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Abstract

An interference alignment perspective is used to identify the simplest instances (minimum
possible number of edges in the alignment graph, no more than 2 interfering messages at any
destination) of index coding problems where non-Shannon information inequalities are necessary
for capacity characterization. In particular, this includes the first known example of a multiple
unicast (one destination per message) index coding problem where non-Shannon information
inequalities are shown to be necessary. The simplest multiple unicast example has 7 edges in
the alignment graph and 11 messages. The simplest multiple groupcast (multiple destinations
per message) example has 6 edges in the alignment graph, 6 messages, and 10 receivers. For
both the simplest multiple unicast and multiple groupcast instances, the best outer bound based
on only Shannon inequalities is 2

5 , which is tightened to 11
28 by the use of the Zhang-Yeung non-

Shannon type information inequality, and the linear capacity is shown to be 5
13 using the Ingleton

inequality. Conversely, identifying the minimal challenging aspects of the index coding problem
allows an expansion of the class of solved index coding problems up to (but not including) these
instances.
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1 Introduction

The capacity of a general “Index Coding” communication network is one of the most intriguing
problems in network information theory. The index coding problem is simple to describe (only
one link of finite capacity) but difficult to solve (remains open in general), it is the original setting
for interference alignment [1, 2] but is only starting to be explored from an interference alignment
perspective [3, 4], and while it is a network coding problem itself, it has been shown to be repre-
sentative of all (including non-linear) network coding instances [5, 6]. The index coding problem
has also been shown recently to be essentially equivalent (up to linear solutions) to the so called
topological interference management problem [3], where the degrees of freedom of a partially con-
nected wireless interference network or the capacity of a partially connected wired network are
investigated with only a knowledge of the network topology available to the transmitters. As such
the index coding problem presents an opportunity to tackle some of the fundamental challenges
lying at the intersection of several open problems in network information theory.

1.1 Prior Work

Since its introduction in 1998 [1], many interesting instances of the index coding problem have
been studied from coding theoretic, graph theoretic, and information theoretic perspectives, leading
primarily to a variety of inner bounds (achievable schemes). The earliest inner bound, obtained
by Birk et al. in [1, 7], is the clique cover of an index coding side information graph. The clique
cover and its standard LP generalization, the fractional clique cover, correspond to orthogonal
scheduling (analogous to TDMA/FDMA) in the parlance of interference networks [3] — only non-
interfering groups of users are simultaneously scheduled for transmission. A linear programming
inner bound is introduced by Blasiak et al. in [8], based on higher order sub-modularity and
coincides with fractional hyperclique-cover number (reduces to fractional clique-cover number for
multiple unicast instances). The fractional clique cover inner bound is generalized to a partition
multicast inner bound by Tehrani et al. in [9]. The partition multicast approach corresponds to
CDMA in interference networks — pseudo-random precoding sequences are used with the length of
the sequences chosen to be just enough to provide each receiver enough equations so it can resolve
all symbols from the transmissions that it can hear concurrently with its desired transmission [3].
The local chromatic number is proposed as an inner bound by Shanmugam et al. in [10] based
on viewing the index coding problem as a vector assignment problem. This is equivalent to a
restricted form of interference alignment, sometimes known as one-to-one alignment (as opposed
to the more general concept of subspace alignment). For index coding problems that correspond
to undirected graphs (equivalently, bidirected graphs) all of the inner bounds mentioned above —
the fractional clique cover, partition multicast, the linear programming bound based on higher-
order submodularity, and the local chromatic number — are equivalent. They are also generally
suboptimal. A family of undirected graph based index coding problems with n nodes is presented
by Blasiak et al. in [8] where the index coding capacity is 1/3, but the best rate achievable by all

inner bounds mentioned above is no more than O
(

1
n1/4

)
. The inner bound that is tight for this

class of index coding problems is given by the min-rank function, which was originally introduced
by Yossef et al. in [7] and corresponds to the optimal scalar linear solution to the index coding
problem. However, even the min-rank bound is known to be suboptimal. First, it corresponds
to scalar linear coding capacity, which is generally outperformed by vector linear coding [11, 5].
Second, while the min-rank bound can be extended as shown in [12, 3] to find the best vector linear
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coding solution for a given number of symbols per message, it has also been shown by Blasiak et
al. and Rouayheb et al. for multiple groupcast index coding problems [13, 5], and by Maleki et al.
for multiple unicast index coding problems [4], that the best linear schemes are still not optimal
in general because they can be outperformed by non-linear schemes for certain instances of the
index coding problem. Therefore, none of the inner bounds discussed so far has the potential to be
generally optimal for the index coding problem.

1.2 Recent Progress: Random Coding and Interference Alignment Approaches

Two recently proposed approaches, while still in their infancy, offer new hope by bringing in new
machinery to attack the index coding problem. These are the random coding approach by Arbabjol-
faei et al. in [14], and the interference alignment perspective of Jafar et al. in [3, 4]. Random coding
has been a universal ingredient of capacity optimal schemes, and therefore presents a potentially
powerful “hammer” to the “nail” of index coding [14]. The random coding approach of [14] has so
far settled the capacity region for all instances of the multiple unicast index coding problem with
5 or fewer messages.1 The interference alignment perspective presents a different kind of hammer
(or perhaps a “jack knife” since it takes a finer view of the problem [14]), that has been extremely
successful in wireless networks where a variety of interference alignment schemes, both linear and
non-linear, have been developed to obtain degrees of freedom characterizations [2]. In addition to
symmetric instances of the index coding problem such as neighboring antidotes, neighboring inter-
ferers, X networks, and cellular topologies motivated by the topological interference management
problem [4], the interference alignment perspective has so far settled the symmetric capacity of the
class of multiple groupcast (which includes unicast as a special case) index coding problems where
each alignment set has either no cycles or no forks [3].

Admittedly, the accomplishments of either approach thus far are infinitesimal relative to the
full scope of the general index coding problem. However, the full strength of neither the random
coding approach nor the interference alignment approach has yet been exhausted. Indeed it is
apparent that both approaches have plenty of room to expand through capacity characterizations of
increasingly broader classes of the index coding problem. Continued efforts towards such expansions
are therefore well motivated. At the same time, it is also important to understand the limitations
of these approaches by identifying the challenges that lie ahead. To this end, we note that all index
coding capacity results obtained so far from random coding and interference alignment perspectives,
have relied on only Shannon inequalities for the outer bounds. One indication of a substantial
challenge could be the necessity of non-Shannon inequalities. Remarkably, for multiple unicast index
coding problems it is not known whether non-polymatroidal (non-Shannon, Ingleton) inequalities
are ever necessary. Therefore, we would like to find out if instances of multiple unicast index coding
exist where Shannon inequalities do not suffice, and if so, then we would like to identify the simplest
possible such instance. The emphasis on simplicity is important for the challenging aspects to be
as broadly relevant as possible.

1.3 Non-Shannon Inequalities

To characterize the information-theoretic/linear capacity of communication networks, it is impor-
tant to understand the fundamental limitations of entropy/vector spaces, in the form of information

1The capacity of an interesting sub-class of multiple unicast index coding problems with 6 messages, corresponding
to the topologies that can arise in a 6-cell network, is settled by Naderializadeh et al. in [15].
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inequalities/linear rank inequalities. Since linear coding schemes are only a special case of all possi-
ble coding schemes, linear rank inequalities are a proper subset of information inequalities. It is well
known that both entropy space and vector space satisfy the basic polymatroidal axioms, which is
equivalent to the non-negativeness of Shannon information measurements, also known as Shannon-
type information inequalities or basic inequalities [16]. With up to 3 random variables/subspaces,
all the information inequalities/linear rank inequalities coincide with the polymatroidal axioms
[17]. However, when the number of elements increases to 4, both information inequalities and
linear rank inequalities involve additional constraints beyond the polymatroidal axioms. For in-
formation inequalities, the first non-Shannon-type information inequality with 4 random variables
was discovered in 1998 by Zhang and Yeung [18], followed by many others, e.g., [19][20][21]. It is
shown by Matus that even with only 4 random variables, the list of non-Shannon-type information
inequalities is infinite [20]. For linear rank inequalities, Ingleton [22] showed a set of inequalities
that is not implied by basic inequalities, but when combined with them, constitutes a complete
characterization of all linear rank inequalities that must be satisfied by 4 subspaces of a vector
space [17]. However, Ingleton inequalities are still not enough to go beyond 4 subspaces [23][24].
Recent work finds all the linear rank inequalities for 5 subspaces (there are 24 such inequalities in
addition to the Shannon and Ingleton inequalities), while cases with more than 5 subspaces are
still open [24].

