
ar
X

iv
:1

20
2.

16
44

v1
 [

cs
.IT

]
8

F
eb

 2
01

2

A characterization of the number of subsequences
obtained via the deletion channel

Y. Liron
The Open University of Israel
yuvalal@gmail.com

M. Langberg
The Open University of Israel

mikel@openu.ac.il

Abstract— Motivated by the study of deletion channels, this
work presents improved bounds on the number of subsequences
obtained from a binary sting X of length n under t deletions. It is
known that the number of subsequences in this setting strongly
depends on the number ofruns in the string X; where a run
is a maximal sequence of the same character. Our improved
bounds are obtained by a structural analysis of the family ofr-run
strings X, an analysis in which we identify theextremal strings
with respect to the number of subsequences. Specifically, for
every r, we presentr-run strings with the minimum (respectively
maximum) number of subsequences under anyt deletions; and
perform an exact analysis of the number of subsequences of these
extremal strings.

I. I NTRODUCTION

Let X ∈ {0, 1}n be a binary string of lengthn, and let
t ≤ n be a parameter. In this work, we study the size of the
set Dt(X) of subsequences ofX that can be obtained from
X via t deletions. The setDt(X) and its size play a major
role in the design and analysis of communication schemes
over deletion channels, i.e., channels in which characters of
the transmitted codeword may be deleted, [3]–[7], [9].

The analysis ofDt(X) is challenging as the number of
subsequences of a stringX obtained by deletions does not
depend only on its lengthn and the numbert of deletions, but
also strongly depends on its structure. For example,Dt(0n) is
of size 1 and equals the single string0n−t, while there exist
stringsX for which Dt(X) is of sizeexp(Ω(n− t)). Clearly,
|Dt(X)| is at most2n−t (as aftert deletions we remain with
a binary string of lengthn − t).

In his work from 1966, Levenshtein [4] shows (as described
in [5]) that the number of subsequences|Dt(X)| strongly
depends on the number ofruns in the string. Here, a run is a
maximal sequence of the same character, and the number of
runs in a given string is denotedr(·). For exampler(0n) = 1
while r(0101 . . . 01) = n. Specifically, Levenshtein [4] proves
that

(

r(X)− t + 1

t

)

≤ |Dt(X)| ≤
(

r(X) + t − 1

t

)

.

Bounding |Dt(X)| is addressed by Calabi and Hartnett [1],
which show that the maximal number of subsequences is
obtained from certain stringsX, denoted cyclic stringsCn,
in which r(X) = |X|. [1] devise a recursive expression for
|Dt(Cn)|, to obtain the bound

(

r(X)− t + 1

t

)

≤ |Dt(X)| ≤ |Dt(Cn)|.

0.0 0.2 0.4 0.6 0.8 1.0
t�n0

10

20

30

40

50

60

70

log

2n-t

@HRD upper
@HRD lower
@LD upper
@LD lower

Figure 1. Previous bounds on|Dt(X)|. [L] marks the bounds proven by
Levenstein [4], and [HR] marks the bounds by Hirschberg et. al [2]. Also
plotted is the naive bound2n−t which is the possible number of binary strings
of length n − t. This graph shows an example for the casen = 120, and
r = 24. All graphs are shown on a logarithmic scale.

Relatively recently, Hirschberg and Regnier [2] revisit the
analysis of [1] and obtain an explicit upper bound together
with an improved lower bound of the form

t

∑
i=0

(

r(X)− t

i

)

≤ |Dt(X)| ≤
t

∑
i=0

(

n − t

i

)

.

Mercier et al. [8] study the setting of small values fort, and
present explicit formulas forDt(X) for t ≤ 5. However for
general values oft the problem remains open. Several of the
results above generalize also to arbitrary alphabets.

The bounds of [1], [2], [4] are depicted in Figure 1 for the
casen = 120 and r = r(X) = 24 as a function oft. The
lower bounds of both [2] and [4] depend on the number of
runsr(X); and it holds that the lower bound of [2] is superior
(i.e., larger) to that of [4]. The upper bound of [4] depends
on r(X), while that of [1], [2] does not. Thus each bound is
stronger (i.e., smaller) for certain settings of parameters r and
t. Roughly speaking, the upper bounds of [1], [2] are stronger
than those of [4] for large values ofr andt; while the opposite
is true for smallr and t.

A. Our results and proof techniques

In this work, we continue the study ofDt(X) and present
improved upper and lower bounds to those described above.
Our analysis is two fold. We start by studying the family of
stringsX for which r = r(X), and identify theextremalstrings

http://arxiv.org/abs/1202.1644v1

0.0 0.2 0.4 0.6 0.8 1.0
t�n0

20

40

60

80

100

log

Our lower

@HRD lower

@LD lower

Figure 2. Comparision of lower bounds. Our lower bound based on
unbalanced strings [Theorem VI.2], compared to the previous known bounds.
[L] marks the lower bound proven by Levenstein [4]. [HR] marks the lower
bound proven by Hirschberg et. al [2]. This graph shows an example for the
casen = 300, andr = 200. The logarithmic presentation emphasizes that we
obtain anexponentialmultiplicative improvement.

in this family with respect to the number of subsequences.
Specifically, for everyr, we identify twor-run strings, referred
to as thebalancedr-run string Br and theunbalancedr-run
string Ur such that for everyX it holds that

|Dt(U|r(X)|)| ≤ |Dt(X)| ≤ |Dt(B|r(X)|)|. (1)

Loosely speaking, the stringUr = 0101 . . . 01n−r+1 is the r-
run string in which each run is exactly of size1, except the
last run which is of sizen − t + 1, and is thus referred to as
‘unbalanced’ (in the run lengths). The balanced stringBr =
0n/r1n/r0n/r1n/r . . . 1n/r0n/r is ther-run string in which each
and every run is of equal lengthn/r.

To obtain Equation (1), we show that anyr-run string
X can be transformed into the stringUr (alternatively Br)
via a series of operations that are monotonic with respect
to the number of subsequences. The modifications we study
include abalancingoperation, in which givenX we shorten
the length of one of its runs while increasing the length of
another; aflippingoperation, in which a prefix or suffix ofX is
replaced by it complement; and aninsertionoperation in which
characters are added toX (see Figures 4(a), 4(b) and 4(c)). A
delicate combination of these (and other) operations enable us
to establish Equation (1). The modifications we study and their
analysis shed light on the properties of binary strings under
the deletion operation and may be of independent interest. We
note that for the extreme case ofr = n, our unbalanced string
Un is exactly the cyclic stringCn; thus we are consistent with
the result of [1].

