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Abstract—This paper studies the achievable degrees of freedom
(DoF) for multi-user multiple-input multiple-output (MIM O)
two-way relay channels, where there areK source nodes, each
equipped with M antennas, one relay node, equipped withN
antennas, and each source node exchanges independent messages
with an arbitrary set of other source nodes via the relay. By
allowing an arbitrary information exchange pattern, the consid-
ered channel model is a unified one. It includes several existing
channel models as special cases:K-user MIMO Y channel, multi-
pair MIMO two-way relay channel, generalized MIMO two-way
X relay channel, and L-cluster MIMO multiway relay channel.
Previous studies mainly considered the achievability of the DoF
cut-set bound 2N at the antenna configuration N < 2M by
applying signal alignment for network coding. This work aims
to investigate the achievability of the DoF cut-set boundKM

for the case N ≥ 2M . To this end, we first derive tighter
DoF upper bounds for three special cases of the considered
channel model. Then, we propose a new transmission framework,
generalized signal alignment (GSA), to approach these bounds.
The notion of GSA is to form network-coded symbols by
aligning every pair of signals to be exchanged in acompressed
subspace at the relay. A necessary and sufficient condition to
construct the relay compression matrix is given. We show that
using GSA, the new DoF upper bound is achievable when i)
N
M

∈
(

0, 2 + 4
K(K−1)

]

∪
[

K − 2,+∞
)

for the K-user MIMO Y
channel; ii) N

M
∈

(

0, 2 +
4
K

]

∪
[

K − 2,+∞
)

for the multi-pair
MIMO two-way relay channel; iii) N

M
∈
(

0, 2+ 8
K2

]

∪
[

K−2,+∞
)

for the generalized MIMO two-way X relay channel. We also
provide the antenna configuration regions for the general multi-
user MIMO two-way relay channel to achieve the total DoFKM .

Index Terms—Multiple-input multiple-output, two-way relay
channel, signal alignment, degrees of freedom.

I. I NTRODUCTION

Wireless relay has been an important ingredient in both
ad hoc and infrastructure-based wireless networks [4], [5]. It
shows great promises in power reduction, coverage extension
and throughput enhancement. In the simplest scenario, a relay
only serves a single user. This forms the classic relay channel,
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which includes one source, one destination and one relay.
Nowadays, a relay has become very much like a wireless
gateway where multiple users share a common relay and
communicate with each other. A typical representative is the
two-way relay channel (TWRC) [6]–[8], where two users
exchange information with each other through a relay. A
fundamental question that arises is what is the maximum
number of data streams the relay can forward and how to
achieve it. This motivates the analysis of degrees of freedom
(DoF) and also drives the development of advanced relay
strategies for efficient multi-user information exchange in the
literature.

The success of the two-way relay channel owes to the
invention of physical layer network coding (PLNC) [9], [10],
which can almost double the spectral efficiency compared
with traditional one-way relaying [11]–[13]. In specific, when
each source node is equipped withM antennas and the relay
node is equipped withN antennas, the maximum achievable
DoF of the multiple-input multiple-output (MIMO) two-way
relay channel is2min{M,N} [12]. When three or more
users arbitrarily exchange information with each other viaa
common relay, it is difficult to design PLNC due to multi-
user interference and hence the analysis of DoF becomes
challenging. Several multi-user MIMO two-way relay channels
have been investigated in the literature, such as the MIMO
Y channel [14], [15],K-user MIMO Y channel [16], multi-
pair MIMO two-way relay channel [17]–[20], MIMO two-way
X relay channel [21], generalized MIMO two-way X relay
channel [22],L-clusterK-user MIMO multiway relay channel
[23], [24] and etc.

Based on the idea of interference alignment [25], [26],
signal alignment (SA) is first proposed in [14] to analyze the
maximum achievable DoF for the MIMO Y channel, where
three users exchange independent messages with each other
via the relay. By jointly designing the precoders at each source
node, SA1 is able to align the signals from two different source
nodes in a same subspace of the relay node. By doing so, the
two data streams to be exchanged between a pair of source
codes are combined into one network-coded symbol and thus
the relay can forward more data streams simultaneously. It is
proved that with SA and network-coding aware interference
nulling, the theoretical upper bound3M of DoF is achievable
when N ≥ ⌈ 3M

2 ⌉ [14]. Here, again,M and N denote the
number of antennas at each source node and the relay node,

1Throughout this paper, SA refers to the method proposed in [14].
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respectively. The extension toK-user MIMO Y channels is
considered in [16], where it is shown that the DoF upper
bound ismin{KM, 2N} and the upper bound2N in the case
N < 2M is achievable whenN ≤ ⌊ 2K(K−1)M

K(K−1)+2 ⌋. Here K
is the total number of users. The authors in [27] considered
the caseN ≥ 2M and showed that the upper boundKM
of DoF is achievable whenN ≥ (K − 1)M (K is even) or
N ≥ (K−1)M −1 (K is odd). The authors in [28] improved
that result and showed that the upper boundKM of DoF is
achievable whenN ≥ ⌈ (K2−2K)M

K−1 ⌉. Recently, the authors in
[29] analyzed the multi-pair MIMO two-way relay channel
and showed that the DoF upper bound2N is achievable when
N ≤ ⌊ 2KM

K+2 ⌋ and the DoF upper boundKM is achievable
whenN ≥ KM [23]. In [21], SA is applied in the MIMO
two-way X relay channel, where there are two groups of source
nodes and one relay node, and each of the two source nodes
in one group exchange independent messages with the two
source nodes in the other group via the relay node. It is shown
that the DoF upper bound is2min{2M,N}, and the upper
bound2N is achievable whenN ≤ ⌊ 8M

5 ⌋ by applying SA
and interference cancellation. Despite the extensive workon
this topic, the DoF achievebility of multi-user MIMO two-way
relay channels still remains open in general.

In this paper, we are interested in the analysis of the DoF
upper bound and the achievable DoF of a multi-user MIMO
two-way relay channel for the antenna configurationN ≥ 2M .
In our considered multi-user MIMO two-way relay channel,
there areK source nodes each equipped withM antennas, one
relay node equipped withN antennas, and each source node
can arbitrarily select one or more partners to conduct indepen-
dent information exchange. By allowing arbitrary information
exchange pattern, our considered multi-user MIMO two-way
relay channel is a unified channel model2. It includes several
existing channel models as special cases, namely,K-user
MIMO Y channel, multi-pair MIMO two-way relay channel,
generalized MIMO two-way X relay channel andL-cluster
K ′ = K

L -user MIMO multiway channel.
It is worth mentioning that SA is no longer feasible under

the antenna configurationN ≥ 2M . The reason is shown as
follows. Recall that the SA condition [14] is

H1,rV1 = H2,rV2, (1)

whereHi,r is anN×M channel matrix from sourcei to relay
andVi is anM × di,3−i beamforming matrix of sourcei, for
i = 1, 2, wheredi,3−i denotes the number of data streams
transmitted from source nodei to source node3 − i. The
above alignment condition can be rewritten as

[H1,r −H2,r]

[
V1

V2

]

= 0. (2)

2We consider only “unicast” message exchange , i.e., the information to be
exchanged is only limited within two users. Thus, we use the term “two-way”
in our channel model, same as in [9], [17], [21]. The authors in [23] used the
word “multi-way” to represent the same unicast message exchange between
users, and the authors in [28] described it more explicitly as “multiway with
pairwise data exchange”. On the other hand, the “multiway” [30] or “multiway
with clustered full data exchange” [24] stand for “multicast” message, i.e. a
common message is to be shared among more than two users.

Clearly, for the above equality to hold, one must haveN <
2M .

To achieve the maximum DoF atN ≥ 2M for multi-user
MIMO two-way relay channels, it is not always optimal for
users to utilize all the antennas at the relay. Specifically,using
only a subset of antennas at the relay, known asantenna
deactivation [28], can achieve higher DoF for some cases [14],
[23]. But there is still a gap to the DoF cut-set bound. In this
work, we first derive a tighter DoF upper bound and then we
propose a new transmission framework, namedgeneralized
signal alignment (GSA), which can achieve the DoF upper
bound even whenN ≥ 2M . Compared with the conventional
SA [14], the proposed GSA has the following major difference.
The signals to be exchanged do not align directly in the
subspace observed by the relay. Instead, they are aligned in
a compressed subspace after certain processing at the relay.
This is done by jointly designing the precoding matrices at the
source nodes and the compression matrix at the relay node.
Compared with the existing alignment schemes [27], [28],
where the transmit precoding matrices and the relay processing
matrix were also designed jointly, our proposed GSA differs
fundamentally in the design methodology. In specific, the
previous work first designed the transmit precoding matrices
at each source node so that the received signal at the relay
can form a pre-specified pattern, and then designed the relay
processing matrix so that the network-coded symbols can be
obtained from that pattern. As the pattern is pre-specified,the
maximum achievable DoF by those previous schemes is also
limited. On the other hand, we first design the processing
matrix at the relay and then design each transmit precoding
matrices. As a result, the signal received at the relay does not
need to have any pattern. This leads to a higher achievable DoF
than the previous results and makes the DoF upper bound tight
at more antenna configurations ofN

M .
The main contributions and results obtained in this work

can be summarized as follows:
• New DoF upper bounds are derived via genie-aided

message approach for three special cases of multi-user
MIMO two-way relay channel models, including theK-
user MIMO Y channel, the multi-pair MIMO two-way
relay channel, and the generalized MIMO two-way X
relay channel. They are tighter than the cut-set bound.

• A new transmission framework, generalized signal align-
ment, is proposed. Its main idea is to align every pair
of signals to be exchanged at a compressed subspace
of the relay. A necessary and sufficient condition to
construct the relay compression matrix is given. The
proposed GSA represents a new and effective approach
of integrating interference alignment with physical layer
network coding towards the DoF analysis.

• The total DoF of
∑K

i=1

∑

j∈Si
di,j is achievable when

M ≥ maxi{
∑

j∈Si
di,j} and N ≥ (K − 2)M +

max{di,j}, whereSi is the set of source nodes that source
nodei wishes to exchange messages with, anddi,j is the
number of data streams to be transmitted from source
nodei to source nodej for j ∈ Si. In particular, the total
DoF upper boundKM is achievable when

∑

j∈Si
di,j =

M for all i’s, andN ≥ (K − 2)M +max{di,j}.
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• For the special case of theK-user MIMO Y channel,
by using GSA, the new DoF upper bound is tight when
N
M ∈

(
0, 2 + 4

K(K−1)

]
∪
[
K − 2,+∞

)
.

• For the special case of the multi-pair MIMO two-way
relay channel, by using GSA, the new DoF upper bound
is tight when N

M ∈
(
0, 2 + 4

K

]
∪
[
K − 2,+∞

)
.

• For the special case of the generalized MIMO two-way X
relay channel, by using GSA, the new DoF upper bound
is tight when N

M ∈
(
0, 2 + 8

K2

]
∪
[
K − 2,+∞

)
.

• For the special case of theL-cluster K ′-user MIMO
multiway relay channel, by using GSA, the DoF cut-set
boundKM is tight when N

M ≥ (K′−1)(K−2)+1
K′−1 .

The remainder of the paper is organized as follows. In
Section II, we introduce the multi-user MIMO two-way relay
channel. In Section III, we derive the tighter DoF upper
bounds forK-user MIMO Y channel, multi-pair MIMO two-
way relay channel, and generalized MIMO two-way X relay
channel. In Section IV, we first introduce the principle of
GSA transmission scheme, then give an illustrative example
for the 4-user MIMO Y channel and finally compare our
GSA with the existing transmission schemes. In Section V, we
first apply the GSA transmission scheme toK-user MIMO
Y channel, multi-pair MIMO two-way relay channel, and
generalized MIMO two-way X relay channel to analyze their
achievable DoF, and then we apply it to the general multi-
user MIMO two-way relay channels. Section VI presents
concluding remarks.

