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Capacity Bounds for a Class of Interference
Relay Channels

Germán Bassi, Pablo Piantanida and Sheng Yang

Abstract—The capacity of a class of Interference Relay Chan-
nels (IRC) –the Injective Semideterministic IRC where the relay
can only observe one of the sources– is investigated. We first
derive a novel outer bound and two inner bounds which are based
on a careful use of each of the available cooperative strategies
together with the adequate interference decoding technique. The
outer bound extends Telatar and Tse’s work while the inner
bounds contain several known results in the literature as special
cases. Our main result is the characterization of the capacity
region of the Gaussian class of IRCs studied within a fixed
number of bits per dimension –constant gap. The proof relies
on the use of the different cooperative strategies in specific SNR
regimes due to the complexity of the schemes. As a matter of
fact, this issue reveals the complex nature of the Gaussian IRC
where the combination of a single coding scheme for the Gaussian
relay and interference channel may not lead to a good coding
scheme for this problem, even when the focus is only on capacity
to within a constant gap over all possible fading statistics.

Index Terms—Interference channel, relay channel, decode-
and-forward, compress-and-forward, inner bounds, outer bound,
constant gap.

I. I NTRODUCTION

CELLULAR networks have reached practical limits in
many dense urban areas while data traffic and the number

of users seem to be continuously increasing. Interference has
become one of the most crucial problems in cellular networks
where users must compete for the available resources, e.g.,
an improvement in terms of data rate for one of them may
be detrimental to the performance of another user. Although
the existence of a large amount of users in cellular networks
has driven communication channels from being noise-limited
to interference-limited, it can also be exploited to boost the
overall network throughput by means of user cooperation.

In order to provision a new communication infrastructure,
network operators are rethinking conventional cellular system
topologies to consider a new paradigm called heterogeneous
networks. This consists of planned macro base station (BS)
deployments that typically transmit at high power overlaid
with several low power nodes such as: relay and pico BSs,
distributed antennas, and femto BSs. These lower power
nodes are deployed to further increase the coverage of the
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network, especially when terminals are far away from the
macro BS. Fixed relays are infrastructure equipment that
connect wirelessly to the BS and these relays aid in the
signal transmission between the macro BS and the mobile
users by receiving and retransmitting messages. Indeed, these
relays may offer a flexible option where backhauls are not
available. In order to assess the benefits of this strategy, an
information-theoretic analysis of cooperation through relaying
in interference-limited environments should be carried out.
Nonetheless, each one of these two fundamental problems –
relaying and interference– appears to be rather involved and
unfortunately only partial results are available in the literature.

A. Related Work

Perhaps the simplest model of a communication network
with interference is the Interference Channel (IC), whose
capacity region –even without a relay– is still an open problem.
The largest known achievable rate region is due to Han and
Kobayashi [1] and it is based on the idea of interference decod-
ing via “rate-splitting” at the sources, also referred to as“Han-
Kobayashi scheme”. This scheme has been shown by Etkin-
Tse-Wang [2] to achieve within1 bit per complex dimension to
the capacity region of the Gaussian IC. The important feature
behind the notion of “constant gap” is that it guarantees an
uniform gap between the inner and the outer bound over all
channel coefficients and hence all possible fading statistics.
This result hinges on a new upper-bounding technique that
has been later on extended to a more general class of ICs [3],
also referred to as “Injective Semideterministic IC” [4].

Another challenging problem is the Relay Channel (RC),
where a relay node helps the communication between a
source-destination pair. Since the seminal work of Cover and
El Gamal [5], which has introduced the main cooperative
strategies of “decode-and-forward” (DF) and “compress-and-
forward” (CF), there has been a great deal of research on this
topic. Although the capacity of the RC is still unknown in
general, the benefits of cooperation by relaying are rather clear
by now, at least in the context of single source and/or single
destination relay networks [6]. An approximation approachto
general networks via deterministic channels was introduced
by Avestimehr-Diggavi-Tse [7]. This approach yields a novel
improvement over CF scheme –referred to as “quantize-map-
and-forward” (QMF)– that achieves capacity to within a con-
stant gap for unicast additive white Gaussian noise (AWGN)
networks with an arbitrary number of relays. As a matter of
fact, both DF and CF schemes can perform within the same
constant gap to the capacity of the Gaussian RC, regardless of
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Fig. 1. The Gaussian IRC where the valuesSij represent the SNR between
nodesj and i.

the channel parameters [7], [8] and thus of the fading statistics.
More recently, Limet al. [9] generalized the QMF approach
to arbitrary memoryless multicast networks via the “noisy
network coding” (NNC) scheme. Relay nodes based on NNC
scheme send the same –long– message over many blocks of
equal length and the descriptions at the relays do not require
binning while their indices are non-uniquely decoded at the
destination.

In wireless networks with multiple source nodes that com-
municate simultaneously to several destinations, “interference”
becomes the central issue, and the different roles that relays
can play to enhance the reliability in such scenarios are not
well understood yet. In this paper, we consider the simplest
scenario where interference and relaying appear together,that
is the Interference Relay Channel (IRC). The problem itselfis
not new [10] and the research on this topic has been growing
during the past years. In [11], among other works, the authors
proposed inner bounds on the capacity region of the IRC
based on the standard CF scheme while DF-based schemes
are also studied in [12]. It is worth mentioning here that these
coding schemes do not use “joint decoding” at the destination
to recover all transmit messages and the compression indices.
The idea of NNC was later on extended to the IRC in [13]
by adding rate-splitting. Besides these works, capacity ofthe
physically degradedIRC in thestrong interferenceregime was
determined in [14] by assuming that the relay node can only
observe one of the two source encoders. Several variations
of this problem have also been investigated, e.g., the cognitive
IRC where the relay has non-casual knowledge of the sources’
messages was treated in [15], [16]. Additionally, the IRC
with an “out-of-band relay”, i.e., the relay operates over an
orthogonal band with respect to the underlying IC, was also
studied in [17]–[21]. Capacity results were obtained in [21] for
an IRC with oblivious relaying in which the relay is unaware
of the codebook used by the source encoders.

The interference channel with cooperation at either the
transmitter or receiver end, or both has also been investigated.
In the extreme regimes where the relay can be thought of
being collocated with the transmitters or the receivers, the
IRC becomes a virtual multi-antenna IC with transmitter or
receiver cooperation. The benefits of such a system have been
studied in [22]. Additionally, constant-gap results regardless of
channel conditions were provided in [23]–[26], while capacity
results in strong interference regime were determined in [27]
for the case of transmitter cooperation. Recently, in the case

of unilateral source cooperation, improved outer bounds were
reported in [28].

B. Contribution and Outline

In this paper we focus on a simplified version of the two-
user IRC [29] which still captures the rather complex interplay
between interference and relaying. This is the two-user IC
with a relay node which can only observe one of the source
encoders. Although this is not the most general two-user
IRC, we shall see that it still captures the central issue of
interference and relaying and hence, we seek to provide some
useful insights into the understanding of this complex problem.
In particular, for the class of Gaussian IRCs shown in Fig. 1,
we aim at determining the underlying SNR regimes together
with the adequate coding schemes and decoding technique that
are needed to achieve capacity to within aconstant gap.

Our results involve a novel outer bound for the considered
class of IRCs –the Injective Semideterministic IRC– and two
inner bounds based on rate-splitting and different relaying
strategies (building on DF and CF schemes) with the adequate
interference decoding technique. Although the use of DF and
CF schemes in the context of the IRC is not new [10]–[14], our
aim is to provide a set of simple but powerful enough strategies
in order to characterize the capacity region of Gaussian IRCs
to within a constant gap, as previously stated. In this regard,
our main contributions with respect to the literature are the
introduction ofpartial DF, where the relay forwards only part
of the source’s message, and the use of different decoding
strategies in the CF scheme which helps us obtain a compact
expression of the inner bound.

The main outcome of this work is the characterization
within a constant gap of the capacity of the aforementioned
Gaussian IRC. We show that, for any channel realization,
at least one of the proposed schemes achieves the capacity
region to within a constant gap. More precisely, it is shown
that when the source-to-relay channel is stronger than the
source-to-destination channel full DF scheme is recommended
(this regime includes the capacity result in [14, Thm. 3]).
As the strength of the source-to-relay channel reduces, it is
preferable to partially decode the message and thus partialDF
scheme is required. Finally, when the source-to-relay channel
is weaker than the interfering channel from the source to the
other destination, CF scheme together with different ways of
decoding is needed instead.

This paper is organized as follows. Section II presents the
problem definition while the outer bound and the two inner
bounds are deferred to Sections III and IV, respectively. The
constant gap results are shown in Section V. Finally, all proofs
are relegated to the appendices.

Notation and Conventions

Given two integersi and j, the expression[i : j] denotes
the set{i, i+1, . . . , j}, whereas for real valuesa andb, [a, b]
denotes the closed interval betweena andb. Lowercase letters
such asx and y are mainly used to represent realizations of
random variables, whereas capital letters such asX and Y
stand for the random variables in itself. Bold capital letters
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Fig. 2. Interference Relay Channel (IRC) model.

such asHHH andQQQ represent matrices, while calligraphic letters
such asX and Y are reserved for sets. The probability
distribution (PD) of the random vectorXn, pXn(xn), is
succinctly written asp(xn) without subscript when it can
be understood from the argumentxn. Given three random
variablesX , Y , andZ, if its joint PD can be decomposed as
p(xyz) = p(y)p(x|y)p(z|y), then they form a Markov chain,
denoted byX −
− Y −
− Z. Differential entropy is denoted
by h(·) and the mutual information,I(·; ·). The expression
C[x] = 1

2 log2(1 + x) stands for the capacity of a Gaussian
channel with SNR of valuex. Definitions and properties of
strongly typical sequences and delta-convention are provided
in Appendix A.

II. PROBLEM DEFINITION

The IRC consists of two source encoders, two destinations
and one relay node. Encoderk wishes to send a messagem̃k ∈
M̃n,k , {1, . . . ,Mn,k} to destinationk, k ∈ {1, 2}, with the
help of the relay. The IRC, depicted in Fig. 2, is modeled as a
memoryless channel without feedback defined by a conditional
probability distribution (PD):

p(y1, y2, y3|x1, x2, x3) : X1 ×X2 × X3 7−→ Y1 × Y2 × Y3

wherexk ∈ Xk and yk ∈ Yk, k ∈ {1, 2}, are the input at
sourcek and output at destinationk, respectively, whereas
x3 ∈ X3 and y3 ∈ Y3 are the input and output at the relay,
respectively. The relaying functions are defined as a sequence
of mappings

{
φi : Yi−1

3 7→ X3

}n

i=1
.

As it was previously stated, throughout the paper we deal
with a specific type of IRC in which only one of the sources
is connected to the relay, i.e.,

p(y1, y2, y3|x1, x2, x3) = p(y3|x1, x3)p(y1, y2|x1, x2, x3, y3).
(1)

Unless it is noted otherwise, this is a basic assumption of our
model.

We also recall that a pair of rates(R1, R2) is said to be
achievable for an IRC if for everyǫ > 0 there exists a block
lengthn and encoders enck : M̃n,k 7→ Xn

k , Mn,k ≥ 2n(Rk−ǫ),
k ∈ {1, 2}, and decoder deck : Yn

k 7→ M̃n,k, k ∈ {1, 2}, such
that

1

Mn,1Mn,2

∑

m̃1,m̃2

P
{(

dec1(Y n
1 ), dec2(Y n

2 )
)
6= (m̃1, m̃2) |

Xn
1 = enc1(m̃1), X

n
2 = enc2(m̃2)

}
≤ ǫ.

Definition 1 (Injective Semideterministic IRC):In this pa-
per, we shall focus on the class of IRCs referred to as the
Injective Semideterministic IRC (IS-IRC), as shown in Fig.3,
which is an extension of that introduced in [3] for the IC. In

(X1X3)

X2

Y1

(Y2Y3)

p(s2|x2)
S2

f1

p(s1|x1x3)
S1

f2

Fig. 3. Injective Semideterministic IRC (IS-IRC) model.

this model, the randomness of the channel is captured by the
interference signalsS1, S2 andS3. For sake of clarity, we will
denote the pair(S1S3) as the vectorS1.

The conditional PD of the interference signals may be de-
composed as follows,p(s1s2|x1x2x3) = p(s1|x1x3)p(s2|x2),
and the outputs of the channel are deterministic functions
of (X1, X2, X3, S1, S2). Specifically, we have thatY1 =
f1(X1, X3, S2), Y2 = f ′

2(X2, S1), and(Y2Y3) = f2(X2, S1),
wheref1, f ′

2, andf2 are functions that, for every(x1, x2, x3),

f1(x1, x3, · ) : S2 → Y1, s2 7→ f1(x1, x3, s2),

f ′
2(x2, · ) : S1 → Y2, s1 7→ f ′

2(x2, s1),

f2(x2, · ) : S1 → Y2 × Y3, s1 7→ f2(x2, s1)

are invertible.

Remark 1:Since the relay only observes the first source, its
input X3 cannot depend onX2. Therefore,X3 is regarded as
desired signal atY1 and as interference atY2, which motivates
us to model this class of IRCs as depicted in Fig. 3. It comes as
no surprise that the pair(X1X3) should be taken as a whole.
However, as it is shown later in the derivation of the outer
bound, it is also convenient to put the pair(Y2Y3) together.

A special case of the IS-IRC is the real Gaussian model, as
it is shown in Fig. 1, and defined by

Y1 = h11X1 + h12X2 + h13X3 + Z1, (2a)

Y2 = h21X1 + h22X2 + h23X3 + Z2, (2b)

Y3 = h31X1 + Z3, (2c)

where each noise processZk ∼ N (0, Nk), k ∈ {1, 2, 3}, is
independent of each other, and each input has an average
power constraintE[|Xk|2] ≤ Pk, k ∈ {1, 2, 3}. The link
between nodej andi has a fixed channel coefficienthij , and
the SNR associated to it is denotedSij , |hij |2Pj/Ni. In this
model, the interference signals are

S1=

[
S1

S3

]

=

[
h21X1 + h23X3 + Z2

h31X1 + Z3

]

andS2 = h12X2 + Z1.

