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Abstract

A construction of big convolutional codes from short codes called block Markov superposition trans-

mission (BMST) is proposed. The BMST is very similar to superposition block Markov encoding (SBME),

which has been widely used to prove multiuser coding theorems. The encoding process of BMST can

be as fast as that of the involved short code, while the decoding process can be implemented as an

iterative sliding-window decoding algorithm with a tunable delay. More importantly, the performance of

BMST can be simply lower-bounded in terms of the transmission memory given that the performance

of the short code is available. Numerical results show that,1) the lower bounds can be matched with

a moderate decoding delay in the low bit-error-rate (BER) region, implying that the iterative sliding-

window decoding algorithm is near optimal; 2) BMST with repetition codes and single parity-check

codes can approach the Shannon limit within 0.5 dB at BER of10
−5 for a wide range of code rates;

and 3) BMST can also be applied to nonlinear codes.
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I. INTRODUCTION

Convolutional codes, first introduced by Elias [1], have been used in various communication

systems [2], such as space communication, data transmission, digital audio/video transmission,

and mobile communication. In these systems, only convolutional codes with short constraint

lengths are implemented due to the fact that the decoding complexity of the Viterbi algorithm [3]

grows exponentially with the constraint length.1 Constructing (decodable) convolutional codes

with long constraint length (referred to asbig convolutional codes in this paper) is of interest

both in theory and in practice.

It is an old subject to construct long codes from short codes [5]. Here, byshort codes, we

mean block codes with short code lengths or convolutional codes with short constraint lengths.

Product codes [6], presented by Elias in 1954, may be the earliest method for constructing long

codes with short codes. An[n1n2, k1k2] product code is formed by an[n1, k1] linear codeC1

and an[n2, k2] linear codeC2. Each codeword of the product code is a rectangular array ofn1

columns andn2 rows in which each row is a codeword inC1 and each column is a codeword

in C2. In 1966, Forney proposed a class of codes, called concatenated codes [7]. Typically, a

concatenated code investigated by Forney consists of a relatively short code as an inner code

and a relatively long algebraic code as an outer code. In 1993, Berrou et al invented turbo

codes [8], by which researchers have been motivated to construct capacity-approaching codes.

The original turbo code [8] consists of two convolutional codes which are parallelly concatenated

by a pseudo-random interleaver, and hence is also known as a parallel concatenated convolutional

code (PCCC) [9]. Since the invention of turbo codes, concatenations of simple interleaved

codes have been proved to be a powerful approach to design iteratively decodable capacity-

approaching codes [10–14]. Another class of capacity-approaching codes, namely, low-density

parity-check (LDPC) codes, which were proposed in the early1960s and rediscovered after the

invention of turbo codes, can also be considered (from the aspect of decoding) as concatenations

of interleaved single parity-check codes and repetition codes [15–21].

In this paper, we present more details on the recently proposed block Markov superposition

transmission (BMST) [22], which is a construction of big convolutional codes from short codes.

1On the Galileo mission to Jupiter, a convolutional code was implemented with the big Viterbi decoder (BVD) over a trellis
of 214 = 16384 states [2] [4].
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The BMST is very similar to superposition block Markov encoding (SBME), which has been

widely used to prove multiuser coding theorems. The method of SBME was first introduced for

the multiple-access channel with feedback by Cover and Leung [23] and successfully applied

by Cover and El Gamal [24] for the relay channel. The idea behind SBME in the single-relay

system can be briefly summarized as follows [25].

Assume that the data are equally grouped intoB blocks. Initially, the source broadcasts a

codeword that corresponds to the first data block. Since the code rate is higher than the capacity

of the link from the source to the destination, the destination is not able to recover the data

reliably. Then the source and the relay cooperatively transmit more information about the first

data block. In the meanwhile, the source “superimposes” a codeword that corresponds to the

second data block. Finally, the destination is able to reliably recover the first data block from

the two successive received blocks. After removing the effect of the first data block, the system

returns to the initial state. This process iteratesB + 1 times until allB blocks of data are sent

successfully.

We apply a similar strategy to the point-to-point communication system. We assume that the

transmitter uses a short code. Initially, the transmitter sends a codeword that corresponds to

the first data block. Since the short code isweak, the receiver is unable to recover reliably

the data from the current received block. Hence the transmitter transmits the codeword (in its

interleaved version) one more time. In the meanwhile, a fresh codeword that corresponds to the

second data block is superimposed on the second block of transmission. Finally, the receiver

recovers the first data block from the two successive received blocks. After removing the effect

of the first data block, the system returns to the initial state. This process iteratesB + 1 times

until all B blocks of data are sent successfully. In practice, the receiver may use an iterative

sliding-window decoding algorithm. The system performance can be analyzed in terms of the

transmission memory and the input-output weight enumerating function (IOWEF) of the BMST

system, which can be computed from that of the short code using a trellis-based algorithm.

Simulation results verify our analysis and show that remarkable coding gain can be obtained.

The rest of this paper is organized as follows. We present theencoding algorithm of the BMST

system and derive its generator matrix and parity-check matrix in Section II. In Section III, we

focus on the decoding algorithms of the BMST system. In Section IV, the performance of the

BMST system is analyzed with a simple lower bound by assuminga genie-aided decoder and
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Fig. 1. Encoding structure of a BMST system with memorym.

an upper bound with the help of the IOWEF. Numerical results are presented in Section V.

