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Abstract

This paper studies variable-length (VL) source coding of general sources with side-information. Novel one-shot

coding theorems for coding with common side-information available at the encoder and the decoder and Slepian-

Wolf (SW) coding (i.e., with side-information only at the decoder) are given, and then, are applied to asymptotic

analyses of these coding problems. Especially, a general formula for the infimum of the coding rate asymptotically

achievable by weak VL-SW coding (i.e., VL-SW coding with vanishing error probability) is derived. Further, the

general formula is applied to investigating weak VL-SW coding of mixed sources. Our results derive and extend

several known results on SW coding and weak VL coding, e.g., the optimal achievable rate of VL-SW coding for

mixture of i.i.d. sources is given for countably infinite alphabet case with mild condition. In addition, the usefulness

of the encoder side-information is investigated. Our result shows that if the encoder side-information is useless in

weak VL coding then it is also useless even in the case where the error probability may be positive asymptotically.

Index Terms

ε source coding, information-spectrum method, multiterminal source coding, one-shot coding theorem, side-

information, Slepian-Wolf coding, weak variable-length coding

I. I NTRODUCTION

In their landmark paper [1], Slepian and Wolf studied the so-calledSlepian-Wolf (SW) coding problem, that is,

the problem of lossless source compression with side information available only at the decoder. They showed a

surprising result that the infimum of achievable coding rateis the same as the case where the side information is

also available at the encoder. While Slepian and Wolf considered i.i.d. correlated sources, Cover [2] generalized

their result and showed that the encoder side-information does not improve the coding rate even for stationary and

ergodic sources.
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On the other hand, when we consider general stationary sources (i.e., stationary but not ergodic sources), we can

improve the coding rate if side-information is available not only at the decoder but also at the encoder. Further, the

result of Yang and He [3, Theorem 2] implies that, even if side-information is not available at the encoder, we can

also improve the coding rate by adoptingvariable-length (VL) coding, i.e., VL-SW coding outperforms fixed-length

(FL) SW coding in general. It should be also pointed out that,even for i.i.d. sources, VL coding improves the error

exponent and the redundancy of SW coding [4], [5].

These results raise a question: How does the encoder side-information and/or variable-length coding improve

the coding rate in more general setting, where not only the ergodicity but also stationarity does not holds? This

question gives us the motivation to investigate VL source coding of general, i.e., non-stationary and non-ergodic,

sources with side-information only at the decoder and at both of the encoder and the decoder. Further, we focus on

the following fact: in the analysis on stationary sources byYang and He [3, Theorem 2], the ergodic-decomposition

theorem, which implies that a general stationary source canbe considered as amixture of stationary and ergodic

sources, plays an important role. Since theinformation spectrum method developed by Han and Verdú [6], [7]

provides a powerful tool to investigating coding problems for mixed sources (see, e.g., [6, Sec. 7.3] and [8]), we

adopt an information-spectrum approach in our analysis. Another virtue of an information-spectrum approach is

that it allows us to consider coding problem without regard to the blocklength of the code. Hence, we can clearly

separate one-shot (non-asymptotic) analysis and asymptotic analysis. It brings clarity to the discussion.

A. Contributions

Our first main contribution is to prove one-shot coding theorems for source coding with common side-information

and VL-SW coding. For source coding with common side-information, our coding theorem gives upper and lower

bounds on the minimum average codeword length attainable bycodes with the error probability less than or equal

to ε. Since the difference between the upper and lower bounds is just a constant value, our one-shot coding theorem

leads to the optimal coding rate asymptotically achievableby ε-source coding (i.e., coding with the probability of

error εn satisfyinglim supn→∞ εn ≤ ε) with common side-information. For VL-SW coding, we prove direct and

converse coding theorems, which show non-asymptotic trade-off between the error probability and the codeword

length of VL-SW coding.

Our second main contribution is to derive a general formula for the optimal coding rate asymptotically attainable

by weak VL-SW coding, i.e., VL-SW coding withvanishing probability of error εn → 0 as the blocklengthn→ ∞.

To characterize the infimum of achievable coding rate, we introduce a novel quantityHs(X|Y ), which is defined by

the asymptotic behavior of the conditional entropy-spectrum(1/n) log(1/PXn|Y n(Xn|Y n)) of the source(X,Y ) =

{(Xn, Y n)}∞n=1. Further, we show relations betweenHs(X|Y ) and other well known two quantities: our result

guarantees thatHs(X|Y ) is (i) lower bounded by the conditional sup-entropy ratelim supn→∞(1/n)H(Xn|Y n)

and (ii) upper bounded by the spectral conditional sup-entropy rateH(X|Y ) [6]. An operational interpretation of

this result demonstrates relations among optimal coding rates of three kinds of source coding problems, VL coding

with common side-information, weak VL-SW coding, and fixed-length SW coding, of general sources. Moreover,
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we show that if the source satisfies the conditional strong converse property then those three values are equal.

Further, we consider weak VL-SW coding for mixed sources. Weintensively investigate a case where(X,Y ) is

a mixture of two general sources(Xi,Yi) (i = 1, 2). Although it is not easy to characterizeHs(X|Y ) of the mixed

source byHs(Xi|Yi) of component sources, we show several properties ofHs(X|Y ). Our results spotlights the

fundamental importance of distinguishability between twocomponent sources in adjusting the coding rate at the

encoder. Roughly speaking, if the encoder, which observes asequencexn, can distinguish between two components,

then it can adjust the codeword length assigned toxn. Thus, in this case, the optimal rateHs(X|Y ) equals to the

average ofHs(Xi|Yi) of components. On the other hand, if two marginalsX1 andX2 are identical, then the encoder

cannot distinguish between two components. Hence, the encoder has to set the coding rate sufficiently large so that

the decoder can reproducexn even in the “worst case”. Therefore, in this case,Hs(X|Y ) = maxiHs(Xi|Yi)

holds. It is not hard to generalize the two components case tothe case where the source is a mixture of finite

general sources. Our general result derives, as a special case, a formula for the optimal achievable rate of VL-SW

coding for mixture of i.i.d. sources with countably infinitealphabets satisfying the uniform integrability.

Our last contribution is to investigate how the encoder side-information helps the coding process. We give a

sufficient condition that the encoder side-information does not helpε-coding. Roughly speaking, our result shows

that if the encoder side-information is useless in weak VL coding then it is also useless even inε-VL coding for

any ε ∈ (0, 1).

B. Related Works

An information-spectrum approach to weak VL coding (without side-information) is initiated by Han [9] (see

also [6, Section 1.8]). Subsequently, Koga and Yamamoto [10] investigatedε-VL source coding based on the

information-spectrum method. By considering the special case where side-information is constant, we can derive

results on weak andε-VL coding without side-information [9], [10] as a special case of our results in this paper.

Slepian-Wolf coding of general sources was first investigated by Miyake and Kanaya [11] (see also [6, Chapter

7]), where fixed-length SW coding is considered. It can be shown that, in contrast to stationary and ergodic case,

VL coding with common side-information outperforms fixed-rate SW coding in general [12]. Our result guarantees

that VL-SW coding can attain better performance than fixed-length SW coding but its performance is worse than

VL coding with the common side-information.

Variable-length coding for multiterminal sources has beenstudied well in the context ofuniversal coding, i.e., the

encoder and the decoder does not need to know the joint distribution of(X,Y ) (e.g., [13], [14]). In the problems of

universal variable-length coding for multiterminal sources, it is often assumed that there are links between encoders

[15], [16] or the feedback from the decoder to the encoder [3], [17]. In our analysis, we do not assume such a link

or feedback.

Variable-length SW coding has been also studied in the context of zero-error source coding, where the probability

of error is required to be exactlyzero (e.g., [18], [19]). Recall that, for source coding without side-information,

the infimum rate achievable by zero-error VL coding is the same as that achievable by weak VL coding, provided
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that the source satisfies the uniform integrability [6, Theorem 1.8.1]. On the other hand, when side-information is

available at the decoder, the requirement of zero-error drastically changes the problem. In this paper, as in [4], [5],

we consider only weak VL-SW coding and do not deal with zero-error SW coding.

Recently, analysis of one-shot coding by the information spectrum method attracts a lot of attention as a first step

to derive the second order coding rate and/or to investigatethe performance in finite blocklength regime (see, e.g.,

[8], [20]–[23]). Our new one-shot coding theorem for VL-SW coding can also be applied to analysis of redundancy

of VL-SW coding [5] in a similar manner as [23], [24].

More recently, a large deviations analysis of VL-SW coding problem was given by Weinberger and Merhav [25],

where the trade-off between the overflow probability of the coding rate and the error probability at the decode was

investigated. Further, Kostinaet al. [26] gave non-asymptotic bounds on the minimum average codeword length

and the second-order analysis ofε-coding without side-information.

C. Organization of Paper

In Section II, we introduce our notation and the coding problem investigated in this paper. In Sections III and IV,

non-asymptotic coding theorems for coding with common side-information and SW coding are given respectively.

Then, we state our general formula forε-variable length coding with common side-information in Section V. In

Section VI, we investigate weakly lossless VL-SW coding andgive our general formula. Especially, we give deep

investigation on VL-SW coding of mixed-sources. Further, we consider a special case ofε-VL-SW coding in Section

VII, where we give a sufficient condition that the encoder side-information is useless. Concluding remarks and

directions for future work are provided in Section VIII. To ensure that the main ideas are seamlessly communicated

in the main text, we relegate all proofs to the appendices.

II. PRELIMINARY

In this section, we introduce our notation and coding systems investigated in this paper.

A. Notation

Throughout this paper, random variables (e.g.,X) and their realizations (e.g.,x) are denoted by capital and

lower case letters respectively. All random variables takevalues in some discrete (finite or countably infinite)

alphabets which are denoted by the respective calligraphicletters (e.g.,X ). Similarly,Xn , (X1, X2, . . . , Xn) and

xn , (x1, x2, . . . , xn) denote, respectively, a random vector and its realization in thenth Cartesian productXn of

X . For a finite setS, |S| denotes the cardinality ofS andS∗ denotes the set of all finite strings drawn fromS. 1

denotes the indicator function, e.g.1[s ∈ S] = 1 if s ∈ S and0 otherwise. All logarithms are with respect to base

2.

Information-theoretic quantities are denoted in the usualmanner [27], [28]. For example,H(X |Y ) denotes the

conditional entropy ofX given Y . Moreover, to state our results, we will use quantities defined by using the

July 21, 2018 DRAFT



5

information-spectrum method [6]. Here, we recall the following probabilistic limit operations. For a sequence

Z , {Zn}∞n=1 of real-valued random variables, thelimit superior in probability of Z is defined as

p- lim sup
n→∞

Zn , inf
{

α : lim
n→∞

Pr{Zn > α} = 0
}

. (1)

Similarly, the limit inferior in probability of Z is defined as

p- lim inf
n→∞

Zn , sup
{

β : lim
n→∞

Pr{Zn < β} = 0
}

. (2)

In our analyses, theuniform integrability plays a crucial role; See Appendix A for the definition and properties

of the uniform integrability. To simplify the statement of results, we abuse the terminology: for a correlated source,

i.e., a pair of sequence of random variables(X,Y ) , {(Xn, Y n)}∞n=1, we say “(X,Y ) is uniformly integrable”

if {(1/n) log(1/PXn|Y n(Xn|Y n))}∞n=1 is uniformly integrable.

B. Coding problems

Fig. 1. Source coding with common side-information (when the switchS is closed) and Slepian-Wolf coding (when the switchS is open)

In this paper, we investigate the source coding system with side-information depicted in Fig. 1. Let(X,Y ) be

a pair of random variables taking values inX × Y and having joint distribution1 PXY . The sender wishes to

communicate the sourceX via a noiseless link to the receiver with side-informationY . We consider two scenarios.

In the first scenario, the switchS in the system Fig. 1 is closed, i.e., the side-informationY is available at both of

the sender and receiver as thecommon side-information. In the other scenario, the switchS in the system Fig. 1

is open, i.e., the side-informationY is available only at the receiver. The second case is a special (and the most

important) case of the coding problem investigated by Slepian and Wolf [1]. So, in this paper, we will call the

second case as Slepian-Wolf coding.

III. O NE-SHOT SOURCE CODING WITH COMMON SIDE-INFORMATION

A variable-length code with common side-informationΦ = (ϕ, ψ) is a pair of mappings that includes an encoder

ϕ : X ×Y → {0, 1}∗ and a decoderψ : {0, 1}∗×Y → X . The outputx ∈ X of the source with the side-information

y ∈ Y is encoded byϕ into the codewordϕ(x|y). Hereafter, we only consider the case2 that, for eachy ∈ Y, the

1Throughout this paper, we assume thatPX(x) > 0 for all x ∈ X andPY (y) > 0 for all y ∈ Y without loss of the generality. Thus,

PY |X(y|x) andPX|Y (x|y) can be defined for all(x, y) ∈ X × Y .

2While the analysis is done in one-shot setting, a code may be successively used in practice. Thus, it is natural to assume that the prefix

condition is satisfied. It should be also noted that, by adding the lengthℓ(x|y) encoded by an integer code (e.g. Elias’s code [29]), we can

convert any code so thatC(y) satisfies the prefix condition.
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setC(y) , {ϕ(x|y) : x ∈ X} ⊆ {0, 1}∗ of codewords satisfies the prefix condition, i.e., no codewords is a prefix

of any other codeword3. The length of the codewordϕ(x|y) is denote byℓϕ(x|y). For simplicity, we omitϕ and

write ℓ(x|y) if ϕ is apparent from the context. Then, the average codeword length is given by

E [ℓ(X |Y )] ,
∑

x,y

PXY (x, y)ℓ(x|y). (3)

The error probability of the codeΦ is defined as

Pe(Φ) , Pr {X 6= ψ(ϕ(X |Y ), Y )} . (4)

A codeΦ is said to be anε-variable-length code with common side-information (or simply, ε-code) ifΦ satisfies

Pe(Φ) ≤ ε.

The problem is how can we make the average codeword lengthE [ℓ(X |Y )] small subject to the constraint

Pe(Φ) ≤ ε. To answer this problem, we introduce some notations.

GivenA ⊆ X × Y, let QA
XY be the distribution defined as

QA
XY (x, y) =

1[(x, y) ∈ A]

PXY (A)
PXY (x, y), (x, y) ∈ X × Y. (5)

Then, we defineHA(X |Y ) as the conditional entropy with respect toQA
XY , that is,

HA(X |Y ) ,
∑

(x,y)∈X×Y

QA
XY (x, y) log

QA
Y (y)

QA
XY (x, y)

(6)

whereQA
Y (y) ,

∑

xQ
A
XY (x, y). By using this notation, we defineε-conditional entropy.

Definition 1. For 0 ≤ ε < 1, the ε-conditional entropy of X givenY is defined as

Hε(X |Y ) , inf
A⊆X×Y:

PXY (A)≥1−ε

PXY (A)HA(X |Y ). (7)

For ε = 1, we defineH1(X |Y ) = 0.

Remark 1. Hε can be considered as a generalized variation ofG[ε] introduced in [10] to investigateε-source coding

without side-information, which is different fromH[ε] introduced by Han [9] to investigate weak variable-length

source coding (see [10], [6, Sec. 1.8]).

Now, we give one-shot coding bounds.