(3)
Therefore, results for the IS-IRC can be applied straightfor-
wardly to the Gaussian case.

III. O UTER BOUND

In this section, we develop an outer bound for the IS-IRC
model described in Section II. The model in Fig. 3 is provided
to help the reader understand the genie-aided technique used in
the derivation of the bounds. It would be worth to emphasize
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that this model by no means assumes that the relay has
previous knowledge of any message nor thatX3 or Y3 are
collocated withX1 or Y2 as it could be wrongly interpreted
based on the aforementioned figure.

Let P1 be the set of all joint PDs that can be factored as:

p(q)p(x1x3|q)p(x2|q)p(v1v2|x1x2x3q), (4)

wherep(v1v2|x1x2x3q) = pS1|X1X3
(v1|x1x3)pS2|X2

(v2|x2),
i.e., (V1V2) is a conditionally independent copy of(S1S2)
given (X1X2X3). Let us recall thatV1 represents the first
component ofV1.

Theorem 1 (outer bound):Given a specificP1 ∈ P1, let
Ro(P1) be the region of nonnegative rate pairs(R1, R2)
satisfying

R1 ≤ I(X1;Y1Y3|X2X3Q), (5a)

R1 ≤ I(X1X3;Y1|X2Q), (5b)

R2 ≤ I(X2;Y2|X1X3Q), (5c)

R1+R2 ≤ I(X1X3;Y1|V1X2Q) +I(X1X2X3;Y2|Q), (5d)

R1+R2 ≤ I(X1X2X3;Y1|V1Q) +I(X1X2X3;Y2|V2Q), (5e)

R1+R2 ≤ I(X1X2X3;Y1|Q) +I(X2;Y2|X1V2X3Q), (5f)

R1+R2 ≤ I(X1;Y1Y3|V1X2X3Q) +I(X1X2X3;Y2|Q), (5g)

R1+R2 ≤ I(X1X2;Y1Y3|V1X3Q) +I(X1X2X3;Y2|V2Q),
(5h)

R1+R2 ≤ I(X1X2;Y1Y3|X3Q) +I(X2;Y2|X1V2X3Q), (5i)

R1+R2 ≤ I(X1;Y1Y3|V1X2X3Q) +I(X1X2;Y2Y3|X3Q),
(5j)

R1+R2 ≤ I(X1X2;Y1Y3|V1X3Q)+I(X1X2;Y2Y3|V2X3Q),
(5k)

2R1+R2 ≤ I(X1X3;Y1|V1X2Q) + I(X1X2X3;Y1|Q)

+ I(X1X2X3;Y2|V2Q), (5l)

2R1+R2 ≤ I(X1X3;Y1|V1X2Q) + I(X1X2;Y1Y3|X3Q)

+ I(X1X2X3;Y2|V2Q), (5m)

2R1+R2 ≤ I(X1;Y1Y3|V1X2X3Q) + I(X1X2X3;Y1|Q)

+ I(X1X2X3;Y2|V2Q), (5n)

2R1+R2 ≤ I(X1;Y1Y3|V1X2X3Q) + I(X1X2;Y1Y3|X3Q)

+ I(X1X2X3;Y2|V2Q), (5o)

2R1+R2 ≤ I(X1;Y1Y3|V1X2X3Q) + I(X1X2X3;Y1|Q)

+ I(X1X2;Y2Y3|V2X3Q), (5p)

2R1+R2 ≤ I(X1;Y1Y3|V1X2X3Q) + I(X1X2;Y1Y3|X3Q)

+ I(X1X2;Y2Y3|V2X3Q), (5q)

R1+2R2 ≤ I(X1X2X3;Y1|V1Q) + I(X2;Y2|X1V2X3Q)

+ I(X1X2X3;Y2|Q), (5r)

R1+2R2 ≤ I(X1X2;Y1Y3|V1X3Q) + I(X2;Y2|X1V2X3Q)

+ I(X1X2X3;Y2|Q), (5s)

R1+2R2 ≤ I(X1X2;Y1Y3|V1X3Q) + I(X2;Y2|X1V2X3Q)

+ I(X1X2;Y2Y3|X3Q). (5t)

Then, an outer bound for the IS-IRC is defined by the union
of Ro(P1) over all PDsP1 ∈ P1, as decomposed in (4).

Proof: See Appendix B.

The real Gaussian model, presented in Section II, is a special
case of the IS-IRC. Therefore, according to (4), the sources’
inputs X1 and X2 are independent, andX1 is arbitrarily
correlated to the relay’s inputX3, i.e., E[X1X2] = 0,
E[X1X3] = ρ

√
P1P3 and E[X2X3] = 0. The Gaussian

expression of the outer bound is readily found using the
model (2) and generating the auxiliariesV1 andV2 according
to (3), but with independent noises.

The foregoing Gaussian outer boundRo =
⋃

ρ∈[−1,1]Ro(ρ)
depends on the correlation coefficientρ betweenX1 andX3

and, due to the large number of bounds, only a numerical
maximization results viable. In order to obtain analytical
expressions which can be used later to characterize the gap
between inner and outer bounds, we establish an outer bound
on Ro. This outer bound is obtained by maximizing each
individual rate constrain inRo(ρ) independently.

Let us define any of the bounds inRo(ρ) asb(ρ) andρmax

as the value that maximizes that particular bound. Then, it
can be shown thatb(ρmax) = b(0) or b(ρmax) ≤ b(0) + ∆,
where∆ is either0.5 or 1 bit. Therefore, we can simplify the
expressions in the outer bound and avoid the maximization
procedure if we use uncorrelated inputs and enlarge certain
bounds, as we see in the following corollary. A similar
observation has also been made in [7, Appx. A] and [9, (19)].

Corollary 1 (outer bound for the Gaussian case):An outer
bound for the Gaussian IRC is given by the set of nonnegative
rate pairs(R1, R2) satisfying

R1 ≤ C[S11 + S31] , (6a)

R1 ≤ C[S11 + S13] +
1

2
, (6b)

R2 ≤ C[S22] , (6c)

R1+R2 ≤ C

[
S11+S13+δ

1+S21+S23

]

+C[S21+S22+S23]+
1

2
, (6d)

R1+R2 ≤ C

[

S12 +
S11 + S13 + δ

1 + S21 + S23

]

+ C

[

S21 + S23 +
S22

1 + S12

]

+
1

2
, (6e)

R1+R2 ≤ C[S11 + S12 + S13] + C

[
S22

1 + S12

]

+
1

2
, (6f)

R1+R2 ≤ C

[
S11 + S31

1 + S21

]

+ C[S21 + S22 + S23] +
1

2
, (6g)

R1+R2 ≤ C

[

S12 +
S11 + S31(1 + S12)

1 + S21

]

+ C

[

S21 + S23 +
S22

1 + S12

]

+
1

2
, (6h)

R1+R2 ≤ C[S11+S12+S31(1+S12)]+C

[
S22

1+S12

]

, (6i)

R1+R2 ≤ C

[
S11+S31

1+S21+S31

]

+C[S21+S22+S31(1+S22)],

(6j)

R1+R2 ≤ C

[

S12 +
S11 + S31(1 + S12)

1 + S21 + S31

]

+ C

[

S21 + S31 +
S22(1 + S31)

1 + S12

]

, (6k)
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2R1 +R2 ≤ C

[
S11 + S13 + δ

1 + S21 + S23

]

+ C

[

S21 + S23 +
S22

1 + S12

]

+ C[S11 + S12 + S13] + 1, (6l)

2R1 +R2 ≤ C

[
S11 + S13 + δ

1 + S21 + S23

]

+ C

[

S21 + S23 +
S22

1 + S12

]

+ C[S11 + S12 + S31(1 + S12)] +
1

2
, (6m)

2R1 +R2 ≤ C

[
S11 + S31

1 + S21

]

+ C[S11 + S12 + S13]

+ C

[

S21 + S23 +
S22

1 + S12

]

+ 1, (6n)

2R1 +R2 ≤ C

[
S11 + S31

1 + S21

]

+ C[S11 + S12 + S31(1 + S12)]

+ C

[

S21 + S23 +
S22

1 + S12

]

+
1

2
, (6o)

2R1 +R2 ≤ C

[
S11 + S31

1 + S21 + S31

]

+ C[S11 + S12 + S13]

+ C

[

S21 + S31 +
S22(1 + S31)

1 + S12

]

+
1

2
, (6p)

2R1 +R2 ≤ C

[
S11 + S31

1+S21+S31

]

+C[S11+S12+S31(1+S12)]

+ C

[

S21 + S31 +
S22(1 + S31)

1 + S12

]

, (6q)

R1 + 2R2 ≤ C

[

S12 +
S11 + S13 + δ

1 + S21 + S23

]

+ C

[
S22

1 + S12

]

+ C[S21 + S22 + S23] +
1

2
, (6r)

R1 + 2R2 ≤ C

[

S12 +
S11 + S31(1 + S12)

1 + S21

]

+ C

[
S22

1 + S12

]

+ C[S21 + S22 + S23] +
1

2
, (6s)

R1 + 2R2 ≤ C

[

S12 +
S11 + S31(1 + S12)

1 + S21 + S31

]

+ C

[
S22

1 + S12

]

+ C[S21 + S22 + S31(1 + S22)] (6t)

whereδ ,
(√

S11S23 ±
√
S13S21

)2
.

Proof: See Appendix C.

Remark 2: If we define the following matrices,

HHH =

[
h11 h13

h21 h23

]

and QQQ =
1√

N1N2

[
P1 0
0 P3

]

, (7)

we readily see thatδ = det
(
HHHQQQHHHT

)
. Thus, the sign in

the expressionδ depends on the sign of the channel coef-
ficients. If there is an even number of negative coefficients
in HHH , then δ =

(√
S11S23 −

√
S13S21

)2
, otherwiseδ =

(√
S11S23 +

√
S13S21

)2
.

Remark 3: In the strong interference regime, where each
receiver can decode the interfering message completely with-
out restricting its rate, tighter outer bounds can be derived,
similarly to the IC under strong interference [4, Remark
6.9]. The sum-rates in the capacity regions under strong
interference [11, Thm. 5] and [14, Thm. 2], the former with
the assumption of a potent relay, i.e.,P3 → ∞, are tighter than
the ones presented here, namely (6i), (6j), (5d), (5f), and (5g).

Remark 4:Outer bound sum-rates using genie-aided tech-
niques are given in [11, Thm. 4] and [14, Thm. 4], the former
extending the “useful” and “smart” genie from [30] while the
latter using Kramer’s approach [31].

As it is shown in [30], the “smart” genie provides an
outer bound that is tighter than Etkinet al.’s [2] under weak
interference, thus, the sum-rate [11, Thm. 4] is tighter than
the analogous in our region, namely, (6k). Additionally, the
optimization of parameters in the sum-rate [14, Thm. 4] can
potentially give tight bounds. For example, ifd1 = h21,
d2 = d3 = 0, d4 =

√
N2, and d5 = h23 the genie signal

Y1g becomesV1 = h21X1 + h23X3 + Z ′
2 and it is easy to

verify that the sum-rate [14, Thm. 4] is tighter than (5e).

IV. I NNER BOUNDS

In the following, we provide two inner bounds corre-
sponding to two different relaying strategies, namely, DF and
CF. With DF, the relay decodes the message from the only
connected source (partially or completely), re-encodes it, and
transmits it to both destinations. With CF, the relay compresses
the received signal, and sends a compression index associated
to it. A previous version of these schemes was presented
in [29], but here we show a more compact expression for
the CF scheme and a completely new and improved version
for the DF scheme. Four main ingredients are required: rate-
splitting, binning, and block-Markov coding at the sources,
and backward decoding at the destinations. In the sequel, we
assume the indices(k, j) ∈ {(1, 2), (2, 1)}.

In every strategy, to allow cooperation from the relay, the
transmission is split in several blocks. During blockb, each
sourcek divides its messagẽmkb into two short messages:
a common partmkb and a private partwkb. As in the Han-
Kobayashi scheme, each receiver decodes the common part of
the interfering message, hence reducing the interference.

The use of DF and CF schemes for IRCs is well-known
[10]–[14], however, our goal is to derivesimplebut powerful
enough strategies in order to characterize the capacity region
of the IRC within a constant gap. The biggest obstacle
to obtaining an inner bound with a manageable number of
inequalities is the use of a relaying strategy jointly with
rate-splitting to deal with interference. This issue may be
overcome by assuming some special condition in the model,
e.g., symmetric channels [10], [12] or strong interference[14],
or by employing successive decoding of codewords instead of
joint-decoding [11], [12]. However, we do not want to rely on
these assumptions here.

Additionally, the proposed schemes have some key differ-
ences with respect to the literature. In the DF scheme, the
amount of information decoded by the relay is optimized sep-
arately from the rate-splitting used to deal with interference,
which can potentially improve the achievable rates. Moreover,
the CF scheme presented in Section IV-B does not force both
receivers to decode the compression index, unlike [11], [13],
which could reduce the performance of the scheme if there is
a large asymmetry among the channels.

Remark 5: It is worth noting that the inner bounds stated
below apply to general memoryless IRCs and thus they are
not limited to the IS-IRC.



6

A. Decode-and-Forward

Each source sendsB messages duringB + 1 time blocks,
and the relay forwards in blockb what it has decoded from
the first source in the previous block. In this scheme, the
private message of the first source is split into two parts
and the relay only decodes and retransmits one of them (plus
the commonmessage). At the end of transmission, receiverk
decodes backwardly the private messagewkb as well as both
common messagesmkb andmjb.