All these mathematical inequalities have found their usage and correspondence in network
coding studies [25][26]. Dougherty et al. in [27] have shown that Shannon inequalities are not always
sufficient for the general network coding problem. For index coding problems the insufficiency of
Shannon inequalities is established by Blasiak et al. in [8], albeit only in the context of multiple
groupcast index coding where each message is desired by multiple receivers. For multiple unicast
index coding, however, no example is known that shows that Shannon inequalities are insufficient.
For instance, the general outer bound for multiple unicast index coding presented in Theorem 1
of [14] is based directly on Shannon inequalities and it is noted afterwards that it is not known
whether the outer bound is tight in general. It is also notable that this bound is found to be tight
for all instances of multiple unicast index coding with 5 or fewer messages. For further details
about information inequalities and linear rank inequalities, we refer to the excellent tutorials in
[28][29] and references therein.

Since the notation and definitions used in this work are the same as in [3], we proceed directly
to the results. The relevant definitions from [3] are summarized for the sake of completeness in
Appendix A.

2 Results

2.1 Criteria for the Simplest Example

Our first goal is to prove that Shannon inequalities are insufficient even for multiple unicast index
coding, so that the outer bound in Theorem 1 of [14] cannot be tight in general. For such a result,
the simplest example is the most powerful. Therefore, we would like to find an example that involves
only those features that would make it a part of any interesting class of index coding problems. For
instance, a multiple unicast example would prove the insufficiency result for both multiple unicast
and the multiple groupcast settings, because multiple unicast settings are contained within the
class of multiple groupcast settings. So our example must be a multiple unicast setting. This is
especially critical because the insufficiency of Shannon inequalities is already shown for the more
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general groupcast setting [8].
Continuing the thought, even within the class of multiple unicast index coding problems, we

would like to identify the simplest example possible, for the result to hold as broadly as possible.
The idea of ‘simplicity’ can be quite subjective. However, coming from an interference alignment
perspective, we find it natural to interpret it in terms of the ‘type’ and ‘number’ of edges in the
alignment graph, as defined in [3].

The type of an alignment edge refers to whether the alignments that it demands2 are one-to-one
alignments or subspace-alignments. Let us elaborate on this distinction. Consider an interference
network where a receiver experiences interference from only two undesired messages. The principle
of interference alignment dictates that these two undesired transmissions should try to collectively
occupy as small a signal space as possible. Since there are only two interferers, the only way to
consolidate the interference space is for them to align with each other as much as possible. So what
is demanded is a one-to-one alignment. Now, consider a different scenario where the receiver sees
interference from three or more interferers. The principle of interference alignment again dictates
that these three or more undesired transmissions should try to collectively occupy as small a signal
space as possible. Note however, that a direct alignment of any interferer with any other interferer
is no longer the only way to consolidate the signals. For instance, one interferer may align itself
in the space spanned jointly by the others without even partially aligning with any of them on a
one-to-one basis. What is demanded here is the more general notion of subspace-alignment. Since
subspace-alignment includes one-to-one alignment as a special case, we naturally require that the
simplest example should have only one-to-one alignment demands, i.e., no receiver should see more
than two interferers.

The number of alignment conditions simply refers to the number of edges in the alignment
graph. Since each edge represents a desired alignment, the number of edges roughly corresponds
to the number of dependencies among the variables involved. By this understanding, the simplest
example is the one with the minimum number of dependencies, i.e., fewest edges in the alignment
graph. At this point we have identified the criteria that the simplest example should satisfy.

Criteria for the Simplest Example

1. Requires non-Shannon inequalities.

2. Is a multiple unicast index coding problem.

3. Each receiver sees no more than 2 interferers (one-to-one alignment demands).

4. Has the minimum number of edges in its alignment graph (among all examples that satisfy
the first three criteria).

Remark: While this definition of simplicity is motivated by the interference alignment perspec-
tive, other definitions may be interesting from other perspectives. For example, since the approach
taken by [14] involves solving all multiple unicast index coding problems up to a given number of
users, the simplest example in that sense might be the one with the minimum number of users, dis-
regarding the number of edges in the alignment graph and the restriction to one-to-one alignments.

2It is important to distinguish between an alignment demand, which represents an edge in the alignment graph,
and an alignment solution which could be the optimal vector space assignment. For example, even if all interference-
alignment demands are one-to-one, the optimal solution may require subspace alignments strictly beyond one-to-one
alignments. Such examples are not uncommon, e.g., one appears in Fig. 6 of this paper.

5



Note that it was not known a priori that an example satisfying our criteria even exists. However,
identifying these criteria helps us search for such an example. Our initial motivation in performing
this search was to either find the simplest such example, or to settle the capacity for this entire class
of index coding problems. What is remarkable is that in all instances that belong to this class,
for which the capacity was previously known, the capacity coincided with the internal conflict
bound (Corollary 4.13 of [3]), which is based only on Shannon inequalities. Specifically, in all
such cases that were previously solved, the symmetric capacity was equal to ∆

2∆+1 , where ∆ is
the minimum internal conflict distance of the alignment graph [3]. Based on this observation, our
initial expectation had been that the conflict bound may be always tight for this class of problems,
and therefore Shannon inequalities will be sufficient. However, the result turns out to be somewhat
unexpected. The conflict bound is indeed found to be tight for all networks in this class as long
as there are no overlapping cycles in the alignment graph, i.e., cycles that share an edge. However,
once we involve overlapping cycles we almost immediately run into the simplest example where
non-Shannon inequalities are necessary.

2.2 The Simplest Example where Non-Shannon Inequalities are Necessary

2.2.1 Construction

Figure 1: The Simplest Example of a Multiple Unicast Index Coding Problem where Non-Shannon In-
equalities are Necessary. (a) Red links represent antidotes (not all are shown), and (b) Red links show all
the interference links (complements of the antidote links), and (c) Interfering messages (missing antidotes)
at each destination are listed, and (d) Alignment graph (solid black edges) and conflict graph (dashed red
edges). Only internal conflicts are shown.

The simplest example where non-Shannon inequalities are necessary, is shown in Fig. 1. It is a
multiple unicast setting with 11 messages, in which no receiver sees more than 2 interferers (only
one-to-one alignment demands). Since the antidote graph in Fig. 1(a) has too many edges, the
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interference graph, which is the complement of the antidote graph, and is therefore quite sparsely
connected, is shown in Fig. 1(b) instead. The interfering messages at each receiver (equivalently,
the antidotes missing at each receiver) are also listed in Fig. 1(c) for convenience.

From an interference alignment perspective, the essence of the problem is captured by its align-
ment graph, shown in Fig. 1(d) with solid black edges. The alignment graph contains a node
for each message, and each edge connects two interferers that are seen by the same destination,
i.e., the pairs that are listed in Fig. 1(c). Note the remarkable simplicity of the alignment graph,
which involves only 7 alignment edges (solid black edges). As will be evident soon enough, the core
of the problem, which makes non-Shannon inequalities necessary, has to do mainly with the four
messages, W2,W3,W4,W5, that comprise the inner diamond. Messages W1,W6 create the requisite
internal conflicts for the inner diamond to set off non-Shannon inequalities. The remaining mes-
sages, W7,W8,W9,W10,W11, play only a marginal supporting role by demanding the alignments
that bring the inner diamond into being.

2.2.2 Necessity of Non-Shannon Inequalities

The necessity of non-Shannon inequalities is established in the following theorem.

Theorem 1 For the index coding instance of Fig. 1, the best possible outer bound value on the
symmetric capacity from only Shannon inequalities is 2

5 , whereas the Zhang-Yeung non-Shannon-
type information inequality yields the tighter outer bound value of 11

28 .

We present a sketch of the proof here. The details are in Section 4.1.
From the alignment graph, we can see that the minimal internal conflict distance ∆ = 2. From

Corollary 4.13 in [3], we get an outer bound of ∆
2∆+1 = 2

5 which is based on polymatroid axioms.

To show that 2
5 is the best outer bound that one can get with only Shannon inequalities, we use the

bound in [14], which includes polymatroidal (submodularity) axioms. As the bound is expressed
in the form of a T function defined over the power set of {1, 2, . . . , 11}, we will find an explicit
T function with Ri = 2

5 , i ∈ {1, 2, . . . , 11} that satisfies all the polymatroidal axioms. Details are
given in Section 4.1.