We then turn to obtain analytic expressions for|Dt(Ur)|
and |Dt(Br)| of Equation (1). Our expressions are at least as
good as previous bounds in [1], [2], [4] as they are based on
specific r-run strings (Ur and Br), and for a large range of
parameters our bounds are strictly tighter. For our improved
lower bound, we devise a recursive expression for|Dt(Ur)|
and present a closed form formula for its evaluation. We then
perform an asymptotic evaluation of|Dt(Ur)| (assuming large
r). A comparison of our improved lower bound with that
previously known is depicted in Figure 2. Specifically, we
show that for values oft which are greater thanr/3 our lower

0.2 0.4 0.6 0.8 1.0
t�n

10

20

30

40

50

60

log

Our upper

@HRD upper

@LD upper

Figure 3. Comparison of upper bounds. Our upper bounds based on balanced
strings [Corollary IV.1], compared to the previous best known bounds. [L]
marks the upper bound proven by Levenstein [4]. [HR] marks the upper bound
proven by Hirschberg et. al [2]. This graph shows an example for the case
n = 120 and r = 24 as a function oft (in logarithmic scale).

bound improves on those previously known by an exponential
multiplicative factor of roughly2t−r/3.

To address our improved upper bounds, we first present
a recursive formula for the computation of|Dt(Br)|. We
then extract a closed form solution to our recursive definition
which yields an exact expression for|Dt(Br)|. For example,
a numerical comparison of|Dt(Br)| with the upper bounds
previously known is depicted in Figure 3 for the value of
n = 120 and r = 24 as a function oft. We note that the ex-
pression we obtain for|Dt(Br)| involves several summations
of certain combinatorial expressions. An asymptotic analysis
of our expression is left open in this work and is subject to
future research.

B. Structure

The remainder of the paper is organized as follows. In
section II we present the set of structural operations and
tools we use for comparing and bounding the number of
subsequences obtained via deletion. This section includesour
balancing, flipping, and insertion modifications. In Section III,
we study our first family ofbalancedstrings, and show that
(for any given number of runsr and deletionst) they have the
largest number of subsequences under deletion. In Section IV,
we analyze the number of subsequences of balanced strings
and in such obtain our upper bound. In Section V, we present
our second family ofunbalancedstrings, and prove that they
have the least number of subsequences under any number
of deletionst. We prove our lower bound by analyzing the
number of subsequences of unbalanced strings in Section VI.
Finally, in Section VII, we study the connection between
subsequences and the closely related notion ofdeletion patters.
Using this connection, we show exponential multiplicative
gaps between our improved upper bound and those previously
presented.

II. TOOLS FOR ANALYZING THE NUMBER OF

SUBSEQUENCES

The number of subsequences of a string obtained by dele-
tions highly depends on the string’s structure. In order to
determine the number of subsequences for a given number
of deletions, it is not enough to know the length of the

string, and not even the number of the string’s runs. Inspired
by previous works, we looked for tools that will enable us
to analyze the number of subsequences. In this section we
present these tools. In subsection II-A we present a method
of counting the number of subsequences by partitioning the
set of subsequences into subsets characterized by their prefix,
thus forming a recursive relation. In subsection II-B we
present basic operations on strings that always increase (or
decrease) the number of subsequences under deletion. Such
basic operations allow comparison between the number of
subsequences of strings, and are very useful for finding bounds
on the number of subsequences.

S(x1, . . . , xr) denotes a binary string withr runs, in which
the ith run is of lengthxi and the first symbol is0, E.g.
S(1, 2, 3) = 011000. We will use the notationn × a to
indicaten sequential runs of lengtha, E.g. S(2, 3 × 1, 2) =
S(2, 1, 1, 1, 2) = 0010100. Dt(x1, . . . , xr) will be used as
short form for Dt(S(x1, . . . , xr)). Cn denotes the binary
cyclic stringS(n × 1). We assume the following conventions:
∑

k
i=j ai = 0 when j > k. (n

i) = 0 when i < 0 or i > n.
|Dt(X) = 1| for t = |X| and t = 0, and |Dt(X) = 0| for
t > |X|.

A. Partitioning the set of subsequences

We found the following lemma (from [2]) very useful. We
restate it here and derive a corollary for binary strings.

Lemma II.1. [2] For anyΣ-stringX:

(i) Dt(X) = ∑a∈Σ D
(a)
t (X), where for a setG of strings

G(a) denotes all members ofG starting witha.
(ii) D

(a)
t (X) = aDt+1− f (a)(X[f (a) + 1 : n]), where f (a)

denotes the index of the first appearance ofa in X, and
X[i : j] denotes the substringxi . . . xj of X.

We derive the following lemma for binary strings.

Lemma II.2.
(i) For any binary stringX, s.t. X = σ

i
ǫ

jY for some
i, j > 0 andY ∈ {σ, ǫ}∗, |Dt(X)| = |Dt(σi−1

ǫ
jY)|+

|Dt−i(ǫ
j−1Y)| for anyt < |X|.

(ii) Symmetrically, |Dt(Yǫ
j
σ

i)| = |Dt(Yǫ
j
σ

i−1)| +
|Dt−i(Yǫ

j−1)|.
Proof: (i) Following the notation of Lemma II.1,

f (σ) = 1 and f (ǫ) = i + 1. Using Lemma II.1(ii),D(σ)
t =

σDt+1−1(X[2 : n]) and D
(ǫ)
t = ǫDt+1−(i+1)(X[i + 2 : n]).

Applying Lemma II.1(i) we get the result.
(ii) The proof for the symmetric case is identical.
Applying Lemma II.2 repeatedly, we get the following

lemma.

Lemma II.3. For any binary stringS(x1, . . . , xr), s.t. n =
∑

r
i=1 xi:

(i) |Dt(x1, . . . , xr)| = |Dt(x2, . . . , xr)|+ ∑
x1
i=1 |Dt−i(x2 −

1, x3, . . . , xr)|+ 1|t>n−x1.
(ii) Symmetrically,|Dt(x1, . . . , xr)| = |Dt(x1, . . . , xr−1)|+

∑
xr
i=1 |Dt−i(x1, . . . , xr−2, xr−1 − 1)|+ 1|t>n−xr.

(a) Insertion (b) Flip

(c) Balance

Figure 4. Basic operations on strings. In all diagrams the lower string has
more subsequences under any number of deletions.

Proof: (i) We denote n = ∑
r
i=1 xi. Using

Lemma II.2 once, we get |Dt(x1, . . . , xr)| =
|Dt(x1 − 1, x2, . . . , xr)| + |Dt−x1(x2 − 1, x3, . . . , xr)|.
For x1 > 1 we can use Lemma II.2 again and get
|Dt(x1, . . . , xr)| = |Dt(x1 − 2, x2, . . . , xr)|+ |Dt−x1+1(x2 −
1, x3, . . . , xr)| + |Dt−x1(x2 − 1, x3, . . . , xr)|. Likewise,
for j ≤ min(x1, n − t), applying Lemma II.2 j times
yields |Dt(x1, . . . , xr)| = |Dt(x1 − j, x2, . . . , xr)| +
∑

x1
i=x1−j+1 |Dt−i(x2 − 1, x3, . . . , xr)|. When t ≤ n − x1, it

follows that min(x1, n − t) = x1, and so we can expand
using Lemma II.2 exactlyx1 times to get|Dt(x1, . . . , xr)| =
|Dt(x2, . . . , xr)| + ∑

x1
i=1 |Dt−i(x2 − 1, x3, . . . , xr)|.