Let P2 be the set of PDs that factor as

p(q)p(x1x3|q)p(x2|q)p(v1|x1x3q)

p(u1|x1q)p(v2|x2q)p(v3|x3q). (8)

Theorem 2 (partial DF scheme):Given a P2 ∈ P2, let
Rp-DF(P2) be the region of nonnegative rate pairs(R1, R2)
satisfying

R1 ≤ I(U1;Y3|X3Q) + I(X1;Y1|V1U1V2X3Q), (9a)

R1 ≤ I(X1X3;Y1|V2Q), (9b)

R2 ≤ I(X2;Y2|V1V3Q), (9c)

R2 ≤ I(V1X2V3;Y2|Q)− Ib, (9d)

R1+R2 ≤ I(X1X3;Y1|V1V2V3Q)+I(V1X2V3;Y2|Q), (9e)

R1+R2 ≤ I(U1;Y3|V1X3Q) + I(X1;Y1|V1U1V2X3Q)

+ I(V1X2V3;Y2|Q)− Ib, (9f)

R1+R2 ≤ I(X1V2X3;Y1|V1V3Q) + I(V1X2V3;Y2|V2Q),
(9g)

R1+R2 ≤ I(U1;Y3|V1X3Q) + I(X1V2;Y1|V1U1X3Q)

+ I(V1X2V3;Y2|V2Q)− Ib, (9h)

R1+R2 ≤ I(X1V2X3;Y1|Q) + I(V1X2V3;Y2|V2Q)− Ib,
(9i)

R1+R2 ≤ I(X1V2X3;Y1|Q) + I(X2;Y2|V1V2V3Q), (9j)

R1+R2 ≤ I(U1;Y3|X3Q) + I(X1V2;Y1|V1U1X3Q)

+ I(X2;Y2|V1V2V3Q), (9k)

2R1+R2 ≤ I(X1X3;Y1|V1V2V3Q) + I(X1V2X3;Y1|Q)

+ I(V1X2V3;Y2|V2Q), (9l)

2R1+R2 ≤ I(X1X3;Y1|V1V2V3Q)+I(X1V2;Y1|V1U1X3Q)

+ I(U1;Y3|X3Q)+I(V1X2V3;Y2|V2Q), (9m)

2R1+R2 ≤ I(U1;Y3|V1X3Q)+I(X1;Y1|V1U1V2X3Q)− Ib

+I(X1V2X3;Y1|Q)+I(V1X2V3;Y2|V2Q), (9n)

R1+2R2 ≤ I(X1V2X3;Y1|V1V3Q) + I(X2;Y2|V1V2V3Q)

+ I(V1X2V3;Y2|Q), (9o)

R1+2R2 ≤ I(U1;Y3|V1X3Q)+I(X1V2;Y1|V1U1X3Q)− Ib

+I(X2;Y2|V1V2V3Q)+I(V1X2V3;Y2|Q) (9p)

where Ib , I(X3;V1|V3Q). Then, an achievable region for
the IRC is defined by the union of all rate pairs inRp-DF(P2)
over all joint PDsP2 ∈ P2, as defined in (8).

Proof: The codewordsV n
2 andXn

2 convey the common
and full messages of the second source, respectively, withXn

2

superimposed overV n
2 . This representation follows the steps

proposed in [32], due to its simplicity compared to [1], though
both representations are equivalent [33].

V n
3

Xn
3

V n
1

Un
1 Xn

1

Common Message

Private MessageRelay Codebook

Relay Decodes

Fig. 4. Codewords of the relay and the first source. Solid arrows denote
superimposed codewords while dashed arrows denote binning.

The codebook of the first source, however, is much more
involved in order to allow the relay to cooperate, see Fig. 4.
The scheme forces the relay to decode the common message
of the first source, i.e., the codewordV n

1 , entirely but only a
part of the private message. Thus, unlike the second source,
an intermediate layerUn

1 is included betweenV n
1 andXn

1 .
The indices decoded by the relay are forwarded through

superimposed codewordsV n
3 andXn

3 , analogous toV n
1 and

Un
1 . Coherent cooperation is achieved by superimposingV n

1

andUn
1 overV n

3 andXn
3 , respectively. An additional binning

step between the codewordsV n
1 andXn

3 is required to comply
with (8), thus the negative termIb in (9).

The regionRp-DF (9) is strictly smaller than the actual par-
tial DF region since we have purposely reduced all the bounds
with I(V1U1;Y3|X3) into I(U1;Y3|X3), namely, in (9a), (9k),
and (9m), in order to have a more compact expression of the
whole region. See Appendix D for details.

If the relay is able to decode the private message of the
first source completely without imposing a restriction on the
achievable rate, the maximization of the previous inner bound
would result inU1 = X1. In this case, letP3 be the set of
PDs which factor as

p(q)p(x1x3|q)p(x2|q)p(v1|x1x3q)p(v2|x2q)p(v3|x3q). (10)

Corollary 2 (full DF scheme): Given a P3 ∈ P3, let
Rf-DF(P3) be the region of nonnegative rate pairs(R1, R2)
satisfying

R1 ≤ I(X1;Y3|X3Q), (11a)

R1 ≤ I(X1X3;Y1|V2Q), (11b)

R2 ≤ I(X2;Y2|V1V3Q), (11c)

R2 ≤ I(V1X2V3;Y2|Q)− Ib, (11d)

R1 +R2 ≤ I(X1X3;Y1|V1V2V3Q) + I(V1X2V3;Y2|Q),
(11e)

R1 +R2 ≤ I(X1;Y3|V1X3Q) + I(V1X2V3;Y2|Q)− Ib,
(11f)

R1 +R2 ≤ I(X1V2X3;Y1|V1V3Q) + I(V1X2V3;Y2|V2Q),
(11g)

R1 +R2 ≤ I(X1V2X3;Y1|Q) + I(V1X2V3;Y2|V2Q)− Ib,
(11h)

R1 +R2 ≤ I(X1V2X3;Y1|Q) + I(X2;Y2|V1V2V3Q),
(11i)
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2R1 +R2 ≤ I(X1X3;Y1|V1V2V3Q) + I(X1V2X3;Y1|Q)

+ I(V1X2V3;Y2|V2Q), (11j)

2R1 +R2 ≤ I(X1;Y3|V1X3Q) + I(X1V2X3;Y1|Q)

+ I(V1X2V3;Y2|V2Q)− Ib, (11k)

R1 + 2R2 ≤ I(X1V2X3;Y1|V1V3Q) + I(X2;Y2|V1V2V3Q)

+ I(V1X2V3;Y2|Q) (11l)

where Ib , I(X3;V1|V3Q). Then, an achievable region for
the IRC is defined by the union of all rate pairs inRf-DF(P3)
over all joint PDsP3 ∈ P3, as defined in (10).

Proof: The regionRf-DF (11) is not obtained by setting
U1 = X1 in Rp-DF (9), since some additional redundant
bounds remain. To easily eliminate these bounds, one should
replaceU1 with X1 in the set of partial rates before applying
Fourier-Motzkin elimination in the proof of Theorem 2. See
Appendix E for details.

The keen reader can see the resemblance between the
region Rf-DF (11) and the Han-Kobayashi region [33], with
the addition of bounds regarding the decoding at the relay or
the presence of binning.

Remark 6:The capacity of thephysically degradedIRC in
thestrong interferenceregime [14, Thm. 3] is achieved by the
full DF scheme.

The choice of variablesVk = Xk for k ∈ [1 : 3] elim-
inates the private messages and renders the binning process
unnecessary. Then, by using the strong interference condition
I(X1X3;Y1|X2) ≤ I(X1X3;Y2|X2), the full DF inner bound
becomes

R1 ≤ I(X1;Y3|X3Q), (12a)

R1 ≤ I(X1X3;Y1|X2Q), (12b)

R2 ≤ I(X2;Y2|X1X3Q), (12c)

R1 +R2 ≤ I(X1X2X3;Y1|Q), (12d)

R1 +R2 ≤ I(X1X2X3;Y2|Q). (12e)

The region (12) coincides with the outer bound [14, Thm. 2]
by choosingU1 = X3 andU2 = X2, and considering that

1) the relay is only able to observe the first source, i.e.,
p(y3|x1x2x3) = p(y3|x1x3), and

2) the IRC is physically degraded, i.e., the Markov chain
(X1X2)−
− (X3Y3)−
− (Y1Y2) holds.

In the full DF scheme, since the relay decodes the codeword
Xn

1 completely, there is no limit in the amount of information
that can be sent as common message. However, in the partial
DF scheme, we are introducing the variableU1 betweenX1

and V1, effectively prohibiting V1 = X1. Therefore, the
structure of the codebook imposes that the relay should be in
a better condition to decode the common messageV n

1 than the
second destination. If that is not the case, we should employ
the CF scheme presented in the following section.

B. Compress-and-Forward

In this scheme, the relay does not decode any message and
it only sends a compressed version of its observation. The
destinations jointly decode this information with their message

and the common layer of the interference. Transmission takes
place inB+L time blocks, similarly to [34], [35], and during
the lastL blocks, the relay repeats its message to assure a
correct decoding at both destinations.

Let P4 be the set of PDs that factor as

p(q)p(v1x1|q)p(v2x2|q)p(x3|q)p(ŷ3|x3y3q), (13)

and let us define the following set of expressions

Ik1 , min{I(Xk;YkŶ3|VkVjX3Q),

I(XkX3;Yk|VkVjQ)− Ik}, (14a)

Ik2 , min{I(Xk;YkŶ3|VjX3Q),

I(XkX3;Yk|VjQ)− Ik}, (14b)

Ik3 , min{I(XkVj ;YkŶ3|VkX3Q),

I(XkVjX3;Yk|VkQ)− Ik}, (14c)

Ik4 , min{I(XkVj ;YkŶ3|X3Q),

I(XkVjX3;Yk|Q)− Ik} (14d)

whereIk , I(Ŷ3;Y3|XkVjX3YkQ) and

I ′k1 , I(Xk;Yk|VkVjQ), (15a)

I ′k2 , I(Xk;Yk|VjQ), (15b)

I ′k3 , I(XkVj ;Yk|VkQ), (15c)

I ′k4 , I(XkVj ;Yk|Q). (15d)

Theorem 3 (CF scheme):Given a specificP4 ∈ P4, let
RCF0(P4) be the region of nonnegative rate pairs(R1, R2)
that satisfy

Rk ≤ Ik2, (16a)

Rk +Rj ≤ min{Ik1 + Ij4, Ik3 + Ij3}, (16b)

2Rk +Rj ≤ Ik1 + Ik4 + Ij3, (16c)

andRCFk(P4) defined by

Rk ≤ Ik2, (17a)

Rj ≤ I ′j2, (17b)

Rk +Rj ≤ min{Ik1 + I ′j4, Ik4 + I ′j1, Ik3 + I ′j3}, (17c)

2Rk +Rj ≤ Ik1 + Ik4 + I ′j3, (17d)

Rk + 2Rj ≤ Ik3 + I ′j1 + I ′j4. (17e)

Then, an achievable region for the IRC is defined by the union
of RCF0(P4)∪RCF1(P4)∪RCF2(P4) over all joint distributions
P4 ∈ P4, as defined in (13).

Proof: Since the relay does not decode any message, the
codewordsV n

k andXn
k carry the common and full message of

the present block, respectively. The variableX3 is independent
of the sources’ signals and is used to reconstruct the relay’s
observationY3.

Each expressionIki resembles the CF inner bound for the
relay channel, and when the relay is ignored it reduces to the
expressionI ′ki. The regionRCF0 (16) is obtained when both
destinations decode the compression index, whereas in region
RCFk (17) only destinationk decodes it.

Since the compression index is sent with block-Markov
coding, each destination needs to assure the correct decoding
of it in each block, which results in additional bounds not
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S31 < S21 S31 ≥ S21

S31 < S11 CF partial DF

S31 ≥ S11 full DF

TABLE I
SNRREGIMES AND CORRESPONDING BEST CONSTANT-GAP STRATEGIES.

shown here. However, the unionRCF0 ∪RCF1 ∪RCF2 after the
maximization over all joint PDs provides that these bounds
are redundant. See Appendix F for details.

Remark 7:The relay only generates one compression index
that is decodable by both destinations, i.e., the compression
rate is determined by the worst channel. It is possible, however,
to improve the performance with successive refinement that is
not used here because of its complexity. As we shall see in
the next section, two layers of successive refinement are not
needed as far as the constant gap is concerned.

Remark 8: If both users ignore the compression index, this
strategy reduces to the Han-Kobayashi scheme, a special case
of RCF0 . Additionally, RCF0 is equal to the extension of
NNC [13, Thm. 1] for one relay, i.e.,N = 1.

Remark 9:The regionRCF0 contains both the CF and GCF
schemes presented in [11, Thm. 1 and 2]. It is easy to see
that the bounds on the partial rates of the first scheme [11,
(5)–(8)] are below (14) if we relax the constraint [11, (9)] to
I(X3;Yj) ≥ I(Y3; Ŷ3|X3Yj) with j ∈ {1, 2}. Additionally,
relaxing R0 in [11, Thm. 2], shows that GCF1 is equal to
RCF0 with V1 = V2 = ∅ and GCF2 is equal toRCF0 with
V1 = X1 and V2 = X2. Therefore, the capacity results [11,
Thm. 4 and 5] are achieved by the proposed CF scheme.

V. CONSTANT GAP RESULTS AND DISCUSSION

In this section, we evaluate the gap between the achievable
regions and the outer bound in the Gaussian case (Fig. 1).
Then, we identify the strategies that achieve the best constant
gap to the capacity region for any SNR value. This is summa-
rized in Table I, while the value of the gap for each strategy
is shown in Table II.

A. DF Scheme Achieves Capacity to Within1.5 Bits

Table II shows two different constant-gap values for this
scheme,1.5 bits being the larger. The difference comes from
the choice of input PD used in the inner bound as we see next.

When the relay is close to the source, i.e., whenS31 is
high enough, the relay is able to decode the entire message
without penalizing the rateR1. Therefore, as mentioned in
Section IV-A, the input PD verifiesU1 = X1 and the inner
bound is found in Corollary 2.

Proposition 1: If S31 ≥ S11, the full DF scheme presented
in Corollary 2 achieves capacity to within1 bit.