Section VI discusses the universality of the BMST. Section VII concludes this paper.

II. BLOCK MARKOV SUPERPOSITIONTRANSMISSION

A. Encoding Algorithm

We focus on binary codes in this paper. For a rateR = k/n binary convolutional code,

information sequenceu =
(
u(0),u(1), · · ·

)
=

(

u
(0)
0 , · · · , u

(0)
k−1, u

(1)
0 , · · · , u

(1)
k−1, · · ·

)

is encoded

into code sequencec =
(
c(0), c(1), · · ·

)
=

(

c
(0)
0 , · · · , c

(0)
n−1, c

(1)
0 , · · · , c

(1)
n−1, · · ·

)

. The encoding

process is initialized by settingu(t) = 0 for t < 0 and computes fort ≥ 0 as shown in [26]

c(t) = u(t)G0 + u(t−1)G1 + · · ·+ u(t−m)Gm, (1)

whereGi (0 ≤ i ≤ m) is a binaryk × n matrix andm is called the encodermemory.

In this paper, we propose a special class of convolutional codes by settingG0 = G and

Gi = GΠ i, whereG is the generator matrix of a binary linear codeC [n, k] of dimensionk

and lengthn andΠ i (1 ≤ i ≤ m) is a permutation matrix of sizen × n. The codeC [n, k]

is referred to as thebasic code in this paper for convenience. Letu(0), u(1), · · · , u(L−1) be L

blocks of data to be transmitted, whereu(t) ∈ F
k
2. The encoding algorithm with memorym is

described as follows, see Fig. 1 for reference, where the permutation matrixΠ i is implemented

as its corresponding interleaver of sizen.

Algorithm 1: Encoding of BMST

• Initialization: For t < 0, setv(t) = 0 ∈ F
n
2 .

• Loop: For t = 0, 1, · · · , L− 1,

1) Encodeu(t) into v(t) ∈ F
n
2 by the encoding algorithm of the basic codeC ;
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2) For 1 ≤ i ≤ m, interleavev(t−i) by the i-th interleaverΠ i into w(i);

3) Computec(t) = v(t) +
∑

1≤i≤m w(i), which is taken as thet-th block of transmission.

• Termination: For t = L, L + 1, · · · , L + m − 1, setu(t) = 0 ∈ F
k
2 and computec(t)

following Step.Loop.

Remarks. The code rate is kL
n(L+m)

, which is slightly less than that of the basic codeC .

However, the rate loss is negligible for largeL. Also notice that interleavingv(t−i) into w(i) and

encodingu(t) into v(t) can be implemented in parallel. Therefore, the encoding process for the

BMST system can be almost as fast as the encoding process for the basic codeC given that

sufficient hardware resources are available.

B. Algebraic Description of BMST

Unlike commonly accepted classical convolutional codes, the codes specified by the BMST

system typically have largek and (hence) large constraint lengths. From a practical point of

view, we are mainly concerned with the terminated BMST. In this case, the BMST system can

be treated as a linear block codeC [n(L+m), kL]. In the following, we present for integrity the

generator matrix and the parity-check matrix of the BMST system although we have not found

their usefulness in describing both the encoding algorithmand the decoding algorithm.

Let G andH be the generator matrix and the parity-check matrix of the basic code, respec-

tively. Let Π i, 1 ≤ i ≤ m, be them involved permutation matrices. The generator matrix of

the BMST system is given by

GBMST = diag{G, · · · ,G
︸ ︷︷ ︸

L

}Π , (2)

where diag{G, · · · ,G} is a block diagonal matrix withG on the diagonal andΠ is a block

upper banded matrix (consisting ofL rows andL+m columns of sub-blocks) as shown below,

Π =













I Π1 · · · Πm

I Π1 · · · Πm

. . . . . . . . . . . .

I Π1 · · · Πm

I Π1 · · · Πm













. (3)
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Apparently, Rank(GBMST) = kL since Rank(G) = k andΠ is of full rank. From the generator

matrix GBMST, we can see that the minimum Hamming weight of the BMST systemis at least

as twice as that of the basic code.

To derive the parity-check matrix of the BMST system, we define recursively a sequence of

matrices asP 0 = I (the identity matrix of ordern) and P t =
∑

1≤ℓ≤mP t−ℓΠℓ for t ≥ 1,

whereP t for t < 0 are initialized to be the zero matrix of ordern. From the fact thatc(t) =

v(t) +
∑m

ℓ=1 v
(t−ℓ)Πℓ, we conclude thatv(t) can be found recursively fromc(t) asv(t) = c(t) +

∑m

ℓ=1 v
(t−ℓ)Πℓ. Equivalently, we have(v(0), v(1), · · · , v(L+m−1)) = (c(0), c(1), · · · , c(L+m−1))P ,

whereP is block upper triangular matrix (consisting ofL + m rows andL + m columns of

sub-blocks) as shown below,

P =













I P 1 P 2 · · · P L+m−1

I P 1 · · · P L+m−2

. . . . . .
...

