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Abstract—Random key graphs form a class of random intersec-
tion graphs and are naturally induced by the random key predis-
tribution scheme of Eschenauer and Gligor for securing wireless
sensor network (WSN) communications. Random key graphs
have received much interest recently, owing in part to their
wide applicability in various domains including recommender
systems, social networks, secure sensor networks, clustering and
classification analysis, and cryptanalysis to name a few. In this
paper, we study connectivity properties of random key graphs
in the presence of unreliable links. Unreliability of the edges are
captured by independent Bernoulli random variables, rendering
edges of the graph to be on or off independently from each
other. The resulting model is an intersection of a random key
graph and an Erdős–Rényi graph, and is expected to be useful
in capturing various real-world networks; e.g., with secure WSN
applications in mind, link unreliability can be attributed to harsh
environmental conditions severely impairing transmissions. We
present conditions on how to scale this model’s parameters so that
i) the minimum node degree in the graph is at least k, and ii) the
graph is k-connected, both with high probability as the number
of nodes becomes large. The results are given in the form of zero-
one laws with critical thresholds identified and shown to coincide
for both graph properties. These findings improve the previous
results by Rybarczyk on the k-connectivity of random key graphs
(with reliable links), as well as the zero-one laws by Yağan on
the 1-connectivity of random key graphs with unreliable links.

Index Terms—Random key graphs, Erdős-Rényi graphs, k-
connectivity, minimum node degree, sensor networks.

I. INTRODUCTION

Random key graphs have received significant interest re-

cently with applications spanning key predistribution in secure

wireless sensor networks (WSNs) [2], [5], [8], [9], [13], social

networks [7], [18], [41], recommender systems [27], clustering

and classification analysis [4], [19], cryptanalysis of hash func-

tions [3], circuit design [35], and the modeling of epidemics

[1] and “small-world” networks [38]. They belong to a larger

class of random graphs known as random intersection graphs

[2]–[7], [10], [14], [28], [34], [35]; in fact, they are referred

to as uniform random intersection graphs by some authors [2],

[3], [6], [28], [32]–[34], [45], [46].

To fix the terminology, we will describe random key graphs

in the context of secure WSNs, where they have originated
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from. Security is expected to be a key challenge in resource

constrained sensor networks. A widely accepted solution for

securing WSN communications is the random predistribution

of cryptographic keys to sensor nodes, and utilization of

symmetric-key encryption modes [17], [21], [31] to ensure

message secrecy and authenticity. Among various key pre-

distribution algorithms proposed to date, the original scheme

by Eschenauer and Gligor (EG) [13] is still the most widely

recognized one. According to the EG scheme, each of the

n sensors is assigned Kn distinct keys that are selected uni-

formly at random from a key pool of size Pn. Two sensors can

then securely communicate over an existing communication

link if they have at least one key in common; i.e., if they share

a common key. This notion of adjacency defines the random

key graph, hereafter denoted by G(n,Kn, Pn). For generality,

Kn and Pn are assumed to scale with the number of nodes n,

with the natural condition 1 ≤ Kn ≤ Pn always imposed.

In this paper, we study connectivity properties of random

key graphs in the presence of unreliable links. Unreliability

of the edges are captured by independent Bernoulli random

variables, rendering each edge of G(n;Kn, Pn) to be on (with

probability pn) or off (with probability 1− pn) independently

from all other edges. Put differently, we consider an Erdős–

Rényi (ER) graph G(n; pn) [11] on the same set of n
vertices, with edges appearing between any pair of vertices

independently with probability pn. A random key graph with

unreliable links thus corresponds to the intersection of a

random key graph and an ER graph. Hereafter, we denote

this graph by Gon = G(n;Kn, pn)∩G(n; pn); see Section III

for precise definitions.

Just like the random key graph, the Gon model can be used

in various applications, particularly when links are expected to

be unreliable. For example, in a secure WSN application, links

might be unreliable due to wireless media of the communica-

tion, or due to physical obstacles and altering environmental

conditions severally impairing the transmission. We refer the

reader to [39] and [41] for two other applications of Gon: i)

secure connectivity of WSNs under an on-off channel model,

and ii) large scale, distributed publish-subscribe services in

online social networks, respectively.

The main goal of this paper to study k-connectivity of Gon.

A network (or graph) is said to be k-connected if for each

pair of nodes there exist at least k mutually disjoint paths

connecting them. An equivalent definition of k-connectivity

is that a network is k-connected if the network remains

connected despite the failure of any (k − 1) nodes [29]; a

network is said to be simply connected if it is 1-connected. k-

connectivity is a fundamental graph property and is important
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for various applications of random key graphs. For example, in

a WSN application where sensor nodes operate autonomously

and physically unprotected, k-connectivity provides communi-

cation security against an adversary that is able to compromise

up to k−1 links by launching a sensor capture attack [8]; i.e.,

two sensors can communicate securely as long as at least one

of the k disjoint paths connecting them consists of links that

are not compromised by the adversary. Also, k-connectivity

improves resiliency against network disconnection due to

battery depletion, in both normal mode of operation and under

battery-depletion attacks [26]. Furthermore, it enables flexible

communication-load balancing across multiple paths so that

network energy consumption is distributed without penalizing

any access path [15].

Our main contributions are zero-one laws for two related

graph properties for Gon: i) the minimum node degree being at

least k, and ii) k-connectivity. Namely, we present conditions

on how to scale the model parameters Kn, Pn, pn such that

these properties hold with probability approaching to one and

zero, respectively, as the number of nodes n becomes large.

Our main results also imply a zero-one law for k-connectivity

in random key graph G(n,Kn, Pn) (see Corollary 2), and the

established result is shown to improve that given previously

by Rybarczyk [32]; see Section IV-D for details. Moreover,

for the 1-connectivity of Gon, we provide a stronger form of

the zero-one law as compared to that given by Yağan [37]; see

Section IV-D.

We organize the rest of the paper as follows: In Section

II, we survey the relevant results from the literature, while in

Section III we give a detailed description of the system model

Gon. The main results of the paper are presented (see Theorem

1) in Section IV, with a detailed discussion and comparisons

with the existing results given in Section IV-D; also, in Section

IV-E we provide numerical results that confirm Theorem 1.

The basic ideas that pave the way in establishing Theorem 1

are given in Section V. Sections VI through VIII are devoted

to establishing the zero-law part of Theorem 1, whereas the

one-law of Theorem 1 is established in Sections IX through

XIII. The paper is concluded in Section XIV, and some of the

technical details are given in Appendix A-C.

II. RELATED WORK

Erdős and Rényi [11] and Gilbert [16] introduces the

random graph G(n, p), which is defined on n nodes and there

exists an edge between any two nodes with probability p
independently of all other edges. The probability p can also be

a function of n, in which case we refer to it as pn. Throughout

the paper, we refer to the random graph G(n, pn) as an Erdős-

Rényi (ER) graph following the convention in the literature.

Erdős and Rényi [11] prove that when pn is lnn+αn

n ,

graph G(n, pn) is asymptotically almost surely1 (a.a.s.) con-

nected (resp., not connected) if limn→∞ αn = +∞ (resp.,

limn→∞ αn = −∞). In later work [12], they further explore

k-connectivity [30] in G(n, pn) and show that if pn =

1We say that an event takes place asymptotically almost surely if its
probability approaches to 1 as n → ∞. Also, we use “resp.” as a shorthand
for “respectively”.

lnn+(k−1) ln lnn+αn

n , G(n, pn) is a.a.s. k-connected (resp., not

k-connected) if limn→∞ αn = +∞ (resp., limn→∞ αn =
−∞).

Previous work [2], [32], [39] investigates the zero-one law

for connectivity in random key graph G(n,Kn, Pn), where Pn

and Kn are the key pool size and the key ring size, respec-

tively. Blackburn and Gerke [2] prove that if Kn ≥ 2 and Pn =
⌊nξ⌋, where ξ is a positive constant, G(n,Kn, Pn) is a.a.s.

connected (resp., not connected) if lim infn→+∞
K2

nn
Pn lnn > 1

(resp., lim supn→+∞
K2

nn
Pn lnn < 1). Yağan and Makowski [39]

demonstrate that if2 Kn ≥ 2, Pn = Ω(n) and
K2

n

Pn
= lnn+αn

n ,

then G(n,Kn, Pn) is a.a.s. connected (resp., not connected)

if limn→∞ αn = +∞ (resp., limn→∞ αn = −∞). Rybarczyk

[32] obtains a stronger result without requiring Pn = Ω(n).
In particular, she derives the asymptotically exact probability

of connectivity in G(n,Kn, Pn) as follows: under Kn ≥ 2,

if the sequence αn defined through
K2

n

Pn
= lnn+αn

n has a

limit α∗ ∈ [−∞,∞], then the probability of G(n,Kn, Pn)

being connected approaches to e−e−α∗

as n → ∞. This

asymptotically exact probability result is stronger than a zero–

one law since the latter can be obtained by setting α∗ as ∞ and

−∞ in the former. Rybarczyk also establishes [33, Remark 1,

p. 5] a zero-one law for k-connectivity in G(n,Kn, Pn) by

showing the similarity between G(n,Kn, Pn) and a random

intersection graph [5] via a coupling argument. Specifically,

she proves that if Pn = Θ(nξ) for some ξ > 1 and
K2

n

Pn
= lnn+(k−1) ln lnn+αn

n , then the G(n,Kn, Pn) is a.a.s.

k-connected (resp., not k-connected) if limn→∞ αn = +∞
(resp., limn→∞ αn = −∞).

Recently Yağan [37] gives a zero-one law for connectivity

(i.e., 1-connectivity) in graph G(n,Kn, Pn)∩G(n, pn), which

is the intersection of random key graph G(n,Kn, Pn) and

random graph G(n, pn), and clearly is equivalent to our key

graph Gon; see Section III. Specifically, he proves that if

Kn ≥ 2, Pn = Ω(n) and pn·
[

1− (Pn−Kn
Kn

)
(Pn
Kn

)

]

∼ c lnn
n hold, and

limn→∞(pn lnn) exists, then graph G(n,Kn, Pn)∩G(n, pn)
is asymptotically almost surely connected (resp., not con-

nected) if c > 1 (resp., c < 1). A comparison of our results

with the related work is given in Section IV-D.

After the submission of this paper, we have derived

the asymptotically exact probability of k-connectivity in

G(n,Kn, Pn) [45] (resp., Gon [44]). Based on the proofs in

this paper, we show i) that [45] under Pn = Ω(n), if the

sequence αn defined through
K2

n

Pn
= lnn+(k−1) ln lnn+αn

n has

a limit α∗ ∈ [−∞,∞], then the probability of G(n,Kn, Pn)

2We use the standard asymptotic notation o(·), O(·),Θ(·),Ω(·),∼. That
is, given two positive sequences fn and gn,

1) fn = o (gn) means limn→∞

fn
gn

= 0.

2) fn = O (gn) means that there exist positive constants c and N such
that fn ≤ cgn for all n ≥ N .

3) fn = Ω(gn) means that there exist positive constants c and N such
that fn ≥ cgn for all n ≥ N .

4) fn = Θ(gn) means that there exist positive constants c1, c2 and N
such that c1gn ≤ fn ≤ c2gn for all n ≥ N .

5) fn ∼ gn means that limn→∞

fn
gn

= 1; i.e., fn and gn are

asymptotically equivalent.
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being k-connected converges to e−
e−α∗

(k−1)! as n → ∞, and ii)

that [44] under Pn = Ω(n) and Kn

Pn
= o(1), if the sequence

αn defined through pn ·
[

1− (Pn−Kn
Kn

)
(Pn
Kn

)

]

= lnn+(k−1) ln lnn+αn

n

has a limit α∗ ∈ [−∞,∞], then the probability of Gon being

k-connected converges to e−
e−α∗

(k−1)! as n → ∞.

III. SYSTEM MODEL Gon

Consider a vertex set V = {v1, v2, . . . , vn}. Each node

vi ∈ V is assigned a key ring Si that consists of Kn distinct

keys selected uniformly at random from a key pool P of

size Pn. The random key graph G(n,Kn, Pn) is defined on

the vertex set V such that two distinct nodes vi and vj are

adjacent, denoted Kij , if their key rings have at least one key

in common; i.e.,

Kij = [Si ∩ Sj 6= ∅].
For distinct nodes vx and vy , we let Sxy denote the intersection

of their key rings Sx and Sy; i.e., Sxy = Sx ∩ Sy .

Our main interest is to study random key graphs whose

links are unreliable. In particular, we assume that each link is

on with probability pn, or off with probability 1 − pn, inde-

pendently from any other link. Namely, with Cij denoting the

event that link between vi and vj is on, {Cij , 1 ≤ i < j ≤ n}
are mutually independent such that

P [Cij ] = pn, 1 ≤ i < j ≤ n. (1)

This unreliable link model can be represented [11] by an

Erdős-Rényi (ER) graph G(n, pn) on the vertices V such that

there exists an edge between nodes vi and vj if the link

between them is on; i.e., if the event Cij takes place.

Finally, the graph Gon(n,Kn, Pn, pn) is defined on the

vertices V such that two distinct nodes vi and vj have an

edge in between, denoted Eij , if the events Kij and Cij take

place at the same time. In other words, we have

Eij = Kij ∩ Cij , 1 ≤ i < j ≤ n (2)

so that

Gon(n,Kn, Pn, pn) = G(n,Kn, Pn) ∩G(n, pn). (3)

Throughout, we simplify the notation by writing Gon instead

of Gon(n,Kn, Pn, pn). Thus, our main model Gon is an

intersection of a random key graph and an ER graph.

Throughout, we let ps(Kn, Pn) be the probability that the

key rings of two distinct nodes share at least one key and

let pe(Kn, Pn, pn) be the probability that there exists a link

between two distinct nodes in Gon. For simplicity, we write

ps(Kn, Pn) as ps and write pe(Kn, Pn, pn) as pe. Then for

any two distinct nodes vi and vj , we have

ps := P[Kij ]. (4)

It is easy to derive ps in terms of Kn and Pn as shown in

previous work [2], [32], [39]. In fact, we have

ps = P[Si ∩ Sj 6= ∅] =







1− (Pn−Kn
Kn

)
(Pn
Kn

)
, if Pn ≥ 2Kn,

1 if Pn < 2Kn.
(5)

Given (2), the independence of the events Cij and Kij gives

pe := P[Eij ] = P[Cij ] · P[Kij ] = pn · ps (6)

from (1) and (4). Substituting (5) into (6), we obtain

pe = pn ·
[

1−
(

Pn−Kn

Kn

)

(

Pn

Kn

)

]

if Pn ≥ 2Kn. (7)

IV. MAIN RESULTS AND DISCUSSION

A. The Main Result

The main result of this paper, given below, establishes

zero-one laws for k-connectivity and for the property that

the minimum node degree is no less than k in graph Gon.

Throughout this paper, k is a positive integer and does not

scale with n. Also, we let N (resp., N0) stand for the set of

all non-negative (resp., positive) integers.

We refer to any pair of mappings K,P : N0 → N0 as a

scaling as long as it satisfies the natural conditions

Kn ≤ Pn, n = 1, 2, . . . . (8)

Similarly, any mapping p : N0 → (0, 1) defines a scaling.

Theorem 1. Consider scalings K,P : N0 → N0, p : N0 →
(0, 1) such that Kn ≥ 2 for all n sufficiently large. We define

a sequence α : N0 → R such that for any n ∈ N0, we have

pe =
lnn+ (k − 1) ln lnn+ αn

n
. (9)

The properties (a) and (b) below hold.

(a) If
K2

n

Pn
= o(1) and either there exists ǫ > 0 such that

pen > ǫ holds for all n sufficiently large or limn→∞ pen = 0,

then

lim
n→∞

P [Gon is k-connected ] = 0 if lim
n→∞

αn = −∞,

(10)

and

lim
n→∞

P

[

Minimum node degree

of Gon is no less than k

]

= 0 if lim
n→∞

αn = −∞.

(11)

(b) If Pn = Ω(n) and Kn

Pn
= o(1), then

lim
n→∞

P [Gon is k-connected ] = 1 if lim
n→∞

αn = ∞, (12)

and

lim
n→∞

P

[

Minimum node degree

of Gon is no less than k

]

= 1 if lim
n→∞

αn = ∞.

(13)

Note that if we combine (10) and (12), we obtain the zero-

one law for k-connectivity in Gon, whereas combining (11)

and (13) leads to the zero-one law for the minimum node

degree. Therefore, Theorem 1 presents the zero-one laws of

k-connectivity and the minimum node degree in graph Gon.

We also see from (9) that the critical scaling for both properties

is given by pe = lnn+(k−1) ln lnn
n . The sequence αn : N0 →

R defined through (9) therefore measures by how much the

probability pe deviates from the critical scaling.

3
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In case (b) of Theorem 1, the conditions Pn = Ω(n) and
Kn

Pn
= o(1) indicate that the size of the key pool Pn should

grow at least linearly with the number of sensor nodes in

the network, and should grow unboundedly with the size of

each key ring. These conditions are enforced here merely for

technical reasons, but they hold trivially in practical wireless

sensor network applications [8], [9], [13]. Again, the condition
K2

n

Pn
= o(1) enforced for the zero-law in Theorem 1 is not a

stringent one since the Pn is expected to be several orders of

magnitude larger than Kn. Finally, the condition that either

pen > ǫ > 0 for all n large or limn→∞ pen = 0 is imposed to

avoid degenerate situations. In most cases of interest it holds

that pen > ǫ > 0 as otherwise the graph Gon becomes trivially

disconnected. To see this, notice that pen is an upper-bound

on the expected degree of a node and that the expected number

of edges in the graph is less than pen
2; yet, a connected graph

on n nodes must have at least n− 1 edges.