When t > n − x1 after expandingn − t times, we
get the expression|Dt(x1, . . . , xr)| = |Dt(x1 − (n −
t), x2, . . . , xr)| + ∑

x1

i=x1−(n−t)+1
|Dt−i(x2 − 1, x3, . . . , xr)|.

As |S(x1 − (n − t), x2, . . . , xr)| = t, and noticing that for
t > |X|, |Dt(X)| = 0, we get the lemma’s claim.

(ii) The proof for the symmetric case is identical.

B. Basic operations on strings

In the following sections we will present families of strings,
for which the number of subsequences can be explicitly
calculated. In order to use these families of strings to devise
bounds on the number of subsequences for general strings, we
use basic operations on strings, which allows us to transform
one string into another, while monotonically increasing (or
decreasing) the number of their subsequences. In this section
we list such basic operations.

1) Insertion operation [Figure4(a)]: Hirschberg et al. [2]
showed that inserting a symbol anywhere in the middle of a
string always increases the number of subsequences.

Lemma II.4.[Insertion increases the number of subsequences]
[2] For any Σ-stringsU, V and anyσ ∈ Σ, |Dt(UV)| ≤
|Dt(UσV)|.

2) Deletion chain rule:

Lemma II.5. For any Σ-string U, and anyV ∈ Dt(U),
Dt′(V) ⊆ Dt+t′(U).

Proof: V was obtained fromU by deletingt symbols.
Any string in Dt′(V) is obtained by deletingt′ symbols from
V. The same string can be created by removing thet + t′

symbols directly fromU, and thus it belongs also toDt+t′(U)

3) Flipping operation: [Figure 4(b)]

Lemma II.6.[Flipping increases number of subsequences] For
any binary stringsU, V and for any bitσ, |Dt(UσσV)| ≤
|Dt(UσσV)|, wherea denotes the stringa in which 0’s are
flipped to 1’s, and vice versa.

Proof: By induction on|U|. When |U| = 0 the claim
is |Dt(σσV)| ≤ |Dt(σσV)|. Let V = σ

i
ǫ

jX for maximali,j.
When j = 0 the claim is trivial (σσV is a constant string, with
1 possible subsequence), so we assumej > 0. Using Lemma
II.2 we get |Dt(σσV)| = |Dt(σV)| + |Dt−2−i(ǫ

j−1X)|.
We compare that to|Dt(σǫV) = |Dt(ǫV)| + |Dt−1(V)|.
|Dt(σV)| = |Dt(ǫV)| because of symmetry, and since
ǫ

j−1X ⊆ Di+1(V) we can use Lemma II.5 and get
|Dt−2−i(ǫ

j−1X)| ≤ |Dt−1(V)|, and thus we prove the base
of the induction.

Now for the induction step, assume the claim is true for|U| <
n and we look at|U| = n. We regard the different cases of
the structure ofU.

Case 1: U = σ
i
ǫ

jX for some i, j > 0. We
use Lemma II.2 and get|Dt(σi

ǫ
jXσσV)| =

|Dt(σi−1
ǫ

jXσσV)| + |Dt−i(ǫ
j−1XσσV)|. We com-

pare that to|Dt(σi
ǫ

jXσǫV)| = |Dt(σi−1
ǫ

jXσǫV)|+
|Dt−i(ǫ

j−1XσǫV)|. On each of the arguments we can
use our induction claim for|U| − 1 and |U| − i − 1.

Case 2: U = ǫ
i
σ

jX for somei, j > 0 we use the same
method.

Case 3: U = ǫ
i for some i > 0. |Dt(ǫi

σσV)| =
|Dt(ǫi−1

σσV)|+ |Dt−i(σV)|. For the flipped string
we get|Dt(ǫi

σǫV)| = |Dt(ǫi−1
σǫV)|+ |Dt−i(ǫV)|.

In this case, the second argument in both summations
is equal due to symmetry, and we can compare the first
arguments using the induction hypothesis for|U| − 1.

Case 4: U = σ
i for some i > 0. Let V = σ

jX
for maximal j. In case |X| = 0 we get the trivial
case of a uniform string again. For|X| > 0 let
X = ǫY, and then|Dt(UσσV)| = |Dt(σi+2V)| =
|Dt(σi+1V)|+ |Dt−i−j−2(Y)|. Again we compare that
to |Dt(σi+1

ǫV)| = |Dt(σi
ǫV)|+ |Dt−i−1(V)|, using

the induction claim for the first argument, and Lemma
II.5 together with symmetry for the second.

Corollary II.1. [Alternative proof for the maximality ofCn]
Given any stringX of length n, it can be transformed into
the stringCn by a series of flipping operation (as defined in
Lemma II.6). Each such flip can only increase the number
of subsequences, and thus we get a proof for the fact that
Dt(X) ≤ Dt(Cn).

4) Balancing operation:[Figure 4(c)] Informally, we refer
to a string asbalanced, if there is a low variability between
the length of the string’s runs. A balancing operation is one
that decreases that variability, E.g. shortening a long runand
increasing the length of a short run. The following lemma
states terms in which balancing a string increases the number
of its subsequences, and it is used later to prove maximality
of string families.

Lemma II.7.[Balancing increases the number of subse-
quences] ForX = S(x1, . . . , xr), and for anyt > 0, 1 ≤
i < j ≤ r s.t. xi − xj > 1, and{xi+1, . . . , xj−1} is sym-
metric (i.e.x2 = xr−1, x3 = xr−2,. . .), |Dt(x1, . . . , xr)| ≤
|Dt(x1, . . . , xi−1, xi − 1, xi+1, . . . , xj−1, xj + 1, xj+1, . . . , xr)|.
In other words, decreasing the i-th run by 1, and increasing the
j-th run by 1 can only increase the number of subsequences.

In order to prove Lemma II.7 we will need the following
lemma that characterizes balancing operations near the edges
of the string.

Lemma II.8. Assume{x2, . . . , xr−1} is symmetric. It follows
that:
(i) For X = S(x1, . . . , xr) s.t. x1 > xr, |Dt(x1, . . . xr)| ≤

|Dt(x1 − 1, x2, . . . , xr−1, xr + 1)|.
(ii) For X = S(x1, . . . , xr, z) s.t. x1 > xr and z >

0, |Dt(x1, . . . xr, z)| ≤ |Dt(x1 − 1, x2, . . . , xr−1, xr +
1, z)|.

(iii) For X = S(y, x1, . . . , xr) s.t. x1 − xr > 1 andy > 0,
|Dt(y, x1, . . . xr)| ≤ |Dt(y, x1 − 1, x2, . . . , xr−1, xr +
1)|.