Proof: The mentioned constant gap is quite conservative
in the majority of cases since it arises from choosing a fixed
input PD for the inner bound (which reduces the achievable
rate) and using the loose outer bound from Corollary 1. See
Appendix G for details.

SNR regime CF DF

S31 < S21
S31 < S11 1.32 –

S31 ≥ S11 1.32 1

S31 ≥ S21
S31 ≥ S11 – 1

S31 < S11 – 1.5

TABLE II
MAXIMUM GAP IN BITS OF EACH SCHEME FOR EACHSNRREGIME.

Remark 10:The capacity result in [14, Thm. 3] is contained
in this regime. This capacity result, which is valid for general
memoryless channels, relies on three conditions, namely,

1) the relay can only observe one source signal;
2) the IRC isphysically degraded, i.e.,(X1X2)−
−(X3Y3)−


− (Y1Y2); and,
3) the IRC is under thestrong interferenceregime, i.e.,

I(XkX3;Yk|Xj) ≤ I(XkX3;Yj |Xj).

The IRC model (1) used in this work only verifies the first
condition. However, if we further assume that the conditions
of physically degradedness and strong interference hold, the
full DF scheme presented in Corollary 2 also achieves capacity
(see Remark 6). As we see next, the lack of these two
assumptions imposes the1-bit gap.

First, our Gaussian model (2) does not admit any kind
of degradedness, however, ifS31 ≥ S11, we can bound the
corresponding term by0.5 bits, as in (70),

I(X1;Y1|X2X3Y3Q) = C

[
S11

1 + S31

]

≤ 1

2
.

Second, the strong interference condition renders the rate-
splitting useless, since both encoders send only common
messages, and allows the development of a tighter outer bound,
similar to the IC with strong interference [4, Remark 6.9].
Without common messages, not only the binning termIb
disappears but also the simplifications made in Appendix G,
namely the choice of auxiliaries (67) and the uncorrelation
betweenX1 andX3, can be dropped. For example, as seen in
Appendix G, the choice of auxiliaries (67) inflicts half a bit
of gap in (71) and (72), while another half a bit of gap is due
to the uncorrelation betweenX1 andX3 in (71) and due to
the binning termIb in (72).

Therefore, the1-bit gap the full DF scheme presents in
contrast to the capacity-achieving scheme of [14] comes from
the last two conditions, which are not assumed by our model.

If the source-to-relay link is not good enough for the relay to
decode the entire message, the relay should decode it partially,
i.e.,U1 6= X1. However, due to the structure of the codebook,
the relay should still be able to decode the common message.

Proposition 2: If S31 ≥ S21, the partial DF scheme pre-
sented in Theorem 2 achieves capacity to within1.5 bits.

Proof: Similarly to the proof of Proposition 1, we reduce
the inner bound by fixing the input PD and enlarge the outer
bound by choosing a subset of bounds from it. See Appendix H
for details.
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Fig. 5. Performance analysis for the Gaussian IRC (Fig. 1) with the following fixed SNRs:S11 = S22 = 20dB, S12 = S21 = 8dB, S13 = S23 = 20dB.

Remark 11:The gap between the original expression in the
inner bound,I(V1U1;Y3|X3Q), and the one used to compact
the region,I(U1;Y3|X3Q), is 0.5 bit at most with the choice
of auxiliaries (67) and (73) used in Appendix H. This is the
cause of the larger gap for the partial DF scheme.

Remark 12:If S31 ≥ S11 andS31 ≥ S21 the DF scheme,
full or partial, achieves a constant gap to capacity. Nonetheless,
this regime appears in Table I as “full DF” since its gap is
smaller.

B. CF Scheme Achieves Capacity to Within1.32 Bits

The CF scheme does not impose any condition on the
sources’ codebook structure, nonetheless, a constant gap could
only be found in the regimeS31 ≤ S21.

Proposition 3: If S31 ≤ S21 the CF scheme presented in
Theorem 3 achieves capacity to within1.32 bits.

Proof: The proof follows similar steps as the previous
ones. See Appendix I for details.

C. Limited Relaying Benefit

It sounds reasonable that for a really low SNR in the source-
to-relay link, the use of relaying has limited benefit. In this
case, it might be preferable, due to complexity, to shut the
relay down and fall back to the much simpler Han-Kobayashi
scheme for the IC.

Proposition 4: If S31 ≤ S11/(1+S12) andS31 ≤ S21/(1+
S22), the Han-Kobayashi scheme (without relay) achieves the
capacity of the IS-IRC within1 bit, i.e., relaying does not
improve the achievable rate in more than1 bit.

Proof: See Appendix J.

The two conditions over the source-to-relay link presented
above can be interpreted as follows. In the first case,S31 ≤
S11/(1 + S12) implies that, by treating the interference from
source2 as noise, destination1 can still have a better ob-
servation on source1’s signal than the relay does. Therefore,

the relay’s observation cannot help much for destination1 to
decode its own signal.

On the other hand,S31 ≤ S21/(1 + S22) implies that,
by treating its own signal as noise, destination2 can still
have a better observation on source1’s signal than the relay
does. Therefore, the relay’s observation cannot help much for
destination2 to learn/decode the interference from source1.

D. Numerical Example

To illustrate the regimes described before, we plot the
maximum attainable sum-rate for the outer bound and each
inner bound in Fig. 5a. Additionally, we delimit each regime
with vertical dashed lines and we add the Han-Kobayashi
scheme as a means of comparison. The SNR of each link
in the channel remains fixed while we vary the SNR of the
source-to-relay linkS31.

All the inner bounds present in the figure are the simplified
versions used in the computation of the gap, i.e., there is
no maximization of the PDs employed in them. The curve
labeled DF is the maximum achievable rate attained by either
the simplified inner bound of Proposition 1 or 2; the reader
should refer to the appropriate appendix for details. The HK
inner bound is not optimized either since we use the auxiliaries
proposed in [3], but this is needed to make a fair comparison
with our schemes. Moreover, Corollary 1 is the outer bound
used in here.

We see that when the source-to-relay link is strong DF
outperforms CF, namely in the regime labeled “f-DF”, i.e.,
when S31 ≥ S11. As the quality of this link degrades, CF
achieves higher rates and eventually surpasses DF, mainly
in the ‘CF” regime, i.e., whenS31 < S21. Below certain
threshold in the quality of the source-to-relay link, the DF
scheme even achieves lower rates than the HK scheme. The
cause of this might lie in the numerous simplifications made
to the scheme. However, due to the many auxiliaries present in
the scheme, we did not carry out an extensive optimization of
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the scheme to prove this conjecture. Finally, when the source-
to-relay link is really weak, CF performs as good as the Han-
Kobayashi scheme.

Another way of analyzing these curves is by looking at
the gap per dimension, as in Fig. 5b. Here, the maximum
theoretical gap in each regime is represented by horizontal
dashed lines, and we see that they hold.

VI. SUMMARY AND CONCLUDING REMARKS

We derived a novel outer bound and two inner bounds for
a class of IRCs where the relay can only observe one of
the sources. These bounds allowed us to identify the main
SNR regimes of interest, and for them, we found the adequate
relaying strategies that achieve capacity of the Gaussian IRC
to within a constant gap regardless of the channel parameters.

While the proposed inner and outer bounds suggest the
existence of different SNR regimes for the Gaussian IRC,
in which different coding strategies are needed to achieve a
constant gap to capacity, whether there exists a single coding
scheme that achieves the constant gap in all SNR regimes is
still an open question. In other words, there may be ways to
improve the outer bound, the inner bounds, or both, which
remains an interesting future work.

Additionally, the general IRC where the relay observe both
sources is not an straightforward extension of our work. The
central difficulty lies in the way of modeling the interference
signals used in the injective semideterministic model and
hence the derivation of an adequate outer bound. Since in the
general IRCX3 can be arbitrarily correlated to bothX1 and
X2, the interference signalSk is no longer independent of the
input Xj , with (k, j) ∈ {(1, 2), (2, 1)}. This, in turn, forbids
us of single-letterizing the outer bound the way we did. A new
technique to derive outer bounds for this problem is therefore
needed, which also remains as future work.

APPENDIX A
STRONGLY TYPICAL SEQUENCES AND

DELTA-CONVENTION

Following [36], we use in this paperstrongly typical setsand
the so-calledDelta-Convention. Some useful facts are recalled
here. LetX andY be random variables on some finite setsX
andY, respectively. We denote bypX,Y (resp.pY |X , andpX )
the joint probability distribution of(X,Y ) (resp. conditional
distribution ofY givenX , and marginal distribution ofX).

Definition 2 (Number of occurrences):For any sequence
xn ∈ Xn and any symbola ∈ X , notationN(a|xn) stands
for the number of occurrences ofa in xn.

Definition 3 (Typical sequence):A sequencexn ∈ Xn is
called (strongly) δ-typical w.r.t. X (or simply typical if the
context is clear) if

∣
∣
∣
∣

1

n
N(a|xn)− pX(a)

∣
∣
∣
∣
≤ δ for eacha ∈ X ,

andN(a|xn) = 0 for eacha ∈ X such thatpX(a) = 0. The
set of all such sequences is denoted byT n

δ (X).

Definition 4 (Conditionally typical sequence):Let xn ∈
Xn. A sequenceyn ∈ Yn is called(strongly)δ-typical (w.r.t.
Y ) givenxn if

∣
∣
∣
∣

1

n
N(a, b|xn, yn)− 1

n
N(a|xn)pY |X(b|a)

∣
∣
∣
∣
≤ δ

for eacha ∈ X , b ∈ Y ,

and,N(a, b|xn, yn) = 0 for eacha ∈ X , b ∈ Y such that
pY |X(b|a) = 0. The set of all such sequences is denoted by
T n
δ (Y |xn).

Delta-Convention [36]:For any setsX , Y, there exists a
sequence{δn}n∈N∗ such that the lemmas stated below hold.1

From now on, typical sequences are understood withδ = δn.
Typical sets are still denoted byT n

δ (·).
Lemma 1 ([36, Lemma 1.2.12]):There exists a sequence

ηn −−−−→
n→∞

0 such that

pX(T n
δ (X)) ≥ 1− ηn .

Lemma 2 ([36, Lemma 1.2.13]):There exists a sequence
ηn −−−−→

n→∞
0 such that, for eachxn ∈ T n

δ (X),
∣
∣
∣
∣

1

n
log ‖T n

δ (X)‖ −H(X)

∣
∣
∣
∣
≤ ηn ,

∣
∣
∣
∣

1

n
log ‖T n

δ (Y |xn)‖ −H(Y |X)

∣
∣
∣
∣
≤ ηn .

Lemma 3 (Asymptotic equipartition property):There exists
a sequenceηn −−−−→

n→∞
0 such that, for eachxn ∈ T n

δ (X) and

eachyn ∈ T n
δ (Y |xn),
∣
∣
∣
∣
− 1

n
log pX(xn)−H(X)

∣
∣
∣
∣
≤ ηn ,

∣
∣
∣
∣
− 1

n
log pY |X(yn|xn)−H(Y |X)

∣
∣
∣
∣
≤ ηn .

Lemma 4 (Joint typicality lemma [4]):There exists a se-
quenceηn −−−−→

n→∞
0 such that

∣
∣
∣
∣
− 1

n
log pY (T

n
δ (Y |xn))− I(X ;Y )

∣
∣
∣
∣
≤ ηn

for eachxn ∈ T n
δ (X) .

Proof:

pY (T
n
δ (Y |xn)) =

∑

yn∈Tn

δ
(Y |xn)

pY (y
n)

(a)

≤ ‖T n
δ (Y |xn)‖ 2−n[H(Y )−αn]

(b)

≤ 2n[H(Y |X)+βn] 2−n[H(Y )−αn]

= 2−n[I(X;Y )−βn−αn] ,

where
• step(a) follows from the fact thatT n

δ (Y |xn) ⊂ T n
δ (Y )

and Lemma 3, for some sequenceαn −−−−→
n→∞

0,

• step(b) from Lemma 2, for some sequenceβn −−−−→
n→∞

0.

The reverse inequalitypY (T n
δ (Y |xn)) ≥ 2−n[I(X;Y )+βn+αn]

can be proved following similar argument.

1As a matter of fact,δn → 0 and
√
n δn → ∞ asn → ∞.
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APPENDIX B
PROOF OFTHEOREM 1 (IS-IRC OUTER BOUND)

The proof follows by using a similar approach to that
developed in [3] and it was partially presented in [29], [37].
As explained before, the inputsX1 and X3 are arbitrarily
correlated and they are independent ofX2. Since we are not
considering noise correlation in the outputs, the interference
signalsS1 andS2 are therefore independent.

First, let us recall that the inputsXn
1 andXn

2 are functions
of the messagesW1 and W2, each one independent of the
other, and the relay’s input is a deterministic function of its
past observations, i.e.,X3i = φi

(
Y i−1
3

)
, i ∈ [1 : n]. Then, we

add two new random variablesV1
n andV n

2 , which are obtained
by passingXn

1 , Xn
2 andXn

3 through the memoryless channel
pS1|X1X3

pS2|X2
.

