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Abstract—The problem of content search through comparisons
has recently received considerable attention. In short, a user
searching for a target object navigates through a database in
the following manner: the user is asked to select the object most
similar to her target from a small list of objects. A new object
list is then presented to the user based on her earlier selection.
This process is repeated until the target is included in the list
presented, at which point the search terminates.

This problem is known to be strongly related to the small-
world network design problem. However, contrary to prior work,
which focuses on cases where objects in the database are equally
popular, we consider here the case where the demand for objects
may be heterogeneous.

We show that, under heterogeneous demand, the small-world
network design problem is NP-hard. Given the above negative
result, we propose a novel mechanism for small-world design and
provide an upper bound on its performance under heterogeneous
demand. The above mechanism has a natural equivalent in the
context of content search through comparisons, and we establish
both an upper bound and a lower bound for the performance of
this mechanism. These bounds are intuitively appealing, as they
depend on the entropy of the demand as well as its doubling
constant, a quantity capturing the topology of the set of target
objects. They also illustrate interesting connections between
comparison-based search to classic results from information
theory. Finally, we propose an adaptive learning algorithm for
content search that meets the performance guarantees achieved
by the above mechanisms.

I. INTRODUCTION

He problem we study in this paper is content search

through comparisons. In short, a user searching for a
target object navigates through a database in the following
manner. The user is asked to select the object most similar
to her target from a small list of objects. A new object list
is then presented to the user based on her earlier selection.
This process is repeated until the target is included in the list
presented, at which point the search terminates.

Searching through comparisons is a typical example of
exploratory search [27]], the need for which arises when users
are unable to state and submit explicit queries to the database.
Exploratory search has several important real-life applications.
An often-cited example is navigating through a database
of pictures of humans in which subjects are photographed
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under diverse uncontrolled conditions [25]], [26]]. For example,
the pictures may be taken outdoors, from different angles
or distances, while the subjects assume different poses, are
partially obscured, efc. Automated methods may fail to extract
meaningful features from such photos, so the database cannot
be queried in the traditional fashion. On the other hand, a
human searching for a particular person can easily select from
a list of pictures the subject most similar to the person she has
in mind.

Users may also be unable to state queries because, e.g., they
are unfamiliar with the search domain, or do not have a clear
target in mind. For example, a novice classical music listener
may not be able to express that she is, e.g., looking for a fugue
or a sonata. She might however identify among samples of
different musical pieces the closest to the one she has in mind.
Alternatively, a user surfing the web may not know a priori
which post she wishes to read; presenting a list of blog posts
and letting the surfer identify which one she likes best can
steer her in the right direction. In all the above applications,
the problem of content search through comparisons amounts to
determining which objects to present to the user in order to find
the target object as quickly as possible. Formally, the behavior
of a human user can be modeled by a so-called comparison
oracle [16]: given a target and a choice between two objects,
the oracle outputs the one closest to the target. The goal is
thus to find a sequence of proposed pairs of objects that leads
to the target object with as few oracle queries as possible. This
problem was introduced by Goyal et al. [16] and has recently
received considerable attention (see, for example, [22f, [25]],
[260).

Content search through comparisons is also naturally related
to the following problem: given a graph embedded in a metric
space, how should one augment this graph by adding edges
in order to minimize the expected cost of greedy forwarding
over this graph? This is known as the small-world network
design problem (see, for example, [11]], [12]) and has a variety
of applications as, e.g., in network routing. In this paper, we
consider both problems under the scenario of heterogeneous
demand. This is very interesting in practice: objects in a
database are indeed unlikely to be requested with the same
frequency. Our contributions are as follows:

e We show that the small-world network design problem
under general heterogeneous demand is NP-hard. Given
earlier work on this problem under homogeneous demand
[[L1]], [[12f], this result is interesting in its own right.

o We propose a novel mechanism for edge addition in the
small-world design problem, and provide an upper bound



on its performance.

o The above mechanism has a natural equivalent in the
context of content search through comparisons, and we
provide a matching upper bound for the performance of
this mechanism.

e« We also establish a lower bound on any mechanism
solving the content search through comparisons problem.

o Finally, based on these results, we propose an adaptive
learning algorithm for content search that, given access
only to a comparison oracle, can meet the performance
guarantees achieved by the above mechanisms.

To the best of our knowledge, we are the first to study the
above two problems in a setting of heterogeneous demand.
Our analysis is intuitively appealing because our upper and
lower bounds relate the cost of content search to two important
properties of the demand distribution, namely its entropy and
its doubling constant. We thus provide performance guarantees
in terms of the bias of the distribution of targets, captured
by the entropy, as well as the fopology of their embedding,
captured by the doubling constant.

The remainder of this paper is organized as follows. In
Section [lI| we provide an overview of the related work in this
area. In Sections [l and [V] we introduce our notation and
formally state the two problems that are the focus of this work,
namely content search through comparisons and small-world
network design. We present our main results in Section [V|and
our adaptive learning algorithm in Section [VI} Section [VII| is
devoted to the proofs of our main theorems. We then address
the two extensions of our work in Section and finally
conclude in Section

II. RELATED WORK

Content search through comparisons is a special case of
nearest neighbour search (NNS), a problem that has been
extensively studied [4], [18]. Our work can be seen as an
extension of earlier work considering the NNS problem for
objects embedded in a metric space with a small intrinsic
dimension [4]], [19], [21]. In particular, Krauthgamer and
Lee [21]] introduce navigating nets, a deterministic data struc-
ture for supporting NNS in doubling metric spaces. Clark-
son [4] considers a similar technique for objects embedded
in a space satisfying a certain sphere-packing property, while
Karger and Ruhl [19] rely on growth restricted metrics; all
of the above assumptions have connections to the doubling
constant we consider in this paper. In all of these works,
however, the underlying metric space is fully observable by
the search mechanism while, in our work, we are restricted to
accesses to a comparison oracle. Most importantly, in all of the
above works, the demand over the target objects is assumed to
be homogeneous; we also depart by considering heterogeneous
demand.

NNS with access to a comparison oracle was first introduced
by Goyal et al. [16], and further explored by Lifshits and
Yang [22f], and Tschopp and Diggavi [25]], [26]. A considerable
advantage of the above works is that the assumption that
objects are a-priori embedded in a metric space is removed;
rather than requiring that similarity between objects is captured

by a distance metric, the above works only assume that any
two objects can be ranked in terms of their similarity to
any targer by the comparison oracle. To provide performance
guarantees on the search cost, Lifshits [[16] introduced a
so-called “disorder-constant”, capturing the degree to which
object rankings violate the triangle inequality. This disorder-
constant plays roughly the same role in the analysis of
[16[, [22], [25]], [26] as the doubling constant does in ours.
Nevertheless, these works also assume homogeneous demands.
Our work can be seen as an extension of searching with
comparisons to heterogeneity, with the caveat of restricting
our analysis to the case where a metric embedding exists.

An additional important distinction between [16], [22], [25],
[26] and our work is the existence of a learning phase, during
which explicit questions are placed to the comparison oracle.
A data-structure is constructed during this phase, which is
subsequently used to answer queries submitted to the database
during a “search” phase. The above works establish different
tradeoffs between the length of the learning phase, the space
complexity of the data structure created, and the cost incurred
during searching. In contrast, the learning scheme we consider
in Section is adaptive, and learning occurs while users
search; the drawback lies in that our guarantees on the search
cost are asymptotic.

The use of interactive methods (i.e., that incorporate human
feedback) for content search has a long history in literature.
Arguably, the first oracle considered to model such methods
is the so-called membership oracle [[13|], which allows the
search mechanism to ask a user questions of the form “does
the target belong to set A” (see also our discussion in
Section [[II-D). Branson et al. [3] deploy such an interactive
method for object classification and evaluate it on the Animals
with attributes database. A similar approach was used by
Geman and Jedynak [14], who formulate shape recognition
as a coding problem and apply this approach to handwritten
numerals and satellite images. Having access to a membership
oracle however is a strong assumption, as humans may not
necessarily be able to answer queries of the above type for
any object set A. Moreover, the large number of possible sets
makes the cost of designing optimal querying strategies over
large datasets prohibitive. In contrast, the comparison oracle
model makes a far weaker assumption on human behavior—
namely, the ability to compare different objects to the target—
and significantly limits the design space, making search mech-
anisms using comparisons practical even over large datasets.

The design of small-world networks (also called navigable
networks) has received a lot of attention after the seminal
work by Kleinberg [20]. Again, the main difference in our
approach to small world network design lies in considering
heterogeneous demand, an aspect of small-world networks not
investigated in earlier work. In particular, the problem com-
monly studied pertains to how a graph G can be augmented
through the addition of long-range edges, typically a constant
number per node, so that its greedy-forwarding diameter (i.e.,
the worst-case cost of greedy forwarding, in message hops)
is polylogarithmic in the number of nodes. In contrast, we
assume forwarding requests follow a heterogeneous demand,
and seek to minimize the expected forwarding cost; it is not



a priori clear how results established in the worst-case regime
translate to our setting.

More specifically, Flammini et al. [[8] show that identifying
whether a graph can be augmented so that it has a diameter
less than 2, under the constraint of one additional long-range
edge per node (as in the problem termed 1-SWND in our
paper), is NP-complete for arbitrary graphs G. Flammini et al.
establish the hardness of this problem by reducing MINIMUM-
SETCOVER to an instance of this problem, where G is a tree-
like graph. We depart by proving (c.f. Theorem|[I)) the hardness
of minimizing the expected greedy-forwarding cost, for an
arbitrary demand, under a cardinality constraint. Interestingly,
contrary to [8], our proof is for the case where G is a two-
dimensional grid, which implies that the heterogeneous social
network design problem remains hard even in the original
setting considered by Kleinberg [20].

In terms of positive results, several known graph augmenta-
tion techniques are known to yield “small” greedy forwarding
diameters. Duchon et al. [[7] show that graphs G exhibiting
a “bounded growth rate” property can be augmented by a
single long-range edge per node to yield a polylogarithmic
greedy-forwarding diameter, while Fraignreaud [9]] establishes
a similar result for trees of bounded tree-width. Closer to our
setting, Slivkins [24]] shows that graphs G embedded in metric
spaces having an O(loglogn) doubling dimension can also
be augmented to attain a polylogarithmic greedy-forwarding
diameter, while Fraigneaud et al. [[11] show that this bound
is tight, in the sense that any graph with w(loglogn) dou-
bling dimension cannot have a polylogarithmic diameter. A
similar result can be shown using our lower bound (Theo-
rem E]), which however focuses on the expected, rather than
worst-case, forwarding cost, and is proved using a different
topology than [11]. For arbitrary graphs G, Fraigneaud and
Giakkoupis [[12] show that any graph can be augr?ented
with a single edge per node to attain an O(2(°8 ”)ﬁom)
greedy-forwarding diameter; a corresponding lower bound of
Q(2v°e™) is also known for arbitrary graphs [10].