B. Results with an approximation of probability ps

An analog of Theorem 1 can be given with a simpler form

of the scaling (9); i.e., with ps replaced by the more easily

expressed quantity K2
n/Pn, and hence with pe = pnK

2
n/Pn.

In fact, in the case of random key graph G(n,Kn, Pn) it is a

common practice [2], [32], [39] to replace ps by
K2

n

Pn
, owing

to the fact [39] that

ps ∼
K2

n

Pn
if

K2
n

Pn
= o(1). (14)

However, when random key graph G(n,Kn, Pn) is intersected

with an ER graph G(n, pn) (as in the case of Gon) the

simplification does not occur naturally (even under (14)), and

as seen below, simpler forms of the zero-one laws are obtained

at the expense of extra conditions enforced on the parameters

Kn and Pn.

Corollary 1. Consider a positive integer k, and scalings

K,P : N0 → N0, p : N0 → (0, 1) such that Kn ≥ 2 for

all n sufficiently large. We define a sequence α : N0 → R

such that for any n ∈ N0, we have

pn · K
2
n

Pn
=

lnn+ (k − 1) ln lnn+ αn

n
. (15)

The properties (a) and (b) below hold.

(a) If
K2

n

Pn
= O( 1

lnn ) and limn→∞(lnn+ (k − 1) ln lnn+
αn) = ∞, then

lim
n→∞

P [Gon is k-connected ] = 0 if lim
n→∞

αn = −∞,

(16)

and

lim
n→∞

P

[

Minimum node degree

of Gon is no less than k

]

= 0 if lim
n→∞

αn = −∞.

(17)

(b) If Pn = Ω(n) and
K2

n

Pn
= O( 1

lnn ), then

lim
n→∞

P [Gon is k-connected ] = 1 if lim
n→∞

αn = ∞, (18)

and

lim
n→∞

P

[

Minimum node degree

of Gon is no less than k

]

= 1 if lim
n→∞

αn = ∞.

(19)

A proof of Corollary 1 can be found in Section IV-F. Note

that the condition
K2

n

Pn
= O( 1

lnn ) enforced in Corollary 1

implies both Kn

Pn
= o(1) and

K2
n

Pn
= o(1), and thus it is a

stronger condition than those enforced in Theorem 1.

C. A Zero-One Law for k-Connectivity in Random Key Graphs

We now provide a useful corollary of Theorem 1 that gives

a zero-one law for k-connectivity in the random key graph

G(n,Kn, Pn). As discussed in Section IV-D below, this result

improves the one given implicitly by Rybarczyk [33].

Corollary 2. Consider a positive integer k, and scalings

K,P : N0 → N0 such that Kn ≥ 2 for all n sufficiently

large. With α : N0 → R given by

K2
n

Pn
=

lnn+ (k − 1) ln lnn+ αn

n
, n = 1, 2, . . . , (20)

the following two properties hold.

(a) If either there exists an ǫ > 0 such that n
K2

n

Pn
> ǫ for

all n sufficiently large, or limn→∞ n
K2

n

Pn
= 0, then we have

lim
n→∞

P [G(n,Kn, Pn) is k-connected ] = 0 if lim
n→∞

αn = −∞.

(b) If Pn = Ω(n), then we have

lim
n→∞

P [G(n,Kn, Pn) is k-connected ] = 1 if lim
n→∞

αn = ∞.

A proof of Corollary 2 can be found in Section IV-G.

D. Discussion and Comparison with Related Results

As already noted in the literature [2], [11], [12], [32],

[33], [39], Erdős-Rényi graph G(n, pn) and random key graph

G(n,Kn, Pn) have similar k-connectivity properties when

they are matched through their link probabilities; i.e. when

pn = ps with ps as defined in (5). In particular, Erdős and

Rényi [12] showed that if pn = lnn+(k−1) ln lnn+αn

n , then

G(n, pn) is asymptotically almost surely k-connected (resp.,

not k-connected) if limn→∞ αn = +∞ (resp., limn→∞ αn =
−∞). Similarly, Rybarczyk [33] has shown under some extra

conditions (i.e., Pn = Θ(nξ) with ξ > 1) that if ps =
lnn+(k−1) ln lnn+αn

n , then G(n,Kn, Pn) is almost surely k-

connected (resp., not k-connected) if limn→∞ αn = +∞
(resp., limn→∞ αn = −∞).

The analogy between these two results could be exploited to

conjecture similar k-connectivity results for our system model

Gon. To see this, recall from (3) that

Gon = G(n,Kn, Pn) ∩G(n, pn). (21)

Since G(n,Kn, Pn) and G(n, ps) have similar k-connectivity

properties, it would seem intuitive to replace G(n,Kn, Pn)
with G(n, ps) in the above equation (21). Then, using

Gon ≃ G(n, ps) ∩G(n, pn) = G(n, pnps) = G(n, pe),

4
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Fig. 1. Empirical probability that Gon(n,K,P, p) is 2-connected for p = 0.2,
p = 0.4, p = 0.6, p = 0.8 with n = 2000 and P = 10, 000. Vertical dashed
lines stand for the critical threshold of 2-connectivity asserted by Theorem 1.

we would automatically obtain Theorem 1 via the afore-

mentioned results of Erdős and Rényi [12]. Unfortunately,

such heuristic approaches can not be taken for granted as

G(n,Kn, Pn) 6= G(n, ps) in general. For instance, the two

graphs are shown [38], [40] to exhibit quite different charac-

teristics in terms of properties including clustering coefficient,

number of triangles, etc. To this end, Theorem 1 formally

validates the above intuition for the k-connectivity property,

and it is worth mentioning that we establish Theorem 1 with a

direct proof that does not rely on coupling arguments between

random key graph and ER graph.

We now compare our results with those of Rybarczyk [33]

for the k-connectivity of random key graph G(n,Kn, Pn). As

already noted, Rybarczyk [33, Remark 1, p. 5] has established

an analog of Corollary 2, but under assumptions much stronger

than ours. In particular, her result requires that Pn = Θ(nξ)
where ξ > 1. In comparison, Corollary 2 established here

enforces only that Pn ≥ Ω(n), which is clearly a much

weaker condition than Pn = Θ(nξ) with ξ > 1. More

importantly, our condition Pn ≥ Ω(n) requires (from (20))

only that Kn = Ω(
√
lnn) for the one-law to hold; i.e., for

Gon to be k-connected. However, the condition Pn = Θ(nξ)
with ξ > 1 enforced in [33] requires the key ring sizes

to satisfy Kn = Ω(
√
nξ−1 lnn) with ξ − 1 > 0. This

condition not only constitutes a much stronger requirement

than Kn = Ω(
√
lnn), but it also renders the k-connectivity

result given in [33] not applicable in the context of WSNs.

This is because Kn controls the number of keys kept in

each sensor’s memory, and should be very small [13] due to

limited memory and computational capability of sensor nodes;

in general Kn = O(lnn) is accepted [9] as a reasonable bound

on the key ring sizes.

Finally, we compare Theorem 1 with the zero-one law given

by Yağan [37] for the 1-connectivity of Gon. As mentioned in

Section II above, he shows that if

pe ∼ c
lnn

n
=

lnn+ (c− 1) lnn

n
(22)

then Gon is a.a.s. connected if c > 1, and it is a.a.s. not

connected if c < 1. This was done under the additional
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Fig. 2. Empirical probability that Gon(n,K,P, p) is k-connected for k =
4, 6, 8, and 10. We take n = 2000, P = 10, 000 and p = 0.2. Vertical dashed
lines stand for the critical threshold of k-connectivity asserted by Theorem 1.

conditions that Pn = Ω(n) (required only for the one-law)

and that limn→∞ pn lnn exists (required only for the zero-

law). On the other hand, Theorem 1 given here establishes

(by setting k = 1) that, if

pe =
lnn+ αn

n
(23)

then Gon is a.a.s. connected if limn→∞ αn = ∞, and it is

a.a.s. not connected if limn→∞ αn = −∞. This result relies

on the extra conditions Pn = Ω(n) and Kn

Pn
= o(1) for the

one-law and on
K2

n

Pn
= o(1) for the zero-law.

Comparing (22) and (23), we see that our 1-connectivity

result for Gon is somewhat more fine-grained than Yağan’s

[37]. This is because, a deviation of αn = ±Ω(lnn) is re-

quired to get the zero-one law in the form (22), whereas in our

formulation (23), it suffices to have an unbounded deviation;

e.g., even αn = ± ln ln · · · lnn will do. Put differently, we

cover the case of c = 1 in (22) (i.e., the case when pe ∼ lnn
n )

and show that Gon could be almost surely connected or not

connected, depending on the limit of αn; in fact, if (22) holds

with c > 1, we see from Theorem 1 that Gon is not only 1-

connected but also k-connected for any k = 1, 2, . . .. However,

it is worth noting that the additional conditions assumed in [37]

are weaker than those we enforce in Theorem 1 for k = 1.

E. Numerical Results

We now present numerical results to check the validity of

Theorem 1, particularly in the non-asymptotic regime. In all

experiments, we fix the number of nodes at n = 2000 and the

size of the key pool at P = 10, 000. For Figure 1, we consider

several different probabilities of links being on; specifically,

we have p = 0.2, 0.4, 0.6, 0.8, while varying the parameter

K from 5 to 23; recall that K stands for the number of

keys per node. For Figure 2, we fix p = 0.2 and vary K
from 16 to 29. For each parameter pair (K, p), we generate

200 independent samples of the graph Gon(n,K, P, p) and

count the number of times (out of a possible 200) that the

obtained graphs i) have minimum node degree no less than k
and ii) are k-connected, for k = 1, 2, . . .. Dividing the counts
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by 200, we obtain the (empirical) probabilities for the events

of interest. In all cases, we observe that Gon is k-connected

whenever its minimum node degree is no less than k, yielding

the same empirical probability for both events. This confirms

the asymptotic equivalence of the properties of k-connectivity

and the minimum node degree being no less than k in Gon as

stated in Theorem 1.

Figure 1 plots the empirical probability of 2-connectivity in

Gon versus K for different p values, while Figure 2 depicts the

empirical probability of k-connectivity in Gon versus K for

different k. For each curve, we also show the critical threshold

of k-connectivity asserted by Theorem 1 (viz. (9)) by a vertical

dashed line. Namely, the vertical dashed lines stand for the

minimum integer value of K that satisfies

pe = p ·
(

1−
(

P −K

K

)/(

P

K

))

>
lnn+ ln lnn

n
. (24)

Even with n = 2000, the threshold behavior in the probability

of k-connectivity is evident; it transitions from zero to one with

K varying very slightly from a certain value that is close to the

analytical prediction obtained from (24). Hence, we conclude

that the experimentally observed thresholds of k-connectivity

are in good agreement with our theoretical results.

F. A proof of Corollary 1

Consider pn, Kn and Pn as in the statement of Corollary

1 such that (15) holds. As explained above, conditions Kn

Pn
=

o(1) and
K2

n

Pn
= o(1) both hold. The proof is based on Theorem

1. Namely, we will show that if the sequence α′ : N0 → R is

defined such that

pe =
lnn+ (k − 1) ln lnn+ α′

n

n
(25)

for any n ∈ N0, then it holds that

α′
n = αn ±O(1) (26)

under the enforced assumptions. In view of limn→∞(lnn +
(k−1) ln lnn+αn) = ∞ and (26), we get limn→∞ pen = ∞
from (25). Thus, for any ǫ > 0, we have pen > ǫ for

all n sufficiently large. Hence, all the conditions enforced

by Theorem 1 are met, and under (25) and (26), Corollary

1 follows from Theorem 1 since limn→∞ α′
n = ±∞ if

limn→∞ αn = ±∞.

We now establish (26). First, as seen by the analysis given

in Section V-B below, we can introduce the extra condition

αn = o(lnn) in proving part (b) of Corollary 1; i.e., in proving

the one-law under the condition limn→∞ αn = ∞. This yields

pn
K2

n

Pn
= O( ln n

n ) under (15). Also, in the case limn→∞ αn =
−∞, we have αn < 0 for all n sufficiently large so that

pn
K2

n

Pn
= O( ln n

n ). Now, in order to establish (26), we observe

from part (a) of Lemma 83 that

ps =
K2

n

Pn
±O

(

K4
n

P 2
n

)

. (27)

3Except Fact 1 and Lemmas 1-6, the statements of other facts and lemmas
are all given in Appendix A.

Then, from (27) and the fact that pe = pspn, we get

pe = pn · K
2
n

Pn
± pn · K

2
n

Pn
·O
(

K2
n

Pn

)

. (28)

Substituting (15), pn
K2

n

Pn
= O( lnn

n ) and
K2

n

Pn
= O

(

1
lnn

)

into

(28), we find

pe =
lnn+ (k − 1) ln lnn+ αn ±O(1)

n
. (29)

Comparing the above relation with (25), the desired conclusion

(26) follows. �

G. A proof of Corollary 2

We first establish the zero-law. Pick Kn, Pn such that (20)

holds with limn→∞ αn = −∞. It is clear that we have αn < 0

for all n sufficiently large so that
K2

n

Pn
= O( lnn

n ) = o(1). In

view of (27) we thus get

ps =
lnn+ (k − 1) ln lnn+ αn ± o(1)

n
, n = 1, 2, . . .

Let pn = 1 for all n. In this case, graph Gon becomes

equivalent to G(n,Kn, Pn) with

pe =
lnn+ (k − 1) ln lnn+ αn ± o(1)

n
, n = 1, 2, . . .

(30)

From (30) and (20), we have pen = n
K2

n

Pn
± o(1) so that

i) if there exists an ǫ > 0 such that n
K2

n

Pn
> ǫ, then there

exists an ǫ′ > 0 such that pen > ǫ′ for all n sufficiently

large and ii) if limn→∞ n
K2

n

Pn
= 0, then limn→∞ pen = 0.

Thus, all the conditions enforced by part (a) of Theorem 1

are satisfied for the given Kn, Pn and pn. Comparing (30)

with (9), we get limn→∞ αn ± o(1) = −∞ and the zero law

limn→∞ P [G(n,Kn, Pn) is k-connected ] = 0 follows from

(10) of Theorem 1.

We now establish the one-law. Pick Kn, Pn such that (20)

holds with limn→∞ αn = +∞, Pn = Ω(n) and Kn ≥ 2
for all n sufficiently large. In view of [39, Lemma 6.1], there

exists K̃n, P̃n such that K̃n ≥ 2 for all n sufficiently large,

K̃n ≤ Kn and P̃n = Pn, n = 1, 2, . . . ,

and

K̃2
n

P̃n

=
lnn+ (k − 1) ln lnn+ α̃n

n
, n = 1, 2, . . . , (31)

with

α̃n = O(lnn) and lim
n→∞

α̃n = ∞.

By an easy coupling argument, it is easy to check that

P

[

G(n, K̃n, P̃n) is k-connected
]

≤ P [G(n,Kn, Pn) is k-connected ] .

Therefore, the one-law proof will be completed upon showing

lim
n→∞

P

[

G(n, K̃n, P̃n) is k-connected
]

= 1.
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Under (31) we have
K̃2

n

P̃n
= O( ln n

n ) = o(1) since α̃n =

O(lnn). It also follows that K̃n

P̃n
= o(1). In view of (27),

we get

p̃s =
lnn+ (k − 1) ln lnn+ α̃n ± o(1)

n
, n = 1, 2, . . . ,

and with pn = 1 for all n sufficiently large, we obtain

p̃e =
lnn+ (k − 1) ln lnn+ α̃n ± o(1)

n
, n = 1, 2, . . . ,

It is clear that limn→∞ α̃n ± o(1) = ∞. Thus, we get the

desired one-law by applying (12) of Theorem 1. �

V. BASIC IDEAS FOR PROVING THEOREM 1

A. k-Connectivity vs. Minimum Node Degree

It is easy to see that if a graph G is k-connected, then the

minimum node degree of G is at least k [29]. Therefore, we

have

[G is k-connected ] ⊆
[

Minimum node degree

of G is no less than k

]

and the inequality

P [G is k-connected ] ≤ P

[

Minimum node degree

of G is no less than k

]

follows immediately.

It is now clear that (11) implies (10) and (12) implies (13).

Thus, in order to prove Theorem 1, we only need to show (11)

under the conditions of case (a), and (12) under the conditions

of case (b).

B. Confining αn

As seen in Section V-A, Theorem 1 will follow if we

show (11) and (12) under the appropriate conditions. In this

subsection, we show that the extra condition αn = o(lnn) can

be introduced in the proof of (12). Namely, we will show that

part (b) of Theorem 1 under αn = o(lnn)

⇒ part (b) of Theorem 1 (32)

We write Gon as Gon(n,Kn, Pn, pn) and remember that

given Kn, Pn and pn, one can determine αn from (9); just

use (7).