I P 1

I













. (4)

Sincev(t) is a codeword in the basic code andv(t) = 0 for t ≥ L, we know

(
c(0), c(1), · · · , c(L+m−1)

)
P · diag{HT, · · · ,HT

︸ ︷︷ ︸

L

, I, · · · , I
︸ ︷︷ ︸

m

} = 0, (5)

where the superscript T denotes “transpose”. Now we claim that the parity-check matrix of the

BMST system is given by

HBMST = diag{H , · · · ,H
︸ ︷︷ ︸

L

, I, · · · , I
︸ ︷︷ ︸

m

}P T. (6)

This is justified by noting that Rank(HBMST) = (n− k)L+ nm.

III. I TERATIVE SLIDING -WINDOW DECODING ALGORITHM

A. Notation of Normal Graphs

Before describing the decoding algorithm, we introduce themessage processing/passing al-

gorithm over a general normal graph [27]. The notation is closely related to that used in [28,

29]. As shown in Fig. 2, a general normal graph can be used to represent a system, where
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Fig. 2. A normal graph of a general (sub)system.

vertices represent subsystems and edges represent variables. All edges (variables) connecting to

a vertex (subsystem) must satisfy the specific constraints of the subsystem. For example, the

subsystemS(0) is connected toS(j) via Zj , and the subsystemS(j) is potentially connected to

other system via a half edgeXj . Associated with each edge is amessage that is defined in this

paper as the probability mass function (pmf) of the corresponding variable. We focus on random

variables defined overF2. We use the notationP (S(0)→S(j))
Zj

(z), z ∈ F2 to denote the message

from vertexS(0) to vertexS(j). Suppose that all messagesP (S(j)→S(0))
Zj

(z), z ∈ F2 are available.

Then, the vertexS(0), as amessage processor, delivers the outgoing message with respect to

any givenZj by computing the likelihood function

P
(S(0)→S(j))
Zj

(z) ∝ Pr
{
S(0)is satisfied|Zj = z

}
, z ∈ F2. (7)

Because the computation of the likelihood function is irrelevant to the incoming message

P
(S(j)→S(0))
Zj

(z), we claim thatP (S(0)→S(j))
Zj

(z) is exactly the so-calledextrinsic message. For

simplicity, if two subsystems share multiple variables of the same type, the corresponding edges

can be merged into one edge. Such an edge represents a sequence of random variables, whose

messages are then collectively written in a sequence. Notice that such a simplified representation

is just for the convenience of describing the message passing. For message processing, any edge

that represents multiple random variables must be treated as multiple separated edges.

Fig. 3 shows the normal graph of a BMST system withL = 4 andm = 2. There are four

types of nodes in the normal graph of the BMST system, and eachedge represents a sequence
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Fig. 3. The normal graph of a BMST system withL = 4 andm = 2.

of random variables.

• Node C : The node C represents the constraint thatV (t) must be a codeword ofC that

corresponds toU (t). In practice,U (t) is usually assumed to be independent and uniformly

distributed overFk
2. Assume that the messages associated withV (t) are available from the

node = . The node C performs a soft-in-soft-out (SISO) decoding algorithm to compute

the extrinsic messages. The extrinsic messages associatedwith V (t) are fed back to the

node = , while the extrinsic messages associated withU (t) can be used to make decisions

on the transmitted data.

• Node = : The node = represents the constraint that all connecting variables must take the

same realizations. The message processing/passing algorithm of the node= is the same

as that of the variable node in an LDPC code.

• Node Πi : The nodeΠi represents thei-th interleaver, which interleaves or de-interleaves

the input messages.

• Node + : The node+ represents the constraint that all connecting variables must be added

up to zero overF2. The message processing/passing algorithm at the node+ is similar to

that at the check node in an LDPC code. The only difference is that the messages associated

with the half edge are computed from the channel observations.

The normal graph of a BMST system can be divided intolayers, where each layer typically

consists of a node of typeC , a node of type= , m nodes of typeΠ , and a node of type+ ,
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see Fig. 3 for reference.

B. Decoding Algorithm

For simplicity, we assume thatc(t) is modulated using binary phase-shift keying (BPSK) with

0 and 1 mapped to+1 and−1, respectively and transmitted over an additive white Gaussian

noise (AWGN) channel, resulting in a received vectory(t). In more general settings, we assume

that thea posteriori probabilitiesPr{c(t)j = 0, 1|y(t)} are computable2, where c(t)j is the j-th

component ofc(t).

After all y(t) for 0 ≤ t ≤ L+m−1 are received, aniterative forward-backward decoding can

be implemented to obtain the decoding resultû(t)(0 ≤ t ≤ L− 1). The algorithm is scheduled

as follows.

Algorithm 2: Iterative Forward-Backward Decoding of BMST

• Initialization: Considering only the channel constraint, compute thea posteriori proba-

bilities P
(|→+)

C
(t)

(
c(t)

)
from the received vectory(t) for 0 ≤ t ≤ L + m − 1. All messages

over the intermediate edges are initialized as uniformly distributed variables. Notice that

u(t) = 0 for t < 0 and t ≥ L. Set a maximum iteration numberImax > 0.

• Iteration: For I = 1, 2, · · · , Imax,

1) Forward recursion: For t = 0, 1, · · · , L+m− 1, the t-th layer performs a message

processing/passing algorithm scheduled as

+ → Π → = → C → = → Π → + .

