
1

Convolutional Codes in Rank Metric with
Application to Random Network Coding

Antonia Wachter-Zeh, Markus Stinner, Vladimir Sidorenko

Abstract—Random network coding recently attracts attention
as a technique to disseminate information in a network. This
paper considers a non-coherent multi-shot network, where the
unknown and time-variant network is used several times. In order
to create dependencies between the different shots, particular
convolutional codes in rank metric are used. These codes are
so-called (partial) unit memory ((P)UM) codes, i.e., convolutional
codes with memory one. First, distance measures for convolu-
tional codes in rank metric are shown and two constructions of
(P)UM codes in rank metric based on the generator matrices of
maximum rank distance codes are presented. Second, an efficient
error-erasure decoding algorithm for these codes is presented.
Its guaranteed decoding radius is derived and its complexity is
bounded. Finally, it is shown how to apply these codes for error
correction in random linear and affine network coding.

Index Terms—convolutional codes, network coding, (partial)
unit memory codes, rank-metric codes

I. INTRODUCTION

Random linear network coding (RLNC, see e.g., [2]–[4])
and more recently, random affine network coding (RANC,
see [5]), are powerful means for distributing information in
networks. In these models, it is assumed that the packets
are vectors over a finite field and that each internal node
of the network performs a random linear (or random affine,
respectively) combination of all packets received so far and
forwards this random combination to adjacent nodes. Notice
that affine combinations are particular linear combinations, see
[5].

When we consider the transmitted packets as rows of a
matrix, then the linear combinations performed by the nodes
are elementary row operations on this matrix. During an
error- and erasure-free transmission over such a network, the
row space of the transmitted matrix is therefore preserved.
However, due to the linear combinations at the nodes, a
single erroneous packet can propagate widely throughout the
network. This makes error-correcting techniques in random
networks essential.

Parts of this work were presented at the IEEE International Symposium
on Network Coding 2012 (NETCOD), Cambridge, MA, USA, 2012 [1]. A.
Wachter-Zeh’s work was supported in part by a Minerva Postdoctoral Fellow-
ship and in part by the German Research Council “Deutsche Forschungs-
gemeinschaft” (DFG) under Grant No. Bo867/21. M. Stinner’s work was
supported by an Alexander von Humboldt Professorship endowed by the
German Federal Ministry of Education and Research. V. Sidorenko’s work
was supported by the German Research Council (DFG) under Grant No.
Bo867/22.

A. Wachter-Zeh is with the Computer Science Department,
Technion—Israel Institute of Technology, Haifa, Israel (e-mail:
antonia@cs.technion.ac.il).

M. Stinner is with the Institute for Communications Engineering, Technical
University of Munich, Germany (e-mail: markus.stinner@tum.de).

V. Sidorenko is with the Institute for Communications Engineering, Tech-
nical University of Munich, Germany (e-mail:vladimir.sidorenko@tum.de).

Based on these observations, Kötter and Kschischang [6]
used subspace codes for error control in RLNC and introduced
a channel model, called the operator channel. Silva, Kschis-
chang and Kötter [7] showed that lifted rank-metric block
codes result in almost optimal subspace codes for RLNC. In
particular, they used Gabidulin codes [8]–[10], which are rank-
metric analogs to Reed–Solomon codes. Both approaches were
extended to affine subspace codes by Gadouleau and Yan for
error correction in RANC [5].

In this paper, we consider non-coherent multi-shot network
coding (see e.g., [11]). Therefore, we use the network several
times, where the internal structure of the network is unknown
and might change in each shot. Creating dependencies between
the transmitted words of the different shots can help to cope
with difficult error patterns and strongly varying channels. We
achieve these dependencies by using convolutional network
codes.

In particular, we consider so-called (partial) unit memory
((P)UM) codes [12], [13] in rank metric. (P)UM codes are a
special class of convolutional codes with memory one. They
can be constructed based on block codes, e.g., Reed–Solomon
[14]–[16] or cyclic codes [17], [18]. The underlying block
codes make an algebraic description of the convolutional code
possible, enable us to estimate the distance properties and
allow us to take into account existing efficient block decoders
in order to decode the convolutional code. Notice that a
convolutional code with arbitrary memory can be considered
as PUM convolutional code with larger block size. This is
another motivation to start working on (P)UM convolutional
codes in rank metric; their generalization to multi-memory
codes in rank metric is an interesting topic for future work.

A convolutional code in Hamming metric can be charac-
terized by its active row distance, which in turn is basically
determined by the free distance and the slope. These distance
measures determine the error-correcting capability of the con-
volutional code. In [12], [13], [15], [19], upper bounds on the
free (Hamming) distance and the slope of (P)UM codes were
derived.

In [20], [21], distance measures for convolutional codes in
rank metric were introduced and PUM codes based on the
parity-check matrix of Gabidulin codes were constructed.

In this paper, we construct (P)UM codes based on the gen-
erator matrix of Gabidulin codes and calculate their distance
properties. As a distance measure, the sum rank metric is
used, which is motivated by multi-shot network coding [11]
and which is used to define the free rank distance and the
active row rank distance, see also [20], [21]. Moreover, we
provide an efficient decoding algorithm based on rank-metric
block decoders, which is able to handle errors and at the same

ar
X

iv
:1

40
4.

72
51

v2
 [

cs
.I

T
]

 1
9

Ja
n

20
15

2

time column and row erasures. This decoding algorithm can
be seen as a generalization of the Dettmar–Sorger algorithm
[22] to error-erasure decoding as well as to the rank metric.
Further, we show how lifted PUM codes can be applied for
error-correction in RLNC and RANC.

There are other contributions devoted to convolutional net-
work codes (see e.g. [23]–[26]). However, in most of these
papers, convolutional codes are used to solve the problem of
efficiently mixing information in a multicast setup and none of
these code constructions is based on codes in the rank metric
and deals with the transmission over the operator channel as
ours. Our contribution can be seen as an equivalent to the
block code construction from [7].

This paper is structured as follows. In Section II, definitions
and notations for (lifted) rank-metric codes as well as for
convolutional codes are given. Section III shows distance mea-
sures for convolutional codes in rank metric and in Section IV,
we provide two explicit constructions of (P)UM codes based
on Gabidulin codes and we derive their distance properties.
The first construction yields codes of low code rate, and is
generalized by the second construction to arbitrary code rates.
In Section V, we present an efficient decoding algorithm based
on rank-metric block decoders, which is able to handle errors
and row/column erasures. This decoding algorithm can be seen
as a generalization of the Dettmar–Sorger algorithm [22]. In
Section VI, we show—similar to [7]—how lifted (P)UM codes
can be applied in RLNC and how decoding in RLNC reduces
to error-erasure decoding of our (P)UM code construction,
which can efficiently be decoded by our algorithm from
Section V. Finally, Section VII outlines how to apply our codes
for RANC and Section VIII concludes this paper.

II. PRELIMINARIES

A. Notations

Let q be a power of a prime and let us denote the q-power
for any positive integer i by x[i] def

= xq
i

. Let Fq denote the
finite field of order q and F = Fqm its extension field of order
qm. We use Fs×nq to denote the set of all s×n matrices over Fq
and Fn = F1×n for the set of all row vectors of length n over
F. LetRq (A) denote the row space of a matrix A over Fq and
let Is denote the s × s identity matrix. Moreover, denote the
elements of a vector a(i) ∈ Fn by a(i) = (a

(i)
0 a

(i)
1 . . . a

(i)
n−1).

Throughout this contribution, let the rows and columns of an
m×n-matrix A be indexed by 0, . . . ,m− 1 and 0, . . . , n− 1
and denote the set of integers [a, b] = {i : a ≤ i ≤ b, i ∈ Z}.

Let β = (β0 β1 . . . βm−1) be an ordered basis of F over
Fq . There is a bijective map Φβ of any vector a ∈ Fn on a
matrix A ∈ Fm×nq , denoted as follows:

Φβ : Fn → Fm×nq

a = (a0 a1 . . . an−1) 7→ A,

where A = Φβ (a) ∈ Fm×nq is defined such that aj =∑m−1
i=0 Ai,jβi, ∀j ∈ [0, n − 1]. In the following, we use

both representations (as a matrix over Fq or as a vector over
F), depending on what is more useful in the context.

Consider the vector space Fnq of dimension n over Fq .
The Grassmannian of dimension r ≤ n is the set of all

subspaces of Fnq of dimension r and is denoted by Gq(n, r).
The cardinality of Gq(n, r) is the so-called Gaussian binomial,
calculated by ∣∣Gq(n, r)∣∣ =

[
n

r

]
def
=

r−1∏
i=0

qn − qi
qr − qi ,

with the upper and lower bounds (see e.g. [6, Lemma 4])

qr(n−r) ≤
[
n

r

]
≤ 4qr(n−r). (1)

For two subspaces U ,V in Fnq , we denote by U+V the smallest
subspace containing the union of U and V . The subspace
distance between U ,V in Fnq is defined by

dS(U ,V) = dim(U + V)− dim(U ∩ V)

= 2 dim(U + V)− dim(U)− dim(V).

It can be shown that the subspace distance is indeed a metric
(see e.g. [6]).

B. Rank Metric and Gabidulin Codes

We define the rank norm rk(a) as the rank of A = Φβ (a) ∈
Fm×nq over Fq . The rank distance between a and b is the rank
of the difference of the two matrix representations (see [9]):

dR(a,b)
def
= rk(a− b) = rank(A−B).

The minimum rank distance d of a code C ⊆ Fn is defined
by

d
def
= min

a,b∈C
a6=b

{
dR(a,b) = rk(a− b)

}
.

For linear codes of length n ≤ m and dimension k, the
Singleton-like upper bound [8]–[10] implies that d ≤ n−k+1.
If d = n− k+ 1, the code is called a maximum rank distance
(MRD) code.

Gabidulin codes are a special class of rank-metric codes and
can be defined in vector representation by its generator matrix
as follows.

Definition 1 (Gabidulin Code [9]) A linear GA[n, k] code
C ⊆ Fn of length n ≤ m and dimension k is defined by
its k × n generator matrix GG:

GG =

g0 g1 . . . gn−1

g
[1]
0 g

[1]
1 . . . g

[1]
n−1

...
...

