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Abstract—Kulkarni and Kiyavash recently introduced a new
method to establish upper bounds on the size of deletion-correct-
ing codes. This method is based upon tools from hypergraph the-
ory. The deletion channel is represented by a hypergraph whose
edges are the deletion balls (or spheres), so that a deletion-correct-
ing code becomes a matching in this hypergraph. Consequently,
a bound on the size of such a code can be obtained from bounds
on the matching number of a hypergraph. Classical results in hy-
pergraph theory are then invoked to compute an upper bound
on the matching number as a solution to a linear-programming
problem: the problem of finding fractional transversals.

The method by Kulkarni and Kiyavash can be applied not
only for the deletion channel but also for other error channels.
This paper studies this method in its most general setup. First,
it is shown that if the error channel is regular and symmetric
then the upper bound by this method coincides with the well-
known sphere packing bound and thus is called here the general-
ized sphere packing bound. Even though this bound is explicitly
given by a linear programming problem, finding its exact value
may still be a challenging task. The art of finding the exact upper
bound (or slightly weaker ones) is the assignment of weights to the
hypergraph’s vertices in a way that they satisfy the constraints in
the linear programming problem. In order to simplify the com-
plexity of the linear programming, we present a technique based
upon graph automorphisms that in many cases significantly re-
duces the number of variables and constraints in the problem.
We then apply this method on specific examples of error chan-
nels. We start with the Z channel and show how to exactly find
the generalized sphere packing bound for this setup. Next studied
is the non-binary limited magnitude channel both for symmetric
and asymmetric errors, where we focus on the single-error case.
We follow up on the deletion channel, which was the original mo-
tivation of the work by Kulkarni and Kiyavash, and show how to
improve upon their upper bounds for single-deletion-correcting
codes. Since the deletion and grain-error channels resemble a
very similar structure for a single error, we also improve upon
the existing upper bounds on single-grain error-correcting codes.
Finally, we apply this method for projective spaces and find its
generalized sphere packing bound for the single-error case.

I. INTRODUCTION

One of the basic and fundamental results in coding theory
asserts that an upper bound on a length-n binary code C with
minimum Hamming distance 2r + 1 is

|C| 6 2n

B(r)
,

where B(r) = ∑
r
i=0 (

n
i ). This is known as the classical sphere

packing bound. This bound can be applied for other cases
as well. Let X be a finite set with some distance function
d : X× X → N. Assume that the volume of every ball is the
same, that is, if Br(x) , {y ∈ X | d(x, y) 6 r} then for all
x ∈ X, |Br(x)| = ∆r for some fixed value ∆r. Then, the re-
sulting sphere packing bound on a code C ⊆ X with minimum
distance 2r + 1 becomes |X|/∆r. However, what happens if

the size of all balls is not the same? Clearly, a naive solution
is to use ∆r as the minimum size of all balls and then to ap-
ply the same bound, but this approach can give a very weak
upper bound. The goal of this paper is to study a generaliza-
tion of the sphere packing bound for setups where the size of
all balls is not necessarily the same.

The lower counter bound for the sphere packing one is the
well-known Gilbert-Varshamov bound [10], [22]. This bound
states that if the size of all balls of radius r is the same, ∆r,
then a lower bound on a code C ⊆ X with minimum distance
r + 1 becomes |X|/∆r. In [21], a similar study was carried
for the Gilbert-Varshamov bound in case that the size of all
balls is not necessarily the same. Using Turán’s theorem, it
was shown that the same derivation on a lower bound of a
code still holds, with the modification of using the average
size of the balls. That is, if ∆r , (∑x∈X |Br(x)|)/|X|, then
a generalized Gilbert-Varshamov bound asserts that there ex-
ists a code with minimum distance r + 1 and of size at least
|X|/∆r. Thus, an immediate question to ask is whether the
same analogy holds for the sphere packing bound: Is |X|/∆r
an upper bound on a code C ⊆ X with minimum distance
2r + 1? Even though in most of the cases we study in this
work this derivation does hold, the answer in general to this
question is negative. However, it is interesting to find some
conditions under which this bound will always be satisfied.

The deletion channel [18] is one of the examples where
the balls can have different sizes. Recently, in [15], Kulkarni
and Kiyavash showed a technique, based upon tools from hy-
pergraph theory [2], in order to derive explicit non-asymptotic
upper bounds on the cardinalities of deletion-correcting codes.
These upper bounds were given both for binary and non-binary
codes as well as for deletion-correcting codes for constrained
sources. Since the method in [15] can be applied for other
similar setups, more results were presented shortly after for
different channel models. Upper bounds on the cardinalities
of grain-error-correcting codes were given in [8] and [12] and
similar bounds for multipermutations codes with the Kendall’s
τ distance were derived in [4].

This paper has two main goals. First, we extend the method
studied for the deletion channel by Kulkarni and Kiyavash [15]
and analyze it in its most general setting. We assume that the
error channel is characterized by a directed graph, which de-
picts for a given transmitted word, its set of possible received
words. Then, an upper bound will be given on codes which
can correct r errors, for some fixed r. This bound is estab-
lished by the solution of a linear programming given from a
hypergraph that is derived from the error channel graph. In
particular, it is shown that the sphere packing bound is a spe-
cial case of this bound. We also study properties of this bound
and show a scheme, based upon graph automorphisms, that in
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many cases can significantly reduce the complexity of the lin-
ear programming problem. In the second part of this work, we
provide specific examples on the application of this method
to setups where the balls have different sizes. These examples
include the Z channel, non-binary channels with limited mag-
nitude errors (symmetric and asymmetric), deletion channel,
grain-error channel, and finally, projective spaces. In some of
these examples we improve upon the existing results which
use this method to calculate the upper bound on the code car-
dinalities. When possible in these examples, we compare the
bounds we receive with the state-of-the-art ones.

In order to describe our results, we need to introduce
some notation. Let H = (X, E) be a hypergraph, where
X = {x1, . . . , xn} is its vertices set and E = {E1, . . . , Em}
is its hyperedges set. Let A be the n × m incidence ma-
trix of H, so A(i, j) = 1 if xi ∈ E j. A transversal in H is
a subset T ⊆ X that intersects every hyperedge in E . The
transversal number of H, denoted by τ(H), is the size
of the smallest transversal. Every transversal can be repre-
sented by a binary vector w ∈ {0, 1}n which needs to satisfy
AT ·w > 1. However, if the vector w can have values over
R+ and still satisfies the last inequality, then it is called a
fractional transversal. Under this setup, it is known that
τ∗(H) 6 τ(H), where τ∗(H) is the linear programming
relaxation of τ(H), defined as

τ∗(H) = min
{ n

∑
i=1

wi : AT ·w > 1, w ∈ Rn
+

}
. (1)

Let G = (X, E) be a directed graph which describes an
error channel. The vertices set X is the set of all possible
transmitted words, and the edges set E consists of all pairs of
vertices of distance one. The distance between x, y ∈ X, is the
path metric in G and is denoted by d(x, y). Note that since the
graph is directed, it is possible to have d(x, y) 6= d(y, x). For
every x ∈ X, its radius-r ball is the set Br(x) which was de-
fined above and its degree is degr(x) = |Br(x)|. The largest
cardinality of a length-n code in G with minimum distance
d is denoted by AG(n, d). Given some positive integer r, the
graph G is associated with a hypergraph H(G , r) = (Xr, Er)
where Xr = X and Er = {Br(x) | x ∈ X}. Observing that ev-
ery code C ⊆ X of minimum distance 2r + 1 is a matching in
H(G , r) (which is a collection of pairwise disjoint edges), the
following upper bound on AG(n, 2r + 1) was verified in [15],

AG(n, 2r + 1) 6 τ∗(H(G , r)). (2)

One of the first properties we present asserts that if the
graph G is regular such that degr(x) = ∆r for all x ∈ X,
and the distance function d is symmetric, then the bound
τ∗(H(G , r)) coincides with the sphere packing bound, that
is, τ∗(H(G , r)) = |X|

∆r
. Therefore, in this work the bound

τ∗(H(G , r)) is called the generalized sphere packing bound.
The expression τ∗(H(G , r)) provides an explicit upper

bound on AG(n, 2r + 1). However, it may still be a hard
problem to calculate this value since it requires the solution
of a linear programming problem that can have an exponen-
tial number of variables and constraints. Clearly, one would
inspire to find this exact value, but if this is not possible

to accomplish, it is still valuable to give an upper bound
on τ∗(H(G , r)), which, in essence, is an upper bound on
AG(n, 2r + 1) as well. Such an upper bound will be given by
finding any fractional transversal and the goal will be to find
one with small weight. In fact, all the upper bound results
presented in [4], [8], [12], [15] follow this approach and an
upper bound on the value τ∗(H(G , r)) in each case is given.

The rest of the paper is organized as follows. Section II es-
tablishes the rest of the definitions and tools required in this
paper and demonstrates them on the Z channel. This chan-
nel will be used throughout the paper as a running example
and a case study we rigorously investigate. In Section III, we
start with basic properties on the generalized sphere packing
bound. In particular, we show upper and lower bounds on its
value and prove that if the graph G is regular and symmetric
then the sphere packing bound coincides with the general-
ized sphere packing bound. We also show several examples
which establish a dissenting answer to the question brought
earlier about the upper bound validity of an average sphere
packing value. We then proceed to define a special mono-
tonicity property on the graph G which states that a graph is
monotone if for all r and two vertices x and y, if y ∈ Br(x)
then degr(y) 6 degr(x). This property is useful in order
to give a general formula for a fractional transversal and a
corresponding upper bound. In fact, this property and frac-
tional transversal were used in the previous works [8], [12],
[15]. Lastly in this section, we use tools from automorphisms
on graphs in order to simplify the complexity of the linear
programming problem in (1). Noticing that in many channels
there are groups of vertices with similar behavior motivates us
to treat them as the same vertex and thus significantly reduce
the number of variables and constraints in the linear program-
ming (1). In Section IV, we study the Z channel. Our main
contribution here is finding a method to calculate the general-
ized sphere packing bound for all radii. In Section V we carry
a similar task for the limited-magnitude channel with symmet-
ric and asymmetric errors. We focus only the single error case
of radius one in both cases and find fractional transversals and
corresponding upper bounds. Section VI follows upon the orig-
inal work of [15], improving the bounds derived therein for the
deletion channel (for the case of a single deletion). Since the
structure of the deletion and grain-error channel is very sim-
ilar, especially for a single error, we continue with the same
approach to improve upon the existing upper bounds from [8],
[12] on the cardinalities of single-grain error-correcting codes.
Section VII studies bounds on projective spaces and in partic-
ular we give an optimal solution for the radius-one case under
this channel. Finally, Section VIII concludes the paper and
proposes some problems which remained open.

II. DEFINITIONS AND PRELIMINARIES

In this section we formally define the tools and definitions
used throughout the paper. We mainly follow the same defi-
nitions and properties from [15].

Let H = (X, E) be a hypergraph where X = {x1, . . . , xn},
E = {E1, . . . , Em} and A its n × m incidence matrix. A
matching in H is a collection of pairwise disjoint hyper-
edges and the matching number of H, denoted by ν(H),
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is the size of the largest matching. The matching number of
H, ν(H), is the solution of the integer linear programming
problem

ν(H) = max
{ m

∑
i=1

zi : A · z 6 1, z ∈ {0, 1}m
}

.

Note that the transversal number τ(H), defined in the previ-
ous section, is the solution of the integer linear programming
problem

τ(H) = min
{ n

∑
i=1

wi : AT ·w > 1, w ∈ {0, 1}n
}

.

These two problems satisfy weak duality and thus ν(H) 6
τ(H). Furthermore, they can be slightly modified such that
the vectors in the minimization and maximization problems
can have values in Z+, and still they give the values of ν(H)
and τ(H), that is,

ν(H) = max
{ m

∑
i=1

zi : A · z 6 1, z ∈ Zm
+

}
,

τ(H) = min
{ n

∑
i=1

wi : AT ·w > 1, w ∈ Zn
+

}
.

The relaxation of these integer linear programmings allows
the variables z and w to take values in R+, which are not
necessarily integers. The value of this linear programming re-
laxation for the matching number is denoted by

ν∗(H) = max
{ m

∑
i=1

zi : A · z 6 1, z ∈ Rm
+

}
,

and the corresponding one for the transversal number is the
value τ∗(H), stated in (1). Note that the real solutions can
be significantly different than the integer solutions and since
ν∗(H) and τ∗(H) satisfy strong duality, the following prop-
erty holds [15]

ν(H) 6 ν∗(H) = τ∗(H) 6 τ(H),

and in particular, for any fractional transversal w,

ν(H) 6 τ∗(H) 6
n

∑
i=1

wi .

Lastly, we mention here that we will usually denote the frac-
tional transversal by w = (w1, . . . , wn), such that wi corre-
sponds to the value that is assigned to the vertex xi. However,
when it will be clear from the context, the notation wx will
be used to refer to the value of wi, where x = xi.