Notations: (·)T and (·)H denote the transpose and the
Hermitian transpose, respectively. tr(X) and rank(X) stand for
the trace and rank ofX. ε[·] stands for expectation. span(X)
and null(X) stand for the column space and the null space
of the matrixX, respectively. dim(X) denotes the dimension
of the column space ofX. ⌊x⌋ denotes the largest integer no
greater thanx. ⌈x⌉ denotes the smallest integer no less than
x. I is the identity matrix.[X]i,j denotes the(i, j)-th entry of
the matrixX.

II. SYSTEM MODEL

We consider a multi-user MIMO two-way relay channel,
which consists ofK source nodes, each equipped withM
antennas, and one relay node, equipped withN antennas. Each
source nodei, for 1 ≤ i ≤ K, can exchange independent
messages with an arbitrary set of other source nodes, denoted
as Si, with the help of the relay. The message transmitted
from source nodei to source nodej, if j ∈ Si, is denoted
as Wi,j and it is independent for differenti and j. At each
time slot, the message is encoded into adi,j×1 symbol vector
si,j = [s1i,j , s

2
i,j , · · · , s

di,j

i,j ]T , wheredi,j denotes the number
of independent data streams transmitted from source nodei to
source nodej. We define aK ×K matrix D, named asdata
switch matrix, whose(i, j)-th entry is given by

[D]i,j =

{
di,j , j ∈ Si, ∀i,
0, otherwise.

(3)

Note that all the diagonal elements ofD are zero. When
the off-diagonal element[D]i,j = 0, it means there is no
information exchange between source nodei andj. In general,

Fig. 1. Multi-user MIMO two-way relay channel

the data switch matrixD is not necessary to be symmetric.
But for the convenience of analysis later, we only consider
symmetricD.

The considered multi-user MIMO two-way relay channel
is general in the sense that it includes the following existing
channels as special cases:

• The K-user MIMO Y channel: For each source nodei,
one hasSi = {1, 2, · · · ,K}\{i}. The off-diagonal entries
of D, {di,j | i 6= j}, can be any nonnegative integer.

• The multi-pair MIMO two-way relay channel: Each
source nodei, 1 ≤ i ≤ K

2 , exchanges independent
messages with its pair nodeK + 1 − i, and there
are K

2 pairs in total. The entries ofD which satisfy
{[D]i,j | i + j 6= K + 1} must be zero. The rest can
be any nonnegative integer.

• The generalized MIMO two-way X relay channel: TheK
source nodes are divided into two groups. Each source
node i in one group exchanges independent messages
with every source node in the other group. That is,
Si = {j | K

2 + 1 ≤ j ≤ K} for 1 ≤ i ≤ K
2 and

Si = {j | 1 ≤ i ≤ K
2 } for K

2 + 1 ≤ i ≤ K. The entries
of D which satisfy{[D]i,j | 1 ≤ i, j ≤ K

2 or K
2 + 1 ≤

i, j ≤ K} must be zero. The rest can be any nonnegative
integer.

The difference of these channels lies at the position of “0” in
the data switch matrixD. In this work, we unify these system
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models to the multi-user MIMO two-way relay channel.
The communication of the total messages takes place in two

phases as shown in Fig. 1: the multiple access (MAC) phase
and the broadcast (BC) phase. In the MAC phase, allK source
nodes transmit their signals to the relay simultaneously. Letxi

denote the transmitted signal vector from source nodei. It is
given by

xi =
∑

j∈Si

Vi,jsi,j = Visi, (4)

whereVi,j is theM × di,j precoding matrix for the informa-
tion symbol vectorsi,j to be sent to source nodej, Vi is a
matrix obtained by stacking{Vi,j | j ∈ Si} by column andsi
is a vector obtained by stacking{si,j | j ∈ Si} by row. Each
transmitted signalxi, for i = 1, · · · , K, satisfies the power
constraint of

tr
(
xix

H
i

)
≤ P, ∀i (5)

whereP is the maximum transmission power allowed at each
source node.

The received signalyr at the relay is given by

yr =
K∑

i=1

Hi,rxi + nr, (6)

where Hi,r denotes the frequency-flat quasi-staticN × M
complex-valued channel matrix from source nodei to the
relay andnr denotes theN × 1 additive white Gaussian
noise (AWGN) vector with each element being independent
and having zero mean and unit variance.

In the BC phase, upon receivingyr in (6), the relay
processes it to obtain a mixed signalxr, and broadcasts to
all the users. The transmitted signalxr satisfies the power
constraint of

tr
(
xrx

H
r

)
≤ Pr , (7)

wherePr is the maximum transmission power allowed at the
relay. Without loss of generality from the perspective of DoF
analysis, we letPr = P . The received signal at source nodei
can be written as

yi = Gr,ixr + ni, (8)

where Gr,i denotes the frequency-flat quasi-staticM × N
complex-valued channel matrix from relay to the source node
i, and ni denotes the AWGN at the source nodei with
each element being independent and having zero mean and
unit variance. Each user tries to obtain its desired signal
from its received signal using its own transmit signal as side
information.

It is assumed that the channel state information{Hi,r,Gr,i}
is perfectly known at all source nodes and the relay, following
the convention in [14], [16], [21], [23], [28]. The entries of the
channel matrices are independent and identically distributed
(i.i.d.) zero-mean complex Gaussian random variables with
unit variance. Thus, each channel matrix has full rank with
probability1. All the nodes in the network are assumed to be
full duplex.

III. N EW DOF UPPERBOUNDS

In this section, we first review the definition of DoF and
the cut-set bound of DoF for the general multi-user MIMO
two-way relay channel. After that we derive new DoF upper
bounds for a set of special cases of channel models, namely,
K-user MIMO Y channel, multi-pair MIMO two-way relay
channel, and generalized MIMO two-way X relay channel.

Let Ri,j denote the information rate carried inWi,j . Since
we assume the noise is i.i.d. zero-mean complex Gaussian
random variables with unit variance, the average received
signal-to-noise ratio (SNR) of each link isP . We define the
DoF of the transmission from source nodei to source nodej,
for j ∈ Si, as

di,j , lim
SNR→∞

Ri,j(SNR)
log(SNR)

= lim
P→∞

Ri,j(P )

log(P )
. (9)

The DoF definition in (9) captures the number of indepen-
dent data streams transmitted from source nodei to source
nodej and hence is the same asdi,j defined in the previous
section. Then the total DoF of the system is

dtotal =

K∑

i=1

∑

j∈Si

di,j . (10)

By applying the cut-set theorem [31], the total DoF upper
bound of the multi-user MIMO two-way relay channel is given
in the following lemma.

Lemma 1: The total DoF of the multi-user MIMO two-way
relay channel is upper-bounded bymin{KM, 2N}.

Proof: The DoF upper bound of the source nodei is

K∑

j∈Si

di,j ≤ dupperi

= min






min{M,N},
︸ ︷︷ ︸

A

min{(K − 1)M,N}
︸ ︷︷ ︸

B







= min{M,N}, (11)

whereA is the bound for the cut from source nodei to the
relay andB is the bound for the cut from the relay to all the
other source nodes. Then

dtotal ≤

K∑

i=1

dupperi = min{KM,KN}. (12)

On the other hand, we consider the cut, denoted asC, from
all the K source nodes to the relay node at the MAC phase
and the cut, denoted asD, from the relay node to all theK
source nodes at BC phase. We can obtain that

dtotal ≤ min{KM,N}
︸ ︷︷ ︸

C

+min{KM,N}
︸ ︷︷ ︸

D

= min{2KM, 2N}.

(13)
Combining (12) and (13), we obtain that

dtotal ≤ min{KM,KN, 2KM, 2N} = min{KM, 2N}.
(14)
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dtotal ≤







2N, N
M ∈

(

0, 2K2−2K
K2−K+2

]

,
2βK(K−1)M

K(K−1)+β(β−1) ,
N
M ∈

(
β(K(K−1)+(β−1)(β−2))

K(K−1)+β(β−1) , β
]

,
2K(K−1)N

K(K−1)+β(β−1) ,
N
M ∈

(

β, (β+1)(K(K−1)+β(β−1))
K(K−1)+(β+1)β

]

,

KM, N
M ∈

(
K2−3K+3

K−1 ,+∞
)

.

(15)

Next, we present tighter DoF upper bounds for three special
channel models by using the similar genie-aided approach in
[28], [32].

Theorem 1: The total DoF for theK-user MIMO Y
channel is piece-wise upper-bounded by (15), whereβ ∈
{2, 3, 4, · · · ,K − 2}.

Proof: See Appendix A.
Theorem 2: The total DoF for the multi-pair MIMO two-

way relay channel is piece-wise upper-bounded by

dtotal ≤







2N, N
M ∈

(

0, 2K
K+2

]

,
2βKM
K+β , N

M ∈
(

β(K+β−2)
K+β , β

]

,

2KN
K+β ,

N
M ∈

(

β, (β+2)(K+β)
K+β+2

]

,

KM, N
M ∈ (K − 1,+∞),

(16)

whereβ is an even number andβ ∈ {2, 4, · · · ,K − 2}.
Proof: See Appendix B.

Theorem 3: The total DoF for the generalized MIMO two-
way X relay channel is piece-wise upper-bounded by

dtotal ≤







2N, N
M ∈

(

0, 2K2

K2+4

]

,
2K2βM
K2+β2 ,

N
M ∈

(
(K2+(β−2)2)β

K2+β2 , β
]

,

2K2N
K2+β2 ,

N
M ∈

(

β, (K2+β2)(β+2)
K2+(β+2)2

]

,

KM, N
M ∈

(
K2−2K+2

K ,+∞
)

,

(17)

whereβ is an even number andβ ∈ {2, 4, · · · ,K − 2}.
Proof: See Appendix C.

The above new bounds will be shown to be tight at certain
antenna configurations in Section V.

IV. GENERALIZED SIGNAL ALIGNMENT

As mentioned in the introduction, the conventional SA in
[14] is not feasible at the antenna configurationN ≥ 2M .
Thus, more advanced transmission strategies are desired. Re-
cently, Wang and Yuan in [28], and Mu and Tugnait in [27]
proposed two different transmission frameworks, signal pattern
and signal group based alignment, to analyze the achievable
DoF when N ≥ 2M for K-user MIMO Y channel and
MIMO multiway relay channel, respectively. However, there
is still a gap between the achievable DoF and the best-known
upper bound. In this work, we propose a new transmission
framework, named asgeneralized signal alignment, based on
which we will study the DoF achievability of the general multi-
user MIMO two-way relay channel. In this section, we first
introduce the basic principle of GSA and then give an example.
After that we present the difference with existing schemes.

A. Basic principle

We rewrite the received signal (6) at the relay during the
MAC phase as

yr =

K∑

i=1

Hi,rVisi + nr. (18)

Note that the total number of independent data streams to
communicate isdtotal =

∑K
i=1

∑

j∈Si
di,j . WhenN ≥ dtotal,

the relay can decode all the data streams and the decode-and-
forward (DF) relay is the optimal strategy. WhenN < dtotal,
it is impossible for the relay to decode all the data streams
individually. However, applying physical layer network cod-
ing, we only need to obtain the network-coded symbol vector
at the relay, denoted ass⊕, wheres⊕ is a vector obtained by
stacking the{si,j + sj,i, ∀j ∈ Si, ∀i} by row.

According to the signal alignment equation (1), whenN ≥
2M , s⊕ cannot be obtained directly by designing the precoding
matricesVi,j andVj,i. Instead of aligning the signals to be
exchanged directly at a same subspace of the relay, we propose
to align them at a same compressed subspace of the relay. This
is realized by the joint design of the source precoding matrices
and relay processing matrix. Mathematically, letP denote
a J × N (J ≤ N ) full-rank compression matrix, then the
received signal at the relay after compression can be written
as

ŷr = Pyr =

K∑

i=1

PHi,rVisi +Pnr, (19)

The proposedgeneralized signal alignment equation is given
by

PHi,rVi,j = PHj,rVj,i , Bi,j , ∀i, j with [D]i,j 6= 0.