. . .
...

g
[k−1]
0 g

[k−1]
1 . . . g

[k−1]
n−1

 ,

where g0, g1, . . . , gn−1 ∈ F are linearly independent over Fq .

Gabidulin codes are MRD codes, i.e., d = n− k+ 1, see [9].
Let the matrix C ∈ Fm×nq = Φβ (c), where c = u · GG

for some u ∈ Fk, be a transmitted codeword that is corrupted
by an additive error matrix E ∈ Fm×nq . At the receiver side,
only the received matrix R ∈ Fm×nq , where R = C + E, is
known. The channel might provide additional side information
in the form of erasures, which help to increase the decoding
performance. This additional side information of the channel
is assumed to be given in form of:

3

• % row erasures (in [7] called “deviations”) and
• γ column erasures (in [7] called “erasures”),

such that the received matrix can be decomposed into

R = C + A(R)B(R) + A(C)B(C) + A(E)B(E)︸ ︷︷ ︸
=E

, (2)

where A(R) ∈ Fm×%q , B(R) ∈ F%×nq , A(C) ∈ Fm×γq , B(C) ∈
Fγ×nq , A(E) ∈ Fm×tq , B(E) ∈ Ft×nq are full rank matrices.
The channel outputs R and additionally A(R) and B(C) to the
receiver. Further, t denotes the number of errors without side
information. The decomposition from (2) is not necessarily
unique, but we can use any of them.

The rank-metric block bounded minimum distance (BMD)
error-erasure decoding algorithms from [7], [27] can recon-
struct any c ∈ GA[n, k] from r = Φ−1

β (R) with complexity
O(n2) operations over F if

2t+ %+ γ ≤ d− 1 = n− k. (3)

C. Lifted Gabidulin Codes

A constant-dimension code is a subset of a certain Grass-
mannian. We shortly recall the definition from [7] of a special
class of constant-dimension codes, called lifted Gabidulin
codes.

Let CDq(n,MS, dS, r) denote a constant-dimension code in
Gq(n, r) with cardinality MS and minimum subspace distance
dS. The lifting of a block code is defined as follows.

Definition 2 (Lifting of Matrix or Code) Consider the map

lift : Fr×(n−r)
q → Gq(n, r)

X 7→ Rq ([Ir X]) .

The subspace lift(X) = Rq ([Ir X]) is called lifting of the
matrix X. If we apply this map on all codewords (in matrix
representation) of a code C, then the constant-dimension code
lift(C) is called lifting of C.

The following lemma shows the properties of a lifted
Gabidulin code.

Lemma 1 (Lifted Gabidulin Code [7]) Let C be a
Gabidulin GA[r, k] code over Fqn−r of length r ≤ n − r,
minimum rank distance d = r − k + 1 and cardinality
MR = q(n−r)k.

Then, the lifting of the transposed codewords, i.e.,

lift(CT)
def
=
{

lift(CT) = Rq
(
[Ir CT]

)
: Φ−1

β (C) ∈ C
}

is a CDq(n,MS, dS, r) constant-dimension code of cardinality
MS = MR = q(n−r)k, minimum subspace distance dS = 2d
and lies in the Grassmannian Gq(n, r).

D. Convolutional Codes and (Partial) Unit Memory Codes
In practical realizations, it does not make sense to consider

(semi-)infinite sequences and therefore, we consider only
linear zero-forced terminated convolutional codes. Such a
convolutional code C is defined by the following terminated
non-catastrophic Nk × (n(N + µ)) generator matrix G over
F, for some integer N :

G =

G(0) G(1) . . . G(µ)

G(0) G(1) . . . G(µ)

.
G(0) G(1) . . . G(µ)

 , (4)

where G(i), ∀i = 0, . . . , µ, are k × n-matrices and µ denotes
the memory of G, see [28] and Definition 3. Each codeword
of C is a sequence of N + µ blocks of length n over F, i.e.,
c = (c(0) c(1) . . . c(N+µ−1)), represented equivalently as a
sequence of m × n matrices over Fq , i.e., C = Φβ (c) =
(C(0) C(1) . . . C(N+µ−1)).

Memory and constraint length are properties of the gener-
ator matrix. We follow Forney’s notations [29] based on the
polynomial representation of the generator matrix:

G(D) = G(0) + G(1)D + G(2)D2 + · · ·+ G(µ)Dµ

=
(
gi,j(D)

)i∈[0,k−1]

j∈[0,n−1]
,

where gi,j(D) = g
(0)
i,j + g

(1)
i,j D + · · ·+ g

(µ)
i,j D

µ and g(l)
i,j ∈ Fq ,

∀l ∈ [0, µ], ∀i ∈ [0, k − 1] and ∀j ∈ [0, n− 1].

Definition 3 (Constraint Length and Memory) The i-th
constraint length νi of a polynomial generator matrix G(D)
is

νi
def
= max

j∈[0,n−1]

{
deg gi,j(D)

}
, ∀i ∈ [0, k − 1].

The memory of G(D) is

µ
def
= max

i∈[0,k−1]
{νi},

and the overall constraint length of G(D) is ν def
=
∑k−1
i=0 νi.

(P)UM codes are a special class of convolutional codes of
memory µ = 1, introduced by Lee and Lauer [12], [13]. The
semi-infinite generator matrix consists therefore of two k× n
submatrices G(0) and G(1). These matrices both have full rank
k if we want to construct a UM(n, k) unit memory code.

For a PUM(n, k, k(1)) partial unit memory code over F,
rank(G(0)) = k and rank(G(1)) = k(1) < k has to hold.
W.l.o.g., for PUM codes, we assume that the lowermost k −
k(1) rows of G(1) are zero and we denote:

G(0) =

(
G(00)

G(01)

)
, G(1) =

(
G(10)

0

)
, (5)

where G(00) and G(10) are k(1)×n matrices of full rank and
G(01) is a full-rank (k−k(1))×n matrix over F. The encoding
rule for each code block of a (P)UM code is hence given by

c(i) = u(i) ·G(0) + u(i−1) ·G(1), ∀i = 1, 2, . . . , (6)

where u(i) and u(i−1) ∈ Fk for all i. The memory of (P)UM
codes is µ = 1. The overall constraint length is ν = k for UM
codes and ν = k(1) for PUM codes.

4

III. DISTANCE MEASURES FOR CONVOLUTIONAL CODES
IN RANK METRIC

In this section, we provide distance measures and upper
bounds for convolutional codes based on a special rank metric,
see also [21]. This special rank metric—the sum rank metric—
was proposed by Nóbrega and Uchôa-Filho under the name
“extended rank metric” in [11] for multi-shot transmissions in
a network.

A. Distance Parameters and Trellis Description

In [11], it is shown that the sum rank distance and the
subspace distance of the modified lifting construction are
related in the same way as the rank distance and the subspace
distance of the lifting construction, see [7] and also Lemma 1.
Hence, the use of the sum rank metric for multi-shot network
coding can be seen as the analog to using the rank metric for
single-shot network coding.

The sum rank weight and distance are defined as follows.

Definition 4 (Sum Rank Weight/Distance) Let two vectors
a,b ∈ FnN be decomposed into N subvectors of length n
such that:

a = (a(0) a(1) . . . a(N−1)), b = (b(0) b(1) . . . b(N−1)),

with a(i),b(i) ∈ Fn, ∀i ∈ [0, N − 1]. The sum rank weight of
a is the sum of the ranks of the subvectors:

wtΣ(a)
def
=

N−1∑
i=0

rk(a(i)). (7)

The sum rank distance between a and b is the sum rank weight
of the difference of the vectors:

dΣ(a,b)
def
= wtΣ(a− b) =

N−1∑
i=0

rk(a(i) − b(i)). (8)

Since the rank distance is a metric (see e.g. [9]), the sum rank
distance is also a metric.

An important measure for convolutional codes in Hamming
metric is the free distance, and consequently, we define the
free rank distance in a similar way in the sum rank metric.

Definition 5 (Free Rank Distance) The free rank distance of
a convolutional code C is the minimum sum rank distance (8)
between any two different codewords a,b ∈ C:

df
def
= min

a,b∈C,
a6=b

{
dΣ(a,b)

}
= min

a,b∈C,
a6=b

{
N−1∑
i=0

rk(a(i) − b(i))

}
.

For a linear convolutional code, the free rank distance is df =
mina∈C,a6=0

{
wtΣ(a)

}
. Throughout this paper, we consider

only linear convolutional codes.
Any convolutional code can be described by a minimal

code trellis, which has a certain number of states and the
input/output blocks are associated to the edges of the trellis.
The current state in the trellis of a (P)UM code over F can
be associated with the vector s(i) = u(i−1)G(1), see e.g.,
[16], and therefore there are qmk

(1)

possible states. We call

the current state zero state if s(i) = 0. A code sequence of
a terminated (P)UM code with N blocks can therefore be
considered as a path in the trellis, which starts in the zero
state and ends in the zero state after N edges.

The error-correcting capability of convolutional codes is
determined by active distances, a fact that will become obvious
in view of our decoding algorithm in Section V. In the
following, we define the active row/column/reverse column
rank distances analog to active distances in Hamming metric
[19], [28], [30]. In the literature, there are different definitions
of active distances in Hamming metric. Informally stated, for a
j-th order active distance of C, we simply look at all sequences
of length j, and require some conditions on the passed states
in the minimal code trellis of C.

Let C(r)
j denote the set of all codewords in a convolutional

code C, corresponding to paths in the minimal code trellis
which diverge from the zero state at depth zero and return
to the zero state for the first time after j branches at depth
j. W.l.o.g., we assume that we start at depth zero, as we
only consider time-invariant convolutional codes. This set is
illustrated in Figure 1.

States

Time

0 1 2 . . . j

C(r)j

Figure 1. The set C(r)j : it consists of all codewords of C having paths in the
minimal code trellis which diverge from the zero state at depth 0 and return
to the zero state for the first time at depth j.

Definition 6 (Active Row Rank Distance) The active row
rank distance of order j of a linear convolutional code is
defined as

d
(r)
j

def
= min

c∈C(r)j

{
wtΣ(c)

}
, ∀j ≥ 1.

Clearly, for non-catastrophic encoders [28], the minimum of
the active row rank distances of different orders is the same
as the free rank distance, see Definition 5: df = minj

{
d

(r)
j

}
.

The slope of the active row rank distance is defined as follows.