Every error channel studied in this work will be depicted
by some directed graph G = (X, E), where the set E defines
the set of all pairs of vertices of distance one from each other.
The distance between every two vertices x, y ∈ X, denoted by
d(x, y), is the length of the shortest path from x to y in the
graph G, and d(x, y) = ∞ if such a path does not exist. Note
that this definition of distance is not necessarily symmetric and
thus it may happen that d(x, y) 6= d(y, x). However if for all
x, y ∈ X, d(x, y) = d(y, x), then we say that G is symmet-
ric, and otherwise it is not symmetric. For any x ∈ X, we let
Bout

r (x), Bin
r (x) be the sets Bout

r (x) = {y ∈ X | d(x, y) 6 r}

and Bin
r (x) = {y ∈ X | d(y, x) 6 r}. The out-degree of x

is degout
r (x) = |Bout

r (x)| and the in-degree is degin
r (x) =

|Bin
r (x)|. The definition of Bout

r (x) and degout
r (x) coincide

with the ones in the Introduction for Br(x) and degr(x), re-
spectively. To ease the notation in the paper we will follow
the ones from the Introduction for the “out” case and use the
ones defined above for the “in” case.

If a word x ∈ X is transmitted and at most r errors occurred
then any word in Br(x) can be received. A code C ⊆ X in this
graph is said to have minimum distance d if for all x, y ∈ C,
d(x, y) > d. We let AG(n, d) be the largest cardinality of a
code in G of length n and minimum distance d. If for every
r > 0, there exists some fixed ∆r such that for every x ∈ X,
degr(x) = ∆r, then we say that the graph G is regular and
otherwise it is called non-regular.

For any positive integer r, H(G , r) = (Xr, Er) is a hyper-
graph associated with G such that Xr = X and Er = {Br(x) :
x ∈ X}. As was stated in (2), the value τ∗(H(G , r)) is an
upper bound on AG(n, 2r + 1) and is called in this work the
generalized sphere packing bound.

The average size of a ball of radius r in G is defined to be

∆r =
1
|X| ∑

x∈X
degr(x).

In [21], using Turán’s theorem a generalized Gilbert-
Varshamov bound was shown to hold also for the cases where
the size of all balls is not the same. This bound asserts that a
lower bound on AG(n, d) is given by

|X|
∆d−1

6 AG(n, d).

Let us remind the question we brought in the Introduction
about the analogy of the last bound to the sphere packing
bound. Namely, does the following inequality hold

AG(n, 2r + 1) 6
|X|
∆r

?

We call the value |X|
∆r

the average sphere packing value and
denote it by ASPV(G , r). We do not call this value a bound
since, as we shall see later, it is not necessarily a valid upper
bound.

The following example demonstrates the definitions and
concepts introduced in this section for the Z channel.

Example 1. The Z channel is a channel with binary inputs
and outputs where the errors are asymmetric. Here, we assume
that errors can only change a 1 to 0 with some probability
0 < p < 1, but not vice versa; see Fig 1. The corresponding
graph is GZ = (XZ , EZ), where XZ = {0, 1}n and

EZ = {(x, y) : x, y ∈ {0, 1}n, x > y, wH(x) = wH(y)+ 1},

and wH(x) denotes the Hamming weight of x. Let r be some
fixed positive integer. For every x ∈ {0, 1}n,

BZ,r(x) = {y ∈ {0, 1}n : x > y, wH(x)− wH(y) 6 r},

and degZ,r(x) = ∑
r
i=0 (

wH(x)
i ).
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Fig. 1. The Z-channel.

The corresponding hypergraph is H(GZ , r) = (XZ,r, EZ,r),
such that XZ,r = {0, 1}n and EZ,r = {BZ,r(x) : x ∈
{0, 1}n}. The generalized sphere packing bound becomes

τ∗(H(GZ , r))=min
{

∑
x∈{0,1}n

wx :∀x ∈{0, 1}n , ∑
y∈BZ,r(x)

wy > 1, wx > 0
}

.

(3)
The average size of a ball with radius r is

∆Z,r =
1
2n ∑

x∈{0,1}n

r

∑
i=0

(
wH(x)

i

)
=

1
2n

n

∑
w=0

(
n
w

) r

∑
i=0

(
w
i

)

=
1
2n

r

∑
i=0

n

∑
w=0

(
n
w

)(
w
i

)
.

For 0 6 i 6 r, ∑
n
w=0 (

n
w)(

w
i ) = (n

i )2
n−i and thus we get

∆Z,r =
1
2n

r

∑
i=0

(
n
i

)
2n−i =

r

∑
i=0

(n
i )

2i .

Therefore, the average sphere packing value in this case be-
comes

ASPV(GZ , r) =
2n

∆Z,r
=

2n

∑
r
i=0

(n
i )

2i

.

In particular, for r = 1 we get

ASPV(GZ , 1) =
2n

∆Z,1
=

2n

1 + n/2
=

2n+1

n + 2
.

In the sequel it will be verified that the average sphere packing
value for r = 1 is a valid upper bound for the Z channel. 2

Even though the generalized sphere packing bound
τ∗(H(G , r)) gives an explicit upper bound on the cardinality
of error-correcting codes, it is not necessarily immediate to
calculate it. To accomplish this task, one needs to solve a lin-
ear programming which, in general, does not necessarily have
an efficient solution. Furthermore, note that in many of the
communication channels the number of variables and con-
straints can be very large and in particular exponential with
the length of the words. Our main discussion in this paper
will be dedicated towards approaches for deriving the value
τ∗(H(G , r)) for different graphs G. However, in cases where
it will not be possible to derive this explicit value, we note
that every fractional transversal provides a valid upper bound
and thus we inspire to give the best fractional transversal we
can find.

III. GENERAL RESULTS AND OBSERVATIONS

In this section we start by proving basic properties on the
value of the generalized sphere packing bound τ∗(H(G , r))
as specified in (1). We then show some approaches for find-
ing fractional transversals. Finally, we present a scheme, based
upon automorphisms on graphs, that in many cases can sig-
nificantly reduce the complexity of the linear programming
problem for calculating the value τ∗(H(G , r)). As specified
in Section II, we assume throughout this section that the error
channel is depicted by some directed graph G = (X, E) and
for a fixed integer r > 1, H(G , r) = (Xr, Er) is its associated
hypergraph.

A. Basic Properties of the Generalized Sphere Packing Bound

We start here by proving some basic properties and giving
insights on the value of τ∗(H(G , r)). The next lemma proves
a lower bound on the generalized sphere packing bound in
case that its in-degree is upper bounded.

Lemma 1. If for all x ∈ X, degin
r (x) 6 ∆, then

τ∗(H(G , r)) >
|X|
∆

.

Proof: Since degin
r (x) 6 ∆, for all x ∈ X, the weight

of every column of the incidence matrix A of H(G , r) is at
most ∆, that is, ∑

n
i=1 ai, j 6 ∆ for all 1 6 j 6 n. Let w be a

fractional transversal in H(G , r). Then, for every 1 6 i 6 n,
∑

n
j=1 ai, jw j > 1, and thus

n 6
n

∑
i=1

n

∑
j=1

ai, jw j.

However, note that

n 6
n

∑
i=1

n

∑
j=1

ai, jw j =
n

∑
j=1

n

∑
i=1

ai, jw j =
n

∑
j=1

w j

n

∑
i=1

ai, j 6∆
n

∑
j=1

w j,

and therefore
n

∑
j=1

w j >
n
∆

.

Hence, we conclude that τ∗(H(G , r)) > |X|
∆ .

Next, we show an upper bound on the generalized sphere pack-
ing bound in case that its out-degree is lower bounded.

Lemma 2. If for all x ∈ X, degr(x) > ∆, then

τ∗(H(G , r)) 6
|X|
∆

.

Proof: If degr(x) > ∆ for all x ∈ X then the vector
w = 1/∆ is a fractional transversal and thus τ∗(H(G , r)) 6
|X|/∆.

According to the last two lemmas we can show that if the
graph G is regular and symmetric then the generalized sphere
packing bound coincides with the sphere packing bound.

Corollary 3. If the graph G is symmetric and regular then
the generalized sphere packing bound and the sphere packing
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Fig. 2. The graph G2.

Fig. 3. The graph G3.

bound coincide. Furthermore, τ∗(H(G , r)) = |X|
∆r

, where for
all x ∈ X, degr(x) = degin

r (x) = ∆r.

Proof: Since G is regular then for all x ∈ X,
detr(x) = ∆r and according to Lemma 2, we have
τ∗(H(G , r)) 6 |X|

∆r
. Since G is also symmetric we have that

for all x ∈ X, degin
r (x) = ∆r and according to Lemma 1, we

get τ∗(H(G , r)) > |X|
∆r

. Therefore, τ∗(H(G , r)) = |X|
∆r

.
The next example proves that the requirement on the graph

G to be symmetric is necessary in order to have equality be-
tween the sphere packing and the generalized sphere packing
bound.

Example 2. In this example the graph G2 = (X2, E2) has six
vertices, so X2 = {x1, x2, x3, x4, x5, x6}. For 2 6 i 6 6, there
is an edge from xi to x1 and finally there is an edge from x1
to x2; see Fig. 2. Therefore, b1(xi) = 2 for all 1 6 i 6 6, so
the graph G2 is regular and the sphere packing bound becomes
|X2 |

2 = 3. However, the vector w = (1, 0, 0, 0, 0, 0) is a frac-
tional transversal, which is optimal, and thus the generalized
sphere packing bound of G2 equals 1. 2

In the next example, we show a graph that does not obey
to the average sphere packing value. This provides a negative
answer to the earlier question we asked in the Introduction
regarding the validity of the average sphere packing value as
a valid bound.

Example 3. The graph G3 = (X3, E3) in this example has
five vertices, so X3 = {x1, x2, x3, x4, x5}. There is an edge
from the first vertex to all other four vertices; see Fig. 3. The

average size of a ball is 1·5+4·1
5 = 9/5 and thus the aver-

age sphere packing value becomes 5
9/5 = 25/9. However, the

minimum distance of the code C = {x2, x3, x4, x5} in G3 is∞, and in particular, it can be a code with minimum distance
3, which contradicts the average sphere packing value. 2

Example 3 depicts a directed, i.e. not symmetric, graph
where the average sphere packing value does not hold. Next
we show an example of a symmetric graph that does not
satisfy the average sphere packing value either.

Example 4. Assume there are n = k2 vertices partitioned into
two groups: the first one consists of k vertices and the other
group of the remaining n− k vertices. Every vertex from the
first group is connected (symmetrically) to a set of exactly
n−k

k = k− 1 vertices from the second group such that there
is no overlap between these k sets. The n− k vertices in the
second group are all connected to each other. Thus, the aver-
age radius-one ball size is

∆1 =
k · k + (n− k)(n− k + 1)

n
=n− 2

√
n+ 3− 1√

n
>n/2.

Therefore, the average sphere packing value is less than 2.
However, it is possible to construct a single-error correcting
code with the k vertices of the first group. 2

Examples 3 and 4 prove that the average sphere packing
value does not hold in all cases. In fact, from Example 4, we
do not only conclude that it does not hold in general, but also
that the ratio between this value and a size of a code can be
arbitrarily small. However, it is still very interesting to find
some minimal conditions such that this bound holds.

B. Monotonicity and Fractional Transversals

Remember that a vector w is a fractional transversal if w >
0 and for 1 6 i 6 n,

∑
y∈Br(xi)

wy > 1.

A first example for choosing a fractional transversal is stated
in the next lemma.

Lemma 4. The vector w given by

wi =
1

minx∈Bin
r (xi)
{degr(x)} ,

for 1 6 i 6 n, is a fractional transversal.

Proof: It is easy to verify that w > 0. For every 1 6 i 6
n, if y ∈ Br(xi), then xi ∈ Bin

r (y) and thus

wy =
1

minx∈Bin
r (y){degr(x)} >

1
degr(xi)

.

Therefore, we get

∑
y∈Br(xi)

wy > ∑
y∈Br(xi)

1
degr(xi)

= 1.



6

A graph G is said to satisfy the monotonicity property, or
G is monotone, if for every r > 1, x ∈ X and y ∈ Br(x),

degr(y) 6 degr(x).

In this case, the fractional transversal from Lemma 4 can be
stated more explicitly.

Lemma 5. If G is monotone then the vector w given by

wi =
1

degr(xi)
,

for 1 6 i 6 n, is a fractional transversal.

Proof: If G is monotone then for every x ∈ Bin
r (xi),

degr(x) > degr(xi). Therefore, the fractional transversal w
from Lemma 4 simply becomes

wi =
1

degr(xi)
.