We then show that the outer bound can be tightened to 11
28 < 2

5 . This proof consists of two
parts. The first part uses the alignment chain W1−W3−W4,5 (symmetrically W6−W4−W2,3) to
obtain a lower bound on the dimensions occupied by the entropic space of the triangle comprised
of W2,W3,W4 (W3,W4,W5). This part only involves applying submodularity, i.e., Shannon-type
information inequalities. The second part deals with the diamond comprised of W2,W3,W4,W5.
Here we use the Zhang-Yeung non-Shannon-type information inequality to obtain an upper bound
for the dimensions occupied by the entropic space of the two triangles comprised of W2,W3,W4

and W3,W4,W5. Combining these two pieces yields the desired outer bound.

2.2.3 Vector Space Interpretation and Linear Capacity

Let us explore from a vector space perspective why we need a non-polymatroidal inequality. Why
do polymatroidal axioms not allow an outer bound smaller than 2

5? Let us associate with each
message Wi, the vector space Vi. We will denote the vector space spanned by the union and
intersection of spans of Vi and Vj as (Vi,Vj) and (Vi∩Vj), respectively. Suppose we assign (nor-
malized) subspace dimensions as dim(V2) = dim(V3) = dim(V4) = dim(V5) = 2

5 , dim(V2,V3) =
dim(V2,V4) = dim(V3,V4) = dim(V3,V5) = dim(V4,V5) = 3

5 , and dim(V2,V5) = dim(V2) +
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dim(V5) = 4
5 (because W2 and W5 conflict with each other, i.e., they cannot align) and finally,

for the two triangles that create the diamond shape in the alignment graph, dim(V2,V3,V4) =
dim(V3,V4,V5) = 4

5 . It is easy to verify that this dimension allocation satisfies all submodu-
larity constraints, so an outer bound smaller than 2

5 is not possible through polymatroidal ax-
ioms (submodularity) alone. Now let us see why the submodularity bound must be loose, i.e.,
why the given dimension allocation cannot be satisfied by any vector space assignment. Because
(V3,V4) occupies 3

5 dimensions, for the vector space (V2,V3,V4) to occupy 4
5 dimensions, V2

must have 1
5 new dimensions that have no intersection with (V3,V4). So it has only 1

5 re-
maining dimensions that can intersect with (V3,V4). But it needs to intersect with each of
V3 and V4 individually in 2

5 + 2
5 −

3
5 = 1

5 dimensions. Therefore V2 must intersect with V3

in the same 1
5 dimensional space within which it intersects with V4. Therefore, the intersect-

ing space of V2 with (V3,V4) must be the same as the intersecting space of V3 with V4, i.e.,
(V2 ∩ (V3,V4)) = (V2 ∩V3) = (V2 ∩V4) = (V3 ∩V4). The same arguments can be made for
the other triangle as well, i.e., (V5 ∩ (V3,V4)) = (V5 ∩V3) = (V5 ∩V4) = (V3 ∩V4). However,
this means that V2 and V5 must intersect in these dimensions as well. But this is a contradiction
because W2 conflicts with W5.

As mentioned earlier, this contradiction cannot be captured by polymatroidal inequalities alone.
However, the contradiction can be obtained as follows.

dim(V2 ∩V5) ≥ dim(V2 ∩ (V3 ∩V4)) + dim(V5 ∩ (V3 ∩V4))− dim(V3 ∩V4)

≥ dim(V2 ∩V3) + dim(V2 ∩V4)− dim(V2 ∩ (V3,V4))

+dim(V5 ∩V3) + dim(V5 ∩V4)− dim(V5 ∩ (V3,V4))− dim(V3,V4)

⇒ dim(V2) + dim(V5)− dim(V2,V5) ≥ dim(V2) + dim(V3)− dim(V2,V3)

+dim(V2) + dim(V4)− dim(V2,V4)

−dim(V2)− dim(V3,V4) + dim(V2,V3,V4)

dim(V5) + dim(V3)− dim(V5,V3)

+dim(V5) + dim(V4)− dim(V5,V4)

−dim(V5)− dim(V3,V4) + dim(V3,V4,V5)

−dim(V3,V4)

⇒ dim(V2,V3) + dim(V2,V4) + dim(V3,V4) + dim(V3,V5) + dim(V4,V5)

≥ dim(V3) + dim(V4) + dim(V2,V5) + dim(V2,V3,V4) + dim(V3,V4,V5) (1)

Note that the five terms on the left hand side correspond to the five edges of the diamond in
Fig. 2(a). Every step in this derivation is generally applicable to arbitrary vector subspaces
V2,V3,V4,V5. In fact, what we have derived in (1) is precisely the Ingleton inequality, which must
be satisfied by any four vector subspaces. Plugging in the given dimension allocations we have on
the left hand side a value of 3

5×5 = 3 and on the right hand side a value of 2
5 + 2

5 + 4
5 + 4

5 + 4
5 = 16

5 > 3,
which violates (1), thus producing a contradiction.

While we arrived at this example from an interference alignment perspective, there are curious
parallels to the Vamos matroid, previously used to establish the necessity of non-Shannon inequali-
ties in the general network coding problem [27] and in the multiple groupcast index coding problem
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Figure 2: (a) Diamond part of the alignment graph and (b) Vamos matroid

[8]. Even the core of the alignment graph bears a resemblance to the Vamos matroid, as illustrated
in Fig. 2.

The Vamos matroid is an eight element ({2, 2′, 3, 3′, 4, 4′, 5, 5′}) matroid with rank 4. All 4-
elements subsets are independent (naturally with rank 4) except the five planes {2, 2′, 3, 3′},{2, 2′, 4, 4′},
{3, 3′, 4, 4′},{3, 3′, 5, 5′},{4, 4′, 5, 5′}, which have rank 3 each. Now if we establish a correspondence
V2 ≡ {2, 2′},V3 ≡ {3, 3′},V4 ≡ {4, 4,′ } and V5 ≡ {5, 5′} and a normalization so that rank 1 in the
matroid is mapped to 1

5 vector space dimensions, we find the dimension allocation that assigns 2
5

dimensions per message for the diamond alignment graph matches the rank function of the Vamos
matroid. Now, it is well known that the Vamos matroid is not representable (realizable by vector
spaces) [30] and also not representable by entropic spaces, making this a natural example to require
the use of the Ingleton and non-Shannon inequalities. So, whether by coincidence or as a man-
ifestation of a deeper mathematical property, in our simplest example motivated by interference
alignment, the inner core of the alignment graph appears to be capturing the core dependence
relationships of the Vamos matroid, with only marginal support from other parts of the alignment
graph, instead of relying on all the circuits of the matroid. As a result, while the groupcast example
based on the Vamos matroid used in [8] consists of 200 receiver nodes (the number of nodes asso-
ciated with distinct circuits of the Vamos matroid), our unicast example involves only 11 receivers.
On the other hand, because of the need for supporting messages our example does involve more
messages (11 instead of 8). This is also because we want a unicast setting. As we will show later
in this work, if we relax the problem to groupcast settings we can reduce the number of messages
even further, to 6.

The vector space bounds based on the Ingleton inequality lead us to the linear capacity of our
simplest example network.

Theorem 2 The symmetric linear capacity for the index coding instance shown in Fig. 1 is 5
13 .

The outer bound follows as discussed previously, by the use of the Ingleton inequality which
must be satisfied by all vector spaces. The proof is presented in Section 4.2. Here we give the
achievable scheme. The achievable scheme is based on one-to-one alignment (see Fig. 3). The goal
is to operate over 13 channel uses and choose 5 precoding vectors for each message, along which 5
symbols for that message will be sent. The design uses insights from the outer bound to decide how
much alignment should occur between the signal spaces. Here we mention some of the key values
to facilitate the understanding of alignment. Denote the precoding matrix formed by 5 precoding
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Figure 3: A vector space assignment that avoids all conflicts. Symmetric rate achieved is 5/13 per message.
vi,vj is abbreviated as vi,j, etc.

vectors for message Wi as Vi. Then we have, dim(Vi,Vj) = 8
13 whenever there is a solid black edge

between i, j in the alignment graph, and dim(V2 ∩V3 ∩V4) = dim(V3 ∩V4 ∩V5) = 1
13 . This is

accomplished as follows. Generate 18 + 5× 5 = 43 vectors, each 13× 1, that are in general position
(any 13 of them are linearly independent), over a sufficiently large field. For Vi, i ∈ {1, 2, . . . , 6},
assign the first 18 vectors according to Fig. 3. For Vi, i ∈ {7, 8, . . . , 11}, assign 5 of the remaining
vectors to each. It is easy to check all internal conflicts are avoided and the space occupied by each
alignment edge is 8

13 , leaving enough space, 1− 8
13 = 5

13 , for the desired signal.