The doubling dimension concepts used in [7], [L1], [24]
is directly related to the doubling dimension we consider
in our work. Moreover, the long-range edge distributions
utilized in several of these works [7], [12], [24] to attain a
“small” greedy forwarding diameter are generalizations of the
inversely proportional distribution employed by Kleinberg in
his original paper [20]], applied to the specific settings studied
in each of these works. Nevertheless, none of these works deals
with the case of heterogeneous demand. The generalization we
propose here appropriately extends the inverse proportionality
rule used in these prior works to the non-homogeneous case,
and allows us to recover corresponding bounds in terms of the
entropy of the underlying distribution.

Finally, the relationship between the small-world network
design and content search has been also observed by Goyal et
al. [16] and exploited by Lifshits and Zhang [22]] to propose
data structures for content search through comparisons, in the
homogeneous/worse-case setting; we further expand on this
issue in Section as this is an approach we also follow.

III. DEFINITIONS AND NOTATION

In this section we introduce some definitions and notation
which will be used throughout this paper.

A. Objects and Metric Embedding

Consider a set of objects N, where |[N| = n. We assume
that there exists a metric space (M,d), where d(x,y) denotes
the distance between z,y € M, such that objects in N are
embedded in (M,d): ie., there exists a one-to-one mapping
from A to a subset of M.

The objects in A/ may represent, for example, pictures in a
database. The metric embedding can be thought of as a map-
ping of the database entries to a set of features (e.g., the age
of person depicted, her hair and eye color, efc.). The distance
between two objects would then capture how ‘“‘similar” two
objects are w.r.t. these features. In what follows, we will abuse
notation and write ' C M, keeping in mind that there might
be difference between the physical objects (the pictures) and
their embedding (the attributes that characterize them).

Given an object z € A, we can order objects according
to their distance from z. We will write = <, y if d(z,2) <
d(y, z). Moreover, we will write « ~, y if d(z, z) = d(y, 2)
and x <, y if x <, y but not x ~, y. Note that ~, is an
equivalence relation, and hence partitions N\ into equivalence
classes. Moreover, <, defines a total order over these equiv-
alence classes, with respect to their distance from z. Given
a non-empty set A C N, we denote by ming_ A the set of
objects in A closest to z, i.e.,

min A ={w € A s.t. w <, v forall v e A}

Nz

B. Comparison Oracle

A comparison oracle [16] is an oracle that, given two ob-
jects x,y and a target ¢, returns the closest object to ¢. More
formally,

xT if ¢ <t Y,
Oracle(z,y,t) =< y if o=y, (1)
zory ifx~yy.

Observe that if z = Oracle(x,y,t) then = <; y; this does not
necessarily imply however that z <; y.

This oracle basically aims to capture the behavior of human
users. A human interested in locating, e.g., a target picture ¢
within the database, may be able to compare other pictures
with respect to their similarity to this target but cannot asso-
ciate a numerical value to this similarity. Moreover, when the
pair of pictures compared are equally similar to the target, the
decision made by the human may be arbitrary.

It is important to note here that although we write
Oracle(z,y,t) to stress that a query always takes place with
respect to some target ¢, in practice the target is hidden and
only known by the oracle. Alternatively, following the “oracle
as human” analogy, the human user has a target in mind and
uses it to compare the two objects, but never discloses it until
actually being presented with it.



Note that our oracle is weaker than one that correctly identi-
fies the relationship x ~; y and, e.g., returns a special charac-
ter “=" once two such objects are proposed: to see this, observe
that oracle (I) can be implemented by using this stronger
oracle. Hence, all our results hold if we are provided with

such an oracle instead.

C. Demand

We denote by N x A the set of all ordered pairs of objects
in V. For (s,t) € N'x N, we will call s the source and ¢
the target of the ordered pair. We will consider a probability
distribution \ over all ordered pairs of objects in N which we
will call the demand. In other words, A will be a non-negative
function such that

b

(s,t)EN XN

A(s, t) = 1.

In general, the demand can be heterogeneous as A(s,t) may

vary across different sources and targets. We refer to the marginal

distributions
vs) = DM, alt) = DA,

as the source and target distributions, respectively. Moreover,
will refer to the support of the target distribution

T =supp(p) = {z e N': s.t. pu(x) > 0}

as the target set of the demand.

As we will see in Section [V] the target distribution p will
play an important role in our analysis. In particular, two quan-
tities that affect the performance of searching in our scheme
will be the entropy and the doubling constant of the target
distribution. We introduce these two notions formally below.

D. Entropy

Let o be a probability distribution over N'. The entropy of
o is defined as

1
Z o(z)log —. )
zEsupp(o)
We define the max-entropy of o as

1

max 0’(17)

z€supp(o)

Hpox(0) = log . 3)

The entropy has strong connections with the content search
problem. More specifically, suppose that we have access to a
so-called membership oracle [6] that can answer queries of

the following form:

“Given a target t and a subset A C N, does ¢ belong

to A?”
Assume now that an object ¢ is selected according to a dis-
tribution . It is well known that to find a target ¢ one needs
to submit at least H(u) queries, on average, to the oracle
described above (see, chap. 2, [6]). Moreover, there exists an
algorithm (Huffman coding) that finds the target with only
H(u)+1 queries on average [6]. In the worst case, which

Fig. 1. Example of dependence of c¢(o) on the topology of the support
supp(c). When supp(c) consists of n = 64 objects arranged in a cube,
c(o) = 23 If, on the other hand, these n objects are placed on a plane,
c(o) = 22. In both cases o is assumed to be uniform, and H (o) = log N

occurs when the target is the least frequently selected object,
the algorithm requires Hy,ax (1) +1 queries to identify ¢.

Our work identifies similar bounds assuming that one only
has access to a comparison oracle, like the one described by
(TI). Not surprisingly, the entropy of the target distribution
H(p) shows up in the performance bounds that we obtain
(Theorems [3] and [). However, searching for an object will
depend not only on the entropy of the target distribution, but
also on the topology of the target set 7. This will be captured
by the doubling constant of p, which we describe in more
detail below.

E. Doubling Constant
Given an object © € NV, we denote by

B.(r)={y e M :d(z,y) <r} (4)

the closed ball of radius » > 0 around z. Given a probability
distribution o over N and a set A C A let

o(A) = Z o(z).
€A

We define the doubling constant ¢(o) of a distribution o to be
the minimum ¢ > 0 for which

0(Bz(2r)) < ¢ 0(Bq(r)), (5)

for any x € supp(c) and any r > 0. Moreover, will say that
o is c-doubling if c(u) = c.

Note that, contrary to the entropy H (o), the doubling con-
stant ¢(o) depends on the topology of supp(c), determined
by the embedding of N in the metric space (M, d). This is
illustrated in Fig. |1} In this example, |J\f | = 64, and the set N
is embedded in a 3-dimensional cube. Assume that o is the
uniform distribution over the N objects; if these objects are
arranged uniformly in a cube, then c¢(o’) = 23; if however these
n objects are arranged uniformly in a 2-dimensional plane,
c(o) = 22. Note that, in contrast, the entropy of ¢ in both
cases equals logn (and so does the max-entropy).

IV. PROBLEM STATEMENT

We now formally define the two problems that will be the
main focus of this paper. The first is the problem of content
search through comparisons and the second is the small-world
network design problem.



TABLE I
SUMMARY OF NOTATION

N Set of objects (M, d) Metric space
d(z,y) | Distance between z,y € M T=<zY Ordering w.r.t. distance from z
x <,y | Strict ordering w.r.t. distance from z T~y x and y at same distance from z
A The demand distribution v The source distribution
“w The target distribution T The target set
H(o) The entropy of o Hmax (o) | The max-entropy of o
By (r) The ball of radius r centered at x c(o) The doubling constant of o
The set of shortcut edges L The set of local edges
Cs Expected cost of greedy forwarding given set S | Cr Expected search cost of policy F

A. Content Search Through Comparisons

For the content search problem, we consider the object set
N, embedded in (M, d). Although this embedding exists, we
are constrained by not being able to directly compute object
distances. Instead, we only have access to a comparison oracle,
like the one defined in Section [[II-Bl

Given access to the above oracle, we would like to navigate
through A until we find a target object. In particular, we
define greedy content search as follows. Let ¢ be the target
object and s some object that serves as a starting point. The
greedy content search algorithm proposes an object w and
asks the oracle to select, between s and w, the object closest
to the target ¢, i.e., it evokes Oracle(s,w,t). This process is
repeated until the oracle returns something other than s, i.e.,
the proposed object is “more similar” to the target ¢. Once this
happens, say at the proposal of some w’, if w’ # t, the greedy
content search repeats the same process now from w’. If at
any point the proposed object is ¢, the process terminates.

Recall that in the “oracle as a human” analogy the human
cannot reveal ¢ before actually being presented with it. We
similarly assume here that ¢ is never “revealed” before actually
being presented to the oracle. Though we write Oracle(z, y, t)
to stress that the submitted query is w.r.t. proximity to ¢, the
target ¢ is not a priori known. In particular, as we see below,
the decision of which objects z and y to present to the oracle
cannot directly depend on ¢.

More formally, let x, yi be the k-th pair of objects submit-
ted to the oracle: xy, is the current object, which greedy content
search is trying to improve upon, and y, is the proposed object,
submitted to the oracle for comparison with x. Let

O = OraCIe(xk‘7yk‘7t) € {xktayk}

be the oracle’s response, and define

Hy, = { (i, yi,00) Yoy,

be the sequence of the first £ inputs given to the oracle, as well
as the responses obtained; Hy, is the “history” of the content
search up to and including the k-th access to the oracle.

The source object is always one of the first two objects
submitted to the oracle, i.e., x1 = s. Moreover, in greedy
content search,

k=1,2,...

Tk+1 = Ok, k:1,2,...

i.e., the current object is always the closest to the target among
the ones submitted so far.