In the above procedure, the message processor at each node takes as input all avail-

able messages from connecting edges and delivers as output extrinsic messages to

connecting edges. Hence the messages from adjacent layers are utilized, and the

messages to adjacent layers are updated by considering boththe constraints in the

t-th layer and the received vectory(t).

2) Backward recursion: For t = L+m− 1, · · · , 1, 0, the t-th layer performs a message

2The computation in this step is irrelevant to the code constraints but depends only on the modulation and the channel.
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processing/passing algorithm scheduled as

+ → Π → = → C → = → Π → + .

3) Hard decision: For 0 ≤ t ≤ L − 1, make hard decisions onu(t) resulting inû(t). If

certain conditions are satisfied, outputû(t) for 0 ≤ t ≤ L − 1 and exit the iteration.

Stopping criteria are discussed in Section III-C.

The above algorithm (Algorithm 2) suffers from a large decoding delay for largeL. Similar

to the Viterbi algorithm in practical systems, we present the following iterative sliding-window

decoding with a fixed decoding delayd ≥ 0. In contrast to Algorithm 2, the iterative sliding-

window algorithm with decoding delayd works over a subgraph consisting ofd+1 consecutive

layers, which delivers, at timet + d, as output the estimated data block̂u(t) after y(t+d) is

received and slides into the decoder. Usually, we take the decoding delayd ≥ m. The schedule

is described as follows.

Algorithm 3: Iterative Sliding-window Decoding of BMST

• Global initialization: Assume thaty(t), 0 ≤ t ≤ d−1 have been received. Considering only

the channel constraint, compute thea posteriori probabilitiesP (|→+)

C
(t)

(
c(t)

)
from the received

vectory(t) for 0 ≤ t ≤ d − 1. All messages over the other edges within and connecting

to the t-th layer (0 ≤ t ≤ d − 1) are initialized as uniformly distributed variables. Set a

maximum iteration numberImax > 0.

• Sliding-window decoding: For t = 0, 1, · · · , L− 1,

1) Local initialization: If t + d ≤ L + m − 1, compute thea posteriori probabilities

P
(|→+)

C
(t+d)

(
c(t+d)

)
from the received vectory(t+d) and all messages over other edges

within and connecting to the(t + d)-th layer are initialized as uniformly distributed

variables.

2) Iteration: For I = 1, 2, · · · , Imax,

a) Forward recursion: For i = 0, 1, · · · , min (d, L+m− 1− t), the (t + i)-th layer

performs a message processing/passing algorithm scheduled as

+ → Π → = → C → = → Π → + .

b) Backward recursion: For i = min (d, L+m− 1− t), · · · , 1, 0, the(t+ i)-th layer
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performs a message processing/passing algorithm scheduled as

+ → Π → = → C → = → Π → + .

c) Hard decision: Make hard decisions onu(t) resulting inû(t). If certain conditions

are satisfied, output̂u(t) and exit the iteration. Stopping criteria are discussed in

Section III-C.

3) Cancelation: Remove the effect of̂v(t) on all layers by updating thea posteriori proba-

bilities as

P
(|→+)

C
(t+i)
j

(a)←
∑

b∈F2

P
(|→+)

C
(t+i)
j

(b)P
(Πi→+)

W
(i)
j

(a+ b) , a ∈ F2 (8)

for j = 0, 1, · · · , n− 1 and i = 1, 2, · · · , m.

C. Stopping Criteria

1) Entropy-Based Stopping Criterion: As the error-detection ability of short codes is usually

weak, the entropy-based stopping criterion [28] is used. The entropy-based stopping criterion is

described as follows.

The entropy-based stopping criterion for Algorithm 2: Before the iteration, we set a threshold

ǫ > 0 and initialize the entropy rateh0 (Y ) = 0, whereY =
(

Y (0),Y (1), · · · ,Y (L+m−1)
)

is the

random vector corresponding toy =
(
y(0),y(1), · · · ,y(L+m−1)

)
. For each iterationI, estimate

the entropy rate ofY by

hI (Y ) = −
1

n(L+m)

L+m−1∑

t=0

n−1∑

j=0

log

(

P
(+→|)

Y
(t)
j

(

y
(t)
j

))

, (9)

where,

P
(+→|)

Y
(t)
j

(

y
(t)
j

)

=
∑

a∈F2

P
(+→|)

C
(t)
j

(a) · Pr{y(t)j |c
(t)
j = a} (10)

andP (+→|)

C
(t)

(
c(t)

)
are computed at the node+ . If |hI (Y )− hI−1 (Y )| ≤ ǫ, exit the iteration.

The entropy-based stopping criterion for Algorithm 3: Before the iteration, we set a threshold

ǫ > 0 and initialize the entropy rateh0

(

Y (t)
)

= 0, whereY (t) is the random vector corres-
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ponding toy(t). For each iterationI, estimate the entropy rate ofY (t) by

hI

(

Y (t)
)

= −
1

n

n−1∑

j=0

log

(

P
(+→|)

Y
(t)
j

(

y
(t)
j

))

, (11)

where,P (+→|)

Y
(t)
j

(

y
(t)
j

)

is computed by (10) andP (+→|)

C
(t)

(
c(t)

)
are computed at the node+ . If

∣
∣
∣hI

(

Y (t)
)

− hI−1

(

Y (t)
)∣
∣
∣ ≤ ǫ, exit the iteration.