2.2.4 There is no Simpler Example

We now prove that this is indeed the simplest example where non-Shannon information inequalities
are necessary. We will prove that for all multiple unicast index coding problems where each receiver
is interfered by at most two messages (demanding only one-to-one alignments) and where the
number of edges in the alignment graph is fewer than 7, the symmetric capacity is given by the
internal conflict bound, ∆

2∆+1 , so that only Shannon-inequalities suffice. Half-rate-feasible networks
are already solved in [3, 8] through only Shannon inequalities, so we will concern ourselves with
only half-rate-infeasible settings in the following theorem.

Theorem 3 For the class of half-rate-infeasible multiple-unicast index coding problems where each
destination is interfered by at most two messages, if each alignment set contains fewer than or
equal to 6 alignment edges, then the symmetric capacity is ∆

2∆+1 , where ∆ is the minimum internal
conflict distance.

Proof: The case where each alignment set contains no overlapping cycles, i.e., no edge participates
in more than one cycle, is dealt with more generally (no constraints on the number of edges) in
Section 2.3 in Theorem 6. Here we only consider the remaining cases where the alignment graph has
overlapping cycles, as shown in Fig. 4. We rely on a linear scheme over 2∆+1 channel uses and send
∆ symbols for each message. When ∆ = 1, ∆

2∆+1 = 1
3 can be achieved easily by multicast (CDMA)

as each receiver is interfered by at most two messages. This is because over three channel uses, each
receiver sees three generic linear equations in the three symbols (one desired, two interfering) that
it is able to hear, from which it can resolve all three. Now consider ∆ ≥ 2. The achievable scheme
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Figure 4: All alignment graphs with 6 or fewer edges and containing overlapping cycles. Also shown is a
vector space assignment solution that avoids all conflicts at distance ∆ or more.

for each alignment set is shown in Fig. 4. Note that case (a) is a subcase of case (e), allowing the
same solution, and case (b) cannot have conflict distance more than 1. For all remaining cases,
only (e) can have conflict distance 3. The vi are (2∆ + 1) × 1 column vectors that are in general
position, and all Qi are generic transformations with dimension ∆ × (∆ − 1). It is easily verified
that each alignment edge occupies no more than ∆ + 1 dimensions and all internal conflicts are
avoided.

Note that for case (f), we assume that if W5 is interfered by two messages within the alignment
set, the interfering messages are W1,W2 instead of W2,W4, without loss of generality. As this
is a multiple unicast setting, it is not possible for W1,W2 and W2,W4 to be interference at W5

simultaneously. But if we go to multiple groupcast setting, this is possible and we can construct
an instance that exhibits similar properties as the instance shown in Fig. 1. Specifically, we will
present a simplest example where non-Shannon inequalities are needed for multiple groupcast index
coding problems in the next section.

2.2.5 Multiple Groupcast: The Simplest Example

As mentioned previously, Blasiak et al. have presented the first example (and the only example
previously identified) of a multiple groupcast index coding problem in [8] where non-Shannon
inequalities are necessary. The example presented by Blasiak et al. is based directly on the Vamos
matroid, so that it contains 8 messages and 200 receivers (one for every element of every circuit).
In this section we use the interference alignment perspective to identify the simplest such example
for multiple groupcast index coding. Our new criteria for the simplest example are the following.

Criteria for the Simplest Example

1. Requires non-Shannon inequalities.

11



Figure 5: The Simplest Example of a Multiple Groupcast Index Coding Problem where Non-Shannon
Inequalities are Necessary. (a) Antidote Graph. (b) Interference Graph. (c) List of interferers at each
destination. (d) Alignment and Conflict Graphs.

2. Each receiver sees no more than 2 interferers (one-to-one alignment demands).

3. Has the minimum number of edges in its alignment graph (among all examples that satisfy
the first two criteria).

Note that the restriction to multiple unicast is removed.
As we will show, the simplest example, shown in Fig. 5, has only 6 messages (as opposed to 8

messages in the groupcast example of [8] and 11 messages in the simplest unicast example), only
6 alignment edges in the alignment graph (as opposed to 7 in the simplest unicast example), and
a total of only 10 receivers (as opposed to 200 receivers in the groupcast example of [8] and 11
receivers in the simplest unicast example). As the core part (the diamond W2,W3,W4,W5) for the
necessity of non-Shannon inequalities remains the same, the intuition and proofs follow previous
discussions. We establish the necessity of non-Shannon inequalities and find the linear capacity
with the following theorem.

Theorem 4 For the index coding instance shown in Fig. 5, the best possible outer bound value
on the symmetric capacity from only Shannon inequalities is 2

5 , whereas the Zhang-Yeung non-
Shannon-type information inequality yields the tighter outer bound value of 11

28 . Moreover, the
symmetric linear capacity is 5

13 .

The proof of Theorem 4 follows along the same lines as the proofs for Theorem 1 and Theorem
2. Details are relegated to Section 4.3. The optimal linear achievability scheme, shown in Fig.
6, has an interesting aspect that even though the alignment demands are one-to-one, the optimal
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solution requires subspace alignments. Evidently, subspace alignment solutions may be required
even when all demands are only one-to-one alignment demands.

Figure 6: A vector space assignment that avoids all conflicts. Symmetric rate achieved is 5/13 per message.
vi,vj is abbreviated as vi,j, etc. vi, i 6= 5, 6 are generic 13× 1 vectors and a, b, c, d are generic scalars.

Next we prove that this is the simplest example for multiple-groupcast index coding problems.
This is shown by the observation that all simpler cases are already solved without the need for
non-Shannon inequalities. For half-rate-feasible networks, the capacity is already known and only
Shannon inequalities are required [3]. For half-rate-infeasible networks, if the number of interferers
seen by each destination is not more than 2, and there are fewer than 6 alignment edges in an
alignment set, then the following theorem shows that the conflict bound (also based only on Shannon
inequalities) is tight.

Theorem 5 For the class of half-rate-infeasible multiple-groupcast index coding problems where
each destination is interfered by at most two messages, if each alignment set contains fewer than
6 alignment edges, then the symmetric capacity is ∆

2∆+1 , where ∆ is the minimum internal conflict
distance.

Proof: Among such cases, case (a) in Fig. 4 is the only one with overlapping cycles. The
achievable scheme follows from case (e) with ∆ = 2 in Fig. 4. Cases with no overlapping cycles are
dealt with separately in Theorem 6.

Remark: It is not difficult to verify that the multiple groupcast index coding network of Fig. 5
is also the simplest network if instead of the minimum number of alignment edges, we require the
minimum number of messages.

2.3 Expanding the Interference Alignment Perspective

Recall that [3] presents a characterization of the multiple groupcast index coding capacity for all
instances where each connected component of the alignment graph, i.e., each alignment set, either
does not contain a cycle or does not contain a fork. The next step to expand this class is to also
allow alignment sets to contain both cycles and forks. In our search for the simplest example, we
were able to find such an extension. The result is presented as the next theorem.

Theorem 6 For the class of half-rate-infeasible multiple-groupcast index coding problems where
each destination is interfered by at most two messages, if each alignment set has no overlapping
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cycles, i.e., no two cycles share an edge, then the symmetric capacity is ∆
2∆+1 , where ∆ is the

minimum internal conflict distance.

In [3], forks are handled by inheriting vectors from parent nodes, and cycles are handled by
cyclic assignments of vector spaces. Here, we combine both techniques to simultaneously deal with
cycles and forks.

Figure 7: An alignment graph showing a solution that avoids all conflicts at distance 3. Symmetric rate
achieved is 3/7 per message.

As an illustration of the result, an alignment graph is shown in Fig. 7. While conflicts are not
shown, the minimum internal conflict distance is assumed to be 3. Note that the assignment of
precoding vectors avoids all conflicts at distance 3 or more. Two alignment sets are shown, labeled
as A1, A2. A2 cannot have an internal conflict because the minimum conflict distance is 3. All vi

are 7 × 1 vectors in general position. Q1 is a generic 3 × 3 matrix and Q2,Q3 are generic 3 × 2
matrices, meant to extract a generic 2 dimensional subspace from the connected node’s signal space.
Each message occupies 3/7 dimensions and any two adjacent messages occupy no more than 4/7
dimensions, leaving the remaining 3/7 dimensions for the desired signal. Note that for cycles, some
randomly permuted common vectors are used combined with cyclicly assigned vectors. Detailed
proof is presented in Section 4.4.