As a result of Lemma 5, if G is monotone, then the follow-
ing expression is an upper bound on AG(n, 2r + 1),

AG(n, 2r + 1) 6
n

∑
i=1

wi =
n

∑
i=1

1
degr(xi)

. (4)

We call this bound the monotonicity upper bound, which
holds in case that G is monotone, and denote it by MB(G , r).
We will build upon Example 1 to exemplify the monotonicity
upper bound for the Z channel.

Example 5. It is straightforward to verify that the graph GZ
from Example 1 satisfies the monotonicity property since for
every x, y ∈ {0, 1}n, if y ∈ BZ,r then wH(y) 6 wH(x).
Thus, according to Lemma 5, the vector w = (wx)x∈{0,1}n

given by

wx =
1

degr(x)
=

1

∑
r
i=0 (

wH(x)
i )

,

is a fractional transversal. Therefore, the monotonicity upper
bound MB(GZ , r) derived in (4) is calculated to be

MB(GZ , r) = ∑
x∈{0,1}n

wx = ∑
x∈{0,1}n

1

∑
r
i=0 (

wH(x)
i )

=
n

∑
w=0

(
n
w

)
1

∑
r
i=0 (

w
i )

For example, for r = 1, we get

MB(GZ , 1)=
n

∑
w=0

(
n
w

)
1

∑
1
i=0 (

w
i )

=
n

∑
w=0

(
n
w

)
1

w + 1
=

2n+1

n + 1
.

Note that the average sphere packing value, calculated in Ex-
ample 1, for r = 1 is 2n+1

n+2 , is stronger than the monotonicity
upper bound. In fact, this hints that in some cases, which will
be studied in the sequel, it is possible to improve upon the
monotonicity upper bound. Indeed, it is possible to verify that
in this case the fractional transversal according to Lemma 5
is not optimal by showing that the vector w′ = (w′x)x∈{0,1}n ,
where

w′x =
1

wH(x) + 1
· wH(x) + 2

wH(x) + 3
,

for x 6= 0 and w′0 = 1, is a fractional transversal. The corre-
sponding bound for this fractional transversal becomes

2n+1 · 1
n + 3− 2n+6

n2+3n+4

6
2n+1

n + 2
,

which verifies the validity of the average sphere packing value.
However, this choice of fractional transversal is still subopti-
mal and hence we seek to find a further improvement. Finding
the exact value τ∗(H(GZ , r)) will be the topic and problem
we solve in Section IV. 2

The deletion channel which was studied in [15], the overlap-
ping grain-error model studied in [8] and the non-overlapping
grain error-error model for r = 1, 2, 3 studied in [12] all sat-
isfy the monotonicity property. Indeed, all these works applied
the monotonicity upper bound in order to derive upper bounds
on the cardinalities of error-correcting codes in every channel.
However, as will be shown in this work, the choice of the
fractional transversal according to Lemma 5 is not necessarily
optimal. This will be verified by providing different fractional
transversals which yield stronger upper bounds than the ones
achieved by the monotonicity upper bound.

C. Automorphisms on Graphs

One of the main obstacles in calculating the value of
τ∗(H(G , r)) is the large number of variables and constraints
in the linear programming in (1). However, most of the
graphs studied in this work contain symmetries between their
vertices. For example, the linear programming in Example 1
for the Z channel has 2n variables and 2n constraints in or-
der to find the value of τ∗(H(GZ , r)), but it is not hard to
notice that vectors of the same weight have identical behav-
ior, and thus, one would expect to assign the same weight
to these vertices. This will reduce the number of variables
and constraints from 2n to n + 1, which significantly simpli-
fies the linear programming problem in (3). This subsection
presents a scheme, based upon graph automorphisms, that in
many cases can be used in order to significantly reduce the
number of variables and constraints to calculate the bound
τ∗(H(G , r)). We will show the general scheme along with a
demonstration how it is applied on our continued example of
the Z channel.

Let us first remind some tools derived from properties on
automorphisms of graphs. Let G = (X, E) be a directed graph
with n vertices. An automorphism of G is a permutation of
its vertices that preserves adjacency. That is, an automorphism
of G is a permutation π : X → X such that for all (x, y) ∈
X × X, (x, y) ∈ E if and only if (π(x), π(y)) ∈ E. As-
sume |X| = n, we let Sn be the set of all permutations of n
elements. The set of all automorphisms of G is

Aut(G) = {π ∈ Sn | π is an automorphism of G}.

It is known that Aut(G) is a subgroup of the symmetric group
Sn under the operation of functions composition.

The group Aut(G) induces a relation R on X such that
(x, y) ∈ R if and only if there exists π ∈ Aut(G) where
π(x) = y. It is possible to verify that R is an equivalence
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order and hence X is partitioned into 1 6 n(G) 6 n equiv-
alence classes, denoted by X1, . . . , Xn(G). Furthermore, we
denote X (G) = {X1, . . . , Xn(G)}.

For any c > 0, let us define the set

Wc =

{
w : w is a fractional transversal and

n

∑
i=1

wi = c
}

.

Given a partition X = {X1, . . . , Xk} of X, we say that a
fractional transversal w is X -regular if for all 1 6 j 6 k and
every x, y ∈ X j, wx = wy.

Given a fractional transversal w and an automorphism π ∈
Aut(G), the vector wπ is defined by wπ

i = wπ(i). The next
lemma proves that the vector wπ is a fractional transversal as
well.

Lemma 6. Let w be a fractional transversal and π an automor-
phism. Then, the vector wπ is a fractional transversal as well.

Proof: It is clear to verify that wπ > 0. We need to show
that for all 1 6 i 6 n the following inequality holds

∑
y∈Br(xi)

wπ (y) > 1.

Since π is an automorphism, y ∈ Br(xi) if and only if π(y) ∈
Br(π(xi)) and therefore

∑
y∈Br(xi)

wπ (y) = ∑
y∈Br(xi)

wπ(y) = ∑
y∈Br(π(xi))

wy > 1,

where the last inequality holds since w is a fractional transver-
sal.

Our main result in this part is stated in the next theorem
and corollary.

Theorem 7. For every c > 0, ifWc 6= ∅ thenWc contains an
X (G)-regular fractional transversal.

Proof: Let w ∈ Wc be a fractional transversal. If w
is X (G)-regular then the property holds. Otherwise, let π ∈
Aut(G) and wπ as defined above. Note that

n

∑
i=1

wπ
i =

n

∑
i=1

wπ(i) =
n

∑
i=1

wi = c,

and together with Lemma 6 we get that wπ ∈ Wc. Similarly,
we can show that w+wπ

2 ∈ Wc. Let π1, π2, . . . , πN be some
order of the automorphisms in Aut(G). We can similarly de-
rive that the vector

w∗ =
∑

N
i=1 wπi

N
belongs to Wc as well.

We finally show that w∗ is X (G)-regular. For all 1 6 j 6
n(G) and xn1 , xn2 ∈ X j

w∗n1
=

∑
N
i=1 wπi

n1

N
=

∑
N
i=1 wπi(n1)

N
.

Now, let π∗ ∈ Aut(G) be such that π∗(n2) = n1 and note
that

{π1, . . . , πn} = {π∗ ◦ π1, . . . , π∗ ◦ πn}.

Thus, we get

w∗n2
=

∑
N
i=1 wπi

n2

N
=

∑
N
i=1 wπ∗◦πi

n2

N
=

∑
N
i=1 w(π∗◦πi)(n2)

N

=
∑

N
i=1 wπi(π∗(n2))

N
=

∑
N
i=1 wπi(n1)

N
= w∗n1

.

Lastly, we note that Theorem 7 holds not only for the au-
tomorphism group Aut(G) but also for every subgroup H
of Aut(G). Given a subgroup H of Aut(G), assume it parti-
tions the vertices set X into nH equivalence classes XH(G) =
{X1, . . . , XnH}. Let AH be an nH× nH adjacency matrix cor-
responding to the subgroup H, such that for 1 6 i, j 6 nH ,

AH(i, j) =
|{(x, y) : x ∈ Xi , y ∈ Br(x) ∩ X j}|

|Xi|
. (5)

The next Corollary summarizes this discussion.

Corollary 8. Let H be a subgroup of Aut(G) and XH(G) =
{X1, . . . , XnH} is its partition of X into nH equivalence classes.
Then, the generalized sphere packing bound τ∗(H(G , r))
from (1) becomes

τ∗(H(G , r)) = min
{ nH

∑
i=1
|Xi|wi : AT

H ·w > 1, w ∈ RnH
+

}
.

(6)

Proof: According to Theorem 7, it is enough to consider
only fractional transversals which are XH(G)-regular. Such a
fractional transversal can be represented by a vector w ∈ RnH

+
such that for 1 6 i 6 nH , wi is the weight given to all the
vectors in the set Xi.

The condition AT ·w from (1) can be stated as for all x ∈
X, ∑y∈Br(x) wy > 1. However, for all x ∈ Xi the number of
vertices y ∈ Br(x) which belong to some set X j is fixed and
is given by the value AH(i, j). Therefore, for every x ∈ Xi,
this condition can be written as ∑

nH
j=1 AH(i, j)w j > 1. Finally,

since there are |Xi| vectors which are assigned with weight
wi we get that the weight of this XH(G)-regular fractional
transversal is ∑

nH
i=1 |Xi|wi and thus the corollary holds.

The next example shows how to apply the automorphisms
scheme presented in this subsection for the Z channel.

Example 6. In Example 1, we saw that in order to find the
value τ∗(H(GZ , r)) according to (3), it is required to solve
a linear programming with 2n variables and 2n constraints.
Let us demonstrate how the automorphism scheme studied in
this subsection can reduce both the number of variables and
constraints to be n + 1.

First, we define the following set of automorphisms on GZ.
For every σ ∈ Sn, a permutation πσ : {0, 1}n → {0, 1}n is
defined such that for all x ∈ {0, 1}n, (πσ (x))i = xσ(i). It
is possible to verify that the set H = {πσ : σ ∈ Sn} is
a subgroup of Aut(GZ). Furthermore, the set {0, 1}n is par-
titioned under H into n + 1 equivalence classes XH(GZ) =
{X0, X1, . . . , Xn}, where Xi = {x ∈ {0, 1}n : wH(x) = i},
for 0 6 i 6 n. Therefore, according to equation (6) in Corol-
lary 8, it is enough to limit our search and find only fractional
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transversals w which are XH(GZ)-regular. Hence, the prob-
lem in (3) is simplified to be

τ∗(H(GZ , r))= min
{ n

∑
`=0

(
n
`

)
w` :

min{`,r}

∑
i=0

(
`

i

)
w`−i > 1, 0 6 ` 6 n

}
.

(7)
2

In the next section we will continue Example 3 and show
exactly how to solve the problem in (7).

IV. THE Z CHANNEL

The Z channel was already discussed before in Exam-
ples 1, 5, and 6. We derived the linear programming problem
to find the value τ∗(H(GZ , r)) in (3) and calculated its aver-
age sphere packing value. Then, we saw that GZ is monotone
and thus we calculated its monotonicity upper bound. Finally,
we showed how to use the graph automorphism approach in
order to derive a more compact linear programming problem
to calculate τ∗(H(GZ , r)) in (7).

The goal of this section is to solve the linear programming
problem in (7) by finding the appropriate fractional transversal
and prove that it gives the value of τ∗(H(GZ , r)). This result
is proved in the next theorem.

Theorem 9. For all r 6 20, the optimal fractional transversal
which solves the linear programming in (7) is given by the fol-
lowing recursive formula

w∗n = w∗n−1 = · · · = w∗n−r+1 = 0, (8)

w∗k = (1−
r

∑
i=1

w∗k+i

(
k + r
r− i

)
)/

(
k + r

r

)
, ∀1 6 k 6 n− r,

w∗0 = 1.

Soon, we will show the equivalent formula

w∗0 = 1, (9)

w∗k = r!k!
n

∑
m=r+k

Dm−k−1
m!

∀k > 1,

where Di is given by another recursive relation independent
from n:

D0 = D1 = · · · = Dr−2 = 0,
Dr−1 = 1,
Di
r!

+
Di−1

(r− 1)!
+ · · ·+ Di−r

0!
= 0 ∀i > r. (10)

Furthermore, we note that it is possible to verify the state-
ment for the weight assignment from (8) for arbitrary r using
the method in theorem 9

We divide the proof into three parts. First, we show the
equivalence of the two formulas above. Then, we show that
w∗ is in fact a transversal or in other words, it is in the feasi-
bility region of the linear programming. Next, we discuss its
optimality. Our method shows both feasibility and optimal-
ity for all r 6 20 and we conjecture that w∗ is the optimal
transversal weight for all radius r ∈ N. One can apply the
method to derive the proof for larger r.

A. Equivalence of the two formulas

In order to see the equivalence of two definitions, we fix
r and look at w∗k as a function of both k and n denoted by
w∗k (n) in this subsection. Lets define the sequence ∆k(n) as
∆k(n) = w∗k (n)− w∗k (n− 1) for all n. So,

∆k(n) =
1
(n

r)
if k = n− r,

∆k(n) = 0 ∀k > n− r,

∆k(n) = −
t

∑
i=1

∆k+i(n).
(k+r

r−i)

(k+r
r )

∀k < n− r.