On the other hand, the selection of the proposed object yx11
will be determined by the history Hj; and the object x;. In

particular, given H; and the current object xj, there exists a
mapping (Mg, zx) — F(Hy, zx) € N such that

Y1 = F(Hy, r),

where here we take o = s € N (the source/starting object)
and Hg = () (i.e., before any comparison takes place, there is
no history).

We will call the mapping F the selection policy of the
greedy content search. In general, we will allow the selection
policy to be randomized; in this case, the object returned by
F(Hp, xx) will be a random variable, whose distribution

k=0,1,...,

Pr(F(Hy,zr) =w), weN, (6)

is fully determined by (Hj,z)). Observe that F depends on
the target ¢ only indirectly, through #H;, and xy; this is consis-
tent with our assumption that ¢ is only “revealed” when it is
eventually located.

We will say that a selection policy is memoryless if it de-
pends on z; but not on the history #. In other words, the
distribution (B)) is the same when z;, = z € N, irrespectively
of the comparisons performed prior to reaching xy.

Our goal is to select F so that we minimize the number of
accesses to the oracle. In particular, given a source object s,
a target ¢ and a selection policy F, we define the search cost

C]:(S,t) = inf{k LYk = f,}

to be the number of proposals to the oracle until ¢ is found.
This is a random variable, as F is randomized; let E[C=(s, )]
be its expectation. The Content Search Through Comparisons
problem is then defined as follows:

CONTENT SEARCH THROUGH COMPARISONS (CSTC):
Given an embedding of A into (M,d) and a de-
mand distribution A(s,t), select F that minimizes

the expected search cost

Cr= Y

(s,t)EN XN

A(s,t)E[Cx(s,1)].

Note that, as F is randomized, the free variable in the above
optimization problem is the distribution (6).

B. Small-World Network Design

In the small network design problem, we again consider the
objects in AV, embedded in (M, d). It is now assumed however
that the objects in A are connected to each other. The network
formed by such connections is represented by a directed graph



G(N, LUS), where L is the set of local edges and S is the set
of shortcut edges. These edge sets are disjoint, i.e., LNS = (.

The edges in £ are typically assumed to satisfy the follow-
ing property:

Property 1: For every pair of distinct objects z,t € N there
exists an object u adjacent to x such that (z,u) € £ and
u < .

In other words, for any object x and a target ¢, x has a local
edge leading to an object closer to .

Recall that in the content search problem the goal was
to find ¢ (starting from source s) using only accesses to a
comparison oracle. Here the goal is to use such an oracle to
route a message from s to ¢ over the links in graph G. In
particular, given graph G, we define greedy forwarding [20]]
over GG as follows. Let I'(s) be the neighborhood of s, i.e.,

I(s) ={ueN st (s,u) € LUS}.

Given a source s and a target ¢, greedy forwarding sends a
message to neighbor w of s that is as close to ¢ as possible,
Le.,

w € ming, I'(s). @)

If w # t, the above process is repeated at w; if w = ¢, greedy
forwarding terminates.

Note that local edges, through Property [T} guarantee that
greedy forwarding from any source s will eventually reach
t: there will always be a neighbor that is closer to ¢ than
the object currently having the message. Moreover, the clos-
est neighbour w selected through can be found using a
comparison oracle. In particular, if the message is at an object
x, |T'(x)| queries to the oracle will suffice to find the neighbor
that is closest to the target.

The edges in £ are typically called “local” because they are
usually determined by object proximity. For example, in the
classical paper by Kleinberg [20], objects are arranged uni-
formly in a rectangular k-dimensional grid—with no gaps—
and d is taken to be the Manhattan distance on the grid.
Moreover, there exists an » > 1 such that any two objects
at distance less than r have an edge in L. In other words,

L=A{(z,y) e N x N s.t. d(z,y) <r}. (8)

Assuming every position in the rectangular grid is occupied,
such edges indeed satisfy Property [I] In this work, we will
not require that edges in L are given by or some other
locality-based definition; our only assumption is that they sat-
isfy Property [I] Nevertheless, for the sake of consistency with
prior work, we also refer to edges in £ as “local”.

The shortcut edges S need not satisfy Property [I} our goal
is to select these shortcut edges in a way so that greedy for-
warding is as efficient as possible.

In particular, we assume that we can select no more than (3
shortcut edges, where (3 is a positive integer. For .S a subset
of N’ x N such that |S| < 3, we denote by Cg(s,t) the
cost of greedy forwarding, in message hops, for forwarding a
message from s to ¢ given that S = S. We allow the selection
of shortcut edges to be random: the set S can be a random
variable over all subsets S of A x A such that |S| < §.

We denote by

Pr(S=5), SCNxNstl|S < )

the distribution of S. Given a source s and a target ¢, let

E[Cs(s,t)] = Y Cs(s,t)-Pr(S=09)
SCNxN:|S|<p

be the expected cost of forwarding a message from s to ¢
with greedy forwarding, in message hops. We consider again a
heterogeneous demand: a source and target object are selected
at random from N X A according to a demand probability
distribution A. The small-world network design problem can
then be formulated as follows.

SMALL-WORLD NETWORK DESIGN (SWND): Given

an embedding of NV into (M, d), a set of local edges

L, a demand distribution A, and an integer S > 0,

select ar.v. S C N x A that minimizes

Cs= Y. s tE[Cs(s,1)]
(s,t)EN XN
subject to |S| < 6.
In other words, we wish to select S so that the cost of greedy
forwarding is minimized. Note that, since S is a random vari-
able, the free variable of the above optimization problem is
essentially the distribution of S, given by (©).

C. Relationship Between SWND and CSTC

In what follows, we try to give some intuition about how
SWND and CSTC are related and why the upper bounds we
obtain for these two problems are identical, without resorting
to the technical details appearing in our proofs.

Consider the following version of the SWND problem, in
which we place three additional restrictions to the selection
of the shortcut edges. First, |S| = n, i.e., we can only select
n = |N/| shortcut edges. Second, for every = € N, there
exists exactly one directed edge (z,y) € S: each object has
exactly one out-going edge incident to it. Third, the object y to
which object x connects to is selected independently at each z,
according to a probability distribution ¢, (y). In other words,
for N = {z1,22,...,2,}, the joint distribution of shortcut
edges has the form:

PI‘(S: {(xlvyl)""(xnayn)}) = Hglz(yl) (10)

We call this version of the SWND problem the one edge per
object version, and denote it by 1-SWND. Note that, in 1-
SWND, the free variables are the distributions ¢,, z € N,
which are to be selected in order to minimize the average cost
Cs.

Consider now the following content selection policy for
CTSC:

Pr(F(zg) = w) = by (w), forallwe N

In other words, if the proposed object at x, is sampled accord-
ing to the same distribution as the shortcut edge in 1-SWND.
This selection policy is memoryless as it does not depend on
the history Hj, of objects presented to the oracle so far.
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Fig. 2. An illustration of the relationship between 1-SWND and CTSC. In
CTSC, the source s samples objects independently from the same distribution
until it locates an object closest to the target ¢. In 1-SWND, the re-sampling
is emulated by the movement to new neighbors. Each neighbor “samples”
a new object independently, from a slightly perturbed distribution, until one
closest to the target ¢ is found.

A parallel between these two problems can be drawn as
follows. Suppose that the same source/target pair (s, t) is given
in both problems. In content search, while starting from node
s, the memoryless selection policy draws independent samples
from distribution ¢, until an object closer to the target than s
is found.

In contrast, greedy forwarding in 1-SWND can be described
as follows. Since shortcut edges are generated independently,
we can assume that they are generated while the message
is being forwarded. Then, greedy forwarding at the source
object can be seen as sampling an object from distribution /,
namely, the one incident to its shortcut edge. If this object
is not closer to the target than s, the message is forwarded
to a neighboring node s; over a local edge of s. Node s;
then samples independently a node from distribution /5, this
time—the one incident to its shortcut edge.

Suppose that the distributions ¢, vary only slightly across
neighboring nodes. Then, forwarding over local edges corre-
sponds to the independent re-sampling occurring in the content
search problem. Each move to a new neighbor samples a new
object (the one incident to its shortcut edge) independently
of previous objects but from a slightly perturbed distribution.
This is repeated until an object closer to the target ¢ is found,
at which point the message moves to a new neighborhood over
the shortcut edge.

Effectively, re-sampling is “emulated” in 1-SWND by the
movement to new neighbors. This is, of course, an infor-
mal argument; we refer the interested reader to the proofs
of Theorems [2] and Theorem [3] for a rigorous statement of the
relationship between the two problems.

V. MAIN RESULTS

We now present our main results with respect to SWND
and CSTC.

A. Hardess

We begin by determining the complexity of SWND, as
introduced in Section Prior work on minimizing the
greedy-forwarding diameter (i.e., the worst-case forwarding
cost), showed that determining whether a graph can be aug-
mented with one edge per node to yield a diameter smaller
than 2 is an NP-compete problem [8]. On the other hand,
there are clearly instances of SWND that are easy to solve

in the presense of heterogeneous demand. This is indeed the
case if, for example, the support of the demand distribution A
includes fewer than  source-destination pairs. Our first result
shows that, despite the existence of such instances, SWND
remains in general a hard problem:

Theorem 1: SWND is NP-hard.
The proof of this theorem can be found in Section
In short, the proof reduces DOMINATINGSET to the decision
version of SWND. Interestingly, the reduction is to a SWND
instance in which (a) the metric space is a 2-dimensional grid,
(b) the distance metric is the Manhattan distance on the grid
and (c) the local edges are given by (8). This is in contrast
to [8], that involves a reduction to an instance where the base
graph is tree-like. Thus, our proof establishes that SWND
remains NP-hard even in the original setting considered by
Kleinberg [20].

B. Upper Bounds

Motivated by the above hardness result, as well as the rela-
tionship of 1-SWND to content search through comparisons,
we consider below this restricted version of SWND. In particu-
lar, we provide a distribution of edges for 1-SWND for which
an upper-bound of search cost exists. This upper-bound can be
expressed in terms of the entropy and the doubling dimension
of the target distribution p. Through the relationship of 1-
SWND with CSTC, we are able to obtain a greedy content
search strategy whose cost can also be bounded the same way.

For a given demand ), recall that p is the marginal distribu-
tion of the demand X over the target set 7, and that for A C N,
p(A) = > c 4 i(z). Then, for any two objects =,y € N, we
define the rank of object y w.r.t. object = as follows:

2 (y) = p(Be(d(z,y))) (1)

where B, (r) is the closed ball with radius r centered at z.