(20)

Note that allVi,j should have full rank in order to ensure the
decodability of the network-coded symbol vectors⊕ at the
relay. Moreover, the compression viaP should not sacrifice
the decodability of these messages. The GSA equation (20)
can also be rewritten as

[PHi,r −PHj,r]

[
Vi,j

Vj,i

]

= 0 (21)

or equivalently
[

Vi,j

Vj,i

]

⊆ Null [PHi,r −PHj,r] . (22)

If we can align each pair of data streams to be exchanged
in a same subspace, the dimension of the received signal
after compression̂yr must be no less thandtotal

2 in order to
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guarantee the decodability ofs⊕ at the relay. This indicates
thatJ ≥ dtotal

2 . In this paper, we assume thatJ = dtotal

2 . The
compressed signal̂yr can be rewritten as

ŷr = Bs⊕ +Pnr , (23)

where B is a matrix obtained by stacking theBi,j with
[D]i,j 6= 0 by column.

Remark 1: If the rank ofP is less thandtotal

2 , then thedtotal

2
number of network-coded symbols cannot be fully decodable.
Hence, we assume thatP is a full-rank matrix.

Remark 2: Since the entries of all channel matrices are
independent and Gaussian, the probability that a basis vector
in the intersection space spanned by the effective channel
matrices of one pair of source nodes (i.e.PHi,r andPHj,r)
lies in the intersection space of another pair is zero [14]. Thus,
B is a full rank matrix with probability 1, which guarantees
the decodability ofs⊕ at the relay.

Remark 3: Once we can obtain the network-coded symbol
vector s⊕ at the relay during the MAC phase, each user can
obtain its desired signals during the BC phase due to the
symmetry between MAC phase and BC phase [33].

Before discussing the condition when the GSA equation
holds, we first analyze it from the span space perspective.
From (20), we can obtain that

span(Bi,j) ⊆ span(PHi,r) ∩ span(PHj,r) . (24)

Fig. 2 provides an illustration of (24) through comparison
with the conventional SA. It is seen that whenN ≥ 2M ,
the intersection space between span(Hi,r) and span(Hj,r)
is null if without compression. Only after compression, the
intersection space will be non-empty and then signal alignment
becomes possible.

In what follows, we provide the necessary and sufficient
condition on the compression matrixP for the GSA equation
to hold.

Theorem 4: The GSA equation (20) holds if and only if there
are at leastdtotal

2 − 2M +di,j basis vectors of span
(
PT
)

that
lie in the null space of[Hi,r −Hj,r]

T for any source pair
(i, j) with [D]i,j 6= 0.

Proof: First, we prove theonly if part. For any source
pair (i, j) with [D]i,j 6= 0, when the GSA equation (20), or
equivalently (22), holds, then the dimension of the null space
of [PHi,r −PHj,r] must be greater than or equal todi,j .
That is

2M − rank([PHi,r −PHj,r]) ≥ di,j

or equivalently

rank(P [Hi,r −Hj,r]) ≤ 2M − di,j . (25)

From (25), it is seen that there must be an elementary matrix
Q such that

QP [Hi,r −Hj,r] =

[
0i,j

Λi,j

]

, (26)

where0i,j is a (dtotal

2 − 2M +di,j)×N zero matrix andΛi,j

is a (2M − di,j) × N matrix with rank at most2M − di,j .
Since [Hi,r −Hj,r] is a full-rank matrix with probability 1

due to the property of random matrices, we assume that it
always has full rank throughout this paper. Then, there must
be at leastdtotal

2 −2M+di,j row vectors ofQP that lie in the
left null space of[Hi,r −Hj,r]. Note that the basis vectors
of span

(
PT
)

and span
(
PTQT

)
are the same becauseQ is

an elementary matrix. Hence, there are at leastdtotal

2 − 2M +
di,j basis vectors of span

(
PT
)

that lie in the null space of
[Hi,r −Hj,r]

T for any source pair(i, j) with [D]i,j 6= 0.

Then we prove theif part. If there are at leastdtotal

2 −2M+
di,j basis vectors of span

(
PT
)

that lie in the null space of
[Hi,r −Hj,r]

T for any source pair(i, j) with [D]i,j 6= 0,
then we can construct at leastdtotal

2 − 2M + di,j row vectors
of P falling in the left null space of[Hi,r −Hj,r], resulting
rank(P [Hi,r −Hj,r]) ≤ 2M − di,j . As a result, the dimen-
sion of the null space of[PHi,r −PHj,r] is no less than
di,j . Thus, it is always feasible to find the precoding matrices
Vi,j andVj,i based on (22). Hence, the GSA equation holds.

Theorem 4 not only shows the necessary and sufficient
condition on the relay compression matrixP for GSA, but
also provides an insight into the joint design of the relay
compression matrixP and the source precoding matricesVi,j .
More specifically, from the proof of theif part, it is seen that
we should first construct the compression matrixP such that
there are at leastdtotal

2 − 2M + di,j row vectors ofP that
lie in the left null space of[Hi,r −Hj,r] for any source pair
(i, j) with [D]i,j 6= 0. After that, we should treatPHi,r as the
effective channel matrix from source nodei to the relay node
and design the source precoding matricesVi,j based on the
conventional SA. As such, the main challenge in GSA is to
constructP. In Section V, we will present a general guideline
to designP and also present the specific construction ofP

for some special channel models.

B. An example

In this subsection, we use the4-user MIMO Y channel, a
special case of the multi-user MIMO two-way relay channel,
to demonstrate the GSA. We consider the simplest case with
M = 3 and di,j = 1 for any i 6= j. The corresponding data
switch matrixD is

D =







0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0






. (27)

In what follows, we show how to implement GSA when there
areN = 7 antennas at the relay node.

We design a6 × 7 compression matrixP at the relay as
follows:

P =











p1,2

p1,3

p1,4

p2,3

p2,4

p3,4











(28)
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Fig. 2. Span space ofPHi,r andPHj,r .

where

pT
1,2 ⊆ Null

[
H3,r H4,r

]T
, pT

1,3 ⊆ Null
[
H2,r H4,r

]T
,

pT
1,4 ⊆ Null

[
H2,r H3,r

]T
, pT

2,3 ⊆ Null
[
H1,r H4,r

]T
,

pT
2,4 ⊆ Null

[
H1,r H3,r

]T
, pT

3,4 ⊆ Null
[
H1,r H2,r

]T
.

(29)

Clearly, P satisfiesTheorem 4. Then, we design the pre-
coding matrixVi,j according to (22). Thus, the GSA equation
(20) holds.

After simple manipulation, the equivalent channel vector
seen bys1,2 ands2,1 becomes

b1,2 = PH1,rv1,2 = PH2,rv2,1 = α1,2[1 0 0 0 0 0]T , (30)

whereα1,2 is a constant.
Similarly, we can obtain all the other equivalent channel

vectors as

b1,3 = PH1,rv1,3 = PH3,rv3,1 = α1,3[0 1 0 0 0 0]T ,

b1,4 = PH1,rv1,4 = PH4,rv4,1 = α1,4[0 0 1 0 0 0]T ,

b2,3 = PH2,rv2,3 = PH3,rv3,2 = α2,3[0 0 0 1 0 0]T ,

b2,4 = PH2,rv2,4 = PH4,rv4,2 = α2,4[0 0 0 0 1 0]T ,

b3,4 = PH3,rv3,4 = PH4,rv4,3 = α3,4[0 0 0 0 0 1]T .
(31)

Therefore, the overall received signals after compressionat the
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Fig. 3. Alignment in the MAC phase.

Fig. 4. Span space of each signal at the relay after compression.

relay can be written as

ŷr =











α1,2(s1,2 + s2,1)
α1,3(s1,3 + s3,1)
α1,4(s1,4 + s4,1)
α2,3(s2,3 + s3,2)
α2,4(s2,4 + s4,2)
α3,4(s3,4 + s4,3)











+Pnr. (32)

Now we can see that the signal pairssi,j and sj,i are not
only aligned in the same dimension but also in orthogonal
dimensions. Fig. 3 illustrates the notion of GSA in the MAC
phase where there are 6 network-coded symbols aligned at
the relay. The following network-coded symbol vector can be
readily estimated from̂yr at the relay:

ŝ⊕ =











s1,2 + s2,1
s1,3 + s3,1
s1,4 + s4,1
s2,3 + s3,2
s2,4 + s4,2
s3,4 + s4,3











. (33)

Fig. 4 illustrates the space where each signal spans after
compression. It can be seen that rank([PHi,r −PHj,r]) = 5
for any pair(i, j) and the total dimension of the space at the
relay after compression is 6.

Fig. 5. Illustration of the schemes in [27] and [28].

Fig. 6. Illustration of GSA.

C. Comparison with the existing transmission schemes

Previously, there were two main transmission frameworks to
analyze the DoF whenN ≥ 2M . The first method is proposed
by Mu and Tugnait in [27], named assignal group based
alignment. The second is proposed by Wang and Yuan in [28],
named assignal pattern. The main idea of the two methods
is to design the precoding matrices at each source node first
under certain rules, such as group or pattern, and then to design
the relay processing matrix so that the network-coded symbol
vectors⊕ can be decoded from the signal received at the relay
after processing. Here, when designing the relay processing
matrix, the multiplication of each source precoding matrixand
the channel matrix can be regarded as the effective channel
matrix from each source to the relay. This is illustrated in Fig.
5. Note that the designedP andVi,j in both [27] and [28] also
satisfy the GSA equation (20). In our proposed GSA, we first
design the compression matrix at the relay, and then construct
the precoding matrices at each source node by treating the
compressed channel matrix as the effective channel matrix
from each source node to the relay node. We illustrate the
idea of the GSA in Fig. 6.

By comparing Fig. 5 and Fig. 6, it is seen that the main
difference between the previous schemes and our GSA is that
we reverse the design order ofP at the relay node and{Vi,j}
for each source node. Note thatP is a common matrix for
processing the signal at the relay and{Vi,j} is a set of private
matrices designed for each source node. The existing schemes
[27] and [28] first designed the transmit precoding matrices
at each source node so that the received signal at the relay
can form a pre-specified pattern and then designed the relay
processing matrix so that the network-coded symbol can be
obtained from that pattern. As the pattern is pre-specified,
the maximum achievable DoF by those previous schemes is
also limited. On the other hand, we first design the processing
matrix at the relay and then design each transmit precoding
matrices. As a result, the signal received at the relay does not
need to have any pattern. This will lead to a higher achievable
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DoF than the previous results as shown in the next section.

V. A NALYSIS OF DOF ACHIEVABILITY WITH

GENERALIZED SIGNAL ALIGNMENT

In this section, we first apply GSA in three special cases of
multi-user MIMO two-way relay channels, includingK-user
MIMO Y channel, multi-pair MIMO two-way relay channel,
and generalized MIMO two-way X relay channel. The DoF
upper bound derived in Section III of each channel is proved
to be tight under some specific regions ofN

M . Then we apply
GSA in the general case with arbitrary data switch matrix

D and show that the DoF of
K∑

i=1

∑

j∈Si

di,j is achievable when

N ≥ (K − 2)M + max{di,j | ∀i, j}. Finally, we extend the
results to theL-clusterK ′ = K

L -user multiway relay channel.
To assist the DoF analysis, we first introduce a so-called

DoF plane to conveniently represent the DoF values at differ-
ent antenna configurations and present a useful lemma. Then
we will introduce a guideline to the construction ofP in the
GSA equation.