Definition 7 (Slope of Active Row Rank Distance) The
slope of the active row rank distance (Definition 6) is

σ
def
= lim

j→∞

{
d

(r)
j

j

}
.

As in Hamming metric [31, Theorem 1], [32, Theorem 2.7],
the active row rank distance of order j can be lower bounded
by a linear function d

(r)
j ≥ max{j · σ + β, df} for some

β ≤ df .
Similar to Hamming metric, we can introduce an active

column rank distance and an active reverse column rank
distance. Let C(c)

j denote the set of all words in the trellis

5

of length j blocks, leaving the zero state at depth zero and
ending in any state at depth j and let C(rc)

j denote the set of
all words starting in any state at depth zero and ending in the
zero state in depth j, both without zero states in between (see
Figures 2 and 3). The active column rank distance and the
active reverse column rank distance are then defined by:

d
(c)
j

def
= min

c∈C(c)j

{
wtΣ(c)

}
, ∀j ≥ 1. (9)

d
(rc)
j

def
= min

c∈C(rc)j

{
wtΣ(c)

}
, ∀j ≥ 1. (10)

States

0 1 2 . . . j

Figure 2. The set C(c)j : all codewords of C diverging from the zero state at
depth 0, where no zero states between depths 0 and j are allowed.

States

0 1 2 . . . j

Figure 3. The set C(rc)j : all codewords of C ending in the zero state at depth
j, where no zero states between depths 0 and j are allowed.

B. Upper Bounds on Distances of (P)UM Codes

In the following, we recall upper bounds on the free rank
distance df (Definition 5) and the slope σ (Definition 7) for
UM and PUM codes based on the sum rank metric (7), (8).
The derivation of the bounds uses known bounds for (P)UM
codes in Hamming metric [12], [13], [15].

Corollary 1 (Upper Bounds [21, Corollary 1]) For a
UM(n, k) code, where ν = k, the free rank distance is
bounded by:

df ≤ 2n− k + 1. (11)

For a PUM(n, k, k(1)) code, where ν = k(1) < k, the free
rank distance is bounded by:

df ≤ n− k + ν + 1. (12)

For both, UM and PUM codes, the slope is bounded by:

σ ≤ n− k. (13)

IV. CONSTRUCTION OF CONVOLUTIONAL CODES IN RANK
METRIC

This section provides a construction of (P)UM codes whose
submatrices of the generator matrix define Gabidulin codes.
In the first step (Section IV-A), we adapt the construction
from [22] in Hamming metric to rank metric, yielding low-rate
(P)UM codes. Later in Section IV-B, as in [33], we extend the
construction to arbitrary code rates.

A. Low-Rate Code Construction

The following definition provides our code construction.

Definition 8 ((P)UM Code based on Gabidulin Code)
Let k + k(1) ≤ n ≤ m, where k(1) ≤ k. Further, let
g0, g1, . . . , gn−1 ∈ F be linearly independent over Fq .

For k(1) ≤ k, we define a PUM(n, k, k(1)) code, respec-
tively a UM(n, k) code, over F by a zero-forced terminated
generator matrix G as in (4) with µ = 1. We use the k × n
submatrices G(0) and G(1):

G(0) =

(
G(00)

G(01)

)
=

g0 g1 . . . gn−1

g
[1]
0 g

[1]
1 . . . g

[1]
n−1

...
...

. . .
...

g
[k(1)−1]
0 g

[k(1)−1]
1 . . . g

[k(1)−1]
n−1

g
[k(1)]
0 g

[k(1)]
1 . . . g

[k(1)]
n−1

g
[k(1)+1]
0 g

[k(1)+1]
1 . . . g

[k(1)+1]
n−1

...
...

. . .
...

g
[k−1]
0 g

[k−1]
1 . . . g

[k−1]
n−1

,

(14)
and

G(1) =

(
G(10)

0

)
(15)

=

g
[k]
0 g

[k]
1 . . . g

[k]
n−1

g
[k+1]
0 g

[k+1]
1 . . . g

[k+1]
n−1

...
...

. . .
...

g
[k+k(1)−1]
0 g

[k+k(1)−1]
1 . . . g

[k+k(1)−1]
n−1

0

.

Table I denotes some Gabidulin codes, which are defined
by submatrices of G, their minimum rank distances and their
block rank-metric error-erasure BMD decoders (realized e.g.,
by the decoders from [7], [27]). These BMD decoders decode
correctly if (3) is fulfilled for the corresponding minimum rank
distance. If we consider unit memory codes with k = k(1),
then d00 = d10 = n− k + 1, dσ = n− 2k + 1 and d01 =∞,
since G(01) does not exist.

To show that the generator matrix G of Definition 8 is in
minimal basic encoding form, see [29, Definitions 4 and 5]
and [34], let us slightly generalize Theorem 6 from [34] for
the case of arbitrary finite field Fq as follows. Let [G(D)]h
be a matrix over Fq having the leading coefficient of gij(D)
in position (i, j) if deg gij(D) = νi and 0 otherwise.

6

Table I
SUBMATRICES OF (P)UM CODE FROM DEFINITION 8 AND THEIR BLOCK CODES.

Generator
matrix

Code
notation

Code
parameters

Minimum rank
distance

BMD
decoder

G(0) C0 GA[n, k] d0 = n− k + 1 BMD(C0)(
G(01)

G(10)

)
C1 GA[n, k] d1 = n− k + 1 BMD(C1)

G(01) C01 GA[n, k − k(1)] d01 = n− k + k(1) + 1 BMD(C01)

Gσ =

(
G(00)

G(01)

G(10)

)
Cσ GA[n, k + k(1)] dσ = n− k − k(1) + 1 BMD(Cσ)

Lemma 2 A basic encoding matrix G(D) over Fq[D] is
minimal basic if and only if [G(D)]h has full rank.

Proof: According to [29, Definition 5], a basic convolu-
tional generator k × n matrix G(D) is minimal iff its overall
constraint length ν is equal to the maximum degree η of its
k × k subdeterminants, η = ν. Select a k × k submatrix
G′(D) of G(D) with deg det G′(D) = η. From the Leibniz
formula for calculating the determinant p(D) = det G′(D)
it follows that η ≤ ν and the coefficient pν in p(D) is
pν = det[G′(D)]h. Hence, there exists submatrix G′(D) of
G(D) with deg det G′(D) = ν iff pν = det[G′(D)]h 6= 0,
which is iff the matrix [G(D)]h has full rank, and the
statement of the lemma follows.

Theorem 1 (Minimal Basic Encoding Form) Let a (P)UM
code based on Gabidulin codes be defined by its generator
matrix G as in Definition 8. Then, G is in minimal basic
encoding form, see [29, Definitions 4 and 5].

Proof: First, G is in encoding form since G(0) is a q-
Vandermonde matrix and therefore has full rank [35].

Second, we show that G is in basic form. According to
[29, Definition 4], G(D) is basic if it is polynomial and if
there exists a polynomial right inverse G−1(D), such that
G(D) ·G−1(D) = Ik×k. By definition, G(D) is polynomial.
A polynomial right inverse exists if and only if G(D) is
non-catastrophic and hence if the slope is σ > 0 [36,
Theorem A.4]. The slope is calculated later in Corollary 2,
proving that σ > 0.

Third, we show that G(D) is minimal. Indeed, the matrix

[G(D)]h =

(
G(10)

G(01)

)
has full rank by Definition 8 and minimality follows from
Lemma 2.

In the following, we calculate the active row, column and
reverse column rank distances (Definition 6 and Equations (9),
(10)) by cutting the generator matrix of the PUM code from
Definition 8 into parts. Pay attention that each code block of
length n can be seen as a codeword of Cσ .

Theorem 2 (Lower Bound on Active Distances) Let k +
k(1) ≤ n ≤ m, where k(1) ≤ k. Let C be a UM(n, k),
respectively PUM(n, k, k(1)), code over F as in Definition 8.

Then,

d
(r)
1 ≥ δ(r)

1 = d01,

d
(r)
j ≥ δ

(r)
j = d0 + (j − 2) · dσ + d1, ∀j ≥ 2,

d
(c)
j ≥ δ

(c)
j = d0 + (j − 1) · dσ, ∀j ≥ 1,

d
(rc)
j ≥ δ(rc)

j = (j − 1) · dσ + d1, ∀j ≥ 1,

where d01 = n− k + k(1) + 1 for k(1) < k and d01 =∞ for
k(1) = k, d0 = d1 = n− k + 1, dσ = n− k − k(1) + 1.

Proof: For the estimation of the active row rank distance,
the encoder starts in the zero state hence, u(−1) = 0. For
the first order active row distance d

(r)
1 , we look at all code

sequences of the form (. . . 0 c(0) 0 . . .), which is only
possible if u(0) = (0 . . . 0 u

(0)

k(1)
. . . u

(0)
k−1) and u(i) = 0,

∀i ≥ 1. In this case, c(0) ∈ C01 with distance d01, and the
encoder returns immediately to the zero state. For the UM
case, u(0) = 0 and the only codeword in C(r)

0 is the all-zero
codeword and thus, d(r)

1 =∞.
For higher orders of d(r)

j , we have to consider all code
sequences, starting with c(0) ∈ C0 (since u(−1) = 0), followed
by j − 2 non-zero codewords of Cσ and one final code
block, resulting from u(j−1) = (0 . . . 0 u

(j−1)

k(1)
. . . u

(j−1)
k−1)

and for the UM case u(j−1) = 0. For the UM and the
PUM case, the block u(j−2) is arbitrary, therefore c(j−1) =
u(j−1) ·G(0) + u(j−2) ·G(1) ∈ C1.

For the estimation of d(c)
j , the encoder starts in the zero state

but ends in any state. Thus, c(0) ∈ C0 is followed by j − 1
arbitrary information blocks resulting in codewords from Cσ .
For the active reverse column rank distances, we start in any
block, hence, all first j−1 blocks are from Cσ . The last block
is from C1 in order to end in the zero state.

We call δ(r)
j , δ(c)

j , δ(rc)
j designed active distances in the

following since they are lower bounds on d(r)
j , d(c)

j , d(rc)
j .

Corollary 2 (Free Rank Distance and Slope) Let
k + k(1) ≤ n ≤ m, where k(1) ≤ k. Let C be a UM(n, k),
respectively PUM(n, k, k(1)), code over F as in Definition 8.

