗Y(Y)
≤ log

MGJ√
n

)
=

∫
x
fX(x) Pr

(
log

Wn(Y|X)

f∗Y(Y)
≤ log

MGJ√
n

∣∣∣∣X = x

)
dx. (74)

By noting that f∗Y(y) is a product density,

Pr

(
log

Wn(Y|X)

f∗Y(Y)
≤ log

MGJ√
n

∣∣∣∣X = x

)
= Pr

( n∑
i=1

log
W (Yi|Xi)

f∗Y (Yi)
≤ log

MGJ√
n

∣∣∣∣X = x

)
. (75)

The above probability does not depend on x as long as it is on the power sphere {x : ‖x‖22 = nP} because of
spherical symmetry. Hence we may take x = (

√
P , . . . ,

√
P ). It is then easy to check that the first two central

moments of the information density are

E

[
1

n

n∑
i=1

log
W (Yi|

√
P )

f∗Y (Yi)

]
= C(P ), and Var

[
1

n

n∑
i=1

log
W (Yi|

√
P )

f∗Y (Yi)

]
=

V(P )

n
. (76)
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Furthermore, the following third-absolute moment

T(P ) :=
1

n

n∑
i=1

E

∣∣∣∣∣log
W (Yi|

√
P )

f∗Y (Yi)
− E

[
log

W (Yi|
√
P )

f∗Y (Yi)

]∣∣∣∣∣
3
 (77)

is obviously bounded (note the scaling). See [22, Lemma 10 and Appendix A] for a precise analysis of third absolute
moments of information densities involving Gaussians. This allows us to apply the Berry-Esseen theorem [23,
Theorem 2 in Section XVI.5], which implies that

Pr

(
log

Wn(Y|X)

f∗Y(Y)
≤ log

MGJ√
n

∣∣∣∣X = (
√
P , . . . ,

√
P )

)
≤ Φ

(
log MGJ√

n
− nC(P )√

nV(P )

)
+

6T(P )√
nV(P )3

. (78)

Let B = B(P ) := 6T(P )/V(P )3/2. We deduce that

Pr

(
log

Wn(Y|X)

f∗Y(Y)
≤ log

MGJ√
n

)
≤ Φ

(
log MGJ√

n
− nC(P )√

nV(P )

)
+

B√
n
. (79)

Putting all the bounds together, we obtain

ε′ ≤ Φ

(
log MGJ√

n
− nC(P )√

nV(P )

)
+

B√
n

+
G√
n

+ ξn. (80)

Now choose

logM = nC(P ) +
√
nV(P )Φ−1

(
ε− B +G√

n
− ξn

)
+

1

2
log n− log(GJ) (81)

ensuring that
ε′ ≤ ε. (82)

Hence, there exists an (n,M, ε, P )av-code where M is given by (81). It is easily seen by Taylor expanding Φ−1(·)
around ε that

logM = nC(P ) +
√
nV(P )Φ−1(ε) +

1

2
log n+O(1). (83)

This completes the proof of Theorem 1.

APPENDIX A
MODIFICATIONS OF THE PROOF TO THE PARALLEL GAUSSIAN CHANNELS SETTNG

In this appendix, we give a sketch of how the proof of Theorem 1 can be used for the scenario where information
is to be transmitted across k parallel Gaussian channels. See Section 9.4 of [12] for the precise problem setting. Let
the input and output to the channel be (X1, . . . ,Xk) and (Y1, . . . ,Yk) respectively. Let the independent noises of
each of the channels have variances N1, . . . , Nk and denote the total admissible power as P . Let | · |+ := max{0, ·}
and set P1, . . . , Pk be the power assignments that maximize the information capacity expression, i.e.