(iv) For X = S(y, x1, . . . , xr, z) s.t.x1 − xr > 1 andy, z > 0,
|Dt(y, x1, . . . xr, z)| ≤ |Dt(y, x1 − 1, x2, . . . , xr−1, xr +
1, z)|.
Proof:

(i) When r = 2 the claim is reduced toDt(x1, x2) ≤
Dt(x1 − 1, x2 + 1) for x1 > x2. This is easily
proved becauseDt(x1, x2) = min(x1, x2, t) + 1. For
r > 2 we use Lemma II.2 to get|Dt(x1, . . . xr)| =
|Dt(x1 − 1, x2, . . . , xr)| + |Dt−x1(x2 − 1, x3, . . . , xr)|.
Using Lemma II.2 and the symmetry of{x2, . . . , xr−1}
we get |Dt(x1 − 1, x2, . . . , xr−1, xr + 1)| = |Dt(xr +
1, x2, . . . , xr−1, x1 − 1)| = |Dt(xr, x2, . . . , xr−1, x1 −
1)|+ |Dt−xr−1(x2 − 1, x3, . . . , xr−1, x1 − 1)|. We com-
pare the two expressions. Because of the symmetry
|Dt(x1 − 1, x2, . . . xr)| = |Dt(xr, x2, . . . , xr−1, x1 −
1)|, and becausex1 > xr it is true that S(x2 −
1, x3, . . . , xr) ∈ Dx1−xr−1(x2 − 1, x3, . . . , x1 − 1) and
thus using Lemma II.5|Dt−x1(x2 − 1, x3, . . . , xr)| ≤
|Dt−xr−1(x2 − 1, x3, . . . , x1 − 1)|.

(ii) Applying Lemma II.3(ii) we get |Dt(x1, . . . xr, z)| =
|Dt(x1, . . . xr)| + ∑

z
i=1 |Dt−i(x1 . . . xr−1, xr − 1)| +

1|t>n−z, and |Dt(x1 − 1, x2, . . . , xr−1, xr + 1, z)| =
|Dt(x1 − 1, x2, . . . xr−1, xr + 1)| + ∑

z
i=1 |Dt−i(x1 −

1, x2, . . . xr)|+ 1|t>n−z. The two expressions are com-
parable argument by argument using (i) above, noticing
that if x1 > xr then definitelyx1 > xr − 1.

(iii) Applying Lemma II.3 we get |Dt(y, x1, . . . xr)| =
|Dt(x1, . . . xr)| + ∑

y
i=1 |Dt−i(x1 − 1, x2, . . . xr)| +

1|t>n−y, and |Dt(y, x1 − 1, x2, . . . , xr−1, xr + 1)| =
|Dt(x1 − 1, x2, . . . xr−1, xr + 1)| + ∑

y
i=1 |Dt−i(x1 −

2, x2, . . . xr−1, xr + 1)|+ 1|t>n−y. The two expressions
are comparable argument by argument using (i) above
and noticing that ifx1 − xr > 1 then definitelyx1 > xr

and x1 − 1 > xr.
(iv) We use Lemma II.3 to get|Dt(y, x1, . . . xr, z)| =

|Dt(x1, . . . xr, z)|+ ∑
y
i=1 |Dt−i(x1 − 1, x2, . . . xr, z)|+

1|t>n−y and |Dt(y, x1 − 1, x2, . . . , xr−1, xr + 1, z)| =
|Dt(x1 − 1, x2, . . . , xr−1, xr + 1, z)|+ ∑

y
i=1 |Dt−i(x1 −

2, x2, . . . , xr−1, xr + 1, z)| + 1|t>n−y. The two expres-
sions are comparable argument by argument using (ii)
above, as the conditionx1 − xr > 1 guarantees that
x1 − 1 > xr.

Now we can prove Lemma II.7 [Balancing increases the
number of subsequences]:

Proof: We will prove by induction on the number of
runs inX outside of the sequenceS(xi, . . . , xj), explicitly on
(i − 1) + (r − j) = r + i − j − 1. We will denote these runs
outer runs. When we have only one outer run, the lemma is
reduced to Lemma II.8(ii) or II.8(iii). Now we assume that
there are at least two outer runs. If the outer runs are one on
each side (i = 2 and j = r − 1) this is the case of Lemma
II.8(iv). Otherwise, at least on one of the sides there are two
or more runs (i > 2 or j < r − 1). We assume w.l.o.g that
i > 2, and then we can use Lemma II.3 and the induction
hypothesis on strings with the number of outer runs decreased
by 1.

III. B ALANCED STRINGS

In this section we define the family of strings named
Balanced strings. We call a string balanced, if all the runs
of symbols in the string are of equal length. Formally, we
denote byBr,k the binary string of lengthrk, with r runs,
each of lengthk. E.g. B3,4 = S(4, 4, 4) = 000011110000.
We will prove that of all strings with lengthrk and r runs,
the balanced string has the maximal number of subsequences,
under any number of deletions.

Theorem III.1. Let X = S(x1, . . . , xr), n = ∑
r
i=1 xi, andk =

n/r. If k is an integer, then|Dt(X)| ≤ |Dt(Br,k)|.
Proof: The main idea of the proof is that any such

string X can be transformed intoBr,k by repeatably applying
the Balancing Lemma II.7. Each such step can only increase
the number of subsequences, so if such a series of balance
operations can be found, the theorem is proved. We will
construct a series of strings,X0, . . . , Xm, such thatX0 = X,
Xm = Br,k and for any0 ≤ i < m, |Dt(Xi)| ≤ |Dt(Xi+1)|.
Given a stringXi 6= Br,k, we denoteXi = S(x

(i)
1 , . . . , x

(i)
r).

We choose a pair(p, q) s.t |x(i)
p − x

(i)
q | > 1, p < q and

q − p is minimal. Such a pair exists, because at least one

TABLE I

EXAMPLE OF A BALANCING PROCESS AS DEFINED IN THE PROOF OF

THEOREM III.1

i Xi runs ∑ x2
i D6(Xi)

0 000111111100100 3,7,2,1,2 67 43
1 000111111000100 3,6,3,1,2 59 56
2 000111110000100 3,5,4,1,2 55 63
3 000111110001100 3,5,3,2,2 51 85
4 000111100001100 3,4,4,2,2 49 92
5 000111100011100 3,4,3,3,2 47 102
6 000111000111000 3,3,3,3,3 45 105

run is of length different fromk (w.l.o.g, bigger thank), and
thus there is at least one other run with length smaller than
k. Assume w.l.o.g thatx(i)

p > x
(i)
q , and then we can conclude

that x
(i)
p > x

(i)
p+1 = x

(i)
p+2 = · · · = x

(i)
q−1 > x

(i)
q , otherwise we

get a contradiction to the minimality of(p, q). We will define
Xi+1 to be the string achieved fromXi by decreasing thepth

run by 1, and increasing theqth run by 1. Each pair of strings
Xi, Xi + 1 admits to the conditions of Lemma II.7 and thus
|Dt(Xi)| ≤ |Dt(Xi+1)|. This process is finite, because the
value of∑r

i=0 x2
i is a non negative integer that must decreases

at every step. An example of the balancing process we use is
displayed in Table I.