Then, its free rank distance df for k(1) = k is

df ≥ min
j

{
δ

(r)
j

}
= d0 + d1 = 2(n− k + 1),

and for k(1) < k:

df = min
j

{
δ

(r)
j

}
= d01 = n− k+ k(1) + 1 = n− k+ ν + 1.

7

The slope σ of C for both cases is:

σ ≥ lim
j→∞

{
δ

(r)
j

j

}
= dσ = n− k − k(1) + 1.

Thus, for any k(1) < k, the construction attains the upper
bound on the free rank distance of PUM codes (12). When
k(1) = k = 1, we attain the upper bound on the free rank
distance of UM codes, see (11). For k(1) = 1 ≤ k, the upper
bound on the slope is attained.

If we compare this to the construction from [21], we see
that both constructions attain the upper bound on the free rank
distance for k(1) < k. It depends on the explicit values of n,
k and k(1), which construction has a higher slope.

The construction based on the parity-matrix from [21]
requires that R = k/n ≥ µH/(µH + 1), where µH ≥ 1,
and provides therefore a high-rate code construction, whereas
the construction based on the generator matrix (Definition 8)
results in a low-rate code since k + k(1) ≤ n has to hold.

B. Construction of Arbitrary Code Rate

In the sequel, we outline how to extend the construction
from Definition 8 to arbitrary code rates. Compared to the
high-rate construction from [21], the advantage is that we
are able to decode this code construction efficiently (see Sec-
tion V). We apply the same strategy to extend the construction
from Definition 8 to arbitrary code rates as in [33] in Hamming
metric. Further, we use the same notations for the matrices as
in the previous section, but with an additional prime symbol
for each matrix (e.g., G becomes G′).

So far, we have defined the code Cσ as a GA[n, k + k(1)]
code with dσ = n − k − k(1) + 1, where k + k(1) ≤ n (see
also Table I). Overcoming the restriction k + k(1) ≤ n would
enable us to choose an arbitrary code rate R = k/n of the
convolutional code C for any fixed k(1). However, at the same
time, if k+k(1) > n, there have to be linearly dependent rows
in
(

G(0)′

G(1)′

)
.

Therefore, we define these matrices such that ϕ denotes the
number of rows which are contained (amongst others) in both,
G(0)′ and G(1)′. We define a full-rank (k+k(1)−ϕ)×n matrix
G′all by

G′all =

A
Φ

G(01)′

B

 , (16)

where A and B are in F(k(1)−ϕ)×n, Φ is in Fϕ×n and
G(01)′ ∈ F(k−k(1))×n such that G′all is a generator matrix
of a GA[n, k + k(1) − ϕ] code of minimum rank distance
dall = d′σ = n− k − k(1) + ϕ+ 1. Clearly, k + k(1) − ϕ ≤ n
and d′σ ≤ n have to hold. Since G′all defines a Gabidulin code,
any submatrix of consecutive rows defines a Gabidulin code
as well. Based on the definition of G′all, our generalized PUM
code construction is given as follows.

Definition 9 (Generalized (P)UM Code Construction) Let
k+k(1)−ϕ ≤ n ≤ m, where ϕ < k(1) ≤ k. Further, let G′all

be as in (16), defining an GA[n, k+ k(1)−ϕ] code. Our rate
k/n (P)UM code is defined by the following submatrices:

G(0)′ =

(
G(00)′

G(01)′

)
=

 A
Φ

G(01)′

 , G(1)′ =

(
G(10)′

0

)
=

Φ
B
0

,
(17)

where 0 is the all-zero matrix. We restrict ϕ < k(1) since
otherwise all rows of G(1)′ are rows of G(0)′. Further, any
code rate k/n in combination with any k(1) is feasible with
this restriction since k+ 1 ≤ k+ k(1)−ϕ ≤ n and hence, we
have only the trivial restriction k < n.

Theorem 3 The generator matrix G′(D) = G(0)′ + G(1)′D
from Definition 9 of the Generalized (P)UM code is in minimal
basic encoding form.

Proof: The proof is similar to the one of Theorem 1. The
matrix G′ is minimal as the matrix

[G′(D)]h =

 Φ
B

G(01)′

has full rank by Definition 9, since it is a submatrix of
generator matrix of a Gabidulin code, and minimality follows
from Lemma 2.

To calculate the active distances of the generalized code
construction from Definition 9, we need to take into account
that consecutive non-zero information blocks can result in zero
code blocks due to the linear dependencies in the rows of G(0)′

and G(1)′. This is shown in the following example.

Example 1 (Zero Code Block) Let two consecutive infor-
mation blocks u(j−1), u(j) ∈ Fk be:

u(j−1) = (u
(j−1)
0 . . . u

(j−1)
ϕ−1 0 . . . 0),

u(j) = (0 . . . 0 u
(j)

k(1)−ϕ . . . u
(j)

k(1)−1
0 . . . 0).

By encoding c(j), we obtain

c(j) = u(j) ·

 A
Φ

G(01)′

+ u(j−1) ·

Φ
B
0

=
(

(u
(j)

k(1)−ϕ . . . u
(j)

k(1)−1
) + (u

(j−1)
0 . . . u

(j−1)
ϕ−1)

)
·Φ.

If (u
(j)

k(1)−ϕ . . . u
(j)

k(1)−1
) = −(u

(j−1)
0 . . . u

(j−1)
ϕ−1), we obtain

an all-zero code block c(j) = 0 although u(j−1),u(j) 6= 0.

However, in the same way as in [33, Lemma 1], it can be
shown that the maximum number of consecutive zero blocks
is bounded from above by ` = dϕ/(k(1)−ϕ)e. Hence, after at
most ` zero code blocks, there has to be (at least) one non-zero
code block and the slope can be lower bounded by

σ′ ≥ d′σ
`+ 1

=
n− k − k(1) + ϕ+ 1

d k(1)

k(1)−ϕe
. (18)

8

This provides the following extended distances:

d
(r)′
1 ≥ δ(r)′

1 = d01, (19)

d
(r)
j ≥ δ

(r)′
j = d0 + (j − 2) · σ′ + d1, ∀j ≥ 2,

d
(c)′
j ≥ δ(c)′

j = d0 + (j − 1) · σ′, ∀j ≥ 1,

d
(rc)′
j ≥ δ(rc)′

j = (j − 1) · σ′ + d1, ∀j ≥ 1,

which reduces to the distances of Theorem 2 for ` = 0. Note
that d0, d01 and d1 are independent of ϕ and therefore the
same as in Table I. We see that there is a trade-off between
the code rate and the extended distances; namely, the higher
the code rate, the higher ϕ (for fixed k(1)), and the lower σ′

and the lower the extended distances (for constant ϕ− k).

V. ERROR-ERASURE DECODING OF PUM GABIDULIN
CODES

This section provides an efficient error-erasure decoding
algorithm for our construcion of (P)UM codes as in Defini-
tion 8, using the block rank-metric decoders of the underlying
Gabidulin codes in Table I. We explain the general idea,
prove its correctness and show how to generalize the decoding
algorithm to the arbitrary-rate construction from Definition 9.

A. Bounded Row Distance Condition and Decoding Algorithm

We consider the terminated generator matrix of a (P)UM
code as in (4) and therefore, each codeword has length
N + µ = N + 1. Let the received sequence r = c + e =
(r(0) r(1) . . . r(N)) ∈ Fn(N+1) be given and let the matrix
sequence R = (R(0) R(1) . . . R(N)) ∈ Fm×n(N+1)

q denote
the matrix representation of r, where R(i) = Φβ

(
r(i)
)
,

∀i ∈ [0, N].
Let R(i) = C(i) + E(i), for all i ∈ [0, N], where R(i) ∈

Fm×nq can be decomposed as in (2), including t(i) errors, %(i)

row erasures and γ(i) column erasures in rank metric.
Analog to Justesen’s definition in Hamming metric [16], we

define a bounded (row rank) distance decoder for convolutional
codes in rank metric, incorporating additionally erasures.

Definition 10 (BRD Error–Erasure Decoder) Given a re-
ceived sequence r = c + e ∈ Fn(N+1), a bounded row
distance (BRD) error-erasure decoder in rank metric for a
convolutional code C guarantees to find the code sequence
c ∈ C if

i+j−1∑
h=i

(
2 · t(h) + %(h) + γ(h)

)
< δ

(r)
j , (20)

∀i ∈ [0, N], j ∈ [0, N − i+ 1],

where t(h), %(h), γ(h) denote the number of errors, row and
column erasures in block E(h) = Φβ

(
e(h)

)
∈ Fn as in (2).

In Algorithm 1, we present such a BRD rank-metric error-
erasure decoder for (P)UM codes constructed as in Defini-
tion 8. It is a generalization of the Dettmar–Sorger algorithm
[22] to rank metric and to error-erasure correction. The gen-
eralization to error-erasure decoding can be done in a similar
way in Hamming metric.

The main idea of Algorithm 1 is to take advantage of the
algebraic structure of the underlying block codes and their
efficient decoders (see Table I). We use the outputs of these
block decoders to build a reduced trellis, which has only very
few states at every depth. As a final step of our decoder, the
well-known Viterbi algorithm is applied to this reduced trellis.
Since there are only a few states in the trellis, the Viterbi
algorithm has quite low complexity.

The first step of Algorithm 1 is to decode r(i), ∀i ∈
[1, N − 1], with BMD(Cσ), since each code block c(i) is a
codeword of Cσ , ∀i ∈ [1, N − 1]. This decoding is guaranteed
to be successful if 2t(i) + %(i) + γ(i) < dσ . Because of the
termination, the first and the last block can be decoded in the
codes C0 and C01, respectively, which have a higher minimum
rank distance than Cσ . Let c(i)′, for all i ∈ [0, N], denote the
result of this decoding when it is successful.