Theorem 1 (Coding theorem for one-shot coding with common side-information). There exists anε-code

satisfying

E [ℓ(X |Y )] ≤ Hε(X |Y ) + 2. (8)

3Note that we do not require thatϕ is one-to-one.
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On the other hand, for anyε-code, we have

E [ℓ(X |Y )] ≥ Hε(X |Y ). (9)

Remark 2. Instead ofHε(X |Y ), let us consider

H̃ε(X |Y ) , inf
A⊆X×Y:

PXY (A)≥1−ε

∑

(x,y)∈A

PXY (x, y) log
1

PX|Y (x|y)
. (10)

It is easy to prove that

H̃ε(X |Y )− 1 ≤ Hε(X |Y ) ≤ H̃ε(X |Y ) (11)

holds (see, Appendix B). So, by using̃Hε(X |Y ), we can give a bound similar as Theorem 1.

Theorem 1 gives a good bound on the optimal average codeword length attainable byε-codes. However, to

calculateHε(X |Y ) (and/orH̃ε(X |Y )), we have to optimize the subsetA ⊆ X × Y. So, we introduce the other

quantity. Let us sort the pairs inX × Y so thatPX|Y (x1|y1) ≥ PX|Y (x2|y2) ≥ PX|Y (x3|y3) ≥ · · · . Then, leti∗

be the integer such that

i∗
∑

i=1

PXY (xi, yi) ≥ 1− ε (12)

and
i∗−1
∑

i=1

PXY (xi, yi) < 1− ε. (13)

By using this notation, we definêHε(X |Y ) as

Ĥε(X |Y ) ,
i∗
∑

i=1

PXY (xi, yi) log
1

PX|Y (xi|yi)
(14)

= H(X |Y )−
∞
∑

i=i∗+1

PXY (xi, yi) log
1

PX|Y (xi|yi)
. (15)

Calculation ofĤε(X |Y ) is easier than that ofHε(X |Y ). Further, by usingĤε(X |Y ), we can approximate

Hε(X |Y ) as follows:

Theorem 2 (Approximation of Hε(X |Y )). We have

Ĥε(X |Y )− 2 ≤ Hε(X |Y ) ≤ Ĥε(X |Y ). (16)

The proof of Theorems 1 and 2 will be given in Appendix B.

By combining Theorem 1 with Theorem 2, we have the following result.

Corollary 1. There exists anε-code satisfying

E [ℓ(X |Y )] ≤ Ĥε(X |Y ) + 2. (17)
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On the other hand, for anyε-code, we have

E [ℓ(X |Y )] ≥ Ĥε(X |Y )− 2. (18)

IV. ONE-SHOT VARIABLE -LENGTH SLEPIAN-WOLF CODING

A code for one-shot variable-length Slepian-Wolf coding isdefined in a similar way as in Section III: A code

Φ = (ϕ, ψ) is a pair of mappings that includes an encoderϕ : X → {0, 1}∗ and a decoderψ : {0, 1}∗ × Y → X .

We assume that the setC , {ϕ(x) : x ∈ X} ⊆ {0, 1}∗ of codewords satisfies the prefix condition. The length of

the codewordϕ(x) is denote byℓϕ(x) or simply ℓ(x). Then, the average codeword length and the error probability

are respectively defined as

E [ℓ(X)] ,
∑

x

PX(x)ℓ(x) (19)

and

Pe(Φ) , Pr {X 6= ψ(ϕ(X), Y )} . (20)

A codeΦ is said to be anε-variable-length Slepian-Wolf code (or simply,ε-SW code) ifΦ satisfiesPe(Φ) ≤ ε.

To characterize the trade-off between the codeword length and the error probability, we introduce a novel quantity.

Definition 2. For eachx ∈ X and0 ≤ ε < 1, let

h̄
ε(x|PXY ) , inf























α :
∑

y∈Y:
log 1

PX|Y (x|y)
>α

PY |X(y|x) ≤ ε























. (21)

We will omit PXY and writeh̄ε(x) if the joint distributionPXY is apparent from the context. Forε = 1, we define

h̄
1(x) = 0 for any x ∈ X .

Remark 3. The quantitȳhε(x) can be rephrased as follows. Givenx ∈ X , let us define a functionfx on Y so that

fx(y) , − logPX|Y (x|y). Note thatfx(y) can be regarded as the ideal codeword length ofx associated with the

optimal lossless variable-length code given the common side-informationy. Further, letYx be a random variable

on Y such thatPr{Yx = y} , PY |X(y|x), and let us consider the probability distribution offx(Yx). Then h̄ε(x)

can be written as

h̄
ε(x) = inf {α : Pr{fx(Yx) > α} ≤ ε} . (22)

See Fig. 2 for the conceptual image of (22).
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Fig. 2. Conceptual image of̄hε(x).

Remark 4. Note thatlog(1/PX|Y (x|y)) ≥ 0 and that

∑

y∈Y:
log 1

PX|Y (x|y)
>log 1

PX (x)
+log(1/ε)

PY |X(x|y) =
∑

y∈Y:
PY |X (y|x)<PY (y)ε

PY |X(y|x) (23)

≤
∑

y∈Y:
PY |X (y|x)<PY (y)ε

PY (y)ε (24)

≤ ε. (25)

By those facts and the definition ofh̄ε(x), we have

0 ≤ h̄
ε(x) ≤ log

1

PX(x)
+ log

1

ε
, x ∈ X , ε ∈ (0, 1]. (26)

On the other hand, ifε = 0, we have

h̄
0(x) = sup

{

log
1

PX|Y (x|y)
: y ∈ Y, PY |X(y|x) > 0

}

. (27)

By using this quantity, we state our one-shot bounds forε-SW coding.

Theorem 3 (Direct coding theorem for one-shot SW coding).Fix δ > 0 and0 ≤ εx ≤ 1 for eachx ∈ X . There

exists a codeΦ such that

Pe(Φ) ≤
∑

x∈X

PX(x)εx + 2−δ/2 (28)

and

ℓ(x) ≤ h̄
εx(x) + δ + 2 log

(

h̄
εx(x) + δ + 1

)

+ 3. (29)

Theorem 4 (Converse coding theorem for one-shot SW coding).For anyε-SW codeΦ and anyδ > 0, there

existsεx ≥ 0 (x ∈ X ) such that

∑

x∈X

PX(x)εx ≤ ε+ 2−δ (30)

and

ℓ(x) ≥ h̄
εx(x) − δ. (31)
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Proofs of Theorems 3 and 4 will be given in Appendix C.

Remark 5 (Special case: source coding without side-information). Let us consider a special case where|Y| = 1,

that is, conventional one-to-one variable-rate source coding. In this case, by the definition, we have

h̄
ε(x) =











log 1
PX (x) 0 ≤ ε < 1,

0 ε = 1.

(32)

This fact implies that it is better to setεx appearing Theorem 3 so thatεx = 0 if the probabilityPX(x) of x is

large andεx = 1 if PX(x) is small. Based on this idea, we can obtain bounds for one-to-one variable-rate source

coding. However, the bounds obtained from Theorems 3 and 4 are looser than the bounds obtained from Theorem

1.

V. A SYMPTOTIC ANALYSIS OF CODING WITH COMMON SIDE-INFORMATION

In this section, we consider sequences of the coding problemwith common side-information indexed by the

blocklengthn where the sequence(X,Y ) , {(Xn, Y n)}∞n=1 is general, i.e., we do not place any assumptions on

the structure of the source such as stationarity, memorylessness and ergodicity4. A code of blocklengthn is denoted

by Φn = (ϕn, ψn). Let ℓn(xn|yn) , ℓϕn
(xn|yn). Given ε ∈ [0, 1), the ε-achievability of coding rate is defined as

follows.

Definition 3. A rateR is said to beε-achievable, if there exists a sequence{Φn}∞n=1 of codes satisfying

lim sup
n→∞

Pe(Φn) ≤ ε (33)

and

lim sup
n→∞

1

n
E [ℓn(X

n|Y n)] ≤ R. (34)

Definition 4 (Optimal coding rate achievable byε-coding with common side-information).

Rε
com(X|Y ) , inf {R : R is ε-achievable} . (35)

We can derive the following coding theorem.

Theorem 5. For anyε ∈ [0, 1),

Rε
com(X|Y ) = lim

δ↓0
lim sup
n→∞

1

n
Hε+δ(Xn|Y n) (36)

= lim
δ↓0

lim sup
n→∞

1

n
H̃ε+δ(Xn|Y n) (37)

= lim
δ↓0

lim sup
n→∞

1

n
Ĥε+δ(Xn|Y n). (38)

4Moreover, the consistency condition,PXnY n(xn, yn) =
∑

x′,y′ PXn+1Y n+1(xnx′, yny′), is not needed. Further, while we assume that

(Xn, Y n) takes values in the Cartesian productXn × Yn, this assumption is also not needed. See [6, Sec. 1.12] for more details.
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To see the property ofRε
com(X|Y ) for some special cases, we give upper and lower bounds onRε

com(X|Y ).

Let

H(X|Y ) , p- lim sup
n→∞

1

n
log

1

PXn|Y n(Xn|Y n)
(39)

and

H(X|Y ) , p- lim inf
n→∞

1

n
log

1

PXn|Y n(Xn|Y n)
. (40)

H(X|Y ) (resp.H(X|Y )) is called as thespectral conditional sup-entropy (resp.inf-entropy) rate [6]. Then, we

can derive the following bounds.

Theorem 6. For anyε ∈ [0, 1),

(1− ε)H(X|Y ) ≤ Rε
com(X|Y ) ≤ (1 − ε)H(X|Y ). (41)

Remark 6. Let us consider a special case where|Y| = 1. Then, the first inequality of (41) gives the lower bound

given in Theorem 4 of [10]. On the other hand, the second inequality of (41) does not give the upper bound given

in Theorem 4 of [10]. Further, it is not clear whether our bound is tighter or looser than that of [10] in general.

However, by modifying the proof of (41), we can also shows that

Rε
com(X|Y ) ≤ inf{R : F (R|X,Y ) ≤ ε} (42)

where

F (R|X,Y ) , lim sup
n→∞

Pr

{

1

n
log

1

PXn|Y n(Xn|Y n)
≥ R

}

. (43)

See Appendix D. The upper bound (42) can be considered as a special case of the upper bound given in [10].

Now, as a special case, we consider sources for which(1/n) log(1/PXn|Y n(Xn|Y n)) concentrates on a single

point.

Definition 5 (Conditional strong converse property). A correlated source(X,Y ) = {(Xn, Y n)}∞n=1 is said to

satisfy theconditional strong converse property, if

H(X|Y ) = H(X|Y ) (44)

holds.

For example, a stationary and ergodic source satisfies the conditional strong converse property. As a corollary of

Theorem 6, we have the following result.

Corollary 2. If (X,Y ) satisfies the conditional strong converse property then, for any ε ∈ [0, 1],

Rε
com(X|Y ) = (1− ε)H(X|Y ) = (1 − ε)H(X|Y ). (45)

Proofs of Theorems 5 and 6 will be given in Appendix D.
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VI. GENERAL FORMULA FOR WEAK VARIABLE -LENGTH SLEPIAN-WOLF CODING

In a similar way as the previous section, we consider SW coding problem for general correlated sources(X,Y );

we study the codeword lengthℓn(xn) , ℓϕn
(xn) associated with a SW-codeΦn = (ϕn, ψn) of blocklengthn.

Especially, we investigate theweakly lossless case so that the obtained results are meaningful and interpretable.

A. General formula

Definition 6. A rate R is said to beweakly lossless achievable, if there exists a sequence{(ϕn, ψn)}∞n=1 of

SW-codes satisfying

lim
n→∞

Pe(Φn) = 0 (46)

and

lim sup
n→∞

1

n
E [ℓn(X

n)] ≤ R. (47)

Definition 7 (Optimal coding rate achievable by weakly lossless SW coding).

RSW (X|Y ) , inf {R : R is weakly lossless achievable} . (48)

To characterizeRSW (X|Y ), we introduce the following quantity.

Definition 8.

Hs(X|Y ) , lim
ε↓0

lim sup
n→∞

1

n
Hε

s (X
n|Y n) (49)

where

Hε
s (X

n|Y n) ,
∑

xn∈Xn

PXn(xn)h̄ε(xn) (50)

and h̄ε(xn) = h̄ε(xn|PXnY n).

Remark 7. We can choose a sequence{εn}∞n=1 satisfying that

Hs(X|Y ) = lim sup
n→∞

1

n
Hεn

s (Xn|Y n). (51)

and thatεn → 0 and (1/n) log(1/εn) → 0 asn → ∞. Such a sequence{εn}∞n=1 plays an important role in our

discussion, especially in proofs of results. We will show this fact as Lemma 5 in Appendix E.

Remark 8. While the definition ofHs(X|Y ) is different from that ofHS(X|Y ) introduced in [3],Hs(X|Y ) can

be considered as a generalized variation ofHS(X|Y ) of [3]: compare our coding theorem (Theorem 7 below) for

general sources and Theorem 2 of [3] for stationary souces. Moreover, for a mixture of i.i.d. sources with finite

alphabets, we can show thatHs(X|Y ) is the same asHS(X|Y ) of [3]: see Corollary 5.

Now, we state our general formula.
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Theorem 7. If (X,Y ) is uniformly integrable then

RSW (X|Y ) = Hs(X|Y ). (52)

Remark 9. A close inspection of the proof reveals that (52) holds underweaker condition. That is, if, for any

ε ∈ (0, 1), {h̄ε(Xn)/n}∞n=1 satisfies Condition 2 in Appendix A then (52) holds.

We can give upper and lower bounds onHs(X|Y ) by using well known quantities, the conditional entropy

H(Xn|Y n) and the spectral conditional sup-entropy rateH(X|Y ) defined in (39).

Theorem 8. If (X,Y ) is uniformly integrable then

lim sup
n→∞

1

n
H(Xn|Y n) ≤ Hs(X|Y ) ≤ H(X|Y ). (53)

Remark 10. The right-hand side of (53) is the optimal coding rate achievable by fixed-length SW coding [11]. So,

the second inequality of (53) is operationally reasonable.On the other hand, the left-hand side of (53) is the optimal

coding rate achievable byzero-error VL coding with common side-information. Hence, the first inequality of (53)

is slightly stronger than the boundR0
com(X|Y ) ≤ Hs(X|Y ). Note that we need the assumption of the uniform

integrability of (X,Y ) in the proof of the first inequality of (53), Lemma 7 in Appendix E. On the other hand, by

modifying the proof of Lemma 7, we can show thatR0
com(X|Y ) ≤ Hs(X|Y ) holds without the assumption that

(X,Y ) is uniform integrable.

Now, assume that(X,Y ) is uniformly integrable and satisfies the conditional strong converse property. Then,

there exists a limit

H(X|Y ) , lim
n→∞

1

n
H(Xn|Y n) (54)

and it satisfies that5 H(X|Y ) = H(X|Y ) = H(X|Y ). Hence, under this condition, (53) of Theorem 8 can be

written as

Hs(X|Y ) = H(X|Y ). (55)

Actually we can show stronger result.

Theorem 9. Assume that(X,Y ) is uniformly integrable and satisfies the conditional strong converse property.

Then, for anyε ∈ (0, 1), we have

lim
n→∞

1

n
Hε

s (X
n|Y n) = H(X|Y ). (56)

Proofs of theorems in this subsection, Theorems 7, 8, and 9, will be given in Appendix E.

5We can show this fact in the same way as [6, Corollary 1.7.1].
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B. Mixed sources

Let us consider two general correlated source(X1,Y1) = {(Xn
1 , Y

n
1 )}∞n=1 and (X2,Y2) = {(Xn

2 , Y
n
2 )}∞n=1,

and let(X,Y ) be their mixture, i.e., then-th distributionPXnY n (n = 1, 2, . . . ) of (X,Y ) satisfies

PXnY n(xn, yn) , α1PXn
1 Y n

1
(xn, yn) + α2PXn

2 Y n
2
(xn, yn), xn ∈ Xn, yn ∈ Yn (57)

whereα1 andα2 are constants satisfyingαi > 0 (i = 1, 2) andα1 + α2 = 1.