Assume that part (b) of Theorem 1 holds under the extra

condition αn = o(lnn). The desired result (32) will follow if

we establish

lim
n→∞

P

[

G(n, K̃n, P̃n, p̃n) is k-connected
]

= 1 (33)

for any K̃n, P̃n and p̃n such that K̃n

P̃n
= o(1), P̃n = Ω(n), and

p̃e =
lnn+ (k − 1) ln lnn+ α̃n

n
(34)

holds with limn→∞ α̃n = +∞. We will prove (33) by a

coupling argument. Namely, we will show that there exist

scalings K̂n, P̂n and p̂n such that

K̂n

P̂n

= o(1) and P̂n = Ω(n) (35)

and

p̂e =
lnn+ (k − 1) ln lnn+ α̂n

n
(36)

with

α̂n = o(lnn) and lim
n→∞

α̂n = ∞, (37)

and that we have

P[Gon(n, K̃n, P̃n, p̃n) is k-connected ]

≥ P[Gon(n, K̂n, P̂n, p̂n) is k-connected ]. (38)

Notice that K̂n, P̂n and p̂n satisfy all the conditions enforced

by part (b) of Theorem 1 together with the extra condition

α̂n = o(lnn). Thus, we get

lim
n→∞

P[Gon(n, K̂n, P̂n, p̂n) is k-connected ] = 1 (39)

by the initial assumption, and (33) follows immediately from

(38) and (39). Therefore, given any K̃n, P̃n and p̃n as stated

above, if we can show the existence of K̂n, P̂n and p̂n that

satisfy (35)-(38), then the desired conclusion (32) will follow.

We now establish the existence of K̂n, P̂n and p̂n that

satisfy (35)-(38). Let P̂n = P̃n and K̂n = K̃n so that (35)

is satisfied automatically. Let α̂n = min {α̃n, ln lnn}. Hence,

we have α̂n ≤ α̃n, α̂n = o(lnn) and limn→∞ α̂n = +∞ so

that (37) is also satisfied. The remaining parameter p̂n will be

defined through

p̂n ·



1−
(P̂n−K̂n

K̂n

)

( P̂n

K̂n

)



 =
lnn+ (k − 1) ln lnn+ α̂n

n
(40)

so that p̂e = p̂n ·
[

1− (P̂n−K̂n

K̂n
)

( P̂n

K̂n
)

]

satisfies (36). Thus, it remains

to establish (38).

Comparing (40) with (34), it follows that p̂n ≤ p̃n since

K̂n = K̃n, P̂n = P̃n and α̂n ≤ α̃n. Consider graphs

Gon(n, K̃n, P̃n, p̃n), Gon(n, K̃n, P̃n, p̂n) that have the same

number of nodes n, the same key ring size K̃n and the

same key pool size P̃n, but have different probabilities p̃n
and p̂n for a link to be on. We will show that there exists a

coupling such that Gon(n, K̃n, P̃n, p̂n) is a spanning subgraph

of Gon(n, K̃n, P̃n, p̃n) so that, as shown by Rybarczyk [33,

pp. 7], we have

P[Gon(n, K̃n, P̃n, p̂n) has property P]

≤ P[Gon(n, K̃n, P̃n, p̃n) has property P]. (41)

for any monotone increasing4 graph property P . The proper-

ties of being k-connected and having a minimum node degree

of at least k can easily be seen to be monotone increasing

graph properties. Therefore, (38) will follow immediately

(with K̂n = K̃n and P̂n = P̃n) if (41) holds.

We now give the coupling argument that leads to (41).

As seen from (3), Gon is the intersection of a random key

graph G(n,Kn, Pn) and an Erdős-Rényi graph G(n, pn).
Using graph coupling, we use the same random key graph

4A graph property is called monotone increasing if it holds under the
addition of edges in a graph.
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G(n, K̃n, P̃n) to help construct both Gon(n, K̃n, P̃n, p̃n) and

Gon(n, K̃n, P̃n, p̂n). Then we have

Gon(n, K̃n, P̃n, p̃n) = G(n, K̃n, P̃n) ∩G(n, p̃n) (42)

Gon(n, K̃n, P̃n, p̂n) = G(n, K̃n, P̃n) ∩G(n, p̂n). (43)

Since p̂n ≤ p̃n, we couple G(n, p̂n) and G(n, p̃n) in

the following manner. Pick independent Erdős-Rényi graphs

G(n, p̂n/p̃n) and G(n, p̃n) on the same vertex set. It is clear

that the intersection G(n, p̂n/p̃n) ∩ G(n, p̃n) will still be

an Erdős-Rényi graph (due to independence) with an edge

probability given by p̃n · p̂n

p̃n
= p̂n. In other words, we have

G(n, p̂n/p̃n) ∩ G(n, p̃n) = G(n, p̂n). Consequently, under

this coupling, G(n, p̂n) is a spanning subgraph of G(n, p̃n).
Then from (42) and (43), Gon(n, K̃n, P̃n, p̂n) is a spanning

subgraph of Gon(n, K̃n, P̃n, p̃n) and (41) follows.

C. The Method of First and Second Moments

The following fact is based on the method of the first and

second moments and will be useful in deriving zero-one laws

for the minimum node degree of a graph. We use E[·] to denote

the expectation operator.

Fact 1. For any graph G with n nodes, let Xℓ be the number

of nodes having degree ℓ in G, where ℓ = 0, 1, . . . , n−1; and

let δ be the minimum node degree of G. Then the following

three properties hold for any positive integer k.

(a) For any non-negative integer ℓ, if E[Xℓ] = o(1), then

lim
n→∞

P [δ = ℓ] = 0. (44)

(b) If (44) holds for ℓ = 0, 1, . . . , k − 1, then

lim
n→∞

P[δ ≥ k] = 1.

(c) If E
[

(

Xℓ

)2
]

∼
{

E
[

Xℓ

]}2
and E

[

Xℓ

]

→ +∞ as n →
∞ hold for some ℓ = 0, 1, . . . , k − 1, then

lim
n→∞

P[δ ≥ k] = 0.

A proof of Fact 1 is given in Appendix B-A.

D. Useful Notation for Graph Gon

We collect in this section some notation that will be used

throughout. For any event A, we let A be the complement of

A. Also, for sets Sa and Sb, the relative complement of Sa in

Sb is given by Sa \ Sb.

In graph Gon, for each node vi ∈ V , we define Ni as the

set of neighbors of node vi. For any two distinct nodes vx and

vy , there are (n−2) nodes other than vx and vy in graph Gon.

These (n− 2) nodes can be split into the four sets Nxy, Nxy,

Nxy and Nx y as follows. Let Nxy be the set of nodes that are

neighbors of both vx and vy; i.e., Nxy = Nx ∩Ny. Let Nxy

denote the set of nodes in V \ {vx, vy} that are neighbors of

vx, but are not neighbors of vy . Similarly, Nxy is defined as

the set of nodes in V \ {vx, vy} that are not neighbors of vx,

but are neighbors of vy . Finally, Nx y is the set of nodes in

V \ {vx, vy} that are not connected to either vx or vy .

For any three distinct nodes vx, vy and vj , recalling that

Exj (resp., Eyj) is the event that there exists a link between

nodes vx (resp., vy) and vj , we define

Exj∩yj := Exj ∩ Eyj , Exj∩yj := Exj ∩Eyj ,

Exj∩yj := Exj ∩ Eyj , and Exj∩yj := Exj ∩ Eyj .

In graph Gon, for any non-negative integer ℓ, let Xℓ be the

number of nodes having degree ℓ; let Dx,ℓ be the event that

node vx has degree ℓ. We define δ as the minimum node degree

of graph Gon, and define κ as the connectivity of graph Gon.

The connectivity of a graph is defined as the minimum number

of nodes whose deletion renders the graph disconnected; thus,

a graph is k-connected if and only if its connectivity is at

least k. Finally, a graph is said to be simply connected if its

connectivity is at least 1, i.e., if it is 1-connected.

VI. ESTABLISHING (11) (THE ZERO-LAW FOR THE

MINIMUM NODE DEGREE IN Gon)

Our main goal in this section is to establish (11) under the

following conditions:

(9),Kn ≥ 2 for all n sufficiently large ,
K2

n

Pn
= o(1) (45)

lim
n→+∞

αn = −∞ and pen > ǫ > 0 or lim
n→∞

pen = 0. (46)

From property (c) of Fact 1, we see that the proof will be

completed if we demonstrate the following two results under

the conditions (45) and (46):

lim
n→∞

E
[

Xℓ

]

= +∞, (47)

and

E

[

(

Xℓ

)2
]

∼
{

E
[

Xℓ

]}2
. (48)

for some ℓ = 0, 1, . . . , k − 1.

The first step in establishing (47) and (48) is to compute the

moments E [Xℓ] and E

[

(Xℓ)
2
]

. This step is taken in the next

Lemma. Recall that in graph Gon, Xℓ stands for the number

of nodes with degree ℓ for each ℓ = 0, 1, . . .. Also, Dx,ℓ is

the event that node vx has degree ℓ for each x = 1, 2, . . . , n.

Lemma 1. In Gon, for any non-negative integer ℓ and any

two distinct nodes vx and vy , we have

E
[

Xℓ

]

= nP [Dx,ℓ] , (49)

E

[

(

Xℓ

)2
]

= nP [Dx,ℓ] + n(n− 1)P [Dx,ℓ

⋂

Dy,ℓ] . (50)

Lemma 1 follows from the exchangeability of the indicator

random variables {1[Di,ℓ]; i = 1, . . . , n} upon writing Xℓ =
∑n

i=1 1[Di,ℓ]. Interested reader is referred to the full version

[41] for details.

In view of (49), we will obtain (47) once we show that

lim
n→+∞

(nP [Dx,ℓ]) = +∞. (51)

under (45) and (46). Also, from (49) and (50), we get

E

[

(

Xℓ

)2
]

{

E
[

Xℓ

]}2 =
1

nP [Dx,ℓ]
+

n− 1

n
· P [Dx,ℓ

⋂

Dy,ℓ]
{

P [Dx,ℓ]
}2 . (52)
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Thus, (48) will follow upon showing (51) and

P [Dx,ℓ

⋂

Dy,ℓ] ∼
{

P [Dx,ℓ]
}2

(53)

for some ℓ = 0, 1, . . . , k − 1 under (45) and (46).

We establish (51) and (53) from of the following two results.

Lemma 2. If pe = o
(

1√
n

)

, then for any non-negative integer

constant ℓ and any node vx,

P [Dx,ℓ] ∼ (ℓ!)
−1

(pen)
ℓ
e−pen. (54)

A proof of Lemma 2 is given in Appendix C-A.

Lemma 3. Let ps = o(1), Kn ≥ 2 for all n sufficiently

large, pe = lnn+(k−1) ln lnn+αn

n with limn→∞ αn = −∞.

Then, properties (a) and (b) below hold.

(a) If there exist an ǫ > 0 such that pen > ǫ for all n
sufficiently large, then for any non-negative integer constant ℓ
and any two distinct nodes vx and vy , we have

P [Dx,ℓ ∩Dy,ℓ] ∼ (ℓ!)−2 (pen)
2ℓ
e−2pen. (55)

(b) For any two distinct nodes vx and vy , we have

P [Dx,0 ∩Dy,0] ∼ e−2pen. (56)

Proof. Recalling that Exy is the event that nodes vx and vy
are adjacent, we have

P [Dx,ℓ ∩Dy,ℓ]

= P[Dx,ℓ ∩Dy,ℓ ∩ Exy] + P[Dx,ℓ ∩Dy,ℓ ∩ Exy]. (57)

Thus, Lemma 3 will follow from the following two results.

Proposition 1. Let ps = o(1), Kn ≥ 2 for all n sufficiently

large and pe =
lnn+(k−1) ln lnn+αn

n with limn→∞ αn = −∞.

Then, the following two properties hold.

(a) If there exist an ǫ > 0 such that pen > ǫ for all n
sufficiently large, then for any non-negative integer constant

ℓ, we have

P[Dx,ℓ ∩Dy,ℓ ∩ Exy] ∼ (ℓ!)−2 (pen)
2ℓ e−2pen. (58)

(b) We have

P[Dx,0 ∩Dy,0 ∩ Exy] ∼ e−2pen. (59)

Proposition 2. Let ps = o(1), Kn ≥ 2 for all n sufficiently

large and pe =
lnn+(k−1) ln lnn+αn

n with limn→∞ αn = −∞.

If there exists an ǫ > 0 such that pen > ǫ for all n sufficiently

large, then for any positive integer constant ℓ, we have

P[Dx,ℓ ∩Dy,ℓ ∩ Exy] = o
(

P[Dx,ℓ ∩Dy,ℓ ∩Exy]
)

. (60)

Propositions 1 and 2 are established in Section VII and

Section VIII, respectively. Now, we complete the proof of

Lemma 3. Under the condition pen > ǫ > 0, (55) follows

from (58) and (60) in view of (57). For ℓ = 0, we obtain (56)

by using (59) in (57) and noting that P[Dx,0∩Dy,0∩Exy] = 0
always holds; it is not possible for nodes vx and vy to have

degree zero and yet to have an edge in between.

We now complete the proof of (51) and (53) under (45) and

(46). First, in view of (9) and the condition limn→∞ αn =
−∞, we obtain pe ≤ lnn+(k−1) ln lnn

n for all n sufficiently

large. Thus, pe = o
(

1√
n

)

, and we use Lemma 2 to get

nP [Dx,ℓ] ∼ n · (ℓ!)−1
(pen)

ℓ
e−pen (61)

for each ℓ = 0, 1, . . .. The proof will be given in two steps.

First, in the case where there exists an ǫ > 0 such that pen > ǫ
for all n sufficiently large, we will establish (51) and (53) for

ℓ = k−1. Next, for the case where limn→∞ pen = 0, we will

show that (51) and (53) hold for ℓ = 0.

Assume now that pen > ǫ > 0 for all n sufficiently large.

Substituting (9) into (61) with ℓ = k − 1, we get

nP [Dx,k−1] (62)

∼ n · [(k − 1)!]−1 (pen)
k−1 e− lnn−(k−1) ln lnn−αn

= [(k − 1)!]−1

× (lnn+ (k − 1) ln lnn+ αn)
k−1

e−(k−1) ln lnn−αn .

Let

fn(k;αn)

:= (lnn+ (k − 1) ln lnn+ αn)
k−1 e−(k−1) ln lnn−αn ,

and observe that we have lnn+ (k − 1) ln lnn+ αn ≥ ǫ for

all n sufficiently large since pen > ǫ. On that range, fix n,

pick 0 < γ < 1 and consider the cases αn ≤ −(1 − γ) lnn
and αn > −(1− γ) lnn. In the former case, we have

fn(k;αn) ≥ ǫ · e−(k−1) ln lnn+(1−γ) lnn,

whereas in the latter we obtain

fn(k;αn) ≥ (γ lnn)
k−1

e−(k−1) ln lnn−αn = γk−1e−αn .

Thus, for all n sufficiently large, we have

fn(k;αn) ≥ min
{

ǫ · e−(k−1) ln lnn+(1−γ) lnn, γk−1e−αn

}

.

It is now easy to see that limn→∞ fn(k;αn) = ∞ since 0 <
γ < 1 and limn→∞ αn = −∞. Substituting this into (62), we

obtain (51) with ℓ = k − 1. In addition, from (54) of Lemma

2, and (55) of Lemma 3, it is clear that (53) follows with

ℓ = k − 1. As mentioned already, (51) and (53) imply (47)

and (48) in view of Lemma 1, and the zero-law (11) is now

established for the case when pen > ǫ > 0.

We now turn to the case where limn→∞ pen = p⋆e = 0.

This time, we let ℓ = 0 in (61) and obtain

nP [Dx,0] ∼ ne−pen ∼ n.

We clearly have (51) for ℓ = 0. Also, from (54) of Lemma 2

with ℓ = 0, and (56) of Lemma 3, we obtain (53) for ℓ = 0.

Having obtained (51) and (53) for ℓ = 0, we get (47) and (48)

and the zero-law (11) is now established from Fact 1 (c). �
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VII. A PROOF OF PROPOSITION 1

We start by noting that Dx,ℓ ∩ Dy,ℓ ∩ Exy stands for the

event that nodes vx and vy both have ℓ neighbors but are

not neighbors with each other. To compute its probability, we

specify all the possible cardinalities of sets Nxy , Nxy and Nxy,

defined in Section V-D. To this end, we define the series of

events Ah in the following manner

Ah = [|Nxy| = h]
⋂

[|Nxy| = ℓ− h]
⋂

[|Nxy| = ℓ − h] (63)

for each h = 0, 1, . . . , ℓ; here, |S| denotes the cardinality of

the discrete set S.

It is now a simple matter to check that

Dx,ℓ ∩Dy,ℓ ∩ Exy =
ℓ
⋃

h=0

(

Ah ∩Exy

)

. (64)

for each ℓ = 0, 1, . . .. Using (64) and the fact that the events

Ah (h = 0, 1, . . . , ℓ) are mutually exclusive, we obtain

P
[

Dx,ℓ ∩Dy,ℓ ∩ Exy

]

=

ℓ
∑

h=0

P
[

Ah ∩ Exy

]

. (65)

We begin computing the right hand side (R.H.S.) of (65) by

evaluating Exy . From (2), we have Exy = Kxy ∩Cxy . Hence

Exy = Kxy ∪ Cxy = Kxy ∪ (Kxy ∩ Cxy). (66)

Also, by definition we have

Kxy =

Kn
⋃

u=1

(|Sxy| = u). (67)

For each u = 1, 2, . . . ,Kn, we define event Xu as follows:

Xu = (|Sxy| = u) ∩ Cxy (68)

Applying (67) to (66) and using (68), we obtain

Exy = Kxy ∪
{[

Kn
⋃

u=1

(|Sxy| = u)

]

∩Cxy

}

= Kxy ∪
(

Kn
⋃

u=1

Xu

)

. (69)

From (69) and the fact that the events Kxy,X1,X2, . . . ,XKn

are mutually disjoint, we obtain

P
[

Ah ∩Exy

]

= P
[

Ah ∩Kxy

]

+

Kn
∑

u=1

P [Ah ∩ Xu] . (70)

Substituting (70) into (65), we get

P
[

Dx,ℓ ∩Dy,ℓ ∩ Exy

]

=
ℓ
∑

h=0

P
[

Ah ∩Kxy

]

+
ℓ
∑

h=0

Kn
∑

u=1

P [Ah ∩ Xu] . (71)

Proposition 1 will follow from the next two results.