A multi-letter outer bound on each rate can be derived using
Fano’s inequality, i.e.,

n(Rk − ǫn) ≤ I(Xn
k ;Y

n
k ),

whereǫn denotes a sequence such thatǫn → 0 as n → ∞.
Therefore, we present different derivations ofI(Xn

k ;Y
n
k ) in

the sequel. We first see that

I(Xn
1 ;Y

n
1 ) ≤ I(Xn

1 X
n
3 ;Y

n
1 )

= h(Y n
1 )− h(Y n

1 |Xn
1 X

n
3 )

= h(Y n
1 )− h(Sn

2 |Xn
1 X

n
3 ) (18a)

= h(Y n
1 )− h(Sn

2 ) , (18b)

where (18a) follows from the IS model; and in (18b) we take
into account that the interference signalSn

2 is independent of
the inputs(Xn

1 X
n
3 ). We can provide the interferenceXn

2 ,

I(Xn
1 ;Y

n
1 ) ≤ I(Xn

1 X
n
3 ;Y

n
1 |Xn

2 ), (19)

where (19) follows from the fact thatXn
2 is independent of

(Xn
1 X

n
3 ). Also, we can augment the bound with the auxiliary

V n
1 ,

I(Xn
1 ;Y

n
1 ) ≤ I(Xn

1 X
n
3 ;Y

n
1 V n

1 )

= I(Xn
1 X

n
3 ;V

n
1 ) + I(Xn

1 X
n
3 ;Y

n
1 |V n

1 )

= h(V n
1 )− h(V n

1 |Xn
1 X

n
3 ) + h(Y n

1 |V n
1 )− h(Y n

1 |Xn
1 X

n
3 )

(20a)

= h(Sn
1 ) − h(Y n

2 |Xn
1 X

n
2 X

n
3 ) + h(Y n

1 |V n
1 )− h(Sn

2 ) ,

(20b)

where in the fourth term of (20a) we use the Markov chain
V n
1 −
− (Xn

1 X
n
3 ) −
− (· · · ); and (20b) is due to the channel

property and the fact that interchangingV1 and S1 does
not change the entropies in question, i.e.,h(V n

1 ) = h(Sn
1 )

and h(V n
1 |Xn

1 X
n
3 ) = h(Sn

1 |Xn
1 X

n
3 ) = h(Sn

1 |Xn
1 X

n
2 X

n
3 ) =

h(Y n
2 |Xn

1 X
n
2 X

n
3 ). We repeat the same procedure with the

auxiliary V n
1 ,

I(Xn
1 ;Y

n
1 ) ≤ I(Xn

1 X
n
3 ;Y

n
1 V n

1 )

= I(Xn
1 X

n
3 ;V

n
1 ) + I(Xn

1 X
n
3 ;Y

n
1 |V n

1 )

= h(V n
1 )− h(V n

1 |Xn
1 X

n
3 ) + h(Y n

1 |V n
1 )− h(Y n

1 |Xn
1 X

n
3 )

(21a)

= h(Sn
1 ) −h(Y n

2 Y n
3 |Xn

1 X
n
2 X

n
3 )+h(Y n

1 |V n
1 )− h(Sn

2 ) ,

(21b)

where in (21a) we use the Markov chainV n
1 −
− (Xn

1 X
n
3 ) −


− (· · · ); and in (21b) we again interchangeV1 and S1,
i.e., h(V n

1 ) = h(Sn
1 ) andh(V n

1 |Xn
1 X

n
3 ) = h(Sn

1 |Xn
1 X

n
3 ) =

h(Sn
1 |Xn

1 X
n
2 X

n
3 ) = h(Y n

2 Y n
3 |Xn

1 X
n
2 X

n
3 ). We can now in-

crease the bound with bothXn
2 andV n

1 ,

I(Xn
1 ;Y

n
1 ) ≤ I(Xn

1 X
n
3 ;Y

n
1 V n

1 |Xn
2 )

= I(Xn
1 X

n
3 ;V

n
1 |Xn

2 ) + I(Xn
1 X

n
3 ;Y

n
1 |V n

1 Xn
2 )

= h(V n
1 |Xn

2 )− h(V n
1 |Xn

1 X
n
3 ) + I(Xn

1 X
n
3 ;Y

n
1 |V n

1 Xn
2 )

(22a)

= h(Sn
1 ) − h(Y n

2 |Xn
1 X

n
2 X

n
3 ) + I(Xn

1 X
n
3 ;Y

n
1 |V n

1 Xn
2 ),

(22b)

where the key steps in (22a) and (22b) are the same as in (20a)
and (20b). Similarly, we can derive

I(Xn
1 ;Y

n
1 ) ≤ h(Sn

1 ) − h(Y n
2 Y n

3 |Xn
1 X

n
2 X

n
3 )

+ I(Xn
1 X

n
3 ;Y

n
1 |V n

1 Xn
2 ). (23)

In an analogous way as (18), (19), (20), and (22), we derive
similar bounds for the rateR2,

I(Xn
2 ;Y

n
2 ) ≤ h(Y n

2 )− h(Sn
1 ) , (24)

I(Xn
2 ;Y

n
2 ) ≤ I(Xn

2 ;Y
n
2 |Xn

1 X
n
3 ), (25)

I(Xn
2 ;Y

n
2 ) ≤ h(Sn

2 ) − h(Y n
1 |Xn

1 X
n
2 X

n
3 )

+ h(Y n
2 |V n

2 )− h(Sn
1 ) , (26)

I(Xn
2 ;Y

n
2 ) ≤ h(Sn

2 ) − h(Y n
1 |Xn

1 X
n
2 X

n
3 )

+ I(Xn
2 ;Y

n
2 |Xn

1 V
n
2 Xn

3 ). (27)

Additionally, if we add the sequenceY n
3 next to Y n

2 in the
first steps of the derivation of (24) and (26), we obtain

I(Xn
2 ;Y

n
2 ) ≤ h(Y n

2 Y n
3 )− h(Sn

1 ) , (28)

I(Xn
2 ;Y

n
2 ) ≤ h(Sn

2 ) − h(Y n
1 |Xn

1 X
n
2 X

n
3 )

+ h(Y n
2 Y n

3 |V n
2 )− h(Sn

1 ) . (29)

The use of Fano’s inequality and all the possible linear
combinations of the expressions (18)–(29) where the boxed
terms get canceled gives rise to multi-letter bounds that can be
single-letterized, as summarized in Table III. For instance, (19)
and (25) allow us to find bounds on the single rates, whereas
the addition of (22) and (24) gives us the sum-rate (5d),

n(R1 +R2 − ǫ′n) ≤ I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 )

≤ I(Xn
1 X

n
3 ;Y

n
1 |V n

1 Xn
2 ) + I(Xn

1 X
n
2 X

n
3 ;Y

n
2 ) (30a)

≤
n∑

i=1

I(X1iX3i;Y1i|V1iX2i) + I(X1iX2iX3i;Y2i) (30b)

= n[ I(X1X3;Y1|V1X2Q) + I(X1X2X3;Y2|Q)], (30c)

where (30a) follows from the addition of (22b) and (24); (30b)
is due to the chain rule of the mutual information, the fact that
removing conditioning increases the entropy, and the Markov
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R1 (5a) (19)*
(5b) (19)

R2 (5c) (25)

R1 +R2 (5d) (22) +(24)
(5e) (20) +(26)
(5f) (18) +(27)
(5g) (22)*+(24)
(5h) (20)*+(26)
(5i) (18)*+(27)
(5j) (23)*+(28)
(5k) (21)*+(29)

2R1 +R2 (5l) (22) +(18) +(26)
(5m) (22) +(18)*+(26)
(5n) (22)*+(18) +(26)
(5o) (22)*+(18)*+(26)
(5p) (23)*+(18) +(29)
(5q) (23)*+(18)*+(29)

R1 + 2R2 (5r) (20) +(27) +(24)
(5s) (20)*+(27) +(24)
(5t) (21)*+(27) +(28)

TABLE III
COMBINATION OF MULTI -LETTER OUTER BOUNDS. TERMS WITH * NEED

THE ADDITION OF Y n
3 .

chain (Y1iY2i)−
− (X1iX2iX3i)−
− (· · · ); and (30c) follows
from the addition of the time-sharing variableQ uniformly
distributed in[1 : n].

In this way, we obtain all the bounds in (5) except for the
ones with the pair(Y1Y3). For them, we need to add the
sequenceY n

3 next to Y n
1 before applying the chain rule in

the mutual information. These terms are denoted with * in
Table III. For example, continuing from (30a) we obtain the
bound (5g),

n(R1 +R2 − ǫ′n)

≤ I(Xn
1 X

n
3 ;Y

n
1 Y n

3 |V n
1 Xn

2 ) + I(Xn
1 X

n
2 X

n
3 ;Y

n
2 )

≤
n∑

i=1

I(X1i;Y1iY3i|V1iX2iX3i) + I(X1iX2iX3i;Y2i)(31a)

= n[ I(X1;Y1Y3|V1X2X3Q) + I(X1X2X3;Y2|Q)] (31b)

where (31a) follows from the fact thatX3i is a function of
Y i−1
3 .

APPENDIX C
PROOF OFCOROLLARY 1

The expression of the bounds (5a)–(5c) in the Gaussian case
is

R1 ≤ C
[
(1− ρ2)(S11 + S31)

]
, (32)

R1 ≤ C

[

S11 + S13 + 2ρ
√

S11S13

]

, (33)

R2 ≤ C[S22] , (34)

where we assume the channel coefficientsh11 andh13 have the
same sign, otherwise, the analysis is the same by inverting the
sign in ρ. For any|ρ| ≤ 1, we can upper bound the previous
terms as follows

R1 ≤ C[S11 + S31] , (35)

R1 ≤ C[S11 + S13] +
1

2
, (36)

R2 ≤ C[S22] , (37)

which, in turn, gives us (6a)–(6c).
All the other bounds behave similarly. If bothX1 andX3

appear in the conditioning part of a mutual information, it
does not depend onρ, like (34). If only X3 appears in the
conditioning, it depends on(1 − ρ2), like (32). Otherwise, it
depends on2ρ

√

( · ), like (33). In the first two situations, the
expressions are maximized with its value atρ = 0, whereas,
the last one has its maximum atρ = 1.

The bounds containingV1 in the conditioning part, but not
X3, e.g. (5d), present a more complicated behavior and it is
not clear which value ofρ maximizes the bound. We analyze
the sum-rate (5d) in the sequel.

Let us first define

HHH =

[
h11 h13

h21 h23

]

,

QQQ =

[
1 ρ
ρ 1

]

=

[
1√
2

1√
2

1√
2

− 1√
2

]

︸ ︷︷ ︸

UUU

[
1 + ρ 0
0 1− ρ

]

︸ ︷︷ ︸

ΛΛΛ

[
1√
2

1√
2

1√
2

− 1√
2

]

︸ ︷︷ ︸

UUUT

,

where we have normalized the sources’ power and noise
power. We are interested in

D0 , det(III +HHHHHHT )

= det(III +HHHUUUUUUTHHHT ) = det(III +GGGGGGT ),

D , det(III +HHHQQQHHHT )

= det(III +HHHUUUΛΛΛUUUTHHHT ) = det(III +GGGΛΛΛGGGT )

where we defineGGG ,HHHUUU = [gij ]i,j=1,2. For convenience, we
also define the normalized matrixVVV such that

GGG =

[√
G1 0
0

√
G2

]

VVV , Gi , g2i1 + g2i2, i = 1, 2

wherevij , gij/
√
Gi. Note thatv2i1 + v2i2 = 1, i = 1, 2. We

let Vij , v2ij hereafter.
Then, we can rewrite

D0 = 1 +G1 +G2 +G1G2 det(VVV VVV T )
︸ ︷︷ ︸

γ

D = 1 +G1(1 + (V11 − V12)
︸ ︷︷ ︸

α1

ρ) +G2(1 + (V21 − V22)
︸ ︷︷ ︸

α2

ρ)

+G1G2γ(1− ρ2)

where γ ∈ [0, 1] and α1, α2 ∈ [−1, 1]. In fact, γ can be
presented as a function ofα1 andα2

γ = (v11v22 − v21v12)
2 (38a)

≥
(√

V11V22 −
√

V21V12

)2
(38b)

=
1− α1α2

2
− 1

2

√

(1− α2
1)(1− α2

2) , γ∗. (38c)

Given the sum-rate (5d),

R1 +R2 ≤ I(X1X3;Y1|V1X2)+I(X1X2X3;Y2)

= I(X1X3;Y1V1|X2)−I(X1X3;V1|X2)+I(X1X2X3;Y2),
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the ultimate goal is to quantify the maximum gap between the
value of this bound with and without correlation in the inputs
(X1X3). In other words, we shall obtain an upper bound on

D

D0

1 +G2

1 +G2(1 + α2ρ)

1 +G2(1 + α2ρ) + S22

1 +G2 + S22
. (39)

If S22 → 0, the expression (39) tends toD/D0, and since
the eigenvalues ofΛΛΛ are less or equal than2, it can be easily
upper-bounded,

D

D0
=

det(III +GGGΛΛΛGGGT )

det(III +GGGGGGT )
≤ det(III + 2GGGGGGT )

det(III +GGGGGGT )
≤ 2.

On the other hand, ifS22 → ∞, (39) becomes

D

D0

1 +G2

1 +G2(1 + α2ρ)
=

1 +G1
1 + α1ρ+G2γ(1− ρ2)

1 +G2(1 + α2ρ)

1 +G1
1 +G2γ

1 +G2

=
1 +G1A

1 +G1B
.

We observe that this function is upper-bounded by1 whenA ≤
B, while it is otherwise upper-bounded byA/B. Therefore, it
suffices to find an upper bound onA/B that can be rewritten
as

A

B
=

(1 +α1ρ) +G2γ(1−ρ2) +G2(1 +α1ρ) +G2
2γ(1−ρ2)

(1 +G2γ)(1 +G2(1 + α2ρ))

= (1 + α1ρ)
1 +G2

1 +G2(1 + α2ρ)

1 +G2
γ(1− ρ2)

1 + α1ρ

1 +G2γ
. (40)

Without loss of generality, we assume thatρ ≥ 0. The case
when ρ < 0 follows straightforwardly by simply changing
both signs ofα1 andα2. In the following, we shall show that

A

B
≤ 2.