It is well known thatH(X|Y ) = maxiH(Xi|Yi) [6]. So, Theorem 8 gives an upper bound such as

Hs(X|Y ) ≤ max
i
H(Xi|Yi). (58)

Similarly, by combining the concavity of the entropyH(Xn|Y n) ≥ ∑

i αiH(Xn
i |Y n

i ) [28] with Theorem 8, we

have a lower bound such as

Hs(X|Y ) ≥ lim sup
n→∞

∑

i

αi

n
H(Xn

i |Y n
i ). (59)

The equalities in (58) and (59) do not necessarily hold in general. Hence, it is not easy to characterizeHs(X|Y ) of

the mixed source byHs(Xi|Yi) of component sources. In this section, we give a sufficient condition for a mixed

source to satisfyHs(X|Y ) = maxiHs(Xi|Yi) and a sufficient condition toHs(X|Y ) =
∑

i αiHs(Xi|Yi).

Before stating our result, it should be pointed out thath̄ε(xn) = h̄ε(xn|PXnY n) depends not only onxn and

ε but also the distributionPXnY n of the source. To specify the dependency on the distribution, let h̄εi (x
n) ,

h̄ε(xn|PXn
i
Y n
i
).

At first, we give a lower bound onHs(X|Y ).

Theorem 10 (Lower bound onHs(X|Y )). Assume that both of(Xi,Yi) (i = 1, 2) are uniformly integrable.

Then,

Hs(X|Y ) ≥ lim
ε↓0

lim sup
n→∞

∑

i=1,2

αi

n
Hε

s (X
n
i |Y n

i ). (60)

We can give a sufficient condition under which the lower boundgiven in Theorem 10 is tight. To describe the

condition, we use thespectral inf-divergence rate [6] between two marginal sourcesX1 andX2, that is,

D(X1‖X2) , p- lim inf
n→∞

1

n
log

PXn
1
(Xn

1 )

PXn
2
(Xn

1 )
. (61)

Theorem 11 (A sufficient condition for tightness of the lowerbound). Assume that both of(Xi,Yi) (i = 1, 2)

are uniformly integrable and that

D(X1‖X2) > 0 andD(X2‖X1) > 0. (62)

Then,

Hs(X|Y ) = lim
ε↓0

lim sup
n→∞

∑

i=1,2

αi

n
Hε

s (X
n
i |Y n

i ). (63)
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As a corollary, we can give a condition under whichHs(X|Y ) of the mixed source is given as the average of

Hs(Xi|Yi) of components.

Corollary 3. Under the assumptions of Theorem 11, if the limit

lim
n→∞

1

n
Hε

s (X
n
i |Y n

i ) (64)

exists for all sufficiently smallε > 0 and i = 1 and/ori = 2 then

Hs(X|Y ) =
∑

i=1,2

αiHs(Xi|Yi). (65)

Next, we give an upper bound onHs(X|Y ).

Theorem 12 (Upper bound onHs(X|Y )). Assume that both of(Xi,Yi) (i = 1, 2) are uniformly integrable.

Then,

Hs(X|Y ) ≤ lim
ε↓0

lim sup
n→∞

1

n

∑

xn∈Xn

PXn(xn)
[

max
i

h̄
ε
i (x

n)
]

. (66)

We can show that the upper bound given in Theorem 12 is tight ifthe marginal distributions of components are

identical.

Theorem 13 (A sufficient condition for tightness of the upperbound). Assume that both of(Xi,Yi) (i = 1, 2)

are uniformly integrable and thatX1 = X2. Then,

Hs(X|Y ) = lim
ε↓0

lim sup
n→∞

1

n

∑

xn∈Xn

PXn(xn)
[

max
i

h̄
ε
i (x

n)
]

. (67)

By Theorem 13, it is apparent that, under the assumptions of the theorem,

Hs(X|Y ) ≥ max
i=1,2

Hs(Xi|Yi). (68)

Hence, by combining (58) and (68), we have the following corollary.

Corollary 4. Under the assumptions of Theorem 13, if

Hs(Xi|Yi) = H(Xi|Yi) (69)

holds for all i = 1, 2 then

Hs(X|Y ) = max
i=1,2

Hs(Xi|Yi) = max
i=1,2

H(Xi|Yi). (70)

Proofs of Theorems 10, 11, 12, and 13 are given in Appendix F-B.

As shown by Theorem 7,Hs(X|Y ) characterizes the optimal coding rateRSW (X|Y ) achievable by SW coding.

With this observation, let us consider the operational meaning of above results. Recall that the spectral inf-divergence

D(X1‖X2) characterizes the optimal exponent of the error probability of the second kind in hypothesis testing with
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X1 againstX2 [6, Chapter 4]. Roughly speaking, the condition (62) of Theorem 11 means that we candistinguish

between two marginal sourcesX1 andX2. So, Theorem 11 implies that if the encoder can distinguishX1 andX2

then it can adjust the coding rate, and thus, the average of the optimal coding rates of components can be achieved.

On the other hand, Theorem 13 implies that the optimal codingrateHs(X|Y ) is determined by the “worst case”

maxiHs(Xi|Yi) of components, if the marginals are identical (and thus the encoder cannot distinguish them).

Remark 11. The conditions of Theorems 11 and 13 do not cover all cases. Indeed, there exists a pair of general

sourcesX1 andX2 for which (62) does not hold whileX1 6= X2. However, if both of components are i.i.d. sources

with finite alphabet then (62) holds if and only ifX1 6= X2.

It is not hard to generalize our results tom-components case (m < ∞). Let us considerm general sources

(Xi,Yi) (i = 1, . . . ,m) and their mixture

PXnY n(xn, yn) =

m
∑

i=1

αiPXn
i
Y n
i
(xn, yn) (71)

whereαi > 0 and
∑

i αi = 1. We have a generalization of two-components case as follows.

Theorem 14. Assume that all of(Xi,Yi) (i = 1, 2, . . . ,m) are uniformly integrable. Then, following (i) and (ii)

hold.

(i) If D(Xi‖Xj) > 0 for all i 6= j and the limit (64) exists for alli and sufficiently smallε > 0 then

Hs(X|Y ) =

m
∑

i=1

αiHs(Xi|Yi). (72)

(ii) If Xi = Xj for all i, j andHs(Xi|Yi) = H(Xi|Yi) for all i then

Hs(X|Y ) = max
i=1,...,m

Hs(Xi|Yi) = max
i=1,...,m

H(Xi|Yi). (73)

We can prove the theorem by applying Corollaries 3 and 4 repeatedly; See Appendix F-C.

Now, let us recall Theorem 9. It guarantees that if(Xi,Yi) satisfies the conditional strong converse property

then (i) the limit (64) exists for allε ∈ (0, 1) and (ii)Hs(Xi|Yi) = H(Xi|Yi) = H(Xi|Yi). Hence, as a corollary

of Theorem 14, we can derive the following result.

Corollary 5. Let us consider sources(Xi,Yji) (i = 1, . . . ,m andji = 1, . . . ,mi) and their mixture:

PXnY n(xn, yn) ,

m
∑

i=1

mi
∑

ji=1

αijiPXn
i
Y n
ji
(xn, yn) =

m
∑

i=1

αiPXn
i
(xn)





mi
∑

ji=1

αji|iPY n
ji
|Xn

i
(yn|xn)



 (74)

whereαiji > 0 satisfies
∑

i,ji
αiji = 1 andαi ,

∑mi

ji=1 αiji andαji|i , αiji/αi. In other words, there arem

marginal sourcesXi (i = 1, 2, . . . ,m) and for each marginal source there aremi side-information sourcesYji

(ji = 1, . . . ,mi). We assume that all of(Xi,Yji) are uniformly integrable. Further, assume that(Xi,Yji) satisfies

the conditional strong converse property for alli andji and thatD(Xi‖Xk) > 0 for all i 6= k. Then

Hs(X|Y ) =

m
∑

i=1

αi

[

max
ji=1,...,mi

H(Xi|Yji)

]

(75)
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whereH(X|Y ) is defined in (54).

Remark 12. Note that under assumptions of Corollary 5, we have

H(X|Y ) =
m
∑

i=1

mi
∑

ji=1

αijiH(Xi|Yji), (76)

and

H(X|Y ) = max
i,ji

H(Xi|Yji). (77)

For example, the assumptions of Corollary 5 hold if all components(Xi,Yji) are i.i.d. sources with finite alphabets.

Note that the finiteness of alphabets is not necessary if sources are uniformly integrable.

VII. A C ASE WHERE ENCODERSIDE-INFORMATION IS USELESS

In this section, we give a sufficient condition that the encoder side-information does not helpε-coding. ε-

achievability for SW coding is defined in a same way as for coding with common side-information.

Definition 9. A rateR is said to beε-achievable, if there exists a sequence{(ϕn, ψn)}∞n=1 of SW-codes satisfying

lim sup
n→∞

Pe(Φn) ≤ ε (78)

and

lim sup
n→∞

1

n
E [ℓn(X

n)] ≤ R. (79)

Definition 10 (Optimal coding rate achievable byε-SW coding).

Rε
SW (X|Y ) , inf {R : R is ε-achievable} . (80)

Now, we give a condition and state our result.

Condition 1.

lim inf
n→∞

[

1

n
H(Xn|Y n)− 1

n
Hεn

s (Xn|Y n)

]

≥ 0 (81)

where{εn}∞n=1 is a sequence given in Remark 7.

Theorem 15. Assume that(X,Y ) is uniformly integrable. If Condition 1 holds then, for anyε ∈ (0, 1),

Rε
SW (X|Y ) = Rε

com(X|Y ). (82)

Remark 13. Consider a source(X,Y ) for whichH(X|Y ) = limn→∞(1/n)H(Xn|Y n) exists. Then the condition

(81) is equivalent toH(X|Y ) = Hs(X|Y ) (Recall the first inequality in (53) of Theorem 8). In other words,

in this case, Theorem 15 implies that encoder side-information is useless inε-coding if it is useless in weakly

lossless coding. It should be emphasized that Condition 1 holds andH(X|Y ) = limn→∞(1/n)H(Xn|Y n) exists
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even when(X,Y ) does not satisfy the conditional strong converse property.For example, let us consider the

mixed-source given in Corollary 5. Ifmi = 1 for all i then the mixed-source satisfies the conditions mentioned

above.

VIII. C ONCLUSION

In this paper, we gave one-shot and asymptotic coding theorems for VL-SW coding. Especially, VL-SW coding

of mixed sources was investigated. In addition, to clarify the impact of the encoder side-information, we also

considered VL source coding with common side-information.Our results derives several known results on SW

coding, weak andε-VL coding as corollaries. Moreover, we proved that if the encoder side-information is useless

in weak VL coding then it is also useless even inε-VL coding for anyε ∈ (0, 1).

On the other hand, some important problems remain as future works:

• Although we can apply Theorems 3 and 4 to investigating asymptotic performance ofε-VL-SW coding, a

straightforward application of one-shot bounds may not give meaningful result. To give a general formula for

ε-VL-SW coding, from which meaningful results can be derivedas corollaries, is an important future work.

• It should be also pointed out thatε-SW coding can be considered as a special case of Wyner-Ziv (WZ) coding

[30] (with respect to the distortion measured such asd(xn, x̂n) = 1 if xn 6= x̂n and d(xn, x̂n) = 0 if

xn = x̂n). In this sense, VL-WZ coding with average distortion criteria is a general challenge in the future

(While information-spectrum approaches to fixed-length WZcoding are given in [31] and [32], VL-WZ coding

has not been reported as long as the authors known).

• While Theorem 15 gives a sufficient condition that the encoder side-information is useless, it is not clear

whether Condition 1 is necessary or not. To give a necessary and sufficient condition is an important future

work.

• Other future work includes to investigate VL-SW coding withtwo encoders.

APPENDIX A

DEFINITION AND PROPERTIES OFUNIFORMLY INTEGRABILITY

A sequence{Zn}∞n=1 of real-valued random variables is said to beuniformly integrable (or satisfy theuniform

integrability), if {Zn}∞n=1 satisfies

lim
u→∞

sup
n≥1

∑

z:|z|≥u

PZn
(z) |z| = 0. (83)

It is known that if{Zn}∞n=1 is uniformly integrable then it satisfies the following condition (see, e.g. [33]).

Condition 2.

(i) There existsM <∞ such thatE[Zn] < M for all n.

(ii) If a sequence{An}∞n=1 of subsetsAn ⊆ Zn satisfiesPZn
(An) → 0 asn→ ∞ then

lim
n→∞

∑

z∈An

PZn
(z) |z| = 0. (84)
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While some of our results assume uniform integrability of random variables, only two properties given in

Condition 2 are needed in our proof. This fact is important inthe analysis of mixed-source in Section VI-B.

Let us consider two sources(Xi,Yi) (i = 1, 2) and the mixture(X,Y ) of them defined as (57). It is not clear

whether the following statement is true: If both of(Xi,Yi) (i = 1, 2) are uniformly integrable then(X,Y ) is also

uniformly integrable. We have, however, the following lemma.

Lemma 1. Let us consider two sources(Xi,Yi) (i = 1, 2) and the mixture of them defined as (57). If both of

{(1/n) log(1/PXn
i
|Y n

i
(Xn

i |Y n
i ))}∞n=1 (i = 1, 2) satisfy Condition 2 then{(1/n) log(1/PXn|Y n(Xn|Y n))}∞n=1 also

satisfies Condition 2.

Proof: For i = 1, 2, let ı̄ = 2 if i = 1 and ı̄ = 1 if i = 2. We have, for anyn andAn ⊆ Xn × Yn,

1

n

∑

(xn,yn)∈An

PXnY n(xn, yn) log
1

PXn|Y n(xn|yn)

=
1

n

∑

i

∑

(xn,yn)∈An

αiPXn
i
Y n
i
(xn, yn) log

∑

j αjPY n
j
(yn)

∑

k αkPXn
k
Y n
k
(xn, yn)

(85)

≤ 1

n

∑

i

∑

(xn,yn)∈An

αiPXn
i
Y n
i
(xn, yn) log

∑

j αjPY n
j
(yn)

αiPXn
i
Y n
i
(xn, yn)

(86)

≤ 1

n

∑

i

[

∑

(xn,yn)∈An

PY n
i
(yn)≥PY n

ı̄
(yn)

αiPXn
i
Y n
i
(xn, yn) log

PY n
i
(yn)

αiPXn
i
Y n
i
(xn, yn)

+
∑

(xn,yn)∈An

PY n
i
(yn)<PY n

ı̄
(yn)

αiPXn
i
Y n
i
(xn, yn) log

PY n
ı̄
(yn)

αiPXn
i
Y n
i
(xn, yn)

]

(87)

≤ 1

n

∑

i

[

∑

(xn,yn)∈An

αiPXn
i
Y n
i
(xn, yn) log

1

αiPXn
i
|Y n

i
(xn|yn)

+
∑

(xn,yn)∈An

PY n
i
(yn)<PY n

ı̄
(yn)

αiPXn
i
Y n
i
(xn, yn) log

PY n
ı̄
(yn)

Pn
Yi
(yn)

]

(88)

(a)
≤ 1

n

∑

i

∑

(xn,yn)∈An

αiPXn
i
Y n
i
(xn, yn) log

1

αiPXn
i
|Y n

i
(xn|yn)

+
1

n

∑

i

∑

(xn,yn)∈An

PY n
i
(yn)<PY n

ı̄
(yn)

αiPXn
i
Y n
i
(xn, yn)

PY n
ı̄
(yn)

PY n
i
(yn)

log e (89)

≤ 1

n

∑

i

∑

(xn,yn)∈An

αiPXn
i
Y n
i
(xn, yn) log

1

αiPXn
i
|Y n

i
(xn|yn) +

log e

n
(90)

=
∑

i

αi

∑

(xn,yn)∈An

PXn
i
Y n
i
(xn, yn)

[

1

n
log

1

PXn
i
|Y n

i
(xn|yn)

]

+
h2(α1) + log e

n
(91)
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≤
∑

i

αiE

[

1

n
log

1

PXn
i
|Y n

i
(Xn

i |Y n
i )

]

+ h2(α1) + log e (92)

whereh2(p) , −p log p− (1 − p) log(1− p) and (a) follows fromlog x ≤ (x− 1) log e ≤ x log e.