2) Parity-Check-Based Stopping Criterion: To avoid the extra computational complexity caused

by estimating the entropy rate, we may take a concatenated code as the basic code, where the

outer code is a powerful error-detection code (say cyclic redundancy check (CRC) code) and the

inner code is a short code. In this situation, the SISO algorithm for the basic code is performed

by ignoring the constraint specified by the outer code. In theprocess of the iterative decoding,

once the decoding output of the inner code is a valid codewordof the outer code, report a

decoding success and exit the iteration.

D. List Decoding after Iteration

The use of error-detection codes for early stopping incurs arate loss, however, it can be used

to obtain extra coding gain by list decoding [30, 31]. In the case when the decoding fails after

Imax iterations, the list decoding algorithm for the inner code takesP (=→C)

V
(t)

(
v(t)

)
as input and

generates a list of outputs. Once one output in the list is found to be a valid codeword of the

outer code, report a decoding success and exit the iteration.

IV. PERFORMANCE ANALYSIS

The objective of this section is to analyze the “extra” coding gain over the basic code by the

BMST system. Before doing this, we need to point out that the “extra” coding gain may be

negative in the high bit-error-rate (BER) region due to the possible error propagation. Letpb =

fo(γb) be the performance function of the basic codeC , wherepb is the BER andγb
∆
= Eb/N0 in

dB. SinceC is short, we assume thatpb = fo(γb) is available. For example, ifC is a terminated

convolutional code, the performance function under themaximum a posteriori probability (MAP)

decoding can be evaluated by performing the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [32].

Let pb = fBMST(γb) be the performance function corresponding to the BMST system.
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A. Genie-Aided Lower Bound on BER

Letu = (u(0),u(1), · · · ,u(L−1)) be the transmitted data. To derive the lower bound, we assume

the MAP decoder for the BMST system, which in principle computes (by Bayes’ rule)

Pr{u
(t)
j |y} =

∑

ũ
′

Pr{ũ′|y}Pr{u
(t)
j |ũ

′,y} (12)

for all t and j, where the summation is over all̃u′ = (ũ(0), · · · , ũ(t−1), ũ(t+1), · · · , ũ(L−1)).

We know that ifPr{u(t)
j |y} > 0.5, the decoding output is correct for this considered bit. In

the meanwhile, we assume agenie-aided decoder, which computesPr{u(t)
j |u

′,y} for all t and

j with the transmitted datau′ = (u(0), · · · ,u(t−1),u(t+1), · · · ,u(L−1)) available. Likewise, if

Pr{u
(t)
j |u

′,y} > 0.5, the decoding output is correct for this considered bit. Fora specificu(t)
j

andy, it is possible thatPr{u(t)
j |u

′,y} < Pr{u
(t)
j |y}. However, the expectation

E

[

log
Pr{u

(t)
j |u

′,y}

Pr{u
(t)
j |y}

]

= I
(

U
(t)
j ;U ′|Y

)

≥ 0, (13)

where I
(

U
(t)
j ;U ′|Y

)

is the conditional mutual information, implying that the genie-aided

decoder performs statistically better than the MAP decoderof the BMST system. As a result,

the BER performance can be lower-bounded by, taking into account the rate loss,

fBMST(γb) ≥ fGenie(γb) = fo(γb + 10 log10(m+ 1)− 10 log10(1 +m/L)), (14)

where the last equality holds from the fact that the data block u(t) is encoded and transmitted

m+ 1 times from the perspective of the genie-aided decoder.

Furthermore, noticing thatPr{u′|y} ≈ 1 for the transmitted data blocku′ in the low error

rate region, we have from (12) thatPr{u(t)
j |y} ≈ Pr{u

(t)
j |u

′,y} and hence can expect that

fBMST(γb) ≈ fo(γb + 10 log10(m+ 1)− 10 log10(1 +m/L)) (15)

asγb increases. That is, the maximum coding gain can be10 log10(m+1) dB for largeL in the

low error rate region.
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B. Upper Bound on BER

To upper-bound the BER performance, we present a method to compute the IOWEF of the

BMST system. Let the IOWEF of the basic codeC be given as

B (X, Y ) ,
∑

i,j

Bi,jX
iY j , (16)

whereX, Y are two dummy variables andBi,j denotes the number of codewords having a

Hamming weightj when the corresponding input information sequence having aHamming

weight i. Similarly, denote byA(X, Y ) the IOWEF of the BMST system. We have

A(X, Y ) =
∑

i,j

Ai,jX
iY j

=
∑

u

XWH(u)Y WH(c)

=
∑

u

L+m−1∏

t=0

XWH(u(t))Y WH(c(t)), (17)

where WH(·) represents the Hamming weight and the summation is over all possible data

sequencesu with u(t) = 0 for t ≥ L. Since it is a sum of products,A(X, Y ) can be computed

in principle by a trellis-based algorithm over the polynomial ring. For specific interleavers, the

trellis has a state space of size2mk. To make the computation tractable, we turn to an ensemble

of BMST system by assuming that the interleavers are chosen independently and uniformly at

random for each transmission blockc(t). With this assumption, we can see thatWH(c
(t)) is a

random variable that depends on the Hamming weights{WH(v
(i)), t−m ≤ i ≤ t}.