First, from (40), we derive a trivial upper bound

A

B
≤ (1+α1ρ)max

{

1,
1

1+α2ρ

}

max

{

1,
1− ρ2

1+α1ρ

}

(41a)

= max

{

1− ρ2, 1 + α1ρ,
1− ρ2

1 + α2ρ
,
1 + α1ρ

1 + α2ρ

}

, (41b)

where both maximizations in (41a) come from the monotonic-
ity of 1+G2x

1+G2y
w.r.t. G2 and that it is bounded by the extreme

values forG2 = 0 andG2 → ∞. Note that only the last term
in (41b) is not always upper-bounded by2. In the following,
we focus on the case1−ρ2

1+α1ρ
< 1, i.e., α1 > −ρ, since the

opposite would imply that the last term in (41b) is upper-
bounded by the third term. In this case(α1 > −ρ), the third
term in (40), and thusA/B, is decreasing withγ. Therefore,
the worst case in whichA/B is maximized is whenγ achieves
γ∗. It suffices to show that

sup
G2≥0

1+α1ρ+G2

(
1+α1ρ+γ∗(1−ρ2)

)
+G2

2γ∗(1−ρ2)

(1 +G2γ∗)(1 +G2(1 + α2ρ))
≤ 2,

∀ (α1, α2, ρ) ∈ A where we define the setA
A , {α1, α2 ∈ (−1, 1), ρ ∈ (0, 1) : α1 > α2, α1 > −ρ}.

We observe that for each point at the boundary of the setA,
the objective function is upper-bounded by2. Note that, in the
denominator,γ∗ > 0 sinceα1 6= α2, and1 + α2ρ > 0 since
ρ < 1. Therefore, the objective function is the ratio between
two quadratic functions in the form(a0+a1G2+a2G

2
2)/((1+

b1G2)(1+ b2G2)) with a0, a1, a2 ≥ 0 andb1, b2 > 0, that are
continuous functions of(α1, α2, ρ). Let us first assume that
b1 6= b2. It is readily shown that

f(G2) =
a0 + a1G2 + a2G

2
2

(1 + b1G2)(1 + b2G2)
(42)

= c0 +
c1

1 + b1G2
+

c2
1 + b2G2

, ∀G2 (43)

where(c0, c1, c2) is a continuous function of{ai} and {bi}.
Then, we differentiate the functionf(G2)

f ′(G2) = − b1c1
(1 + b1G2)2

− b2c2
(1 + b2G2)2

.

It is clear that there is at most one solution in[0,∞] such that
f ′(G2) = 0. If such a solution does not exist, thenf ′(G2) is
either strictly positive or strictly negative in[0,∞]. In this case,
both extreme valuesf(0) andf(∞) are upper-bounded by2
from (40). If such a solution does exist, it is in the following
form

G∗
2 =

β − 1

b1 − b2β
, β ,

√

−b1c1
b2c2

,
c1
c2

< 0. (44)

Note that the functionf defined in (42), alternatively denoted
asfb1,b2 , converges pointwise tofb,b when b1, b2 → b, ∀ b >
0, and thatf ′

b1,b2
converges uniformly tof ′

b,b. Therefore, the
solution (44) holds even whenb1 = b2 by taking the limit.
Finally, let us define a setB of (α1, α2, ρ) such thatc1/c2 < 0
andG∗

2 ≥ 0. It remains to show that

sup
(α1,α2,ρ)∈A∩B

f(G∗
2) ≤ 2. (45)

SinceA ∩ B is a bounded set and the objective function is
continuous in(α1, α2, ρ) in A∩B, we can perform numerical
optimization and obtain the value2, which confirms the claim
in (45).

Similar steps can be performed in every other bound con-
tainingV1 in the conditioning, which concludes the proof.

APPENDIX D
PROOF OFTHEOREM 2 (PARTIAL DF SCHEME)

Each source transmitsB messages duringB + 1 time
blocks, each of them of lengthn. The messages are sent using
block-Markov coding and the destinations employ backward
decoding to retrieve them.

The second source splits its messagem̃2 into a common
messagem2 and a private onew2, with partial ratesR20 and
R22, respectively, such thatR2 = R20 + R22. On the other
hand, the first source splits its messagem̃1 into three parts:
(m1, w

′
1, w

′′
1 ). The relay decodes and retransmits the common

message and a part of the private one, i.e.,(m1, w
′
1), whereas

the other part is only decoded by the final destination. The
rate of the first user is therefore the sum of these three partial
rates:R1 = R10 +R′

11 +R′′
11.
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b = 1 b = 2 . . . b = B b = B + 1

vn3 (1) vn3 (t11) . . . vn3 (t1(B−1)) vn3 (t1B)

xn
3 (1, 1) xn

3 (t11, w
′

11) . . . xn
3 (t1(B−1) , w

′

1(B−1)
) xn

3 (t1B , w′

1B)

vn1 (1, t11) vn1 (t11, t12) . . . vn1 (t1(B−1) , t1B) vn1 (t1B , 1)

xn
1 (1, t11, 1, w

′

11, w
′′

11) xn
1 (t11, t12, w

′

11, w
′

12, w
′′

12) . . . xn
1 (t1(B−1) , t1B , w′

1(B−1)
, w′

1B , w′′

1B) xn
1 (t1B , 1, w′

1B , 1, 1)

vn2 (1) vn2 (m21) . . . vn2 (m2(B−1)) vn2 (m2B)

xn
2 (1, 1) xn

2 (m21, w21) . . . xn
2 (m2(B−1) , w2(B−1)) xn

2 (m2B , w2B)

TABLE IV
CODEWORDS IN THE PROPOSED PARTIALDF SCHEME FOR THEIRC.

A. Code Generation

1) Generate the time-sharing sequenceqn where each el-
ement is independent and identically distributed (i.i.d.)
according to the PD

p(qn) =

n∏

i=1

pQ(qi).

2) For each sequenceqn, generate2nT10 conditionally
independent sequencesvn3 (t0), wheret0 ∈

[
1 : 2nT10

]
,

and distributed according to the conditional PD

p(vn3 |qn) =
n∏

i=1

pV3|Q(v3i|qi).

3) For eachvn3 (t0), generate2nR
′

11 conditionally indepen-
dent sequencesxn

3 (t0, r0), wherer0 ∈
[
1 : 2nR

′

11

]
, and

distributed according to the conditional PD

p(xn
3 |vn3 (t0), qn) =

n∏

i=1

pX3|V3Q(x3i|v3i(t0), qi).

4) For eachvn3 (t0), generate2nT10 conditionally indepen-
dent sequencesvn1 (t0, t1), wheret1 ∈

[
1 : 2nT10

]
, and

distributed according to the conditional PD

p(vn1 |vn3 (t0), qn) =
n∏

i=1

pV1|V3Q(v1i|v3i(t0), qi).

5) Partition the set
[
1 : 2nT10

]
into 2nR10 cells and label

themT (m1), wherem1 ∈
[
1 : 2nR10

]
.

6) For every pair(xn
3 (t0, r0), v

n
1 (t0, t1)), generate2nR

′

11

conditionally independent sequencesun
1 (t0, t1, r0, r1),

where r1 ∈
[
1 : 2nR

′

11

]
, and distributed according to

the conditional PD

p(un
1 |vn1 (t0, t1), xn

3 (t0, r0), v
n
3 (t0), q

n) =
n∏

i=1

p(u1i|v1i(t0, t1), x3i(t0, r0), v3i(t0), qi).

7) For eachun
1 (t0, t1, r0, r1), generate2nR

′′

11 conditionally
independent sequencesxn

1 (t0, t1, r0, r1, r2), wherer2 ∈
[
1 : 2nR

′′

11

]
, and distributed according to the conditional

PD

p(xn
1 |un

1 (·), vn1 (t0, t1), xn
3 (t0, r0), v

n
3 (t0), q

n) =
n∏

i=1

p(x1i|u1i(·), v1i(t0, t1), x3i(t0, r0), v3i(t0), qi).

8) For each sequenceqn, generate2nR20 conditionally
independent sequencesvn2 (s0), wheres0 ∈

[
1 : 2nR20

]
,

and distributed according to the conditional PD

p(vn2 |qn) =
n∏

i=1

pV2|Q(v2i|qi).

9) For eachvn2 (s0), generate2nR22 conditionally indepen-
dent sequencesxn

2 (s0, s1), wheres1 ∈
[
1 : 2nR22

]
, and

distributed according to the conditional PD

p(xn
2 |vn2 (s0), qn) =

n∏

i=1

pX2|V2Q(x2i|v2i(s0), qi).

B. Encoding Part

Encoding in blockb proceeds as follows,
1) The relay already knows the indices(t1(b−1), w

′
1(b−1))

from decoding step1 in the previous block, thus it
transmits xn

3 (t1(b−1), w
′
1(b−1)). For block b = 1, it

transmits the dummy messagexn
3 (1, 1).

2) Encoder 1 wants to transmit̃m1b = (m1b, w
′
1b, w

′′
1b),

thus, it searches for an indext1b ∈ T (m1b) such that
(
vn1 (t1(b−1), t1b), x

n
3 (t1(b−1), w

′
1(b−1)), v

n
3 (t1(b−1)), q

n
)

∈ T n
δ′(V1X3V3Q). The success of this step requires that

T10 −R10 > Ib + δ′, (46)

where δ′ > 0 is an arbitrarily small constant and
Ib , I(X3;V1|V3Q). It then transmits the codeword
xn
1 (t1(b−1), t1b, w

′
1(b−1), w

′
1b, w

′′
1b). The source sends the

dummy messages̃m10 = (1, 1, 1) and m̃1(B+1) =
(1, 1, 1) known to all users at the beginning and at the
end of the transmission.

3) Encoder 2 sends its messagẽm2(b−1) = (m2(b−1),
w2(b−1)) through the codewordxn

2 (m2(b−1), w2(b−1)).
During block b = 1, it sends the dummy message
xn
2 (1, 1).

See Table IV for references.

C. Decoding Part

1) Let δ > δ′. At the end of blockb ∈ [1 : B] and assuming
its past message estimates are correct, the relay looks for
the unique pair of indices(t1b, w′

1b) ≡ (i, j) such that
(
vn3 (t1(b−1)), x

n
3 (t1(b−1), w

′
1(b−1)), v

n
1 (t1(b−1), i), y

n
3b, q

n,

un
1 (t1(b−1), i, w

′
1(b−1), j)

)
∈ T n

δ (V3X3V1U1Y3Q).
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The probability of error becomes arbitrarily small if

R′
11 < I(U1;Y3|V1X3Q)− δ, (47a)

T10 +R′
11 < I(V1U1;Y3|X3Q) + Ib − δ. (47b)

2) Starting at the end of blockB+1 and assuming its past
message estimates are correct, destination 1 looks for
the indices(t1(b−1), w

′
1(b−1), w

′′
1b,m2(b−1)) ≡ (i, j, k, l)

backwardly such that
(
vn3 (i), v

n
1 (i, t1b), x

n
3 (i, j), u

n
1 (i, t1b, j, w

′
1b), v

n
2 (l), y

n
1b, q

n,

xn
1 (i, t1b, j, w

′
1b, k)

)
∈ T n

δ (V3V1X3U1X1V2Y1Q).

The probability of error becomes arbitrarily small if

R′′
11< I(X1;Y1|V1U1V2X3Q)− δ, (48a)

R′
11+R′′

11< I(X1X3;Y1|V1V2V3Q)+Ib−δ,(48b)

T10+R′
11+R′′

11< I(X1X3;Y1|V2Q) + Ib − δ, (48c)

R′′
11+R20< I(X1V2;Y1|V1U1X3Q)− δ, (48d)

R′
11+R′′

11+R20< I(X1V2X3;Y1|V1V3Q)+Ib−δ, (48e)

T10+R′
11+R′′

11+R20< I(X1V2X3;Y1|Q) + Ib − δ. (48f)

3) Destination 2 performs similarly, thus, it looks for the in-
dices(t1(b−1),m2(b−1), w2(b−1)) ≡ (i, k, l) backwardly
such that
(
vn3 (i), v

n
1 (i, t1b), v

n
2 (k), x

n
2 (k, l), y

n
2b, q

n
)

∈ T n
δ (V3V1V2X2Y2Q).

The probability of error becomes arbitrarily small if

R22 < I(X2;Y2|V1V2V3Q)− δ, (49a)

R20 +R22 < I(X2;Y2|V1V3Q)− δ, (49b)

T10 +R22 < I(V1X2V3;Y2|V2Q)− δ, (49c)

T10 +R20 +R22 < I(V1X2V3;Y2|Q)− δ, (49d)

T10 < I(V1V3;Y2|X2Q)− δ. (49e)

Remark 13:If at this point we replaceU1 with X1, the
region boils down to the one attained by the full DF scheme
(Corollary 2). See Appendix E.

Remark 14:The bound (49e) represents the perfect decod-
ing of the common layer of interference. This bound is needed,
however, because of the block-Markov coding technique and
the assumption that the indext1b present invn1 (·) is correct.
Nonetheless, this term only appears in some of the additional
bounds shown below and it does not affect the final region
Rp-DF.

After running Fourier-Motzkin elimination (FME) to the
set (46)–(49) and lettingn → ∞, we obtain the region
Rp-DF(P2) (9) with the term I(V1U1;Y3|X3Q) instead of
I(U1;Y3|X3Q) in (9a), (9k), and (9m), plus four additional
bounds

R1 < I(X1X3;Y1|V1V2V3Q) + I(V1V3;Y2|X2Q), (50a)

R1 < I(U1;Y3|V1X3Q) + I(X1;Y1|V1U1V2X3Q)

+ I(V1V3;Y2|X2Q)− Ib, (50b)

R2 < I(X1V2;Y1|V1U1X3Q) + I(X2;Y2|V1V2V3Q), (50c)

R2 < I(X1V2;Y1|V1U1X3Q) + I(V1X2V3;Y2|V2Q)− Ib.
(50d)

These bounds on the single rates arise from the decoding of the
common message of the interference at the interfered receiver.
It is reasonable to assume that the maximizing PD will render
these boundsinactive, i.e., if the single rates are penalized due
to the large amount of common information, another PD with
lesscommon information will increase the achievable rate.

In order to eliminate the bounds (50) –a necessary condition
to later compare to the outer bound– we proceed in a similar
way as [33, Lemma 2]. First, let us define, for a given PD
p ∈ P2, the regionRo

p-DF(p) as theoriginal region after FME,
i.e., the regionRp-DF(p) (9) with the termI(V1U1;Y3|X3Q)
instead ofI(U1;Y3|X3Q) plus the four bounds (50).