The assumption of the lemma and (92) (resp. (91)) guarantee that{(1/n) log(1/PXn|Y n(Xn|Y n))}∞n=1 satisfies

the property (i) (resp. (ii)) of Condition 2.

Further, we have also the following lemma.

Lemma 2. If
{

1
n log 1

PXn|Y n (Xn|Y n)

}∞

n=1
satisfies Condition 2 then, for any0 < ε ≤ 1,

{

h̄
ε(Xn)
n

}∞

n=1
also satisfies

Condition 2.

Proof: Fix γ > 0. For anyu ≥ 0 andxn ∈ Xn such that̄hε(xn) ≥ un, we have

∑

yn∈Yn:
log 1

PXn|Y n (xn|yn)
>un−γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn)

≥
∑

yn∈Yn:
log 1

PXn|Y n (xn|yn)
>h̄

ε(xn)−γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn) (93)

≥
∑

yn∈Yn:
log 1

PXn|Y n (xn|yn)
>h̄

ε(xn)−γ

PY n|Xn(yn|xn)
{

h̄
ε(xn)− γ

}

(94)

> ε
{

h̄
ε(xn)− γ

}

(95)

where the last inequality follows from the definition ofh̄ε(xn). Thus, we have

h̄
ε(xn) ≤ 1

ε

∑

yn∈Yn:
log 1

PXn|Y n (xn|yn)
>un−γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn) + γ. (96)

On the other hand, by the assumption, we can chooseM <∞ so thatE
[

(1/n) log(1/PXn|Y n(Xn|Y n))
]

≤M

for all n. Hence, we have, for anyn andAn ⊆ Xn,

∑

xn∈An

PXn(xn)
h̄ε(xn)

n

≤ uPXn(An) +
∑

xn∈An:
h̄
ε(xn)≥un

PXn(xn)
h̄ε(xn)

n
(97)

≤ uPXn(An) +
∑

xn∈An:
h̄
ε(xn)≥un

PXn(xn)













1

nε

∑

yn∈Yn:
log 1

PXn|Y n (xn|yn)
>un−γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn) +
γ

n













(98)

≤ uPXn(An) +
1

nε

∑

xn∈An

PXn(xn)
∑

yn∈Yn:
log 1

PXn|Y n (xn|yn)
>un−γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn) +
γ

n
(99)
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= uPXn(An) +
1

nε

∑

(xn,yn)∈An×Yn:
log 1

PXn|Y n (xn|yn)
>un−γ

PXnY n(xn, yn) log
1

PXn|Y n(xn|yn) +
γ

n
(100)

≤ uPXn(An) +
1

ε

∑

(xn,yn)∈An×Yn

PXnY n(xn, yn)

[

1

n
log

1

PXn|Y n(xn|yn)

]

+
γ

n
(101)

≤ u+
1

ε
E

[

1

n
log

1

PXn|Y n(Xn|Y n)

]

+ γ. (102)

The assumption of the lemma and (102) (resp. (101)) guarantee that{(1/n) log(1/PXn|Y n(Xn|Y n))}∞n=1 satisfies

the property (i) (resp. (ii)) of Condition 2.

APPENDIX B

PROOFS OF RESULTS INSECTION III

In this appendix, we prove Theorem 1, inequality (11), and Theorem 2.

Proof of Theorem 1:

Direct part: Fix γ > 0 arbitrarily and fixA ⊆ X × Y such thatPXY (A) ≥ 1− ε andPXY (A)HA(X |Y ) ≤
Hε(X |Y ) + γ. Let us consider the following coding scheme

• if (x, y) ∈ A then the encoder sends one bit flag “0” followed byx encoded by using the Shannon code

designed for the conditional probabilityQA
X|Y (x|y) , QA

XY (x, y)/Q
A
Y (y).

• if (x, y) /∈ A then encoder sends only one bit flag “1”.

It is not hard to see that

• x is decoded successfully if(x, y) ∈ A and thus the error probability of this scheme is less than or equal toε.

• the average codeword length is upper bounded by

1 + PXY (A) [HA(X |Y ) + 1] ≤ PXY (A)HA(X |Y ) + 2 ≤ Hε(X |Y ) + 2 + γ. (103)

Sinceγ > 0 is arbitrarily, we have (8).

Converse part: Fix ε-codeΦ = (ϕ, ψ) and letA , {(x, y) : x = ψ(ϕ(x|y), y)}. It is apparent that, for all

(x, y) 6∈ A, we can lower bound the codeword length asℓ(x|y) ≥ 0. On the other hand, for eachy ∈ Y, ϕ(·|y)
gives a lossless prefix code onA(y) , {x : (x, y) ∈ A}. Hence, by using a standard technique which proves the

converse part of the coding theorem for lossless variable-length coding (e.g. [27]), we can show that

∑

(x,y)∈A

QA
XY (x, y)ℓ(x|y) ≥ HA(X |Y ). (104)

It is not hard to see that (9) follows from (104).

Proof of (11): GivenA ⊆ X × Y, let

µA(y) ,
1

PY (y)

[

∑

x∈X

1[(x, y) ∈ A]PXY (x, y)

]

. (105)
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Then, we can write

QA
Y (y) =

∑

x∈X

QA
XY (x, y) =

PY (y)µA(y)

PXY (A)
(106)

and thus

PXY (A)HA(X |Y ) = PXY (A)
∑

(x,y)∈X×Y

QA
XY (x, y) log

QA
Y (y)

QA
XY (x, y)

(107)

=
∑

(x,y)∈A

PXY (x, y) log
PY (y)µA(y)

PXY (x, y)
(108)

=
∑

(x,y)∈A

PXY (x, y) log
µA(y)

PX|Y (x|y)
. (109)

Since0 ≤ µA(y) ≤ 1, we have

∑

(x,y)∈A

PXY (x, y) log
µA(y)

PX|Y (x|y)
≤

∑

(x,y)∈A

PXY (x, y)

PXY (A)
log

1

PX|Y (x|y)
. (110)

On the other hand,

∑

(x,y)∈A

PXY (x, y) log
µA(y)

PX|Y (x|y)
=

∑

(x,y)∈A

PXY (x, y) log
1

PX|Y (x|y)
+

∑

(x,y)∈A

PXY (x, y) log µA(y) (111)

=
∑

(x,y)∈A

PXY (x, y) log
1

PX|Y (x|y)
+
∑

y∈Y

PY (y)µA(y) logµA(y) (112)

≥
∑

(x,y)∈A

PXY (x, y) log
1

PX|Y (x|y)
−
∑

y∈Y

PY (y) (113)

=
∑

(x,y)∈A

PXY (x, y) log
1

PX|Y (x|y)
− 1 (114)

where the inequality follows from the fact thatp log p ≥ −1 for p ∈ [0, 1]. The inequality (11) follows from (109),

(110), (114), and the definitions of quantities.

Proof of Theorem 2: Since (11) holds, it is sufficient to show that

H̃ε(X |Y ) ≤ Ĥε(X |Y ) (115)

and

H̃ε(X |Y ) ≥ Ĥε(X |Y )− 1. (116)

The first inequality (115) is apparent, sinceA , {(xi, yi) : 1 ≤ i ≤ i∗} satisfiesPXY (A) ≥ 1− ε.

On the other hand, by the definition of̃Hε(X |Y ), we have

H̃ε(X |Y ) ≥ inf
f

∑

(x,y)∈X×Y

PXY (x, y)f(x, y) log
1

PX|Y (x|y)
(117)

whereinff is taken over all functions onX × Y such that

0 ≤ f(x, y) ≤ 1 (118)
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and

∑

(x,y)∈X×Y

PXY (x, y)f(x, y) ≥ 1− ε. (119)

Note that the right hand side of (117) can be written as a linear programming such as

mimimize
∑

(x,y)∈X×Y

g(x, y) log
1

PX|Y (x|y)
(120)

subject to

0 ≤ g(x, y) ≤ PXY (x, y) (121)

and

∑

(x,y)∈X×Y

g(x, y) ≥ 1− ε. (122)

The solution of this problem is given byg such as

g(xi, yi) =























PXY (xi, yi) i < i∗,

∑∞
i=i∗ PXY (xi, yi)− ε i = i∗,

0 i > i∗.

(123)

By this fact and the definition of̂Hε(X |Y ), we have

H̃ε(X |Y ) ≥ Ĥε(X |Y )−
[

ε−
∞
∑

i=i∗+1

PXY (xi, yi)

]

log
1

PX|Y (xi∗ |yi∗)
(124)

≥ Ĥε(X |Y )− PXY (xi∗ , yi∗) log
1

PX|Y (xi∗ |yi∗)
(125)

≥ Ĥε(X |Y )− PXY (xi∗ , yi∗) log
1

PXY (xi∗ , yi∗)
(126)

≥ Ĥε(X |Y )− 1 (127)

and thus, (116) holds.

APPENDIX C

PROOFS OFRESULTS IN SECTION IV

In this appendix, we prove coding theorems for one-shot SW coding, i.e. Theorems 3 and 4.

Proof of Theorem 3: For eachx ∈ X , let

ℓ̃(x) ,
⌈

h̄
εx(x) + δ

⌉

. (128)

Further, for each integerl ∈ {ℓ̃(x) : x ∈ X}, prepare a random bin code withl-bits bin-index and let

T (l) ,

{

(x, y) : log
1

PX|Y (x|y)
≤ l − δ

2

}

. (129)
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Note that, for ally ∈ Y,

|{x : (x, y) ∈ T (l)}| ≤ 2l−δ/2. (130)

Now, we construct the encoder and the decoder as follows:

• Givenx ∈ X , the encoder

1) sends̃ℓ(x) by using at most2(⌊log ℓ̃(x)⌋ + 1) bits [29], and then

2) sends the bin-indexm = bin(x) of x by using ℓ̃(x) bits.

• From the received codeword, the decoder can extract the length l of the bin-index and the bin-indexm. Given

(l,m) and side informationy ∈ Y, the decoder look for a uniquex such that(x, y) ∈ T (l), ℓ̃(x) = l, and

bin(x) = m.

By using the standard argument, we can upper bound the average error probabilityE [Pe(Φ)] with respect to random

coding by

E [Pe(Φ)] ≤ Pr

{

log
1

PX|Y (X |Y )
> ℓ̃(X)− δ

2

}

+
∑

x,y

PXY (x, y)

∣

∣

∣
{x′ : (x′, y) ∈ T (ℓ̃(x))}

∣

∣

∣

2ℓ̃(x)
(131)

≤ Pr

{

log
1

PX|Y (X |Y )
> ℓ̃(X)− δ

2

}

+ 2−δ/2 (132)

= Pr

{

log
1

PX|Y (X |Y )
>
⌈

h̄
εX (X) + δ

⌉

− δ

2

}

+ 2−δ/2 (133)

≤ Pr

{

log
1

PX|Y (X |Y )
> h̄

εX (X) +
δ

2

}

+ 2−δ/2 (134)

=
∑

x∈X

PX(x) Pr

{

log
1

PX|Y (x|Y )
> h̄

εx(x) +
δ

2

}

+ 2−δ/2 (135)

≤
∑

x∈X

PX(x)εx + 2−δ/2. (136)

On the other hand, it is apparent that

ℓ(x) ≤ ℓ̃(x) + 2(⌊log ℓ̃(x)⌋+ 1) (137)

≤ h̄
εx(x) + δ + 2 log

(

h̄
εx(x) + δ + 1

)

+ 3. (138)

In the proof of Theorem 4, the following lemma plays an important role.

Lemma 3. For anyε-SW codeΦ and anyδ > 0,

Pe(Φ) ≥ Pr

{

log
1

PX|Y (X |Y )
> ℓ(X) + δ

}

− 2−δ. (139)

Proof: Let

S , {(x, y) : x = ψ(ϕ(x), y)} (140)

T , {(x, y) : ℓ(x) + δ < − logPX|Y (x|y)} (141)
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and, for eachy ∈ Y,

S(y) , {x : (x, y) ∈ S}. (142)

Then, we have

PXY (T ) = PXY (T ∩ Sc) + PXY (T ∩ S) (143)

≤ PXY (Sc) + PXY (T ∩ S) (144)

= Pe(Φ) + PXY (T ∩ S). (145)

On the other hand,

PXY (T ∩ S) =
∑

(x,y)∈T ∩S

PY (y)PX|Y (x|y) (146)

≤
∑

(x,y)∈T ∩S

PY (y)2
−ℓ(x)−δ (147)

≤ 2−δ







∑

y∈Y

PY (y)
∑

x∈S(y)

2−ℓ(x)







(148)

≤ 2−δ (149)

where the last inequality follows from the fact that, for each y ∈ Y, {ϕ(x) : x ∈ S(y)} satisfies the prefix condition

and thus the Kraft inequality

∑

x∈S(y)

2−ℓ(x) ≤ 1 (150)

holds. Substituting (149) into (145), we have the lemma.

Proof of Theorem 4: For eachx ∈ X , let

εx =
∑

y∈Y:
log 1

PX|Y (x|y)>ℓ(x)+δ

PY |X(y|x). (151)

Then, by the definition of̄hεx(x), we have

h̄
εx(x) ≤ ℓ(x) + δ (152)

⇔ ℓ(x) ≥ h̄
εx(x) − δ. (153)
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Further, by Lemma 3, we have

∑

x∈X

PX(x)εx =
∑

(x,y)∈X×Y:
log 1

PX|Y (x|y)
>ℓ(x)+δ

PXY (x, y) (154)

= Pr

{

log
1

PX|Y (X |Y )
> ℓ(X) + δ

}

(155)

≤ Pe(Φ) + 2−δ (156)

≤ ε+ 2−δ. (157)

This completes the proof.

APPENDIX D

PROOFS OFRESULTS IN SECTION V

Proof of Theorem 5: Since (11) and Theorem 2 holds, to show the theorem, it is sufficient to prove (36).

At first, we show the converse part. Fix{Φn}∞n=1 for which εn , Pe(Φn) satisfieslim supn→∞ εn ≤ ε,

i.e. εn ≤ ε+ δ for any δ > 0 and sufficiently largen. Then, the converse part of Theorem 1 guarantees that

E [ℓn(X
n|Y n)] ≥ Hεn(Xn|Y n) (158)

≥ Hε+δ(Xn|Y n). (159)

Sinceδ > 0 is arbitrary, we have

Rε
com(X|Y ) ≥ lim

δ↓0
lim sup
n→∞

1

n
Hε+δ(Xn|Y n). (160)

Next, we prove the direct part by using the diagonal line argument. Fix{δi}∞i=1 satisfying1 > δ1 > δ2 > · · · → 0.