In the following, we takem = 1 as an example to describe the algorithm for computing the

IOWEF of the defined ensemble of the BMST system. We can see that WH(c
(t)) is a random

variable which is sensitive to neitherv(t−1) nor v(t) but dependsonly on their Hamming weights

p = WH(v
(t−1)) andq = WH(v

(t)). To be precise, we have

WH(c
(t)) = p + q − 2r (18)

with probability

Pr{WH(c
(t)) = p+ q − 2r} =

(
p

r

)(
n−p

q−r

)

(
n

q

) , (19)
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where

r=







0, 1, · · · ,min(p, q), p+ q ≤ n

p+ q − n, · · · ,min(p, q), p+ q > n
. (20)

The trellis is time-invariant. At staget, the trellis hasn+ 1 states, each of which records the

Hamming weightWH(v
(t−1)). Emitting from each state there aren+1 branches, each of which

corresponds to the Hamming weightWH(v
(t)). To each branchp→ q, we assign a “metric”

γp→q =
∑

r

Pr{WH(c
(t)) = p+ q − 2r}

∑

j

Bj,qX
jY p+q−2r. (21)

ThenA(X, Y ) can be calculated recursively by performing a forward trellis-based algorithm [33]

over the polynomial ring as follows.

Algorithm 4: Computing IOWEF of BMST withm = 1

1) Initialize α0(p) =
∑

j Bj,pX
jY p, p ∈ {0, 1, · · · , n}.

2) For t = 0, 1, · · · , L− 1,

αt+1(q) =
∑

p:p→q

αt(p)γp→q,

whereq ∈ {0, 1, · · · , n}.

3) At time L, we haveA(X, Y ) = αL(0).

GivenA(X, Y ), the upper bound for the BER of the BMST system can be calculated by an

improved union bound [34].

Remark. For m > 1, the computation becomes more complicated due to the huge number of

trellis states(n + 1)m. Fortunately, as shown in [34], truncated IOWEF suffices to give a valid

upper bound, a fact that can be used to simplify the computation by removing certain states

from the trellis.

V. NUMERICAL RESULTS

In this section, we present BMST examples with different types of basic codes. All simulations

are conducted by assuming BPSK modulation and AWGN channels. In all the examples, we

set Imax = 18 as the maximum number of iterations. In the examples where the entropy-

based stopping criterion is used, we setǫ = 10−5 as the threshold. Without specification,

the iterative sliding-window algorithm (Algorithm 3) is used for decoding and S-random inter-
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Fig. 4. Comparison of the spectrum{Dj} between the independent transmission system and the ensemble of the BMST system
in Example 1. The basic code is a terminated systematic encoded 4-state(2, 1, 2) convolutional code defined by the polynomial
generator matrixG(D) = [1, (1 +D +D2)/(1 +D2)]. The BMST system encodesL = 19 sub-blocks of data with memory
m = 1.

leavers [35] (randomly generated but fixed) with parameterS = ⌊
√

(n/4)⌋ are used for encoding.

Here⌊x⌋ stands for the maximum integer that is not greater thanx.

A. Short Convolutional Codes as Basic Codes

In this subsection, the BCJR algorithm is performed as the SISO decoding algorithm for basic

codes and the entropy-based stopping criterion is used.

Example 1: The basic codeC is a terminated systematic encoded 4-state(2, 1, 2) convolu-

tional code (CC) defined by the polynomial generator matrixG(D) = [1, (1+D+D2)/(1+D2)]

with dimensionk = 50 and lengthn = 104. We takem = 1, L = 19 for encoding. The decoding

is performed after ally(t) are received (Algorithm 2). Fig. 4 shows the spectrum{Dj} of the

ensemble of the BMST system, where

Dj =
Lk∑

i=1

i

Lk
Ai,j. (22)
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Fig. 5. Performance of the BMST system in Example 1. The basiccode is a terminated systematic encoded 4-state(2, 1, 2)
convolutional code defined by the polynomial generator matrix G(D) = [1, (1 + D + D2)/(1 + D2)]. The system encodes
L = 19 sub-blocks of data with memorym = 1. The decoding algorithm is performed after all 20 transmitted sub-blocks are
received (Algorithm 2).

For comparison, the spectrum of the independent transmission system (with code book

{
(
v(0), v(1), · · · , v(L−1), 0

)
} instead of the BMST code book{

(
c(0), c(1), · · · , c(L−1), c(L)

)
}) is

also shown in Fig. 4. We can see that the spectrum of the BMST system has less number of

codewords with small Hamming weights, indicating that the BMST system has potentially better

performance than the independent transmission system. Simulation results are shown in Fig. 5,

which match well with the bounds in the high signal-to-noiseratio (SNR) region. This also

indicates that the iterative forward-backward algorithm is near optimal in the high SNR region.

Example 2: The basic codeC is a terminated 4-state(2, 1, 2) convolutional code defined by

the polynomial generator matrixG(D) = [1+D2, 1+D+D2] with k = 10000 andn = 20004.