Assume that at antenna configurationN = α0M , the total
DoF d0M is achievable, whereα0 andd0 are some constants
(which may depend on the number of source nodes,K).
Then we say the pointQ = (α0, d0) is achievable in a 2-
dimensional DoF plane, where thex-axis is the ratio of the
antenna configurationsNM , and they-axis is the DoF value with
respect toM . Alternatively, when a pointQ = (α0, d0) in the
2-dimensional DoF plane is achievable, it means the DoFd0M
is achievable at the antenna configurationN = α0M .

Lemma 2: If the point Q = (α0, d0) is achievable in
the 2-dimensional DoF plane, then all points in the single-
sided trapezoid characterized byQ, as shown in Fig. 7, are
achievable.

Proof: To prove this lemma, we only need to show that
Q1 = (α1, d0) and Q2 = (α2, d2) as plotted in Fig. 7 are
achievable. ForQ1, N = α1M > α0M , let the relay node
only utilizeN ′ = α0M antennas. Then the total DoF ofd0M
should be achievable due to the achievability ofQ. Thus,Q1

is achievable. ForQ2, N = α2M < α0M and d0

α0
= d2

α2
, let

each source node only utilizeM ′ = N
α0

antennas. Then the
total DoF of d0M ′ should be achievable, again, due to the
achievability ofQ. Sinced0M ′ = d0N

α0
= d2N

α2
= d2M , this

is equivalent to thatQ2 is achievable.
Note that if the number of antennas after deactivation is not

an integer but a fractionst , then we can use the method of
t-symbol extensions to achieve the total DoF.

In what follows, we will show the guideline of the construc-
tion of P. Define β = ⌊N

M ⌋ ≥ 2. First, selectβ out of the
K source nodes and denote them as{π(1), · · · , π(β)}. Then,
define anN × βM β-combining channel matrixHβ

3 such
that

span(Hβ) = span
[
Hπ(1),r,Hπ(2),r, · · · ,Hπ(β),r

]
. (34)

3Theβ-combining matrixHβ is assumed to always have full rank through-
out this paper since it is a full-rank matrix with probability 1 due to the
property of random matrices.

Fig. 7. Single-sided trapezoid characterized byQ in the 2-dimensional DoF
plane.

In total, there are
(
K
β

)
differentβ-combining channel matrices.

We denote them asHβ [n], wheren = 1, 2, · · · ,
(
K
β

)
. For each

Hβ [n], we chooseκ[n] out of theN−βM basis vectors of the
left null space ofHβ[n] and treat them as the row candidates

of P. In total, we can have
(Kβ)∑

i=1

κ[n] possible rows forP. Note

that theκ[n] rows constructed fromHβ [n] will be independent
from the κ[m] rows constructed fromHβ [m]. This can be
proved by contradiction4. It is also noted that for any source
pair (i, j) with [D]i,j 6= 0, as long as span([Hi,r,Hj,r]) is
a subspace of span(Hβ [n]), then theκ[n] basis vectors of
the left null space of span(Hβ [n]) will also be orthogonal
to [Hi,r,Hj,r]. So the next step in constructingP is to
traverse all the span(Hβ [n]) that include span([Hi,r,Hj,r])
as a subspace and find at leastdtotal

2 − 2M + di,j rows ofP
in order to meet the condition inTheorem 4. This is realized
by determining the value of eachκ[n]. The specific realization
method will be detailed in the proof of the DoF results in each
of the following subsections.

A. K-user MIMO Y channel

The consideredK-user MIMO Y channel consists ofK
source nodes, each equipped withM antennas, and one relay
node, equipped withN antennas. Each source node exchanges
independent messages with all the otherK − 1 source nodes
with the help of the relay.

TABLE I summarizes the recent advances towards the DoF
analysis of theK-user MIMO Y channel. In particular, the
DoF analysis whenK = 3 and K = 4 is completed with
[15] and [32]. The maximum achievable DoF whenK > 4
with the antenna configurationNM ∈

(
2K2−2K
K2−K+2 ,

K2−3K+3
K−1

)

remains unknown.
1) Achievable DoF:
Theorem 5: The achievable DoF for theK-user MIMO

Y channel at different antenna configurationsNM is given

4Assume a vector̃p is located in the left null space of bothHβ [n] and
Hβ [m], andHβ [n] andHβ [m] differ by at least one sub-matrix, sayHi,r

as includedHβ [m]. Then p̃ shall also be located in the left null space of
[

Hβ [n],Hi,r

]

, which is anN × (β + 1)M matrix. However, sinceβM ≤

N < (β + 1)M , the left null space of
[

Hβ [n],Hi,r

]

should be null. This
contradicts the existence of such̃p.
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TABLE I
RECENT ADVANCES TOWARDS THEDOF ANALYSIS FORK -USERMIMO Y C HANNEL

K N
M

Maximum DoF Reference

3
[

3
2
,+∞

)

3M [14]

3 (0,+∞) min{3M, 2N} [15]

4
(

0, 12
7

]

∪
[

8
3
,+∞

)

min{4M, 2N} [34]

4
(

0, 12
7

]

∪
[

7
3
,+∞

)

min{4M, 2N} [2]

4 (0,+∞) max{min{4M, 12N
7

},min{ 24M
7

, 2N}} [32]

K > 4

(

0, 2K2−2K

K2−K+2

]

min{KM, 2N} [16]

K > 4 (K − 1,+∞] KM [27]

K > 4

(

0, 2K2−2K

K2−K+2

]

∪

[

K2−2K
K−1

,+∞

)

min{KM, 2N} [28]

K > 4

(

0,
2K2−2K

K2−K+2

]

∪

[

K2−3K+3
K−1

,+∞

)

min{KM, 2N} [2]

K > 4

(

2K2−2K

K2−K+2
, K2−3K+3

K−1

)

unknown

by the union of the single-sided trapezoids characterized by
{Q1, Qβ | β ∈ {2, 3, 4, · · · ,K − 2}} shown in (35) at the top
of the next page in the DoF plane.

Proof: By Lemma 2, to prove this theorem is equivalent
to proving the achievability of the pointsQ1 andQβ for β =
2, 3, · · · ,K−2. Q1 is proved to be achievable in [16]. In what
follows, we prove the achievability of eachQβ. Note that the
abscissa ofQβ is located in the interval(β, β + 1).

For the symmetry of each source node, we assume thatdi,j
for any pair(i, j) is the same and given byx, thendtotal =
K(K − 1)x. For eachβ, let the antenna configuration satisfy
βM ≤ N < (β + 1)M . We chooseq out of theN − βM
basis vectors of the left null space of eachHβ [n] as the row
vectors of the matrixP. In total we can construct

(
K
β

)
q row

vectors forP as there are
(
K
β

)
q differentβ-combining channel

matrices. On the other hand, the number of the rows ofP is
dtotal

2 . Thus we can let

dtotal
2

=

(
K

β

)

q, (36)

which is equivalent to

q =
dtotal

2
(
K
β

) . (37)

Next, we count the number of row vectors inP which are
located in the left null space of[Hi,r −Hj,r]. Consider the
following β-combining channel matrix whose span space is

span
[
Hi,r Hj,r Hπ(1),r Hπ(2),r · · · Hπ(β−2),r

]
(38)

where{π(1), π(2), · · · , π(β−2)} ⊆ {1, 2, · · · ,K}\{i, j}. We
can find that there are total

(
K−2
β−2

)
different cases. Hence, there

are
(
K−2
β−2

)
q row vectors which are located in the left null space

of [Hi,r −Hj,r].

From Theorem 4, we have

(
K − 2

β − 2

)

q ≥
dtotal
2

− 2M + di,j . (39)

Combining (37) and (39), the relationship betweendi,j and

M can be derived as

x = di,j

≤ 2M −
dtotal
2

+
dtotal

(
K−2
β−2

)

2
(
K
β

)

= 2M −
K(K − 1)x

2
+

K(K − 1)x
(
K−2
β−2

)

2
(
K
β

) (40)

From (40), we obtain that

x ≤
4
(
K
β

)
M

2
(
K
β

)
+K(K − 1)

(
K
β

)
−K(K − 1)

(
K−2
β−2

)

=
4
(
K
β

)
M

2
(
K
β

)
+K(K − 1)

(
K
β

)
−K(K − 1)

[(
K
β

) β(β−1)
K(K−1)

]

=
4M

2 +K(K − 1)− β(β − 1)
. (41)

Thus, the maximum achievable DoF is

dtotal = K(K − 1)x =
4K(K − 1)M

2 +K(K − 1)− β(β − 1)
. (42)

On the other hand, sinceq ≤ N − βM , by considering (37)
we haveN ≥ βM + 2K(K−1)M

(
2+K(K−1)−β(β−1)

)

(Kβ)
. Hence, the

achievabiliy of the pointQβ in the DoF plane is proved.
From Theorem 5, we can express the achievable DoF

explicitly at certain antenna configuration regionsN
M as

dtotal =







2N, N
M ∈

(

0, 2K2−2K
K2−K+2

]

,
(4K2−4K)M
K2−K+2 , N

M ∈
(

2K2−2K
K2−K+2 , 2

]

,
(2K2−2K)N
K2−K+2 , N

M ∈
(

2, 2 + 4
K(K−1)

]

,
...
K(K−1)N
K2−3K+3 ,

N
M ∈

(

γ, K
2−3K+3
K−1

]

,

KM, N
M ∈

(
K2−3K+3

K−1 ,+∞
)

,

(43)

whereγ is some value between
(

2 + 4
K(K−1) ,K − 2

)

which
does not have explict expression but can be computed numer-
ically.

Comparing with the upper bound inTheorem 1, we find
that the DoF upper bound under the antenna configuration
N
M ∈

(
0, 2+ 4

K(K−1)

]
∪
[
K − 2,+∞

)
is tight by GSA when

K > 4. By comparing with the previous results summarized



11

Q1 =

(
2K2 − 2K

K2 −K + 2
,
4K2 − 4K

K2 −K + 2

)

(35a)

Qβ =

(

β +
2K(K − 1)

(
2 +K(K − 1)− β(β − 1)

)(
K
β

) ,
4K(K − 1)

2 +K(K − 1)− β(β − 1)

)

(35b)

Fig. 8. New DoF upper bound and its achievability for 5-user MIMO Y
channel.

in Table I, it is seen that the unknown region forN
M to achieve

the maximum DoF is reduced to
(

2 + 4
K(K−1) ,K − 2

)

. Fig.
8 illustrates the new DoF upper bound and its achievability
whenK = 5.

In the case withK = 4, the achievable DoF is the same as
the DoF upper bound for allNM . This is consistent with the
results obtained in [32].

Corollary 1: When K → ∞, the achievable DoF for the
K-user MIMO Y channel is

dtotal =







2N, N
M ∈

(
0, 2
]
,

4M, N
M ∈

(
2, 4
]
,

N, N
M ∈

(
4,+∞

)
,

(44)

as illustrated in Fig. 9.

Proof: According to Theorem 5, we haveQ1 = Q2 =
(2, 4), Q3 = (3, 4) andQ4 = (4, 4) whenK → ∞. Then we
have

lim
K→∞

QK−2 = lim
K→∞

(
K2 − 3K + 3

K − 1
,K

)

= lim
K→∞

(K,K) .

(45)
The slope of the line from0 to Q1 (0 → Q1) is two while
the slope of0 → QK−2 is one. Next, we show that the slope
of 0 → Qβ is less than one for anyβ ∈ {5, 6, · · · ,K − 3}.

Fig. 9. Asymptotic DoF behavior whenK → ∞ for K-user MIMO Y
channel.