Suppose now that shortcut edges are generated according
to the joint distribution (I0), where the outgoing link from an
object x € N is selected according to the following probabil-
1ty:

1(y)
2 (y)’
for y € T = supp(u), while for y ¢ 7 we define £,(y) to
be zero. We stress here that presumes that the target dis-
tribution is known; we discuss adaptive methods for learning
this distribution in Section

Eq. (I2) implies the following appealing properties.

la(y) o 12)

« For two objects y, z that have the same distance from z,
if u(y) > p(z) then £,4(y) > £4(2), ie., y has a higher
probability of being connected to x.

« When two objects y, z are equally likely to be targets, if
y <z z then £, (y) > £.(2).

The distribution (I2) thus biases both towards objects close
to x as well as towards objects that are likely to be tar-
gets. Finally, if the metric space (M,d) is a k-dimensional
grid and the targets are uniformly distributed over A/ then
. (y) o (d(x,y))~*. This is the shortcut distribution used in
the original paper by Kleinberg [20]], subsequently modified



Algorithm 1 Memoryless Content Search
Require: Oracle(:,-,t) , demand distribution p, starting object
s.
Ensure: target ¢.
1: x < s
2: while x # t do
3. Sample y € N from the probability distribution

Pr(F(Hi, wx) = y) = Lo, (y)-

4: 1z < Oracle(x, y,1).
5: end while

and applied to a variety of homogeneous demand settings [7],
[11], [24]; Eq is thus a generalization of this distribution
to heterogeneous targets as well as to more general metric
spaces.

Our next theorem, whose proof is in Section relates
the cost of greedy forwarding under to the entropy H,
the max-entropy Hy,.x and the doubling parameter c of the
target distribution .

Theorem 2: Given a demand )\, consider the set of shortcut
edges S sampled according to (I0), where £, (y), z,y € N,
are given by (12). Then

Cs < min {603(,u) - H(p) - Hmax (1), n}

Note that the bound in Theorem [2| depends on A only through
the target distribution u. In particular, it holds for any source
distribution v, and does not require that sources are selected
independently of the targets ¢. s The first term in the above
minimum is quite large for distributions that contain very rare
events (e.g., events with probability O(27"), on account of
H,,..«. Nevertheless, the second term ensures that even in such
cases the forwarding cost is no more than n.

It is also interesting to relate the above result to results in
the homogeneous/worst-case scenario. Recall that H ranges
between logn, in the case of the uniform distribution, and a
constant in the case of highly skewed distributions. Thus, if
N is a k-dimensional grid and p is the uniform distribution
over V, the above bound becomes O(2°(*) log? n), retrieving
thus the result of [20]. Similarly, Slivkins [24] establishes
a O(logn) bound in the greedy forwarding diameter using
O(poly(c))lognlog A long-range edges per node, where A
is the ratio of the longest-to-shortest path in the underlying
graph (termed the aspect ratio in [24]).

Exploiting an underlying relationship between 1-SWND
and CSTC, we can obtain an efficient selection policy for
greedy content search. In particular,

Theorem 3: Given a demand A, consider the memoryless
selection policy F outlined in Algorithm [I] Then

Cr <6¢3 (1) - H(p) - Hunax (1)

The proof of this theorem is given in Section Like
Theorem [2] Theorem [3] characterises the search cost in terms
of the doubling constant, the entropy and the max-entropy of
w. This is very appealing, given (a) the relationship between

¢(i1) and the topology of the target set and (b) the classic result
regarding the entropy and accesses to a membership oracle, as
outlined in Section

In contrast to Theorem [2| Theorem [3| does not bound the
cost by n; this is because CSTC lacks “local-edges”, which
guarantee one gets closer to the target with every interaction
with the oracle. Hence, for distributions with extremely rare
targets (e.g., with probability O(27")) Hp.x is quite large.
Nevertheless, it is possible to improve on this bound with mi-
nor algorithm modifications. For example, selecting a random
item to propose to the oracle with probability ¢ > 0 would
ensure that the cost is at most O(1nlogn).

The distributions ¢, are defined in terms of the embedding
of N in (M,d) and the target distribution p. Interestingly,
however, the bounds of Theorem [3] can be achieved if neither
the embedding in (M, d) nor the target distribution p are a
priori known. In Section we propose an adaptive algorithm
that asymptotically achieves the performance guarantees of
Theorem 3| only through access to a comparison oracle.

C. Lower Bound

A question arising from Theorems 2]and [3]is how tight these
bounds are. Intuitively, we expect that the optimal shortcut
set S and the optimal selection policy F depend both on the
entropy of the target distribution and on its doubling constant.
Our next theorem, whose proof is in Section establishes
that this is the case for F.

Theorem 4: For any integer K and D, there exists a metric
space (M, d) and a target measure u with entropy H(u) =
Klog(D) and doubling constant ¢(x) = D such that the
average search cost of any selection policy JF satisfies

o(p) —1
= 5 310 ety

Hence, the bound in Theorem [3] is tight within a

() log(c(p)) Hmax

factor. We note that improving on this bound, effectively re-
moving the H,.x term, seems difficult if one only considers
greedy, memoryless strategies, as is typical in the context
of social networks (c.f. also the discussion in [24|] regard-
ing the dependence on the aspect ratio). It is possible how-
ever to improve on this bound in the context of CSTC, by
moving beyond such strategies. Data structures similar to the

Cr 13)

“navigating-nets” and “cover-trees” employed by, e.g., Krauthgamer

and Lee [21]] and Clarkson [4]], for example, can be used to
that end.

It is interesting to again compare to the lower bound
of the forwarding diameter (i.e., the worst-case forwarding
cost). Theorem [ implies that we can construct a metric space
and a measure p such that logc(u) = w(loglog ). Under
this construction, (I3) implies that the expected forwarding
cost Cr is w(polylog(n)), i.e., grows faster than a poly-
logarithmic function, recovering thus the result by Fraigneaud
et al. [T1]]. As such, Theorem [ can be seen as a natural
extension of the bound in [[11] to the expected forwarding
cost under arbitrary target distributions.



VI. LEARNING ALGORITHM

Section |V| established bounds on the cost of greedy content
search provided that the distribution (I2)) is used to propose
items to the oracle. Hence, if the embedding of N in (M, d)
and target distribution p are known, it is possible to perform
greedy content search with the performance guarantees pro-
vided by Theorem [3]

In this section, we turn our attention to how such bounds can
be achieved if neither the embedding in (M, d) nor the target
distribution  are a priori known. To this end, we propose a
novel adaptive algorithm that achieves the performance guar-
antees of Theorem [3] without access to the above information.

Our algorithm effectively learns the ranks r,(y) of objects
and the target distribution y as time progresses. It does not re-
quire that distances between objects are at any point disclosed;
instead, we assume that it only has access to a comparison ora-
cle, slightly stronger than the one described in Section [[V-B] It
is important to note that our algorithm is adaptive: though we
prove its convergence under a stationary regime, the algorithm
can operate in a dynamic environment. For example, new
objects can be added to the database while old ones can be re-
moved. Moreover, the popularity of objects can change as time
progresses. Provided that such changes happen infrequently, at
a larger timescale compared to the timescale in which database
queries are submitted, our algorithm will be able to adapt and
converge to the desired behavior.

A. Demand Model and Probabilistic Oracle

We assume that time is slotted and that at each timeslot
7 = 0,1,... a new query is generated in the database. As
before, we assume that the source and target of the new query
are selected according to a demand distribution A over N'x N
We again denote by v, p the (marginal) source and target
distributions, respectively.

Our algorithm will require that the support of both the
source and target distributions is A/, and more precisely that

Mz,y) >0, for all z,y € N. (14)

The requirement that the target set 7 = supp(p) is A is nec-
essary to ensure learning; we can only infer the relative order
w.r.t. objects ¢ for which questions of the form Oracle(z, y, t)
are submitted to the oracle. Moreover, it is natural in our model
to assume that the source distribution v is at the discretion of
our algorithm: we can choose which objects to propose first
to the user/oracle. In this sense, for a given target distribution
w s.t. supp(p) = N, (T4) can be enforced, e.g., by selecting
source objects uniformly at random from N and independently
of the target.

We consider a slightly stronger oracle than the one described
in Section In particular, we again assume that

z if x < vy,

y ifx >y (5)

Oracle(zx,y,t) = {
However, we further assume that if - ~; y, then Oracle(z, y, t)
can return either of the two possible outcomes with non-zero
probability. This is stronger than the oracle in Section
where we assumed that the outcome will be arbitrary. We

should point out here that this is still weaker than an oracle
that correctly identifies * ~; y (i.e., the human states that
these objects are at equal distance from t) as, given such an
oracle, we can implement the above probabilistic oracle by
simply returning x or y with equal probability.

B. Data Structures

For every object z € N, the database storing z also main-
tains the following associated data structures. The first data
structure is a counter keeping track of how often the object x
has been requested so far. The second data structure maintains
an order of the objects in A; at any point in time, this total
order is an “estimator” of <, the order of objects with respect
to their distance from x. We describe each one of these two
data structures in more detail below.

a) Estimating the Target Distribution: The first data struc-
ture associated with an object x is an estimator of u(x), i.e.,
the probability with which z is selected as a target. A simple
method for keeping track of this information is through a
counter C,. This counter C, is initially set to zero and is
incremented every time object z is the target. If C,.(7) is the
counter at timeslot 7, then

fix) = Cu(T)/T

is an unbiased estimator of y(x). To avoid counting to infinity
a “moving average” (e.g., and exponentially weighted moving
average) could be used instead.

b) Maintaining a Partial Order: The second data struc-
ture O, associated with each z € A/ maintains a total order of
objects in A w.r.t. their similarity to z. It supports an operation
called order() that returns a partition of objects in A along
with a total order over this partition. In particular, the output
of O,.order() consists of an ordered sequence of disjoint
sets A, As, ..., Aj, where |JA; = N\ {z}. Intuitively, any
two objects in a set A; are considered to be at equal distance
from z, while among two objects u € A; and v € A; with
i < j the object u is assumed to be the closer to x.

Moreover, every time that the algorithm evokes
Oracle(u,v,x), and learns, e.g., that v <, v, the data
structure O, should be updated to reflect this information.
In particular, if the algorithm has learned so far the order
relationships

(16)

Uy g V1, U2 g V2, oo, U g V4 )

O, .order() should return the objects in A sorted in such
a way that all relationships in (I7)) are respected. In partic-
ular, object u; should appear before vy, us before v, and
so forth. To that effect, the data structure should also support
an operation called O,.add(u,v) that adds the order relation-
ship u <, v to the constraints respected by the output of
O,.order().