Algorithm 1.
c← BOUNDEDROWDISTANCEDECODERPUM

(
r
)

Input: Received sequence
r = (r(0) r(1) . . . r(N)) ∈ Fn(N+1)

q

1 Step 1: Decode r(0) with BMD(C0)
2 Decode r(i) with BMD(Cσ), for all i ∈ [1, N − 1]
3 Decode r(N) with BMD(C01)
4 Assign metric m(i) as in (21), for all i ∈ [0, N]

5 Step 2: For all found c(i): decode `(i)f steps forward with
6 BMD(C0),
7 decode `(i)b steps backward with
8 BMD(C1)
9 Step 3: For all found c(i): decode r(i+1) with BMD(C01)

10 Assign metric m(i) as in (25), for all i ∈ [0, N]

11 Step 4: Find complete path with smallest sum rank metric
12 using the Viterbi algorithm

Output: Codeword sequence
c = (c(0) c(1) . . . c(N)) ∈ Fn(N+1)

For all i ∈ [0, N], we draw an edge in a reduced trellis
with the following edge metric:

m(i)=

rk(r(i) − c(i)′), if BMD(C0) (i = 0), BMD(Cσ)

(i ∈ [1, N − 1]), BMD(C01) (i = N)
successful⌊

dσ+1+%(i)+γ(i)

2

⌋
, else. (21)

Notice that the metric for the successful case is always
smaller than the metric for the non-successful case since

rk(r(i)−c(i)′) = t(i)+%(i)+γ(i) ≤
⌊
dσ + 1 + %(i) + γ(i)

2

⌋
−1.

If the block error-erasure decoder BMD(Cσ)
decodes correctly, the result is c(i)′ = u(i)G(0) +

(u
(i−1)
0 u

(i−1)
1 . . . u

(i−1)

k(1)−1
) · G(10). Since the minimum

distance is dσ ≥ 1, we can reconstruct the whole information
vector u(i) = (u

(i)
0 u

(i)
1 . . . u

(i)
k−1) as well as the part of the

previous information vector, i.e., (u
(i−1)
0 u

(i−1)
1 . . . u

(i−1)

k(1)−1
).

9

Assume, we reconstructed u(i) and
(u

(i−1)
0 u

(i−1)
1 . . . u

(i−1)

k(1)−1
) in Step 1, then we can

calculate:

r(i+1)− (u
(i)
0 u

(i)
1 . . . u

(i)

k(1)−1
) ·G(10) = u(i+1)G(0) + e(i+1)

(22)

r(i−1)− (u
(i−1)
0 u

(i−1)
1 . . . u

(i−1)

k(1)−1
) ·G(00)

= (u
(i−1)

k(1)
. . . u

(i−1)
k−1 | u

(i−2)
0 . . . u

(i−2)

k(1)−1
)

(
G01

G10

)
+ e(i−1).

Hence, Step 2 uses the information from block i to decode
`
(i)
f blocks forward with BMD(C0) and `(i)b blocks backward

with BMD(C1) from any node found in Step 1. This closes
(most of) the gaps between two blocks correctly decoded
by BMD(Cσ) (of course, it is not known, which blocks are
decoded correctly).

We define the values `(i)f and `(i)b as follows:

`
(i)
f =min

j

(
j
 j∑
h=1

(
dσ −m(i+h))≥ δ

(c)
j −

j∑
h=1

(
%(i+h) + γ(i+h)

)
2

)
,

(23)

`
(i)
b = min

j

(
j
 j∑
h=1

(
dσ −m(i−h))≥ δ

(rc)
j −

j∑
h=1

(
%(i−h) + γ(i−h)

)
2

)
.

(24)

These definitions are chosen such that we can guarantee
correct decoding if the BRD condition (20) is fulfilled (see
Section V-B).

For Step 3 and some i ∈ [0, N − 1], assume we know
(u

(i+1)
0 u

(i+1)
1 . . . u

(i+1)

k(1)−1
) and u(i) from Step 1 or 2, then

as in (22), we can calculate

r(i+1)−(u
(i+1)
0 . . . u

(i+1)

k(1)−1
)·G(00)− (u

(i)
0 . . . u

(i)

k(1)−1
)·G(10)

= (u
(i+1)

k(1)
u

(i+1)

k(1)+1
. . . u

(i+1)

k(1)−1
) ·G(01) + e(i+1),

which shows that we can use BMD(C01) to close a remaining
gap in block i+ 1.

After Step 3, assign as metric to each edge

m(i) =

rk(r(i) − c(i)′), if BMD(C0), BMD(C1) or

BMD(C01) successful,⌊
d01 + 1 + %(i) + γ(i)

2

⌋
, else, (25)

∀i ∈ [0, N], where c(i)′ denotes the result of a successful
decoding. For one received block r(i), there can be several
decoding results c(i)′ from the different BMD decoders. Thus,
there can be more than one edge in the reduced trellis at
depth i. Each edge is labeled with regard to (25) using its
corresponding code block.

Finally, we use the Viterbi algorithm to find the path of
smallest sum rank weight in this reduced trellis. As in [22],
we use m(i), for all i ∈ [0, N], as edge metric and the sum
over different edges as path metric. The different steps of our
decoding algorithm are roughly summarized in Algorithm 1,
the details can be found in the preceding description and
Figure 4 illustrates our decoding algorithm.

In Section V-B, we prove that if (20) is fulfilled, then after
the three block decoders, all gaps are closed and the Viterbi
algorithm finds the path with the smallest sum rank weight.

B. Proof of Correctness

In the following, we prove that decoding with Algorithm 1
is successful if the BRD condition (20) is fulfilled. The proof
follows the proof of Dettmar and Sorger [22], [36]. Lemma 3
shows that the gaps between two correct results of Step 1 are
not too big and Lemmas 4 and 5 show that the gap size after
Steps 1 and 2 is at most one if the BRD condition (20) is
fulfilled. Theorem 4 shows that these gaps can be closed with
BMD(C01) and the Viterbi algorithm finds the correct path.

Lemma 3 (Gap Between two Correct Results of Step 1)
If the BRD condition (20) is satisfied, then the length of any
gap between two correct decisions in Step 1 of Algorithm 1,
denoted by c(i), c(i+j), is less than min{L(i)

f , L
(i)
b }, where

L
(i)
f =min

j

(
j
 j∑
h=1

(
dσ −m(i+h))≥δ

(r)
j −

j∑
h=1

(%(i+h) + γ(i+h))

2

)
,

L
(i)
b =min

j

(
j
 j∑
h=1

(
dσ −m(i−h))≥δ

(r)
j −

j∑
h=1

(%(i−h) + γ(i−h))

2

)
.

Proof: Decoding of a block r(i) in Step 1 fails or outputs
a wrong result if there are at least (dσ − %(i) − γ(i))/2 errors
in rank metric. In such a case, the metric m(i) = b(dσ + 1 +
%(i) + γ(i))/2c is assigned.

In order to prove the statement, assume there is a gap of at
least L(i)

f blocks after Step 1. Then,

L
(i)
f∑

h=1

t(i+h) ≥
L

(i)
f∑

h=1

dσ − %(i+h) − γ(i+h)

2
≥

L
(i)
f∑

h=1

(
dσ −m(i+h)

)

≥
δ

(r)

L
(i)
f

−
L

(i)
f∑

h=1

(
%(i+h) + γ(i+h)

)
2

,

which follows from the definition of the metric (21) and from
the definition of L(i)

f . This contradicts the BRD condition (20).
Similarly, we can prove this for L(i+j)

b and hence, the gap size
has to be less than min{L(i)

f , L
(i)
b }.

Note that L(i)
f and `

(i)
f differ only in using the active

row rank distance δ
(r)
j and the active column rank distance

δ
(c)
j , respectively. Further, Lemma 3 will not be used in the

following, but it shows an upper bound on the size of the gaps
between two correctly decoded blocks after the first step of
our decoding algorithm.

Lemma 4 (Correct Path for Few Errors) Let c(i) and
c(i+j) be decoded correctly in Step 1 of Algorithm 1. Let
Step 2 of Algorithm 1 decode `(i)f blocks in forward direction
starting in c(i), and `

(i+j)
b blocks in backward direction

starting in c(i+j) (see also (23), (24)).

10

r(0) . . . r(i) r(i+1) r(i+2) r(i+3) r(i+4) . . .Given:

Step 1:
BMD(Cσ)

c(0) . . .
BMD(C0)

c(i+2) c(i+4) . . .

Step 2:
BMD(C0),
BMD(C1)

c(0) . . . c(i+2) c(i+4)c(i+1) c(i+3)

.
. . .

Step 3:
BMD(C01)

c(0) . . . c(i+2) c(i+3)c(i+1) c(i+4)c(i)

. . .

. . .

Step 4:

Viterbi

Figure 4. Illustration of the different steps of Algorithm 1: The received sequence (r(0) r(1) . . . r(N)) is given and the different steps and their decoding
results are shown. Dashed blocks/edges illustrate that they were found in a previous step.

Then, the correct path is in the reduced trellis if the BRD
condition (20) is satisfied and if in each block less than
min{(d0 − %(i) − γ(i))/2, (d1 − %(i) − γ(i))/2} rank errors
occurred.

Proof: If there are less than
min

{
(d0 − %(i) − γ(i))/2, (d1 − %(i) − γ(i))/2

}
errors

in a block, BMD(C0) and BMD(C1) always yield the correct
decision. Due to the definition of `(i)f , see (23), the forward
decoding with BMD(C0) terminates as soon as

`
(i)
f∑
h=1

t(i+h) ≥
`
(i)
f∑
h=1

dσ − %(i+h) − γ(i+h)

2
≥

`
(i)
f∑
h=1

(
dσ −m(i+h)

)

≥
δ

(c)

`
(i)
f

−
`
(i)
f∑
h=1

(
%(i+h) + γ(i+h)

)
2

=
d0

2
+
(
`
(i)
f − 1

)dσ
2
−
∑`

(i)
f

h=1

(
%(i+h) + γ(i+h)

)
2

,

where the first inequality holds since the decoding result could
not be found in Step 1 and the second and third hold due to
the definition of the metric (21) and the definition of `(i)f .

Similarly, backward decoding with BMD(C1) terminates if

`
(i+j)
b∑
h=1

t(i+j−h) ≥d1

2
+
(
`
(i+j)
b − 1

)dσ
2

−
∑`

(i+j)
b

h=1

(
%(i+j−h) + γ(i+j−h)

)
2

.