3 Discussion

While in this work we focused on the simplest instances, the necessity of non-Shannon inequalities
can appear in different settings beyond the simplest examples. For example, Fig. 8 shows an
interesting example with 8 alignment edges in the alignment graph. This is a multiple unicast
index coding problem with 12 messages. While the inner diamond remains the same as previous
examples, the supporting edges appear in different positions relative to the diamond. Using the
same approach, we get corresponding results for this network — although the best outer bound
based on only Shannon inequalities is 2

5 , we can tighten it in this case to 13
33 with the Zhang-Yeung

non-Shannon type information inequality and the linear capacity, in this case, is 7
18 , which is shown

using the Ingleton inequality. The proof follows along similar lines of the proofs already presented.
While non-Shannon inequalities have been extensively studied, they are still not well under-

stood both with regards to their fundamental character and their practical implications. The
natural perspective provided by interference alignment can be quite valuable in both regards. It is
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Figure 8: A multiple unicast index coding problem with 8 edges in the alignment graph where non-Shannon
inequalities are necessary. (a) Alignment and conflict graphs, and (b) Only the list of interferers at each
destination is shown for simplicity.

tempting to interpret the non-Shannon inequalities, from an interference alignment perspective, as
representing precisely the possibilities of subspace alignments. As the number of messages grows,
so does the number of possibilities in how these messages can align with each other. Much like
the curious resemblance between the alignment graph of our example which is motivated by the
interference alignment perspective, and the Vamos matroid, there are noticeable parallels between
the observations made through interference alignment and the fundamental information inequal-
ities. As another example, consider first the observation that while there are only finitely many
information inequalities for upto 3 random variables, the number of information inequalities grows
to infinity when 4 or more variables are involved. This observation could be related to the existence
of non-asymptotic interference alignment solutions for generic channels in the K user interference
channel for up to 3 users, but not beyond 3 users.

It is notable that in the degrees of freedom studies of wireless networks with generic channels,
sufficient diversity, and full channel knowledge, the need for non-Shannon inequalities has not yet
surfaced. The essential connection between the topological interference management problem and
the index coding problem that is highlighted in [3], does link the results of this work to wireless
networks with channel uncertainty. However, it is still not clear that non-Shannon inequalities
are necessary for the topological interference management problem. This is because, unlike the
index coding problem where all messages can be encoded together, there is an additional constraint
that the encoding of messages must be done in a distributed fashion in an interference network.
It is possible that the additional constraint may manifest itself purely through submodularity to
produce tighter outer bounds. The distributed coding requirement combined with the linear channel
also favors the optimality of linear solutions in interference networks. Whether the linear coding
capacity found for our simplest examples is the true capacity of these instance of the index coding
problem, or for the corresponding instances of the topological interference management problem,
remains a mystery.
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4 Proofs

4.1 Proof for Theorem 1

The T function is assigned as follows.

T∅ = 0, Ti =
2

5
, ∀i ∈ {1, 2, . . . , 11} (2)

T1,3 = T2,3 = T2,4 = T3,4 = T3,5 = T4,5 = T4,6 =
3

5
, Ti,j =

4

5
for all the other i, j (3)

T1,2,3 = T1,3,5 = T1,3,4 = T2,3,4 = T3,4,5 = T2,3,5 = T2,4,5 = T3,4,6 = T2,4,6 = T4,5,6 =
4

5
(4)

Ti,j,k = 1 for all the other i, j, k (5)

T2,3,4,5 =
4

5
and all unmentioned values of T function are 1. (6)

It is trivial to check Ri ≤ T{i}∪Ii − TIi where Ii is the index set of the interfering messages at
destination i. For T function, it is easy to see that T∅ = 0, T1,2,...,11 = 1 and TJ ≤ TK,∀J ⊂ K. We
are only left to show the submodularity property, i.e., TJ + TK ≥ TJ∪K + TJ∩K,∀J ,K. Without
loss of generality, we assume |J | ≤ |K|. We note that submodularity holds for two special cases
trivially, i.e., J ∩K = ∅ or J ⊂ K. Henceforth we consider only the cases where J intersects with,
but does not belong to K, i.e., |J | ≥ 2.

If |J | = |K| = 2, TJ + TK ≥ TJ∪K + TJ∩K holds when TJ = TK = 3
5 as TJ∪K = 4

5 from (4)
and TJ∩K = Ti = 2

5 . And also all the other cases as TJ + TK ≥ 3
5 + 4

5 ≥ 1 + 2
5 ≥ TJ∪K + TJ∩K.

If |J | = 2, |K| = 3, submodularity also holds as |J ∩K| = 1, TJ∩K = 2
5 and TJ + TK ≥ 3

5 + 4
5 ≥

1 + 2
5 ≥ TJ∪K + TJ∩K. Similar reason applies when |J | = 2, |K| ≥ 4.

If |J | = |K| = 3, submodularity holds whether |J ∩K| = 1 (trivial) or |J ∩K| = 2 as TJ∩K = 2
5

from (3) with the only exception T2,3,5 + T2,4,5 = 8
5 ≥ T2,3,4,5 + T2,5 = 8

5 .
Consider |J | = 3,K = {2, 3, 4, 5}. If further TJ = 4

5 , all possible intersections belong to (3) and
TJ∩K = 3

5 , satisfying submodularity. Otherwise TJ = 1, TJ + TK ≥ 1 + 4
5 ≥ TJ∪K + TJ∩K. This

formula also holds for all the other cases where |K| ≥ 4.
For all cases that remain, TJ = TK = 1 and submodularity follows trivially. This completes the

proof for polymadroid upper bound.
Now we proceed to the tighter outer bound where we will use non-Shannon information inequal-

ities. The proof involves two parts, only the second part will involve a non-Shannon inequality. We
start with the first part. Each solid black edge in the alignment graph represents an interference
union at a desired destination. In order to leave R dimensions for the desired message, the inter-
ference union must be compressed to a space with dimension smaller than 1 − R. This is made
information theoretically rigorous as follows. Consider an alignment edge (i, j) in the alignment
graph and their interfering destination k that desires Wk. From Fano’s inequality, we have

nRk ≤ I(Wk;Sn,W c
i,j,k) + o(n) (7)

≤ I(Wk;Sn|W c
i,j,k) + o(n) (8)

≤ H(Sn|W c
i,j,k)−H(Sn|W c

i,j) + o(n) (9)

≤ n−H(Sn|W c
i,j) + o(n) (10)

⇒ H(Sn|W c
i,j) ≤ n(1−Rk) + o(n) (11)
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where (8) follows from the independence between the messages and (10) is due to the fact that S
carries one symbol per channel use. We also get a byproduct from (9),

H(Sn|W c
i,j,k) ≥ H(Sn|W c

i,j) + nRk + o(n) (12)

whose meaning is that the interference space H(Sn|W c
i,j) is separable from the desired signal space.

Giving all the other messages except the desired Wk as antidotes to destination k, we have

nRk ≤ I(Wk;Sn|W c
k) + o(n) (13)

≤ H(Sn|W c
k)−H(Sn|W c

∅ ) + o(n) (14)

≤ H(Sn|W c
k) + o(n) (15)

where (15) follows from the observation that Sn is a function of all the messages and this intuitively
states that the information contained in Sn cannot be smaller than the entropy of desired message
Wk when the uncertainty due to the other messages is not present.

For the alignment chain W1 −W3 −W4,5, we have

H(Sn|W c
1,3) +H(Sn|W c

3,4,5) ≥ H(Sn|W c
3 ) +H(Sn|W c

1,3,4,5) (16)

≥ H(Sn|W c
3 ) +H(Sn|W c

1,4,5) (17)

≥ H(Sn|W c
3 ) + nR1 +H(Sn|W c

4,5) + o(n) (18)

≥ nR3 + nR1 +H(Sn|W c
4,5) + o(n) (19)

⇒ H(Sn|W c
3,4,5) ≥ n(3R− 1) +H(Sn|W c

4,5) + o(n) (20)

where (16) follows from submodularity, (17) is due to the fact that conditioning reduces entropy,
(18) follows from (12) with i = 4, j = 5, k = 1, (19) follows from (15) with k = 3 and (20) is due to
(11) with i = 1, j = 3 and because we are only interested in symmetric capacity.

Symmetrically, for the alignment chain W6 −W4 −W2,3, we have

H(Sn|W c
2,3,4) ≥ n(3R− 1) +H(Sn|W c

2,3) + o(n) (21)

and adding (20) and (21), we arrive at the final formula for the first part

H(Sn|W c
2,3,4) +H(Sn|W c

3,4,5) ≥ n(6R− 2) +H(Sn|W c
2,3) +H(Sn|W c

4,5) + o(n). (22)

We proceed to the deal with the diamond. As mentioned before, we need the Zhang-Yeung
non-Shannon-type information inequality for 4 random variables, stated as follows.