Denotelβ as the slope of0 → Qβ and we have

lβ =
4K(K − 1)

β
(
2 +K(K − 1)− β(β − 1)

)(
K
β

)
+ 2K(K − 1)

≤
4K(K − 1)

β
(
2 +K(K − 1)− β(β − 1)

)(
K
3

)
+ 2K(K − 1)

=
4K(K − 1)

[
β
(
2 +K(K − 1)− β(β − 1)

)
K−2
6 + 2

]
K(K − 1)

<
4K(K − 1)

[2 + 2] (K − 1)

= 1. (46)

This indicates that{Qβ | β ∈ {5, 6, · · · ,K − 3}} are all lo-
cated in the single-sided trapezoids characterized by the point
QK−2. The corollary is thus proved.

2) An example when DoF of KM is achievable:
Here, we illustrate the specific construction of the compres-

sion matrixP and the source precoding matrixVi,j to achieve
the DoFKM when N

M ≥ K2−3K+3
K−1 . We letdi,j be M

K−1 for
all i 6= j. The data switch matrixD is

D =










0 M
K−1 · · · M

K−1
M

K−1
M

K−1 0 · · · M
K−1

M
K−1

...
...

. . .
...

...
M

K−1
M

K−1 · · · 0 M
K−1

M
K−1

M
K−1 · · · M

K−1 0










. (47)

We separate the analysis into two cases.
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Case 1:M is divisible by K − 1. Denote

s⊕ =













s1,2 + s2,1
s1,3 + s3,1

...
si,j + sj,i

...
sK−1,K + sK,K−1













(48)

as the network-coded symbol vector expected to obtain at the
relay, where eachsi,j is a M

K−1 × 1 vector.
Let the KM

2 × N compression matrixP be stacked by
M

K−1×N submatricesPi,j by row. We design the compression
matrix P by the method in the proof ofTheorem 5. Each
submatrixPi,j is designed as (49) at the top of the next page.
Then we design the precoding matricesVi,j for each source
node. Each pair ofM × M

K−1 precoding matrices is designed
as

[
Vi,j

Vj,i

]

⊆ Null [PHi,r −PHj,r] . (50)

Similar to (30), we can obtain the direction of the aligned
signals of signal pair (1, 2) as

B1,2 = PH1,rV1,2 = PH3,rV3,1 =















α1
1,2 · · · 0
0 · · · 0
...

. . .
...

0 · · · α
d1,2

1,2

0 · · · 0
...

. . .
...

0 · · · 0















,

(51)

whereαl
1,2 (1 ≤ l ≤ d1,2) is a constant andB1,2 is a KM

2 ×
d1,2 matrix.

Plugging (49) and (50) into (23), we can obtain the signals
after compression as

ŷr = αs⊕ +Pnr (52)

whereα is a diagonal matrix. Then, the network-coded symbol
vector can be readily estimated from (52).

During the BC phase, we use the method of interference
nulling to design the precoding matrixU. We can writeU as
follows.

U =
[

U1 U2 · · · UK(K−1)
2

]

, (53)

where eachUi is anN × M
K−1 matrix and

U1 ⊆ Null
[
GT

r,3 GT
r,4 · · · GT

r,K

]T

U2 ⊆ Null
[
GT

r,2 GT
r,4 · · · GT

r,K

]T

...

...

UK(K−1)
2

⊆ Null
[
GT

r,1 GT
r,2 · · · GT

r,K−2

]T
(54)

The matrixUi (N × M
K−1 ) exists if and only ifN − (K −

2)M ≥ M
K−1 , or equivalentlyN ≥ (K2−3K+3)M

K−1 . Hence,

we can apply GSA-based transmission scheme whenM is
divisible by K − 1 and N ≥ (K2−3K+3)M

K−1 to achieve the
DoF upper boundKM .

Case 2:M is not divisible by K − 1. In this case, we
use the idea of the symbol extension [35] together with GSA
to prove the achievability of the DoF upper boundKM . We
consider the(K − 1)-symbol extension of the channel model,
where the channel coefficients do not necessarily vary over
time. The received signal at the relay can be written as

yr =








yr(1)
yr(2)

...
yr(K − 1)








=








H(1) 0 · · · 0

0 H(2) · · · 0
...

...
. . . 0

0 0 · · · H(K − 1)















x(1)
x(2)

...
x(K − 1)








+








nr(1)
nr(2)

...
nr(K − 1)








= H§x§ + n§
r. (55)

where yr(t), H(t), x(t) and nr(t) denote thet-th time
slot of received signals, channel matrices, transmitted signals
and noise,H§ denotes the equivalent channel matrix,x§

denotes the equivalent transmitted signals, andn§
r denotes the

equivalent noise.
Note thatH§ is a (K − 1)N × (K − 1)KM matrix. The

system model is equivalent to theK-user MIMO Y channel
with each source node equipped with(K−1)M antennas and
the relay equipped with(K−1)N antennas. It turns to beCase
1 and we can then apply GSA to achieve the DoF(K−1)KM
over(K− 1) channel uses. This implies that the DoF ofKM
per channel use is achievable in the originalK-user MIMO Y
channel. The antenna constraint can be written as

(K − 1)N − (K − 2)(K − 1)M ≥
(K − 1)M

K − 1

or equivalently,

N ≥
(K2 − 3K + 3)M

K − 1
. (56)

The above analysis shows that the generalized signal align-
ment based transmission scheme can achieve the DoF ofKM
whenN ≥ (K2−3K+3)M

K−1 in theK-user MIMO Y channel.

B. Multi-pair MIMO two-way relay channel

The multi-pair MIMO two-way relay channel consists of
K
2 pairs of source nodes, each source node equipped with
M antennas, and one relay node, equipped withN antennas.
The two source nodes, denoted asi andK + 1− i, exchange
messages with each other with the help of the relay. Previous
studies [23], [29] analyzed the achievable DoF for this model.
The maximum achievable DoF with the antenna configuration
N
M ∈

(
2K
K+2 ,K

)
remains unknown. Our result is given in the

following theorem.
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i,j ⊆ Null

[
H1,r · · · Hi−1,r Hi+1,r · · · Hj−1,r Hj+1,r · · · HK,r

]T
. (49)

1) Achievable DoF:
Theorem 6: The achievable DoF for the multi-pair MIMO

two-way relay channel at different antenna configurationsN
M is

given by the union of the single-sided trapezoids characterized
by the following points in the DoF plane:

Q1 =

(
2K

K + 2
,

4K

K + 2

)

(57a)

Qβ =

(

β +
2K

(
2 +K − β

)(K/2
β/2

) ,
4K

2 +K − β

)

(57b)

whereβ ∈ {2, 4, · · · ,K − 2}. Note thatβ is even.
Proof: By Lemma 2, to prove this theorem is equivalent

to proving the achievability of the pointsQ1 andQβ for β =
2, 3, · · · ,K−2. Q1 is proved to be achievable in [23] with SA.
In what follows, we prove the achievability of eachQβ. Note
that the abscissa ofQβ is located in the interval(β, β + 1).

For the symmetry of each source node, we assume thatdi,j
for any pair(i, j) is the same and given byx, thendtotal =
Kx. For eachβ, let the antenna configuration satisfyβM ≤
N < (β + 1)M . Different from the method of the design of
P in the previous subsection, we define the paired-combining
channel matrix[Hi,r HK+1−i,r], where i ∈ {1, 2, · · · , K

2 }.
We only chooseq out of theN − βM basis vectors of the
left null space of eachHβ [n], whose span space consists ofβ

2
paired-combining channel matrices, as the row vectors of the
matrix P. In total we can construct

(
K/2
β/2

)
q row vectors forP

as there are
(K/2
β/2

)
q different β-combining channel matrices.

On the other hand, the number of the rows ofP is dtotal

2 . Thus
we can let

dtotal
2

=

(
K/2

β/2

)

q, (58)

which is equivalent to

q =
dtotal

2
(K/2
β/2

) . (59)

Next, we count the number of row vectors inP which are
located in the left null space of[Hi,r −Hj,r]. Consider the
following β-combining channel matrix whose span space is

span
[
Hi,r Hj,r Hπ(1),r Hπ(2),r · · · Hπ(β−2),r

]
(60)

where
{

π(1), π(2), · · · , π
(

β−2
2

)}

⊆ {1, 2, · · · , K
2 }\{i, j}

andπ
(

k + β−2
2

)

= K + 1 − π (k), k = 1, 2, · · · , β−2
2 . We

can find that there are total
(
K/2−1
β/2−1

)
different cases. Hence,

there are
(K/2−1
β/2−1

)
q row vectors which are located in the left

null space of[Hi,r −Hj,r].
From Theorem 4, we have

(
K/2− 1

β/2− 1

)

q ≥
dtotal
2

− 2M + di,j . (61)

Combining (59) and (61), the relationship betweendi,j and
M can be derived as

x = di,j

≤ 2M −
dtotal
2

+
dtotal

(K/2−1
β/2−1

)

2
(K/2
β/2

)

= 2M −
Kx

2
+

βx

2
(62)

From (62), we obtain that

x ≤
4M

2 +K − β
. (63)

Thus, the maximum achievable DoF is

dtotal = Kx =
4KM

2 +K − β
(64)

On the other hand, sinceq ≤ N − βM , by considering (59)
we haveN ≥ βM + 2KM(

2+K−β
)

(K/2
β/2)

. Hence, the achievabiliy

of the pointQβ in the DoF plane is proved.
From Theorem 6, we can express the achievable DoF

explicitly at certain antenna configuration regionsN
M as

dtotal =







2N, N
M ∈

(

0, 2K
K+2

]

,

4KM
K+2 ,

N
M ∈

(
2K
K+2 , 2

]

,
2KN
K+2 ,

N
M ∈

(
2, 2 + 4

K

]
,

...
KN
K−1 ,

N
M ∈ (γ,K − 1],

KM, N
M ∈ (K − 1,+∞),

(65)

whereγ is some value between
(
2 + 4

K ,K − 2
)

which does
not have explict expression but can be computed numerically.

Comparing with the upper bound inTheorem 2, we find
that the DoF upper bound under the antenna configuration
N
M ∈

(
0, 2+ 4

K

]
∪
[
K−2,+∞

)
is tight by GSA whenK > 4.

By comparing with the previous results in [23], [29], it is seen
that the unknown region forNM to achieve the maximum DoF
is reduced to

(
2 + 4

K ,K − 2
)
.

If K = 4, then only considerβ = 2 and the achievable DoF
is the same as the DoF upper bound for allN

M .
Corollary 2: When K → ∞, the achievable DoF for the

multi-pair MIMO two-way relay channel is

dtotal =







2N, N
M ∈

(
0, 2
]
,

4M, N
M ∈

(
2, 4
]
,

N, N
M ∈

(
4,+∞

)
.

(66)

Proof: The proof is similar to the proof ofCorollary 1
and hence omitted.

2) An example when DoF of KM is achievable:
Here, we illustrate the specific construction of the compres-

sion matrixP and the source precoding matrixVi,j to achieve
the DoFKM when N

M ≥ K − 1. We let di,j be M for all
i 6= j. The data switch matrixD is
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D =










0 0 · · · 0 M
0 0 · · · M 0
...

...
. . .

...
...

0 M · · · 0 0
M 0 · · · 0 0










. (67)

Let the KM
2 × N compression matrixP be stacked by

M ×N submatricesPi,j by row. We design the compression
matrix P by the method in the proof ofTheorem 6. Each
submatrix Pi,j is designed as (68). Then we design the
precoding matricesVi,j for each source node. Each source
pair of source precoding matrices is designed as

[
Vi,̄i

Vī,i

]

⊆ Null
[
PHi,r −PHī,r

]
. (69)

Plugging (68) and (69) into (23), we can obtain the signals
after compression as

ŷr = αs⊕ +Pnr (70)

whereα is a diagonal matrix ands⊕ = [sT1,K+sTK,1, s
T
2,K−1+

sTK−1,2, · · · , s
T
i,̄i + sTī,i, · · · , s

T
K
2 ,K2 +1

+ sTK
2 +1,K2

]T . Then, the
network-coded symbol vector can be readily estimated from
(70).