Simulations results forL = 1000 are shown in Fig. 6. We can see that 1) given the encoding

memorym, the performance can be improved by increasing the decodingdelay d and 2) the

performance in the high SNR region can be improved by increasing m.
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Fig. 6. Performance of the BMST system in Example 2. The basiccode is a terminated 4-state(2, 1, 2) convolutional code
defined by the polynomial generator matrixG(D) = [1 +D2, 1+D+D2]. The system encodesL = 1000 sub-blocks of data
and the iterative sliding-window decoding algorithm is performed, where the encoding memories and the decoding delaysare
specified in the legends.

B. Short Block Codes as Basic Codes

In this subsection, the BCJR algorithm is performed as the SISO decoding algorithm for basic

codes and the entropy-based stopping criterion is used.

Example 3: The basic codeC is the Cartesian product of Hamming code[7, 4]2500 with

k = 10000 and n = 17500. Simulation results forL = 1000 and d = 7 are shown in Fig. 7.

We can see that the BMST system of the Hamming code has a similar behavior to the BMST

system of the convolutional code in Example 2. Withm = 4 and d = 7, an extra coding gain

of 6.7 dB is obtained at BER10−5.

Example 4: The basic code is either the Cartesian product of a repetition code (RC), de-

noted byRC[n, 1]N , or the Cartesian product of a single parity-check (SPC) code, denoted by

SPC[n, n− 1]N . Simulation results withL = 1000 for all BMST systems are shown in Fig. 8.

Also shown in Fig. 8 are the Shannon limits. More precisely, the Shannon limit of a code rate is
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Fig. 7. Performance of the BMST system in Example 3. The basiccode is the Cartesian product of Hamming code[7, 4]2500.
The system encodesL = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.

depicted as a vertical dashed line, which shares the same mark with the solid performance curve

of the given code rate. We can see that, given a short code, thecorresponding Shannon limit

can be approached using the BMST system by choosing properlythe encoding memory and the

decoding delay. There is about 0.5 dB away from the respective Shannon limit at BER=10−5

for all BMST systems given in Fig. 8.

C. Concatenation of CRC Codes and Short Convolutional Codes as Basic Codes

If a concatenated code with a powerful error-detection outer code is used as the basic code, we

can use the parity-check-based stopping criterion for early stopping. In this case, the SISO algo-

rithm for the basic code is performed by ignoring the outer code. To improve the performance,

a list decoding can be implemented after the iteration.

Example 5: The basic codeC is a concatenated code withk = 10000 and n = 20068,

where the outer code is a 32-bit CRC code and the inner code is aterminated 4-state(2, 1, 2)
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Fig. 8. Performance of the BMST systems in Examples 4. The basic code is either the Cartesian product of a repetition
code or the Cartesian product of a single parity-check code.All systems encodeL = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where theencoding memories and the decoding delays are specified in the
legends. The vertical dashed lines correspond to the respective Shannon limits.

convolutional code defined by the polynomial generator matrix G(D) = [1 +D2, 1 +D +D2].

Simulation results forL = 1000 are shown in Fig. 9. We can see that the simulation results

are similar to those in Example 2. The BER curves match well with the lower bounds derived

from the BCJR-only curves but diverge from the bounds derived from the list-Viterbi (with list

size 2) curves. The reason is as follows. During the iterative sliding-window decoding of BMST

systems, the CRC code serves only as an error-detection codeto exit the iteration at the right

time and is less useful to enhance the error performance. To verify this, a list decoding with list

size 2 is implemented after the failure of the iterative sliding-window decoding. As expected,

the simulation results match well with the bounds derived from the list-Viterbi curves. For an

example, see the curve in Fig. 9 withm = 2 andd = 7.
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Fig. 9. Performance of the BMST system in Example 5. The basiccode is a concatenated code, where the outer code is a
32-bit CRC code and the inner code is a terminated 4-state(2, 1, 2) convolutional code defined by the polynomial generator
matrix G(D) = [1 + D2, 1 + D + D2]. The system encodesL = 1000 sub-blocks of data and the iterative sliding-window
decoding algorithm is performed, where the encoding memories and the decoding delays are specified in the legends.

VI. ON THE UNIVERSALITY OF THE BMST

A. Sketch of the Performance Curve

We have conducted lots of simulations for BMST systems with avariety of basic codes while

only some of them are presented in this paper due to the space limit. We have found that

all simulations deliver performance curves that have similar behavior. That is, the performance

curve drops down to the derived genie-aided lower bound as the decoding delay increases.

Let C [n, k, dmin] be the basic code, which is either a terminated convolutional code with a

short constraint length or a Cartesian product of a short block code. In either case, we assume

that n is large enough. Fig. 10 sketches the performance curves fora general BMST system.

Compared with the uncoded system, as the SNR increases, the basic code has an asymptotic

coding gain (ACG) upper-bounded by10 log10(kdmin/n) dB. The performance curve of the

BMST system with encoding memorym is lower-bounded by shifting to left that of the basic
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Fig. 10. Sketches of the performance curves of a general BMSTsystem.

code by10 log10(1+m). Hence we have an extra ACG of10 log10(1+m) dB. As the encoding

memory increases, the curve of the performance lower bound shifts to left further. However, the

waterfall part of the simulated curvemay shift to right a little bit due to the error propagation.