Then, the direct part of Theorem 1 guarantees that there exists {Φ(i)
n = (ϕ

(i)
n , ψ

(i)
n )}∞n=1 satisfying

Pe(Φ
(i)
n ) ≤ ε+ δi, ∀n = 1, 2, . . . , ∀i = 1, 2, . . . (161)

and

lim sup
n→∞

1

n
E

[

ℓ(i)n (Xn|Y n)
]

= lim sup
n→∞

1

n
Hε+δi(Xn|Y n) , hi, ∀i = 1, 2, . . . (162)

whereℓ(i)n (Xn|Y n) , ℓ
ϕ

(i)
n
(Xn|Y n). Here we notice from (162) that for an arbitrarilyγ > 0 there exists a sequence

{ni}∞i=1 of positive integers satisfyingn1 < n2 < · · · → ∞ and

1

n
E

[

ℓ(i)n (Xn|Y n)
]

≤ hi + γ, ∀n ≥ ni, ∀i = 1, 2, . . . . (163)

For eachn, let in be the integer satisfyingni < n < ni+1 and define a codeΦn = (ϕn, ψn) by

ϕn , ϕ(in)
n , ψn , ψ(in)

n . (164)

Then (161) implies that

lim sup
n→∞

Pe(Φn) ≤ ε. (165)
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On the other hand, since (163) leads to

1

n
E [ℓn(X

n|Y n)] =
1

n
E

[

ℓ(in)n (Xn|Y n)
]

(166)

≤ hin + γ, (167)

it follows that

lim sup
n→∞

1

n
E [ℓn(X

n|Y n)] ≤ lim sup
k→∞

hik + γ (168)

= lim sup
k→∞

lim sup
n→∞

1

n
Hε+δk(Xn|Y n) + γ (169)

= lim
δ↓0

lim sup
n→∞

1

n
Hε+δ(Xn|Y n) + γ. (170)

Sinceγ > 0 is arbitrary, we have

lim sup
n→∞

1

n
E [ℓn(X

n|Y n)] ≤ lim
δ↓0

lim sup
n→∞

1

n
Hε+δ(Xn|Y n) (171)

From the combination (165) and (171), we have

Rε
com(X|Y ) ≤ lim

δ↓0
lim sup
n→∞

1

n
Hε+δ(Xn|Y n). (172)

Proof of Theorem 6: At first, we prove the upper bound. Fixγ > 0 arbitrarily. By Theorem 5, we can choose

n0(γ) such that for alln ≥ n0(γ),

Rε
com(X|Y ) ≤ 1

n
Ĥε+γ(Xn|Y n) + γ. (173)

Recall that

Ĥε+γ(Xn|Y n) =

i∗
∑

i=1

PXnY n(xni , y
n
i ) log

1

PXn|Y n(xni |yni )
(174)

where the pairs inXn ×Yn are sorted so thatPXn|Y n(xn1 |yn1 ) ≥ PXn|Y n(xn2 |yn2 ) ≥ PXn|Y n(xn3 |yn3 ) ≥ · · · andi∗

is the integer such that

i∗
∑

i=1

PXnY n(xni , y
n
i ) ≥ 1− ε− γ (175)

and

i∗−1
∑

i=1

PXnY n(xni , y
n
i ) < 1− ε− γ. (176)

Now, let

T (1)
n ,

{

(xn, yn) :
1

n
log

1

PXn|Y n(xn|yn) ≤ H(X|Y ) + γ

}

. (177)
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SincePXnY n(T (1)
n ) → 1 asn → ∞, we have(xni , y

n
i ) ∈ T (1)

n for all i ≤ i∗ if n is sufficiently large. Thus, for

sufficiently largen, we have

1

n
Ĥε+γ(Xn|Y n) =

1

n

i∗−1
∑

i=1

PXnY n(xni , y
n
i ) log

1

PXn|Y n(xni |yni )
+

1

n
PXnY n(xni∗ , y

n
i∗) log

1

PXn|Y n(xni∗ |yni∗)
(178)

≤
i∗−1
∑

i=1

PXnY n(xni , y
n
i ){H(X|Y ) + γ}+ 1

n
PXnY n(xni∗ , y

n
i∗) log

1

PXnY n(xni∗ , y
n
i∗)

(179)

≤ (1 − ε){H(X|Y ) + γ}+ 1

n
. (180)

Thus, forn satisfyingn ≥ n0(γ) and1/n < γ, we have

Rε
com(X|Y ) ≤ (1− ε){H(X|Y ) + γ}+ 2γ. (181)

Sinceγ > 0 is arbitrarily, we haveRε
com(X|Y ) ≤ (1− ε)H(X|Y ).

Next, we prove the lower bound. Fixγ > 0 arbitrarily. By Theorem 5, we can choosen0(γ) such that for all

n ≥ n0(γ),

1

n
H̃ε+γ(Xn|Y n) ≤ Rε

com(X|Y ) + γ. (182)

Hence, for alln ≥ n0(γ), we can chooseAn ⊆ Xn × Yn so thatPXnY n(An) ≥ 1− ε− γ and

1

n

∑

(xn,yn)∈An

PXnY n(xn, yn) log
1

PXn|Y n(xn|yn) ≤ Rε
com(X|Y ) + 2γ. (183)

On the other hand, let

T (2)
n ,

{

(xn, yn) :
1

n
log

1

PXn|Y n(xn|yn) ≥ H(X|Y )− γ

}

. (184)

SincePXnY n(T (2)
n ) → 1 asn→ ∞, we can choosen1(γ) such that for alln ≥ n1(γ),

PXnY n(An ∩ T (2)
n ) ≥ 1− ε− 2γ. (185)

Hence, we have

Rε
com(X|Y ) ≥ 1

n

∑

(xn,yn)∈An

PXnY n(xn, yn) log
1

PXn|Y n(xn|yn) − 2γ (186)

≥ 1

n

∑

(xn,yn)∈An∩T
(2)
n

PXnY n(xn, yn) log
1

PXn|Y n(xn|yn) − 2γ (187)

≥
∑

(xn,yn)∈An∩T
(2)
n

PXnY n(xn, yn){H(X|Y )− γ} − 2γ (188)

≥ (1− ε− 2γ){H(X|Y )− γ} − 2γ. (189)

Since we can chooseγ > 0 arbitrarily small, we haveRε
com(X|Y ) ≥ (1− ε)H(X|Y ).

Proof Sketch of (42): SinceR0 , inf{R : F (R|X,Y ) ≤ ε} satisfiesF (R0 + γ|X,Y ) ≤ ε, we can show

that

T̃ (1)
n ,

{

(xn, yn) :
1

n
log

1

PXn|Y n(xn|yn) < R0 + γ

}

(190)
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satisfiesPXnY n(T̃ (1)
n ) ≥ 1− ε− γ for sufficiently largen. Hence, by replacingT (1)

n defined in (177) withT̃ (1)
n ,

we can show (42) with the same manner as the proof of the upper bound of (41).

APPENDIX E

PROOFS OFRESULTS IN SECTION VI-A

In this appendix, we prove Theorems 7, 8, and 9. At first, we introduce some lemmas which show properties

of Hs(X|Y ). Next, in Appendix E-B, we prove our general formula, Theorem7. Other theorems are proved in

Appendix E-C.

A. Properties of Hs(X|Y )

Lemma 4. For any{εn}∞n=1 such thatεn → 0,

lim sup
n→∞

1

n
Hεn

s (Xn|Y n) ≥ Hs(X|Y ). (191)

Proof: Fix ǫ > 0 arbitrarily. Then, letn0(ǫ) be the integer such thatεn ≤ ǫ for all n ≥ n0(ǫ) Then, we have

1

n
Hεn

s (Xn|Y n) ≥ 1

n
Hǫ

s (X
n|Y n), ∀n ≥ n0(ǫ). (192)

Thus,

lim sup
n→∞

1

n
Hεn

s (Xn|Y n) ≥ lim sup
n→∞

1

n
Hǫ

s (X
n|Y n). (193)

Sinceǫ > 0 is arbitrary, lettingǫ ↓ 0, we have the lemma.

Lemma 5. There exists{εn}∞n=1 such thatεn → 0 asn→ ∞ and

Hs(X|Y ) = lim sup
n→∞

1

n
Hεn

s (Xn|Y n). (194)

Especially, we can choose{εn}∞n=1 so that(1/n) log(1/εn) → 0 asn→ ∞.

Proof: For eachi = 1, 2, . . . , let ǫi , 2−i and

h(i) , lim sup
n→∞

1

n
Hǫi

s (Xn|Y n). (195)

Then, for anyγ > 0, there exists{ni}∞i=1 such thatn1 < n2 < · · · → ∞ and

h(i) ≥ 1

n
Hǫi

s (Xn|Y n)− γ, ∀i, ∀n ≥ ni. (196)

Especially, we can chooseni so thatni > i2. For eachn, let in be the integeri such thatni ≤ n < ni+1. Then,

letting εn , ǫin , we have

h(in) ≥
1

n
Hεn

s (Xn|Y n)− γ, ∀n ≥ n1. (197)

This implies that

lim sup
n→∞

h(in) ≥ lim sup
n→∞

1

n
Hεn

s (Xn|Y n)− γ. (198)
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Sinceγ > 0 is arbitrary, we have

lim sup
n→∞

1

n
Hεn

s (Xn|Y n) ≤ lim sup
n→∞

h(in) (199)

= lim sup
k→∞

h(ik) (200)

= lim sup
k→∞

lim sup
n→∞

1

n
H

ǫik
s (Xn|Y n) (201)

= lim
ǫ↓0

lim sup
n→∞

1

n
Hǫ

s (X
n|Y n) (202)

= Hs(X|Y ). (203)

By Lemma 4 and (203) we have (194). It is not hard to verify thatεn satisfies(1/n) log(1/εn) ≤ 1/in → 0 as

n→ ∞.

B. Proof of Theorem 7

Proof of the direct part of Theorem 7: Applying Theorem 3 to(Xn, Y n) with δ = logn andεxn = ε for all

xn ∈ Xn, we can show that there exists a codeΦn = (ϕn, ψn) such that

Pe(Φn) ≤ ε+ 2−(logn)/2 (204)

and

ℓn(x
n) ≤ h̄

ε(x) + (logn) + 2 log
(

h̄
ε(x) + (log n) + 1

)

+ 3. (205)

On the other hand, by the assumption, there exists a constantM <∞ such that

E

[

h̄
ε(Xn)

n

]

≤M (206)

for anyn. Hence, by using Jensen’s inequality, we have

1

n
E
[

log
(

h̄
ε(Xn) + (log n) + 1

)]

≤ logn

n
+

1

n
log

(

E

[

h̄ε(Xn)

n

]

+
(logn) + 1

n

)

(207)

≤ logn

n
+

1

n
log

(

M +
(log n) + 1

n

)

. (208)

By combining (205) and (208), we have

lim sup
n→∞

1

n
E [ℓn(X

n)] ≤ lim sup
n→∞

1

n

∑

xn∈Xn

PXn(xn)h̄ε(xn) (209)

= lim sup
n→∞

1

n
Hε

s (X
n|Y n). (210)

Now, we use the diagonal line argument. Fix a sequence{εi}∞i=1 satisfying1 > ε1 > ε2 > · · · → 0 and consider

sequences{Φ(i)
n = (ϕ

(i)
n , ψ

(i)
n )}∞n=1 of codes where(ϕ(i)

n , ψ
(i)
n ) is constructed in the same way above whenε = εi

(i = 1, 2, . . . ). Then, from (210), we have

lim sup
n→∞

1

n
E

[

ℓ(i)n (Xn)
]

≤ lim sup
n→∞

1

n
Hεi

s (Xn|Y n) , hi, ∀i = 1, 2, . . . (211)
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whereℓ(i)n (xn) , ℓ
ϕ

(i)
n
(xn). Further, (204) guarantees that

Pe(Φ
(i)
n ) ≤ εi + 2−(logn)/2, ∀n = 1, 2, . . . , ∀i = 1, 2, . . . (212)

Here we notice from (211) that for an arbitrarilyδ > 0 there exists a sequence{ni}∞i=1 of positive integers satisfying

n1 < n2 < · · · → ∞ and

1

n
E

[

ℓ(i)n (Xn)
]

≤ hi + δ, ∀n ≥ ni, ∀i = 1, 2, . . . . (213)

For eachn, let in be the integer satisfyingni < n < ni+1 and define a codeΦn = (ϕn, ψn) by

ϕn , ϕ(in)
n , ψn , ψ(in)

n . (214)

Then (212) implies that

lim
n→∞

Pe(Φn) ≤ lim
n→∞

[

εii + 2−(logn)/2
]

= 0. (215)

On the other hand, since (213) leads to

1

n
E [ℓn(X

n)] =
1

n
E

[

ℓ(in)n (Xn)
]

(216)

≤ hin + δ, (217)

it follows that

lim sup
n→∞

1

n
E [ℓn(X

n)] ≤ lim sup
k→∞

hik + δ (218)

= lim sup
k→∞

lim sup
n→∞

1

n
Hεk

s (Xn|Y n) + δ (219)

= lim
ε↓0

lim sup
n→∞

1

n
Hε

s (X
n|Y n) + δ. (220)

Sinceδ > 0 is arbitrary, we have

lim sup
n→∞

1

n
E [ℓn(X

n)] ≤ lim
ε↓0

lim sup
n→∞

1

n
Hε

s (X
n|Y n) = Hs(X|Y ). (221)

Now, from the combination (215) and (221), we can conclude that Hs(X|Y ) is weakly lossless achievable.

Proof of the converse part of Theorem 7: Fix ε > 0 arbitrarily and assume that there exists{Φn}∞n=1 satisfying

Pe(Φn) → 0. Let

εn ,
Pe(Φn) + 2− logn

ε
⇔ Pe(Φn) = ε · εn − 2− logn. (222)

Then, by applying Theorem 4 to(Xn, Y n) with δ = logn, we can show that there exists{εxn}xn∈Xn such that

∑

xn∈Xn

PXn(xn)εxn ≤ ε · εn (223)

and

ℓn(x
n) ≥ h̄

εxn (xn)− logn, ∀xn ∈ Xn. (224)
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By the Markov inequality and (223), we have

∑

xn:
εxn>ε

PXn(xn) ≤ εn → 0 (n→ ∞). (225)

Hence, by the assumption,

γn ,
∑

xn:
εxn>ε

PXn(xn)
h̄ε(xn)

n
(226)

satisfiesγn → 0 asn→ ∞, and thus, we have

∑

xn∈X

PXn(xn)
h̄εx

n (xn)

n
≥
∑

xn:
εxn≤ε

PXn(xn)
h̄εx

n (xn)

n
(227)

≥
∑

xn:
εxn≤ε

PXn(xn)
h̄ε(xn)

n
(228)

=
∑

xn∈Xn

PXn(xn)
h̄ε(xn)

n
− γn (229)

=
Hε

s (X
n|Y n)

n
− γn. (230)

By (224) and (230), we have

1

n
E [ℓn(X

n)] ≥ Hε
s (X

n|Y n)

n
− γn − logn

n
(231)

and thus

lim sup
n→∞

1

n
E [ℓn(X

n)] ≥ lim sup
n→∞

Hε
s (X

n|Y n)

n
. (232)

Sinceε > 0 is arbitrary, so lettingε ↓ 0, we have

lim sup
n→∞

1

n
E [ℓn(X

n)] ≥ lim
ε↓0

lim sup
n→∞

Hε
s (X

n|Y n)

n
= Hs(X|Y ). (233)

C. Proof of Theorems 8 and 9

Lemma 6. If (X,Y ) is uniformly integrable,

Hs(X|Y ) ≤ H(X|Y ). (234)

Proof: Fix γ > 0 andε > 0. Let R = H(X|Y ) + γ and

pn(x
n) ,

∑

yn∈Yn:
1
n
log 1

PXn|Y n (xn|yn)
>R

PY n|Xn(yn|xn), (235)

p̄n ,
∑

xn∈Xn

PXn(xn)pn(x
n) = Pr

{

1

n
log

1

PXn|Y n(Xn|Y n)
> R

}

, (236)