Now, we define another sequence Di(n) as Di(n) =
∆n−i−1(n). n!

r!(n−i−1)! to normalize and reverse the direction
of the recursion:

D0(n) = D1(n) = · · · = Dr−2(n) = 0,
Dr−1(n) = 1,
Di(n)

r!
+

Di−1(n)
(r− 1)!

+ · · ·+ Di−r(n)
0!

= 0 ∀i > r.

Note that Di(n) is independent of n. So, we drop n and write
w∗k (n) as

w∗k (n) = ∆k(n) + ∆k(n− 1) + · · ·+ ∆k(k + r)

=
r!k!
n!

Dn−k−1 +
r!k!

(n− 1)!
Dn−k−2 + · · ·+

r!k!
(k + r)!

Dr−1(n)

= r!k!
n

∑
m=r+k

Dm−k−1
m!

.

We can also replace Di with ∑
r
j=1α jλ

i
j, where λ j’s are roots

of the characteristic polynomial g(x) = ∑
r
j=0

x j

j! and α j’s are
some fixed coefficients found by solving the system of linear
equations corresponding to first r initial values.

B. Transversal property for w∗

The definition of w∗ in (8) ensures that the inequality con-
straints in (7) are satisfied. So, the non-negativity of w∗ is
enough to show w∗ is a valid transversal.

First, we study the case r = 1. A simple induction on i,
shows that Di = (−1)i. Therefore,

w∗k =
n

∑
m=k+1

(−1)m−k−1k!
m!

=

(
1

k+1
− 1

(k+1)(k+2)

)
+

(
1

(k+1)(k+2)(k+3)

− 1
(k+1)(k+2)(k+3)(k+4)

)
± · · · > 0.

In general, it is not easy derive an explicit formula for w∗

for r > 2. However, we show that Dm is bounded by an ex-
ponential function of 2r and hence, the first few terms in (9)
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are dominant comparing to the rest and w∗k > 0 is mostly the
case. Let us first verify the statement w∗k > 0 for k > 3r− 1:

w∗k = r!k!
n

∑
m=r+k

Dm−k−1
m!

= r!k!
(

1
(r+k)!

+
n

∑
m=r+k+1

Dm−k−1
m!

)
>

r!k!
(r+k)!

(
1−

n

∑
m=r+k+1

|Dm−k−1|(r + k)!
m!

)
>

r!k!
(r+k)!

(
1−

n

∑
m=r+k+1

|Dm−k−1|
(4r)m−r−k

)
>

r!k!
(r+k)!

(
1−

n

∑
m=r+k+1

(2r)m−r−k

(4r)m−r−k

)
(11)

=
r!k!

(r+k)!

(
1−

n−k−r

∑
m=1

2−m
)
=

r!k!
(r+k)!

2−(n−k−r) > 0,

where the last inequality comes from Lemma 24 in appendix
A. In other words, for k > 3r− 1, the first term in (8) is larger
than the sum of the absolute values of the remaining terms and
they cannot cancel it out. The proof of the case k < 3r− 1
is incomplete for arbitrary radius r. However, we introduce a
method to verify the feasibility (transversal property) of w∗

for any fixed r in the following fashion:
Given k < 3r− 1, we look for a number nk such that

nk

∑
m=r+k

Dm−k−1
m!

>
1

(2r)r+k (e
2r −

nk

∑
m=0

(2r)m

m!
), (12)

which means for all n > nk we have

w∗k = r!k!
n

∑
m=r+k

Dm−k−1
m!

= r!k!(
nk

∑
m=r+k

Dm−k−1
m!

+
n

∑
m=nk+1

Dm−k−1
m!

)

> r!k!(
nk

∑
m=r+k

Dm−k−1
m!

−
n

∑
m=nk+1

(2r)m−k−r

m!
)

> r!k!(
nk

∑
m=r+k

Dm−k−1
m!

− 1
(2r)k+r

∞
∑

m=nk+1

(2r)m

m!
)

= r!k!(
nk

∑
m=r+k

Dm−k−1
m!

−
e2r − ∑

nk
m=0

(2r)m

m!
(2r)r+k ) > 0;

And then we check the values of w∗k for the finite set of k <
3r− 1 and n 6 nk. Note that,

lim
nk→∞ e2r −

nk

∑
m=0

(2r)m

m!
= 0.

Also, Di is bounded by an exponential function (see Lemma
24) and hence the following limit exists

`k := lim
nk→∞

nk

∑
m=r+k

Dm−k−1
m!

.

Finally, if w∗k > εk > 0 for all n > k + r, then `k >
εk
r!k! > 0.

So, the number nk should exists. As an example, when r = 2

we have n1 = n2 = 6, and n3 = n4 = 7. Using the above
approach, we have verified the feasibility for all r 6 20.

Our calculations also show that nk 6 4r− 1 for all n 6 20.
In appendix A, we prove that w∗ defined in (8), is also the
optimal transversal assignment and gives us the best bound
using these approach.

In order to evaluate the results, we compared between the
different upper bounds for the Z channel. The first bound is
the monotonicity bound (MB in short), which was calculated
in Example 5; the second one is the average sphere packing
value (ASPV in short), which was calculated in Example 1;
and the third bound is the generalized sphere packing bound
(GSPB in short). The best known (to us) upper bound for the
Z channel, due to Weber, De Vroedt, and Boekee [24], ap-
pears in the last column of Table I. We see from Table I that
this bound is better than the GSPB even under optimal weight
assignment. However, the bound of [24] involves solving an
integer programming problem, and the authors of [24] have
computed this bound only for n 6 23. In contrast, our bound
in Theorem 9 is easy to compute for all n, and we give its val-
ues for r = 1, 2, 3, 4 up to n 6 32 in Tables I, II, III, and IV.

TABLE I
Z CHANNEL: UPPER BOUNDS COMPARISON FOR r = 1

n MB ASPV GSPB [24]
5 10 9 8 6
6 18 16 14 12
7 32 28 26 18
8 56 51 47 36
9 102 93 86 62

10 186 170 159 117
11 341 315 295 210
12 630 585 551 410
13 1170 1092 1032 786
14 2184 2048 1940 1500
15 4095 3855 3662 2828
16 7710 7281 6935 5430
17 14563 13797 13170 10374
18 27594 26214 25075 19898
19 52428 49932 47853 38008
20 99864 95325 91514 73174
21 190650 182361 175351 140798
22 364722 349525 336586 271953
23 699050 671088 647131 523586
24 1342177 1290555 1246069 ?
25 2581110 2485513 2402690 ?
26 4971026 4793490 4638907 ?
27 9586980 9256395 8967211 ?
28 18512790 17895697 17353537 ?
29 35791394 34636833 33618332 ?
30 69273666 67108864 65191862 ?
31 134217728 130150524 126535913 ?
32 260301048 252645135 245818070 ?

In the next section, we will extend the study of the Z chan-
nel for non-binary symbols.

V. LIMITED MAGNITUDE CHANNELS

We turn in this section to generalize the Z channel for the
non-binary case. In this setup, every symbol can have q val-
ues, 0, 1, . . . , q − 1 and we denote [q] = {0, 1, . . . , q − 1}.
We study the limited magnitude model and focus solely on the
single error setup which is carried for two cases. Namely, the
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TABLE II
Z CHANNEL: UPPER BOUNDS COMPARISON FOR r = 2

n MB ASPV GSPB [24]
5 7 5 4 2
6 12 8 6 4
7 19 13 9 4
8 31 21 16 7
9 51 35 27 12
10 84 59 46 18
11 140 101 79 32
12 238 174 138 63
13 407 303 243 114
14 703 532 432 218
15 1224 942 772 398
16 2151 1680 1388 739
17 3806 3013 2510 1279
18 6780 5433 4562 2380
19 12153 9845 8327 4242
20 21902 17924 15260 8069
21 39672 32768 28068 14374
22 72190 60133 51802 26679
23 131914 110740 95904 50200
24 241977 204600 178065 ?
25 445447 379146 331499 ?
26 822696 704555 618679 ?
27 1524039 1312642 1157328 ?
28 2831211 2451465 2169652 ?
29 5273303 4588640 4075740 ?
30 9845788 8607148 7670997 ?
31 18424950 16176901 14463616 ?
32 34553129 30460760 27317244 ?

TABLE III
Z CHANNEL: UPPER BOUNDS COMPARISON FOR r = 3

n MB ASPV GSPB [24]
5 7 4 2 2
6 11 6 3 2
7 17 9 5 2
8 26 13 7 4
9 40 20 11 4
10 63 31 18 6
11 99 50 29 8
12 156 80 48 12
13 248 130 81 18
14 400 214 136 34
15 650 357 231 50
16 1066 601 395 90
17 1764 1020 682 168
18 2946 1744 1186 320
19 4960 3006 2076 616
20 8418 5216 3653 1144
21 14395 9108 6462 2134
22 24786 15993 11486 4116
23 42956 28232 20507 7346
24 74902 50081 36768 ?
25 131345 89240 66176 ?
26 231537 159687 119534 ?
27 410164 286866 216639 ?
28 729924 517216 393863 ?
29 1304514 935722 718180 ?
30 2340710 1698286 1313176 ?
31 4215629 3091572 2407381 ?
32 7618868 5643846 4424196 ?

error can be asymmetric (Fig. 4(a)) or symmetric (Fig. 4(b)).
This error-channel is motivated by the feature of the errors
in non-binary flash memories. The cells in flash memories
are charged with electrons and due to the inaccuracy in cell-
programming and electrons leakage, the charge level of a cell
can either increase or decrease by limited magnitude. For more

TABLE IV
Z CHANNEL: UPPER BOUNDS COMPARISON FOR r = 4

n MB ASPV GSPB [24]
5 7 4 2 2
6 11 5 2 2
7 17 7 3 2
8 25 10 4 2
9 38 15 6 2
10 58 22 9 4
11 89 33 14 4
12 135 49 21 4
13 207 76 34 6
14 320 118 54 8
15 496 185 87 12
16 774 294 143 16
17 1217 472 236 26
18 1927 767 393 44
19 3073 1258 660 76
20 4939 2081 1118 134
21 7998 3470 1905 229
22 13050 5829 3266 423
23 21450 9862 5632 745
24 35509 16791 9763 ?
25 59192 28761 17010 ?
26 99330 49540 29772 ?
27 167749 85775 52333 ?
28 285019 149239 92366 ?
29 487070 260846 163640 ?
30 836918 457873 290949 ?
31 1445509 806964 519048 ?
32 2508896 1427610 928919 ?

(a) (b)

Fig. 4. Two cases of the non-binary channel: (a) asymmetric errors, (b) sym-
metric errors.

details see for example [5], [6], [13], [17], [28].

A. Asymmetric Errors

In the asymmetric non-binary channel, the value of every
symbol can only decrease, and in this study we only con-
sider the case where the value of each symbol can decrease by
one. The corresponding graph is GA,q = (XA,q, EA,q), where
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XA,q = [q]n and

EA,q =

{
(x, y) : x, y ∈ [q]n, x > y,

n

∑
i=1

xi =
n

∑
i=1

yi + 1
}

.

Given some x ∈ [q]n, its ball of radius one is described by the
set BA,q,1(x) = {y ∈ [q]n : x > y, ∑

n
i=1 xi 6 ∑

n
i=1 yi + 1},

and degA,q,1(x) = wH(x) + 1. The hypergraph in this case
is H(GA,q, 1) = (XA,q,1, EA,q,1), where XA,q,1 = [q]n and
EA,q,1 = {BA,q,1(x) : x ∈ [q]n}.

According to the above definitions it is immediate to verify
that for all y ∈ BA,q,1(x), wH(y) 6 wH(x) and thus the
graph GA,q is monotone. In the next two lemmas we calculate
the monotonicity upper bound and the average sphere packing
value under this setup.

Lemma 10. The monotonicity upper bound of the graph GA,q
for r = 1 is

MB(GA,q, 1) =
qn+1

(q− 1)(n + 1)
.

Proof: Since the graph GA,q is monotone, according to
Lemma 5 the following vector w = (wx)x∈[q]n is a fractional
transversal,

wx =
1

degA,q,1(x)
=

1
wH(x) + 1

.

Thus, the monotonicity upper bound from Equation (4) be-
comes

MB(GA,q, 1) = ∑
x∈[q]n

wx = ∑
x∈[q]n

1
wH(x) + 1

= ∑
06i1+···+iq−16n

(
n

i1, . . . , iq−1

)
1

i1 + · · ·+ iq−1 + 1

=
qn+1

(q− 1)(n + 1)
.