During the BC phase, we use similar interference nulling
method as in theK-user MIMO Y channel to design the
precoding matrixU. We can writeU as follows.

U =
[

U1 U2 · · · UK
2

]

(71)

where eachUi is anN ×M matrix and

U1 ⊆ Null
[
GT

r,2 GT
r,3 · · · GT

r,K−1

]T

U2 ⊆ Null
[
GT

r,1 GT
r,3 · · · GT

r,K−2 GT
r,K

]T

...

...

UK
2
⊆ Null

[
GT

r,1 GT
r,2 · · · GT

r,K2 −1
GT

r,K2 +2
· · · GT

K

]T

(72)

We can see thatUi (N ×M ) exists if and only if

N − (K − 2)M ≥ M (73)

or equivalently,
N ≥ (K − 1)M. (74)

The following steps are similar to those in the previous
subsection.

C. Generalized MIMO two-way X relay channel

The generalized MIMO two-way X relay channel consists
of two groups of source nodes of sizeK2 , each equipped with
M antennas, and one relay node, equipped withN antennas.
Each source node in one group, denoted asi = 1, 2, · · · , K

2 ,
exchanges independent messages with every source node in the
other group, denoted asi = K

2 + 1, K
2 + 2, · · · , K, with

the help of the relay. In the special case ofK = 4, i.e. MIMO
two-way X relay channel, the work in [21] showed that the

DoF of 2N is achievable whenN ≤ ⌊ 8M
5 ⌋; the work in [1]

showed that the DoF of4M is achievable whenN ≥ ⌈ 5M
2 ⌉.

Our result is given in the following theorem.
1) Achievable DoF:
Theorem 7: The achievable DoF for the generalized MIMO

two-way X relay channel at different antenna configurations
N
M is given by the union of the single-sided trapezoids char-
acterized by the following points in the DoF plane:

Q1 =

(
2K2

K2 + 4
,

4K2

K2 + 4

)

(75a)

Qβ =

(

β +
2K2

(
4 +K2 − β2

)(
K/2
β/2

)(
K/2
β/2

) ,
4K2

4 +K2 − β2

)

(75b)

whereβ ∈ {2, 4, · · · ,K − 2}. Note thatβ is even.
Proof: By Lemma 2, to prove this theorem is equivalent

to proving the achievability of the pointsQ1 and Qβ for
β = 2, 3, · · · ,K − 2. Q1 is achievable with SA, we omit
the detailed proof here. In what follows, we mainly prove the
DoF achievability ofQβ whenβ ≥ 2. Note that the abscissa
of Qβ is located in the interval(β, β + 1).

For the symmetry of each source node, we assume thatdi,j
for any pair(i, j) is the same and given byx, thendtotal is
K2

2 x. For eachβ, let the antenna configuration satisfyβM ≤
N < (β +1)M . DefineHgroup 1 = {H1,r,H2,r, · · · ,HK

2 ,r}

and Hgroup 2 = {HK
2 +1,r,HK

2 +2,r, · · · ,HK,r}. We only
choose q out of the N − βM basis vectors of the left
null space of eachHβ [n], whose span space consists ofβ

2

channel matrices inHgroup 1 and β
2 channel matrices in

Hgroup 2, as the row vectors of the matrixP. In total we
can construct

(K/2−1
β/2−1

)(K/2−1
β/2−1

)
q row vectors forP as there

are
(K/2−1
β/2−1

)(K/2−1
β/2−1

)
differentβ-combining channel matrices.

On the other hand, the number of the rows ofP is dtotal

2 . Thus
we can let

dtotal
2

=

(
K/2

β/2

)(
K/2

β/2

)

q, (76)

which is equivalent to

q =
dtotal

2
(K/2
β/2

)(K/2
β/2

) . (77)

Next, we count the number of row vectors inP which are
located in the left null space of[Hi,r −Hj,r]. Consider the
following β-combining channel matrix whose span space can
be expressed as (78) at the top of the next page. We can find
that there are total

(
K/2−1
β/2−1

)(
K/2−1
β/2−1

)
different cases. Hence,

there are
(K/2−1
β/2−1

)(K/2−1
β/2−1

)
q row vectors which are located in

the left null space of[Hi,r −Hj,r].
From Theorem 4, we have
(
K/2− 1

β/2− 1

)(
K/2− 1

β/2− 1

)

q ≥
dtotal
2

− 2M + di,j . (79)

Combining (77) and (79), the relationship betweendi,j and
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i,̄i ⊆ Null

[
H1,r · · · Hi−1,r Hi+1,r · · · Hī−1,r Hī+1,r · · · HK,r

]T
. (68)

span






Hi,r Hj,r Hπ(1),r Hπ(2),r · · · Hπ(β−2

2 ),r
︸ ︷︷ ︸

in Hgroup 1

Hπ(β−2
2 +1),r Hπ(β−2

2 +2),r · · · Hβ−2,r

︸ ︷︷ ︸

in Hgroup 2







(78)

M can be derived as

x = di,j

≤ 2M −
dtotal
2

+
dtotal

(K/2−1
β/2−1

)(K/2−1
β/2−1

)

2
(K/2
β/2

)(K/2
β/2

)

= 2M −
K2x

4
+

β2x

4
(80)

From (80), we obtain that

x ≤
8M

4 +K2 − β2
. (81)

Thus, the maximum achievable DoF is

dtotal =
K2

2
x =

4K2M

4 +K2 − β2
(82)

On the other hand, sinceq ≤ N − βM , by considering
(77) we haveN ≥ βM + 2K2M(

4+K2−β2
)

(K/2
β/2)(

K/2
β/2)

. Hence, the

achievabiliy of the pointQβ in the DoF plane is proved.
From Theorem 7, we can express the achievable DoF

explicitly at certain antenna configuration regionsN
M as

dtotal =







2N, N
M ∈

(

0, 2K2

K2+4

]

,

4K2M
K2+4 ,

N
M ∈

(
2K2

K2+4 , 2
]

,
2K2N
K2+4 ,

N
M ∈

(
2, 2 + 8

K2

]
,

...
K2N

K2−2K+2 ,
N
M ∈

(

γ, K
2−2K+2

K

]

,

KM, N
M ∈

(
K2−2K+2

K ,+∞
)

,

(83)

whereγ is some value between
(
2 + 8

K2 ,K − 2
)

which does
not have explict expression but can be computed numerically.

Comparing with the upper bound inTheorem 3, we find
that the DoF upper bound under the antenna configuration
N
M ∈

(
0, 2 + 8

K2

]
∪
[
K − 2,+∞

)
is tight by GSA when

K > 4.
In the case withK = 4, the achievable DoF is the same as

the DoF upper bound for allNM . This is consistent with the
results obtained in [32].

Corollary 3: When K → ∞, the achievable DoF for the
generalized MIMO two-way X relay channel is

dtotal =







2N, N
M ∈

(
0, 2
]
,

4M, N
M ∈

(
2, 4
]
,

N, N
M ∈

(
4,+∞

)
.

(84)

Proof: The proof is similar to the proof ofCorollary 1
and hence omitted.

2) An example when DoF of KM is achievable:

Here, we illustrate the specific construction of the compres-
sion matrixP and the source precoding matrixVi,j to achieve
the DOFKM when N

M ≥ K2−2K+2
K . We let di,j be 2M

K for
all i 6= j. The data switch matrixD is

D =














0 · · · 0 d1,K2 +1 · · · d1,K
...

. . .
...

...
. . .

...
0 . . . 0 dK

2 ,K2 +1 · · · dK
2 ,K

dK
2 +1,1 · · · dK

2 +1,K2
0 · · · 0

...
. . .

...
...

. . .
...

dK,1 · · · dK,K2
0 · · · 0














.

(85)

Here, we separate the analysis into two cases.

Case 1:M is divisible by K
2 . Denote

s⊕ = [sT1,2 + sT2,1, · · · , s
T
i,j + sTj,i, · · · , s

T
K−1,K + sTK,K−1]

T

(86)
as the network-coded symbol vector expected to obtain at the
relay, where eachsi,j is a di,j × 1 vector.

Let theKM
2 ×N compression matrixP be stacked by2MK ×

N submatricesPi,j by row. We design the compression matrix
P by the method in the proof ofTheorem 7. Each submatrix
Pi,j is designed as (87) at the top of the next page. Then we
design the precoding matricesVi,j for each source node. Each
pair of M × 2M

K precoding matrices is designed as

[
Vi,j

Vj,i

]

⊆ Null [PHi,r −PHj,r] . (88)

Plugging (87) and (88) into (23), we can obtain the signals
after compression as

ŷr = αs⊕ +Pnr (89)

whereα is a diagonal matrix. Then, the network-coded symbol
vector can be readily estimated from (89).

During the BC phase, we use the method of interference
nulling to design the precoding matrixU. We can writeU as
follows.

U =
[

U1 U2 · · · UK2

4

]

(90)
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i,j ⊆ Null

[
H1,r · · · Hi−1,r Hi+1,r · · · Hj−1,r Hj,r · · · HK,r

]T
. (87)

where eachUi is anN × 2M
K matrix and

U1 ⊆ Null
[
GT

r,2 GT
r,3 · · · GT

r,K2
GT

r,K2 +2
· · · GT

r,K

]T

U2 ⊆ Null
[
GT

r,2 GT
r,3 · · · GT

r,K2 +1 GT
r,K2 +3 · · · GT

r,K

]T

...

...

UK2

4

⊆ Null
[
GT

r,1 GT
r,2 · · · GT

r,K2 −1 GT
r,K2 +1 · · · GT

r,K−1

]T

(91)

We can see thatUi (N × 2M
K ) exists if and only ifN −

(K−2)M ≥ 2M
K , or equivalentlyN ≥ (K2−2K+2)M

K . Hence,
we can apply GSA-based transmission scheme whenM is a
multiple of K

2 to achieve the DoF upper boundKM .
Case 2:M is not divisible by K

2 . We can utilize the (K2 )-
symbol extension. The proof is similar to that in the previous
subsection. We omit the detail proof here.

D. Multi-user MIMO two-way relay channel

The previous three subsections are for three special channel
models. In this subsection, we consider the general multi-user
MIMO two-way relay channel where the data switch matrix
D can be arbitrary.

Theorem 8: For the multi-user MIMO two-way relay chan-

nel, the total DoF of
K∑

i=1

∑

j∈Si

di,j for any given data switch

matrix D is achievable whenM ≥ maxi{
∑

j∈Si
di,j}, and

N ≥ (K − 2)M +max{di,j}.
Proof: Let the dtotal

2 × N compression matrixP be
stacked by submatricesPi,j by row, wherePi,j is adi,j ×N
matrix. Note thatPi,j exists if and only if [D]i,j 6= 0.
Construct each submatrixPi,j as (92) at the top of the next
page. From (92), we can obtain thatPi,j exists when

N − (K − 2)M ≥ di,j . (93)

Remove the submatrices set{Ps,t | s = i or s = j or t =
i or t = j} from P, the remaining submatrix ofP is defined
asFi,j . From (92), we can obtain that

FT
i,j ⊆ Null [Hi,r −Hj,r]

T (94)

The number of rows of the matrixFi,j can be expressed as
(95) at the top of the next page.

Therefore, whenN ≥ (K − 2)M + max{di,j}, the com-
pression matrixP can be constructed with the method of (92)
and at leastdtotal

2 −2M +di,j row vectors ofP will lie in the
left null space of[Hi,r −Hj,r], for any [D]i,j 6= 0, which
meetsTheorem 4.

From Theorem 8, we can obtain that the total DoF upper
boundKM is achievable for the multi-user MIMO two-way
relay channel when

∑

j∈Si

di,j = M , for all i’s, andN ≥ (K −

2)M +max{di,j}.