Pj = |ν −Nj |+ (A.1)

where the Karush-Kuhn-Tucker multiplier ν is chosen to satisfy the total power constraint
k∑
j=1

|ν −Nj |+ = P. (A.2)

Let P+ := {j ∈ {1, . . . , k} : Pj > 0}. Clearly, (A.1) and (A.2) imply that P+ is non-empty if P > 0. We use the
random coding distribution fX1

× . . . × fXk
where each constituent distribution fXj

is given by (21) with Pj in
place of P there. Close inspection of the proof of Theorem 1 shows that the only estimate that needs to be verified
is (58). For this, we consider the analogue of (44) which can be written as

h(s1, . . . , sk; a, µ) = Pr

( k∑
j=1

√
Pj Zj1 ∈

[ a2√
n
,
a2 + µ√

n

] ∣∣∣∣ ‖Xj + Zj‖22 = nsj , ∀ j ∈ {1, . . . , k}
)
, (A.3)
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where a2 is related to a′ in (44) by a constant shift. Note that the sum of the inner products
∑k

j=1〈Xj ,Yj〉 in
the analogue of (41) reduces to

∑k
j=1

√
PjZj1 =

∑
j∈P+

√
PjZj1 once we have exploited spherical symmetry

to choose Xj = xj0 := (
√
nPj , 0, . . . , 0) and moved all the constants to the right-hand-side. Let E be the event

{‖xj0 + Zj‖22 = nsj , ∀ j ∈ {1, . . . , k}}. By introducing the independent random variables {Uj : j ∈ P+} that are
related to {Zj1 : j ∈ P+} analogously to (47), we see that (A.3) reduces to

h(s1, . . . , sk; a, µ) = Pr

( ∑
j∈P+

√
Pjsj Uj ∈

[a3

n
,
a3 + µ

n

] ∣∣∣∣ E), (A.4)

where a3 is related to a2 by a constant shift. In principle, since the Uj’s are independent, we can use its distribution
in (51) to find the distribution of

∑
j∈P+

√
Pjsj Uj by convolution and bound the probability using the steps that

led to (58). However, the following method proves to be easier. Let l be any element in P+ then consider

h(s1, . . . , sk; a, µ)

=

∫
Pr

( ∑
j∈P+

√
Pjsj Uj ∈

[a3

n
,
a3 + µ

n

] ∣∣∣∣ E , {∀j ∈ P+ \ {l}, Uj = uj
}) ∏

j∈P+\{l}

fUj |E(uj) duj (A.5)

=

∫
Pr

(√
Plsl Ul ∈

[a4

n
,
a4 + µ

n

] ∣∣∣∣ E , {∀j ∈ P+ \ {l}, Uj = uj
}) ∏

j∈P+\{l}

fUj |E(uj) duj (A.6)

=

∫
Pr

(√
Plsl Ul ∈

[a4

n
,
a4 + µ

n

] ∣∣∣∣ E) ∏
j∈P+\{l}

fUj |E(uj) duj (A.7)

≤
∫

2L(Pl, sl)µ√
nPlsl

∏
j∈P+\{l}

fUj |E(uj) duj (A.8)

=
2L(Pl, sl)µ√

nPlsl
, (A.9)

where (A.5) follows from the law of total probability; (A.6) follows by noting that {uj : j ∈ P+\{l}} are constants
and defining a4 to be related to a3 by a constant shift; (A.7) is due to the joint independence of the random variables
{Uj : j ∈ P+}; and finally (A.8), which holds for n sufficiently large, follows by the same reasoning in the steps
that led to (58). Since l ∈ P+ is arbitrary,

h(s1, . . . , sk; a, µ) ≤ min
l∈P+

2L(Pl, sl)µ√
nPlsl

. (A.10)

We conclude that, just as in (59), the probability h(y1, . . . ,yk; a, µ) is still bounded above by a constant multiple
of µ/

√
n and the constant does not depend on a. The rest of the proof proceeds mutatis mutandis.