Second, we defineRc1
p-DF(p) as the regionRo

p-DF(p) without
bounds (50c) and (50d). For this reason, it is easy to see
that Ro

p-DF(p) ⊆ Rc1
p-DF(p). On the other hand, when ei-

ther (50c) or (50d) is active inRo
p-DF(p), thenRo

p-DF(p
∗∗) with

p∗∗ =
∑

v2
p attains higher rates thanRc1

p-DF(p). The PDp∗∗ is
the marginal ofp w.r.t. V2, therefore, effectively eliminating
the common message from the second source. In summary,
Rc1

p-DF(p) ⊆ Ro
p-DF(p)∪Ro

p-DF(p
∗∗). After maximizing over all

joint PDs, we obtainRc1
p-DF = Ro

p-DF, thus (50c) and (50d) are
redundant.

Third, we reduce the achievable regionRc1
p-DF(p) by re-

placing the termsI(V1U1;Y3|X3Q) with I(U1;Y3|X3Q),
let us call this new reduced regionRc2

p-DF(p). We define
the regionRp-DF(p) based onRc2

p-DF(p) and eliminate the
bounds (50a) and (50b) from it. After this, it is easy to prove
that bothRc2

p-DF(p) ⊆ Rp-DF(p) andRp-DF(p) ⊆ Rc2
p-DF(p) ∪

Rc2
p-DF(p

∗), with p∗ =
∑

v1v3
p, hold. Therefore, after the

maximization, we obtainRp-DF = Rc2
p-DF.

It is worth mentioning that the regionRp-DF (9) is not the
optimal one for partial DF because of the aforementioned
reduction, i.e.Rp-DF = Rc2

p-DF ⊆ Rc1
p-DF = Ro

p-DF. However,
as we see later, this loss does not prevent us from obtaining
a constant-gap result.

APPENDIX E
PROOF OFCOROLLARY 2 (FULL DF SCHEME)

SinceU1 = X1, the first source does not split its private
message in two, i.e.,R′′

11 = 0 and R1 = R10 + R′
11. The

codebook generation, encoding and decoding is carried out as
in the partial DF scheme.

After running Fourier-Motzkin elimination to the set (46)–
(49) and lettingn → ∞, we obtain the regionRf-DF(P3) (11),
plus three additional bounds

R1<I(X1X3;Y1|V1V2V3Q) + I(V1V3;Y2|X2Q), (51a)

R1<I(X1;Y3|V1X3Q) + I(V1V3;Y2|X2Q)− Ib, (51b)

R2<I(X1V2X3;Y1|V1V3Q)+I(X2;Y2|V1V2V3Q)+Ib. (51c)

As in the partial DF scheme, these bounds are redundant when
maximized over all possible PDs. Let us defineRo

f-DF(P3) as
theoriginal region after FME. Then, it is clear that for a given
PD p ∈ P3, Ro

f-DF(p) ⊆ Rf-DF(p), because of the presence
of (51).

When either (51a) or (51b) is active inRo
f-DF(p), then

Ro
f-DF(p

∗) with p∗ =
∑

v1v3
p attains higher rates than

Rf-DF(p). Similarly, when (51c) is active,Ro
f-DF(p

∗∗) with
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b = 1 b = 2 . . . b = B b = B + 1 . . . b = B + L

vn1 (m11) vn1 (m12) . . . vn1 (m1B) vn1 (1) . . . vn1 (1)

xn
1 (m11, w11) xn

1 (m12, w12) . . . xn
1 (m1B , w1B) xn

1 (1, 1) . . . xn
1 (1, 1)

vn2 (m21) vn2 (m22) . . . vn2 (m2B) vn2 (1) . . . vn2 (1)

xn
2 (m21, w21) xn

2 (m22, w22) . . . xn
2 (m2B , w2B) xn

2 (1, 1) . . . xn
2 (1, 1)

ŷn3 (1, l1) ŷn3 (l1, l2) . . . ŷn3 (lB−1, lB) ∅ . . . ∅
xn
3 (1) xn

3 (l1) . . . xn
3 (lB−1) xn

3 (lB) . . . xn
3 (lB)

TABLE V
CODEWORDS IN THE PROPOSEDCF SCHEME FOR THEIRC.

p∗∗ =
∑

v2
p outperformsRf-DF(p). Succinctly,Rf-DF(p) ⊆

Ro
f-DF(p) ∪Ro

f-DF(p
∗) ∪Ro

f-DF(p
∗∗).

Therefore, after maximizing over all possible PDs,Rf-DF =
Ro

f-DF, which renders (51) redundant.

APPENDIX F
PROOF OFTHEOREM 3 (CF SCHEME)

As before, each sourcek ∈ {1, 2} splits its messagẽmk into
a common messagemk and a private onewk, each with partial
rateRk0 andRkk, respectively, such thatRk = Rk0 + Rkk.
But now, each source transmitsB messages duringB+L time
blocks, each of them of lengthn. During these additionalL
time blocks, the relay repeats the same compression index to
ensure a correct decoding at each destination [34], [35].

A. Code Generation

1) Generate the time-sharing sequenceqn where each el-
ement is independent and identically distributed (i.i.d.)
according to the PD

p(qn) =

n∏

i=1

pQ(qi).

2) For each sourcek ∈ {1, 2} and the sequenceqn, gener-
ate2nRk0 conditionally independent sequencesvnk (mk),
wheremk ∈

[
1 : 2nRk0

]
, and distributed according to

the conditional PD

p(vnk |qn) =
n∏

i=1

pVk|Q(vki|qi).

3) For each sourcek ∈ {1, 2} and for eachvnk (mk),
generate2nRkk conditionally independent sequences
xn
k (mk, wk), wherewk ∈

[
1 : 2nRkk

]
, and distributed

according to the conditional PD

p(xn
k |vnk (mk), q

n) =

n∏

i=1

pXk|VkQ(xki|vki(mk), qi).

4) For the sequenceqn, generate2nR̂ conditionally inde-
pendent sequencesxn

3 (l1), where l1 ∈
[
1 : 2nR̂

]
for

R̂ = I(Ŷ3;Y3|X3Q) + δ′, and distributed according to
the conditional PD

p(xn
3 |qn) =

n∏

i=1

pX3|Q(x3i|qi).

5) For the sequenceqn and eachxn
3 (l1), generate2nR̂

conditionally independent sequencesŷn3 (l1, l2), where
l2 ∈

[
1 : 2nR̂

]
, and distributed according to the

conditional PD

p(ŷn3 |xn
3 (l1), q

n) =

n∏

i=1

p
Ŷ3|X3Q

(ŷ3i|x3i(l1), qi).

B. Encoding Part

Encoding in blockb proceeds as follows,
1) Each sourcek ∈ {1, 2} uses its present messagẽmkb

to choose the codeword it transmits,xn
k (mkb, wkb) for

blocksb ∈ [1 : B]. During blocksb ∈ [B + 1 : B + L],
the sources send the dummy messagem̃kb = 1 known
to all users.

2) At the end of blockb ∈ [1 : B], the relay looks
for at least one indexlb, with l0 = 1 s.t.

(
xn
3 (lb−1),

ŷn3 (lb−1, lb), y
n
3b, q

n
)
∈ T n

δ′(X3Ŷ3Y3Q). The probability
of finding suchlb goes to one asn approaches infinity. It
then transmitsxn

3 (lb) in the next time block. Moreover,
for blocks b ∈ [B + 1 : B + L], the last compression
index lB is repeated.

See Table V for references.

C. Decoding Part

1) Destination 1 decodes the compression index in two
steps. First, it looks for the unique indexlB ≡ l such
that,∀ b ∈ [B + 1 : B + L],
(
vn1 (1), x

n
1 (1, 1), v

n
2 (1), x

n
3 (l), y

n
1b, q

n
)

∈ T n
δ (V1X1V2X3Y1Q).

For a finite but sufficiently largeL, the probability of
incorrectly decodinglB can be made arbitrarily small.

2) After finding lB, destination 1 looks for the indices
(m1b, w1b,m2b, lb−1) ≡ (i, j, k, l) for b ∈ [1 : B] such
that
(
vn1 (i), x

n
1 (i, j), v

n
2 (k), x

n
3 (l), ŷ

n
3 (l, lb), y

n
1b, q

n
)

∈ T n
δ (V1X1V2X3Ŷ3Y1Q).

The probability of error can be made arbitrarily small
provided that,

R11 < I11 − δ, (52a)

R10 +R11 < I12 − δ, (52b)

R20 +R11 < I13 − δ, (52c)
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R10 +R11 +R20 < I14 − δ, (52d)

R20 < I(V2X3;Y1|X1Q)− I1 − δ, (52e)

I1 < I(X3;Y1|X1V2Q)− δ (52f)

whereI1 , I(Ŷ3;Y3|X1V2X3Y1Q) + δ′ and

I11,min{I(X1;Y1Ŷ3|V1V2X3Q), I(X1X3;Y1|V1V2Q)−I1}
I12,min{I(X1;Y1Ŷ3|V2X3Q), I(X1X3;Y1|V2Q)− I1}
I13,min{I(X1V2;Y1Ŷ3|V1X3Q), I(X1V2X3;Y1|V1Q)−I1}
I14,min{I(X1V2;Y1Ŷ3|X3Q), I(X1V2X3;Y1|Q)− I1}.

3) If destination 1 ignores the compression index, it looks
for the indices(m1b, w1b,m2b) ≡ (i, j, k) for b ∈ [1 : B]
such that

(vn1 (i), x
n
1 (i, j), v

n
2 (k), y

n
1b, q

n) ∈ T n
δ (V1X1V2Y1Q).

The probability of error can be made arbitrarily small
provided that,

R11 < I(X1;Y1|V1V2Q)− δ, (53a)

R10 +R11 < I(X1;Y1|V2Q)− δ, (53b)

R20 +R11 < I(X1V2;Y1|V1Q)− δ, (53c)

R10 +R11 +R20 < I(X1V2;Y1|Q)− δ. (53d)

4) Destination 2 performs similarly, and all the above
inequalities hold by swapping the indices1 and2.

It is noteworthy that the bound in the rate of the interfering
common message (52e), i.e.,Rj0 ≤ I(VjX3;Yk|XkQ)−Ik, is
a by-product of the CF scheme. Although the error in decoding
the index of the interfering common message is normally not
taken into account in the IC, this bound is needed in order to
assure that the compression indexlb is the right one at time
b. Nonetheless, both the bound (52e) and (52f) are redundant
as we see next.

When (52e) does not hold, (52c) and (52d) become:

R11 < I(X1V2X3;Y1|V1Q)− I(V2X3;Y1|X1Q)

= I(X1;Y1|V1Q), (54a)

R10 +R11 < I(X1V2X3;Y1|Q)− I(V2X3;Y1|X1Q)

= I(X1;Y1|Q). (54b)

This is included in the region (53) for the special caseV2 = ∅.
Moreover, if (52f) does not hold, the first five bounds of (52)

become:

R11 < I(X1X3;Y1|V1V2Q)− I1

< I(X1X3;Y1|V1V2Q)− I(X3;Y1|X1V2Q)

= I(X1;Y1|V1V2Q), (55a)

R10+R11 < I(X1;Y1|V2Q), (55b)

R20+R11 < I(X1V2;Y1|V1Q), (55c)

R10+R11+R20 < I(X1V2;Y1|V1Q), (55d)

R20 < I(V2;Y1|X1Q). (55e)

This region is also included in (53). Therefore, when either
condition (52e) or (52f) does not hold for a given distribution,
the region (52) is included inside (53), i.e., destination 1should
ignore the relay to achieve higher rates. Since the final region

is the union over all possible PDs of (52) and (53) for both
users, we can drop (52e) and (52f) because they do not affect
the final region after the maximization. This result can be seen
as an extension of [35].

Before running Fourier-Motzkin elimination to this system,
we shall make same clarifications. First, let us defineRCF3(P4)
as the region obtained with the distributionP4 when both
users ignore the compression index, i.e., the Han-Kobayashi
inner bound. The regionsRCF1(P4) and RCF2(P4) are the
ones obtained when only the first or second user decodes
the relay’s message, respectively.RCF0(P4) corresponds to the
region when both users decode the compression index.

Second, even though the expressionsIki look rather com-
plex, there exists an ordering between them analogous toI ′ki
that allows us to reduce the number of bounds. In other words,
the following inequalities hold,

Ik1 ≤ Ik2 ≤ Ik4 andIk1 ≤ Ik3 ≤ Ik4. (56)

To check this, take each term ofI11 andI12 separately

I11 ≤ I(X1;Y1Ŷ3|V1V2X3Q)

= h(Y1Ŷ3|V1V2X3Q)− h(Y1Ŷ3|X1V2X3Q), (57a)

I11 ≤ I(X1X3;Y1|V1V2Q)− I1

= h(Y1|V1V2Q)− h(Y1|X1V2X3Q)− I1, (57b)

I12 ≤ I(X1;Y1Ŷ3|V2X3Q)

= h(Y1Ŷ3|V2X3Q)− h(Y1Ŷ3|X1V2X3Q), (57c)

I12 ≤ I(X1X3;Y1|V2Q)− I1

= h(Y1|V2Q)− h(Y1|X1V2X3Q)− I1. (57d)

Since conditioning reduces entropy, we have that (57a)≤ (57c)
and (57b)≤ (57d), which leads toI11 ≤ I12. The same
reasoning applies for the otherIki in (56).

1) Final RegionRCF3
: After running FME to the system

composed by (53) and its symmetric one for the second user,
and lettingn → ∞, we obtain the regionRo

CF3(p):

Rk ≤ min{I ′k2, I ′k1 + I ′j3},
Rk +Rj ≤ min{I ′k1 + I ′j4, I

′
k3 + I ′j3},

2Rk +Rj ≤ I ′k1 + I ′k4 + I ′j3.