Corollary 4: The DoF upper bound ofKM is achievable
for theL-clusterK ′ = K

L -user MIMO multiway relay channel

when N
M ≥ (K′−1)(K−2)+1

K′−1 .
Proof: The proof follows directly fromTheorem 8. Note

that max{di,j} is M
K′−1 . Clearly, the region of antenna con-

figuration for the DoF upper bound to be tight enlarges the
oneN ≥ LK ′M = KM in [23].

VI. CONCLUSION

In this paper, we have introduced generalized signal align-
ment to analyze the achievable DoF for the general multi-user
MIMO two-way relay channels, where each source node can
exchange independent messages with an arbitrary set of other
source nodes via the relay node. The proposed GSA is to
align the signals to be exchanged between each source node
pair at a compressed subspace of the relay. We provided the
necessary and sufficient condition about the relay compression
matrix for the GSA equation to hold. Using the proposed GSA,
we have revealed new antenna configurations for achieving
the maximum DoF of several special cases of the considered
channel model, including theK-user MIMO Y channel, the
multi-pair MIMO two-way relay channel, the generalized
MIMO two-way X relay channnel, and theL-cluster MIMO
multiway relay channel. We conclude that the proposed GSA
represents a new and effective transmission framework towards
the DoF analysis of a type of interference-limited wireless
networks.

APPENDIX A: PROOF OFTHEOREM 1

Consider that each source node can decode theK − 1
intended messages with its ownK − 1 messages as side
information. Then, if a genie provides that side information
to the relay, the relay is able to decode the messages desired
at that source node and the sum rate will not decrease.

We first consider the case whenNM ∈
(

0, 2K2−2K
K2−K+2

]

. As
illustrated in Fig. 10, for each source nodei, with 1 ≤ i < K,
we provide the genie information{Wi,j | i + 1 ≤ j ≤ K}
to the relay. Thus, the total genie information at the relay is
G1 = {Wi,j | i = 1, 2, · · · ,K − 1; j = i + 1, i + 2, · · · ,K}
shown as upper triangle in Fig. 10. We can obtain the total
transmission rate from nodes{i + 1, i + 2, · · · ,K} to node
i during n time slots as (96) at the top of the next page,
whereǫ(n) represents thatlim

n→∞

ǫ(n)
n = 0 andXi represents

all the messages transmitted from source nodei. Here, (96b)
follows from the Fano’s inequality, (96c) is obtained via the
data processing inequality becauseYr − Xr − Yi forms a
Markov chain, (96d) is obtained because adding genie signals
does not reduce the capacity region, and (96f) follows from
the fact that the first term in (96e) is zero.

Adding (96) from i = 1 to K − 1, we can obtain (97) at
the top of the next page. DividingnlogP to both sides of (97)
and lettingn → ∞ andP → ∞, we can obtain the total DoF
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PT
i,j ⊆ Null

[
H1,r · · · Hi−1,r Hi+1,r · · · Hj−1,r Hj+1,r · · · HK,r

]T
. (92)

Ni,j =
dtotal
2

− (d1,i + d2,i + · · ·+ di−1,i + di,i+1 + · · ·+ di,K)

− (d1,j + d2,j + · · ·+ dj−1,j + dj,j+1 + · · ·+ dj,K) + di,j

=
dtotal
2

− di − dj + di,j

≥
dtotal
2

− 2M + di,j . (95)

n(Ri+1,i +Ri+2,i + · · ·+RK,i) (96a)

≤I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
i | Wi,1,Wi,2, · · · ,Wi,i−1,Wi,i+1, · · · ,Wi,K) + ǫ(n) (96b)

≤I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
r | Wi,1,Wi,2, · · · ,Wi,i−1,Wi,i+1, · · · ,Wi,K) + ǫ(n) (96c)

≤I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
r ,G1 | Wi,1,Wi,2, · · · ,Wi,i−1,Wi,i+1, · · · ,Wi,K) + ǫ(n) (96d)

=I(Wi+1,i,Wi+2,i, · · · ,WK,i;G1 | Wi,1,Wi,2, · · · ,Wi,i−1,Wi,i+1, · · · ,Wi,K)

+ I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
r | G1,Wi,1,Wi,2, · · · ,Wi,i−1,Wi,i+1, · · · ,Wi,K) + ǫ(n) (96e)

=I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
r | G1,Wi,1,Wi,2, · · · ,Wi,i−1,Wi,i+1, · · · ,Wi,K) + ǫ(n) (96f)

=I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
r | G1,Wi,1,Wi,2, · · · ,Wi,i−1) + ǫ(n). (96g)

n





K−1∑

i=1

K∑

j=i+1

Rj,i



 (97a)

≤I({Wj,i | i = 1, 2, · · · ,K − 1; j = i+ 1, i+ 2, · · · ,K};Y n
r | G1) + ǫ(n) (97b)

≤h(Y n
r | G1) + ǫ(n) (97c)

≤nN logP + ǫ(n) (97d)

Fig. 10. Illustration for the genie information and the decodable messages
at the relay for theK-user MIMO Y channel whenN

M
∈

(

0, 2K2
−2K

K2
−K+2

]

upper bound as

dtotal =

K∑

i=1

K∑

j=1

di,j ≤ 2N. (98)

Next, we consider the case whenN
M ∈

(

β, (β+1)(K(K−1)+β(β−1))
K(K−1)+(β+1)β

]

for eachβ ∈ {2, 3, 4, · · · ,K −

2}. As illustrated in Fig. 11, for each source node
i, with 1 ≤ i ≤ K − β, we provide the genie
information {Wi,j | i + 1 ≤ j ≤ K} to the relay.
Thus, the total genie information at the relay is
G2 = {Wi,j | i = 1, 2, · · · ,K − β; j = i + 1, i + 2, · · · ,K}.
Similar to (96), we can obtain (99) at the top of the next
page, fori = 1, 2, · · · ,K − β. Compared with Fig. 10, the
difference is that no genie information is provided for the
source nodes{K − β + 1,K − β + 2, · · · ,K}. Adding (99)
from i = 1 to K − β, we can obtain (100) at the top of the
next page and we have (101) at the top of the next page
We can obtain similar equations to (101) by replacing theβ
source nodes{K − β + 1,K − β + 2, · · · ,K} to any other
β source nodes. Then dividingnlogP to both sides of (101)
and lettingn → ∞ andP → ∞, we can obtain the total DoF
upper bound as

dtotal =

K∑

i=1

K∑

j=1

di,j ≤
2K(K − 1)N

K(K − 1) + β(β − 1)
. (102)

Third, we consider the case when N
M ∈

(
β(K(K−1)+(β−1)(β−2))

K(K−1)+β(β−1) , β
]

. We prove this by

contradiction. If N
M ∈

(
β(K(K−1)+(β−1)(β−2))

K(K−1)+β(β−1) , β
]



18

n(Ri+1,i +Ri+2,i + · · ·+RK,i) ≤ I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
r | G2,Wi,1,Wi,2, · · · ,Wi,i−1) + ǫ(n) (99)

n





K−β
∑

i=1

K∑

j=i+1

Rj,i



 (100a)

≤I({Wj,i | i = 1, 2, · · · ,K − β; j = i+ 1, i+ 2, · · · ,K};Y n
r | G2) + ǫ(n) (100b)

=h(Y n
r | G2)− h(Y n

r | G2, {Wj,i | i = 1, 2, · · · ,K − β; j = i+ 1, i+ 2, · · · ,K}) + ǫ(n) (100c)

=h(Y n
r | G2)− h(Y n

r | Xn
1 , X

n
2 , · · · , X

n
K−β, {Wj,i | i ∈ [1,K − β]; j ∈ [K − β + 1,K]}) + ǫ(n) (100d)

=h(Y n
r | G2)− h(Xn

K−β+1, X
n
K−β+2, · · · , X

n
K | {Wj,i | i ∈ [1,K − β]; j ∈ [K − β + 1,K]}) + nǫ(logP ) + ǫ(n) (100e)

=h(Y n
r | G2)−H({Wi,j | i ∈ [K − β + 1,K]; j ∈ [K − β + 1,K]; j 6= i}) + nǫ(logP ) + ǫ(n) (100f)

≤nN logP − n({Ri,j | i ∈ [K − β + 1,K]; j ∈ [K − β + 1,K]; j 6= i}) + nǫ(logP ) + ǫ(n) (100g)

n





K−1∑

i=1

K∑

j=i+1

Rj,i +

K−1∑

i=K−β+1

K∑

j=i+1

Ri,j



 ≤ nN logP + nǫ(logP ) + ǫ(n). (101)

Fig. 11. Illustration for the genie information and the decodable mes-
sages at the relay for theK-user MIMO Y channel when N

M
∈

(

β,
(β+1)(K(K−1)+(β)(β−1))

K(K−1)+(β+1)β

]

and datotal > 2βK(K−1)M
K(K−1)+β(β−1) , where datotal represents

the achivable total DoF, then we increaseN to N1

such that N1

M = β. Utilizing the antenna deactivation,
datotal >

2βK(K−1)M
K(K−1)+β(β−1) =

2K(K−1)N1

K(K−1)+β(β−1) can be achieved.
However, this contradicts with that the DoF upper bound
is 2K(K−1)N1

K(K−1)+β(β−1) when N1

M = β. Hence, the DoF upper

bound of the case whenNM ∈
(

β(K(K−1)+(β−1)(β−2))
K(K−1)+β(β−1) , β

]

is
2βK(K−1)M

K(K−1)+β(β−1) .

Finally, we consider the case whenNM ∈
(

K2−3K+3
K−1 ,+∞

)

.
In this case, we notice that the DoF per user could not be larger
thanM . Thus,KM is the DoF upper bound for this case.

APPENDIX B: PROOF OFTHEOREM 2

The idea of this proof is similar toTheorem 1. We first
consider the case whenNM ∈

(

0, 2K
K+2

]

. As illustrated in

Fig. 12, we provide the genie informationG1 = {Wi,j | i =
1, 2, · · · , K

2 ; j = K + 1 − i} to the relay. We can obtain the
total transmission rate from nodesK +1− i to nodei during
n time slots as

n(RK+1−i,i) (103a)

≤I(WK+1−i,i;Y
n
i | Wi,K+1−i) + ǫ(n) (103b)

≤I(WK+1−i,i;Y
n
r | Wi,K+1−i) + ǫ(n) (103c)

≤I(WK+1−i,i;Y
n
r ,G1 | Wi,K+1−i) + ǫ(n) (103d)

=I(WK+1−i,i;G1 | Wi,K+1−i)

+ I(WK+1−i,i;Y
n
r | G1,Wi,K+1−i) + ǫ(n) (103e)

=I(WK+1−i,i;Y
n
r | G1,Wi,K+1−i) + ǫ(n) (103f)

=I(WK+1−i,i;Y
n
r | G1) + ǫ(n) (103g)

Adding (103) fromi = 1 to K
2 , we can obtain

n





K
2∑

i=1

RK+1−i,i



 (104a)

≤I({Wj,i | i = 1, 2, · · · ,
K

2
; j = K + 1− i};Y n

r | G1) + ǫ(n)

(104b)

≤h(Y n
r | G1) + ǫ(n) (104c)

≤nN logP + ǫ(n) (104d)

Dividing nlogP to both sides of (104) and lettingn → ∞ and
P → ∞, we obtain the total DoF upper bound as

dtotal =

K∑

i=1

di,K+1−i ≤ 2N. (105)

Next, we consider the case whenNM ∈
(

β, (β+2)(K+β)
K+β+2

]

,

for eachβ ∈ {2, 4, · · · ,K − 2}. Note thatβ is even here. As
illustrated in Fig. 13, for each source nodei, with 1 ≤ i ≤ K

2 −
β
2 , we provide the genie information{Wi,j | j = K + 1 − i}
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Fig. 12. Illustration for the genie information and the decodable messages
for the multi-pair MIMO two-way relay channel at the relay when N

M
∈

(

0, 2K
K+2

]

to the relay. Thus, the total genie information at the relay is
G2 = {Wi,j | i = 1, 2, · · · , K

2 − β
2 ; j = K + 1 − i} to the

relay. Similar to (103), we can obtain

n(RK+1−i,i) ≤ I(WK+1−i,i;Y
n
r | G2) + ǫ(n) (106)

for i = 1, 2, · · · ,K−β. Compared with Fig. 12, the difference
is that no genie information is provided for the source nodes{

K
2 − β

2 + 1, K2 − β
2 + 2, · · · , K

2

}

. Adding (106) fromi = 1

to K
2 − β

2 , we can obtain (107) at the top of the next page.
Then we have

n





K
2 + β

2∑

i=1

RK+1−i,i



 ≤ nN logP + nǫ(logP ) + ǫ(n). (108)

We can obtain similar equations to (108) by replacing theβ

source nodes
{

K
2 − β

2 + 1, K2 − β
2 + 2, · · · , K

2 + β
2

}

to any
otherβ source nodes. Then dividingnlogP to both sides of
(108) and lettingn → ∞ and P → ∞, we can obtain the
total DoF upper bound as

dtotal =
K∑

i=1

di,K+1−i ≤
2KN

K + β
. (109)

Thirdly, we consider the case whenNM ∈
(

β(K+β−2)
K+β , β

]

.