Lemma 11. The average sphere packing value of the graph
GA,q for r = 1 is

ASPV(GA,q, 1) =
qn+1

(q− 1)(n + 1) + 1
.

Proof: The value of the average ball size is

1
qn · ∑

x∈[q]n
(wH(x) + 1)

=
1
qn · ∑

06i1+···+iq−16n

(
n

i1, . . . , iq−1

)
(i1 + · · ·+ iq−1 + 1)

=
1
qn · (nqn−1(q− 1) + qn) = n + 1− n/q.

Thus, the average sphere packing value in this case is given
by

qn

n + 1− n/q
=

qn+1

(q− 1)(n + 1) + 1
.

The linear programming problem from (1) for this paradigm
becomes

τ∗(H(GA,q,1)) = min
{

∑
x∈[q]n

wx : ∑
y∈BA,q,1(x)

wy > 1
}

.

However, it can be significantly simplified according to the
tools developed in Section III-C. Similarly to the set of au-
tomorphisms from Example 6, for every permutation σ ∈ Sn
we define a permutation πσ = [q]n → [q]n such that for all
x ∈ [q]n, (πσ (x))i = xσ(i). Hence, also here the set HA =
{πσ : σ ∈ Sn} is a subgroup of Aut(GA,q). However, now
the subgroup HA partitions the set [q]n into the following
nA = (n+q−1

q−1 ) equivalence classes

X =

{
Xi : i = (i0, . . . , iq−1) > 0,

q−1

∑
j=0

i j = n
}

,

where Xi is characterized as follows

Xi = {x ∈ [q]n : x−1( j) = i j, 0 6 j 6 q− 1},

and x−1( j) = |{1 6 k 6 n : xk = j}|. We denote the set
IA to be IA = {i : i = (i0, . . . , iq−1) > 0, ∑

q−1
j=0 i j = n}

and define an nA× nA matrix AH such that its entries are the
vectors (i, j) ∈ IA × IA. We assign the values AH(i, i) = 1
and AH(i, j) = ik if there exists 1 6 k 6 q− 1 such that jk =
ik − 1 and jk−1 = ik−1 + 1 and for all ` ∈ [q] \ {k, k− 1},
j` = i`. All other values in the matrix AH are assigned with
the value 0. Finally, according to Corollary 8 we proved the
following theorem.

Theorem 12. The generalized sphere packing bound for
H(GA,q,1) is given by

τ∗(H(GA,q,1))=min
{

∑
i∈IA

|Xi|wi : AT
H ·w>1, w=(wi)i∈IA∈R

nA
+

}
.

We finish this section by showing an improvement upon the
suboptimal monotonicity upper bound from Lemma 10. In the
fractional transversal notation of Theorem 12, if one applied
the monotonicity upper bound, then the fractional transversal
assignment would be wi = 1/(n− i0 + 1) for i ∈ IA. How-
ever, under this assignment almost all of the constraints hold
with strict inequality. We show that it is possible to reduce the
weights in this assignment without violating the constraints
and thus receive a stronger upper bound.

Theorem 13. The vector w = (wi)i∈IA given by

wi =
1

n− i0 + 1 + i1−1
2(n−i0)

,

if i0 6= n and otherwise wi = 1 is a fractional transversal for
τ∗(H(GA,q,1)) as stated in Theorem 12.

Proof: It is straightforward to verify that wi > 0 for
all i ∈ IA. According to the conditions for τ∗(H(GA,q,1))
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from Theorem 12, we need to show that for all i =
(i0, i1, . . . , iq−1) ∈ IA the following inequality holds

w(i0 ,i1 ,...,iq−1)
+ i1w(i0+1,i1−1,...,iq−1)

+ i2w(i0 ,i1+1,i2−1...,iq−1)

+ · · ·+ iq−1w(i0 ,i1 ,...,iq−2+1,iq−1−1) > 1.

If i0 = n then this inequality holds with equality and it is
possible to verify that it holds for i0 = n− 1 as well. Thus,
we can assume that i0 < n− 1. After placing the values of
wi stated in the theorem, we need to show the following

1

n− i0 + 1 + i1−1
2(n−i0)

+
i1

n− i0 +
i1−2

2(n−i0−1)

+
i2

n− i0 + 1 + i1
2(n−i0)

+
i3 + · · ·+ iq−1

n− i0 + 1 + i1−1
2(n−i0)

> 1.

Note that
1

n− i0 + 1 + i1−1
2(n−i0)

>
1

n− i0 + 1 + i1
2(n−i0)

,

and thus it is enough to show that

i2 + i3 + · · ·+ iq−1 + 1

n− i0 + 1 + i1
2(n−i0)

+
i1

n− i0 +
i1−2

2(n−i0−1)

> 1

or, since i0 + i1 + · · ·+ iq−1 = n,

n− i0 − i1 + 1

n− i0 + 1 + i1
2(n−i0)

+
i1

n− i0 +
i1−2

2(n−i0−1)

> 1

and
i1

n− i0 +
i1−2

2(n−i0−1)

> 1− n− i0 − i1 + 1

n− i0 + 1 + i1
2(n−i0)

which is

i1
n− i0 +

i1−2
2(n−i0−1)

>
i1 +

i1
2(n−i0)

n− i0 + 1 + i1
2(n−i0)

.

Let us denote n− i0 = M and we need to show that

1

M + i1−2
2(M−1)

>
1 + 1

2M

M + 1 + i1
2M

,

and equivalently

2(M− 1)
2M2 − 2M + i1 − 2

>
2M + 1

2M2 + 2M + i1
,

or

2M2 + 2M + 2 > 3i1,

which holds since M = n− i0 > i1.
Table V summarizes the upper bounds results we derived

in this section for q = 3. The first column is the monotonicity
upper bound we found in Lemma 10. The second column is
the average sphere packing value from Lemma 11. The third
column is the improvement in Theorem 13 over the mono-
tonicity upper bound. Lastly, the last column is the value of
the generalized sphere packing bound from Theorem 12, which
we solved numerically. Note that there is no upper bound we
know of in the literature for this error channel.

TABLE V
NON-BINARY CHANNEL, ASYMMETRIC ERRORS: UPPER BOUNDS

COMPARISON FOR q = 3

n MB ASPV Theorem 13 GSPB
5 60 56 60 55
6 156 145 154 144
7 410 385 402 381
8 1093 1035 1071 1021
9 2952 2811 2888 2770

10 8052 7702 7877 7591
11 22143 21252 21673 20955
12 61320 59049 60056 58235
13 170820 164929 167424 162744
14 478296 462867 469156 456987
15 1345210 1304446 1320524 1288583
16 3798240 3689718 3731321 3646657
17 10761680 10470824 10579575 10353898
18 30585828 29801576 30088394 28464819
19 87169610 85043521 85805885 84168158
20 249056028 243264027 245304388 230986164
21 713205900 697356880 702851238 690706260
22 2046590844 2003046358 2017923470 1984633746
23 5883948676 5763868091 5804351676 5712720517

B. Symmetric Errors

Since this model and graph are very similar to the asym-
metric case, they are briefly presented. The graph is given by
GS,q = (XS,q, ES,q), where XS,q = [q]n and

ES,q = {(x, y) : (x, y) ∈ EA,q or (y, x) ∈ EA,q}.

Similarly, for every x ∈ [q]n, its corresponding ball of radius
one is the set BS,q,1(x) = {y ∈ [q]n : y ∈ BA,q,1(x) or x ∈
BA,q,1(y)}. The hypergraph is H(GS,q, 1) = (XS,q,1, ES,q,1),
where XS,q,1 = [q]n and ES,q,1 = {BS,q,1(x) : x ∈ [q]n}.

This setup is different than all other error channels studied
so far in the sense that it does not satisfy the monotonicity
property. Thus, we cannot conclude the corresponding frac-
tional transversal of the monotonicity upper bound. However,
we can still calculate the average sphere packing value.

Lemma 14. The average sphere packing value of the graph GS,q
for r = 1 is

ASPV(GS,q, 1) =
qn

2n + 1− 2n/q
.

Proof: First we calculate the value of the expected ball
size, which is given by

1
qn · ∑

x∈[q]n
(2n + 1− x−1(i0)− x−1(iq−1))

=
1
qn · ∑

06i1+···+iq−16n

(
n

i1, . . . , iq−1

)
(n + 1 + (i1 + · · ·+ iq−2))

=
1
qn · ((n + 1)qn + n(q− 2)qn−1) = 2n + 1− 2n/q.

Thus, the average sphere packing value becomes

qn

2n + 1− 2n/q
.
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Next, we define the set of automorphisms to be used here.
One can verify that every permutation in HA is an automor-
phism in GS,q. However, in this case we can expand and use
more automorphisms. For every binary vector b ∈ {0, 1}n,
we define the permutation

πb : [q]n → [q]n,

as follows. For every x ∈ [q]n, πb(x) is the vector defined as

πb(x)i =

{
q− 1− xi if bi = 1
xi if bi = 0

Then, the set HS = HA ∪ {πb : b ∈ {0, 1}n} is a subgroup
of Aut(GS,q). The subgroup HS partitions the set [q]n into

nS = (
n+dq/2e−1
dq/2e−1 ) equivalence classes

X =

{
Xi : i = (i0, . . . , idq/2e−1) > 0,

dq/2e−1

∑
j=0

i j = n
}

,

and Xi is the set

Xi = {x ∈ [q]n : x−1( j)+x−1(q− 1− j)= i j, 0 6 j6dq/2e− 1}.

We define

IS = {i : i = (i0, . . . , idq/2e−1) > 0,
dq/2e−1

∑
j=0

i j = n}

and the nS× nS matrix AS with the following entries (i, j) ∈
IS × IS.

1) For all i ∈ IS, AS(i, i) = 1,
2) AS(i, j) = k if there exists 1 6 k 6 dq/2e − 1 such

that jk = ik − 1 and jk−1 = ik−1 + 1 and for all ` ∈
[dq/2e] \ {k, k− 1}, j` = i`.

To conclude, according to Corollary 8, the generalized sphere
packing for H(GS,q,1) becomes

τ∗(H(GS,q,1))=min
{

∑
i∈IS

|Xi|wi : AT
S ·w>1, w=(wi)i∈IS∈R

nS
+

}
.

Even though this graph does not satisfy the monotonicity
property we can still derive a similar bound, which will be
stated in the following theorem.

Theorem 15. The vector w = (wx)x∈[q]n given by

wx =
1

degS,q,1(x)− 1

is a fractional transversal.

Proof: Let x ∈ [q]n and let i j = x−1( j) for j ∈ [q].
Then, degS,q,1(x) = 2n − i0 − iq−1 + 1. We need to show
that

1
2n− i0 − iq−1

+
i0

2n− (i0 − 1)− iq−1

+
i1

2n− (i0 + 1)− iq−1
+

i1 + 2i2 + · · ·+ 2iq−3 + iq−2

2n− i0 − iq−1

+
iq−2

2n− i0 − (iq−1 + 1)
+

iq−1

2n− i0 − (iq−1 − 1)
> 1,

or
1 + i1 + 2i2 + · · ·+ 2iq−3 + iq−2

2n− i0 − iq−1
+

i0 + iq−1

2n− i0 − iq−1 + 1

+
i1 + iq−2

2n− i0 − iq−1 − 1
> 1.

Since 1/(2n − i0 − iq−1) > 1/(2n − i0 − iq−1 + 1) and
1/(2n − i0 − iq−1 − 1) > 1/(2n − i0 − iq−1 + 1), it is
enough to show that

1 + i1 + 2i2 + · · ·+ 2iq−3 + iq−2

2n− i0 − iq−1 + 1
+

i0 + iq−1

2n− i0 − iq−1 + 1

+
i1 + iq−2

2n− i0 − iq−1 + 1
> 1,

which holds with equality.
Comparison results for q = 3 and q = 4 are summarized

in Tables VI and VII. The first column is the average sphere
packing value which was calculated in Lemma 14. The second
column is the upper bound we found in Theorem 15. The last
column is the value of the generalized sphere packing bound
that we solved numerically. Note that in this example the value
of the average sphere packing value is less than the one of the
generalized sphere packing value, however, that doesn’t mean
that it is not a valid upper bound.