Theorem 7 (Zhang-Yeung non-Shannon-type information inequality [18])

3H(A,C) + 3H(A,D) + 3H(C,D) +H(B,C) +H(B,D)

≥ 2H(C) + 2H(D) +H(A,B) +H(A) +H(B,C,D) + 4H(A,C,D) (23)

We assign the random variables as follows,

A = Sn,W c
2,4,5, B = Sn,W c

2,3,5, C = Sn,W c
2,3,4, D = Sn,W c

3,4,5. (24)
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Substituting into the Zhang-Yeung non-Shannon-type information inequality, we have

3H(Sn,W c
2,4) + 3H(Sn,W c

4,5) + 3H(Sn,W c
3,4) +H(Sn,W c

2,3) +H(Sn,W c
3,5)

≥ 2H(Sn,W c
2,3,4) + 2H(Sn,W c

3,4,5) +H(Sn,W c
2,5) +H(Sn,W c

2,4,5) +H(Sn,W c
3 ) + 4H(Sn,W c

4 ) (25)

⇒ 3H(Sn|W c
2,4) + 3H(Sn|W c

4,5) + 3H(Sn|W c
3,4) +H(Sn|W c

2,3) +H(Sn|W c
3,5)

≥ 2H(Sn|W c
2,3,4) + 2H(Sn|W c

3,4,5) +H(Sn|W c
2,5) +H(Sn|W c

2,4,5) +H(Sn|W c
3 ) + 4H(Sn|W c

4 ) (26)

⇒ 7n(1−R) + 3H(Sn|W c
4,5) +H(Sn|W c

2,3) ≥ 2H(Sn|W c
2,3,4) + 2H(Sn|W c

3,4,5) + 2H(Sn|W c
2,5) + 5nR+ o(n)

(27)

⇒ 7n(1−R) + 3H(Sn|W c
4,5) +H(Sn|W c

2,3) ≥ 2H(Sn|W c
2,3,4) + 2H(Sn|W c

3,4,5) + 9nR+ o(n) (28)

⇒ n(7− 16R) + 3H(Sn|W c
4,5) +H(Sn|W c

2,3) ≥ 2H(Sn|W c
2,3,4) + 2H(Sn|W c

3,4,5) + o(n) (29)

where (26) follows from the independence of the messages and that the number of messages is the
same on the LHS and the RHS, the LHS of (27) follows from the fact that (2, 4), (3, 4), (3, 5) are all
alignment edges and use (11), the RHS of (27) follows from the principle that conditioning reduces
entropy and uses (15) with k = 3, 4 and (28) follows from (12) with i = 2, j = ∅, k = 5 and from
(15) with k = 2.

Next, let us switch the value of A,B, i.e., A = Sn,W c
2,3,5, B = Sn,W c

2,4,5, C = Sn,W c
2,3,4, D =

Sn,W c
3,4,5 and similar to (29), we have

n(7− 16R) + 3H(Sn|W c
2,3) +H(Sn|W c

4,5) ≥ 2H(Sn|W c
2,3,4) + 2H(Sn|W c

3,4,5) + o(n). (30)

Adding (29) and (30) and dividing by 2 on both sides, we have the final formula for the second
part,

n(7− 16R) + 2H(Sn|W c
2,3) + 2H(Sn|W c

4,5) ≥ 2H(Sn|W c
2,3,4) + 2H(Sn|W c

3,4,5) + o(n). (31)

Adding (31) with 2 times (22) and normalizing by n, we arrive at the conclusion

7− 16R ≥ 2(6R− 2)⇒ R ≤ 11

28
(32)

which completes the proof.

4.2 Proof for Theorem 2

The proof of the linear outer bound follows along similar lines as the information theoretical outer
bound, and also consists of two parts. As linear capacity must be less than the actual capacity, the
outer bound for the information theoretical outer bound can be directly applied here. We directly
borrow the conclusion of the first part as follows according to (22),

dim(V2,3,4) + dim(V3,4,5) ≥ 6R− 2 + dim(V2,3) + dim(V4,5). (33)

Note that the entropy space term H(Sn|W c
i,j,k) is replaced by the vector space form Vi,j,k.

For the second part, i.e., the diamond, we resort to the Ingleton inequality for a tighter linear
bound. Note that there exist some joint distributions of four random variables that violate the
Ingleton inequality [17], so the Ingleton bound does not hold information theoretically. However,
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it does hold for all vector spaces, so we can use it for this proof. From the Ingleton inequality (1),
we have

dim(V2,3) + dim(V2,4) + dim(V4,5) + dim(V3,5) + dim(V3,4) (34)

≥ dim(V3) + dim(V4) + dim(V2,5) + dim(V2,3,4) + dim(V3,4,5) (35)

⇒ dim(V2,3) + dim(V4,5) + 3(1−R) ≥ 2R+ dim(V2) + dim(V5) + dim(V2,3,4) + dim(V3,4,5)

(36)

⇒ dim(V2,3) + dim(V4,5) + 3− 7R ≥ dim(V2,3,4) + dim(V3,4,5) (37)

where (36) follows from (11) where (2, 4), (3, 4), (3, 5) are all interference edges, (15) with k = 3, 4
and there is conflict between W2 and W5, (37) is due to (15) with k = 2, 5.

Adding (33) and (37), we have

3− 7R ≥ 6R− 2⇒ R ≤ 5

13
(38)

which completes the proof.

4.3 Proof for Theorem 4

The polymatroid upper bound 2
5 is proved by explicitly assigning the spaces that correspond to

each message and their unions with proper dimensions. Note that we need a groupcast version of
T function [14], which can be constructed similarly and follows the same rules as defined in [14].
The T function is defined over the power set {1, 2, 3, 4, 5, 6} and we assign its values as follows. It
satisfies the same constraints as specified in a previous proof in Section 4.1.

T∅ = 0, Ti =
2

5
,∀i ∈ {1, 2, 3, 4, 5, 6} (39)

T1,3 = T2,3 = T2,4 = T3,4 = T3,5 = T4,5 =
3

5
, Ti,j =

4

5
for all the other i, j (40)

T1,2,3 = T1,3,5 = T1,3,4 = T2,3,4 = T3,4,5 = T2,3,5 = T2,4,5 =
4

5
, Ti,j,k = 1 for all the other i, j, k

(41)

T2,3,4,5 =
4

5
and all remaining unspecified values of T function are set to 1. (42)

Next we proceed to the information theoretic outer bound. For alignment chain W1−W3−W4,5,
following similar steps as (20), we have

H(Sn|W c
3,4,5) ≥ n(3R− 1) +H(Sn|W c

4,5) + o(n). (43)

Similarly, for alignment chain W1 −W3 −W2,4,

H(Sn|W c
2,3,4) ≥ n(3R− 1) +H(Sn|W c

2,4) + o(n). (44)

For the diamond, we use Zhang-Yeung non-Shannon inequality to get the following (refer to (29)),

2H(Sn|W c
2,4) + 2H(Sn|W c

4,5) + n(7− 16R) ≥ 2H(Sn|W c
2,3,4) + 2H(Sn|W c

3,4,5) + o(n).
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Combining (43)(44)(45) and normalizing by n, we have

7− 16R ≥ 12R− 4⇒ R ≤ 11

28
. (45)

Then we consider the linear capacity. With reference to (43) and (44), we have

dim(V2,3,4) + dim(V3,4,5) ≥ 6R− 2 + dim(V2,4) + dim(V4,5). (46)

With Ingleton inequality (similar to (37)), we have

dim(V2,4) + dim(V4,5) + 3− 7R ≥ dim(V2,3,4) + dim(V3,4,5). (47)

Adding (46)(47), we arrive at

3− 7R ≥ 6R− 2⇒ R ≤ 5

13
. (48)

4.4 Proof for Theorem 6

The outer bound is already available from Theorem 4.13 in [3]. We only prove the achievability of
∆

2∆+1 .
The goal is to operate over 2∆+1 channel uses and choose ∆ precoding vectors for each message,

along which ∆ symbols for that message will be sent. A key idea here is that the precoding for
each alignment set is designed independently. So we will describe the precoding vector design for
each type of alignment set. According to whether there are internal conflicts in each alignment set,
we have two cases.