APPENDIX B
PROOF OF LEMMA 2

We first find a lower bound for the normalization constant Fn defined in (52). Using the fact that (1−u2)−3/2 ≥ 1,
we have

Fn ≥ Fn :=

∫ 1

−1
exp(nα(u)) du (B.1)

where the exponent is

α(u) :=
1

2
log(1− u2) +

√
Psu. (B.2)

This exponent is maximized at

u∗ =

√
1 + 4Ps− 1

2
√
Ps

, (B.3)

which is in the interior of [−1, 1] for finite P . Furthermore, the second derivative of α is

α′′(u) = − (1 + u2)

(1− u2)2
(B.4)



12

which is always negative. Now we use Laplace’s method to lower bound the definite integral in (B.1) with that of
a Gaussian [24], [25]. We provide the details for the reader’s convenience. Let ε ∈ (0,−α′′(u∗)). By the continuity
of α′′(u) at u∗ and Taylor’s theorem, there exists a ζ ∈ (0, 1−u∗) such that for any u ∈ (u∗− ζ, u∗+ ζ) ⊂ [−1, 1],
we have α(u) ≥ α(u∗) + 1

2(α′′(u∗)− ε)(u− u∗)2. The following lower bounds hold:

Fn ≥
∫ u∗+ζ

u∗−ζ
exp(nα(u)) du (B.5)

≥ exp(nα(u∗))

∫ u∗+ζ

u∗−ζ
exp

(n
2

(α′′(u∗)− ε)(u− u∗)2
)

du (B.6)

= exp(nα(u∗))

√
1

n(−α′′(u∗) + ε)

∫ ζ
√
n(−α′′(u∗)−ε)

−ζ
√
n(−α′′(u∗)+ε)

e−v
2/2 dv. (B.7)

We used the change of variables v =
√
n(−α′′(u∗) + ε)(u − u∗) in the final step. The integral in (B.7) tends to√

2π as n becomes large so

lim inf
n→∞

Fn√
2π

n|α′′(u∗)| exp(nα(u∗))
≥

√
−α′′(u∗)
−α′′(u∗) + ε

. (B.8)

Since ε > 0 is arbitrary, we can rewrite (B.8) as

Fn ≥ γn

√
2π

n|α′′(u∗)|
exp(nα(u∗)), (B.9)

for some sequence γn that converges to 1 as n→∞. Furthermore, the numerator of fU |E(u) in (51) can be upper
bounded as

(1− u2)(n−3)/2 exp
(
n
√
Psu

)
= exp(nβn(u)) ≤ exp(nβn(u∗n)) (B.10)

where the exponent is

βn(u) :=
(1

2
− 3

2n

)
log(1− u2) +

√
Psu (B.11)

and the maximizer of βn(u) is

u∗n :=

√
(1− 3

n)2 + 4Ps− (1− 3
n)

2
√
Ps

. (B.12)

Clearly, u∗n → u∗ as n→∞. We have, by uniting (B.9) and (B.10), that

sup
u∈[−1,1]

fU |E(u) ≤ 1

γn

√
n|α′′(u∗)|

2π
exp

(
n[βn(u∗n)− α(u∗)]

)
. (B.13)

Now, we examine the exponent βn(u∗n)− α(u∗) above. We have

βn(u∗n)− α(u∗) ≤ βn(u∗n)− α(u∗n) =
3

2n
log

1

1− (u∗n)2
(B.14)

where the inequality follows because u∗ maximizes α and so α(u∗n) ≤ α(u∗) and the equality is due to the
definitions of α(u) and βn(u). Thus, (B.13) can be further upper bounded as

sup
u∈[−1,1]

fU |E(u) ≤ 1

γn
·
√
n|α′′(u∗)|

2π
· 1

(1− (u∗n)2)3/2
. (B.15)

Dividing both sides by
√
n and taking the lim sup shows that the upper bound can be chosen to be

L(P, s) =
1

(1− (u∗)2)3/2
·
√
|α′′(u∗)|

2π
=

√
1 + (u∗)2

2π(1− (u∗)2)5
. (B.16)

This concurs with (53) after we substitute for the value of u∗ in (B.3).
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