Proposition 1.1. Let ℓ be a non-negative integer constant.

If ps = o(1), pe = lnn+(k−1) ln lnn+αn

n with limn→∞ αn =
−∞, then

ℓ
∑

h=0

P
[

Ah ∩Kxy

]

∼ (ℓ!)−2 (pen)
2ℓ e−2pen. (72)

Proposition 1.2. Let ℓ be a non-negative integer constant.

Consider ps = o(1), Kn ≥ 2 for all n sufficiently large and

pe =
lnn+(k−1) ln lnn+αn

n with limn→∞ αn = −∞. Then, the

following two properties hold.

(a) If there exists an ǫ > 0 such that pen > ǫ for all n
sufficiently large, then we have

ℓ
∑

h=0

Kn
∑

u=1

P [Ah ∩ Xu] = o

(

ℓ
∑

h=0

P
[

Ah ∩Kxy

]

)

. (73)

(b) We have

Kn
∑

u=1

P [A0 ∩ Xu] = o
(

P
[

A0 ∩Kxy

])

. (74)

In order to see why Proposition 1 follows from Propositions

1.1 and 1.2, consider ps and pe as stated in Proposition 1.

Then from Propositions 1.1 and 1.2, (72) and (73) hold.

Substituting (72) and (73) into (71), we get (58). Also, using

(72) with ℓ = 0 we get P
[

A0 ∩Kxy

]

∼ e−2pen. Using this

and (74) in (71) with ℓ = 0, we obtain (59) and Proposition

1 is then established.

The rest of this section is devoted to establishing Proposi-

tions 1.1 and 1.2. We will establish Proposition 2 in the next

Section VIII, and this will complete the proof of Lemma 3

and thus the zero-law (11).

A. A Proof of Proposition 1.1

Given P[Kxy] = 1− ps → 1 as n → ∞, it is clear that

ℓ
∑

h=0

P
[

Ah ∩Kxy

]

∼
ℓ
∑

h=0

P
[

Ah | Kxy

]

(75)

The next result evaluates a generalization of P
[

Ah | Kxy

]

. In

addition to the proof of Proposition 1.1 here, the proofs of

Propositions 1.2 and 2.1 also use Lemma 4.

Lemma 4. Let m1,m2 and m3 be non-negative integer

constants. We define event F as follows.

F := [|Nxy| = m1]
⋂

[|Nxy| = m2]
⋂

[|Nxy| = m3] . (76)

Then given u in {0, 1, . . . ,Kn} and pe =
lnn+(k−1) ln lnn+αn

n
with limn→∞ αn = −∞, we have

P [F | (|Sxy| = u)] ∼ nm1+m2+m3

m1!m2!m3!
· e−2pen+

pepnu
Kn

n

× {P[Exj∩yj | (|Sxy| = u)]}m1

× {P[Exj∩yj | (|Sxy| = u)]}m2

× {P[Exj∩yj | (|Sxy| = u)]}m3 (77)

with j distinct from x and y.

A proof of Lemma 4 is given in Appendix C-B.

10
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Given the definition of Ah in (63) and Kxy ⇔ (|Sxy| = 0),
we let m1 = h,m2 = m3 = ℓ− h and u = 0 in Lemma 4 in

order to compute P
[

Ah | Kxy

]

. We get

P
[

Ah | Kxy

]

∼ n2ℓ−h

h![(ℓ − h)!]2
· e−2pen ·

{

P[Exj∩yj | Kxy]
}h

× {P[Exj∩yj | Kxy]}ℓ−h{P[Exj∩yj | Kxy]}ℓ−h. (78)

In order to compute the R.H.S. of (78), we evaluate the

following three terms in turn:

P[Exj∩yj | Kxy],P[Exj∩yj | Kxy], and P[Exj∩yj | Kxy].

For the first term P[Exj∩yj | Kxy], we use Exj = Kxj ∩Cxj

and Eyj = Kyj ∩ Cyj to obtain

P[Exj∩yj | Kxy]

= P[(Cxj ∩ Cyj) ∩ (Kxj ∩Kyj) | Kxy].

= pn
2 · P[Kxj ∩Kyj | Kxy] (79)

Applying Lemma 9 (Appendix A-B) to (79) and using the

definition pe = pnps, we get

P[Exj∩yj | Kxy] ≤ pe
2. (80)

We now evaluate the second term P[Exj∩yj | Kxy]. It is

clear that Exj is independent of Kxy . Hence,

P[Exj | Kxy] = pe. (81)

Since pe =
lnn+(k−1) ln lnn+αn

n with limn→∞ αn = −∞, we

have pe = o
(

1√
n

)

. Together with (80), (81) this yields

P[Exj∩yj | Kxy] = P[Exj | Kxy]− P[Exj∩yj | Kxy]

= pe −O
(

pe
2
)

∼ pe. (82)

Similarly, for the third term P[Exj∩yj | Kxy], we have

P[Exj∩yj | Kxy] ∼ pe. (83)

Now we compute the R.H.S. of (78). Substituting (82) and

(83) into R.H.S. of (78), given constant ℓ, we obtain

P
[

Ah | Kxy

]

∼ n2ℓ−h

h![(ℓ − h)!]2
· e−2pen ·

{

P[Exj∩yj | Kxy]
}h · p2(ℓ−h)

e .

(84)

for each h = 0, 1, . . . , ℓ. Thus, for h = 0, we have

P
[

A0 | Kxy

]

∼ (ℓ!)−2(pen)
2ℓe−2pen. (85)

For h = 1, 2, . . . , ℓ, we use (80) and (84) to get

P
[

Ah | Kxy

]

P
[

A0 | Kxy

] ∼ n−h(ℓ!)2

h![(ℓ − h)!]2
{

P[Exj∩yj | Kxy]
}h

p−2h
e

≤ n−h(ℓ!)2

h![(ℓ − h)!]2
= o(1).

Thus, we have

P
[

Ah | Kxy

]

= o
(

P
[

A0 | Kxy

])

, h = 1, 2, . . . , ℓ. (86)

Applying (85) and (86) to (75), we obtain the desired conclu-

sion (72) (for Propostion 1.1) since ℓ is constant. �

B. A Proof of Proposition 1.2

Notice that (74) can be obtained from (73) by setting ℓ = 0.

Thus, in the discussion given below, we will establish (73) for

each ℓ = 0, 1, . . . under pen = Ω(1), and show that this extra

condition is not needed if ℓ = 0.

We start by finding an upper bound on the left hand side

(L.H.S.) of (73). Given the definition of Xu in (68), we obtain

P [Ah ∩ Xu] ≤ P [Ah ∩ (|Sxy| = u)] .

Then, we have

ℓ
∑

h=0

Kn
∑

u=1

P [Ah ∩ Xu]

≤
ℓ
∑

h=0

Kn
∑

u=1

P [Ah ∩ (|Sxy| = u)]

=

Kn
∑

u=1

{

P[|Sxy| = u] ·
ℓ
∑

h=0

P [Ah | (|Sxy| = u)]

}

. (87)

To compute the R.H.S. of (87), we first use Lemma 10 to get

P[|Sxy| = u] ≤ 1

u!

(

K2
n

Pn −Kn

)u

. (88)

Next, we compute P [Ah | (|Sxy| = u)]. Given (63), we let

m1 = h and m2 = m3 = ℓ− h in Lemma 4 and obtain

P [Ah | (|Sxy| = u)] ∼ n2ℓ−h

h![(ℓ− h)!]2
· e−2pen+

pepnu

Kn
n

× {P[Exj∩yj | (|Sxy| = u)]}h

× {P[Exj∩yj | (|Sxy| = u)]}ℓ−h

× {P[Exj∩yj | (|Sxy| = u)]}ℓ−h.

(89)

From Exj = Cxj ∩Kxj and Eyj = Cyj ∩Kyj , it is clear

that Exj and Eyj are independent of (|Sxy| = u). This leads

P[Exj∩yj | (|Sxy| = u)] ≤ P[Exj | (|Sxy| = u)] = pe (90)

P[Exj∩yj | (|Sxy| = u)] ≤ P[Exj | (|Sxy| = u)] = pe (91)

P[Exj∩yj | (|Sxy| = u)] ≤ P[Eyj | (|Sxy| = u)] = pe. (92)

Applying (90), (91) and (92) to (89), we obtain

P [Ah | (|Sxy| = u)] ≤ 2n2ℓ−h · e−2pen+
pepnnu

Kn · (pe)2ℓ−h

= 2e−2pen+
pepnnu

Kn (pen)
2ℓ−h

(93)

for all n sufficiently large.

Applying (93) to (87), we derive for all n sufficiently large

ℓ
∑

h=0

Kn
∑

u=1

P [Ah ∩ Xu]

≤
Kn
∑

u=1

{

P[|Sxy| = u] · 2e−2pen+
pnu
Kn

·pen ·
ℓ
∑

h=0

(pen)
2ℓ−h

}

.

(94)

Given (94), it is clear that (73) follows once we prove

R.H.S. of (94) = o

(

ℓ
∑

h=0

P
[

Ah ∩Kxy

]

)

. (95)

11
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Using pen = Ω(1), it follows that

ℓ
∑

h=0

(pen)
2ℓ−h

= O (pen)
2ℓ
. (96)

Notice that (96) follows trivially for ℓ = 0 without requiring

pen = Ω(1). Applying (88) and (96) to R.H.S. of (94), we get

R.H.S. of (94)

= O(1) · (pen)2ℓ e−2pen ·∑Kn

u=1

(

K2
n

Pn−Kn
· e

pn
Kn

·pen

)u

(97)

From (72) and (97), we have

R.H.S. of (94)

=
ℓ
∑

h=0

P
[

Ah ∩Kxy

]

·O((ℓ!)2) ·
Kn
∑

u=1

(

K2
n

Pn −Kn
· e pnpen

Kn

)u

.

(98)

If we show that

K2
n

Pn −Kn
· e pn

Kn
·pen = o(1), (99)

then we obtain

Kn
∑

u=1

(

K2
n

Pn −Kn
· e pnpen

Kn

)u

≤
K2

n

Pn−Kn
· e

pn
Kn

·pen

1− K2
n

Pn−Kn
· e

pn
Kn

·pen
= o(1),

(100)

leading to (73) given (98) and the fact that ℓ is constant.

Now we prove (99). Given pe = lnn+(k−1) ln lnn+αn

n with

limn→∞ αn = −∞ we have pe ≤ 3
2 · lnn

n for all sufficiently

large n. Recalling also that Kn ≥ 2, we get

e
pnpen
Kn ≤ e

3
4pn lnn. (101)

on the same range. From Lemma 8, property (c) (Appendix

A-B), it holds under ps = o(1) that ps ∼ K2
n

Pn
so that

K2
n

Pn
=

o(1) and Kn

Pn
= o(1). We now obtain

K2
n

Pn −Kn
∼ K2

n

Pn
∼ ps.

Then,
K2

n

Pn−Kn
≤ 2ps for all n sufficiently large. Hence, on the

same range, we see from (101) that

K2
n

Pn −Kn
· e pn

Kn
·pen ≤ 2ps · e

3
4pn lnn. (102)

In order to evaluate the R.H.S. of (102), we define

F (n) = 2ps · e
3
4pn lnn. (103)

With pnps = pe ≤ 3
2 · lnn

n for all n sufficiently large, we note

that

ps ≤
3

2

lnn

npn
. (104)

Now, fix n large enough such that (102) and (104) hold. We

consider the cases pn ≤ 1
lnn and pn > 1

lnn , separately. In

the former case, we have F (n) ≤ 2pse
3/4 immediately from

(103). In the latter case we use the bound (104) to get

F (n) ≤ 3
lnn

npn
e

3
4pn lnn < 3

(lnn)2

n
· n3/4

upon noting that pn ≤ 1. Combining the two bounds, we have

F (n) ≤ max
{

2pse
3/4 , 3n−1/4(lnn)2

}

(105)

for all n sufficiently large. Letting n grow large and recalling

that ps = o(1) we obtain limn→∞ F (n) = 0. This establishes

(99) in view of (102), and (95) follows from (98) and (100)

for constant ℓ. From (94) and (95), we finally establish the

desired conclusion (73). Note that (74) also follows since the

extra condition pen = Ω(1) is used only once in obtaining

(96) which holds trivially for ℓ = 0. The proof of Proposition

1.2 is thus completed. �

VIII. A PROOF OF PROPOSITION 2

Given (71) and Proposition 1.2 (property (a)), it is clear that

Proposition 2 will follow if we show for each ℓ = 1, 2 . . . that

P[Dx,ℓ ∩Dy,ℓ ∩ Exy] = o

(

ℓ
∑

h=0

P
[

Ah ∩Kxy

]

)

. (106)

In order to establish (106), we evaluate P[Dx,ℓ∩Dy,ℓ∩Exy]
proceeding similarly as in the proof of Proposition 1. To this

end, we define the series of events Bh in the following manner

Bh =(|Nxy| = h)
⋂

(|Nxy| = ℓ− h− 1)
⋂

(|Nxy| = ℓ− h− 1) . (107)

for each h = 0, 1, . . . , ℓ − 1. An analog of (64) follows

immediately for any positive integer ℓ.

Dx,ℓ ∩Dy,ℓ ∩ Exy =

ℓ−1
⋃

h=0

(Bh ∩ Exy) . (108)

The minus one term on ℓ is due to the fact that x and y are

adjacent on event Exy; there can be at most ℓ− 1 nodes that

are neighbors of both x and y on Dx,ℓ ∩Dy,ℓ ∩ Exy.

Given (108) and mutually exclusive events Bh (h =
0, 1, . . . , ℓ− 1), we obtain

P[Dx,ℓ ∩Dy,ℓ ∩ Exy] =

ℓ−1
∑

h=0

P [Bh ∩Exy] . (109)

We will establish Proposition 2 by obtaining the following

result which evaluates the R.H.S. of (109).

Proposition 2.1. Let ℓ be a positive integer constant. If ps =
o(1), pe =

lnn+ln lnn+αn

n with limn→∞ αn = −∞ and pen =
Ω(1), then

ℓ−1
∑

h=0

P [Bh ∩ Exy] = o

(

ℓ
∑

h=0

P
[

Ah ∩Kxy

]

)

. (110)

In order to see why Proposition 2 follows from Proposition

2.1, observe that (110) establishes (106) with the help of (109).

As noted before, this establishes Proposition 2.

Proof. As given in (67), Kxy =
⋃Kn

u=1[|Sxy| = u]. Using this

and the fact that Exy = Kxy ∩Cxy , we get

Exy =

Kn
⋃

u=1

[

(|Sxy| = u)
⋂

Cxy

]

.

12
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We use Yu to denote the event (|Sxy| = u) ∩ Cxy , where

u = 1, 2, . . . ,Kn. Thus, Exy =
⋃Kn

u=1 Yu. Then considering

that the events Y1, Y2, . . . , YKn
are disjoint, we get

P [Bh ∩ Exy] = P

[

Bh ∩
(

Kn
⋃

u=1

Yu

)]

=

Kn
∑

u=1

P [Bh ∩ Yu] .

(111)

Given Yu = [(|Sxy| = u) ∩ Cxy], we obtain

P [Bh ∩ Yu] ≤ P [Bh ∩ (|Sxy| = u)] . (112)

Applying (112) to (111), it follows that

ℓ−1
∑

h=0

P [Bh ∩ Exy]

≤
ℓ−1
∑

h=0

Kn
∑

u=1

P [Bh ∩ (|Sxy| = u)]

=

Kn
∑

u=1

{

P[|Sxy| = u] ·
ℓ−1
∑

h=0

P [Bh | (|Sxy| = u)]

}

. (113)

R.H.S. of (113) is similar to the R.H.S. of (87), whence

it will be computed in a similar manner. We first calculate

P [Bh | (|Sxy| = u)]. Given the definition of Bh in (107), we

let m1 = h and m2 = m3 = ℓ− h− 1 in Lemma 4 to obtain

P [Bh | (|Sxy| = u)] ∼ n2ℓ−h−2

h![(ℓ− h− 1)!]2
· e−2pen+

pepnu
Kn

n

× {P[Exj∩yj | (|Sxy| = u)]}h

× {P[Exj∩yj | (|Sxy| = u)]}ℓ−h−1

× {P[Exj∩yj | (|Sxy| = u)]}ℓ−h−1.

(114)

Substituting (90), (91) and (92) into (114), we obtain

P [Bh | (|Sxy| = u)] ≤ 2e−2pen+
pepnnu

Kn (pen)
2ℓ−h−2

.
(115)

for all n sufficiently large.

Returning to the evaluation of the R.H.S. of (113), we apply

(115) to (113) and obtain for all n sufficiently large,

ℓ−1
∑

h=0

P [Bh ∩Exy]

≤
Kn
∑

u=1

{

P[|Sxy| = u] · 2e−2pen+
pnu
Kn

·pen ·
ℓ
∑

h=0

(pen)
2ℓ−h−2

}

= (pen)
−2 × R.H.S. of (94). (116)

From pen = Ω(1), it follows that

ℓ−1
∑

h=0

P [Bh ∩ Exy] = O (R.H.S. of (94)) . (117)

Given (95) and (117), we obtain (110) and this completes the

proof of Proposition 2. �

Having established Propositions 1 and 2, we prove Lemma

3, and the zero-law (11) follows as explained in Section VI.