A simple (but not the most efficient) way of implementing
this data structure is to represent order relationships through
a directed acyclic graph. Initially, the graph’s vertex set is N’
and its edge set is empty. Every time an operation add(u,v)
is executed, an edge is added between vertices v and v. If the
addition of the new edge creates a cycle then all nodes in the



cycle are collapsed to a single node, keeping thus the graph
acyclic. Note that the creation of a cycle u - v — ... —
w — w implies that u ~, v ~, ... ~, w, i.e., all these nodes
are at equal distance from .

Cycles can be detected by using depth-first search over
the DAG [5]]. The sets A; returned by order() are the sets
associated with each collapsed node, while a total order among
them that respects the constraints implied by the edges in
the DAG can be obtained either by depth-first search or by a
topological sort [S]]. Hence, the add() and ordex() operations
have a worst case cost of ©O(n + m), where m is the total
number of edges in the graph.

Several more efficient algorithms exist in literature (see,
for example, [2], [17]], [23]), where the best (in terms of
performance) proposed by [2] yielding a cost of O(n) for
order() and an aggregate cost of at most O(n? logn) for any
sequence of add operations. We stress here that any of these
more efficient implementations could be used for our purposes.
We refer the reader interested in such implementations to [2],
[17], [23]] and, to avoid any ambiguity, we assume the above
naive approach for the remainder of this work.

C. Greedy Content Search

Our learning algorithm implements greedy content search,
as described in Section [[V-A] in the following manner. When
a new query is submitted to the database, the algorithm first
selects a source s uniformly at random. It then performs greedy
content search using a memoryless selection policy F with
distribution éz ie.,

Pr(F(Hp, zx) = w) = by, (w) w € N. (18)

Below, we discuss in detail how @x, x € N, are computed.

When the current object xx, £k = 0,1,..., is equal to =z,
the algorithm evokes O, .order() and obtains an ordered
partition Ay, Ay, ..., A; of items in N\ {z}. We define

TwEA;
Fw) = Y Ay, weN\ {a}.
j=1

This can be seen as an “estimator” of the true rank r, given
by (TI). The distribution £, is then computed as follows:
aw) 1—e€ €
To(w) Z, n—1’

lp(w) = weN\{z}, (19
where Z, = 2 we {z} A(w) /7 (w) is a normalization factor
and ¢ > 0 is a small constant. An alternative view of (I9)
is that the object proposed is selected uniformly at random
with probability €, and proportionally to ji(w;)/7(w;) with
probability 1—e. The use of € > 0 guarantees that every search
eventually finds the target ¢.

Upon locating a target ¢, any access to the oracle in the
history Hj can be used to update O;; in particular, a call
Oracle(u,v,t) that returns w implies the constraint v <; v,

which should be added to the data structure through O;.add(u, v).

Note that this operation can take place only at the end of the
greedy content search; the outcomes of calls to the oracle can
be observed, but the target ¢ is revealed only after it has been
located.

Our main result is that, as 7 tends to infinity, the above
algorithm achieves performance guarantees arbitrarily close
to the ones of Theorem [3| Let F(7) be the selection policy
defined by (I8) at timeslot 7 and denote by

Cr) = 3 AMs,t) S ECp,(s.0)]

(s,t)EN XN seEN

the expected search cost at timeslot 7. Then the following
theorem holds:

Theorem 5: Assume that for any two targets u,v € N,
Au,v) > 0.

6¢” () H (1) Himax (1)

(1—¢
where ¢(u), H(p) and Hpyax(p) are the doubling parameter,
the entropy and the max entropy, respectively, of the target
distribution .
The proof of this theorem can be found in Section

limsup C(7) <

T—00

VII. ANALYSIS

This section includes the proofs of our theorems.

A. Proof of Theorem

We first prove that the randomized version of SWND is no
harder than its deterministic version. Define DETSWND to be
the same as SWND with the additional restriction that S is
deterministic. For any random variable S C N that satisfies
|S| < B, there exists a deterministic set S* s.t. |[S*| < 8 and
Cs- < Cs. In particular, this is true for

S*=arg min Cg(s,t).

SCN,IS|<B
Thus, SWND is equivalent to DETSWND. In particular, any
solution of DETSWND will also be a solution of SWND.
Moreover, given a solution S of SWND any deterministic .S
belonging to the support of S will be a solution of DETSWND.
We therefore turn our attention on DETSWND. Without

loss of generality, we can assume that the weights A(s,t)
are arbitrary non-negative numbers, as dividing every weight
by > ., A(s,t) does not change the optimal solution. The
decision problem corresponding to DETSWND is as follows

DETSWND-D: Given an embedding of A into (M, d),

a set of local edges £, a non-negative weight func-

tion A, and two constants « > 0 and 8 > 0, is

there a directed edge set S such that |S| < § and

Z(s,t)x/\/’x./\/ A(s,1)Cs(s,t) < a?
Note that, given the set of shorcut edges S, forwarding a
message with greedy forwarding from any s to ¢ can take
place in polynomial time. As a result, DETSWND-D is in
NP. We will prove it is also NP-hard by reducing the following
NP-complete problem to it:

DOMINATINGSET: Given a graph G(V,E) and a

constant k, is there a set A C V such that |4| < k

and I'(A) U A =V, where I'(A) the neighborhood

of A in G?

Given an instance (G(V, E), k) of DOMINATINGSET, we

construct an instance of DETSWND-D as follows. The set N/



Fig. 3. A reduction of an instance of DOMINATINGSET to an instance
of DETSWND-D. Only the nodes on the grid that have non-zero
incoming or outgoing demands (weights) are depicted. The dashed
arrows depict A1, the set of pairs that receive a weight ;. The solid
arrows depict As, the set of pairs that receive weight Wo.

in this instance will be embedded in a 2-dimensional grid, and
the distance metric d will be the Manhattan distance on the
grid. In particular, let n = |V| be the size of the graph G and,
w.lo.g., assume that V' = {1,2,... n}. Let

ly = 6n + 3, (20)
01 =nly+2=6n>+3n+2, (1)
by =01 +3n+1=06n%+6n+3. (22)
U3 =Ly =6n+3, (23)

We construct a nq X ng grid, where ny = (n—1) - ¢+ 1 and
no = £1 + ¢5 + ¢3 + 1. That is, the total number of nodes in
the grid is

N=[n—-1)-Lo+1] (li + Lo+l + 1) = O(n").

The object set A will be the set of nodes in the above grid,
and the metric space will be (Z?2, d) where d is the Manhattan
distance on Z2. The local edges £ is defined according to (8]
with r = 1, i.e., and any two adjacent nodes in the grid are
connected by an edge in L.

Denote by a;, ¢ = 1,...,n, the node on the first column of
the grid that resides at row (i — 1)¢y + 1. Similarly, denote by
bi, ¢; and d; the nodes on the columns (¢; +1), (¢1 +45+1)
and (¢ + ¢5 + ¢3 + 1) the grid, respectively, that reside at the
same row as a;, ¢ = 1,...,n. These nodes are depicted in
Figure |3| We define the weight function A(4, j) over the pairs
of nodes in the grid as follows. The pairs of grid nodes that
receive a non-zero weight are the ones belonging to one of
the following sets:

A1 = {(az,bl) | ’L e V},

Ay = {(bi, b;) | (i,7) € EYU{(ci,dy) | (i, 5) € EYU{(ci, di) | i

A3 = {(ai,di) | 1€ V}

The sets A; and A, are depicted in Fig. 3] with dashed and
solid lines, respectively. Note that |A;| = n as it contains one
pair for each vertex in V, |As| = 4|E| 4+ n as it contains
four pairs for each edge in E' and one pair for each vertex in
V, and, finally, |A3| = n. The pairs in A; receive a weight
equal to Wy = 1, the pairs in Ay receive a weight equal to

Wy = 3n + 1 and the pairs in Aj receive a weight equal to
Wy =1.

da

ds

\ — tm A A3~

A={1,4} ai dy

1 to

da as b [ do
2

ds as 3 ds

?/ & da
as 5 Cs ds
Fig. 4. A “yes” instance of DOMINATINGSET and the corresponding
“yes” instance of DETSWND-D. The graph on the left is can be
dominated by two nodes, 1 and 4. The corresponding set S of shortcut

contacts that satisfies the constraints of DETSWND-D is depicted on
the right.

For the bounds « and 3 take

a = 2W; M1|+W21A2|+3L43|W3

= (Bn+1)4|E|+n)+5n (24)
and
B = |As+n+k
= 4|E|+2n+k. (25)

The above construction can take place in polynomial time
in n. Moreover, if the graph G has a dominating set of size no
more than k, one can construct a deterministic set of shortcut
edges S that satisfies the constraints of DETSWND-D.

Lemma 6: If the instance of DOMINATINGSET is a “yes”
instance, then the constructed instance of DETSWND-D is
also a “yes” instance.

Proof: To see this, suppose that there exists a dominating
set A of the graph with size | A| < k. Then, for every i € V\ A,
there exists a j € A such that ¢ € T'(j), i.e., 4 is a neighbor of
j. We construct S as follows. For every i € A, add the edges
(a;, b;) and (b;,¢;) in S. For every ¢ € V' \ A, add an edge
(ai,b;) in S, where j is such that j € A and i € I'(j). For
every pair in Ao, add this edge in S. The size of S is

S| = 241+ (V] = |A]) + |42
= |Al+n+4E|+n
< 4|E|+2n+k.

Moreover, the weighted forwarding distance is

C¢ = > WiCs(i,j)+ Y WaCs(i,j)+ »_ WsCs(i, ).
(i,5)€ AL (i,4)€A2 (i,5)€As

g\’i/l}ave
’ > WaCs(i,j) = Wa| Ay

(4,5)€A2

as every pair in Ay is connected by an edge in S. Consider
now a pair a;, b;) € Ay, i € V. There is exactly one edge in
S departing from a; which has the form (a;, b;), where where
either 7 = ¢ is or 7 a neighbor of 7. The distance of the closest
local neighbor of a; from b; is £; — 1. The distance of b; from
b; is at most n - £y. As {1 — 1 = nly + 2 — 1 > nly greedy
forwarding will follow (a;, b;). If b; = b;, then Cs(a;, b;) = 1.
If b; # b;, as j is a neighbor of 4, S contains the edge (b;, b;).