TABLE VI
NON-BINARY CHANNEL, SYMMETRIC ERRORS: UPPER BOUNDS

COMPARISON FOR q = 3

n ASPV Theorem 15 GSPB
5 31 37 32
6 81 93 82
7 211 238 216
8 562 624 572
9 1514 1663 1538

10 4119 4484 4177
11 11307 12217 11449
12 31261 33564 31618
13 86963 92872 87872
14 243201 258535 245544
15 683281 723466 689388
16 1927465 2033685 1943532
17 5456626 5739520 5499244
18 15496819 16255303 15610684

TABLE VII
NON-BINARY CHANNEL, SYMMETRIC ERRORS: UPPER BOUNDS

COMPARISON FOR q = 4

n ASPV Theorem 15 GSPB
5 120 139 123
6 409 463 417
7 1424 1586 1449
8 5041 5540 5115
9 18078 19666 18313

10 65536 70707 66297
11 239674 256844 242193
12 883011 940934 891482

VI. DELETION AND GRAIN-ERROR CHANNELS

In this section we shift our attention to the deletion channel,
which was the original usage of the generalized sphere packing



14

bound in [15]. We will only focus on the single-deletion case.
First, we revisit the fractional transversal given in [15] to verify
that the graph in the deletion channel satisfies a similar prop-
erty to the monotonicity property from Section III-B. However,
it will be noticed that this choice of fractional transversal is
suboptimal and thereof an improvement will be presented. This
will be our main result in this section, namely, an explicit ex-
pression of a fractional transversal which improves upon the
one from [15]. Since the structure of the deletion and grain-
error channels is very similar, especially for a single error,
in the second part of this section we show also how to im-
prove upon the upper bound from [8], [12] on the cardinality
of single grain-error-correcting codes.

A. Deletions

As studied in the previous examples and sections, we first
introduce the graph for the deletion channel. However, note
that the graph in this setup is different than the previous ones
studied so far. Specifically, a length n vector which suffers
a single deletion will result with a vector of length n − 1.
To accommodate this structure, the vertices in the graph are
defined to be both vectors of length n and n− 1, so the graph
is GD = (XD , ED), where XD = {0, 1}n ∪ {0, 1}n−1 and

ED = {(x, y) ∈ {0, 1}n × {0, 1}n−1 :
y = (x1, . . . , xi , xi+2, . . . , xn) for some 1 6 i 6 n}.

For any x ∈ {0, 1}n, its radius one ball is the set BD,1(x) =
{y ∈ {0, 1}n−1 : (x, y) ∈ ED}, and for x ∈ {0, 1}n−1,
BD,1(x) = ∅. Therefore, 1 6 degD,1(x) 6 n for x ∈ {0, 1}n,
and degD,1(x) = 0 for x ∈ {0, 1}n−1.

At this point, we could basically construct the hypergraph
for the deletion channel as was done in the previous examples
such that its set of vertices is XD = {0, 1}n ∪ {0, 1}n−1.
However, since the length-n vectors do not participate in
the balls we can eliminate them in the hypergraph con-
struction, which coincides with the hypergraph construction
in [15]. Thus the hypergraph for the single deletion channel
is H(GD , 1) = (XD,1, ED,1), where XD,1 = {0, 1}n−1 and
ED,1 = {BD,1(x) : x ∈ {0, 1}n}. This definition does not
change the analysis of the upper bounds studied in this pa-
per. Thus, the generalized sphere packing bound in this setup
becomes

τ∗(H(GD , 1))=min
{

∑
z∈{0,1}n−1

wz : ∑
y∈BD,1(x)

wy > 1, ∀x ∈ {0, 1}n
}

.

(13)
For a vector x ∈ {0, 1}n, we denote by ρ(x) the number of

runs in x. For example, if x = 001010010, then ρ(x) = 7. It is
easily verified that for x ∈ {0, 1}n, degD,1(x) = ρ(x), [15].
It is also known that the number of length-n vectors with
1 6 ρ 6 n runs is 2(n−1

ρ−1). Let us first calculate the average
sphere packing value for the hypergraph H(GD , 1). This will
be done in the next lemma.

Lemma 16. The average sphere packing value of the graph GD
for r = 1 is

ASPV(GD , 1) =
2n

n + 1
.

Proof: Every vector x ∈ {0, 1}n generates a ball, i.e. a
hyperedge, in H(GD , 1). Thus, the average size of a ball is
given by

1
2n ∑

x∈{0,1}n
degD,1(x) =

1
2n

n

∑
ρ=1

2
(

n− 1
ρ− 1

)
ρ

=
1

2n−1

n−1

∑
ρ=0

(
n− 1
ρ

)
(ρ+ 1) =

1
2n−1 (2

n−1 + (n− 1)2n−2)

=
n + 1

2
.

Thus, the average sphere packing value becomes

2n−1

(n + 1)/2
=

2n

n + 1
.

Note that if one chose the hypergraph to contain all binary
vectors of length n − 1 and n, the resulting average sphere
packing value would have been weaker. We specifically chose
the hypergraph this way as it is the smallest one where any
single-deletion code can be studied and analyzed.

In the setup and structure of the graph GD, it is not pos-
sible to indicate whether the graph GD satisfies the mono-
tonicity property. The vectors in the ball centered at some
x ∈ {0, 1}n are of length n− 1 and thus do not have corre-
sponding balls. However, there is still a very similar property
to the monotonicity one. Namely, for every y ∈ BD,1(x),
where x ∈ {0, 1}n,

ρ(y) 6 ρ(x) = degD,1(x).

This property was established in [15] and thus a choice of a
fractional transversal (wx)x∈{0,1}n−1 , was given by

wx =
1

ρ(x)
.

The corresponding upper bound, which we call here the mono-
tonicity upper bound, was calculated in [15] to be

∑
x∈{0,1}n−1

1
ρ(x)

=
n−1

∑
ρ=1

2
(

n− 2
ρ− 1

)
· 1
ρ
=

2n − 2
n− 1

.

However, it is possible to verify that for this fractional
transversal many of the constraints in the linear programming
in (13) hold with strong inequality, which implies that a bet-
ter one could be found. This will be the focus in the rest of
this subsection, that is, an improvement upon the last upper
bound by the equivalent of the monotonicity property.

For a vector x, let µ(x) be the number of middle runs (i.e.,
not on the edges) of length 1 in x. We call these runs middle-
1-runs. For example, for x = 001010010, µ(x) = 4. First no-
tice that if ρ(x) > 2 then 0 6 µ(x) 6 ρ(x)− 2. Let Nn(ρ,µ)
denote the number of vectors of length n with ρ runs and µ
middle-1-runs. For ρ = 1 and µ = 0, we have Nn(1, 0) = 2.
For 2 6 ρ 6 n and 0 6 µ 6 ρ− 2, the value of Nn(ρ,µ) is
calculated in the next lemma. For all other values of ρ and µ
the value of Nn(ρ,µ) is zero.
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Lemma 17. For 2 6 ρ 6 n and 0 6 µ 6 ρ− 2,

Nn(ρ,µ) = 2
(
ρ− 2
µ

)(
n− ρ+ 1
ρ−µ − 1

)
.

Proof: For every x = (x1, . . . , xn) ∈ {0, 1}n, let x′ =
(x′1, . . . , x′n−1) ∈ {0, 1}n−1 be a vector of length n− 1 such
that for 1 6 i 6 n− 1, x′i = xi + xi+1. Note that wH(x′) =
ρ(x)− 1. Let c(x′) denote the number of times that two con-
secutive ones appear in x′, so we have c(x′) = µ(x).

Let x be a vector of length n such that ρ(x) = ρ and
µ(x) = µ, where 1 6 ρ 6 n and 0 6 µ 6 ρ− 2. Assume
the vector x′ has p runs of ones of length h1, . . . , hp. Then,
first we have that

p

∑
i=1

hi = wH(x′) = ρ− 1. (14)

Every run of ones of length hi in x′ contributes hi − 1 pairs
of two consecutive ones. Therefore,

p

∑
i=1

(hi − 1) = µ. (15)

Together, from (14) and (15), we conclude that p = ρ−µ− 1.
Furthermore, the number of solutions to (14) (or (15)) is
(µ+p−1

µ ) = (ρ−2
µ ). For every solution h1, . . . , hρ−µ−1, let

k0, k1, . . . , kρ−µ−1 be the number of zeros between the
blocks of ones in x′, where k0 > 0, k1, . . . , kρ−µ−2 > 1, and
kρ−µ−1 > 0. Note that their sum is n− 1− (ρ− 1) = n−ρ,
and thus, under the above constraints, the number of solutions
to

ρ−µ−1

∑
j=0

k j = n− ρ

is (n−ρ+1
ρ−µ−1).

Finally, the number of options to choose the vector x′ is the
number of solutions to choose the runs of ones h1, . . . , hρ−µ−1
and runs of zeros k0, . . . , kρ−µ−1. Every choice of the vector
x′ determines the vector x up to choosing whether it starts
with zero or one. Therefore, we get

Nn(ρ,µ) = 2
(
ρ− 2
µ

)(
n− ρ+ 1
ρ−µ − 1

)
.

Next, the main result in this section is proved.

Theorem 18. The vector w = (wx)x∈{0,1}n−1 defined by

wx =

{ 1
ρ(x) if µ(x) 6 1

1
ρ(x)

(
1− µ(x)

ρ(x)2

)
otherwise

is a fractional transversal.

Proof: Let x be a length-n binary vector with ρ runs and
µ middle-1-runs. We need to show that ∑y∈BD,1(x) wy > 1. It
can be verified that this claim holds for ρ = 1, 2, 3 or µ =
0, 1 and thus we assume for the rest of the proof that ρ > 4
and µ > 2. Note that for a fixed ρ, wx is decreases when µ
increases.

If a vector y ∈ BD,1(x) is received by deleting a middle-
1-run bit then ρ(y) = ρ − 2 and µ − 3 6 µ(y) 6 µ − 1.
Otherwise, ρ(y) = ρ and µ(y) 6 µ+ 1 or, if it is the first or
last bit which is a single-bit run, ρ(y) = ρ− 1 and µ(y) 6
µ, however, the worst case in terms of the value of wy is
achieved for ρ(y) = ρ and µ(y) = µ + 1. Therefore,

∑
y∈BD,1(x)

wy >
µ

ρ− 2

(
1− µ − 1

(ρ− 2)2

)
+

(ρ−µ)

ρ

(
1− µ + 1

ρ2

)
= 1 +

2µ
ρ(ρ− 2)

− µ(µ − 1)
(ρ− 2)3 −

µ + 1
ρ2 +

µ(µ + 1)
ρ3 ,

and thus it is enough to show that for ρ > 4, 2 6 µ 6 ρ− 2,

2µ
ρ(ρ− 2)

− µ(µ − 1)
(ρ− 2)3 −

µ + 1
ρ2 +

µ(µ + 1)
ρ3 > 0,

or
2

ρ(ρ− 2)
− 1
ρ2 >

µ − 1
(ρ− 2)3 +

1
µρ2 −

µ + 1
ρ3 .

The function

f (µ) =
µ − 1

(ρ− 2)3 +
1

µρ2 −
µ + 1
ρ3

in the range 2 6 µ 6 ρ− 2 is maximized either when µ = 2
or µ = ρ− 2 and thus we need to show that

2
ρ(ρ− 2)

− 1
ρ2 >

1
(ρ− 2)3 +

1
2ρ2 −

3
ρ3 ,

and
2

ρ(ρ− 2)
− 1

ρ2 >
ρ− 3

(ρ− 2)3 +
1

(ρ− 2)ρ2 −
ρ− 1
ρ3 ,

which holds for all ρ > 4.
For a vector x with ρ runs and µ middle-1-runs, we de-

note its weight by w(ρ,µ), as specified in Theorem 18. From
Lemma 17 and Theorem 18 we conclude with the following
upper bound on τ∗(H(GD , 1)).

Theorem 19. The value τ∗(H(GD , 1)) satisfies

τ∗(H(GD , 1)) 6 2 +
n−1

∑
ρ=2

ρ−2

∑
µ=0

Nn−1(ρ,µ)w(ρ,µ).

Proof: We calculate the upper bound on τ∗(H(GD , 1))
according to the fractional transversal from Theorem 18,
w = (wx)x∈{0,1}n−1 . Every vector x is assigned with a
weight wx = w(ρ,µ) according to its number of runs ρ and
number of middle-1-runs µ. Thus, we get this upper bound
to be

∑
x∈{0,1}n−1

wx = 2 +
n−1

∑
ρ=2

ρ−2

∑
µ=0

Nn−1(ρ,µ)w(ρ,µ).

Table VIII summarizes the results of the different bounds
discussed in this subsection. MB corresponds to the equiva-
lent of the monotonicity upper bound, which is the value 2n−2

n−1
from [15]. ASPV corresponds to the average sphere packing
value 2n

n+1 from Lemma 16. The third column is our upper
bound results from Theorem 19. The column titled GSPB [15]
is the exact value of τ∗(H(GD , 1)) from (13), which this lin-
ear programming problem was numerically solved in [15] for
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n 6 14. Since this linear programming has a large number
of constraints and variables it is numerically hard to solve it
for larger values of n. The last column LB corresponds to the
lower bound, which is the best known construction of single-
deletion codes from [23].