IX. ESTABLISHING (12) (THE ONE-LAW FOR

k-CONNECTIVITY IN Gon)

As shown in Section V-B, we can enforce the extra condition

αn = o(lnn) in establishing (12) (i.e., the one-law for k-

connectivity in Gon). Therefore, we will establish (12) under

the following conditions:

(9),Kn ≥ 2 for all n sufficiently large , Pn = Ω(n), (118)

Kn

Pn
= o(1), lim

n→∞
αn = +∞ and αn = o(lnn). (119)

In graph Gon, consider scalings K,P : N0 → N0 and p :
N0 → (0, 1) as in Theorem 1. We find it useful to define a

sequence βℓ,n : N× N0 → R through the relation

pe =
lnn+ ℓ ln lnn+ βℓ,n

n
(120)

for each n ∈ N0 and each ℓ ∈ N. (120) follows by just setting

βℓ,n := npe − lnn− ℓ ln lnn. (121)

The one-law (12) will follow from the next key result.

Recall that, as defined in Section V-D, κ is the connectivity

of the graph Gon, namely the minimum number nodes whose

deletion makes it disconnected.

Lemma 5. Let ℓ be a non-negative constant integer. If Kn ≥ 2
for any sufficiently large n, Pn = Ω(n), Kn

Pn
= o(1), and (120)

holds with βℓ,n = o(lnn) and limn→∞ βℓ,n = +∞, then

lim
n→∞

P [κ = ℓ] = 0. (122)

We now explain why the one-law (12) follows from Lemma

5. Consider pn, Kn and Pn such that (118) and (119) hold.

Comparing (9) and (120), we get

βℓ,n = (k − 1− ℓ) ln lnn+ αn. (123)

Since αn = o(lnn) and limn→∞ αn = +∞, we have for each

ℓ = 0, 1, . . . , k − 1 that

lim
n→∞

βℓ,n = +∞ and βℓ,n = o(lnn). (124)

Given (124), we use Lemma 5 and obtain

lim
n→∞

P [κ = ℓ] = 0, ℓ = 0, 1, . . . , k − 1.

For any constant k, this implies limn→∞ P [κ ≥ k] = 1, or

equivalently

lim
n→∞

P [Gon is k-connected ] = 1.

This completes the proof of the one-law (12). �

The remaining part of this section is devoted to the proof

of Lemma 5.

Proof. We present the steps of proving Lemma 5 below. First,

by a crude bounding argument, we get

P [κ = ℓ] ≤ P [(κ = ℓ) ∩ (δ > ℓ)] + P [δ ≤ ℓ] ,

where δ is the minimum node degree of graph Gon, as defined

in Section V-D. We will prove Lemma 5 by establishing the

following two results under the enforced assumptions:

lim
n→∞

P [δ ≤ ℓ] = 0 if lim
n→∞

βℓ,n = +∞, (125)

13
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and

lim
n→∞

P [κ = ℓ ∩ δ > ℓ] = 0 if lim
n→∞

βℓ,n = +∞. (126)

We first establish (125). First, from ℓ ln lnn = o(lnn),

βℓ,n = o(lnn) and pe =
lnn+ℓ ln lnn+βℓ,n

n , it is clear that

pe ∼ lnn
n . Then pe = o

(

1√
n

)

. Thus, from Lemmas 1 and 2,

we get

E
[

Xℓ

]

= nP [Dx,ℓ] ∼ n · (ℓ!)−1
(pen)

ℓ
e−pen. (127)

Substituting pe ∼ lnn
n and (120) into (127), we get

E
[

Xℓ

]

∼ n (ℓ!)
−1

(lnn)
ℓ
e− lnn−ℓ ln lnn−βℓ,n = (ℓ!)

−1
e−βℓ,n.

In view of the fact that limn→∞ βℓ,n = +∞, we thus obtain

E
[

Xℓ

]

= o(1). Then from property (a) of Fact 1 (Section

V-C), we get

lim
n→∞

P[δ = ℓ] = 0. (128)

As seen from (121), βℓ,n is decreasing in ℓ. Thus, we have

limn→∞ βℓ⋆,n = +∞ for each ℓ⋆ = 0, 1, . . . , ℓ. It is also im-

mediate from (121) that βℓ⋆,n = o(lnn) since βℓ,n = o(lnn).
Therefore, using the same arguments that lead to (128), we

obtain

lim
n→∞

P[δ = ℓ⋆] = 0, ℓ⋆ = 0, 1, . . . , ℓ,

and (125) follows immediately.

As (125) is established, it remains to prove (126) in order

to complete the proof of Lemma 5. The basic idea in estab-

lishing (126) is to find a sufficiently tight upper bound on

the probability P [κ = ℓ ∩ δ > ℓ] and then to show that this

bound tends to zero as n goes to +∞. This approach is similar

to the one used for proving the one-law for k-connectivity in

Erdős-Rényi graphs [12], as well as to the approach used by

Yağan [37] to establish the one-law for connectivity in the

graph Gon.

We start by obtaining the needed upper bound. Let N denote

the collection of all non-empty subsets of {v1, . . . , vn}. We

define N∗ = {T | T ∈ N , |T | ≥ 2} and KT = ∪vi∈TSi. For

the reasons that will later become apparent we find it useful

to introduce the event E(J) in the following manner:

E(J) =
⋃

T∈N∗

[

|KT | ≤ J|T |
]

, (129)

where J = [J2, J3, . . . , Jn] is an (n− 1)-dimensional integer

valued array. Let

rn := min

(⌊

Pn

Kn

⌋

,
⌊n

2

⌋

)

. (130)

We define Ji as follows:

Ji =

{

max{⌊(1 + ε)Kn⌋ , ⌊λKni⌋} i = 2, . . . , rn,

⌊µPn⌋ i = rn + 1, . . . , n.

(131)

for some arbitrary constant 0 < ε < 1 and constants λ, µ in

(0, 1
2 ) that will be specified later; see (134)-(135) below.

By a crude bounding argument we now get

P [(κ = ℓ) ∩ (δ > ℓ)]

≤ P [E(J)] + P

[

(κ = ℓ) ∩ (δ > ℓ) ∩ E(J)
]

. (132)

Hence, a proof of (126) consists of establishing the following

two propositions.

Proposition 3. Let ℓ be a non-negative constant integer. If

(120) holds with βℓ,n > 0, Kn ≥ 2 and Pn ≥ σn for some

σ > 0 for all n sufficiently large and Kn

Pn
= o(1), then

lim
n→∞

P [E(J)] = 0, (133)

where J = [J2, J3, . . . , Jn] is as specified in (131) with

arbitrary ε in (0, 1), constant λ in (0, 1
2 ) is selected small

enough to ensure

max

(

2λσ, λ

(

e2

σ

)
λ

1−2λ

)

< 1, (134)

and constant µ in (0, 12 ) is selected so that

max

(

2

(√
µ

(

e

µ

)µ)σ

,
√
µ

(

e

µ

)µ)

< 1. (135)

A proof of Proposition 3 is given in Section X below. Note that

for any σ > 0, limλ↓0 λ
(

e2

σ

)
λ

1−2λ

= 0 so that the condition

(134) can always be met by suitably selecting constant λ >

0 small enough. Also, we have limµ↓0
(

e
µ

)µ

= 1, whence

limµ↓0
√
µ
(

e
µ

)µ

= 0, and (135) can be made to hold for any

constant σ > 0 by taking µ > 0 sufficiently small. Finally,

we remark that the condition Pn ≥ σn for some σ > 0 is

equivalent to having Pn = Ω(n).

Proposition 4. Let ℓ be a non-negative constant integer. If

Kn ≥ 2 and Pn ≥ σn for some σ > 0 for all n sufficiently

large, Kn

Pn
= o(1), and (120) holds with βℓ,n = o(lnn) and

limn→∞ βℓ,n = +∞, then

lim
n→∞

P

[

(κ = ℓ) ∩ (δ > ℓ) ∩ E(J)
]

= 0,

where J = [J2, J3, . . . , Jn] is as specified in (131) with

arbitrary ε in (0, 1), constant µ in (0, 1
2 ) selected small enough

to ensure (135) and constant λ ∈ (0, 1
2 ) selected such that it

satisfies (134).

A proof of Proposition 4 is given in Section XI below.

Using Proposition 3 and Proposition 4 (with the same

constants ε, λ, µ) in (132), we obtain the desired conclusion

(126). The proof of Lemma 5 is now completed. �

X. A PROOF OF PROPOSITION 3

We begin by finding an upper bound on the probability

P [E(J)]. To this end, we define

Yi =

{

⌊λKni⌋ i = 2, . . . , rn,

⌊µPn⌋ i = rn + 1, . . . , n.
(136)

From (131) and (136), we get

Ji =

{

max{⌊(1 + ε)Kn⌋ , Yi} i = 2, . . . , rn,

Yi i = rn + 1, . . . , n.
(137)
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We also define

N− := {T | T ∈ N , 2 ≤ |T | ≤ rn},

and

N+ := {T | T ∈ N , |T | > rn}.

Using the definition (129) and the fact that Ji = Yi for i =
rn + 1, rn + 2, . . . , n, we get

E(J) =





⋃

T∈N−

[

|KT | ≤ J|T |
]



 ∪





⋃

T∈N+

[

|KT | ≤ Y|T |
]



 .

(138)

Given Ji = max{⌊(1 + ε)Kn⌋, Yi} for i = 2, 3, . . . , rn, we

have




⋃

T∈N−

[

|KT | ≤ J|T |
]



 (139)

=





⋃

T∈N−

[|KT | ≤ (1 + ε)Kn]



 ∪





⋃

T∈N−

[

|KT | ≤ Y|T |
]



 .

From (138), (139) and the fact that N ∗ = N− ∪ N+, we

obtain

E(J) (140)

=





⋃

T∈N−

[|KT | ≤ (1 + ε)Kn]



 ∪
(

⋃

T∈N∗

[

|KT | ≤ Y|T |
]

)

.

It is easy to check by direct inspection that
⋃

T∈N−

[|KT | ≤ (1 + ε)Kn] =
⋃

T∈Nn,2

[|KT | ≤ (1 + ε)Kn]

(141)

where Nn,2 denotes the collection of all subsets of

{v1, . . . , vn} with exactly two elements. With Y =
[Y2, Y3, . . . , Yn] and

E(Y ) =
⋃

T∈N∗

[

|KT | ≤ Y|T |
]

(142)

it is also easy to see that

E(J) =





⋃

T∈Nn,2

[|KT | ≤ (1 + ε)Kn]



 ∪ E(Y ).

upon using (141) and (142) in (140).

Using a standard union bound, we now get

P [E(J)] ≤ P [E(Y )] +
∑

T∈Nn,2

P [|KT | ≤ (1 + ε)Kn] .

It was shown in [37, Proposition 7.2] that given Pn = Ω(n)
and limn→∞ Kn = ∞, we have

P [E(Y )] = o(1). (143)

Noting that limn→∞ Kn = ∞ holds in view of Lemma 7

and Pn = Ω(n) by assumption, we conclude that (143) holds

under the assumptions enforced in Proposition 3.

In order to compute
∑

T∈Nn,2
[|KT | ≤ (1 + ε)Kn], we use

exchangeability and the fact that |Nn,2| =
(

n
2

)

. With K1,2 =
S1 ∪ S2, we find

P [E(J)] ≤ o(1) +

(

n

2

)

P [K1,2 ≤ ⌊(1 + ε)Kn⌋] . (144)

Then, from (144), the desired conclusion (133) (for Proposi-

tion 3) will follow if we show that

n2
P [K1,2 ≤ ⌊(1 + ε)Kn⌋] = o(1). (145)

This will also be established by means of the bounds given

in [36]. To this end, it was shown [36, Proposition 7.4.11, pp.

137–139] under the condition Kn

Pn
= o(1) that

P [K1,2 ≤ ⌊(1 + ε)Kn⌋] ≤
(

Γ(ε)
Kn

Pn

)Kn(1−ε)

,

with Γ(ε) := (1 + ε)e
1+ε
1−ε . Using this bound, we now obtain

n2
P [K1,2 ≤ ⌊(1 + ε)Kn⌋] ≤

(

Γ(ε)n
2

(1−ε)Kn
Kn

Pn

)Kn(1−ε)

.

(146)

Given Pn ≥ σn and Kn

Pn
= o(1), there exist a sequence wn

satisfying limn→+∞ wn = ∞ such that for all n sufficiently

large, we have

Pn ≥ max{σn,Knwn}.
As noted before, it also holds that limn→∞ Kn = ∞ in view

of Lemma 7. It is now easy to see that

n
2

Kn(1−ε)
Kn

Pn
≤ min

{

n−1+ 2
Kn(1−ε)

Kn

σ
,
e

2 lnn
Kn(1−ε)

wn

}

≤ max

{

n− 1
2 lnn

σ
,
e

2
(1−ε)

wn

}

for all n sufficiently large to ensure that Kn ≥ 4/(1− ε). The

last inequality follows by considering the cases Kn ≥ lnn
and Kn < lnn separately for each n on the given range. It

follows that

lim
n→∞

Γ(ε)n
2

Kn(1−ε)
Kn

Pn
= 0,

and the desired conclusion (145) follows from (146). Propo-

sition 3 is now established. �

XI. A PROOF OF PROPOSITION 4

We start by introducing some notation. For any non-empty

subset U of nodes, i.e., U ⊆ {v1, . . . , vn}, we define the graph

Gon(U) (with vertex set U ) as the subgraph of Gon restricted

to the nodes in U . If all nodes in U are deleted from Gon, the

remaining graph is given by Gon(U
c) on the vertices U c =

{v1, . . . , vn} \ U . Let NUc denote the collection of all non-

empty subsets of {v1, . . . , vn} \ U . We say that a subset T
in NUc is isolated in Gon(U

c) if there are no edges (in Gon)

between the nodes in T and the nodes in U c \ T . This is

characterized by

Eij , vi ∈ T, vj ∈ U c \ T.

15
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With each non-empty subset T ⊆ U c of nodes, we associate

several events of interest: Let CT denote the event that the

subgraph Gon(T ) is itself connected. The event CT is com-

pletely determined by the random variables (rvs) {Si, vi ∈ T }
and {Cij , vi, vj ∈ T }. We also introduce the event DU,T to

capture the fact that T is isolated in Gon(U
c), i.e.,

DU,T :=
⋂

vi∈T
vj∈Uc\T

Eij .

Finally, we let BU,T denote the event that each node in U has

an edge with at least one node in T , i.e.,

BU,T :=
⋂

vi∈U

⋃

vj∈T

Eij .

We also set

AU,T := BU,T ∩ CT ∩ DU,T .

The proof starts with the following observations: In graph

Gon, if the connectivity is ℓ (i.e., κ = ℓ) and yet each node

has degree at least ℓ + 1 (i.e., δ > ℓ), then there must exist

subsets U , T of nodes with U ∈ N , |U | = ℓ and T ∈ NUc ,

|T | ≥ 2, such that Gon(T ) is connected while T is isolated

in Gon(U
c). This ensures that Gon can be disconnected by

deleting an appropriately selected set of ℓ nodes; i..e, nodes in

U . Notice that, this would not be possible for sets T in NUc

with |T | = 1, since the degree of a node in T is at least ℓ+1 by

virtue of the event δ > ℓ; this ensures that a single node in T is

connected to at least one node in U c \T . Moreover, the event

κ = ℓ also enforces Gon to remain connected after the deletion

of any ℓ− 1 nodes. Therefore, if there exists a subset U (with

|U | = ℓ) such that some T in NUc is isolated in Gon(U
c),

then each of the ℓ nodes in U should be connected to at least

one node in T and to at least one node in U c \ T . This can

easily be seen by contradiction: Consider subsets U ∈ N with

|U | = ℓ, and T ∈ NUc with |T | ≥ 2, such that there exists

no edge between the nodes in T and the nodes in U c \ T .

Suppose there exists a node vi in U such that vi is connected

to at least one node in U c\T but is not connected to any node

in T . Then, Gon can be disconnected by deleting the nodes in

U \ {vi} since there will be no edge between the nodes in T
and the nodes in {vi} ∪ U c \ T . But, |U \ {vi}| = ℓ− 1, and

this contradicts the fact that κ = ℓ.
The inclusion

[(κ = ℓ) ∩ (δ > ℓ)] ⊆
⋃

U∈Nn,ℓ, T∈NUc : |T |≥2

AU,T

is now immediate with Nn,r denoting the collection of all

subsets of {v1, . . . , vn} with exactly r elements. It is also easy

to check that this union need only be taken over all subsets T
of {v1, . . . , vn} with 2 ≤ |T | ≤ ⌊n−ℓ

2 ⌋.

We now use a standard union bound argument to obtain

P

[

(κ = ℓ) ∩ (δ > ℓ) ∩ E(J)
]

≤
∑

U∈Nn,ℓ,T∈NUc : 2≤|T |≤⌊n−ℓ
2 ⌋

P

[

AU,T ∩ E(J)
]

=

⌊n−ℓ
2 ⌋
∑

r=2

∑

U∈Nn,ℓ,T∈NUc,r

P

[

AU,T ∩ E(J)
]

(147)

with NUc,r denoting the collection of all subsets of U c with

exactly r elements.