1. Alignment sets with no internal conflicts:
For each alignment set Ai that has no internal conflicts, we randomly generate a (2∆ + 1) × ∆
matrix V(Ai).

V(Ai) = rand(2∆ + 1,∆) (49)

where rand(a, b) is a function that returns a randomly generated a× b matrix. The same precoding
matrix V(Ai) will be used by every message node in Ai. That is, ∆ symbols for each message
W ∈ Ai will be sent along the ∆ columns of V(Ai).

2. Alignment sets with internal conflicts:

1. From each alignment set Ai, arbitrarily choose one message node, say, W1(Ai) to be the center
node. For each center node W1(Ai), randomly and independently generate a (2∆ + 1) × ∆
precoding matrix V1(Ai) to be used by the node message.

V1(Ai) = rand(2∆ + 1,∆), (50)

2. Consider all the cycles incident on W1(Ai) and name them as C1 to CK where K is the total
number of cycles incident on node W1(Ai). Enqueue all the nodes in each cycle. Let the
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length of cycle k be |Ck| = lk, k ∈ {1, . . . ,K}. Label the messages in cycle k (in order) as
W1(Ck),W2(Ck), · · · ,Wlk(Ck). Randomly permutate the precoding matrix V1(Ai),

Qk(Ai) = rand(∆,∆) (51)

Vk
1(Ai) = V1(Ai)Qk(Ai) (52)

= [uk
1(Ck),uk

2(Ck), . . . ,uk
(∆−blk/2c)+(Ck),vk

1(Ck),vk
2(Ck), . . . ,vk

∆−(∆−blk/2c)+(Ck)]

(53)

Note that we divide the precoding vectors into two parts. The left (∆− blk/2c)+ vectors
would be the common vectors assigned to all the nodes in cycle k and right ∆−(∆− blk/2c)+

vectors would be used in a cyclic fashion. If ∆ ≤ blk/2c, there would not exist common vectors
and there exists internal conflicts within cycle k. Otherwise, there would not be internal
conflicts within cycle k and there are ∆− blk/2c common precoding vectors shared by every
node in cycle k. Also note that the column space is preserved by random permutation.
Then randomly generate lk − ∆ + (∆− blk/2c)+ vectors, each (2∆ + 1) × 1, and call them
vk

∆−(∆−blk/2c)++1
(Ck),vk

∆−(∆−blk/2c)++2
(Ck), · · · ,vk

lk
(Ck). Now assign the vectors cyclically

(subscripts modulo l) for cycle k as follows:

W1(Ck) : Uk(Ck),vk
1(Ck),vk

2(Ck), · · · ,vk
∆−(∆−blk/2c)+(Ck) (54)

W2(Ck) : Uk(Ck),vk
2(Ck),vk

3(Ck), · · · ,vk
∆−(∆−blk/2c)++1

(Ck) (55)

W3(Ck) : Uk(Ck),vk
3(Ck),vk

4(Ck), · · · ,vk
∆−(∆−blk/2c)++2

(Ck) (56)

... :
... (57)

Wlk(Ck) : Uk(Ck),vk
lk

(Ck),vk
1(Ck), · · · ,vk

∆−(∆−blk/2c)+−1
(Ck), (58)

where Uk(Ck) = [uk
1(Ck),uk

2(Ck), . . . ,uk
(∆−blk/2c)+(Ck)] represents all the common vectors.

Note that this construction ensures that any adjacent two nodes share (∆− blk/2c)+ + ∆−
(∆− blk/2c)+ − 1 = ∆ − 1 dimensional precoding space. And message nodes that are con-
nected by a (minimum) path of two edges in the cycle have an overlap of ∆− 2 dimensions,
message nodes that are connected by a path of three edges have an overlap of ∆− 3 dimen-
sions, and so on, so that messages that are connected by a path of ∆ edges (or more) have
no overlap. Thus, all conflicts within the cycle (if exist) are avoided.

3. Now we proceed to all the other nodes that are connected to W1(Ai) but do not form a cycle
with W1(Ai). Enqueue all these nodes. For each such node Wj(Ai), j 6= 1, precoding matrix
is generated as:

Qj(Ai) = rand(∆,∆− 1) (59)

Vj(Ai) = [V1(Ai)Qj(Ai) rand(2∆ + 1, 1)] (60)

The random matrix Qj(Ai) is simply meant to choose a generic ∆− 1 dimensional subspace
from V1(Ai). This is appended with an independently generated vector that will (with
high probability over a sufficiently large field) be in general position and linear independent
with respect to V1(Ai)Qj(Ai). Thus, V1(Ai) and Vj(Ai) are connected by an edge in the
alignment graph and have a ∆− 1 dimensional overlap between their signal spaces.
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4. Operations related to W1(Ai) are done. Dequeue and consider the next message node Wj(Ai)
in the queue. Now Wj(Ai) becomes the new center node and go back to step 2 to deal with
all the unassigned nodes. When the queue is empty again, the precoding matrix assignment
is completed. Since the alignment graph does not have overlapping cycles, messages that are
connected by a path (may cross multiple cycles) of ∆ edges (or more) have no overlap with
such construction as common vectors within different cycles are in generic positions because
of the random permutation and other new appended vectors are generic naturally.

After completing the construction, we are left to show that with high probability the desired signals
at each destination have no overlap with the interference. Without loss of generality we will assume
each destination desires one message.

Consider a destination whose interfering messages come from an alignment set that has no
internal conflicts. Thus, all interfering messages span the same ∆ dimensional space, and the
desired signal (because it belongs to a different alignment set) spans an independently generated ∆
dimensional space. Since the overall number of dimensions is 2∆ + 1, with high probability these
two spaces have no overlap.

Henceforth we consider only destinations whose interfering messages come from an alignment
set that has internal conflicts.

Suppose the desired message, say Wi, sees two interferers Wj ,Wk. Then Wj ,Wk must be
connected by an edge in the alignment graph. Therefore, they must have a ∆−1 dimensional overlap
whether they are a part of a cycle or not, so that together they must span ∆ + ∆− (∆−1) = ∆+ 1
dimensions. Further, if Wi is in the same alignment set, then Wj ,Wk must be at least ∆ edges away
from Wi, so that with high probability the union of the spans of Vj ,Vk is in general position with
respect to Vi. Since the total space is 2∆ + 1 dimensional, it is big enough to accommodate the
interference and the desired signal without forcing them to overlap. Thus, the desired signal does
not overlap with interference with high probability. If the message Wi is in a different alignment
set then again its signal space is independently generated and with high probability has no overlap
with the space spanned by the interference. If the message Wi sees only one interferer, Wj , then
once again because Wi,Wj are at least ∆ edges apart (or belong to different alignment sets), the
signal spaces Vi,Vj have no overlap with high probability.

Appendix

A Summary of Relevant Definitions

The index coding problem consists of S source nodes, labeled Sj , j ∈ {1, 2, . . . , S}, D destination
nodes, labeled Di, i ∈ {1, 2, . . . , D} and two additional nodes, labeled as N1, N2, that are connected
by a unit capacity edge going from N1 to N2, known as the bottleneck link. There is an infinite
capacity link from every source to the node N1, and an infinite capacity link from N2 to every
destination node. What it means is simply that N1 knows all the messages, so all the coding is
performed at N1, and the output of the bottleneck link is available to all destination nodes.

Source node Sj has a set of independent messages,W(Sj), that it wants to send to their desired
destinations. Destination node Di has a set of independent messages W(Di) that it desires. We
distinguish between multiple groupcast settings where each message can be desired by multiple
destinations and multiple unicast settings where each message cannot be desired by more than
one destination. The side information structure is defined by the antidote matrix A = [aij ]D×S
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of zeros and ones where aij = 1 means a direct link of infinite capacity exists from Sj to Di and
provides W(Sj) to Di, otherwise aij = 0 and no path exists from Sj to Di except through the
bottleneck link. To avoid degenerate cases, we assume desired message are not available as side
information and must pass through the bottleneck link, i.e., aij = 0 whenever W(Di)∩W(Sj) 6= φ.
The bottleneck link is able to transmit one symbol from GF each channel use and the symbol
transmitted is denoted as S.

Coding schemes, probability of error, achievable rates and capacity region are defined in the
standard information theoretic sense of vanishing probability of error. We are interested in the
symmetric capacity R normalized by the capacity of the bottleneck link, log(|GF|). Although the
choice of field is irrelevant to the normalized capacity of the index coding problem, we assume the
field is large to simplify the design of achievable scheme. Throughout the paper, we will use the
notion of linear schemes defined in detail in Appendix A of [3]. Linear capacity is defined similar
to capacity, but with the constraint that coding schemes must be linear.