We derive the following corollary for the case wheren is
not divisible byr.

Corollary III.1. Let X = S(x1, . . . , xr), n = ∑
r
i=1 xi, and

k̄ = n/r. Dt(X) ≤ |Dt(Br,⌈k̄⌉)|.
Proof: For integral k̄ this is the case of Theorem

III.1. Otherwise, we denoteα = r⌈k̄⌉ − n, and let Y =
|Dt(x1, . . . , xr−1, xr + α)|. Using Lemma II.4 |Dt(X)| ≤
|Dt(Y)|, and since|Y| = r⌈k̄⌉ andr(Y) = r, using Theorem
III.1 |Dt(Y) ≤ |Dt(Br,⌈k̄⌉)|.

IV. OUR UPPER BOUND

In this section we present an upper bound for the number
of subsequences of a string obtained by deletions. We develop
a recursive expression for the exact number of subsequences
of a balanced string. We then find an explicit form for this
expression, and use it to obtain a tight upper bound on the
number of subsequences of a general string.

A. Recursive expression

Definition IV.1. For allr, k , Let B′
r,k be the string obtained from

Br,k by removing the first symbol. E.g.B′
3,5 = S(4, 5, 5) =

00001111100000.

Definition IV.2. Let b(r, k, t) = |Dt(Br,k)| and b′(r, k, t) =
|Dt(B′

r,k)|.
Lemma IV.1. For all r, k, t, |Dt(Br,k)| = |Dt(B′

r,k)| +
|Dt−k(B′

r−1,k)|
Proof: This is derived from Lemma II.2

When k is known from the context, we will use the short
notationsBr and B′

r for Br,k and B′
r,k repectively. Likewise

b(r, t) andb′(r, t) denoteb(r, k, t) andb′(r, k, t) respectively.

Lemma IV.2.[Recursive expression forb′]

b′(r, t) =

0 if t < 0 or t ≥ kr

1 + ∑
k−1
i=1 b′(r − 1, t − i) if k(r − 1) ≤ t < kr

b′(r − 2, t − k)+

k−1

∑
i=0

b′(r − 1, t − i)
otherwise

Proof: Using Lemma II.3 we getb′(r, t) = b(r − 1, t) +
∑

k−1
i=1 b′(r − 1, t − i) + 1|t>k(r−1). We check the following

cases:
(i) t < k(r − 1): Using Lemma II.2, b(r − 1, t) =

b′(r − 1, t) + b′(r − 2, t − k), and we getb′(r, t) =
b′(r − 2, t − k) + ∑

k−1
i=0 b′(r − 1, t − i).

(ii) t = k(r − 1): In this caset = |Br−1| and b(r −
1, t) = 1. We getb′(r, t) = 1 + ∑

k−1
i=1 b′(r − 1, t − i).

(iii) t > k(r − 1): Here t > |Br−1| andb(r − 1, t) = 0.
We getb′(r, t) = ∑

k−1
i=1 b′(r − 1, t − i) + 1.

Rearranging the cases we get the claim of the lemma.

B. Solving the recursion

When calculatingb′(r, t) we expand the recursive expres-
sion iteratively, until allb′ expressions reach their boundary
condition, and get zero value. The only positive contribution
in this sum is from the 1 in the second case (1+∑

k−1
i=1 b′(r −

1, t − i)). By counting how many times this value is added,
we can get the explicit value ofb′(r, t). The 1 values are
added exactly every time the second case is used, i.e. when
expanding the value ofb′(r̃, t̃) for r̃, t̃ that fulfill the condition
k(r̃ − 1) ≤ t̃ < kr̃. When expandingb′(r, t) these are exactly
the integral solutions for̃r = ⌊ t̃

k ⌋+ 1, 0 ≤ t̃ ≤ t, which are
simply the t + 1 pairs (ri, ti) = (⌊ i

k + 1⌋, i) for 0 ≤ i ≤ t.
We will count the number of times thatb′(r̃, t̃) appears in
the complete expansion ofb′(r, t). Based on the recursion
form in Lemma IV.2, the expressionb′(r̃, t̃) can only appear
in the single expansion of one of the following expressions:
b′(r̃ + 2, t̃ + k), or b′(r̃ + 1, t̃ + i) when 0 ≤ i ≤ k − 1.
Counting the number of those paths is equivalent to calculating
the number of possible sets of ordered tuples{(rj, tj)} selected
from the set{(2, k), (1, 0), (1, 1), . . . , (1, k − 1)} s.t. ∑ rj =
r − r̃ and∑ tj = t − t̃.

Definition IV.3. We denote as Sk the set
{(2, k), (1, 0), (1, 1), . . . , (1, k − 1)}, and as #P(∆r, ∆t)
the number of possible sets of ordered tuples{(rj, tj)} selected
from the setSk s.t.∑ rj = ∆r and∑ tj = ∆t. #Pj(∆r, ∆t) will
denote the number of such sets using the tuple(2, k) exactly j
times.

Lemma IV.3.

#P0(∆r, ∆t) =
⌊ ∆t

k ⌋

∑
i=0

(−1)i

(

∆r

i

)((

∆r

∆t − ik

))

Proof: In the case of#P0, the problem is reduced to
finding the number of ordered partitions oft into r parts,

each of size no larger thank − 1. The following development
follows the technique used is [8] in the context of counting
deletion patterns, similar results are calculated in [10]. This
partitioning problem can be restated as counting the different
solutions{yi} to the equations∑r

i=0 yi = t, ∀i : yi < k.
The number of solutions ignoring the constraintsyi < k
is equivalent to the number of r-partitions oft, which is
((r

t

))

= (r+t−1
t). The number of solutions that violate the

constrainty1 < k is
((r

t−k

))

. Subtracting this for eachyi, we
get

((r
t

))

− r
((r

t−k

))

. Now we subtracted too much, because
solutions that violate two constraints are subtracted twice. The
number of solutions that violate the two constraintsy1 < k and
y2 < k is

((r
t−2k

))

, and there are(r
2) such pairs. Adding these

cases back to the count we get
((r

t

))

− r
((r

t−k

))

+ (r
2)
((r

t−2k

))

Now again we have to account for the solutions that violate 3
constraints, that were added too many times, and so on. Putting

it all together we get#P0(r, t) = ∑
⌊ t

k ⌋
i=0(−1)i(r

i)
((r

t−ik

))

.

Lemma IV.4.

#P(∆r, ∆t) =
⌊ ∆t

k ⌋

∑
j=0

(

∆r − j

j

)

#P0(∆r − 2j, ∆t − jk)

Proof: First we calculate#Pj(∆r, ∆t). If we first select
j times the tuple(2, k),we are left with#P0(∆r − 2j, ∆t − jk)
ways to select the remaining tuples. We than have(∆r−j

j)

ways to insert the(2, k) tuples inside the rest, and thus
#Pj(∆r, ∆t) = (∆r−j

j)#P0(∆r − 2j, ∆t − jk). Summing on

all possible j-s, #P(∆r, ∆t) = ∑
⌊ ∆t

k ⌋
j=0 #Pj(∆r, ∆t) and the

lemma’s claim follows.