For each r = 1, . . . , n − ℓ − 1, we simplify the nota-

tion by writing Aℓ,r := A{v1,...,vℓ},{vℓ+1,...,vℓ+r}, Dℓ,r :=
D{v1,...,vℓ},{vℓ+1,...,vℓ+r}, Bℓ,r := B{v1,...,vℓ},{vℓ+1,...,vℓ+r} and

Cr := C{vℓ+1,...,vℓ+r}. Under the enforced assumptions on the

system model (viz. Section III), exchangeability yields

P [AU,T ] = P [Aℓ,r] , U ∈ Nn,ℓ, T ∈ NUc,r

and the expression

∑

U∈Nn,ℓ,T∈NUc,r

P

[

AU,T ∩ E(J)
]

=

(

n

ℓ

)(

n− ℓ

r

)

P

[

Aℓ,r ∩ E(J)
]

follows since |Nn,ℓ| =
(

n
ℓ

)

and |NUc,r| =
(

n−ℓ
r

)

. Substituting

into (147) we obtain the key bound

P

[

(κ = ℓ) ∩ (δ > ℓ) ∩ E(J)
]

≤
⌊n−ℓ

2 ⌋
∑

r=2

(

n

ℓ

)(

n− ℓ

r

)

P

[

Aℓ,r ∩ E(J)
]

. (148)

The proof of Proposition 4 will be completed once we show

lim
n→∞

⌊n−ℓ
2 ⌋
∑

r=2

(

n

ℓ

)(

n− ℓ

r

)

P

[

Aℓ,r ∩ E(J)
]

= 0. (149)

The means to do so are provided in the next section.

XII. BOUNDING PROBABILITIES P

[

Aℓ,r ∩ E(J)
]

First, for r = 2, 3, . . . , n− ℓ− 1, observe the equivalence

Dℓ,r =

n
⋂

j=r+ℓ+1

[(

∪i∈νr,jSi

)

∩ Sj = ∅
]

(150)

where νr,j is defined via

νr,j := {i = ℓ+ 1, ℓ+ 2, . . . , ℓ+ r : Cij} (151)

for each j = 1, 2, . . . , ℓ and j = r+ ℓ+1, r+ ℓ+2, . . . , n. In

words, νr,j is the set of indices in i = ℓ+ 1, ℓ+ 2, . . . , ℓ+ r
for which vi is connected to the node vj in the communica-

tion graph G(n; pn). Thus, the event
[(

∪i∈νr,jSi

)

∩ Sj = ∅
]

ensures that node vj is not connected (in Gon) to any of the

nodes {vℓ+1, . . . , vℓ+r}. Under the enforced assumptions on

the rvs S1, S2, . . . , Sn, we readily obtain the expression

P



Dℓ,r

∣

∣

∣

∣

∣

Si, i = ℓ+ 1, . . . , ℓ+ r
Cij , i = ℓ+ 1, . . . , ℓ+ r,

j = ℓ+ r + 1, . . . , n





=

n
∏

j=r+ℓ+1





(Pn−|∪i∈νr,j
Si|

Kn

)

(

Pn

Kn

)



 .
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In a similar manner, we find

P



Bℓ,r

∣

∣

∣

∣

∣

Si, i = ℓ+ 1, . . . , ℓ+ r
Cij , i = 1, . . . , ℓ,

j = ℓ+ 1, . . . , ℓ+ r





=

ℓ
∏

j=1



1−
(Pn−|∪i∈νr,j

Si|
Kn

)

(

Pn

Kn

)



 .

It is clear that the distributional properties of the term

|∪i∈νr,j Si| will play an important role in efficiently bounding

P [Dℓ,r] and P [Bℓ,r]. Note that it is always the case that

| ∪i∈νr,j Si| ≥ Kn1 [|νr,j| > 0] . (152)

Also, on the event E(J), we have

| ∪i∈νr,j Si| ≥
(

J|νr,j| + 1
)

· 1 [|νr,j| > 1] (153)

for each j = r+ℓ+1, . . . , n. Finally, we note the crude bound

| ∪i∈νr,j Si| ≤ |νr,j |Kn (154)

for each j = 1, . . . , ℓ.
Conditioning on the rvs Sℓ+1, . . . , Sr+ℓ and {Cij , i, j =

ℓ+1, . . . , ℓ+ r} (which determine the event Cr), we conclude

via (152)-(154) that

P

[

Aℓ,r ∩ E(J)
]

= P

[

Cr ∩ Bℓ,r ∩ Dℓ,r ∩ E(J)
]

≤E









1 [Cr]×
∏ℓ

j=1

(

1− (Pn−Kn|νr,j|

Kn
)

(Pn
Kn

)

)

×

×∏n
j=r+ℓ+1

(Pn−L(νr,j)

Kn
)

(Pn
Kn

)









,

where for notational convenience we have set

L(νr,j) = max {Kn · 1 [|νr,j| > 0] , (155)

(J|νr,j | + 1) · 1 [|νr,j | > 1]
}

.

It is immediate that the rvs {|νr,j |}nj=r+1+ℓ (as well as

{|νr,j|}ℓj=1) are independent and identically distributed. Let νr
denote a generic random variable identically distributed with

νr,j , j = 1, . . . , ℓ, r + ℓ+ 1, . . . , n. Then, we have

|νr| =st Bin(r, pn). (156)

where we use the notation =st to indicate distributional

equality. Then, we define L(|νr|) as follows:

L(νr) = max
{

Kn · 1 [|νr| > 0] , (J|νr | + 1) · 1 [|νr| > 1]
}

.
(157)

Observe that the event Cr is independent from the set-valued

random variables νr,j for each j = 1, . . . , ℓ and for each

j = r + ℓ + 1, . . . , n. Also, as noted before {|νr,j|}nj=r+1+ℓ

(as well as {|νr,j|}ℓj=1) are independent and identically dis-

tributed. Using these we obtain

P

[

Aℓ,r ∩ E(J)
]

≤ P [Cr]× E

[

1−
(

Pn−Kn|νr |
Kn

)

(

Pn

Kn

)

]ℓ

× E

[
(

Pn−L(νr)
Kn

)

(

Pn

Kn

)

]n−r−ℓ

.

(158)

We will give sufficiently tight bounds for each term ap-

pearing in the R.H.S. of (158). First, note from Lemma 11

(Appendix A-B) that

P [Cr] ≤ rr−2pr−1
e , r = 2, 3, . . . , n. (159)

Next, we give an easy bound on the second term appearing in

the R.H.S. of (158). With

r ≤ Pn −Kn

2Kn
(160)

it follows that |νr| ≤ r ≤ Pn−Kn

2Kn
. Then we use Fact 5 and

Fact 2 successively to obtain

1−
(

Pn−Kn|νr|
Kn

)

(

Pn

Kn

) ≤ 1− (1− ps)
2|νr | ≤ 2|νr|ps.

Taking the expectation in the above relation and noting that

E [|νr|] = rpn via (156), we get

E

[

1−
(

Pn−Kn|νr|
Kn

)

(

Pn

Kn

)

]

≤ 2rpspn = 2rpe (161)

under the condition (160). Finally, for the last term in the

R.H.S. of (158), we establish in Lemma 12 (Appendix A-B)

that if Kn

Pn
= o(1) and pe = o(1), then

E

[
(

Pn−L(νr)
Kn

)

(

Pn

Kn

)

]

≤ min
{

e−pe(1+ε/2), e−peλr + e−Knµ1 [r > rn]
}

(162)

for all n sufficiently large and for each r = 2, 3, . . . , n.

Substituting the bounds (159), (161) and (162) into (158),

and noting that each of the terms in the RHS of (158) are

trivially upper bounded by 1, we obtain the key bounds on

the probabilities P
[

Aℓ,r ∩ E(J)
]

that are summarized in the

following Lemma.

Lemma 6. With J defined in (131) for some ε, λ and µ in

(0, 12 ), if Kn

Pn
= o(1) and pe = o(1), then the following two

properties hold.

(a) For all n sufficiently large and for each r =

2, 3, . . . ,
⌊

Pn−Kn

2Kn

⌋

, we have

P

[

Aℓ,r ∩ E(J)
]

≤ rr−2 (pe)
r−1 · (2rpe)ℓ

×
[

min
{

e−pe(1+ε/2), e−peλr + e−Knµ1 [r > rn]
}]n−r−ℓ

.

(b) For all n sufficiently large and for each r = 2, 3, . . . , n,

we have

P

[

Aℓ,r ∩ E(J)
]

≤ min
{

rr−2 (pe)
r−1 , 1

}

×
[

min
{

e−pe(1+ε/2), e−peλr + e−Knµ1 [r > rn]
}]n−r−ℓ

.
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XIII. ESTABLISHING (149)

We now proceed as follows: Given Kn

Pn
= o(1) and the

definition of rn in (130), we necessarily have limn→∞ rn =
+∞, and for an given integer R ≥ 2, we have

rn > R for any n ≥ n⋆(R) (163)

for some finite integer n⋆(R). We define fn,ℓ,r as follows.

fn,ℓ,r =

(

n

ℓ

)(

n− ℓ

r

)

P

[

Aℓ,r ∩ E(J)
]

.

Then, we have

L.H.S. of (149) =

⌊n−ℓ
2 ⌋
∑

r=2

fn,ℓ,r. (164)

For the time being, pick an arbitrarily large integer R ≥ 2 (to

be specified in Section XIII-B), and on the range n ≥ n⋆(R)
consider the decomposition

⌊n−ℓ
2 ⌋
∑

r=2

fn,ℓ,r =

R
∑

r=2

fn,ℓ,r +

rn
∑

r=R+1

fn,ℓ,r +

⌊n−ℓ
2 ⌋
∑

r=rn+1

fn,ℓ,r.

Let n go to infinity: The desired convergence (149) (for

Proposition 4) will be established if we show

R
∑

r=2

fn,ℓ,r = o(1), (165)

rn
∑

r=R+1

fn,ℓ,r = o(1), (166)

and

⌊n−ℓ
2 ⌋
∑

r=rn+1

fn,ℓ,r = o(1). (167)

The next subsections are devoted to proving the validity of

(165), (166) and (167) by repeated applications of Lemma 6.

Throughout, we also make repeated use of the standard bounds

(

n

r

)

≤
(en

r

)r

(168)

valid for all r, n = 1, 2, . . . with r ≤ n.

A. Establishing (165)

Positive scalar ε in (0, 1) is picked arbitrarily as stated in

Proposition 4. Consider Kn, Pn and pe as in the statement of

Proposition 4. For any arbitrary integer R ≥ 2, it is clear that

(165) will follow upon showing

lim
n→∞

fn,ℓ,r = 0 if lim
n→∞

βℓ,n = +∞ (169)

for each r = 2, 3, . . . , R. On that range, property (a) of Lemma

6 is valid since r ≤ ⌊Pn−Kn

2Kn
⌋ for all n sufficiently large by

virtue of the fact that Kn

Pn
= o(1).

From the easily obtained bounds
(

n
ℓ

)

≤ nℓ and
(

n−ℓ
r

)

≤ nr,

we now get

fn,ℓ,r

≤ nℓ · nr · rr−2pr−1
e (2rpe)

ℓ · e−pe(1+ε/2)(n−r−ℓ)

= (2r)ℓrr−2 · nℓ+rpℓ+r−1
e · e−pen(1+ε/2) · epe(1+ε/2)(r+ℓ).

(170)

for each r = 2, 3, . . . , R. Given pe =
lnn+ℓ ln lnn+βℓ,n

n ∼
lnn
n = o(1) (since βℓ,n = o(lnn)), we find

R. H. S. of (170)

(2r)ℓrr−2

= nℓ+rpℓ+r−1
e · e−pen(1+ε/2) · epe(1+ε/2)(r+ℓ)

∼ nℓ+r

(

lnn

n

)ℓ+r−1

· e−(lnn+ℓ ln lnn+βℓ,n)(1+ε/2) · eo(1)

= n · (lnn)ℓ+r−1 ·
[

n−1(lnn)−ℓe−βℓ,n
]1+ε/2

= n−ε/2 (lnn)r−ℓε/2−1 e−βℓ,n(1+ε/2)

= o(1)

by virtue of the facts that r is bounded and limn→∞ βℓ,n =
+∞. We get (169) and the desired result (165) is obtained. �

B. Establishing (166)

Positive scalars λ, µ are given in the statement of Proposi-

tion 4. Note that R can be taken to be arbitrarily large by virtue

of the previous section. From
(

n
ℓ

)

≤ nℓ,
(

n−ℓ
r

)

≤
(

e(n−ℓ)
r

)r

and property (b) of Lemma 6, for n ≥ n⋆(R) (with n⋆(R) as

specified in (163)) and for each r = R+1, . . . , rn, we obtain

fn,ℓ,r ≤ nℓ ·
(

e(n− ℓ)

r

)r

· rr−2 (pe)
r−1

e−perλ(n−r−ℓ)

≤ nℓ+rer (pe)
r−1

e−perλ(n−r−ℓ). (171)

Now, observe that on the range r = R+1, R+2, . . . , ⌊n−ℓ
2 ⌋,

from r ≤ n−ℓ
2 , we have for all n sufficiently large, n−r−ℓ ≥

1
2 (n− ℓ) ≥ n

3 . This yields

e−perλ(n−r−ℓ) ≤ e−perλn/3. (172)

Substituting pe =
lnn+ℓ ln lnn+βℓ,n

n into (172), we also get

e−perλn/3 = e−rλ(lnn+ℓ ln lnn+βℓ,n)/3

= n−rλ/3(lnn)−rλℓ/3e−rλβℓ,n/3. (173)

Applying (172), (173) and pe ≤ 2 lnn
n to (171), we get

fn,ℓ,r

≤ nℓ+rer ·
(

2 lnn

n

)r−1

· n−rλ/3(lnn)−rλℓ/3e−rλβℓ,n/3

≤ nℓ+1−rλ/3 · (2e lnn)r

= nℓ+1 · (2en−λ/3 lnn)r. (174)
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Given 2en−λ/3 lnn = o(1) and (174), we obtain

rn
∑

r=R+1

fn,ℓ,r ≤
+∞
∑

r=R+1

nℓ+1 · (2en−λ/3 lnn)r

= nℓ+1 · (2en
−λ/3 lnn)R+1

1− 2en−λ/3 lnn

∼ nℓ+1−λ(R+1)/3(2e lnn)R+1. (175)

We pick R ≥ 3(ℓ+1)
λ so that ℓ+ 1− λ(R+ 1)/3 ≤ −λ

3 . As a

result, we obtain

R.H.S. of (175) = o(1)

and thus
∑rn

r=R+1 fn,ℓ,r = o(1).We now obtain (166). �

C. Establishing (167)

Positive scalars λ, µ are given in the statement of Propo-

sition 4. We need consider only the case where rn ≤ ⌊n−ℓ
2 ⌋

for infinitely many n, as otherwise (167) would hold trivially.

From
(

n
ℓ

)

≤ nℓ,
(

n−ℓ
r

)

≤
(

n
r

)

and property (b) of Lemma 6,

we get for r = rn + 1, . . . , ⌊n−ℓ
2 ⌋,

fn,ℓ,r ≤ nℓ

(

n

r

)

(

e−perλ + e−Knµ
)

n−ℓ
2 .

We will establish (167) in two steps. First set r̂n =
⌈

3
λpe

⌉

.

Obviously, the range r = rn+1, . . . , ⌊n−ℓ
2 ⌋ is intersecting the

range r = r̂n, . . . , ⌊n−ℓ
2 ⌋. We first consider the latter range

below. For r = r̂n, . . . , ⌊n−ℓ
2 ⌋, it follows that e−perλ ≤ e−3.

From Lemma 7 (Appendix A-B), Kn = Ω
(√

lnn
)

holds.

Then e−Knµ = o(1) < 1
9 − e−3. Therefore,

(

e−perλ + e−Knµ
)

n−ℓ
2 ≤

(

1

9

)
n−ℓ
2

= 3ℓ−n.

Then, we get

⌊n−ℓ
2 ⌋
∑

r=r̂n

fn,ℓ,r ≤ 3ℓ−nnℓ

⌊n−ℓ
2 ⌋
∑

r=r̂n

(

n

r

)

≤ 3ℓ−nnℓ · 2n = o(1)

(176)

upon using the binomial formula
∑⌊n−ℓ

2 ⌋
r=r̂n

(

n
r

)

≤∑n
r=0

(

n
r

)

=
2n and the fact that ℓ is constant.

If r̂n ≤ rn + 1 for all n sufficiently large, then the desired

condition (167) is automatically satisfied via (176). On the

other hand, if rn +1 < r̂n, we should still consider the range

r = rn + 1, . . . , r̂n − 1. On that range, we use arguments

similar to those leading to (171) and obtain

fn,ℓ,r ≤ nℓ+rer (pe)
r−1 (

e−perλ + e−Knµ
)n−r−ℓ

(177)

upon using also property (b) of Lemma 6.

On the range r = rn + 1, . . . , r̂n − 1, we have

r ≥ rn + 1 = min

(⌊

Pn

Kn

⌋

,
⌊n

2

⌋

)

+ 1 ≥ min

{

Pn

Kn
,
n

2

}

,

and thus

e−µKn

perλ
≤ e−µKn

peλ ·min{ Pn

Kn
, n
2 }

≤ max

{

Kne
−µKn

σλ
,
2e−µKn

λ

}

.

since Pn ≥ σn and pen ≥ 1 for all n sufficiently large.

Given Kn = Ω
(√

lnn
)

, it follows that

lim
n→∞

Kne
−µKn = 0 and lim

n→∞
e−µKn = 0,

whence we get

lim
n→∞

e−µKn

perλ
= 0.

Then for any given 0 < η < 1, there exists a finite integer

n⋆(η) such that for all n ≥ n⋆(η), we have

e−µKn ≤ e−3η · perλ ≤ e−3 · (eηperλ − 1). (178)

From r ≤ r̂n − 1 ≤ 3
λpe

, it follows that perλ ≤ 3 and

e−perλ ≥ e−3. (179)

Given (178) and (179), we obtain for all n ≥ n⋆(η),

e−µKn ≤ e−perλ · (eηperλ − 1) = e−perλ(1−η) − e−perλ

and thus

e−perλ + e−µKn ≤ e−perλ(1−η). (180)

Recalling (120) and the fact that n− ℓ− r ≥ n/3, we get

e−perλ(1−η)(n−r−ℓ) (181)

≤ n−rλ(1−η)/3(lnn)−rλℓ(1−η)/3e−rλβℓ,n(1−η)/3.