We proceed to the definition of alignment and conflict graphs for the index coding problem.

1. Alignment Graph: Messages Wi and Wj are connected with a solid black edge if the
source(s) of both these messages are not available as antidotes to a destination that desires
message Wk /∈ {Wi,Wj}.

2. Conflict Graph: Each message Wi is connected by a dashed red edge to all other messages
whose sources are are not available as antidotes to a destination that desires message Wi.

Also let us define Alignment Set to be each connected component (through solid black edges) of
an alignment graph and Internal Conflict which refers to the occasion where two messages that
belong to the same alignment graph have a conflict (dashed red) edge between them. If message Wj

is not available as antidote to destination i, we also call Wj interference for destination i. Wi,Wj

is abbreviated as Wi,j , etc. W c
i,j is used to denote all the messages except Wi,j .

Finally, we say that the alignment graph has non-overlapping cycles when no edge is a part of
two cycles in the graph.

References

[1] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD) over broadcast channels,”
in Proceedings of the Seventeenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies, IEEE INFOCOM’98, vol. 3, 1998, pp. 1257–1264.

[2] S. Jafar, “Interference alignment: A new look at signal dimensions in a communication net-
work,” in Foundations and Trends in Communication and Information Theory, 2011, pp.
1–136.

[3] S. A. Jafar, “Topological Interference Management through Index Coding,” ArXiv:1301.3106,
Jan. 2013. [Online]. Available: http://arxiv.org/abs/1301.3106

[4] H. Maleki, V. Cadambe, and S. Jafar, “Index coding – an interference alignment perspective,”
ISIT 2012, Preprint of Full Paper available at ArXiv:1205.1483, 2012.

[5] S. Rouayheb, A. Sprintson, and C. Georghiades, “On the Index Coding Problem and Its
Relation to Network Coding and Matroid Theory,” IEEE Transactions on Information Theory,
vol. 56, no. 7, pp. 3187–3195, July 2010.

23

http://arxiv.org/abs/1301.3106


[6] M. Effros, S. El Rouayheb, and M. Langberg, “An Equivalence between Network Coding and
Index Coding,” ArXiv:1211.6660, Nov. 2012.

[7] Z. Bar-Yossef and Y. Birk and T. S. Jayram and T. Kol, “Index Coding With Side Informa-
tion,” IEEE Trans. on Information Theory, vol. 57, no. 3, pp. 1479 – 1494, March 2011.

[8] A. Blasiak, R. Kleinberg, and E. Lubetzky, “Index coding via linear programming,”
ArXiv:1004.1379, April 2010. [Online]. Available: http://www.cs.cornell.edu/$\sim$ablasiak/
papers/bkl-beta.pdf

[9] A. Tehrani, A. Dimakis, and M. Neely, “Bipartite index coding,” in Proceedings of International
Symposium on Information Theory (ISIT), 2012.

[10] K. Shanmugam, A. Dimakis, and M. Langberg, “Local Graph Coloring and Index Coding,”
ArXiv:1301.5359, Jan. 2013. [Online]. Available: http://arxiv.org/abs/1301.5359

[11] N. Alon, A. Hasidim, E. Lubetzky, U. Stav, and A. Weinstein, “Broadcasting with side
information,” ArXiv:0806.3246, Jun. 2008. [Online]. Available: http://arxiv.org/pdf/0806.
3246v1.pdf

[12] E. Lubetzky and U. Stav, “Non-linear index coding outperforming the linear optimum,” IEEE
Trans. Inf. Theory, vol. 55, no. 8, pp. 3544 – 3551, Aug. 2009.

[13] A. Blasiak, R. Kleinberg, and E. Lubetzky, “Lexicographic products and the power
of non-linear network coding,” ArXiv:1108.2489, Aug. 2011. [Online]. Available: http:
//arxiv.org/abs/1108.2489

[14] F. Arbabjolfaei, B. Bandemer, Y. Kim, E. Sasoglu, and L. Wang, “On the
Capacity Region for Index Coding,” ArXiv:1302.1601, Feb. 2013. [Online]. Available:
http://arxiv.org/abs/1302.1601v1

[15] N. Naderializadeh and A. S. Avestimehr, “Interference networks with no csit: Impact of topol-
ogy,” ArXiv, vol. abs/1302.0296, 2013.

[16] R. W. Yeung, Information Theory and Network Coding. Springer, 2008.

[17] D. Hammer and A. E. Romashchenko and A. Shen, and N. K. Vereshchagin, “Inequalities for
Shannon entropy and Kolmogorov complexity,” J. Comput. Syst. Sci., vol. 60, pp. 442–464,
2000.

[18] Z. Zhang and R. W. Yeung, “On characterization of entropy function via information inequal-
ities,” IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1440 – 1452, Jul. 1998.

[19] K. Makarychev, Y. Makarychev, A. Romashchenko, and N. Vereshchagin, “A new class of
non-Shannon-type inequalities for entropies,” Communications in Information and Systems,
vol. 2, no. 2, pp. 147 – 166, December 2002.

[20] F. Matus, “Infinitely many information inequalities,” in Proceedings of International Sympo-
sium on Information Theory (ISIT), 2007, pp. 41 – 44.

24

http://www.cs.cornell.edu/$\sim $ablasiak/papers/bkl-beta.pdf
http://www.cs.cornell.edu/$\sim $ablasiak/papers/bkl-beta.pdf
http://arxiv.org/abs/1301.5359
http://arxiv.org/pdf/0806.3246v1.pdf
http://arxiv.org/pdf/0806.3246v1.pdf
http://arxiv.org/abs/1108.2489
http://arxiv.org/abs/1108.2489
http://arxiv.org/abs/1302.1601v1


[21] R. Dougherty, C. Freiling, and K. Zeger, “Non-Shannon information inequalities
in four random variables,” ArXiv:1104.3602, April 2011. [Online]. Available: http:
//arxiv.org/abs/1104.3602v1

[22] A. W. Ingleton, “Representation of matroids in combinatorial mathematics and its applica-
tions,” Combinatorial Mathematics and Its Applications, vol. 44, pp. 149 – 167, Jul. 1971.

[23] R. Kinser, “New inequalities for subspace arrangements,” J. Combin. Theory, vol. 118, pp.
152 – 161, Jan. 2011.

[24] R. Dougherty, C. Freiling, and K. Zeger, “Linear rank inequalities on five or more variables,”
ArXiv:0910.0284, July 2010. [Online]. Available: http://arxiv.org/abs/0910.0284v3

[25] ——, “Network coding and matroid theory,” Proc. IEEE, vol. 99, no. 3, pp. 388 – 405, Mar.
2011.

[26] T. H. Chan and A. Grant, “Dualities between entropy functions and network codes,” IEEE
Trans. Inf. Theory, vol. 54, no. 10, pp. 4470 – 4487, Oct. 2008.

[27] R. Dougherty, C. Freiling, and K. Zeger, “Networks, matroids, and non-Shannon information
inequalities,” IEEE Trans. Inf. Theory, vol. 53, no. 6, pp. 1949 – 1969, Jun. 2007.

[28] R. W. Yeung, “Facets of Entropy,” IEEE Information Theory Society Newsletter, vol. 62,
no. 8, pp. 6 – 16, December 2012.

[29] T. H. Chan, “Recent Progresses in Characterising Information Inequalities,” Entropy, vol. 13,
pp. 379 – 401, 2011.

[30] J. G. Oxley, Matroid Theory. New York: Oxford Univ. Press, 1992.

25

http://arxiv.org/abs/1104.3602v1
http://arxiv.org/abs/1104.3602v1
http://arxiv.org/abs/0910.0284v3

	1 Introduction
	1.1 Prior Work
	1.2 Recent Progress: Random Coding and Interference Alignment Approaches
	1.3 Non-Shannon Inequalities

	2 Results
	2.1 Criteria for the Simplest Example
	2.2 The Simplest Example where Non-Shannon Inequalities are Necessary
	2.2.1 Construction
	2.2.2 Necessity of Non-Shannon Inequalities
	2.2.3 Vector Space Interpretation and Linear Capacity
	2.2.4 There is no Simpler Example
	2.2.5 Multiple Groupcast: The Simplest Example

	2.3 Expanding the Interference Alignment Perspective

	3 Discussion
	4 Proofs
	4.1 Proof for Theorem ??
	4.2 Proof for Theorem ??
	4.3 Proof for Theorem ??
	4.4 Proof for Theorem ??

	A Summary of Relevant Definitions