Sn , {xn ∈ Xn : pn(x
n) ≤ ε}. (237)
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Then, by the Markov inequality and the definition ofH(X|Y ), we have

PXn(Sc
n) ≤

p̄n
ε

→ 0 asn→ ∞. (238)

Hence, by the assumption (see Appendix A), we can chooseδn such thatδn → 0 asn→ ∞ and

∑

xn∈Sc
n

PXn(xn)
h̄ε(xn)

n
≤ δn. (239)

Further, by the definition of̄hε(xn), we have

h̄
ε(xn) ≤ nR, ∀xn ∈ Sn. (240)

Thus, we have

1

n
Hε

s (X
n|Y n) =

1

n

∑

xn∈Xn

PXn(xn)h̄ε(xn) (241)

=
1

n

∑

xn∈Sn

PXn(xn)h̄ε(xn) +
1

n

∑

xn∈Sc
n

PXn(xn)h̄ε(xn) (242)

≤
∑

xn∈Sn

PXn(xn)R+
∑

xn∈Sc
n

PXn(xn)
h̄ε(xn)

n
(243)

≤ R+ δn. (244)

Letting n→ ∞ andε ↓ 0, we have

Hs(X|Y ) = lim
ε↓0

lim sup
n→∞

1

n
Hε

s (X
n|Y n) ≤ R = H(X|Y ) + γ. (245)

Sinceγ > 0 is arbitrary, we have

Hs(X|Y ) ≤ H(X|Y ). (246)

Lemma 7. If (X,Y ) is uniformly integrable,

Hs(X|Y ) ≥ lim sup
n→∞

1

n
H(Xn|Y n). (247)

Proof: Let {εn}∞n=1 be a sequence given in Lemma 5. We show that

lim sup
n→∞

1

n
Hεn

s (Xn|Y n) ≥ lim sup
n→∞

1

n
H(Xn|Y n). (248)

Fix γ > 0. Note that, by the definition of̄hεn(xn), we have

∑

xn∈Xn

PXn(xn)
∑

yn∈Yn:
log(1/PXn|Y n(xn|yn))>h̄

εn(xn)+γ

PY n|Xn(yn|xn) ≤ εn → 0 asn→ ∞. (249)

Hence, by the assumption of the lemma, there existsδn such thatδn → 0 asn→ ∞ and

1

n

∑

xn∈Xn

PXn(xn)
∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))>h̄

εn (xn)+γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn) ≤ δn. (250)
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On the other hand, we have

∑

yn∈Yn

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn)

=
∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))≤h̄

εn(xn)+γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn)

+
∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))>h̄

εn (xn)+γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn) (251)

≤
∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))≤h̄

εn(xn)+γ

PY n|Xn(yn|xn)
[

h̄
εn(xn) + γ

]

+
∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))>h̄

εn (xn)+γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn) (252)

≤ h̄
εn(xn) + γ +

∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))>h̄

εn (xn)+γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn) . (253)

Taking the average with respect toXn, we have

H(Xn|Y n) ≤ Hεn
s (Xn|Y n) + γ + nδn (254)

and thus, we have (248).

Lemma 8. For anyε ∈ (0, 1),

lim inf
n→∞

1

n
Hε

s (X
n|Y n) ≥ H(X|Y ). (255)

Proof: Fix γ > 0 andε > 0. Let R = H(X|Y )− γ and

pn(x
n) ,

∑

yn∈Yn:
1
n
log 1

PXn|Y n (xn|yn)
>R

PY n|Xn(yn|xn) (256)

p̄n ,
∑

xn∈Xn

PXn(xn)pn(x
n) = Pr

{

1

n
log

1

PXn|Y n(Xn|Y n)
> R

}

(257)

Sn , {xn ∈ Xn : pn(x
n) > ε}. (258)

Then, we have

p̄n ≤ PXn(Sn) + εPXn(Sc
n) = 1− (1− ε)PXn(Sc

n) (259)

and thus, by the definition ofH(X|Y ),

δn , PXn(Sc
n) ≤

1− p̄n
1− ε

→ 0 asn→ ∞. (260)
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Further, by the definition of̄hε(xn), we have

h̄
ε(xn) ≥ nR, ∀xn ∈ Sn. (261)

Hence, we have

1

n
Hε

s (X
n|Y n) =

1

n

∑

xn∈Xn

PXn(xn)h̄ε(xn) (262)

≥ 1

n

∑

xn∈Sn

PXn(xn)h̄ε(xn) (263)

≥
∑

xn∈Sn

PXn(xn)R (264)

= (1− δn)R. (265)

Letting n→ ∞,

lim inf
n→∞

1

n
Hε

s (X
n|Y n) ≥ R = H(X|Y )− γ. (266)

Sinceγ > 0 is arbitrary, we have the lemma.

Proof of Theorem 8: It is apparent that the theorem follows from Lemmas 6 and 7.

Proof of Theorem 9: From Lemmas 6 and 8, we have

H(X|Y ) ≤ lim inf
n→∞

1

n
Hε

s (X
n|Y n) ≤ lim sup

n→∞

1

n
Hε

s (X
n|Y n) ≤ Hs(X|Y ) ≤ H(X|Y ). (267)

Hence, if(X,Y ) satisfies the conditional strong converse property, we have(56).

APPENDIX F

PROOFS OFRESULTS IN SECTION VI-B

In this appendix, we prove our results regarding mixed sources, i.e. Theorems 10, 11, 12, 13, and 14. At first, we

introduce some notations and key lemmas. Next, we prove the theorems for mixed-sources with two components

in Appendix F-B. Theorem 14 is proved in Appendix F-C.

A. Key Lemmas

Let {εn}∞n=1 be a sequence given in Lemma 5 and fixǫ > 0 arbitrarily. Then, let

h̄
ǫ
∗(x

n) , max
i=1,2

h̄
ε
i (x

n) (268)

α∗ , min
i=1,2

αi (269)

and

τn , max

{

α∗ǫ

2εn
, 1

}

. (270)
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Note that1 ≤ τn → ∞ and (1/n) log τn → 0 asn → ∞. Further, for eachi = 1, 2, let ı̄ , 3 − i; i.e. ı̄ = 1 if

i = 2 and ı̄ = 2 if i = 1.

Now, we partitionXn into three subsets according to the likelihood ratioPXn
1
(xn)/PXn

2
(xn) of sequencexn as

follows:

T n
1 ,

{

xn ∈ Xn :
PXn

1
(xn)

PXn
2
(xn)

> τn

}

(271)

T n
2 ,

{

xn ∈ Xn :
PXn

1
(xn)

PXn
2
(xn)

<
1

τn

}

(272)

T n
0 ,

{

xn ∈ Xn :
1

τn
≤
PXn

1
(xn)

PXn
2
(xn)

≤ τn

}

. (273)

Moreover, for eachi = 1, 2, let

An
i ,







xn ∈ Xn :
∑

yn∈Bn
i

PY n
i
|Xn

i
(yn|xn) ≤ 1√

τn







(274)

where

Bn
i ,

{

yn ∈ Yn : PY n
i
(yn)τ2n ≤ PY n(yn)

}

. (275)

Then, we have following lemmas.

Lemma 9. We have

PXn
i
(T n

ı̄ ) ≤ 1

τn
(276)

lim
n→∞

∑

i

∑

xn∈T n
i
∩(An

i
)c

PXn(xn) = 0 (277)

lim
n→∞

∑

i

∑

xn∈T n
0 ∩(An

i
)c

PXn(xn) = 0. (278)

Proof: (276) follows from

PXn
i
(T n

ı̄ ) =
∑

xn∈T n
ı̄

PXn
i
(xn) (279)

≤
∑

xn∈T n
ı̄

PXn
ı̄
(xn)

1

τn
(280)

≤ 1

τn
. (281)
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On the other hand, since1/
√
τn ≤

∑

yn∈Bn
i
PY n

i
|Xn

i
(yn|xn) for xn ∈ (An

i )
c, we have

1√
τn

∑

xn∈(An
i
)c

PXn
i
(xn) ≤

∑

xn∈(An
i
)c

PXn
i
(xn)

∑

yn∈Bn
i

PY n
i
|Xn

i
(yn|xn) (282)

≤
∑

xn∈Xn

PXn
i
(xn)

∑

yn∈Bn
i

PY n
i
|Xn

i
(yn|xn) (283)

=
∑

yn∈Bn
i

PY n
i
(yn) (284)

≤
∑

yn∈Bn
i

PY n(yn)
1

τ2n
(285)

≤ 1

τ2n
(286)

and thus,

PXn
i
((Ai)

c) ≤ 1

τn
√
τn
. (287)

holds.

Similarly, we have

1√
τn
PXn

i
(T n

0 ∩ (An
ı̄ )

c) ≤
∑

xn∈T n
0 ∩(An

ı̄ )
c

PXn
i
(xn)

∑

yn∈Bn
ı̄

PY n
ı̄ |Xn

ı̄
(yn|xn) (288)

≤
∑

xn∈T n
0 ∩(An

ı̄ )
c

τnPXn
ı̄
(xn)

∑

yn∈Bn
ı̄

PY n
ı̄ |Xn

ı̄
(yn|xn) (289)

≤ τn
∑

yn∈Bn
ı̄

PY n
ı̄
(yn) (290)

≤ τn
∑

yn∈Bn
ı̄

PY n(yn)
1

τ2n
(291)

≤ 1

τn
(292)

and thus,

PXn
i
(T n

0 ∩ (An
ı̄ )

c) ≤ 1√
τn
. (293)

By using results above, we can show (277) as

∑

j

∑

xn∈T n
j
∩(An

j
)c

PXn(xn) =
∑

j

∑

xn∈T n
j
∩(An

j
)c

∑

i

αiPXn
i
(xn) (294)

=
∑

i

αi





∑

xn∈T n
i
∩(An

i
)c

PXn
i
(xn) +

∑

xn∈T n
ı̄ ∩(An

ı̄ )
c

PXn
i
(xn)



 (295)

≤
∑

i

αi





∑

xn∈(An
i
)c

PXn
i
(xn) +

∑

xn∈T n
ı̄

PXn
i
(xn)



 (296)

=
∑

i

αi

[

PXn
i
((An

i )
c) + PXn

i
(T n

ı̄ )
]

(297)

July 21, 2018 DRAFT



38

≤
∑

i

αi

[

1

τn
√
τn

+
1

τn

]

→ 0 asn→ ∞. (298)

Similarly, (278) follows from

∑

j

∑

xn∈T n
0 ∩(An

j
)c

PXn(xn) =
∑

j

∑

xn∈T n
0 ∩(An

j
)c

∑

i

αiPXn
i
(xn) (299)

=
∑

i

αi





∑

xn∈T n
0 ∩(An

i
)c

PXn
i
(xn) +

∑

xn∈T n
0 ∩(An

ı̄ )
c

PXn
i
(xn)



 (300)

≤
∑

i

αi





∑

xn∈(An
i
)c

PXn
i
(xn) +

∑

xn∈T n
0 ∩(An

ı̄ )
c

PXn
i
(xn)



 (301)

≤
∑

i

αi

[

PXn
i
((An

i )
c) + PXn

i
(T n

0 ∩ (An
ı̄ )

c)
]

(302)

≤
∑

i

αi





1

τn
√
τn

+
∑

i6=j

1√
τn



→ 0 asn→ ∞. (303)

Lemma 10. For sufficiently largen, if xn ∈ T n
i ∩ An

i then

h̄
ǫ(xn) ≤ h̄

ǫ/2
i (xn) + 2 log τn − logαi + ǫ. (304)

Proof: Fix xn ∈ T n
i ∩ An

i and

Rn , h̄
ε/2
i (xn) + 2 log τn − logαi + ε. (305)

Moreover, let

S ,

{

yn ∈ Yn : log
1

PXn|Y n(xn|yn) > Rn

}

(306)

Si ,

{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > h̄

ε/2
i (xn) + ε

}

. (307)

Then, we have

S =

{

yn ∈ Yn : log
PY n(yn)

PXnY n(xn, yn)
> Rn

}

(308)

⊆
{

yn ∈ Yn : log
PY n

i
(yn)τ2n

PXnY n(xn, yn)
> Rn

}

∪ Bn
i (309)

⊆
{

yn ∈ Yn : log
PY n

i
(yn)τ2n

αiPXn
i
Y n
i
(xn, yn)

> Rn

}

∪ Bn
i (310)

=

{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > Rn − 2 log τn + logαi

}

∪ Bn
i (311)

= Si ∪ Bn
i (312)
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On the other hand, sincexn ∈ T n
i , we have

αı̄PXn
ı̄
(xn)

PXn(xn)
=

αı̄PXn
ı̄
(xn)

αiPXn
i
(xn) + αı̄PXn

ı̄
(xn)

(313)

=
(αı̄/αi)(PXn

ı̄
(xn)/PXn

i
(xn))

1 + (αı̄/αi)(PXn
ı̄
(xn)/PXn

i
(xn))

(314)

≤ (αı̄/αi)
1

τn
(315)

≤ β∗
τn

(316)

where

β∗ , max
i=1,2

αi

αı̄
. (317)

Hence, we have

∑

yn∈S

PY n|Xn(yn|xn) =
∑

yn∈S

PXnY n(xn, yn)

PXn(xn)
(318)

=
∑

j=1,2

∑

yn∈S

αjPXn
j
(xn)

PXn(xn)
PY n

j
|Xn

j
(yn|xn) (319)

≤
∑

yn∈S

αiPXn
i
(xn)

PXn(xn)
PY n

i
|Xn

i
(yn|xn) + αı̄PXn

ı̄
(xn)

PXn(xn)
(320)

(a)
≤
αiPXn

i
(xn)

PXn(xn)

∑

yn∈S

PY n
i
|Xn

i
(yn|xn) + β∗

τn
(321)

(b)
≤
∑

yn∈S

PY n
i
|Xn

i
(yn|xn) + β∗

τn
(322)

(c)
≤
∑

yn∈Si

PY n
i
|Xn

i
(yn|xn) +

∑

yn∈Bn
i

PY n
i
|Xn

i
(yn|xn) + β∗

τn
(323)

(d)
≤
∑

yn∈Si

PY n
i
|Xn

i
(yn|xn) + 1√

τn
+
β∗
τn

(324)

(e)
≤ ε/2 +

1√
τn

+
β∗
τn

(325)

where (a) follows from (316), (b) follows fromPXn(xn) =
∑

j αjPXn
j
(xn), (c) follows from (312), (d) follows

from the factxn ∈ An
i , and (e) follows from the definition of̄hε/2i (xn). Thus, for sufficiently largen, we have

∑

yn∈S

PY n|Xn(yn|xn) ≤ ε. (326)

By the definition ofh̄ε(xn), we have the lemma.