Using (180) and (181) in (177), and noting pe ≤ 2 lnn
n , we get

fn,ℓ,r ≤ nℓ+rer
(

2 lnn

n

)r−1

× n−rλ(1−η)/3(lnn)−rλℓ(1−η)/3e−rλβℓ,n(1−η)/3

≤ nℓ+1−rλ(1−η)/3 · (2e lnn)r

= nℓ+1 · (2en−λ(1−η)/3 lnn)r. (182)

Given limn→∞ rn = +∞, then for any arbitrarily large

integer R̂, we have rn ≥ R̂ for all n sufficiently large. From

2en−λ(1−η)/3 lnn = o(1) and (182), we have

r̂n−1
∑

rn+1

fn,ℓ,r ≤
∞
∑

R̂+1

nℓ+1 · (2en−λ(1−η)/3 lnn)r

∼ nℓ+1 · (2en
−λ(1−η)/3 lnn)R̂+1

1− 2en−λ(1−η)/3 lnn

∼ nℓ+1−λ(1−η)(R̂+1)/3(2e lnn)R̂+1. (183)

Since R̂ was arbitrary, we pick R̂ ≥ 3(ℓ+1)
λ(1−η) . Then

ℓ+ 1− λ(1 − η)(R̂ + 1)/3 ≤ −λ(1− η)/3.

As a result, we have R.H.S. of (183) = o(1), whence

r̂n−1
∑

rn+1

fn,ℓ,r = o(1).

The desired conclusion (167) is now established. �

Having established (165), (166) and (167), we now get

(149) and this completes the proof of Proposition 4.
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XIV. CONCLUSION

We investigate random key graph with unreliable links

which amounts to the intersection of random key graphs

with Erdős-Rényi graphs. We derive zero-one laws for k-

connectivity and minimum node degree being at lest k. These

zero-one laws are shown to improve the existing results on

1-connectivity of random key graphs with unreliable links as

well as k-connectivity of random key graphs.

An extension of our work would be to consider a different

unreliability model than the independent on/off model used

here. One possible candidate is the so-called disk model [29]

where two nodes have to be within a certain distance to

each other to have a link in between; this induces a random

geometric graph. Intersection of random key graphs with

random geometric graphs has already received some interest

[22], [25], but the model is proven to be difficult to analyze

with results obtained thus far for its connectivity [23], [24],

[43], not for k-connectivity.
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APPENDIX A

ADDITIONAL FACTS AND LEMMAS

A. Facts

We introduce additional facts below. Proofs of Facts 2 and

3 are fairly standard and omitted here; interested reader is

referred to the full version [41] for details. All other facts are

established in Appendix B.

Fact 2. For 0 ≤ x < 1, the following properties hold.

(a) If 0 < y < 1, then (1− x)y ≤ 1− xy.
(b) If y = 0, 1, 2, . . ., then

1− xy ≤ (1− x)y ≤ 1− xy +
1

2
x2y2.

Fact 2 is used in proving the one-law (12) of Theorem 1 as

well as in proving Fact 4, Fact 5, Lemma 9, and Lemma 12.

Fact 3. Let x and y be both positive functions of n. If x =
o(1), then for any given constant ε > 0, there exists N ∈ N

such that for any n > N , the following properties hold.

(a)

e−xy−( 1
2+ε)x2y ≤ (1 − x)y ≤ e−xy− 1

2x
2y. (184)

(b) If x2y = o(1) further holds, then

(1− x)y ∼ e−xy. (185)

Fact 3 is used in the proofs of Lemma 2 and Lemma 4.

Fact 4. Let integers x and y be both positive functions of n,

where y ≥ 2x. For z = 0, 1, . . . , x, we have
(

y−z
x

)

(

y
x

) ≥ 1− zx

y − z
, (186)

and
(

y−z
x

)

(

y
x

) = 1− xz

y
±O

(

x4

y2

)

. (187)

Fact 4 is used in the proof of Lemma 8.

Fact 5. Let a, x and y be positive integers satisfying y ≥
(2a+ 1)x. Then

(

y−ax
x

)

(

y
x

) ≥
[

(

y−x
x

)

(

y
x

)

]2a

(188)

Fact 5 is used in the proof of the one-law (12) of Theorem 1.

B. Lemmas

We introduce additional lemmas below. The proofs of all

the following lemmas are deferred to Appendix C.

Lemma 7. Let ℓ be a non-negative constant integer. If Pn =

Ω(n) and (120) holds with βℓ,n > 0, then Kn = Ω
(√

lnn
)

.

Lemma 7 is used in proving the one-law (12) of Theorem 1.

Lemma 8. In Gon, given Pn ≥ 2Kn, then the following

properties hold.

(a) ps =
K2

n

Pn
±O

(

K4
n

P 2
n

)

.

(b) ( [36, Lemma 7.4.3, pp. 118]) ps ≤ K2
n

Pn−Kn
.

(c) ps = o(1) if and only if
K2

n

Pn
= o(1).

(d) If ps = o(1) or
K2

n

Pn
= o(1), then

K2
n

Pn
= ps ±O

(

p2s
)

.

Lemma 8 is used in the proof of the zero-law (11) of Theorem

1, as well as in the proofs of Lemma 7 and Lemma 9.

Lemma 9. Consider Kn, Pn with Kn ≤ Pn. The following

properties hold for any three distinct nodes vx, vy and vj .

(a) We have

P
[

(Kxj ∩Kyj) | Kxy

]

≤ p2s. (189)

(b) If ps = o(1), then for any u = 0, 1, 2, . . . ,Kn, we have

P [(Kxj ∩Kyj) | (|Sxy| = u)] =
u

Kn
ps ±O

(

p2s
)

, (190)

P[Exj∪yj | (|Sxy| = u)] = 2pe −
pnu

Kn
· pe ±O(pe

2). (191)

Lemma 9 is used in the proof of the zero-law (11) of Theorem

1 as well as in the proof of Lemma 4.

Lemma 10. If Pn ≥ 2Kn, then we have

P[|Sxy| = u] ≤ 1

u!

(

K2
n

Pn −Kn

)u

.

Lemma 10 helps in proving the zero-law (11) of Theorem 1.

Lemma 11 ( [37, Lemma 10.2] via the argument of [36,

Lemma 7.4.5, pp. 124]). For each r = 2, . . . , n, we have

P [Cr] ≤ rr−2 (pe)
r−1

. (192)

Lemma 11 is used in proving the one-law (12) of Theorem 1.

Lemma 12. With J defined in (131) for some ǫ, λ and µ in

(0, 12 ), if Kn

Pn
= o(1) and pe = o(1), then we have

E

[
(

Pn−L(νr)
Kn

)

(

Pn

Kn

)

]

≤ min
{

e−pe(1+ǫ/2), e−peλr + e−Knµ1 [r > rn]
}

(193)

for all n sufficiently large and for each r = 2, 3, . . . , n.

Lemma 12 helps in proving the one-law (12) of Theorem 1.
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APPENDIX B

PROOFS OF FACTS

A. Proof of Fact 1 (Section V-C)

1) Proof of property (a): Clearly, [δ = ℓ] implies [Xℓ ≥ 1],
whence P[δ = ℓ] ≤ P [Xℓ ≥ 1]. Since Xℓ is a non-negative

integer, we have E[Xℓ] ≥ P [Xℓ ≥ 1], leading to P[δ = ℓ] ≤
E[Xℓ]. Then for ℓ = 0, 1, . . . , k − 1, given condition E[Xℓ] =
o(1), we obtain P[δ = ℓ] = o(1).

2) Proof of property (b): For constant k, given P[δ = ℓ] =
o(1) for ℓ = 0, 1, . . . , k − 1, we obtain

P[δ ≥ k] = 1−
k−1
∑

ℓ=0

P[δ = ℓ] → 1, as n → +∞.

3) Proof of property (c): Fix ℓ = 0, 1, . . . , k− 1. From the

method of second moment [20, Remark 3.1, p. 54], we have

P[Xℓ = 0] ≤ 1− {E [Xℓ]}2

E
[(

Xℓ

)2] . (194)

Then, from E[Xℓ] 6= 0, and E
[(

Xℓ

)2] ∼ {E [Xℓ]}2, we get

P[Xℓ = 0] = o(1).

Therefore, we get limn→∞ P[δ > ℓ] = 0. The desired result

limn→∞ P[δ ≥ k] = 0 also follows since ℓ ≤ k − 1.

B. Proof of Fact 4

From
(

y−z
x

)

= (y−z)!
x!(y−z−x)! and

(

y
x

)

= (y)!
x!(y−x)! , we get

(

y−z
x

)

(

y
x

) =
(y − z)!

y!
· (y − x)!

(y − z − x)!
=

z−1
∏

t=0

y − x− t

y − t
.

We define g(t) = y−x−t
y−t = 1− x

y−t , where t = 0, 1, 2, . . . , z.

Clearly, g(t) decreases as t increases for t = 0, 1, 2, . . . , z, so

g(z) ≤ g(t) ≤ g(0). As a result, we have
(

1− x

y − z

)z

≤
(

y−z
x

)

(

y
x

) ≤
(

1− x

y

)z

. (195)

Given the above expressions, we use Fact 2 and obtain
(

1− x

y − z

)z

≥ 1− zx

y − z
(196)

(

1− x

y

)z

≤ 1− zx

y
+

1

2

(

zx

y

)2

. (197)

From (195) and (196), we get (186).

Using 0 ≤ z ≤ x in the R.H.S. of (197), we also have
(

1− x

y

)z

≤ 1− zx

y
+O

(

x4

y2

)

. (198)

To evaluate R.H.S. of (196), we have

R.H.S. of (196) −
(

1− zx

y

)

= − z2x

y (y − z)
. (199)

Given y > 2x and 0 ≤ z ≤ x, it follows that z ≤ y
2 and thus

y − z ≥ y/2. Note that x ≥ 1. Then, we have

z2x

y (y − z)
≤ x3

y2/2
=

2

x
· x

4

y2
= O

(

x4

y2

)

. (200)

Applying (199) and (200) into (196), we get

(

1− x

y − z

)z

≥ 1− zx

y
−O

(

x4

y2

)

. (201)

Using (198) and (201) in (195), we obtain (187).

C. Proof of Fact 5

The proof is similar to that of Lemma 5.1 in Yağan [37].

First, given positive integer a, it holds that

(

y−ax
x

)

(

y
x

) =

∏x−1
ℓ=0 (y − ax− ℓ)
∏x−1

ℓ=0 (y − ℓ)
=

x−1
∏

ℓ=0

(

1− ax

y − ℓ

)

. (202)

Letting a = 1 in (202), we obtain

(

y−x
x

)

(

y
x

) =

x−1
∏

ℓ=0

(

1− x

y − ℓ

)

. (203)

From property (b) of Fact 2, it follows that

(

1− x

y − ℓ

)2a

≤ 1− 2ax

y − ℓ
+

1

2

(

2ax

y − ℓ

)2

≤ 1− ax

y − ℓ
,

(204)

where, in the last step we used the fact that a ≤ y−x
2x since

y ≥ (2a+ 1)x by assumption.

From (202), (203) and (204), we get (188).

APPENDIX C

PROOFS OF LEMMAS

A. Proof of Lemma 2 (Section VI)

The events E1i, E2i, . . . , Ei−1,i, Ei+1,i . . . , Eni are mu-

tually independent for any node vi. Thus, for each i =
1, 2, . . . , n, the degree of node vi follows a Binomial distri-

bution Bin(n− 1, pe); i.e.,

P [Di,ℓ] =

(

n− 1

ℓ

)

pe
ℓ(1− pe)

n−ℓ−1. (205)

Given pe = o
(

1√
n

)

and constant ℓ, it follows that pe = o(1)

and pe
2(n− ℓ− 1) = o(1). Then from property (b) of Fact 3,

(1 − pe)
n−ℓ−1 ∼ e−pe(n−ℓ−1) holds. Then given pe = o(1)

and constant ℓ, we further get (1− pe)
n−ℓ−1 ∼ e−pen. Using

this and
(

n−1
ℓ

)

∼ (ℓ!)−1nℓ in (205), we obtain

P [Di,ℓ] ∼ (ℓ!)
−1

(pen)
ℓ
e−pen.

B. Proof of Lemma 4 (Section VII-A)

In graph Gon, besides vx and vy , there are (n− 2) nodes,

denoted by vj1 , vj2 , . . . , vjn−2 below. The (n − 2) nodes are

split into the four sets Nxy, Nxy, Nxy and Nx y as defined

in Section V-D. According to the definition (76), under event

F we have |Nxy| = m1, |Nxy| = m2, |Nxy| = m3, so that

|Nx y| = (n − m1 − m2 − m3 − 2). Therefore, given non-

negative constant integers m1,m2 and m3, the constraints 0 ≤
|Nxy|, |Nxy|, |Nxy|, |Nx y| ≤ n−2 are satisfied. In this setting,
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it is clear that the number of possible instances for realizing

the event F is given by

(

n− 2

m1

)

·
(

n−m1 − 2

m2

)

·
(

n−m1 −m2 − 2

m3

)

. (206)

The event J defined below is an instance of F .

J :=
(

Nxy =
{

vj1 , vj2 , . . . , vjm1

}

)

⋂

(

Nxy =
{

vjm1+1 , vjm1+2 , . . . , vjm1+m2

}

)

⋂

(

Nxy =
{

vjm1+m2+1 , vjm1+m2+2 , . . . , vjm1+m2+m3

}

)

⋂

(

Nx y =
{

vjm1+m2+m3+1 , vjm1+m2+m3+2 , . . . , vjn−2

}

)

.

(207)

It is clear that all instances of F happen with the same

probability. Let node vj be any given node other than vx and

vy in graph Gon. Then

Exj∩yj ⇔ (vj ∈ Nxy) ; Exj∩yj ⇔ (vj ∈ Nxy) ; (208)

Exj∩yj ⇔ (vj ∈ Nxy) ; and Exj∩yj ⇔ (vj ∈ Nx y) . (209)

Applying the above equivalences (208) and (209) to the

definition of J in (207), we obtain

J =

(

m1
⋂

i=1

Exji∩yji

)

⋂

(

m1+m2
⋂

i=m1+1

Exji∩yji

)

⋂

(

m1+m2+m3
⋂

i=m1+m2+1

Exji∩yji

)

⋂

(

n−2
⋂

i=m1+m2+m3+1

Exji∩yji

)

.

(210)

Given Exj = Cxj ∩Kxj and Eyj = Cyj ∩Kyj, we have

Exj∩yj = (Cxj ∩ Cyj) ∩ (Kxj ∩Kyj) . (211)

For any node vj distinct from vx and vy , we have the fol-

lowing observations: (a) events Cxj , Cyj , Cxj∩Cyj ,Kxj,Kyj

and thus Exj , Eyj given by (C-B) do not depend on any

nodes other than vx, vy and vj ; (b) given (|Sxy| = u), event

Kxj∩Kyj does not depend on any nodes other than vx, vy and

vj ; (c) from (211), and observations (a) and (b) above, event

Exj∩yj does not depend on any nodes other than vx, vy and

vj given that (|Sxy| = u); (d) since the relative complement

of event Exj∩yj with respect to event Exj is event Exj∩yj ,

given observations (a) and (c) above, event Exj∩yj and then

similarly, events Exj∩yj and Exj∩yj do not depend on any

nodes other than vx, vy and vj .

From observations (c) and (d) above, we conclude that

Exj1∩yj1 , . . . , Exjm1∩yjm1
,

Exjm1+1∩yjm1+1
, . . . , Exjm1+m2∩yjm1+m2

,

Exjm1+m2+1∩yjm1+m2+1
, . . . , Exjm1+m2+m3∩yjm1+m2+m3

,

Exjm1+m2+m3+1∩yjm1+m2+m3+1
, . . . , Exjn−2∩yjn−2

are mutually independent given that (|Sxy| = u).

Then from (206) and (210), we finally get

P [F | |Sxy| = u]

=

(

n− 2

m1

)(

n−m1 − 2

m2

)(

n−m1 −m2 − 2

m3

)

× {P[Exj∩yj | (|Sxy| = u)]}m1

× {P[Exj∩yj | (|Sxy| = u)]}m2

× {P[Exj∩yj | (|Sxy| = u)]}m3

× {P[Exj∩yj | (|Sxy| = u)]}n−m1−m2−m3−2. (212)

upon using exchangeability.