The correct path is in the reduced trellis if `(i)f +`
(i+j)
b ≥ j−1,

since the gap is then closed. Assume now on the contrary that
`
(i)
f + `

(i+j)
b < j − 1. Since Step 1 was not successful for the

blocks in the gap, at least (dσ − %(h) − γ(h))/2 rank errors
occured in every block r(h), ∀h ∈ [i+ `

(i)
f +1, i+ j− `(i+j)b −

1], i.e, in the blocks in the gap between the forward and the
backward path. Then,

j−1∑
h=1

t(i+h) ≥
δ

(c)

`
(i)
f

−∑`
(i)
f

h=1(%(i+h) + γ(i+h))

2

≥
`
(i)
f∑
h=1

t(i+h)+

`
(i+j)
b∑
h=1

t(i+j−h)+

j−1−`(i+j)b∑
h=`

(i)
f +1

dσ − %(i+h) + γ(i+h)

2

≥ d0

2
+
(
`
(i)
f − 1

)dσ
2
−

`
(i)
f∑
h=1

(%(i+h) + γ(i+h))

2

+
d1

2
+
(
`
(i+j)
b − 1

)dσ
2
−

`
(i+j)
b∑
h=1

(
%(i+j−h) + γ(i+j−h)

)
2

+

(
j − 1− `(i)f − `

(i+j)
b

)
2

dσ −

j−1−`(i+j)b∑
h=`

(i)
f +1

(
%(i+h) + γ(i+h)

)
2

≥ d0

2
+
d1

2
+

(j − 3)

2
dσ −

∑j−1
h=1

(
%(i+h) + γ(i+h)

)
2

=
δ

(r)
j−1 −

∑j−1
h=1

(
%(i+h) + γ(i+h)

)
2

,

which is a contradiction to the BRD condition (20) and the
statement follows.

Lemma 5 (Gap Size is at Most One After Steps 1 and 2)
Let c(i) and c(i+j) be decoded correctly in Step 1 of

11

Algorithm 1 (with no other correct decisions in between) and
let the BRD condition (20) be fulfilled. Let d0 = d1.

Then, there is at most one error block e(h), h ∈ [i+ 1, i+
j − 1], of rank at least (d0 − %(i) − γ(i))/2.

Proof: To fail in Step 1, there have to be at least (dσ −
%(i)−γ(i))/2 errors in r(i), ∀i ∈ [i+ 1, i+ j−1]. If two error
blocks in this gap have rank at least (d0− %(i)− γ(i))/2, then

j−1∑
h=1

t(i+h) ≥ 2 · d0

2
+ (j − 3) · dσ

2
−

j−1∑
h=1

(
%(i+h) + γ(i+h)

)
2

≥
δ

(r)
j−1

2
−
∑j−1
h=1

(
%(i+h) + γ(i+h)

)
2

,

which contradicts (20).
Lemmas 4 and 5 show that if the BRD condition is satisfied,
then the correct path is in the reduced trellis after Steps 1 and
2, except for at most one block.

Theorem 4 (Correct Path is in Reduced Trellis) If the
BRD condition (20) is satisfied, then the correct path is in
the reduced trellis after Step 3 of Algorithm 1.

Proof: Lemmas 4 and 5 guarantee that after Step 2, at
most one block of the correct path is missing in the reduced
trellis. For one block, say r(h), it follows from the BRD
condition that (2 · t(h) + %(h) + γ(h)) < δ

(r)
1 = df and any

decoder of distance at least δ(r)
1 is able to decode correctly in

this block. Hence, after Step 3, BMD(C01) is able to find the
correct solution for this block since d01 = δ

(r)
1 and the correct

path is in the reduced trellis.
The complexity is determined by the complexity of the

BMD rank block error-erasure decoders from Table I, which
are all in the order O(n2) operations in F. Hence, the calcu-
lation of the complexity of Algorithm 1 is straight-forward to
[22, Theorem 3] and we can give the following bound on the
complexity without proof.

Theorem 5 (BRD Decoding with Algorithm 1) Let
k + k(1) ≤ n ≤ m, where k(1) ≤ k. Let C be a
zero-forced terminated UM(n, k) or PUM(n, k, k(1))
code over F as in Definition 8. Let a received sequence
r = (r(0) r(1) . . . r(N)) ∈ Fn(N+1) be given.

Then, Algorithm 1 finds the code sequence c =
(c(0) c(1) . . . c(N)) ∈ Fn(N+1) with smallest sum rank
distance to r if the BRD condition from (20) is satisfied.
The complexity of decoding one block of length n is at most
O(dσn

2) ≤ O(n3) operations in F.

C. Decoding of the Arbitrary-Rate Code Construction

For the arbitary-rate code construction from Section IV-B,
our decoding algorithm from the previous section can be
modified straight-forward to [33]. Hence, we outline this
adaption only shortly here and refer the reader to [33] for
details.

The linear dependencies in the matrices G(0)′ and G(1)′

(see Definition 9) have the effect that ` consecutive zero blocks

within the code sequence are possible (compare Section IV-B).
Further, the dependencies spread the information to ` + 1
blocks and we can therefore guarantee to reconstruct a certain
information block u(i) only if ` + 1 consecutive blocks
(including code block u(i)) could be decoded. This is shown
in the following example.

Example 2 (Reconstructing Information Block) Let ϕ =
2k(1)/3, where ` = 2 and Φ has twice as much rows as A.
Assume, we have decoded c(0), c(1) and c(2) and we want to
reconstruct u(1).

We decompose u(0),u(1),u(2) into sub-blocks, i.e.: u(j) =

(u
(j)
1 | u(j)

2 | u(j)
3 | u(j)

4) for j = 0, 1, 2, where the first three
sub-blocks have length k(1) − ϕ and the last sub-block has
length k − k(1). Then,

c(1) = (u
(1)
1 | u

(1)
2 + u

(0)
1 | u

(1)
3 + u

(0)
2 | u

(1)
4 | u

(0)
3)·

A
Φ1

Φ2

G(01)′

B

def
= û(1) ·G′all,

where Φ =
(

Φ1

Φ2

)
and Φ1, Φ2 each have k(1) − ϕ rows.

Since we know c(1), and since G′all defines an MRD code,
we can reconstruct the vector û(1). This directly gives us
u

(1)
1 and u

(1)
4 . This reconstruction can be done in the same

way for c(0) and we obtain (amongst others) u
(0)
1 . To obtain

u
(1)
2 , we subtract u

(0)
1 from the known sum u

(1)
2 + u

(0)
1 . The

reconstruction for c(2) provides u
(1)
3 and we have recovered

the whole information block u(1).
This example has shown why ` + 1 consecutive decoded

blocks are necessary to reconstruct one information block. It
does not matter if the other decoded blocks precede or succeed
the required information block.

Apart from the reconstruction of the information, there are
further parts in the decoding algorithm which have to be
modified. An error of minimum weight causing a sequence
of non-reconstructible information blocks in the first decoding
step has the following structure:

(0, . . . , 0,×︸ ︷︷ ︸
`+1 blocks

| 0, . . . , 0,×︸ ︷︷ ︸
`+1 blocks

| . . . | 0, . . . , 0,×︸ ︷︷ ︸
`+1 blocks

| 0, . . . , 0︸ ︷︷ ︸
` blocks

),

where × marks blocks (of length n) of rank weight at least
dσ/2. In this case, also the information of the ` error-free
blocks between the erroneous blocks cannot be reconstructed
since we need `+1 consecutive decoded blocks to reconstruct
the information. Further, the last ` error-free blocks make it
necessary to decode ` additional steps in forward direction in
the second step of Algorithm 1.

In order to decode with Algorithm 1, we have to take into
account the slower increase of the resulting extended distances
due to the sequences of possible zero code blocks. Hence, as
in [33], we generalize (23) by simply subtracting ` in the
summation, which is equivalent to going ` steps further:

12

`
(i)′
f =min

j

(
j
j−`∑
h=1

d′σ −m(i+h)

`+ 1
≥
δ
(c)′
j −

j∑
h=1

(
%(i+h) + γ(i+h)

)
2

)
,

(26)
which reduces to (23) for ` = 0. Further `(i)′b = `

(i)
b .

Hence, in order to decode the arbitrary-rate construction we
have to modify Algorithm 1 as follows:
• the reconstruction of information blocks requires ` + 1

consecutive code blocks as in Example 2,
• the path extension `(i)f has to be prolonged as in (26),
• the metric definitions in (21), (25) have to be modified

by simply adding “and u(i) could be reconstructed” in
the if-part of both definitions.

Then, as in Section V-B, we can guarantee that the correct
path is in the reduced trellis if

i+j−1∑
h=i

(
2 · t(h) + %(h) + γ(h)

)
< δ

(r)′
j ,

∀i ∈ [0, N], j ∈ [0, N − i+ 1],

where δ(r)′
j is defined as in (19).

VI. APPLICATION TO RANDOM LINEAR NETWORK
CODING

Our motivation for considering convolutional codes in rank
metric is to apply them in multi-shot random linear network
coding (RLNC). In this section, we first explain the model
of multi-shot network coding and show how to define lifted
(P)UM codes in rank metric. Afterwards, we show how
decoding of these lifted (P)UM codes reduces to error-erasure
decoding of (P)UM codes in rank metric.

A. Multi-Shot Transmission of Lifted PUM Codes

As network channel model we assume a multi-shot transmis-
sion over the so-called operator channel. The operator channel
was defined by Kötter and Kschischang in [6] and the concept
of multi-shot transmission over the operator channel was first
considered by Nóbrega and Uchôa-Filho [11].

In this network model, a source transmits packets (which
are vectors over a finite field) to a sink. The network has
several directed links between the source, some internal nodes
and the sink. The source and sink apply coding techniques for
error control, but have no knowledge about the structure of the
network. This means, we consider non-coherent RLNC. In a
multi-shot transmission, we use the network several times and
the internal structure may change in every time instance. In
detail, we assume that we use it N+1 times. In the following,
we shortly give basic notations for this network channel model.
The notations are similar to [7], but we include additionally
the time dependency.

Let X(i) ∈ Fn×(n+m)
q , ∀i ∈ [0, N]. The rows represent

the transmitted packets X(i)
0 , X

(i)
1 , . . . , X

(i)
n−1 ∈ Fn+m

q at time

instance (shot) i. Similarly, let Y(i) ∈ Fn
(i)×(n+m)
q be a

matrix whose n(i) rows correspond to the received packets
Y

(i)
0 , Y

(i)
1 , . . . , Y

(i)

n(i)−1
∈ Fm+n

q . Notice that n and n(i) do not

have to be equal since packets can be erased and/or additional
packets might be inserted.