Lemma IV.5.

b′(r, t) =
t

∑
i=0

#P(r − ⌊ i

k
⌋ − 1, t − i)

Proof: As mentioned in the discussion above, when
expandingb′(r, t), Exactly t + 1 pairs (r̃, k̃) are reached that
fulfill the conditions k(r̃ − 1) ≤ t̃ < kr̃, 0 ≤ t̃ ≤ t and
thus contribute to the sum. These are exactly thet + 1 pairs
(ri, ti) = (⌊ i

k + 1⌋, i) for 0 ≤ i ≤ t, and each one of them is
reached#P(r − ri, t − ti) times. Summing all together we get
b′(r, t) = ∑

t
i=0 #P(r − ⌊ i

k + 1⌋, t − i) which is equal to the
lemma’s claim.

Corollary IV.1. The combined results of LemmasIV.1, IV.5,
IV.4 and IV.3 give an explicit expression for|Dt(Br,k)|. We
restate the results here:

b(r, t) = b′(r, t) + b′(r − 1, t − k)
b′(r, t) = ∑

t
i=0 #P(r − ⌊ i

k ⌋ − 1, t − i)

#P(∆r, ∆t) = ∑
⌊ ∆t

k ⌋
j=0 (∆r−j

j)#P0(∆r − 2j, ∆t − jk)

#P0(∆r, ∆t) = ∑
⌊ ∆t

k ⌋
i=0 (−1)i(∆r

i)
((

∆r
∆t−ik

))

Using balanced strings we have achieved upper bounds for
the number of subsequences of general strings. Our bound of
Corollary IV.1 (in comparison to previous bounds) is depicted
in Figure 3.

V. UNBALANCED STRINGS

In the section we define a second family of strings, named
unbalanced strings. We call a string unbalanced, if all of
the runs of symbols in the string are of length 1, except
for one run. LetU(i)

n,r be a binary string of lengthn with r
runs, in which all runs are of length 1, except for theith

run which is of lengthn − r + 1. We notice that due to
symmetry|Dt(U

(1)
n,r)| = |Dt(U

(r)
n,r)|, and defineu(n, r, t) =

|Dt(U
(1)
n,r)| = |Dt(U

(r)
n,r)|. We will show that these extreme

cases have the least number of subsequences among the
unbalanced strings, and conclude that they have the least
amount of subsequences among all strings.

Theorem V.1. [Unbalanced strings have the least subse-
quences] ForX = S(x1, . . . , xr), n = ∑

r
i=1 xi, and any

1 ≤ t ≤ n, |Dt(X)| ≥ u(n, r, t).

Proof: First we will prove that there existsj s.t.

|Dt(X)| ≥ |Dt(U
(j)
n,r)|, for all t. We notice that the balancing

operation of Lemma II.7 can be used in the other direction,
as an unbalancing operation. We will transform the string
X into a stringU

(j)
n,r by repeatably applying the unbalancing

operation. each such step can only decrease the number of
subsequences, so by constructing a series of such operations,
we will prove thatDt(X) ≥ |Dt(U

(j)
n,r)|. Let j be the index of

a maximal run inX. We will construct a series of strings,
X0, . . . , Xm, such thatX0 = X, Xm = U

(j)
n,r and for any

0 ≤ i < m, |Dt(Xi)| ≥ |Dt(Xi+1)|. For any i < m, we

denoteXi = S(x
(i)
1 , . . . , x

(i)
r). We choose an indexp 6= j s.t.

x
(i)
p > 1 and all runs between thejth run and thepth run are

all of length 1. Such an index exists, otherwiseXi is already an
unbalanced string. We defineXi+1 to be the string obtained
from Xi by increasing thejth run by 1, and decreasing the
pth run by 1. Sincexj was the maximal run inX and each
operation only made it bigger while all other runs could only
shorten, we have thatx

(i)
j ≥ x

(i)
p . The runs between thejth run

and thepth run are all of length 1, and so trivially symmetric,
and so the conditions of the reverse Lemma II.7 holds, and
|Dt(Xi)| ≥ |Dt(Xi+1)|.

To complete the proof we will prove that for anyj,

|Dt(U
(j)
n,r)| ≥ u(n, r, t). For j = 1, u(n, r, t) = |Dt(U

(1)
n,r)| by

definition. Forj ≥ 2 we will prove by induction onj. For j =

2, |Dt(U
(2)
n,r)| = |Dt(1, n− r+ 1, (n− 2)× 1)|. using Lemma

II.2 we get |Dt(U
(2)
n,r)| = |Dt(n − r + 1, (n − 2) × 1)| +

|Dt−1(n − r, (n − 2)× 1)|. We compare this tou(n, r, t) =
|Dt((n − 1) × 1, n − r + 1)| = |Dt((n − 2) × 1, n − r +
1)|+ |Dt((n− 3)× 1, n− r+ 1)|. Using the flipping Lemma
II.6 on the second addend and symmetry on both, we get
u(n, r, t) ≤ |Dt(n − r + 1, (n − 2)× 1)|+ |Dt(n − r, (n −
2)× 1)| = |Dt(U

(2)
n,r)|. For the induction step, we assume that

the claim is true for2, . . . , j − 1 and prove it forj. for j > 2,

using Lemma II.2 we get|Dt(U
(j)
n,r)| = |Dt(U

(j−1)
n−1,r−1)| +

|Dt−1(U
(j−2)
n−2,r−2)|. Using the induction assumption on both

TABLE II

EXAMPLE OF A BALANCING PROCESS AS DEFINED IN THE PROOF OF

THEOREMV.1

i Xi runs D5(Xi)
0 0011100111100 2,3,2,4,2 60
1 0011101111100 2,3,1,5,2 38
2 0011101111110 2,3,1,6,1 26
3 0011011111110 2,2,1,7,1 20
4 0010111111110 2,1,1,8,1 14
5 0101111111110 1,1,1,9,1 10

1111111110101 9,1,1,1,1 8

addends, we get that|Dt(U
(j)
n,r)| ≥ |u(n− 1, r− 1, t) + u(n−

2, r − 2, t) and using Lemma II.2 again, the last sum is equal
to u(n, r, t) and thus the induction step is proved. An example
of the unbalancing process is displayed in Table II.

VI. OUR LOWER BOUND

In this section we develop a recursive expression for the
number of subsequences of an unbalanced string by deletions.
We will find an explicit form for this expression, and use it
to obtain a lower bound on the number of subsequences of a
general string. In addition, we will show the improvement that
our lower bound provides.

A. Recursive expression

Lemma VI.1. For all 0 < r ≤ n, 0 < t < n,

u(n, r, t) =

r if r = 1, 2

2 if r > 1 andt = n − 1

d(n, t) if n = r

u(n − 1, r, t)+

d(r − 2, t + r − n − 1)
otherwise

Whered(r, t) = |Dt(Cr)| = ∑
t
i=0 (

r−t
i), as proved in [2].