For any constants m1,m2 and m3, we have

(

n− 2

m1

)(

n−m1 − 2

m2

)(

n−m1 −m2 − 2

m3

)

∼ nm1

m1!
· n

m2

m2!
· n

m3

m3!
=

nm1+m2+m3

m1!m2!m3!
. (213)

Now, we evaluate the probability

{P[Exj∩yj | (|Sxy| = u)]}n−m1−m2−m3−2. (214)

It is clear that

(214) = (1− P[Exj∪yj | (|Sxy| = u)])
n−m1−m2−m3−2

.
(215)

From Lemma 9 and the fact that pe ≤ lnn+(k−1) ln lnn
n for all

n sufficiently large, we find

P[Exj∪yj | (|Sxy| = u)] = 2pe −
pnu

Kn
· pe ±O(pe

2)

= 2pe −
pnu

Kn
· pe ± o

(

1

n

)

(216)

= O

(

lnn

n

)

= o(1). (217)

Then using the above relation, given constants m1,m2 and

m3, we obtain

(n−m1 −m2 −m3 − 2){P[Exj∪yj | (|Sxy| = u)]}2

= (n−m1 −m2 −m3 − 2) ·
[

O

(

lnn

n

)]2

= o(1). (218)

Given (217) and (218), we use property (b) of Fact 3 to

evaluate R.H.S. of (215) (i.e., (214)). We get

(214) ∼ e−(n−m1−m2−m3−2)P[Exj∪yj |(|Sxy|=u)]. (219)

Substituting (216) and (217) into (219), given constants

m1,m2 and m3, we find

(214) ∼ e−n[2pe− pnu
Kn

·pe±o( 1
n)] · e(m1+m2+m3+2)·o(1)

∼ e−2pen+
pnu
Kn

·pen. (220)

Applying (213) and (220) into (212), we obtain (77) and this

establishes Lemma 4.
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C. Proof of Lemma 7

The proof is similar to [37, Lemma 5.3]. Given ℓ, βℓ,n > 0
and (120), we obtain pe = pn · ps ≥ lnn

n . Since pn ≤ 1, we

get ps ≥ lnn
n . Then using ps ≤ K2

n

Pn−Kn
given in property (b)

of Lemma 8,
K2

n

Pn−Kn
≥ lnn

n holds. Using this, we find

K2
n =

K2
n

Pn −Kn
· (Pn −Kn) ≥

lnn

n
· Pn − Kn lnn

n
. (221)

Given Kn ≥ 1, we have Kn lnn
n <

K2
n

2 for all n sufficiently

large. From (221) and Pn = Ω(n), we now get

K2
n >

1

2
· lnn

n
· Pn = Ω(lnn)

The desired result Kn = Ω
(√

lnn
)

is now immediate.

D. Proof of Lemma 8

1) Proof of property (a): Recall from (5) that given Pn ≥
2Kn, we have

ps = 1− P[Si ∩ Sj = ∅] = 1−
(

Pn−Kn

Kn

)

(

Pn

Kn

) . (222)

We use Fact 4 (in particular (187)) to evaluate R.H.S. of (222)

and obtain

ps =
K2

n

Pn
±O

(

(

K2
n

Pn

)2
)

. (223)

2) Proof of property (b): Property (b) is proved in [36,

Lemma 7.4.3, pp. 118].

3) Proof of property (c): From (223), ps = o(1) if and only

if
K2

n

Pn
= o(1); namely, property (b) holds.

4) Proof of property (d): From property (c), given ps =

o(1) or
K2

n

Pn
= o(1), we use property (b) and have

K2
n

Pn
=

o(1). From (223) and
K2

n

Pn
= o(1), it follows that ps ∼ K2

n

Pn
.

Therefore,

ps −
K2

n

Pn
= ±O

(

(

K2
n

Pn

)2
)

= ±O
(

(ps)
2
)

.

Then, we get
K2

n

Pn
= ps ±O

(

(ps)
2
)

.

E. Proof of Lemma 9

1) Proof of property (a): We start by computing the

probability P [(Kxj ∩Kyj) | (|Sxy| = u)] for each u =
0, 1, 2, . . . ,Kn. First, note that

P [(Kxj ∩Kyj) | (|Sxy| = u)]

= 1− P
[(

Kxj ∪Kyj

)

| (|Sxy| = u)
]

. (224)

From the inclusion-exclusion principle, this yields

P [(Kxj ∩Kyj) | (|Sxy| = u)]

= 1− P
[

Kxj | (|Sxy| = u)
]

− P
[

Kyj | (|Sxy| = u)
]

+ P
[(

Kxj ∩Kyj

)

| (|Sxy| = u)
]

. (225)

Note that for each u = 0, 1, 2, . . . ,Kn, events Kxj and Kyj

are both independent of (|Sxy| = u); however, Kxj ∩Kyj is

not independent of (|Sxy| = u). Thus, we get

P
[

Kxj | |Sxy| = u
]

= P
[

Kxj

]

= 1− ps (226)

P
[

Kyj | |Sxy| = u
]

= P
[

Kyj

]

= 1− ps. (227)

Substituting (226) and (227) into (225), it follows that

P [(Kxj ∩Kyj) | (|Sxy| = u)]

= 2ps − 1 + P
[(

Kxj ∩Kyj

)

| (|Sxy| = u)
]

. (228)

Given that the events Kxy and (|Sxy| = 0) are equivalent,

letting u = 0 in (228), we obtain

P
[

(Kxj ∩Kyj) | Kxy

]

= 2ps − 1 + P
[(

Kxj ∩Kyj

)

| Kxy

]

.
(229)

Since events Kxj and Kyj are equivalent to [(Sx ∩ Sj) = ∅]
and [(Sy ∩ Sj) = ∅], respectively, we have

(Kxj ∩Kyj) ⇔
{

Sj ⊆ [Pn \ (Sx ∪ Sy)]
}

. (230)

Therefore, from (230), (Kxj ∩ Kyj) equals the event that

the Kn keys forming Sj are all from [Pn \ (Sx ∪ Sy)]. From

|Pn| = Pn, |Sx| = Kn and |Sy| = Kn, we get

|Pn \ (Sx ∪ Sy)| = Pn − 2Kn + |Sxy|. (231)

Under Kxy we have |Sxy| = 0 so that

|Pn \ (Sx ∪ Sy)| = Pn − 2Kn. Clearly, if Pn < 3Kn,

then P
[(

Kxj ∩Kyj

)

| Kxy

]

= 0 ≤ (1 − ps)
2. Below we

consider the case of Pn ≥ 3Kn. We have

P
[(

Kxj ∩Kyj

)

| Kxy

]

=

(

Pn−2Kn

Kn

)

(

Pn

Kn

) . (232)

Applying [37, Lemma 5.1] to R.H.S. of (232), we get

P
[(

Kxj ∩Kyj

)

| Kxy

]

≤ (1 − ps)
2. (233)

Using (233) in (229), we obtain

P
[

(Kxj ∩Kyj) | Kxy

]

≤ 1− 2(1− ps) + (1− ps)
2 = p2s.

2) Proof of property (b): We first establish (190). Given

ps = o(1), from property (c) of Lemma 8,
K2

n

Pn
= o(1) follows.

Then Pn > 3Kn holds for all n sufficiently large. We first

compute P[(Kxj ∩ Kyj) | (|Sxy| = u)] to derive P[(Kxj ∩
Kyj) | (|Sxy| = u)] from (228). As presented in (230), event

(Kxj ∩Kyj) is equivalent to event
{

Sj ⊆ [Pn \ (Sx ∪ Sy)]
}

.

Given |Sxy| = u and (231), it follows that |Pn \ (Sx ∪ Sy)| =
Pn − 2Kn + u. Also, for 0 ≤ u ≤ Kn, it holds that Pn −
2Kn + u ≥ Kn since Pn > 3Kn. Then for all n sufficiently

large, we have

P[(Kxj ∩Kyj) | |Sxy| = u] =

(

Pn−2Kn+u
Kn

)

(

Pn

Kn

)

=

Kn−1
∏

t=0

(

1− 2Kn − u

Pn − t

)

. (234)
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Now, it is a simple matter to check that

P[(Kxj ∩Kyj) | |Sxy| = u] ≤
(

1− 2Kn − u

Pn

)Kn

(235)

and

P[(Kxj ∩Kyj) | |Sxy| = u] ≥
(

1− 2Kn − u

Pn −Kn

)Kn

. (236)

We first evaluate R.H.S. of (235). It is clear that 0 < 2Kn−u
Pn

<
1 for all sufficiently large since Pn > 3Kn and u ≤ Kn. We

utilize Fact 2 to get

R.H.S. of (235)

≤ 1− Kn (2Kn − u)

Pn
+

1

2

[

Kn (2Kn − u)

Pn

]2

. (237)

Applying (237) to (235), we obtain

P[(Kxj ∩Kyj) | |Sxy| = u]

≤ 1− 2K2
n

Pn
+

uKn

Pn
+O

(

K4
n

P 2
n

)

. (238)

Then we evaluate R.H.S. of (236). With 0 ≤ u ≤ Kn

and Pn > 3Kn, it follows that 0 < 2Kn−u
Pn−Kn

< 1 for all n
sufficiently large. We utilize Fact 2 and (236) to get

P[(Kxj ∩Kyj) | |Sxy| = u] ≥ 1− Kn (2Kn − u)

Pn −Kn
. (239)

It is easy to see that

Kn (2Kn − u)

Pn −Kn
− Kn (2Kn − u)

Pn
= O

(

K4
n

P 2
n

)

. (240)

Applying (240) to (239) and using (238) it follows that

P[(Kxj ∩Kyj) | |Sxy| = u] = 1− 2K2
n

Pn
+

uKn

Pn
±O

(

K4
n

P 2
n

)

.

Given ps = o(1), from property (d) of Lemma 8, we have that
K2

n

Pn
= ps ±O

(

p2s
)

∼ ps. Given 0 ≤ u ≤ Kn, this yields

P[(Kxj ∩Kyj) | |Sxy| = u]

= 1− 2
[

ps ±O
(

p2s
)]

+
u

Kn

[

ps ±O
(

p2s
)]

±O
(

p2s
)

= 1− 2ps +
u

Kn
· ps ±O(ps

2). (241)

Applying (241) to (228), we obtain

P [(Kxj ∩Kyj) | (|Sxy| = u)] =
u

Kn
· ps ±O(ps

2) (242)

and this establishes (190).

We now turn to the proof of (191). From (190), we obtain

P[Exj∪yj | (|Sxy| = u)]

= P[Exj | (|Sxy| = u)] + P[Eyj | (|Sxy| = u)]

− P[Exj∩yj | (|Sxy| = u)].

= 2pe − P[Cxj ] · P[Cyj ] · P [(Kxj ∩Kyj) | (|Sxy| = u)]

= pn
2 ·
[

u

Kn
ps ±O

(

ps
2
)

]

=
pnu

Kn
· pe ±O(pe

2).

The desired result (191) is now established.

F. Proof of Lemma 10

It is not difficult to see that

P[|Sxy| = u]

=

(

Kn

u

)

·
(

Pn−Kn

Kn−u

)

(

Pn

Kn

) .

=
1

u!
·
[

Kn!

(Kn − u)!

]2

· (Pn −Kn)!

(Pn − 2Kn + u)!
· (Pn −Kn)!

Pn!

≤ 1

u!
·K2u

n · (Pn −Kn)
Kn−u · (Pn −Kn)

−Kn

=
1

u!

(

K2
n

Pn −Kn

)u

.

G. Proof of Lemma 12

Recall Ji defined in (131). Here we still use Yi defined in

(136) for j ≥ 2. Then (137) follows. We define M(|νr|) and

Q(|νr|) as follows:

M(νr) = 1 [|νr| > 0] ·max{Kn, Yn,|νr| + 1} (243)

Q(νr) = Kn1 [|νr| = 1] + (⌊(1 + ε)Kn⌋+ 1)1 [|νr| > 1]
(244)

Lemma 12 is an extension of a similar result established in

[37, Lemma 10.1, pp. 11]. There, it was shown that for r =
1, 2, . . . , ⌊n

2 ⌋,

E

[
(

Pn−M(νr)
Kn

)

(

Pn

Kn

)

]

≤ e−peλr + e−Knµ1 [r > rn] . (245)

Recalling the definition of L(νr) in (157) and using the

definitions of M(νr) and Q(νr) in (243) and (244), we have

the following cases.

(a) If |νr| = 0, then L(νr) = M(νr) = Q(νr) = 0.

(b) If |νr| = 1, then L(νr) = M(νr) = Q(νr) = Kn.

(c) If |νr| ≥ 2, then

L(νr) = max
{

Kn, Jn,|νr| + 1
}

(246)

M(νr) = max
{

Kn, Yn,|νr| + 1
}

(247)

Q(νr) = ⌊(1 + ε)Kn⌋+ 1. (248)

Then for case (c), we further have the following two subcases.

(c1) If |νr| = 2, 3, . . . , rn, given (246), (247) and J|νr| =
max{(1 + ε)Kn, Y|νr|} from (137), it follows that

L(νr) = max
{

⌊(1 + ε)Kn⌋+ 1, Yn,|νr| + 1
}

(249)

resulting in L(νr) = max {M(νr), Q(νr)} from (247) and

(248).

(c2) If |νr| = rn + 1, rn + 2, . . . , n, given (246), (247) and

J|νr| = Y|νr | from (137), it follows that

L(νr) = M(νr) = max {Kn, ⌊µPn⌋+ 1} . (250)

Given Kn

Pn
= o(1), then ⌊µPn⌋ ≥ ⌊(1 + ε)Kn⌋ for all

n sufficiently large. Consequently, from (248) and (250), it

follows that L(νr) = max {M(νr), Q(νr)}.
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Summarizing cases (a), (b), and (c1)-(c2) above, given

any |νr|, we have L(νr) = max {M(νr), Q(νr)} for all n
sufficiently large. This yields

E

[
(

Pn−L(νr)
Kn

)

(

Pn

Kn

)

]

≤ min

{

E

[
(

Pn−M(νr)
Kn

)

(

Pn

Kn

)

]

,E

[
(

Pn−Q(νr)
Kn

)

(

Pn

Kn

)

]}

. (251)

We will show the following result: for all n sufficiently large

and for any r = 2, 3, . . . , n,

E

[
(

Pn−Q(νr)
Kn

)

(

Pn

Kn

)

]

≤ e−pe(1+ε/2). (252)

Clearly, if (252) holds, we can substitute (245) and (252) into

(251) and obtain (193), which establishes Lemma 12.

For any given n and any given r, from (244), we get

E

[
(

Pn−Q(νr)
Kn

)

(

Pn

Kn

)

]

≤ E

[
(

Pn−⌈Kn{1[|νr|=1]+(1+ε)1[|νr |>1]}⌉
Kn

)

(

Pn

Kn

)

]

.

(253)

From Lemma 5.1 in Yağan [37], it follows that

R.H.S. of (253) ≤ E

[

(1 − ps)
1[|νr|=1]+(1+ε)1[|νr |>1]

]

.

(254)

Then from (156), we obtain

R.H.S. of (254)

= P[|νr| = 0] + (1− ps)P[|νr| = 1]

+ (1 − ps)
1+ε

P[|νr| ≥ 2]

= (1 − pn)
r + rpn(1− pn)

r−1(1− ps)

+ [1− (1 − pn)
r − rpn(1− pn)

r−1](1− ps)
1+ε

. (255)

We introduce a continuous variable γ and define

f(γ, pn, ps) as follows, where γ ≥ 1.

f(γ, pn, ps) = (1 − pn)
γ + γpn(1− pn)

γ−1(1− ps)

+ [1− (1 − pn)
γ − γpn(1− pn)

γ−1](1− ps)
1+ε

.
(256)

From (255) and (256), we obtain

R.H.S. of (254) = f(r, pn, ps). (257)

Note that since r is an integer, we cannot take the partial

derivative of f(r, pn, ps) with respect to r. We have introduced

continuous variable γ and hence can take the partial derivative

of f(γ, pn, ps) with respect to γ. We get

∂f(γ, pn, ps)

∂γ

= (1− pn)
γ [1− (1− ps)

1+ε] ln(1 − pn)

+ pn(1 − pn)
γ−1[1− ps − (1 − ps)

1+ε
][1 + γ ln(1 − pn)]

≤ (1− pn)
γ [1− ps − (1− ps)

1+ε] ln(1− pn)

+ pn(1 − pn)
γ−1[1− ps − (1 − ps)

1+ε
][1 + γ ln(1 − pn)],

where, in the last step, we used the fact that ln(1 − pn) ≤ 0.

Therefore, it’s clear that

1

(1− pn)γ−1[1− ps − (1− ps)1+ε]

∂f(γ, pn, ps)

∂γ

≤ (1− pn) ln(1 − pn) + pn[1 + γ ln(1− pn)]

= (1− pn + pnγ) ln(1 − pn) + pn

with (1 − pn)
γ−1[1− ps − (1− ps)

1+ε] ≥ 0. Using ln(1 −
pn) ≤ −pn < 0 and γ ≥ 1, we get

1

(1 − pn)γ−1[1− ps − (1 − ps)1+ε]

∂f(γ, pn, ps)

∂γ

≤ −pn(1− pn + pnγ) + pn

= p2n(1− γ) ≤ 0. (258)

Given pn and ps, then f(γ, pn, ps) is decreasing with

respect to γ for γ ≥ 1. Then given r ≥ 2, (254) and (257),

we have

R.H.S. of (253)

≤ f(2, pn, ps)

= (1 − pn)
2 + 2pn(1− pn)(1 − ps) + p2n(1− ps)

1+ε

(259)

≤ (1 − pn)
2 + 2pn(1− pn)(1 − ps) + p2n(1− ps)(1− εps)

(260)

= 1− pe[2− εpe − (1 − ε)pn] (261)

≤ exp {−pe[2− εpe − (1− ε)pn]} (262)

where in (259) we use 0 < ps < 1, 0 < ε < 1 and Fact 2 to

obtain (1− ps)
ε ≤ 1 − εps; and in (260) we use pe = pnps;

and in (261) we use the 1−x ≤ e−x that holds for any x ≥ 0.

Given pe = o(1), then pe ≤ 1
2 for all n sufficiently large.

Using this and 0 < pn ≤ 1, we obtain

2− εpe − (1− ε)pn ≥ 2− ε

2
− (1 − ε) = 1 +

ε

2

for all n sufficiently large. Applying the above result to (262),

we obtain

R.H.S. of (253) ≤ e−pe(1+ε/2). (263)

Applying (263) to (253), we get (252) and Lemma 12 is now

established.
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