The term random linear network coding originates from
the behavior of the internal nodes: they create random linear
combinations of the packets received so far in the current
shot i, ∀i ∈ [0, N]. Additionally, erroneous packets might be
inserted into the network and transmitted packets might be lost
or erased.

Let the links in the network be indexed from 0 to `−1, then,
as in [7], let the rows of a matrix Z(i) ∈ F`×(n+m)

q contain
the error packets Z(i)

0 , Z
(i)
1 , . . . , Z

(i)
`−1 inserted at the links 0

to `− 1 at shot i. If Z(i)
j = 0, j ∈ [0, `− 1], then no corrupt

packet was inserted at link j ∈ [0, ` − 1] and time i. Due to
the linearity of the network, the output can be written as:

Y(i) = A(i)X(i) + B(i)Z(i), (27)

where A(i) ∈ Fn(i)×n
q and B(i) ∈ Fn(i)×`

q are the (unknown)
channel transfer matrices at time i.

When there are no errors or erasures in the network, the row
space of Y(i) is the same as the row space of X(i). In [6], [7]
it was shown that subspace codes constructed by lifted MRD
codes (as in Lemma 1) provide an almost optimal solution
to error control in the operator channel. Such lifted MRD
codes are a special class of constant-dimension codes (see
Lemma 1). In the following, we define lifted PUM codes based
on Gabidulin codes in order to use these constant-dimension
codes for error correction in multi-shot network coding.

Definition 11 (Lifted (Partial) Unit Memory Code) Let C
be a zero-forced terminated UM(n, k) or PUM(n, k, k(1))
code over F as in Definition 8. Represent each code block
c(i) ∈ Fn, ∀i ∈ [0, N], as matrix C(i) = Φβ

(
c(i)
)
∈ Fm×nq .

Then, the lifting of C is defined by the following set of
subspace sequences:

lift(C) def
=
{(
Rq
(
[In C(0)T]

)
. . . Rq

(
[In C(N)T]

))
:(

Φ−1
β (C(0)) . . . Φ−1

β (C(N))
)
∈ C
}
.

As in Definition 2, we denote lift(C(i)T) = Rq
(
[In C(i)T]

)
,

∀i ∈ [0, N]. We transmit this sequence of subspaces over the
operator channel such that each transmitted matrix is a lifted
block of a codeword of the rank-metric PUM code, i.e., X(i) =
[In C(i)T], ∀i ∈ [0, N]. Of course, any other basis of the row
space can also be chosen as transmitted matrix.

By means of this lifted PUM code, we create dependencies
between the different shots in the network. Since each code
block of length n is a codeword of the block code Cσ , each
transmitted subspace is a codeword of a CDq(n + m, dS =
2dσ, n) constant-dimension code, lying in Gq(n + m,n), see
[7, Proposition 4] and Lemma 1. However, the lifted (P)UM
code contains additionally dependencies between the different
blocks and for decoding, we obtain therefore a better perfor-
mance than simply lifting the block code Cσ as in Lemma 1.
Since the PUM code transmits k information symbols per shot,
a comparison with a lifted block code of rate k/n is much
fairer than comparing it with Cσ (see also Example 3).

13

B. Decoding of Lifted PUM Codes in the Operator Channel

In this section, we will show how the decoding problem
in the operator channel reduces to error-erasure decoding of
PUM codes based on Gabidulin codes—analog to [7], where
it reduces to error-erasure decoding of Gabidulin codes. Since
each code block of length n of a PUM(n, k, k(1)) code is
a codeword of the block code Cσ , we can directly use the
reformulations of Silva, Kschischang and Kötter [7].

Let the transmitted matrix at time instance i be X(i) =
[In C(i)T] and denote by Y(i) = [Â(i) Ŷ(i)] ∈ Fn

(i)×(n+m)
q

the received matrix after the multi-shot transmission over the
operator channel as in (27). The channel transfer matrices A(i)

and B(i) are time-variant. Moreover, assume rank(Y(i)) =
n(i), since linearly dependent received packets are directly
discarded. Then, as in [7], we denote the column and row
deficiency of Â(i) by:

γ(i) def
= n−rank(Â(i)), %(i) def

= n(i)−rank(Â(i)), ∀i ∈ [0, N].

If we calculate the reduced row echelon (RRE) form of Y(i)

(and fill it up with zero rows, if necessary), we obtain the
following matrix in F(n+%(i))×(n+m)

q (similar to [7, Proposi-
tion 7], but in our notation):

RRE0

(
Y(i)

)
=

(
In + B(i,C)T ITU(i) R(i)T

0 A(i,R)T

)
, (28)

for a set U (i) ⊆ [0, n − 1] with |U (i)| = γ(i) such that
ITU(i)R

(i)T = 0 and ITU(i)B
(i,C)T = −Iγ(i) , and IU(i) denotes

the submatrix of In consisting of the columns indexed by U (i).
Moreover, B(i,C)T ∈ Fn×γ(i)

q and A(i,R)T ∈ F%(i)×nq .

Furthermore, it was shown in [7] that R(i) can be decom-
posed into

R(i) = C(i) + A(i,R)B(i,R) + A(i,C)B(i,C) + A(i,E)B(i,E),

∀i ∈ [0, N], where
(
Φ−1

β (C(0)) . . . Φ−1
β (C(N))

)
∈ C

and A(i,R) and B(i,C) are known to the receiver, since the
matrix from (28) can be calculated from the channel output.
Comparing this equation to (2) makes clear that the problem
of decoding lifted PUM codes (as in Definition 11) in the
operator channel reduces to error-erasure decoding of the PUM
code in rank metric. For this purpose, we can use our decoding
algorithm from Section V, which is based on rank-metric error-
erasure block decoders.

Now, let the received matrix sequence Y =
(Y(0) Y(1) . . . Y(N)) as output of the operator channel
be given, then Algorithm 2 shows how to reconstruct the
transmitted information sequence.

Algorithm 2.
u← NETWORKPUMDECODER

(
Y
)

Input: Received sequence Y = (Y(0) Y(1) . . . ,Y(N)),

where Y(i) ∈ Fn
(i)×(n+m)
q , ∀i ∈ [0, N]

1 γ(i) ← n− rank(Â(i)), ∀i ∈ [0, N]

2 %(i) ← n(i) − rank(Â(i)), ∀i ∈ [0, N]

3 Calculate RRE0(Y(i)) and R(i) as in (28), ∀i ∈ [0, N]

4 r = (r(0) . . . r(N))←
(
Φ−1

β (R(0)) . . . Φ−1
β (R(N))

)
5 c = (c(0) c(1) . . . c(N))←

BOUNDEDROWDISTANCEDECODERPUM
(
r
)

with
Algorithm 1

6 Reconstruct u = (u(0) u(1) . . .u(N−1))

Output: Information sequence
u = (u(0) u(1) . . .u(N−1)) ∈ FkN

The asymptotic complexity of Algorithm 2 for decoding
one matrix Y(i) of size n(i) × (n + m) scales cubic in n
over F. Calculating the RRE is at most cubic in n over
Fq if we use Gaussian elimination. However, Algorithm 1
has asymptotic complexity O(n3) over F, which dominates
therefore the complexity of Algorithm 2. The reconstruction of
the information sequence from the code sequence is negligible.

Example 3 (Lifted PUM Code for Network Coding) Let
N + 1 = 7, n = 8 ≤ m, k = 4, k(1) = 2 and therefore
d0 = d1 = 5, d01 = 7 and dσ = 3 (Table II). Let C be
a PUM(n, k, k(1)) code as in Definition 8. Construct the
lifting of C as in Definition 11.

Assume, Y = (Y(0) Y(1) . . . Y(6)) is given as output of
the operator channel and apply Algorithm 2.

After calculating the RRE (and filling the matrix with zero
rows as in (28)), let the number of errors, row erasures and
column erasures in each block be as in Table II. The results of
the different decoding steps of Algorithm 1 for error-erasure
decoding of PUM codes are also shown. In this example
the BRD condition (20) is fulfilled and correct decoding is
therefore guaranteed due to Theorem 5.

The code rate of C is 1/2 and as a comparison with the
(lifted) Gabidulin codes from [7], the last line in Table II
shows the decoding of a block Gabidulin code of rate 1/2 and
minimum rank distance d = 5. For fairness, the last block is
also decoded with a GA[8, 2] code. The block decoder fails in
Shots 1 and 5.

However, similar to the ongoing discussion whether block or
convolutional codes are better, it depends on the distribution
of the errors and erasures, i.e., on the channel, whether the
construction from [7] or ours performs better.

VII. APPLICATION TO RANDOM AFFINE
NETWORK CODING

In this section, we outline the application of our construction
of (P)UM codes in rank metric to error control in random
affine network coding (RANC), introduced by Gadouleau and
Goupil in [5]. In this model, the transmitted packets are
regarded as points in an affine space and the network performs

14

Table II
EXAMPLE FOR ERROR-ERASURE DECODING OF LIFTED (PARTIAL) UNIT MEMORY CODES BASED ON GABIDULIN CODES.

Shot i 0 1 2 3 4 5 6

%(i) + γ(i) 0 1 3 1 1 0 2

t(i) 2 2 0 1 0 3 2

PUM code Decoding with Cσ ,
block 0 with C0,
block N with C10

X
× × × X ×

X
Decoding with C0, C1 × X X ×
Decoding with C01 X X

Block code Decoding with GA[8, 4] X × X X X × X

affine linear combinations of the received packets, i.e., the sum
of the coefficients included in the linear combination equals
one. Instead of (linear) subspace codes, affine subspace codes
are considered, i.e., a code is a set of affine subspaces of an
affine space, where an affine subspace of dimension r is a
linear subspace of dimension r−1, which is translated by one
point. RANC increases the data rate by around one symbol per
packet compared to RLNC. For details, the reader is referred
to [5].

Similar to the linear lifting of Definition 2, an affine
lifting can be used to construct affine subspace codes. The
affine lifting of a code C is defined as follows: Let Îr−1 =

[0 Ir−1]T ∈ Fr×(r−1)
q , where 0 = (0 0 . . . 0)T ∈ F(r−1)×1

q .
Then, the subspace lifta(X) = Rq

(
[̂Ir−1 X]

)
denotes the

affine lifting of X ∈ Fr×(n−r+1)
q . Compared to the linear

lifting (Definition 2), the overhead is reduced by one column
and the size of X is increased by r symbols, which makes
affine lifting more efficient than linear lifting.