Lemma 11. For sufficiently largen, if xn ∈ T n
i then

h̄
εn(xn) ≥ h̄

ǫ
i(x

n)− log τn + logαi − ǫ. (327)

Proof: Fix xn ∈ T n
i .
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Notice that, by the definition ofT n
i ,

PXn
ı̄
(xn) ≤ 1

τn
PXn

i
(xn) ≤ PXn

i
(xn), x ∈ T n

i (328)

and thus, we have

PXn(xn) =
∑

j

αjPXn
j
(xn) ≤ PXn

i
(xn), x ∈ T n

i . (329)

Now, let

Rn , h̄
ǫ
i(x

n)− log τn + logαi − ǫ (330)

and

S ,

{

yn ∈ Yn : log
1

PXn|Y n(xn|yn) > Rn

}

(331)

S ′
i ,

{

yn ∈ Yn : PY n
i
|Xn

i
(yn|xn)τn < PY n|Xn(yn|xn)

}

(332)

Si ,

{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > h̄

ǫ
i(x

n)− ǫ

}

. (333)

Then, we have

S ∪ S ′
i =

{

yn ∈ Yn : log
PY n(yn)

PXn(xn)PY n|Xn(yn|xn) > Rn

}

∪ S ′
i (334)

⊇
{

yn ∈ Yn : log
PY n(yn)

PXn(xn)PY n
i
|Xn

i
(yn|xn)τn

> Rn

}

(335)

⊇
{

yn ∈ Yn : log
αiPY n

i
(yn)

PXn(xn)PY n
i
|Xn

i
(yn|xn)τn

> Rn

}

(336)

(a)
⊇
{

yn ∈ Yn : log
αiPY n

i
(yn)

PXn
i
(xn)PY n

i
|Xn

i
(yn|xn)τn

> Rn

}

(337)

=

{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > Rn + log τn − logαi

}

(338)

= Si (339)

where (a) follows from (329).
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Hence, we have

∑

yn∈S

PY n|Xn(yn|xn) =
∑

yn∈S

PXnY n(xn, yn)

PXn(xn)
(340)

=
∑

j=1,2

∑

yn∈S

αjPXn
j
(xn)

PXn(xn)
PY n

j
|Xn

j
(yn|xn) (341)

≥
∑

yn∈S

αiPXn
i
(xn)

PXn(xn)
PY n

i
|Xn

i
(yn|xn) (342)

=
αiPXn

i
(xn)

PXn(xn)

∑

yn∈S

PY n
i
|Xn

i
(yn|xn) (343)

(a)

≥ αi

∑

yn∈S

PY n
i
|Xn

i
(yn|xn) (344)

≥ αi

∑

yn∈Si

PY n
i
|Xn

i
(yn|xn)− αi

∑

yn∈S′

PY n
i
|Xn

i
(yn|xn) (345)

≥ αi

∑

yn∈Si

PY n
i
|Xn

i
(yn|xn)− αi

τn
(346)

≥ αiǫ −
αi

τn
(347)

= αi(ǫ −
1

τn
) (348)

where (a) follows from (329). Ifn is sufficiently large so thatτn ≥ 2/ǫ andεn < αiǫ/2 then we have

∑

yn∈S

PY n|Xn(yn|xn) ≥ αiǫ

2
> εn. (349)

Thus, we have the lemma.

Lemma 12. For sufficiently largen, if xn ∈ An
1 ∩ An

2 then

h̄
ǫ(xn) ≤ h̄

ǫ/2
∗ (xn) + 2 log τn − logα∗ + ǫ (350)

whereh̄ǫ/2∗ (xn) andα∗ is defined in (269) and (270) respectively.

Proof: Fix xn ∈ An
1 ∩ An

2 and

Rn , h̄
ε/2
∗ (xn) + 2 log τn − logα∗ + ε. (351)

Letting

S ,

{

yn ∈ Yn : log
1

PXn|Y n(xn|yn) > Rn

}

(352)

Si ,

{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > h̄

ε/2
i (xn) + ε

}

(353)
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we have

S =

{

yn ∈ Yn : log
PY n(yn)

PXnY n(xn, yn)
> Rn

}

(354)

⊆
{

yn ∈ Yn : log
PY n

i
(yn)τ2n

PXnY n(xn, yn)
> Rn

}

∪ Bn
i (355)

⊆
{

yn ∈ Yn : log
PY n

i
(yn)τ2n

αiPXn
i
Y n
i
(xn, yn)

> Rn

}

∪ Bn
i (356)

=

{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > Rn − 2 log τn + logαi

}

∪ Bn
i (357)

⊆
{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > Rn − 2 log τn + logα∗

}

∪ Bn
i (358)

=

{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > h̄

ε/2
∗ (xn) + ε

}

∪ Bn
i (359)

⊆ Si ∪ Bn
i . (360)

Hence, for sufficiently largen,

∑

yn∈S

PY n|Xn(yn|xn) =
∑

yn∈S

PXnY n(xn, yn)

PXn(xn)
(361)

=
∑

i=1,2

∑

yn∈S

αiPXn
i
(xn)

PXn(xn)
PY n

i
|Xn

i
(yn|xn) (362)

=
∑

i=1,2

αiPXn
i
(xn)

PXn(xn)

∑

yn∈S

PY n
i
|Xn

i
(yn|xn) (363)

≤
∑

i=1,2

αiPXn
i
(xn)

PXn(xn)

∑

yn∈Si∪Bn
i

PY n
i
|Xn

i
(yn|xn) (364)

≤
∑

i=1,2

αiPXn
i
(xn)

PXn(xn)







∑

yn∈Si

PY n
i
|Xn

i
(yn|xn) +

∑

yn∈Bn
i

PY n
i
|Xn

i
(yn|xn)







(365)

≤
∑

i=1,2

αiPXn
i
(xn)

PXn(xn)







∑

yn∈Si

PY n
i
|Xn

i
(yn|xn) + 1√

τn







(366)

≤
∑

i=1,2

αiPXn
i
(xn)

PXn(xn)

{

ε/2 +
1√
τn

}

(367)

= ε/2 +
1√
τn

(368)

≤ ε. (369)

Thus, we have the lemma.

Lemma 13. For sufficiently largen, if xn ∈ T n
0 then

h̄
εn(xn) ≥ h̄

ǫ
∗(x

n)− 2 log τn + logα∗ − ǫ. (370)
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Proof: Fix xn ∈ T n
0 . Notice that, by the definition ofT n

0 ,

PXn(xn) ≤ αiPXn
i
(xn) + αı̄PXn

i
(xn)τn (371)

= (αi + αı̄τn)PXn
i
(xn) (372)

≤ τnPXn
i
(xn), ∀xn ∈ T n

0 , ∀i = 1, 2. (373)

Fix i arbitrarily and let

Rn , h̄
ǫ
i(x

n)− 2 log τn + logα∗ − ǫ (374)

and

S ,

{

yn ∈ Yn : log
1

PXn|Y n(xn|yn) > Rn

}

(375)

S ′
i ,

{

yn ∈ Yn : PY n
i
|Xn

i
(yn|xn)τn ≤ PY n|Xn(yn|xn)

}

(376)

Si ,

{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > h̄

ǫ
i(x

n)− ǫ

}

. (377)

Then,

S ∪ S ′
i =

{

yn ∈ Yn : log
PY n(yn)

PXn(xn)PY n|Xn(yn|xn) > Rn

}

∪ S ′
i (378)

⊇
{

yn ∈ Yn : log
PY n(yn)

PXn(xn)PY n
i
|Xn

i
(yn|xn)τn

> Rn

}

(379)

⊇
{

yn ∈ Yn : log
αiPY n

i
(yn)

PXn(xn)PY n
i
|Xn

i
(yn|xn)τn

> Rn

}

(380)

⊇
{

yn ∈ Yn : log
αiPY n

i
(yn)

PXn
i
(xn)PY n

i
|Xn

i
(yn|xn)τ2n

> Rn

}

(381)

=

{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > Rn + 2 log τn − logαi

}

(382)

⊇
{

yn ∈ Yn : log
1

PXn
i
|Y n

i
(xn|yn) > Rn + 2 log τn − logα∗

}

(383)

= Si (384)

and thus, for sufficiently largen,

∑

yn∈S

PY n|Xn(yn|xn) =
∑

yn∈S

PXnY n(xn, yn)

PXn(xn)
(385)

≥
∑

yn∈S

αiPXn
i
(xn)

PXn(xn)
PY n

i
|Xn

i
(yn|xn) (386)

(a)
≥ αi

τn

∑

yn∈S

PY n
i
|Xn

i
(yn|xn) (387)

≥ αi

τn

∑

yn∈Si

PY n
i
|Xn

i
(yn|xn)− αi

τn

∑

yn∈S′

PY n
i
|Xn

i
(yn|xn) (388)
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≥ αi

τn

∑

yn∈Si

PY n
i
|Xn

i
(yn|xn)− αi

τ2n
(389)

≥ αiǫ

τn
− αi

τ2n
(390)

=
αi

τn

(

ǫ − 1

τn

)

(391)

>
αiǫ

2τn
(392)

≥ α∗ǫ

2τn
(393)

= εn (394)

where (a) follows from (373). Hence, we have

h̄
εn(xn) ≥ Rn = h̄

ǫ
i(x

n)− 2 log τn + logα∗ − ǫ. (395)

Sincei is arbitrary, we have the lemma.

B. Proofs of Theorems 10, 11, 12, and 13.

Proof of Theorem 10: Fix ǫ > 0 arbitrarily. By Lemmas 11 and 13, we have

Hs(X|Y ) = lim sup
n→∞

1

n

∑

xn∈Xn

PXn(xn)h̄εn(xn) (396)

= lim sup
n→∞

1

n

[

∑

xn∈T n
0

PXn(xn)h̄εn(xn)

+
∑

xn∈T n
1

PXn(xn)h̄εn(xn) +
∑

xn∈T n
2

PXn(xn)h̄εn(xn)

]

(397)

≥ lim sup
n→∞

1

n

[

∑

xn∈T n
0

PXn(xn)
{

h̄
ǫ
∗(x

n)− 2 log τn + logα∗ − ǫ
}

+
∑

xn∈T n
1

PXn(xn)
{

h̄
ǫ
1(x

n)− log τn + logα1 − ǫ
}

+
∑

xn∈T n
2

PXn(xn)
{

h̄
ǫ
2(x

n)− log τn + logα2 − ǫ
}

]

(398)

= lim sup
n→∞

1

n

[

∑

xn∈T n
0

PXn(xn)h̄ǫ∗(x
n) +

∑

xn∈T n
1

PXn(xn)h̄ǫ1(x
n) +

∑

xn∈T n
2

PXn(xn)h̄ǫ2(x
n)

]

(399)

= lim sup
n→∞

1

n

[

∑

xn∈T n
0

(

∑

i

αiPXn
i
(xn)

)

h̄
ǫ
∗(x

n)

+
∑

xn∈T n
1

(

∑

i

αiPXn
i
(xn)

)

h̄
ǫ
1(x

n) +
∑

xn∈T n
2

(

∑

i

αiPXn
i
(xn)

)

h̄
ǫ
2(x

n)

]

(400)

≥ lim sup
n→∞

1

n

[

∑

xn∈T n
0

(

∑

i

αiPXn
i
(xn)h̄ǫi(x

n)

)
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+
∑

xn∈T n
1

(

∑

i

αiPXn
i
(xn)

)

h̄
ǫ
1(x

n) +
∑

xn∈T n
2

(

∑

i

αiPXn
i
(xn)

)

h̄
ǫ
2(x

n)

]

(401)

= lim sup
n→∞

1

n

[

∑

i

αi

∑

xn∈Xn

PXn
i
(xn)h̄ǫi(x

n)

+
∑

xn∈T n
1

α2PXn
2
(xn)h̄ǫ1(x

n) +
∑

xn∈T n
2

α1PXn
1
(xn)h̄ǫ2(x

n)

−
∑

xn∈T n
1

α2PXn
2
(xn)h̄ǫ2(x

n)−
∑

xn∈T n
2

α1PXn
1
(xn)h̄ǫ1(x

n)

]

(402)

≥ lim sup
n→∞

1

n

[

∑

i

αi

∑

xn∈Xn

PXn
i
(xn)h̄ǫi(x

n)−
∑

i=1,2

∑

xn∈T n
ı̄

αiPXn
i
(xn)h̄ǫi(x

n)

]

(403)

≥
(

lim sup
n→∞

∑

i

αi

n
Hǫ

s (X
n
i |Y n

i )

)

−
∑

i=1,2

αi lim sup
n→∞

∑

xn∈T n
ı̄

PXn
i
(xn)

h̄ǫi(x
n)

n
. (404)

Moreover, by (276) of Lemma 9 and the assumption, we can show that

∑

xn∈T n
ı̄

PXn
i
(xn)

h̄ǫi(x
n)

n
→ 0 asn→ ∞. (405)

Hence, we have

Hs(X|Y ) ≥ lim sup
n→∞

∑

i

αi

n
Hǫ

s (X
n
i |Y n

i ). (406)

Sinceǫ > 0 is arbitrary, lettingǫ ↓ 0, we have the theorem.

Proof of Theorem 11: Since Theorem 10 gives the lower bound, we prove only the upper bound.

By the assumption of the theorem, there existsγ > 0 such thatD(Xi‖Xı̄) > γ for i = 1, 2. So, by the definition

of D(Xi‖Xı̄), we have

∑

xn∈Xn:
PXn

i
(xn)

PXı̄
(xn)

≤2nγ

PXi
(xn) → 0 asn→ ∞. (407)

On the other hand, recall that we chooseτn so that(1/n) log τn → 0. So, for sufficiently largen, we haveτn ≤ 2nγ .

Hence,

∑

xn∈T n
0

PXn
i
(xn) ≤

∑

xn∈Xn:
PXn

i
(xn)

PXı̄
(xn)

≤τn

PXi
(xn) (408)

≤
∑

xn∈Xn:
PXn

i
(xn)

PXı̄
(xn)

≤2nγ

PXi
(xn) → 0 asn→ ∞ (409)

and thus,

∑

xn∈T n
0

PXn(xn) =
∑

i

αi

∑

xn∈T n
0

PXn
i
(xn) → 0 asn→ ∞. (410)
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Now, fix ε > 0. Then, we have

Hε
s (X

n|Y n)

n

=
∑

xn∈Xn

PXn(xn)
h̄ε(xn)

n
(411)

=
∑

xn∈T n
0

PXn(xn)
h̄ε(xn)

n
+
∑

i

∑

xn∈T n
i
∩An

i

PXn(xn)
h̄ε(xn)

n
+
∑

i

∑

xn∈T n
i
∩(An

i
)c

PXn(xn)
h̄ε(xn)

n
(412)

Here, by (410) and the assumption, we can show that the first term of (412) tends to zero asn→ ∞, i.e.

∑

xn∈T n
0

PXn(xn)
h̄ε(xn)

n
→ 0 asn→ ∞. (413)

Similarly, by (277) of Lemma 9, we can show that the third therm of (412) satisfies

∑

i

∑

xn∈T n
i ∩(An

i )
c

PXn(xn)
h̄ε(xn)

n
→ 0 asn→ ∞. (414)

So, the second term dominates (412). Further, we have

∑

i

∑

xn∈T n
i
∩An

i

PXn(xn)
h̄ε(xn)

n

(a)
≤
∑

i

∑

xn∈T n
i
∩An

i

PXn(xn)
h̄
ε/2
i (xn)

n
+

2 log τn − logα∗ + ε

n
(415)

(b)
≤
∑

i

(

αi +
αı̄

τn

)

∑

xn∈T n
i
∩An

i

PXn
i
(xn)

h̄
ε/2
i (xn)

n
+

2 log τn − logα∗ + ε

n
(416)

≤
∑

i

(

αi +
αı̄

τn

)

H
ε/2
s (Xn

i |Y n
i )

n
+

2 log τn − logα∗ + ε

n
(417)

where (a) follows from Lemma 10 and (b) follows from the definition of T n
i .

Substituting (413), (414), and (417) into (412), we have

lim sup
n→∞

Hε
s (X

n|Y n)

n
≤ lim sup

n→∞

∑

i

αi
H

ε/2
s (Xn

i |Y n
i )

n
. (418)

Letting ε ↓ 0, we have the theorem.