Hence, if b; # b;, Cs(a;, b;) = 2. As i was arbitrary, we get
that
> WiCsli,j) < 2Win.
(1,7)€A1

Next, consider a pair (a;,d;) € As. For the same reasons as
for the pair (a;, b;), the shortcut edge (a;, b;) in S will be used
by the greedy forwarding algorithm. In particular, the distance
of the closest local neighbor of a; from d; is 1 +fs + ¢35 — 1
and d(bj,d;) is at most o + f3 +n - £y. As €1 — 1 > nly,
greedy forwarding will follow (a;, b;).

By the construction of S, b; is such that j € A. As a result,
again by the construction of S, (b;,¢;) € S. The closest local
neighbor of b; to d; has ¢y + ¢3 + d(b;,b;) — 1 Manhattan
distance from d;. Any shortcut neighbor b, of b; has at least
¢y + {3 Manhattan distance from b;. On the other hand, c;
has ¢35 + d(b;,b;) Manhattan distance from d;. As ¢y > 1
and ¢y > nly > d(b;,b;), the greedy forwarding algorithm
will follow (bj;,c;). Finally, as Ay C S, and j = i or j is
a neighbor of 4, the edge (c;,d;) will be in S. Hence, the
greedy forwarding algorithm will reach d; in exactly 3 steps.
As i € V was arbitrary, we get that

> WsCs(i,j) = 3Wan.
(Z])€A3

Hence, -
Cfgﬂ < 2W1n + W2|A2| + 3W37’L =

and, therefore, the instance of DETSWND-D is a “yes” in-
stance. |

To complete the proof, we show that a dominating set of size
k exists only if there exists a S that satisfies the constraints
in constucted instance of DETSWND-D.

Lemma 7: If the constucted instance of DETSWND-D is a
“yes” instance, then the instance of DOMINATINGSET is also
a “yes” instance.

Proof: Assume that there exists a set S, with |S| < /3 such
that the augmented graph has a weighted forwarding distance
less than or equal to «. Then

A, CS. (26)

To see this, suppose that As ¢ S. Then, there is at least one
pair of nodes (i,7) in As with Cs(é,j) > 2. Therefore,

C¥>1-Wi|Ay|+[(|A2] — 1) - 1+2]- Wa + 1 W3|43]
= Bn+1)4|E|+n)+5n+ 1>a,

a contradiction.

Essentially, by choosing W5 to be large, we enforce that all
“demands” in A, are satisfied by a direct edge in S. The next
lemma shows a similar result for A;. Using shortcut edges to
satisfy these “demands” is enforced by making the distance
{1 very large.

Lemma 8: For every i € V, there exists at least one shortcut
edge in & whose origin is in the same row as a; and in a
column to the left of b;. Moreover, this edge is used during
the greedy forwarding of a message from a; to b;.

Proof: Suppose not. Then, there exists an ¢ € V' such that
no shortcut edge has its origin between a,; and b;, or such an

edge exists but is not used by the greedy forwarding from a;
to b; (e.g., because it points too far from b;). Then, the greedy
forwarding from a; to b; will use only local edges and, hence,
Cs(a;,b;) = ¢1. We thus have that

C_fg-) Z €1+27’l—1+W2|A2|
@ 6245041 + Way| Ay

On the other hand, by (24) o = 5n + Wa|As| so C’fs“ >, a
contradiction. [ ]
Let S be the set of all edges whose origin is between some
a; and b;, ¢ € V, and that are used during forwarding from
this a; to b;. Note that Lemma (8| implies that |S7| > n. The
target of any edge in .S; must lie to the left of the 2¢; + 1-th
column of the grid This is because the Manhattan distance of
a; to b; is £1, so its left local neighbor lies at /1 — 1 steps from
b;. Greedy forwarding is monotone, so the Manhattan distance
from b; of any target of an edge followed subsequently to route
towards b; must be less than /7.

Essentially, all edges in S; must point close enough to b;,
otherwise they would not be used in greedy forwarding. This
implies that, to forward the “demands” in A3 an additional
set of shortcut edges need to be used.

Lemma 9: For every i € V, there exists at least one shortcut
edge in S that is used when forwarding a message from a; to
d; that is neither in S; nor in As.

Proof: Suppose not. We established above that the target
of any edge in S is to the left of the 2¢; + 1 column. Recall
that Ay, = {(bz,b]) ‘ (Z,]) S E} U {(Ci,dj) | (Z,j) € E} U
{(c;,d;) | © € V'}. By the definition of b;, i € V, the targets
of the edges in {(b;,b;) | (,7) € E} lie on the (¢4 + 1)-
th column. Similarly, the origins of the edges in {(c;,d;) |
(i,7) € EYU{(ci,d;) | i € V} lie on the £; + {5 + 1-th
column. As a result, if the lemma does not hold, there is a
demand in As, say (a;,d;), that does not use any additional
shortcut edges. This means that the distance between the 2¢+-1
and the ¢; ¢+ 1-th column is traversed by using local edges.
Hence, Cs(a;,d;) > 2 — €141 as at least one additional step
is needed to get to the 2¢; 4 1-th column from a;. This implies
that

C'g) :2n+WQ|A2‘+€2—1€1

>
@ W2|A2|+5’I’L+1 >,

a contradiction. [ ]
Let S3 = S\ (S1 U As). Lemma E] implies that S3 is non-
empty, while and Lemma|g8] along with the fact that |S| <
B = |Az| +n+k, imply that |S5| < k. The following lemma
states that some of these edges must have targets that are close
enough to the destinations d;.

Lemma 10: For each ¢ € V, there exists an edge in S3
whose target is within Manhattan distance 3n + 1 of either d;
or ¢j, where (c;,d;) € As. Moreover, this edge is used for
forwarding a message from a; to d; with greedy forwarding.

Proof: Suppose not. Then there exists an ¢ for which
greedy forwarding from a; to d; does not employ any edge
fitting the description in the lemma. Then, the destination d;
can not be reached by a shortcut edge in either S3 or A; whose
target is closer than 3n + 1 steps. Thus, d; is reached in one



of the two following ways: either 3n + 1 steps are required in
reaching it, through forwarding over local edges, or an edge
(¢j,d;) in Ay is used to reach it. In the latter case, reaching
¢; also requires at least 3n + 1 steps of local forwarding, as
no edge in As or Ss has an target within 3n steps from it,
and any edge in S; that may be this close is not used (by the
hypothesis). As a result, Cs(a;,d;) > 3n + 2 as at least one
additional step is required in reaching the ball of radius 3n
centered around d; or ¢; from a,. This gives

C'fg” 25H+W2‘A2|+1 > «,

a contradiction. ]
When forwarding from a; to d;, @ € V, there may be more than
one edges in S fitting the description in Lemma [I0] For each
1 € V, consider the last of all these edges. Denote the resulting
subset by S%. By definition, |S5| < |S5| < k. For each i,
there exists exactly one edge in S4 that is used to forward a
message from a; to d;. Moreover, recall that £y = ¢35 = 6n+3.
Therefore, the Manhattan distance between any two nodes in
{e1,...,en} U{dr,...,dp} is 2(3n+1) + 1. As a result, the
targets of the edges in S5 will be within distance 3n + 1 of
exactly one of the nodes in the above set.

Let A C V be the set of all vertices i € V such that the
unique edge in S% used in forwarding from a; to d; has an
target within distance 3n + 1 of either ¢; or d;. Then A is a
dominating set of G, and |A| < k. To see this, note first that
|A] < k because each target of an edge in S} can be within
distance 3n + 1 of only one of the nodes in {cy,...,c,} U
{di,...,d,}, and there are at most k edges in S%.

To see that A dominates the graph G, suppose that j €
V'\ A. Then, by Lemma the edge in 5% corresponding to ¢
is either pointing within distance 3n+1 of either d; or a ¢; such
that (c;,d;) € As. By the construction of A, it cannot point
in the proximity of d;, because then j € A, a contradiction.
Similarly, it cannot point in the proximity of c;, because then,
again, j € A, a contradiction. Therefore, it points in the
proximity of some ¢;, where ¢ # j and (c;,d;) € As. By the
construction of A, i € A. Moreover, by the definition of A,
(ci,d;) € Ag if and only if (,j) € E. Therefore, j € T'(A).
As j was arbitrary, A is a dominating set of G. [ |

B. Proof of Theorem [2]

According to @ the g)robability that object x links to y
is given by £, ( where

Zy m2(y)?
7, = Z 1(y)
=)

is a normalization factor bounded as follows.
Lemma 11: For any x € N, let 2* € ming (7 \ {z}) be

a target in 7 that belongs to the set of closest targets to x.
Then

Zx <1+ hl(l//.l,(I*)) < 3Hmax-

Proof: Sort the target set 7 from the closest to furthest
object from z and index objects in an increasing sequence
i =1,...,k, so the objects at the same distance from z receive
the same index. Let A;, i = 1,...,k, be the set containing

objects indexed by i, and let p; = p(A;) and po = p(x).
Furthermore, let Q; = > _, pt;. Then Z, = S &
Define f;(r): RT — R as
1
falr) = = = p(z).

r

Clearly, fu(g;) = Z;’:l pj, for i € {1,2..., k}. This means
that we can rewrite 2, as
k
Zy = (f2(1/Qi) = f(1/Qi-1))/Q:.
i=1

By reordering the terms involved in the sum above, we get

Z = g /Qk+ZfT1/Q (o-a):

First note that Q;, = 1, and second that since f,(r) is a
decreasing function,

1/Q1

Zy < 1*M0+/ fT(T)dT
1/Qk
1 0 41 L
= _—— n—
Ql Q1

< 1+1In <l+lIn——

Mo + Ha p(z*)

as p(z*) < wq, for z* any object in A;. To conclude the
proof, observe that given that the smallest probability must
be smaller than 0.5, we have that Hpax > logy 2 = 1. Also
Inz = log, 2/ log, e, so In ( =) < 2H,,.«; the lemma there-
fore follows. [ ]

Given the set S, recall that Cs(s,t) is the number of steps
required by the greedy forwarding to reach t € N from s € NV.

We say that a message at object v is in phase j if
27 p(t) < ri(v) <27 p(t).

Notice that the number of different phases is at most logs, 1/1(t).
We can write Cs(s,t) as

CS(S,t)=X1+X2—|—-~-—|—X10g 27

u(lt) ’
where X; are the hops occurring in phase j.Assume that j >
1, and let

Iz{weN:rt(wg”;”)}.