We assumed(n, 0) = 1, and fort < 0, d(n, t) = 0.

Proof:

• When r = 1, Un,r is a constant string, and has only one
possible subsequence (the constant string of lengthn− t).

• When r = 2, Un,r is of the form σǫ
n−1, and has two

possible subsequences, namelyσǫ
n−1−t andǫ

n−t.
• When t = n − 1 and r > 1 any subsequence is a single

symbol. Sincer > 1, it can be either symbol of the binary
alphabet.

• When n = r, Un,r = Cn, the binary cyclic string of
lengthn. |Dt(Cn)|=d(n, t) by definition.

• In the other cases (2 < r < n, t < n − 1), we
regard U

(1)
n,r (“tail first”). We Apply Lemma II.2 and

get |Dt(U
(1)
n,r)| = |Dt(U

(1)
n−1,r)|+ |Dt+r−n−1(Cr−2)| =

u(n − 1, r, t) + d(r − 2, t + r − n − 1).

B. Solving the recursion

Theorem VI.1. [Closed form formula foru(n, r, t)] For all t <
n, 2 < r ≤ n,
(i) whenr > t:

u(n, r, t) = d(r, t) +
t−2

∑
i=t+r−n−1

d(r − 2, i).

.
(ii) whenr ≤ t:

u(n, r, t) = 2 +
r−3

∑
i=t+r−n−1

d(r − 2, i).

.

Proof: We sequentially expandu(n, r, t) using Lemma
VI.1, until reaching one of the boundary conditions. After
one such expansion we getu(n, r, t) = u(n − 1, r, t) +
d(r − 2, t + r − n − 1), after j expansions (assuming the
boundary conditions weren’t reached) we getu(n, r, t) =

u(n − j, r, t) + ∑
t+r−n+j−2
i=t+r−n−1 d(r − 2, i). We notice thati =

t+ r−n+ j − 2 can be negative, and in these casesd(r− 2, i)
is defined to be zero. Whenr > t, after n − r steps we
get u(n, r, t) = u(r, r, t) + ∑

t−2
i=t+r−n−1 d(r − 2, i), and as

u(r, r, t) = d(r, t) we get (i) above. Whenr ≤ t, aftern− t−
1 steps we getu(n, r, t) = u(t + 1, r, t) + ∑

r−3
i=t+r−n−1 d(r −

2, i) = 2 + ∑
r−3
i=t+r−n−1 d(r − 2, i) and we get (ii) above.

We notice that when the number of deletions is no greater
thann− r + 1 the expression ofu(n, r, t) does not depend on
n, as stated in the following corollary:

Corollary VI.1. For 2 < r ≤ n andt ≤ n − r + 1:
(i) whenr > t:

u(n, r, t) = d(r, t) +
t−2

∑
i=0

d(r − 2, i).

(ii) whenr ≤ t:

u(n, r, t) = 2 +
r−3

∑
i=0

d(r − 2, i) = 1 + 2r−2.

C. Improving known lower bounds on number of subsequences

The results of Theorem V.1 together with Theorem VI.1
lead to the following:

Theorem VI.2.[lower bound on the number of subsequences]
For all t < n, 2 < r ≤ n and anyr-run stringX

|Dt(X)| ≥ d(r, t) +
min(t−2,r−3)

∑
i=t+r−n−1

d(r − 2, i).

We compare this result to the previous result by Hirschberg
et al. |Dt(X)| ≥ d(r, t) = ∑

t
i=0 (

r−t
i) [2]. We limit the

comparison tot ≤ r as for t > r the previous bound gives 0.

Lemma VI.2. Let α = t/r. for α ∈ [1
3 + 1

r , 1) and for t ≤
n − r + 1, u(n,r,t)

d(n,t)
= Ω

(√
1−α

rα
2r(α− 1

3)
)

.

Proof: d(r, t) ≤ (t + 1)maxt
i=0 (

r−t
i). The series(r−t

i)
reaches its maximum ati = ⌊(r − t)/2⌋. This value is

reached, becauset > r/3 implies that t > (r − t)/2.
Thus d(r, t) ≤ (t + 1)(r−t

⌊(r−t)/2⌋). Stirling’s approximation

implies that (a
⌊a/2⌋) = Θ(2a√

a
), and thus we getd(r, t) =

O(t√
r−t

2r−t).

On the other hand ast − 2 ≥ ⌊ r−2
3 ⌋, u(r, t) ≥ d(r −

2, ⌊ r−2
3 ⌋) ≥ (

⌊ 2
3 (r−3)⌋

⌊ 1
3 (r−3)⌋) = Θ(2

2
3 (r−3)

√

2
3 (r−3)

) = Θ(2
2
3 r
√

r
), thus

u(r, t) = Ω(2
2
3 r
√

r
).

u(n,r,t)
d(n,t)

= Ω(2
2
3 r√

r−t
2r−tt

√
r
), thus u(n,r,t)

d(n,t)
= Ω(

√
1−α

rα
2r(α− 1

3))

For large enough strings (n > t + r), the improvement that
the bound in Theorem VI.2 gives over the result in [2] depends
on the ratio betweenr and t. We depict our improved results
in Figure 2.

VII. D ELETION PATTERNS

Consider a stringX. Deletion of t letters from X can
be characterized by partitioningt into the number of letters
deleted from each run, leading to the following definition of
deletion patterns.

Definition VII.1. Let X be a string s.t.X = S(x1, . . . , xr).
A deletion pattern of sizet, is a set of integers{y1, . . . yr}
fulfilling ∑

r
i=1 yi = t and for all0 ≤ i ≤ r, yi ∈ [0, xi]. Each

yi represents the number of letters deleted from thei-th run of
X. E.g. the deletion pattern{2, 1, 2} for the string000110000
results in the subsequence0100. let Pt(X) denote the set of
deletion patterns of sizet for the stringX.

It is important to notice that applying different deletion
patterns on a string can result in the same subsequences,
E.g. For the string11011, the deletion patterns{1, 1, 0} and
{0, 1, 1} both result in the subsequence111. The following
lemma ties deletion patters with the study of subsequences
(and appears partially in [8]).

Lemma VII.1. For any X = S(x1, . . . , xr), let X′ denote
the stringS(x1 − 1, . . . , xr − 1). Informally X′ is the string
obtained by deleting one letter from each run inX. It follows
that|Pt(X′)| ≤ |Dt(X)| ≤ |Pt(X)|.

Proof: Deleting letters from a given string according
to a deletion pattern is a deterministic process, and so each
deletion pattern yields exactly one subsequence, thus the
right inequality follows. As mentioned before, several deletion
patterns can yield the same subsequence, but this redundancy
doesn’t exist with deletion patterns that preserve the number
of the runs in a string, i.e. there isn’t a run in which all the
symbols are deleted. In this case it is possible to reconstruct
the deletion pattern from the subsequence in a unique way,
and there is a one-one correspondence between the deletion
patterns and the subsequences. The group of deletion patterns
of X that preserve the number of runs is exactly the group of
deletion patterns in which at least one symbol is not deleted
from each run, and is equal toPt(X′). This group has a one-
one correspondence to the subset ofDt(X) of strings with
exactlyr runs, and thus the left equality holds.