TABLE VIII
DELETION CHANNEL COMPARISON

n MB [15] ASPV Theorem 19 GSPB [15] LB [23]
5 7 5 7 6 6
6 12 9 12 10 10
7 21 16 20 17 16
8 36 28 35 30 30
9 63 51 61 53 52

10 113 93 109 96 94
11 204 170 197 175 172
12 372 315 358 321 316
13 682 585 657 593 586
14 1260 1092 1212 1104 1096
15 2340 2048 2251 ? 2048
16 4368 3855 4202 ? 3856
17 8191 7281 7882 ? 7286
18 15420 13797 14845 ? 13798
19 29127 26214 28059 ? 26216
20 55188 49932 53202 ? 49940
21 104857 95325 101163 ? 95326
22 199728 182361 192850 ? 182362
23 381300 349525 368478 ? 349536

B. Grain Errors
The grain-error channel is a recent model which was stud-

ied mainly for granular media with applications to magnetic
recording technologies [26], [27]. In this medium, the infor-
mation is stored in individual grains which their magnetization
can hold a single bit of data. However, since the size of these
grains is very small, the information bits are written to the
grains without knowing in advance their exact location [16].
Typically, the bit cell is larger than a single-grain and in this
case the polarity of a cell is determined by the last bit that
was written into it. This kind of errors is called grain-errors.
We will follow the model studied by previous works which
assume that the first bit smears its adjacent one to the right.
There are several recent studied of this model which analyzed
its information theory behavior [11], proposed code construc-
tions, and upper bounds [8], [9], [12], [16], [19], [20].

The grain-error channel is very similar to the deletion chan-
nel, however in this case the length of the received words re-
mains the same. The graph describing this channel model is
GG = (XG , EG), where XG = {0, 1}n and

EG = {(x, y) : x, y ∈ {0, 1}n, and there exists 2 6 i 6 n
such that y = x + ei and xi 6= xi−1}.

The radius one ball for some x ∈ {0, 1}n is the set BG,1(x) =
{y ∈ {0, 1}n : (x, y) ∈ EG}. The hypergraph for the sin-
gle grain-error channel becomes H(GG , 1) = (XG,1, EG,1),
where XG,1 = {0, 1}n and EG,1 = {BG,1(x) : x ∈ {0, 1}n}.
Finally, the generalized sphere packing bound for the single
grain-error channel is

τ∗(H(GG , 1))=min
{

∑
x∈{0,1}n

wx : ∑
y∈BG,1(x)

wy > 1, ∀x ∈ {0, 1}n
}

.

(16)

The size of the ball BG,1(x) can be given by degG,1(x) =
ρ(x), where, as before, ρ(x) is the number of runs in x. It is
also verified that if y ∈ BG,1(x) then ρ(y) 6 ρ(x) and thus
the graph GG satisfies the monotonicity property. These re-
sults were verified both in [8] and [12] and showed that the
vector w = (wx)x∈{0,1}n given by wx = 1

ρ(x) , is a fractional
transversal. Accordingly, the corresponding upper bound,
called here the monotonicity upper bound, on τ∗(H(GG , 1))
becomes

MB(GG , 1) =
2n+1 − 2

n
.

This bound is slightly improved in [9] by noticing that if there
is a code with odd number of codewords, then there exists
a code with one more codeword, and thus this upper bound
becomes 2b 2n+1−2

2n c.
The average sphere packing value in this case is calculated

in the next lemma.

Lemma 20. The average sphere packing value of the graph GG
for r = 1 is

ASPV(GG , 1) =
2n+1

n + 1
.

Proof: The size of the radius one ball centered in x ∈
{0, 1}n is degG,1(x) = ρ(x). Thus, the average size of a ball
is

1
2n ∑

x∈{0,1}n
degG,1(x) =

1
2n

n

∑
ρ=1

2
(

n− 1
ρ− 1

)
ρ

=
1

2n−1

n−1

∑
ρ=0

(
n− 1
ρ

)
(ρ+ 1) =

1
2n−1 (2

n−1 + (n− 1)2n−2)

=
n + 1

2
.

Thus, the average sphere packing value becomes

2n

(n + 1)/2
=

2n+1

n + 1
.

Note that very similarly to the deletion channel, the frac-
tional transversal given by the monotonicity property is sub-
optimal. We carry similar steps as in the previous subsection
in order to give a better fractional transversal, stated in the
next theorem.

Theorem 21. The vector w = (wx)x∈{0,1}n defined by

wx =

{ 1
ρ(x) if µ(x) 6 1

1
ρ(x)

(
1− µ(x)

ρ(x)2

)
otherwise

is a fractional transversal.

Proof: Let x be a binary vector of length n with ρ runs
and µ middle-1-runs. We will show that ∑y∈BG,1(x) wy > 1.
As in the proof of Theorem 18, it is possible to verify that this
property holds for ρ = 1, 2, 3 and µ = 0, 1, so we assume
that ρ > 4 and µ > 2.

If a vector y ∈ BG,1(x) is received by a single grain-error
of a middle-1-run bit then ρ(y) = ρ− 2 and µ(y) 6 µ − 1.
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Otherwise, ρ(y) = ρ and µ(y) 6 µ + 1 or, in case the last
bit errs, ρ(y) = ρ− 1 and µ(y) 6 µ, however, the worst case
is achieved for ρ(y) = ρ and µ(y) = µ + 1. Hence, we get

∑
y∈BG,1(x)

wy >
1
ρ

(
1− µ

ρ2

)
+

µ

ρ− 2

(
1− µ − 1

(ρ− 2)2

)
+

(ρ−µ − 1)
ρ

(
1− µ + 1

ρ2

)
> 1 +

2µ
ρ(ρ− 2)

− µ(µ − 1)
(ρ− 2)3 −

µ + 1
ρ2 +

µ(µ + 1)
ρ3 .

The rest of the proof is identical to the proof of Theorem 18.

Finally, we conclude with the following theorem.

Theorem 22. The value τ∗(H(GG , 1)) satisfies

τ∗(H(GG , 1)) 6 2 +
n

∑
ρ=2

ρ−2

∑
µ=0

Nn(ρ,µ)w(ρ,µ).

Table IX summarizes the improvements and results dis-
cussed in this section on the cardinalities of single-grain
error-correcting codes. In the last column we gave the cardi-
nalities of the best known to us codes taken from [9], [19],
and [20]. For 5 6 n 6 8 the lower bound coincides with
the best known upper bound [19]. For n = 9, 10, 11 the best
known upper bound is 88, 176, 352, respectively [20], while
for n > 12 the best known upper bound is the monotonicity
upper bound from [9], [12].

TABLE IX
GRAIN-ERROR CHANNEL COMPARISON

n MB [9], [12] ASPV Theorem 22 LB
5 12 10 12 8 [19]
6 20 18 20 16 [19]
7 36 32 35 26 [19]
8 62 56 60 44 [19]
9 112 102 108 72 [20]

10 204 186 196 112 [20]
11 372 341 358 210 [9]
12 682 630 656 372 [20]
13 1260 1170 1212 702 [9]
14 2340 2184 2250 1272 [20]
15 4368 4096 4202 2400 [9]
16 8190 7710 7882 4522 [20]
17 15420 14563 14844 8428 [20]
18 29126 27594 28058 15348 [9]
19 55188 52428 53202 27596 [9]
20 104856 99864 101162 52432 [9]
21 199728 190650 192850 99880 [9]
22 381300 364722 368478 190652 [9]
23 729444 699050 705510 364724 [9]

VII. PROJECTIVE SPACES

In this section, we explain an example where there is no
monotonocity property, yet we benefit from the graph auto-
morphisms and we simplify the linear programming again.

Koetter and Kschischang [14] modeled codes as subsets
of projective space Fn

q , the set of linear subspaces of Fn
q , or

of Grassmann space G(n, k), the subset of linear subspaces of
Fn

q having dimension k. Subsets of Fn
q are called projective

codes and similar to previous sections, it is desired to select
elements with large distance from each other.

Let us first introduce the graph GP = (XP, EP) for projec-
tive codes, where XP is the set of all linear subspaces in Fn

q
and

EP ={{x, y} : x⊂ y or y⊂x, and |dim(x)− dim(y)| = 1},

and using the path distance dP(x, y) defined on graph GP we
define

BP,r(x) = {y ∈ XP : dP(x, y) 6 r}.

The corresponding hypergraph is H(GP, r) = (XP,r, EP,r),
such that XP,r = XP and EP,r = {BP,r(x) : x ∈ XP}. The
generalized sphere packing bound becomes

τ∗(H(GP, r))=min
{

∑
x∈XP

w(x) :∀x ∈XP, ∑
y∈BP,r(x)

wy>1, wx>0
}

.

Assume x1 and x2 are elements in XP with same dimen-
sion k. There exist an injective linear transform T : Fn

q → Fn
q

mapping the basis of x1 into a basis for x2. Note that x ⊂ y
if and only if T (x)⊂T (y). Hence, all such linear transforms
are automorphisms on GP, which means for any x1, x2 ∈ XP
of the same dimensions, there exist an automorphism mapping
between them. Therefore, they lie in a same equivalence class.
So we assign a same transversal weight to all the subspaces
with the same dimension. We also need to find the size and
the distribution of elements in BP,r(x). The general formula
is given in [7] but we only study the case r = 1. Given x
with dimension k in XP, there are [ k

k−1]2 = 2k − 1 subspaces
of dimension k− 1 in BP,1(x), where[

n
m

]
2
=

(2n − 1)(2n−1 − 1) · · · (2n−m+1)

(2m − 1)(2m−1 − 1) · · · (21 − 1)

is the number of subspaces of dimension m in a space of di-
mension n. There are also 2n−2k

2k = 2n−k − 1 subspaces of
dimension k + 1 in BP,1(x) that include x. Therefore, there
are (2k − 1) + (2n−k − 1) + 1 elements in BP,1(x). So,

τ∗(H(GP, r)) = min
{ n

∑
k=0

wk

[
n
k

]
2

: ∀ 0 6 k 6 n (17)

wk + (2k − 1)wk−1 + (2n−k − 1)wk+1 > 1, wk > 0
}

.

It is shown that there exist automorphisms which map a
fixed subspace of dimension k to a fixed subspace of dimension
n− k (see [3].) So, subspaces of dimension k and n− k are
also in same equivalence classes and we assign same weights
to them. Also note that [nk]2 = [ n

n−k]2. Hence we benefit from
a very nice symmetry and we set wk = wn−k to halve both
the number of constraints and the parameters in the linear pro-
gramming. Optimal transversal weights for n 6 11 are listed
in Table X.

It is interesting to see that wb n
2 c = 0 for all n > 2, which

is not surprising since [ n
b n

2 c
]
2

is the largest coefficient in the
cost function. This leads us to a greedy approach of starting
from the middle, which has the highest impact on cost func-
tion; minimizing it, i.e. wb n

2 c = 0; and then moving toward
the tails where we pick the least possible value to satisfy the
constraints. We call it as the greedy weight assignment, which
is expressed as
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TABLE X
PROJECTIVE CODES: UPPER BOUNDS AND WEIGHTS FOR r = 1

n w∗0 , w∗1 , · · · , w∗b n
2 c

ASPV GSPB [1]

2 1, 0 1 1 -
3 1, 0 3 2 -
4 0.83, 0.17, 0 8 6 6
5 0.67, 0.34, 0 30 22 20
6 0, 0.30, 0.07, 0 159 132 124
7 0, 0.29, 0.15, 0 1142 834 776
8 1, 0, 0.14, 0.03, 0 11364 9460 9268
9 1, 0, 0.13, 0.07, 0 157860 116656 107419

10 1, 0, 0, 0.066, 0.016, 0 3073031 2566390 -
11 1, 0, 0, 0.065, 0.032, 0 84047153 62462160 -

w∗[ n
2 ]
= 0, and for all k: 0 6 k < bn

2
c,

w∗k = max{
1− w∗k+1 − (2n−k−1 − 1)w∗k+2

2k+1 − 1
, 0}, (18)

w∗k = w∗n−k, and if w∗0 = w∗1 = 0, then w∗0 = 1.

It is clear that the greedy output has the transversal property
and lies in the feasible set. In fact, w∗ for k < b n

2 c is given
by

w∗k =


1

2k+1−1
if k ≡ bn/2c − 1 mod 4

2
2k+2−1

if k ≡ bn/2c − 2 mod 4
0 otherwise,

with the only exception of

w∗k =


1

2(2k+1−1)
if k = n

2 − 1
2k+3−3

(2k+1−1)(2k+2−2)
if k = n

2 − 2

for n even. The following theorem also shows the optimality
of greedy assignment in our scheme (See appendix B for the
proof.)

Theorem 23. Let GP be the associated graph with projective
code when Fn

q is the space and w∗ be defined as (18), then

τ∗(H(GP, r)) =
n

∑
k=0

w∗k

[
n
k

]
2
.