Based on the definition of affine lifting, we can immedi-
ately consider the affine lifting of our (P)UM code C from
Definition 11 by the following set of spaces:

lifta(C) def
=
{(
Rq
(
[̂In−1 C(0)T]

)
. . . Rq

(
[̂In−1 C(N)T]

))
:
(

Φ−1
β (C(0)) . . . Φ−1

β (C(N))
)
∈ C
}
,

where În−1 = [0 In−1]T ∈ Fn×(n−1)
q and therefore the

overhead is reduced by one column compared to Definition 11.
Alternatively, we can also define C such that C(i) ∈ F(m+1)×n

q ,
then the transmitted space has the same size as for RLNC, but
we transmit n additional information symbols over Fq .

As shown in [5, Section VI], the decoding of affine lifted
codes is not more complicated than the one of linear lifted
codes and, for our construction, it reduces in a similar way as
in Section VI to error-erasure decoding of the (P)UM code.

VIII. CONCLUSION

In this paper, we have considered convolutional codes in
rank metric, their decoding and their application to random
linear network coding.

First, we have shown general distance measures for con-
volutional codes based on a modified rank metric—the sum
rank metric—and have recalled upper bounds on the free rank

distance and the slope of (P)UM codes based on the sum
rank metric. Second, we have given an explicit construction
of (P)UM codes based on the generator matrices of Gabidulin
codes and have calculated its free rank distance and slope.
This (low-rate) construction achieves the upper bound on the
free rank distance. We have also generalized this construction
to arbitrary code rates. Third, we have presented an efficient
error-erasure decoding algorithm for our (P)UM construction.
The algorithm guarantees to correct errors up to half the active
row rank distance and its complexity is cubic in the length.
Finally, we have shown how constant-dimension codes, which
were constructed by lifting the (P)UM code, can be applied
for error control in random linear network coding and outlined
the application of (P)UM codes in rank metric to affine linear
network coding.

ACKNOWLEDGMENT

The authors would like to thank Martin Bossert, Alexander
Zeh, and Victor Zyablov for the valuable discussions and the
reviewers for their very helpful comments.

REFERENCES

[1] A. Wachter-Zeh and V. Sidorenko, “Rank Metric Convolutional Codes
for Random Linear Network Coding,” in IEEE Int. Symp. Network
Coding (Netcod), Jul. 2012.

[2] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network Information Flow,”
IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216, Aug. 2000.

[3] T. Ho, R. Kötter, M. Médard, D. R. Karger, and M. Effros, “The Benefits
of Coding over Routing in a Randomized Setting,” in IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2003, p. 442.

[4] T. Ho, M. Médard, R. Kötter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A Random Linear Network Coding Approach to Multicast,”
IEEE Trans. Inform. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[5] M. Gadouleau and A. Goupil, “A Matroid Framework for Noncoher-
ent Random Network Communications,” IEEE Trans. Inform. Theory,
vol. 57, no. 2, pp. 1031–1045, Feb. 2011.

[6] R. Kötter and F. R. Kschischang, “Coding for Errors and Erasures in
Random Network Coding,” IEEE Trans. Inform. Theory, vol. 54, no. 8,
pp. 3579–3591, Jul. 2008.

[7] D. Silva, F. R. Kschischang, and R. Kötter, “A Rank-Metric Approach
to Error Control in Random Network Coding,” IEEE Trans. Inform.
Theory, vol. 54, no. 9, pp. 3951–3967, 2008.

[8] P. Delsarte, “Bilinear Forms over a Finite Field with Applications to
Coding Theory,” J. Combin. Theory Ser. A, vol. 25, no. 3, pp. 226–241,
1978.

[9] E. M. Gabidulin, “Theory of Codes with Maximum Rank Distance,”
Probl. Inf. Transm., vol. 21, no. 1, pp. 3–16, 1985.

[10] R. M. Roth, “Maximum-Rank Array Codes and their Application to
Crisscross Error Correction,” IEEE Trans. Inform. Theory, vol. 37, no. 2,
pp. 328–336, 1991.

15

[11] R. W. Nóbrega and B. F. Uchôa-Filho, “Multishot Codes for Network
Coding Using Rank-Metric Codes,” in IEEE Wireless Network Coding
Conf. (WiNC), Jun. 2010, pp. 1–6.

[12] L.-N. Lee, “Short Unit-Memory Byte-Oriented Binary Convolutional
Codes Having Maximal Free Distance,” IEEE Trans. Inform. Theory,
pp. 349–352, May 1976.

[13] G. S. Lauer, “Some Optimal Partial-Unit Memory Codes,” IEEE Trans.
Inform. Theory, vol. 23, no. 2, pp. 240–243, Mar. 1979.

[14] V. V. Zyablov and V. R. Sidorenko, On Periodic (Partial) Unit Memory
Codes with Maximum Free Distance, ser. Lecture Notes in Computer
Science, 1994, vol. 829, pp. 74–79.

[15] F. Pollara, R. J. McEliece, and K. A. S. Abdel-Ghaffar, “Finite-State
Codes,” IEEE Trans. Inform. Theory, vol. 34, no. 5, pp. 1083–1089,
1988.

[16] J. Justesen, “Bounded Distance Decoding of Unit Memory Codes,” IEEE
Trans. Inform. Theory, vol. 39, no. 5, pp. 1616–1627, 1993.

[17] U. Dettmar and U. K. Sorger, “New Optimal Partial Unit Memory Codes
based on Extended BCH Codes,” Electronics Letters, vol. 29, no. 23,
pp. 2024–2025, Nov. 1993.

[18] U. Dettmar and S. Shavgulidze, “New Optimal Partial Unit Memory
Codes,” Electronic Letters, vol. 28, pp. 1748–1749, Aug. 1992.

[19] C. Thommesen and J. Justesen, “Bounds on Distances and Error
Exponents of Unit Memory Codes,” IEEE Trans. Inform. Theory, vol. 29,
no. 5, pp. 637–649, 1983.

[20] A. Wachter, V. Sidorenko, M. Bossert, and V. Zyablov, “Partial Unit
Memory Codes Based on Gabidulin Codes,” in IEEE Int. Symp. Inf.
Theory (ISIT), Aug. 2011, pp. 2487–2491.

[21] A. Wachter, V. R. Sidorenko, M. Bossert, and V. V. Zyablov, “On
(Partial) Unit Memory Codes Based on Gabidulin Codes,” Probl. Inf.
Transm., vol. 47, no. 2, pp. 38–51, 2011.

[22] U. Dettmar and U. K. Sorger, “Bounded Minimum Distance Decoding
of Unit Memory Codes,” IEEE Trans. Inform. Theory, vol. 41, no. 2,
pp. 591–596, 1995.

[23] E. Erez and M. Feder, “Convolutional Network Codes,” in IEEE Int.
Symp. Inf. Theory (ISIT), Jun. 2004, p. 146.

[24] S. Y. R. Li and R. W. Yeung, “On Convolutional Network Coding,” in
IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2006, pp. 1743–1747.

[25] K. Prasad and B. S. Rajan, “On Network-Error Correcting Convolutional
Codes Under the BSC Edge Error Model,” in IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2010, pp. 2418–2422.

[26] W. Guo, N. Cai, X. Shi, and M. Médard, “Localized Dimension Growth
in Random Network coding: A Convolutional Approach,” in IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2011, pp. 1156–1160.

[27] E. M. Gabidulin and N. I. Pilipchuk, “Error and Erasure Correcting
Algorithms for Rank Codes,” Des. Codes Cryptogr., vol. 49, no. 1-3,
pp. 105–122, 2008.

[28] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding. Wiley-IEEE Press, 1999.

[29] G. D. Forney, “Convolutional Codes I: Algebraic Structure,” IEEE Trans.
Inform. Theory, vol. 16, no. 6, pp. 720–738, 1970.

[30] S. Höst, R. Johannesson, K. S. Zigangirov, and V. V. Zyablov, “Ac-
tive Distances for Convolutional Codes,” IEEE Trans. Inform. Theory,
vol. 45, no. 2, pp. 658–669, Mar. 1999.

[31] R. Jordan, V. Pavlushkov, and V. V. Zyablov, “Maximum Slope Con-
volutional Codes,” IEEE Trans. Inform. Theory, vol. 50, no. 10, pp.
2511–2526, 2004.

[32] R. Jordan, “Design Apects of Woven Convolutional Coding,” Ph.D.
dissertation, Ulm University, Ulm, Germany, Apr. 2002.

[33] A. Wachter-Zeh, M. Stinner, and M. Bossert, “Efficient Decoding of
Partial Unit Memory Codes of Arbitrary Rate,” in IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2012, pp. 2356–2360.

[34] R. Johannesson and Z.-X. Wan, “A Linear Algebra Approach to Minimal
Convolutional Encoders,” IEEE Trans. Inform. Theory, vol. 39, no. 4,
pp. 1219–1233, Jul. 1993.

[35] R. Lidl and H. Niederreiter, Finite Fields, ser. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, Oct. 1996.

[36] U. Dettmar, “Partial Unit Memory Codes,” Ph.D. dissertation, University
of Darmstadt, Darmstadt, Germany, Jun. 1994.

	I Introduction
	II Preliminaries
	II-A Notations
	II-B Rank Metric and Gabidulin Codes
	II-C Lifted Gabidulin Codes
	II-D Convolutional Codes and (Partial) Unit Memory Codes

	III Distance Measures for Convolutional Codes in Rank Metric
	III-A Distance Parameters and Trellis Description
	III-B Upper Bounds on Distances of (P)UM Codes

	IV Construction of Convolutional Codes in Rank Metric
	IV-A Low-Rate Code Construction
	IV-B Construction of Arbitrary Code Rate

	V Error-Erasure Decoding of PUM Gabidulin Codes
	V-A Bounded Row Distance Condition and Decoding Algorithm
	V-B Proof of Correctness
	V-C Decoding of the Arbitrary-Rate Code Construction

	VI Application to Random Linear Network Coding
	VI-A Multi-Shot Transmission of Lifted PUM Codes
	VI-B Decoding of Lifted PUM Codes in the Operator Channel

	VII Application to Random Affine Network Coding
	VIII Conclusion
	References