Lemma VII.2. For anyX, |Pt(X)| = |P|X|−t(X)|.
Proof: Let X = S(x1, . . . , xr) and let{y1, . . . , yr} be

a t-deletion pattern. It follows that∑r
i=1 yi = t. We define

y′i = xi − yi for all 1 ≤ i ≤ r. As yi ∈ [0, xi] it follows
that y′i ∈ [0, xi] and ∑

r
i=1 y′i = ∑

r
i=1(xi − yi) = |X| − t, and

so {y′i} is a (|X| − t)-deletion pattern ofX. Eacht-deletion
pattern can be mapped to a(|X| − t)-deletion pattern, and this
mapping is reversible, thus|Pt(X)| = |P|X|−t(X)|.

A. The number of deletion patterns for balanced strings

We use the result obtained in Lemma IV.3 and restate it for
deletion patterns to get the following result:

Lemma VII.3. |Pt(Br,k)| = ∑
⌊ t

k+1 ⌋
i=0 (−1)i(r

i)
((

r
t−i(k+1)

))

=

∑
⌊ t

k+1 ⌋
i=0 (−1)i(r

i)(
r+t−i(k+1)−1

r−1)

We now study the multiplicative gap between|Pt(Br,k)|
and the previous bounds of [1], [2], [4] for values oft
close to n/2 and sufficiently larger, k. This is an intriguing
setting fort in the context of deletion channels [3]. It follows
from basic observations (and also directly from the proof of
Lemma VII.3) that

|Pt(Br,k)| ≤ min
(((r

t

))

, (k + 1)r
)

.

The first bound above is exactly that of [4], while the second
bound follows from the fact that eachyi in a deletion pattern
is an integer between0 and k (notice that the former bound
does not depend on the parameterk while the latter does not
depend ont). In what follows, we show that the bound of
(k + 1)r improves on the bounds in [4] and [1], [2] for values
of r andk which are sufficiently large.

For t = n/2 = kr/2, the bound of∑t
i=0 (

n−t
i) from [2] is

exactly2n/2. The bound of(r+t−1
t) from [4] is at least

1

k

(

r(1 + k/2)

r

)

≥ 1

12k
√

r

(

e

(1 + 2/k)

)r

(1 + k/2)r

Here we use the fact that
(

r(1 + α)

r

)

≥ 1

12
√

r

(

(r(1 + α))r(1+α)

rr(αr)αr

)

=
(1 + α)r (1 + 1/α)αr

12
√

r

derived from Stirling’s formula; and the fact that for positive
x, (1+ 1/x)x+1 ≥ e. For c = e(1+k/2)

(k+1)(1+2/k)
, the above implies

that our bound of(k + 1)r on |Pt(Br,k)| is superior to that
given in [4] (and that in [2]) by a multiplicative factor of at
least

1

12k
√

r
cr.

Notice that for largek, c > (1 + δ) for a constantδ > 0.
We conclude that a multiplicative gap of at least that specified
above also holds between|Dt(Br,k)| and the bounds in [1],
[2], [4].

For sufficiently smallǫ > 0 and t = n(1
2 − ǫ), a similar

analysis will give a gap of≃ cr for c = e(1+k/2−ǫk)
(k+1)(1+1/(k/2−ǫk))

.
Here also, for smallǫ and largek; c > (1+ δ) for a constant

δ > 0. All in all, we get for valuest which arecloseto n/2
and for sufficiently larger andk; that |Pt(Br,k)|, and thus our
bound of |Dt(Br,k)|, improves on the bounds of [1], [2], [4]
by an exponential multiplicative factor of2Ω(r).

VIII. C ONCLUDING REMARKS

In this work we present several operations on binary
strings which are monotone with respect to the number of
subsequences under deletion. We show, using the operations
studied, that the balancedr-run stringBr,k and the unbalanced
one Un,r obtain the maximum and respectively minimum
number of subsequences under deletion. By devising recursive
expressions, we present a precise analysis of the number of
subsequences of bothBr,k and Un,r under t deletions. For
our lower bound, we quantify our expressions asymptotically.
For our upper bound, we analyze deletion patterns to express
our asymptotic improvement over previous bounds. A direct
asymptotic analysis of our expression for|Dt(Br,k)| is left
open in this work and is subject to future research.

REFERENCES

[1] L. Calabi and W.E. Hartnett. Some general results of coding theory with
applications to the study of codes for the correction of synchronization
errors. Information and Control, 15(3):235 – 249, 1969.

[2] D. S. Hirschberg and M. Regnier. Tight bounds on the number of string
subsequences.Journal of Discrete Algorithms, 1(1):123–132, 2000.

[3] I. A. Kash, M. Mitzenmacher, J. Thaler, and J. Ullman. On the zero-
error capacity threshold for deletion channels.CoRR, abs/1102.0040,
2011.

[4] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals.Soviet Physics Doklady, 10(8):707–710, 1966.

[5] V. I. Levenshtein. Efficient reconstruction of sequences from their
subsequences or supersequences.Journal of Combinatorial Theory,
Series A, 93(2):310–332, 2001.

[6] H. Mercier. Communication over Channels with Symbol Synchronization
Errors. PhD thesis, The University of British Columbia, 2008.

[7] H. Mercier, V.K. Bhargava, and V. Tarokh. A survey of error-correcting
codes for channels with symbol synchronization errors.IEEE Commu-
nications Surveys and Tutorials, 12(1):87–96, 2010.

[8] H. Mercier, M. Khabbazian, and V. K. Bhargava. On the number of
subsequences when deleting symbols from a string.IEEE Transactions
on Information Theory, 54(7):3279–3285, 2008.

[9] M. Mitzenmacher. A survey of results for deletion channels and related
synchronization channels.Probability Surveys, 6:1–33, 2009.

[10] J. Ratsaby. Estimate of the number of restricted integer-partitions.Appl.
Anal. Discrete Math., 2:222–233, 2008.

	I Introduction
	I-A Our results and proof techniques
	I-B Structure

	II Tools for analyzing the number of subsequences
	II-A Partitioning the set of subsequences
	II-B Basic operations on strings
	II-B.1 Insertion operation [Figure 4(a)]
	II-B.2 Deletion chain rule
	II-B.3 Flipping operation
	II-B.4 Balancing operation

	III Balanced strings
	IV Our Upper bound
	IV-A Recursive expression
	IV-B Solving the recursion

	V Unbalanced strings
	VI Our lower bound
	VI-A Recursive expression
	VI-B Solving the recursion
	VI-C Improving known lower bounds on number of subsequences

	VII Deletion patterns
	VII-A The number of deletion patterns for balanced strings

	VIII Concluding remarks
	References