The probability that v links to an object in the set I, and hence

moving to phase j — 1, is
1 p(w)
E 4, = —
o Zy wze; 7y (W

wel

Let p1:(r) = p(By(r)) and p > 0 be the smallest radius such
that u:(p) > r¢(v)/2. Since we assumed that j > 1 such a
p > 0 exists. Clearly, for any r < p we have u.(r) < r4(v)/2.
In particular,

1 (p/2)

On the other hand, since the doubling parameter is c(u) we
have

1
< irt(v). (28)

i(p/2) > ——pa(p) > (29)

()



Therefore, by combining and we obtain
1

2¢(p)

Let I, = By(p/2) be the set of objects within radius p/2 from
t. Then I, C I, so

Zev(w)zzi >

wel Y wel,

n) < mp/2) < gr@. G0

p(w)

ry(w)’

By triangle inequality, for any w € I, and y such that d(v, y) <
d(v,w) we have

—~
S]
o

d(t,y) < d(v,y)+d(v,1)
< d(v,w) +d(v,t)
(%) d(t,w) +d(v,t) + d(v,t)
© %d(v, 1) + d(v, ) + d(v, 1)
5
= 5 (U’t)v

where in (a) and (b) we used the triangle inequality and in
(¢) we used the fact that p/2 < d(v,t)/2. This means that
ry(w) < pe(3d(v,t)), and consequently, 7, (w) < c2(p)re(v).
Therefore,

1 Y, i(w)
Zy E(u)ri(v)
i pe(p/2)

Zy A (p)re(v)

By (0], the probability of terminating phase j is uniformly
bounded by

> t(w) >

wel

1
Ly (w) > min ——————
1%[ ( v 263 () Zy
Lem. [T 1 (31)
6¢3 (1) Hmax (1)

As a result, the probability of terminating phase j is stochas-
tically dominated by a geometric random variable with the
parameter given in (BI). This is because (a) if the current
object does not have a shortcut edge which lies in the set I,
by Property [T} greedy forwarding sends the message to one of
the neighbours that is closer to ¢ and (b) shortcut edges are
sampled independently across neighbours. Hence, given that ¢
is the target object and s is the source object,

E[Xs,t] < 6¢* (1) Humax (11)- (32)

Combining 27), (32), and using the linearity of expecta-
tion, we get

E[CS (s, t)] < 603(/L)HmaX(,u) log L
(1)
and, thus, Cs < 6¢®(p)Hpax (1) H (). Finally, the upper
bound of n is implied by Property (I} Indeed, Property |1| im-
plies that the algorithm reduces the distance to the target at
each step, so all nodes visited are distinct; since there are no
more than n nodes, the process terminates within at most n
steps.

C. Proof of Theorem 3]

The idea of the proof is very similar to the previous one
and follows the same path. Recall that the selection policy is
memoryless and determined by

Pr(F(Hi,xr) = w) = £y, (w).

We assume that the desired object is ¢ and the content search
starts from s. Since there are no local edges, the only way
that the greedy search moves from the current object xj, is by
proposing an object that is closer to . Like in the SWND case,
we are in particular interested in bounding the probability that
the rank of the proposed object is roughly half the rank of the
current object. This way we can compute how fast we make
progress in our search.

As the search moves from s to ¢ we say that the search is
in phase j when the rank of the current object xj, is between
27 pu(t) and 291 u(t). As stated earlier, the greedy search algo-
rithm keeps making comparisons until it finds another object
closer to t. We can write C'r(s,t) as

C]:(S,t) :X1+X2+"'+Xlog 1,
w(t)

where X; denotes the number of comparisons done by com-
parison oracle in phase j. Let us consider a particular phase j
and denote I the set of objects whose ranks from ¢ are at most
r¢(xk)/2. Note that phase j will terminate if the comparison
oracle proposes an object from set /. The probability that this
happens is

Z Pr(]-'(’Hk,xk) = IU) = Z éxk,w-

wel wel

Note that the sum on the right hand side depends on the dis-
tribution of shortcut edges and is independent of local edges.
To bound this sum we can use (31). Hence, with probability

Suppose now that j = 1. By the triangle inequality, B, (d(v, t)) Cat least 1/(6¢*(1) Hax(11)), phase j will terminate. In other

B;(2d(v,t)) and 7,(t) < c¢(p)r:(v). Hence,

1 t 1 1
> L PO >
Zy c(p)re(v) — 2c(p)Zy — 6¢(pt) Hmax (1)
since object v is in the first phase and thus p(t) < ri(v) <
2u(t). Consequently,

E[X1]s,t] < 6¢(p) Hmax (1) (33)

words, using the above selection policy, if the current object
xy, is in phase j, with probability 1/(6¢®(1)Hmax(p2)) the
proposed object will be in phase (j—1). This defines a geomet-
ric random variable which yields to the fact that on average
the number of queries needed to halve the rank is at most
6¢(p) Hmax or E[Xj|s,t] < 6c(u)®Hmax. Taking average
over the demand )\, we can conclude that the average number
of comparisons is less than C'r < 6¢3 () Hypax (1) H (12)-



D. Proof of Theorem

Our proof amounts to constructing a metric space and a tar-
get distribution y for which the bound holds. Our construction
will be as follows. For some integers D, K, the target set N/
is taken as N = {1,..., D}¥. The distance d(z,y) between
two distinct elements x,y of N is defined as d(z,y) = 2™,
where

m=max{i € {1,..., K} : (K —1i) #y(K —i)}.

We then have the following

Lemma 12: Let i be the uniform distribution over N. Then
(i) ¢(u) = D, and (ii) if the target distribution is y, the optimal
average search cost C* based on a comparison oracle satisfies
Cr > KA.
Before proving Lemma we note that Theorem {4| immedi-
ately follows as a corollary.

Proof: Part (i): Let z = (z(1),...2(K)) € N, and fix

r > 0. Assume first that < 2; then, the ball B(z,r) contains
only x, while the ball B(z, 2r) contains either only z if r < 1,
or precisely those y € A/ such that

(y(1),...,y(K —1)) = (z(1),...

if » > 1. In the latter case B(x,2r) contains precisely D
elements. Hence, for such r < 2, and for the uniform measure
on N, the inequality

w(B(w,2r)) < Dp(B(x, 7))

(K —1))

(34)

holds, and with equality if in addition r > 1.

Consider now the case where r > 2. Let the integer m > 1
be such that r € [2™,2™+1), By definition of the metric d on
N, the ball B(z,r) consists of all y € A/ such that

(y(1)7 coy(K = m)) = (:C(l), s 737(K - m))7

but choosing for its (K — Lo+1)-th entry one that has not been
proposed so far. It is easy to see that, with this strategy, the
number of additional proposals after xy needed to leave this
phase is uniformly distributed on {1,...D — 1}, the number
of options for the (K — Lo + 1)-th entry of the target.

A similar argument entails that the number of proposals
made in each phase equals 1 plus a uniform random variable
on {1,...,D—1}. It remains to control the number of phases.
We argue that it admits a Binomial distribution, with param-
eters (K, (D — 1)/D). Indeed, as we make a proposal which
takes us into a new phase, no information is available on the
next entries of the target, and for each such entry, the new
proposal makes a correct guess with probability 1/D. This
yields the announced Binomial distribution for the numbers
of phases (when it equals 0, the initial proposal x( coincided
with the target).

Thus the optimal number of search steps C' verifies C' >
Zile(l +Y;), where the Y; are i.i.d., uniformly distributed
on{1,...,D—1}, and independent of the random variable X,
which admits a Binomial distribution with parameters (X, (D—
1)/D). Thus using Wald’s identity, we obtain that IE[C] >
E[X]E[Y1], which readily implies (ii). [ |

Note that the lower bound in (ii) has been established for
search strategies that utilize the entire search history. Hence,
it is not restricted to memoryless search.

E. Proof of Theorem [3]
Let A, = sup e |4(x) — p(z)|. Observe first that, by the
weak law of large numbers, for any § > 0

li_}rn Pr(A, >9)=0. (35)

i.e., fi converges to y in probability. The lemma below states,
for every t € N, the order data structure O; will learn the

and hence contains D™"(KX:™) points. Similarly, the ball B(z, 2r)correct order of any two objects u,v in finite time.

contains D™+ points. Hence also holds when
r > 2. Part (ii): We assume that the comparison oracle, in
addition to returning one of the two proposals that is closer to
the target, also reveals the distance of the proposal it returns
to the target. We further assume that upon selection of the
initial search candidate x, its distance to the unknown target
is also revealed. We now establish that the lower bound on C*
holds when this additional information is available; it holds a
fortiori for our more restricted comparison oracle.

We decompose the search procedure into phases, depending
on the current distance to the destination. Let L be the integer
such that the initial proposal z is at distance 220 of the target
t, i.e.

(x0(1),...,20(K — Lg)) =
wo(K —Lo+1) #

(t(1),...,t(K — Lg)),
t(K — Lo+ 1).

No information on ¢ can be obtained by submitting pro-
posals = such that d(x,zg) # 2Lo Thus, to be useful, the
next proposal & must share its (K — Lg) first components
with xg, and differ from zg in its (K — Ly + 1)-th entry.
Now, keeping track of previous proposals made for which the
distance to t remained equal to 2Lo_ the best choice for the next
proposal consists in picking it again at distance 2%° from z,

Lemma 13: Consider u,v,t € N such that v <; v. Then,
the order data structure in ¢ evokes O;.add(u,v) after a finite
time, with probability one.

Proof: Recall that O;.add(u,v) is evoked if and only if a
call Oracle(u,v,t) takes place and it returns u. If u <; v
then Oracle(u,v,t) = wu. If, on the other hand, u ~; v,
then Oracle(u, v, t) returns u with non-zero probability. It thus
suffices to show that, for large enough 7, a call Oracle(u, v, t)
occurs at timeslot 7 with a non-zero probability. By the hy-
pothesis of Theorem [5} A(u,t) > 0. By (I9), given that the
source is u, the probability that F(u) = v conditioned on /i
is
iu(v) > plv)—A, 1—e € 5

I+(n—-1)A,n—-1 n-1

nw)-A,
(14+(n—=1)A,)(n—1)

as Z, <n—1and |ji(z) — p(z)| < A, for every = € N.
Thus, for any J > 0, the probability that is lower-bounded by
: p(v) =6

Aw, t) Pr(F(u) =v) > ———=
() Pr(Fu) = v) > HE s

By taking § > 0 smaller than u(v), we have by that there
exists a 7* s.t. for all 7 > 7* the probability that Oracle(u, v, t)
takes place at timeslot 7 is bounded away from zero, and the
lemma follows. [ ]

Pr(A, <9).