We prove this by contradiction. IfNM ∈
(

β(K+β−2)
K+β , β

]

and

datotal > 2βKM
K+β , wheredatotal represents the achivable total

DoF, then we increaseN to N1 such thatN1

M = β. Utilizing
the antenna deactivation,datotal > 2βKM

K+β = 2KN1

K+β can be
achieved. However, this contradicts with that whenN1

M = β,
the DoF upper bound is2KN1

K+β . Hence, the DoF upper bound

of the case whenNM ∈
(

β(K+β−2)
K+β , β

]

is 2βKM
K+β .

Finally, we consider the case whenNM ∈
(
K − 1,+∞

)
. In

this case, we notice that the DoF per user could not be larger
thanM . Thus,KM is the DoF upper bound for this case.

APPENDIX C: PROOF OFTHEOREM 3

The idea of this proof is similar toTheorem 1. We first
consider the case whenNM ∈

(

0, 2K
K+2

]

. As illustrated in

Fig. 13. Illustration for the genie information and the decodable messages
at the relay for the multi-pair MIMO two-way relay channel when N

M
∈

(

β,
(β+1)(K(K−1)+(β)(β−1))

K(K−1)+(β+1)β

]

Fig. 14. Illustration for the genie information and the decodable messages
at the relay for the generalized MIMO two-way X relay channelwhen N

M
∈

(

0, 2K2

K2+4

]

Fig. 14, for each source nodei, with 1 ≤ i ≤ K
2 , we

provide the genie information
{
Wi,j |

K
2 + 1 ≤ j ≤ K

}
to

the relay. Thus, the total genie information at the relay is
G1 =

{
Wi,j | i = 1, 2, · · · , K

2 ; j =
K
2 + 1, K

2 + 2, · · · ,K
}

to
the relay. We can obtain the total transmission rate from nodes
{
K
2 + 1, K

2 + 2, · · · ,K
}

to node i during n time slots as
(110) at the top of the next page. Adding (110) fromi = 1 to
K
2 , we can obtain (111) at the top of the next page. Dividing
nlogP to both sides of (111) and lettingn → ∞ andP → ∞,
we can obtain the total DoF upper bound as

dtotal =

K
2∑

i=1

∑

j∈Si

di,j ≤
K2

2

4N

K2
= 2N. (112)

Next, we consider the case whenNM ∈
(

β, (K2+β2)(β+2)
K2+(β+2)2

]

,

for eachβ ∈ {2, 4, · · · ,K − 2}. As illustrated in Fig. 15,
we provide the genie informationG2 = {Wi,j | i =
1, 2, · · · , K

2 − β
2 ; j = K

2 + 1, K2 + 2, · · · ,K} ∪ {Wi,j | i =
K
2 − β

2 + 1, · · · , K
2 ; j = K

2 + β
2 + 1, · · · ,K} to the relay.

Similar to (110), we can obtain

n(Ri+1,i +Ri+2,i + · · ·+RK,i)

≤I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
r | G2) + ǫ(n) (113)



20

n





K
2 −

β
2∑

i=1

RK+1−i,i



 (107a)

≤I

({

WK+1−i,i | i = 1, 2, · · · ,
K

2
−

β

2

}

;Y n
r | G2

)

+ ǫ(n) (107b)

=h(Y n
r | G2)− h

(

Y n
r | G2,

{

WK+1−i,i | i = 1, 2, · · · ,
K

2
−

β

2

})

+ ǫ(n) (107c)

=h(Y n
r | G2)− h

(

Y n
r | Xn

1 , · · · , X
n
K
2 −

β
2

, Xn
K
2 + β

2 +1
· · · , Xn

K ,

{

WK+1−i,i | i ∈

[

1,
K

2
−

β

2

]})

+ ǫ(n)

=h(Y n
r | G2)− h(Xn

K
2 −

β
2 +1

, Xn
K
2 −

β
2 +2

, · · · , Xn
K
2 + β

2

) + nǫ(logP ) + ǫ(n) (107d)

=h(Y n
r | G2)−H

({

Wi,K+1−i | i ∈

[
K

2
−

β

2
+ 1,

K

2
+

β

2

]})

+ nǫ(logP ) + ǫ(n) (107e)

≤nN logP − n

({

Ri,K+1−i | i ∈

[
K

2
−

β

2
+ 1,

K

2
+

β

2

]})

+ nǫ(logP ) + ǫ(n). (107f)

n(RK
2 +1,i +RK

2 +2,i + · · ·+RK,i) (110a)

≤I(WK
2 +1,i,WK

2 +2,i, · · · ,WK,i;Y
n
i | Wi,K2 +1,Wi,K2 +2, · · · ,Wi,K) + ǫ(n) (110b)

≤I(WK
2 +1,i,WK

2 +2,i, · · · ,WK,i;Y
n
r | Wi,K2 +1,Wi,K2 +2, · · · ,Wi,K) + ǫ(n) (110c)

≤I(WK
2 +1,i,WK

2 +2,i, · · · ,WK,i;Y
n
r ,G1 | Wi,K2 +1,Wi,K2 +2, · · · ,Wi,K) + ǫ(n) (110d)

=I(WK
2 +1,i,WK

2 +2,i, · · · ,WK,i;G1 | Wi,K2 +1,Wi,K2 +2, · · · ,Wi,K) (110e)

+ I(WK
2 +1,i,WK

2 +2,i, · · · ,WK,i;Y
n
r | G1,Wi,K2 +1,Wi,K2 +2, · · · ,Wi,K) + ǫ(n) (110f)

=I(WK
2 +1,i,WK

2 +2,i, · · · ,WK,i;Y
n
r | G1,Wi,K2 +1,Wi,K2 +2, · · · ,Wi,K) + ǫ(n) (110g)

=I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
r | G1) + ǫ(n) (110h)

n





K
2∑

i=1

K∑

j=K
2 +1

Rj,i



 (111a)

≤I

({

Wj,i | i = 1, 2, · · · ,
K

2
; j =

K

2
+ 1,

K

2
+ 2, · · · ,K

}

;Y n
r | G1

)

+ ǫ(n) (111b)

≤h(Y n
r | G1) + ǫ(n) (111c)

≤nN logP + ǫ(n) (111d)

n(Ri+1,i +Ri+2,i + · · ·+RK,i) ≤ I(Wi+1,i,Wi+2,i, · · · ,WK,i;Y
n
r | G2,Wi,K2 +1,Wi,K2 +2, · · · ,Wi,K2 + β

2
) + ǫ(n) (114)

wherei = 1, 2, · · · , K
2 −

β
2 and (114) fori = K

2 −
β
2+1, · · · , K

2
at the top of the next page.

Adding (113) and (114) fromi = 1 to K
2 − β

2 , we can obtain
(115) at the top of the next page. Then we have

n





K
2∑

i=1

K∑

j=K
2 +1

Rj,i +

K
2∑

i=K
2 −

β
2 +1

K
2 + β

2 +1
∑

j=K
2

Ri,j





≤nN logP + nǫ(logP ) + ǫ(n). (116)

We can obtain similar equations to (116) by replacing theβ

source nodes
{

K
2 − β

2 + 1, K2 − β
2 + 2, · · · , K

2 + β
2

}

to any
otherβ source nodes. Then dividingnlogP to both sides of

(116) and lettingn → ∞ and P → ∞, we can obtain the
total DoF upper bound as

dtotal =

K∑

i=1

∑

j∈Si

di,j ≤
K2

2

4N

K2 + β2
=

2K2N

K2 + β2
. (117)

Thirdly, we consider the case whenN
M ∈

(
(K2+(β−2)2)β

K2+β2 , β
]

. We prove this by contradiction. If

N
M ∈

(
(K2+(β−2)2)β

K2+β2 , β
]

and datotal >
2K2βM
K2+β2 , wheredatotal

represents the achivable total DoF, then we increaseN to
N1 such that N1

M = β. Utilizing the antenna deactivation,

datotal > 2K2βM
K2+β2 = 2K2N1

K2+β2 can be achieved. However, this
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n





K
2∑

i=1

∑

j∈Si

Rj,i



 (115a)

≤I

({

Wi,j | i = 1, 2, · · · ,
K

2
−

β

2
; j =

K

2
+ 1,

K

2
+ 2, · · · ,K

}

,

{

Wi,j | i =
K

2
−

β

2
+ 1, · · · ,

K

2
;

j =
K

2
+

β

2
+ 1, · · · ,K

}

;Y n
r | G2

)

+ ǫ(n) (115b)

=h(Y n
r | G2)− h

(

Y n
r | G2,

{

Wi,j | i = 1, 2, · · · ,
K

2
−

β

2
; j =

K

2
+ 1,

K

2
+ 2, · · · ,K

}

,

{

Wi,j | i =
K

2
−

β

2
+ 1, · · · ,

K

2
; j =

K

2
+

β

2
+ 1, · · · ,K

})

+ ǫ(n) (115c)

=h(Y n
r | G2)− h

(

Y n
r | Xn

1 , · · · , X
n
K
2 −

β
2

, Xn
K
2 + β

2 +1
, · · · , Xn

K ,

{

Wj,i | i ∈

[
K

2
−

β

2
+ 1,

K

2

]

;

j ∈

[
K

2
+ 1,

K

2
+

β

2

]}

,

{

Wj,i | i ∈

[
K

2
+ 1,

K

2
+

β

2

]

; j ∈

[
K

2
−

β

2
+ 1,

K

2

]})

+ ǫ(n) (115d)

=h(Y n
r | G2)− h

(

Xn
K
2 −

β
2 +1

, · · · , Xn
K
2 + β

2

|

{

Wj,i | i ∈

[
K

2
−

β

2
+ 1,

K

2

]

; j ∈

[
K

2
+ 1,

K

2
+

β

2

]}

,

{

Wj,i | i ∈

[
K

2
+ 1,

K
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Fig. 15. Illustration for the genie information and the decodable messages
at the relay for the generalized MIMO two-way X relay channelwhen N

M
∈

(

β,
(K2+β2)(β+2)

K2+(β+2)2

]

contradicts with that whenN1

M = β, the DoF upper bound
is 2K2N1

K2+β2 . Hence, the DoF upper bound of the case when
N
M ∈

(
(K2+(β−2)2)β

K2+β2 , β
]

is 2K2βM
K2+β2 .

Finally, we consider the case whenNM ∈
(

K2−3K+3
K−1 ,+∞

)

.
In this case, we notice that the DoF per user could not be larger
thanM . Thus,KM is the DoF upper bound for the case when
N
M ∈

(
K2−2K+2

K ,+∞
)
.
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