Because of the same reason, the BMST system performs worse than the basic code in the low

SNR region.

B. Nonlinear Codes as Basic Codes

From both the encoding process and the decoding process of the BMST system, we can see that

the linearity of the basic code plays no essential roles. What we need is an encoding algorithm

as well as an SISO decoding algorithm for the basic code. Hence, from the theoretical point of

view, we are interested in the performance of BMST system with a nonlinear basic code. The

advantage of the use of the nonlinear code is that the same coding gain may be obtained over

the uncoded system with a less encoding memory provided the nonlinear basic code is better

than the comparable linear basic code [5]. The disadvantageis that the table look-up encoding

algorithm and the brute-force SISO decoding algorithm may be required for a general nonlinear

basic code.

In the following example, we show that BMST can also be applied to nonlinear codes.
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Fig. 11. Performance of the BMST system in Example 6. The basic code is the Cartesian product of the optimum Nordstrom-
Robinson nonlinear code(15, 256, 5)800. The system encodesL = 1000 sub-blocks of data and the iterative sliding-window
decoding algorithm is performed, where the encoding memories and the decoding delays are specified in the legends.

Following [5], a nonlinear binary code(n,M, dmin) is defined as a set ofM binary vectors

of lengthn, any two of which have a Hamming distance at leastdmin and some two of which

have a Hamming distancedmin. The code rate islog2(M)/n and the ACG is upper-bounded by

10 log10(dmin log2(M)/n) dB. If necessary, the word-error rate (WER) is used to measure the

performance. The input to the encoder is an index (carrying information) for some codeword in

the nonlinear basic code. The table look-up encoding algorithm for the basic code is implemented

in Algorithm 1. The brute-force MAP decoding algorithm based on Bayes’ rule is implemented

as the SISO decoding algorithm for the nonlinear basic code in the iterative sliding-window

decoding algorithm. The entropy-based stopping criterionis used.

Example 6: The basic code is the Cartesian product of the optimum Nordstrom-Robinson (NR)

nonlinear code(15, 256, 5)800 [36, 37]. As pointed out in [5], the Nordstrom-Robinson nonlinear

code(15, 256, 5) contains (at least) twice as many codewords as any linear code with the same

length and minimum distance. Simulation results forL = 1000 are shown in Fig. 11. We can

see that the performance curves of the BMST with this nonlinear code match well with the
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corresponding lower bounds in the high SNR region, which areconsistent with sketches as

shown in Fig. 10 for the general BMST system.

C. Concatenated Codes as Basic Codes

An inevitable but interesting question is whether the BMST is applicable to long codes. In

this subsection, we present a BMST system with a concatenated code as the basic code, where

the outer is a Reed-Solomon (RS) and the inner code is a convolutional code. The issue of this

system is that no efficient SISO decoding algorithm for the basic code exists3. As a trade-off, we

implement the iterative sliding-window decoding algorithm by ignoring the existence of the outer

code, which is used only for removing the residual errors andstopping the iterations at the right

time. For each iteration, the outer decoder (the Berlekamp-Massey (BM) [38, 39] algorithm) is

performed. Whenever it is successful, the estimated data are output and the iteration is stopped.

Example 7: The basic codeC is the Consultative Committee on Space Data System (CCSDS)

standard code [40] withk = 1784 andn = 4092, where the outer code is a [255, 223] RS code

overF256 and the inner code is a terminated 64-state(2, 1, 6) convolutional code defined by the

polynomial generator matrixG(D) = [1+D+D2+D3+D6, 1+D2+D3+D5+D6]. The RS

code not only removes the possible residual errors after theiterative sliding-window decoding of

the inner code but also ensures (with high probability) the correctness of successfully decoded

codewords.4 The simulation results withL = 100, m = 1, andd = 4 are shown in Fig. 12. We

can see that, although we are unable to simulate the performance in the extremely low BER

region, the extra coding gain is about1.3 dB at BER10−5. Also notice that the BMST system

performs worse than the basic code in the high BER region due to the error propagation.

VII. CONCLUSION

In this paper, we presented more details about the block Markov superposition transmis-

sion (BMST), a construction of big convolutional codes fromshort codes. The encoding process

can be as fast as the short code, while the decoding has a fixed delay. The coding gain of the

BMST system is analyzed and verified by simulations. A nice property of the BMST is that its

3Hence, we do not have the simple genie-aided lower bound in this case.
4The mis-correction probability can be analyzed in a similarway to that given in [41].
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Fig. 12. Performance of the BMST system in Example 7. The basic code is the CCSDS standard code, where the outer
code is a [255, 223] RS code overF256 and the inner code is a terminated 64-state(2, 1, 6) convolutional code defined by the
polynomial generator matrixG(D) = [1 + D + D2 + D3 + D6, 1 + D2 + D3 + D5 + D6]. The system encodesL = 100
sub-blocks of data with memorym = 1 and the iterative sliding-window decoding algorithm is performed with decoding delay
d = 4.

performance in the high SNR region can be approximately predicted. With several examples,

we show that the BMST is a simple and general method for obtaining extra coding gain in the

low BER region over short codes. With repetition codes and single parity-check codes as basic

codes, the BMST system can approach the Shannon limit at BER10−5 within 0.5 dB for a wide

range of code rates.
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