Thus if ¢ is a target then, after a finite time, for any two u,v €
N the ordered partition Ay, ..., A; returned by O;.order()
will respect the relationship between w,v. In particular for
u € A;v € Ay, if u ~; v then ¢ = 4/, while if u <; v then
i < i'. As a result, the estimated rank of an object u € A;

w.r.t. ¢t will satisfy
M(u)= Y p@)+ Y )

z€T x<pu zeN\T:z€A,;,i' <1

= r¢(u) + O(AM)

i.e. the estimated rank will be close to the true rank, provided
that Au is small. Moreover, as in Lemma it can be shown
that

Z, < 14log™" fi(v) = 1+log™ ! [y + O(A,)]

for v € N. From these, for A, small enough, we have that
for u,v € N,
£, (v)

w(v) + O(A —€)te

= M u)](l

Following the same steps as the proof of Theorem [2] we can
show that, given that A, < 4, the expected search cost is

n—1

upper bounded by % This gives us that
- 63 H Hopax -1
Or) < [F = 5= +00)| Pr(Ay < O)+5 = Pr(a, > 0)

where the second part follows from the fact that, by using
the uniform distribution with probability €, we ensure that the
cost is stochastically upper-bounded by a geometric r.v. with
paramete

6¢ H H s
i-o

As this is true for all small enough delta, the theorem follows.

limsup C(7) <

T—>00

+0(5).

VIII. EXTENSIONS

In this section we discuss two possible extensions to the
problem of content search through comparisons. The first one
is about empowering the comparison oracle, namely, assuming
that one has access to a stronger oracle which is able to return
the most similar object to the target among a set of objects. If
we choose the size of the set to be equal to two, we are back
to our previous framework. The second one is about content
search when we lift the assumption that objects are embedded
in a metric space.

A. Content Search With a Proximity Oracle

A proximity oracle is an oracle that, given a set A of size
at most « and a target ¢, returns the closest object to ¢t. More
formally,

Oracle(A,t) =« if z xy,Va,y € A. (36)

Note that the comparison oracle is a special case of the prox-
imity oracle where k = |A| = 2. Moreover, one can implement
a proximity oracle by accessing a comparison oracle  times.

Theorem 14: Given a demand A, consider the memoryless
and independent selection policy

K

i=1

Pr(F(Hy, zr) =

(wl, wa, ... ,wﬁ))
where ¢, (w;) is given by (12). Then the cost of greedy
content search is bounded as follows:

6c* ()
(1—-1/e)r

Proof: We assume that the target is object ¢ and the

content search starts from s. The only way that the greedy
search moves from the current object xj is by proposing a
set A that contains an object closer to t. Like in Section [3]
we are in particular interested in bounding the probability that
the rank of the proposed object is roughly half the rank of the
current object. This way we can compute how fast we make
progress in our search.

As the search moves from s to ¢ we say that the search is

in phase j when the rank of the current object xj is between
27 1u(t) and 271 pu(t). We can write Cx(s,t) as

C]:(Sat)

Cr < H () - Huax (1)

:X1+X2+"'+X10g

moON

where X; denotes the number of comparisons done by com-
parison oracle in phase j. Let us consider a particular phase
7 and denote I the set of objects whose ranks from ¢ are at
most 7;(xy)/2. Moreover, let the proposed set by the selection
policy be F(H,zr) = (w1, ws,...,w.). Note that phase j
will terminate if one of the objects (wy,ws, ..., w,) is from
set 1. We denote by F;,1 < i < k, the event that w; € I.
Note that Pr(Fy) = Pr(Fy) = --- = Pr(F;). Since F;’s are
independent, the probability that phase J terminates is

K

UF)=1-[[(1-PrF))

i=1

PI‘(Fl U FyU

To bound this from below, we use the following inequality by
Goemans and Williamson [15] (see also Ineq. (16) in Ageev
and Sviridenko [1]]):

1—H(1—yi)2(1—(1—1/m ) min{1, Zyl

> (1—1/e) min{l,Zyi}
i=1

We thus have two cases. If x Pr(Fy) < 1, then we obtain

Pr(FAfUFU---UF,) > (1—-1/e)sPr(Fy)

=(1—1/e)x (Z yy (wr )
wi €l

> (1- 1/6)“/(603(M)Hma)<(:u>)
If xPr(Fy) > 1 then we have
Pr(FLUFU-- U

F.)>(1-1/e)



Hence, with probability at least (1—1/€)r/(6¢®(11) Himax (1)), this selection policy is useful when the target set is only known

phase j will terminate. This defines a geometric random vari-
able which yields to the fact that on average the number of
queries needed to halve the rank is at most 6¢(4)3 Hyax /((1—
1/e)k) or E[Xj|s,t] < 6¢(p)®Hmax/((1 — 1/€)k). Taking

average over the demand ), we can conclude that the average
number of comparisons is less than

Cr < 6¢° (1) Humax () H (12) /(1 = 1/€)50).

B. Content Search Beyond Metric Spaces

Similarity between objects is a well defined relationship
even if the objects are not embedded in a metric space. More
specifically, the notation x <. y simply states that = is more
similar to z than y.

If the only information given about the underlying space
is the similarity between objects, then the maximum we can
hope for is for each object x € N sort other objects N\ y
according to their similarity to x.

Given the demand ), the target set 7 is completely speci-
fied. For any y € T let us define the rank as follows:

re(y) =Hz:2€T,2 <2y}

We say that y € T is the k-th closest object to x if r,(y) = k.
First note that the rank is in general asymmetric, i.e., 7, (y) #
ry(x). Second, the triangle inequality is not satisfied in gen-
eral, i.e, r,(y) £ ry(2) + r.(z). However the approximate
inequality as introduced in [[16] is always satisfied. More pre-
cisely, we say that the disorder factor D(j) is the smallest D
such that we have the approximate triangle inequality

r2(y) < D(rz(y) + r.(x)),

for all z,y,z € T. The factor D(u) basically quantifies the
non-homogeneity of the underlying space when the only given
information is the order of objects. Let the selection policy for
the non-metric space be defined as follows:

Pr(F(Hg, zx) = w)

) 7
for w € T. In case w ¢ T we define Pr(F(Hg, zx) = w) to
be zero.

It is of high interest to see whether we can still navigate
through the database when the characterization of the under-
lying space is unknown and only the similarity relationship
between objects is provided. This is the main theme of the
next theorem.

Theorem 15: Consider the above selection policy. Then for
any demand A, the cost of greedy content search is bounded
as

Cr < 7D(p)log®|T].

The proof of this Theorem is given below. Note again that
the selection policy is memoryless. Furthermore, it is univer-
sal in a sense that using this selection policy for any kind
of demands guarantees the search that only depends on the
cardinality of target set and its disorder factor. For instance,

a priory and the demand is not fully specified.

Proof: The selection policy in the non-metric space sce-
nario is given which implies that only objects in the target
set 7 are going to be proposed by the algorithm. Therefore,
except for the starting point xy = s, the algorithms navi-
gates only through the target set. The probability of proposing
w € T when xj, is the current object of the search is given
by

1 1
Zgy, Ty (W)’
where Z,, = >, o773, (w). Consequently,

7 — H‘7—|,1 ifx, €T,
Tk H\Tl if Tk ¢ T,

where H,, is the n-th harmonic number. Hence, z,, < 2log|T]|.
As the search moves from s to t we say that the search is
in phase j when the rank of the current object v # s with
respect to t is 27 < ry(v) < 29+, Clearly, there are only
log |T| different phases. The greedy search algorithm keeps
proposing to the oracle until it finds another object closer to
t. We can write Cx(s,t) as

Cr(s,t) = X1+ Xo+ -+ + Xiog |71 + X,

where X denotes the number of comparisons done by oracle
at the starting point until it goes to an object u € 7T such
that r5(u) < rs(t). As before X; (j > 0) is the number of
comparisons done by oracle until it goes to the next phase.

We need to differentiate between the starting point of the
process and the rest of it. Since unlike other objects pro-
posed by the algorithm, the starting object s may not be in
the target set. Let the rank of ¢ with respect to s be k,i.e.,
rs(t) = k. Then, the probability that the greedy search al-
gorithm proposes an object v € T such that ry(v) < rs(t) is
Z?Zl ﬁ < ﬁlﬂ' As aresult E[X;|s,t] < 2log|T]|. This
is the average number of comparisons performed by the oracle
until the greedy search algorithm escapes from the starting
object s.

Let the current object v # s be in phase j. We denote by

- {u:uGT,rt(u) < ”é”)}

the set of objects whose rank from ¢ is at most r4(v)/2.
Clearly, |I| = r¢(v)/2. The probability that the greedy search
proposes an object u € I (and hence going to the next phase)
is at least

Pr(F(Hg,z) = w) =

1 1 (9 r+(v)
2210g|7'| ro(w) = Tlog [TID(R)(re(w) + 7:(0))°

uel

where in (a) we used the approximate triangle inequality.
Since for u € I, we have r(u) < r(v)/2, the probability
of going from v to the next phase is at least 6D log|T]|.
Therefore, E[X|s,t] < 6Dlog|T].

Using the linearity of expectation,

E[Cx(s,t)] <6Dlog” |T| + 2log|T| < 7Dlog*|T]|.

The above conditional expectation does not depend on the
demand \. Hence, the expected search cost for any demand is
bounded as E[Cx] < 7D log® |T]|. [



IX. CONCLUSIONS

In this work, we initiated a study of CTSC and SWND
under heterogeneous demands, tying performance to the topol-
ogy and the entropy of the target distribution. Our study leaves
several open problems, including improving upper and lower
bounds for both CSTC and SWND. Given the relationship
between these two, and the NP-hardness of SWND, character-
izing the complexity of CSTC is also interesting. Also, rather
than considering restricted versions of SWND, as we did here,
devising approximation algorithms for the original problem is
another possible direction.

Earlier work on comparison oracles eschewed metric spaces
altogether, exploiting what where referred to as disorder in-
equalities [16], [22], [25]]. Applying these under heterogeneity
is also a promising research direction. Finally, trade-offs be-
tween space complexity and the cost of the learning phase
vs. the costs of answering database queries are investigated in
the above works, and the same trade-offs could be studied in
the context of heterogeneity.
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