Proof of Theorem 12: Fix ε > 0. Then

1

n
Hε

s (X
n|Y n) =

∑

xn∈Xn

PXn(xn)
h̄ε(xn)

n
(419)

≤
∑

xn∈T n
0 ∩(

⋂
i A

n
i
)

PXn(xn)
h̄ε(xn)

n
+
∑

i

∑

xn∈T n
i
∩An

i

PXn(xn)
h̄ε(xn)

n

+
∑

i

∑

xn∈T n
0 ∩(An

i )
c

PXn(xn)
h̄ε(xn)

n
+
∑

i

∑

xn∈T n
i ∩(An

i )
c

PXn(xn)
h̄ε(xn)

n
. (420)

By Lemma 9 and the assumption, we can show that the third and fourth terms of (420) satisfy

lim
n→∞

∑

i

∑

xn∈T n
0 ∩(An

i
)c

PXn(xn)
h̄
ε(xn)

n
= 0 (421)

lim
n→∞

∑

i

∑

xn∈T n
i
∩(An

i
)c

PXn(xn)
h̄
ε(xn)

n
= 0. (422)
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On the other hand, by Lemma 12, the first term of (420) satisfies

∑

xn∈T n
0 ∩(

⋂
i
An

i
)

PXn(xn)
h̄ε(xn)

n
≤

∑

xn∈T n
0 ∩(

⋂
i
An

i
)

PXn(xn)
h̄
ε/2
∗ (xn) + 2 log τn − logα∗ + ε

n
. (423)

Further, by Lemma 10, the second term of (420) satisfies

∑

i

∑

xn∈T n
i
∩An

i

PXn(xn)
h̄ε(xn)

n
≤
∑

i

∑

xn∈T n
i
∩An

i

PXn(xn)
h̄
ε/2
i (xn) + 2 log τn − logαi + ε

n
(424)

≤
∑

i

∑

xn∈T n
i
∩An

i

PXn(xn)
h̄
ε/2
∗ (xn) + 2 log τn − logα∗ + ε

n
. (425)

Combining the results above, we have the theorem.

Proof of Theorem 13: SinceXi = Xı̄, we have

PXn
i
((T n

0 )c) = 0, ∀i = 1, 2 (426)

and thus

PXn((T n
0 )c) = 0. (427)

So, we can ignore the effect of sequencesxn /∈ T n
0 . On the other hand, for sequencesxn ∈ T n

0 , Lemma 13 gives

a lower bound on̄hεn(xn). So, we have

Hs(X|Y ) ≥ lim
ε↓0

lim sup
n→∞

1

n

∑

xn∈Xn

PXn(xn)
[

max
i

h̄
ε
i (x

n)
]

. (428)

By combining with the upper bound given in Theorem 12, we havethe theorem.

C. Proof of Theorem 14

For k = 2, 3, . . . ,m, let (Xk,Y k) = {(X̄n
k , Ȳ

n
k )}∞n=1 be the mixture such as

PX̄n
k
Ȳ n
k
(xn, yn) ,

k−1
∑

i=1

αi
∑k−1

j=1 αj

PXn
i
Y n
i
(xn, yn). (429)

To prove (i) of the theorem, it is sufficient to confirm that, for k = 2, 3, . . . ,m, the pair of(Xk,Y k) and(Xk,Yk)

satisfies the conditions of Corollary 3 and thus we can apply the corollary repeatedly. Now, notice that, while it is not

clear whether{(1/n) log(1/PX̄n
k
|Ȳ n

k
(X̄n

k |Ȳ n
k ))}∞n=1 is uniformly integrable,{(1/n) log(1/PX̄n

k
|Ȳ n

k
(X̄n

k |Ȳ n
k ))}∞n=1

satisfies Condition 2 and it is sufficient to our proof (see Appendix A for more detail). Further, the limit (64) exists

at least for(Xk,Yk). Moreover, by Lemma 4.1.3 of [6] and the assumption, we have

D(Xk‖Xk) = min
i=1,2,...,k−1

D(Xi‖Xk) > 0. (430)

Hence, we have to confirm thatD(Xk‖Xk) > 0.

Let

δ , min
i=1,2,...,k−1

D(Xk‖Xi). (431)
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Then, by the definition ofD(Xk‖Xi), for all i = 1, 2, . . . , k − 1 and arbitraryγ > 0, we have

lim
n→∞

PXn
k

({

xn :
1

n
log

PXn
k
(xn)

PXn
i
(xn)

< δ − γ

})

= 0. (432)

On the other hand, for anyxn ∈ Xn, if

1

n
log

PXn
k
(xn)

PX̄n
k
(xn)

< δ − γ (433)

then there existsi (1 ≤ i ≤ k − 1) such that

1

n
log

PXn
k
(xn)

PXn
i
(xn)

< δ − γ. (434)

In other words,
{

xn :
1

n
log

PXn
k
(xn)

PX̄n
k
(xn)

≤ δ − γ

}

⊆
k−1
⋃

i=1

{

xn :
1

n
log

PXn
k
(xn)

PXn
i
(xn)

< δ − γ

}

. (435)

Hence, from (432) and the union bound, we have

lim
n→∞

PXn
k

({

xn :
1

n
log

PXn
k
(xn)

PX̄n
k
(xn)

< δ − γ

})

= 0 (436)

and thus,

D(Xk‖Xk) ≥ δ > 0. (437)

Similarly, we can prove (ii) of the theorem by applying Corollary 4 repeatedly.

APPENDIX G

PROOF OFTHEOREM 15

Let Lε(Xn|Y n) be the optimal average codeword length achievable byn-block VL-SW coding with the error

probability≤ ε. By using the diagonal argument, we can show that6

Rε
SW (X|Y ) ≤ lim

δ↓0
lim sup
n→∞

1

n
Lε+δ(Xn|Y n). (438)

Fix ε > 0 and fix η > 0 arbitrarily. We can chooseδ > 0 so that

Rε
SW (X|Y ) ≤ 1

n
Lε+δ(Xn|Y n) + η (439)

for infinitely manyn and

Rε
com(X|Y ) ≥ 1

n
H̃ε+δ/2(Xn|Y n)− η (440)

for sufficiently largen. Let ε′ , ε+ δ/2. Then, what we have to prove is, for sufficiently largen,

1

n
Lε+δ(Xn|Y n) ≤ 1

n
H̃ε′(Xn|Y n) + η. (441)

6We can prove this by a similar manner as the proof of the directpart of Theorem 5 in Appendix D.
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Indeed, by combining (439), (440), and (441), we have

Rε
SW (X|Y ) ≤ Rε

com(X|Y ) + 3η (442)

and thus, the theorem follows. We prove (441) in the remaining part of this appendix.

Proof of (441): We will prove (441) in three steps. Recall that{εn}∞n=1 is a sequence given in Remark 7.

First Step: At first, we prove thatlog(1/PXn|Y n(xn|yn)) ≈ h̄εn(xn) with high probability.

Fix γ > 0 so that4γ < η and let

∆(1)
n,γ(x

n) ,
∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))≤h̄

εn (xn)+γ

PY n|Xn(yn|xn)
[

h̄
εn(xn) + γ − log

1

PXn|Y n(xn|yn)

]

(443)

∆(2)
n,γ(x

n) ,
∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))>h̄

εn (xn)+γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn) (444)

∆(3)
n,γ(x

n) ,
∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))>h̄

εn (xn)+γ

PY n|Xn(yn|xn)
[

h̄
εn(xn) + γ

]

. (445)

By the definition ofh̄εn(xn), we have

∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))>h̄

εn (xn)+γ

PY n|Xn(yn|xn) ≤ εn, xn ∈ Xn (446)

and thus,

∑

xn∈Xn

PXn(xn)
∑

yn∈Yn:
log(1/PXn|Y n (xn|yn))>h̄

εn (xn)+γ

PY n|Xn(yn|xn) ≤ εn → 0. (447)

Since{(1/n) log(1/PXn|Y n(Xn|Y n))}∞n=1 is uniformly integrable, (447) is followed by

1

n

∑

xn∈Xn

PXn(xn)
∑

yn∈Yn:
log(1/PXn|Y n(xn|yn))>h̄

εn(xn)+γ

PY n|Xn(yn|xn) log 1

PXn|Y n(xn|yn)

=
1

n

∑

xn

PXn(xn)∆(2)
n,γ(x

n) → 0. (448)

On the other hand, by the condition (81), for sufficiently largen,

−γ ≤ 1

n
H(Xn|Y n)− 1

n
Hεn

s (Xn|Y n). (449)

Hence,

−2γ ≤ 1

n
H(Xn|Y n)− 1

n
Hεn

s (Xn|Y n)− γ (450)

=
1

n

∑

xn

PXn(xn)
∑

yn

PY n|Xn(yn|xn)
[

log
1

PY n|Xn(yn|xn) − h̄
εn(xn)− γ

]

(451)

= − 1

n

∑

xn

PXn(xn)∆(1)
n,γ(x

n) +
1

n

∑

xn

PXn(xn)∆(2)
n,γ(x

n)− 1

n

∑

xn

PXn(xn)∆(3)
n,γ(x

n) (452)

≤ − 1

n

∑

xn

PXn(xn)∆(1)
n,γ(x

n) +
1

n

∑

xn

PXn(xn)∆(2)
n,γ(x

n). (453)

July 21, 2018 DRAFT



50

Combining (448) and (453), we have, for sufficiently largen,

δ(1)n,γ ,
1

n

∑

xn

PXn(xn)∆(1)
n,γ(x

n) (454)

≤ 1

n

∑

xn

PXn(xn)∆(2)
n,γ(x

n) + 2γ (455)

≤ 3γ. (456)

Second Step: Next, we will re-characterize the quantitỹHε′(Xn|Y n).

For each subsetAn ⊆ Xn × Yn, let νAn
be

νAn
(xn) ,

1

PXn(xn)





∑

yn∈Yn

1[(xn, yn) ∈ An]PXnY n(xn, yn)



 (457)

Note thatνAn
satisfies

0 ≤ νAn
(xn) ≤ 1 and

∑

xn∈Xn

PXn(xn)νAn
(xn) = PXnY n(An). (458)

Then, for anyAn ⊆ Xn × Yn,

∑

(xn,yn)∈An

PXnY n(xn, yn) log
1

PXn|Y n(xn|yn) (459)

≥
∑

(xn,yn)∈An

PXnY n(xn, yn)
[

h̄
εn(xn) + γ

]

−
∑

(xn,yn)∈An

log(1/PXn|Y n (xn|yn))≤h̄
εn (xn)+γ

PXn(xn)PY n|Xn(yn|xn)
[

h̄
εn(xn) + γ − log

1

PXn|Y n(xn|yn)

]

(460)

≥
∑

(xn,yn)∈An

PXnY n(xn, yn)
[

h̄
εn(xn) + γ

]

− nδ(1)n,γ (461)

≥
∑

(xn,yn)∈An

PXnY n(xn, yn)h̄εn(xn)− nδ(1)n,γ (462)

=
∑

xn

PXn(xn)
∑

yn:(xn,yn)∈An

PY n|Xn(yn|xn)h̄εn(xn)− nδ(1)n,γ (463)

=
∑

xn

PXn(xn)νAn
(xn)h̄εn(xn)− nδ(1)n,γ . (464)

Hence, we have

H̃ε′(Xn|Y n) = inf
An

∑

(xn,yn)∈An

PXnY n(xn, yn) log
1

PXn|Y n(xn|yn) (465)

≥ inf
ν

∑

xn

PXn(xn)ν(xn)h̄εn(xn)− nδ(1)n,γ (466)

whereinfν is taken over all functions onXn such that

0 ≤ ν(xn) ≤ 1 and
∑

xn∈Xn

PXn(xn)ν(xn) ≥ 1− ε′. (467)

July 21, 2018 DRAFT



51

Now, we can characterize the first term of (466) by using linear optimization. That is, there existsBn ⊆ Xn and

x̄n ∈ Xn such thatBn, x̄n, andB′
n , Xn \ (Bn ∪ {x̄n}) satisfy that7

x̄n /∈ Bn (468)

h̄
εn(xn) ≤ h̄

εn(x̄n) if xn ∈ Bn (469)

h̄
εn(xn) ≥ h̄

εn(x̄n) if xn ∈ B′
n (470)

∑

xn∈Bn

PXn(xn) + PXn(x̄n) ≥ 1− ε′ (471)

∑

xn∈Bn

PXn(xn) < 1− ε′ (472)

and that

inf
ν

∑

xn

PXn(xn)ν(xn)h̄εn(xn) =
∑

xn∈Bn

PXn(xn)h̄εn(xn) + PXn(x̄n)ν̄h̄εn(x̄n) (473)

whereν̄ is the number such that

ν̄ , ε′ −
∑

xn∈B′
n

PXn(xn). (474)

In other words,infν is attained byν such that

ν(xn) =























1 if xn ∈ Bn

ν̄ if xn = x̄n

0 if xn ∈ B′
n.

(475)

The above arguments show that

H̃ε′(Xn|Y n) ≥
∑

xn∈Bn

PXn(xn)h̄εn(xn) + PXn(x̄n)ν̄h̄εn(x̄n)− nδ(1)n,γ (476)

≥
∑

xn /∈B′
n

PXn(xn)h̄εn(xn)− PXn(x̄n)h̄εn(x̄n)− nδ(1)n,γ . (477)

Third Step: Now, we prove that the optimal average codeword lengthLε+δ(Xn|Y n) achievable byn-block

VL-SW coding with the error probabilityε+ δ is smaller than the first term of (477).

For eachxn ∈ Xn, let

εxn =











εn : xn /∈ B′
n

1 : xn ∈ B′
n.

(478)

Then, our one-shot VL-SW coding bound (Theorem 3) guarantees that there exists a VL-SW code satisfying (i)

the error probability is smaller than

∑

xn∈Xn

PXn(xn)εxn + 2− logn (479)

7x̄n plays a similar role asi∗ in the definition ofĤε(X|Y ).
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and (ii) the average codeword length is smaller than

∑

xn∈Xn

PXn(xn)h̄εxn (xn) + nζn (480)

where

ζn ,
logn

n
+

1

n
E
[

log
(

h̄
ε(Xn) + (logn) + 1

)]

(481)

andζn → 0 asn→ ∞; see (208).

For sufficiently largen, we have

(479)=
∑

xn /∈B′
n

PXn(xn)εn +
∑

xn∈B′
n

PXn(xn) + 2− logn (482)

≤ εn + ε′ + 2− logn (483)

= εn + ε+ δ/2 + 2− log n (484)

≤ ε+ δ (485)

and

(480)=
∑

xn /∈B′
n

PXn(xn)h̄εn(xn) + nζn (486)

(a)
≤ H̃ε′(Xn|Y n) + PXn(x̄n)h̄εn(x̄n) + nζn + nδ(1)n,γ (487)

(b)
≤ H̃ε′(Xn|Y n) + PXn(x̄n)

[

log
1

PXn(x̄n)
+ log

1

εn

]

+ nζn + nδ(1)n,γ (488)

(c)
≤ H̃ε′(Xn|Y n) + 1 + log

1

εn
+ nζn + nδ(1)n,γ (489)

where (a) follows from (477), (b) follows from (26), and (c) follows from −p log p ≤ 1 for p ∈ [0, 1]. Moreover,

by (456) and the fact that(1/n) log(1/εn) → 0 asn→ ∞, we have, for sufficiently largen,

(480)≤ H̃ε′(Xn|Y n) + 4nγ (490)

≤ H̃ε′(Xn|Y n) + nη. (491)

From (485) and (491), we have

Lε+δ(Xn|Y n) ≤ H̃ε′(Xn|Y n) + nη. (492)

Hence, we have (441).
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