VIII. CONCLUSIONS AND DISCUSSION

In this paper we presented a generalization of the sphere
packing bound, based upon a recent work by Kulkani and
Kiyavash for deriving upper bounds on the cardinality of
deletion-correcting codes. Our scheme can provide upper
bound on the cardinality of codes according to any error
channel. The main challenge in deriving this upper bound
is the solution of a linear programming problem, which in
many cases is not easy to find. We found this solution for
the Z channel and projective spaces in case of radius one. In
the other setups studied here, namely the limited magnitude,
deletion, and grain-error channels, we didn’t completely solve
the linear programming problem but found a corresponding
upper bound, which is a valid upper bound on the codes car-
dinalities in each case. Thus, solving the linear programming,
in order to find the generalized sphere packing bound for
each error channel, still remains an interesting open problem.
We also mention that other error channels can be studied as
well using the scheme presented in the paper.

Lastly, we follow up on the question we asked in the Intro-
duction about the validity of the average sphere packing value.
Even though in general it is not a valid upper bound, we be-
lieve that there are some conditions under which this value
will hold as an upper bound, and finding these conditions re-
mains as open problem.
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APPENDIX A
OPTIMAL TRANSVERSAL WEIGHT FOR Z CHANNEL

In this section, we go over lemmas and proofs that has been
used in section IV.

Lemma 24. For all r ∈ N, |Dm| 6 (2r)m−r+1.

Proof: The proof is based on induction on m. Let us as-
sume |Di| 6 (2r)i−r+1 for all i 6 m− 1. Therefore,

Dm = −( r!
(r− 1)!

Dm−1 +
r!

(r− 2)!
Dm−2 + · · ·+

r!
0!

Dm−r)

6
r!|Dm−1|
(r− 1)!

+
r!|Dm−2|
(r− 2)!

+ · · ·+ r!|Dm−r|
0!

6
r!(2r)m−r

(r− 1)!
+

r!(2r)m−r−1

(r− 2)!
+ · · ·+ r!(2r)m−2r+1

0!

= (2r)m−r+1(
r!(2r)−1

(r− 1)!
+

r!(2r)−2

(r− 2)!
+ · · ·+ r!(2r)−r

0!
)

6 (2r)m−r+1(2−1 + 2−2 + · · ·+ 2−r)

6 (2r)m−r+1.

The idea behind the optimality proof is to write the cost
function f (w) as a non-negative linear combination of some
other cost functions denoted by fi(w) and show w∗ is the a
feasible point which minimizes them all, and hence w∗ also
minimizes the cost function and is the desired optimal solu-
tion.

Let us define cost functions fi(w) for all 0 6 i 6 n as

fk(w) = w0 k = 0,

fk(w) =
r

∑
i=0

wk+i

(
k + r
r− i

)
∀1 6 k 6 n− r,

fk(w) = wk ∀n− r < k 6 n.

From (7), any feasible w should satisfy

fk(w) > 1 k = 0,
fk(w) > 1 ∀1 6 k 6 n− r,
fk(w) > 0 ∀n− r < k 6 n;

And, w = w∗ gives us equalities in all of them. We are re-
quired to show w∗ also minimizes f (w), where

f (w) =
n

∑
i=0

wi

(
n
i

)
.

In order to prove the optimality, we show f (w) can be
written as

f (w) = y0 f0(w) + y1 f1(w) + · · ·+ yn fn(w),

where yi’s are some non-negative constants. Hence, for any
transversal weight w we have

f (w) > y0 f0(w∗) + y1 f1(w∗) + · · ·+ yn fn(w∗)
= y0 + y1 + · · ·+ yn−r = f (w∗).

We first show the choice of y is unique. Then the prob-
lem reduces to show the non-negativity of y. Note that the
cost functions fi(w) are inner products of w with some non-
negative vectors mi, i.e. fi(w) =< mi , w >, where

mi j =


1, if i = j = 0
1, if i = j, and n− r < i 6 n
(i+r

j ), if 1 6 i 6 n− r, and i 6 j 6 i + r

0, otherwise.

Now, if we form the (n + 1)× (n + 1) matrix M with el-
ements {mi j}, the problem of finding y will be equivalent to
solving MTy = c, where c = ((n

0), (
n
1), · · · , (n

n)). M is an
upper triangular matrix with non-zero elements on the main
diagonal, and hence M is non-singular and the solution is
unique. Since M is upper triangular, MT y = c gives us the
following recursions on yi’s:

y0 = 0,

yi =
1

(r+i
i )

(

(
n
i

)
−

i−1

∑
j=max{i−r,1}

(
r + j

i

)
y j) (19)

∀i : 1 6 i 6 n− r,

and

yi =

(
n
i

)
−

n−r

∑
j=max{i−r,1}

(
r + j

i

)
y j.

∀i : n− r < i 6 n.

Lemma 25 gives an explicit formula for yk when 0 6 k 6
n− r, which again uses the sequence Di defined in (10). We
put the proof at the end.

Lemma 25. If y is the solution to MTy = c, then

y0 = 1,

yk =
r!

(k + r)!

k

∑
m=1

n!
(n−m)!

Dk−m+r−1 ∀1 6 k 6 n− r.

Let us benefit from a simple change of variables to get

zk := yn−k
(n− k + r)!

r!n!
=

n−k

∑
m=1

Dn−k−m+r−1
(n−m)!

=
n−k−1

∑
m=0

Dm+r−1

(m + k)!
=

1
k!

+
n−k−1

∑
m=1

Dm+r−1

(m + k)!
,

which is proven to be positive if k > 4r− 1 by using the same
argument as w∗k > 0 when k > 3r− 1 in (11). Also, we can
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verify zk > 0 for the values of r 6 k 6 4r − 2 by finding
some numbers n′k such that

n′k

∑
m=k

Dm+r−k−1
m!

>
1

(2r)k (e
2r −

nk

∑
m=0

(2r)m

m!
),

and we get zk > 0 for all n > nk because

zk =
n−1

∑
m=k

Dm+r−k−1
m!

=
nk

∑
m=k

Dm+r−k−1
m!

+
n−1

∑
m=nk+1

Dm+r−k−1
m!

>
nk

∑
m=k

Dm+r−k−1
m!

−
n−1

∑
m=nk+1

(2r)m−k

m!

>
nk

∑
m=k

Dm+r−k−1
m!

− 1
(2r)k

∞
∑

m=nk+1

(2r)m

m!

=
nk

∑
m=k

Dm+r−k−1
m!

−
e2r − ∑

nk
m=0

(2r)m

m!
(2r)k > 0.

Finally, we check the values of zk for the finite set of k <
4r− 1 and n 6 n′k.

In order to show yk > 0 for k > n − r, we rewrite the
expression for yk when k > n− r as

yk =

(
n
k

)
−

n−r

∑
j=max{k−r,1}

(
r + j

k

)
y j =(

n
k

)
− yn−r

(
n
k

)
− yn−r−1

(
n−1

k

)
− · · · −yn−r−p

(
n− p

k

)
,

where n− r− p = max{k− r, 1}. So, yk > 0 is equivalent
to

yn−r 6

1−
(n−1

k )

(n
k)

yn−r−1 −
(n−2

k )

(n
k)

yn−r−2 − · · · −
(n−p

k )

(n
k)

yn−r−p.

By assuming yi > 0 for all i 6 n− r and the recursive for-
mula for yk’s, we have

yn−r=1−
(n−1

n−t)

( n
n−r)

yn−r−1−
(n−2

n−r)

( n
n−r)

yn−r−2 − · · ·−
(n−q

n−r)

( n
n−r)

yn−r−q

61−
(n−1

n−t)

( n
n−r)

yn−r−1−
(n−2

n−r)

( n
n−r)

yn−r−2 − · · ·−
(n−p

n−r)

( n
n−r)

yn−r−p,

where n− r− q = max{n− 2r, 1} 6 max{k− r, 1} = n−
r− p. Now, it suffices to show

(n−`
k )

(n
k)

6
(n−`

n−r)

( n
n−r)

⇐⇒ (n− k)!
(n− `− k)!

6
r!

(r− `)!

⇐⇒(n−k)(n−k−1) · · · (n−k−`) 6 r(r−1) · · · (r−`),

which always holds since n− k < r. In short, for any fixed
radius, one can verify the optimality in a very same fashion as
feasibility by just proving zk > 0 for all r 6 k 6 4r− 2 and
the non-negativity of the remaining yk’s follows immediately.
Doing so, we proved the optimality of our transversal weight
assignment for all r 6 20.

Proof of Lemma 25: We define sequences {y j
i (n)} for

1 6 j 6 n− r as

y j
i (n) = 0, 1 6 i < j,

y j
i (n) =

(
n
j

)
/

(
r + j

j

)
=

n!r!
(r + j)!(n− j)!

, i = j,

y j
i (n) = −

i−1

∑
`=max{i−r,1}

(r+`
i )

(r+i
i )

y j
`(n) j < i 6 n− r;

And, define y′i(n) as y′i(n) = ∑
n−r
j=1 y j

i (n). It is easy to see

y′i(n) =
1

(r+i
i )

(

(
n
i

)
−

i−1

∑
`=max{i−r,1}

(
r + `

i

)
y′j(n))

∀i : 1 6 i 6 n− r.

So, y′i satisfies the same recursive relation as (19) and hence
it is nothing but yi. On the other hand, using the change of
variables δ

j
i (n) = y j

i (n)(r + i)! (n− j)!
n!r! gives us

δ
j
i (n) = 0, 1 6 i < j,

δ
j
i (n) = 1, i = j,

δ
j
i (n)
r!

+
δ

j
i−1(n)
(r− 1)!

+ · · ·+
δ

j
i−r(n)

0!
= 0, j < i 6 n− r.

So, δ j
i (n) is nothing but Di− j+r−1 defined in (10). Substitut-

ing this value in the formula for y′ gives

yi =
n−r

∑
j=1

y j
i (n) =

n−r

∑
j=1

δ
j
i (n)

n!r!
(r + i)!(n− j)!

=
r!

(r + i)!

n−r

∑
j=1

n!
(n− j)!

Di− j+r−1

=
r!

(r + i)!

i

∑
j=1

n!
(n− j)!

Di− j+r−1.

APPENDIX B
OPTIMAL TRANSVERSAL WEIGHT FOR PROJECTIVE CODES

The idea behind the proof is to again write the cost func-
tion ∑

n
k=0 wk[

n
k]2 as a non-negative linear combination of some

other cost functions fk(w), where w∗ minimizes them all and
so minimizes the cost function. We strongly benefit from the
symmetry in the optimal transversal i.e. w∗k = w∗n−k and we
discuss the proof for all indices k 6 b n

2 c without loss of gen-
erality. Let us define the partial cost functions fk(w) as

fk(w) =

 wk+1 + (2k+1 − 1)wk + (2n−k−1 − 1)wk+2
if k ≡ bn/2c − 1 or bn/2c − 2 mod 4

wk otherwise,

with the only exception of

fk(w) =


wk−1 + (2n−k+1 − 1)wk + (2k−1 − 1)wk−2

if k = n
2 for n even

w0 + w1(2n − 1)
if k = 0 and b n

2 c 6≡ 1 or 2 mod 4
(20)
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The idea is to write f (w) = ∑
n
k=0 wk[

n
k]2 as ∑

n
k=0 yk fk(w),

where yk’s are some fixed non-negative real numbers. Note
that w∗ is the minimizer of all these cost functions in the fea-
sible set and non-negativity of yk’s automatically proves the
optimality of w∗ for f (w).

Given arbitrary k such that k ≡ b n
2 c + 1 mod 4 if non

of the indices {k, k− 1, k− 2, k− 3} fall into the two excep-
tional categories in (20), we have,

fk(w) = wk,
fk−1(w) = wk−1,

fk−2(w) = wk−2(2
k−1 − 1) + wk−1 + wk(2

n−k+1 − 1),

fk−3(w) = wk−3(2
k−2 − 1) + wk−2 + wk−1(2

n−k+2 − 1).

Furthermore, {wk, wk−1, wk−2, wk−3} show up only in
these fi(w)’s. So, by comparing it to the corresponding
coefficients in f (w), we must have[

n
k

]
2

= yk + yk−2(2
n−k+1 − 1)[

n
k− 1

]
2
= yk−1 + yk−2 + yk−3(2

n−k+2 − 1)[
n

k− 2

]
2
= yk−2(2

k−1 − 1) + yk−3[
n

k− 3

]
2
= yk−3(2

k−2 − 1).

By solving the system of equations above, we get

yk−3 =

[
n

k− 3

]
2
/(2k−2 − 1) > 0

yk−2 = (

[
n

k− 2

]
2
− yk−3)/(2

k−1 − 2) > 0

yk−1 =

[
n

k− 1

]
2
− yk−2 − yk−3(2

n−k+2 − 1) > 0

yk =

[
n
k

]
2
− yk−2(2

n−k+1 − 1) > 0.

Story is not much different on the edges i.e. y0 and yb n
2 c and

we can prove the non-negativity of the first half of the yk’s,
which is followed by the non-negativity of the other half due
to the symmetry. So yk’s are non-negative and w∗ is the op-
timal transversal weight.
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