This region has two redundant bounds as shown in [33]:

R1 ≤ I(X1;Y1|V1V2Q) + I(V1X2;Y2|V2Q), (58a)

R2 ≤ I(X1V2;Y1|V1Q) + I(X2;Y2|V1V2Q). (58b)

If we defineRc
CF3(p) as thecompactversion of theoriginal re-

gionRo
CF3(p), i.e., without the two redundant bounds, we can

readily see thatRo
CF3(p) ⊆ Rc

CF3(p) for a given distribution
p ∈ P4 sinceRc

CF3(p) has fewer bounds.
If a pair of rates(R1, R2) belongs toRc

CF3(p) but not to
Ro

CF3(p), it is because (58) does not hold. Let us first assume
that

R1 > I(X1;Y1|V1V2Q) + I(V1X2;Y2|V2Q).

With this condition,Rc
CF3(p) becomes:

R1 ≤ I(X1;Y1|V2Q),

R2 ≤ I(V2;Y2|Q),

R1 +R2 ≤ I(X1V2;Y1|Q),
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together with some additional bounds. We may compare this
region withRo

CF3(p
∗), wherep∗ =

∑

v1
p,

R1 ≤ I(X1;Y1|V2Q),

R2 ≤ I(X2;Y2|Q),

R1 +R2 ≤ I(X1V2;Y1|Q) + I(X2;Y2|V2Q).

It is clear that, when (58a) is violated,Rc
CF3(p) ⊆ Ro

CF3(p
∗).

Similarly, if (58b) does not hold, we see thatRc
CF3(p) ⊆

Ro
CF3(p

∗∗), where p∗∗ =
∑

v2
p. Therefore, in the general

case,

Rc
CF3(p) ⊆ Ro

CF3(p) ∪Ro
CF3(p

∗) ∪Ro
CF3(p

∗∗).

Since we have already shown thatRo
CF3(p) ⊆ Rc

CF3(p), when
maximizing over all joint PDs, we have thatRo

CF3 = Rc
CF3 .

2) Final RegionsRCF1
andRCF2

: Now, we go toRo
CF1(p),

where only the first user decodes the compression index. In
this case, the region that is obtained after running FME is:

R1 ≤ min{I12, I11 + I ′23},
R2 ≤ min{I ′22, I13 + I ′21},

R1 +R2 ≤ min{I11 + I ′24, I14 + I ′21, I13 + I ′23},
2R1 +R2 ≤ I11 + I14 + I ′23,

R1 + 2R2 ≤ I13 + I ′21 + I ′24.

Here, we have another two redundant bounds:

R1 ≤ I11 + I(V1X2;Y2|V2Q), (59a)

R2 ≤ I13 + I(X2;Y2|V1V2Q). (59b)

Once again, for a given distributionp ∈ P4, we defineRo
CF1(p)

as the original region with all the bounds andRc
CF1(p) as the

compact one without the redundant bounds. SinceRc
CF1(p) has

fewer bounds, we can readily see thatRo
CF1(p) ⊆ Rc

CF1(p).
If (59a) does not hold,Rc

CF1(p) becomes:

R1 ≤ I12,

R2 ≤ I(V2;Y2|Q),

R1 +R2 ≤ I14,

together with some additional bounds. We may compare this
region withRo

CF1(p
∗), wherep∗ =

∑

v1
p,

R1 ≤ I12,

R2 ≤ I(X2;Y2|Q),

R1 +R2 ≤ I14 + I(X2;Y2|V2Q).

As we see, when (59a) is violated,Rc
CF1(p) ⊆ Ro

CF1(p
∗).

Since this region is not symmetric, we also need to see
what happens when (59b) does not hold. In this case,Rc

CF1(p)
becomes:

R1 ≤ I14 − I13, (60a)

R2 ≤ I(X2;Y2|V1Q), (60b)

R1 +R2 ≤ I(V1X2;Y2|Q), (60c)

together with some additional bounds. Now, let us takep∗∗ =
∑

v2
p and calculateRo

CF1(p
∗∗):

R1 ≤ I∗14, (61a)

R2 ≤ I(X2;Y2|V1Q), (61b)

R2 ≤ I∗13 + I(X2;Y2|V1Q), (61c)

R1 +R2 ≤ I∗13 + I(V1X2;Y2|Q) (61d)

where

I∗13 , min{I(X1;Y1Ŷ3|V1X3Q),

I(X1X3;Y1|V1Q)− I(Y3; Ŷ3|X1X3Y1Q)},
I∗14 , min{I(X1;Y1Ŷ3|X3Q),

I(X1X3;Y1|Q)− I(Y3; Ŷ3|X1X3Y1Q)}.
We shall recall that the PDp is such that the ratesR1 and
R2 are nonnegative inRc

CF1(p). However, this does not mean
that I∗13 or I∗14 should be positive since they depend onp∗∗. If
any of the two expressions is negative,Rc

CF1(p) * Ro
CF1(p

∗∗),
which is not what we are looking for. We first assume that both
quantities are positive.

Let us define with a subscripta andb the first and second
term of the minimums in the expressionsIki, respectively.
Then, if I13 = I13a, the first rate inRc

CF1(p) becomes:

R1 ≤ I14a − I13a = I(V1;Y1Ŷ3|X3Q) ≤ I∗14a, (62a)

R1 ≤ I14b − I13a

= I(X1V2X3;Y1|Q)− I(Y3; Ŷ3|X1V2X3Y1Q)

− I(X1V2;Y1Ŷ3|V1X3Q)

= I(X1V2X3;Y1|Q)− I(Y3; Ŷ3|X1V2X3Y1Q)

− I(X1V2;Y1|V1X3Q)− I(X1V2; Ŷ3|V1X3Y1Q)

= I(V1X3;Y1|Q)− I(X1V2Y3; Ŷ3|V1X3Y1Q)

= I(V1X3;Y1|Q)− I(Y3; Ŷ3|V1X3Y1Q) ≤ I∗14b (62b)

where in the last step we take into account thatŶ3 −
−
(X3Y3Q) −
− (X1V2). On the other hand, ifI13 = I13b, the
first rate inRc

CF1(p) becomes:

R1 ≤ I14b − I13b = I(V1;Y1|Q) ≤ I∗14a. (63)

Also, in Ro
CF1(p

∗∗):

R1 ≤ I∗14b = I(X1X3;Y1|Q)− I(Y3; Ŷ3|X1X3Y1Q)

= I(V1;Y1|Q) + I∗13b. (64)

If we assume thatI∗13 ≥ 0, (62b) and (64) assure us that
I∗14 ≥ 0. Putting (60) through (64) together, we have shown
thatRc

CF1(p) ⊆ Ro
CF1(p

∗∗). However, ifI∗13 < 0 we shall con-
sider the case where the first user also ignores the compression
index, i.e.Ro

CF3(p
∗∗),

R1 ≤ I(X1;Y1|Q), (65a)

R2 ≤ I(X2;Y2|V1Q), (65b)

R1 +R2 ≤ I(X1;Y1|V1Q) + I(V1X2;Y2|Q). (65c)

The region in (60) looks smaller than (65), with the exception
of the rateR1 that we analyze in the sequel. IfI13 = I13a,
in (60a) we have that,

R1 ≤ I14 − I13 = min{I14a, I14b} − I13a ≤ I14b − I13a

= I(V1X3;Y1|Q)− I(Y3; Ŷ3|V1X3Y1Q) (66a)

= I(V1X3;Y1|Q)− I(X1; Ŷ3|V1X3Y1Q)

− I(Y3; Ŷ3|X1X3Y1Q) (66b)
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< I(V1X3;Y1|Q)− I(X1; Ŷ3|V1X3Y1Q)

− I(X1X3;Y1|V1Q) (66c)

≤ I(X1X3;Y1|Q)− I(X1; Ŷ3|V1X3Y1Q)

− I(X1X3;Y1|V1Q)

= I(V1;Y1|Q)− I(X1; Ŷ3|V1X3Y1Q)

≤ I(V1;Y1|Q), (66d)

where (66a) comes from (62b), (66b) is due to the Markov
chainŶ3−
−(X3Y3Q)−
−X1, and (66c) is due to the assumption
I∗13 < 0, i.e. I(X1X3;Y1|V1Q) < I(Y3; Ŷ3|X1X3Y1Q).

On the other hand, ifI13 = I13b, we have already shown
in (63) thatR1 ≤ I(V1;Y1|Q). Therefore, if I∗13 < 0, the
regionRo

CF3(p
∗∗) is larger thanRc

CF1(p) whenR2 > I13 +
I(X2;Y2|V1V2Q). To sum up, in the general case,

Rc
CF1(p) ⊆ Ro

CF1(p) ∪Ro
CF1(p

∗) ∪Ro
CF1(p

∗∗) ∪Ro
CF3(p

∗∗),

and sinceRo
CF1(p) ⊆ Rc

CF1(p), if we maximize over all joint
possible joint distributions we obtainRc

CF1 ∪Rc
CF3 = Ro

CF1 ∪
Ro

CF3 .
The symmetric regionRo

CF2(p) where only the second user
decodes the compression index behaves similarly. We can redo
the whole proof by simply swapping the subindices1 and
2. Consequently, if we maximize over all joint possible joint
distributions we have thatRc

CF2 ∪Rc
CF3 = Ro

CF2 ∪Ro
CF3 .

3) Final RegionRCF0
: Finally, when both users decode the

compression index, the region we obtain after running FME
is,

Rk ≤ min{Ik2, Ik1 + Ij3},
Rk +Rj ≤ min{Ik1 + Ij4, Ik3 + Ij3},

2Rk +Rj ≤ Ik1 + Ik4 + Ij3

where the redundant terms are

R1 ≤ I11 + I23,

R2 ≤ I13 + I21.

We omit the complete proof for this region since it follows
the same steps as the previous ones. The conclusion here is
that the regionRc

CF0(p), the one without the redundant terms,
is larger thanRo

CF0(p), and also,

Rc
CF0(p) ⊆ Ro

CF0(p) ∪Ro
CF0(p

∗) ∪Ro
CF1(p

∗)∪
Ro

CF0(p
∗∗) ∪Ro

CF2(p
∗∗).

Therefore, if we maximize over all possible joint distributions
we have

Rc
CF0 ∪Rc

CF1 ∪Rc
CF2 ∪Rc

CF3 = Ro
CF0 ∪Ro

CF1 ∪Ro
CF2 ∪Ro

CF3 .

Since the regionRCF3 is a special case ofRCF0 in the
maximization, we can eliminate it. The final region without
redundant terms is (16) when both destinations decode the
compression index, and the region (17) when one of them
ignores it.

APPENDIX G
PROOF OFPROPOSITION1 (FULL DF CONSTANT GAP)

The comparison between the full DF inner bound (11) and
the outer bound is complex mainly due to the different PDs in
each bound and the presence of the binning terms. However,
as we see next, we can propose some simplifications to help
us calculate the difference between the bounds.

First, let us assume the following set of auxiliary random
variables,

V1 = h21X1 + h23X3 + Z ′
2, (67a)

V2 = h12X2 + Z ′
1, (67b)

V3 =
h23√
1 + S21

X3 + Z ′′
2 (67c)

whereS21 , |h21|2P1/N2, andZ ′
k andZ ′′

k are independent
copies ofZk. This choice fulfills the Markov chains in (10).
Nonetheless, since it is a particular choice of variables, the
region might be smaller than the optimal one.

Second, let us assume thatX1 and X3 are independent.
Then, the binning term becomes upper-bounded regardless of
the channel coefficients,

Ib = C

[
S23

1 + S21 + S23

]

≤ 1

2
bit.

We can reduce the achievable region (11) if we add−Ib
to (11c) and (11i) which render (11d) and (11h) redundant.
We further shrink the region by replacing−Ib with − 1

2 which
gives us,

R1 ≤ I(X1;Y3|X3Q) (68a)

R1 ≤ I(X1X3;Y1|V2Q) (68b)

R2 ≤ I(X2;Y2|V1V3Q)− 1

2
(68c)

R1+R2 ≤ I(X1X3;Y1|V1V2V3Q) + I(V1X2V3;Y2|Q)
(68d)

R1+R2 ≤ I(X1;Y3|V1X3Q) + I(V1X2V3;Y2|Q)− 1

2
(68e)

R1+R2 ≤ I(X1V2X3;Y1|V1V3Q) + I(V1X2V3;Y2|V2Q)
(68f)

R1+R2 ≤ I(X1V2X3;Y1|Q) + I(X2;Y2|V1V2V3Q)− 1

2
(68g)

2R1+R2 ≤ I(X1X3;Y1|V1V2V3Q) + I(X1V2X3;Y1|Q)

+ I(V1X2V3;Y2|V2Q) (68h)

2R1+R2 ≤ I(X1;Y3|V1X3Q) + I(X1V2X3;Y1|Q)

+ I(V1X2V3;Y2|V2Q)− 1

2
(68i)

R1+2R2 ≤ I(X1V2X3;Y1|V1V3Q) + I(X2;Y2|V1V2V3Q)

+ I(V1X2V3;Y2|Q) (68j)

These bounds look similar to the following subset of the outer
bound (5): (5a)–(5g), (5l), (5n), and (5r), which allows us to
compare them. However, as the PDs present in the inner and
outer bounds are different, we compare the expression of each
bound in the Gaussian case since they only depend on the
SNRs of the links.
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The reduced region (68) for the Gaussian case is,

R1 ≤ C[S31] (69a)

R1 ≤ C[G2(S11 + S13)] (69b)

R2 ≤ C[G1S22]−
1

2
(69c)

R1+R2 ≤ C

[

G2
S11 + S13 + δ + S11S23/(1 + S21)

1 + S21 + 2S23

]

+ C[S21 + S22 + S23] +
1

2
log2 G1 (69d)

R1+R2 ≤ C

[
S31

1 + S21

]

+ C[S21 + S22 + S23]

+
1

2
log2 G1 −

1

2
(69e)

R1+R2 ≤ C

[

S12 +
S11 + S13 + δ + S11S23/(1 + S21)

1 + S21 + 2S23

]

+ C

[

S21+ S23+
S22

1+ S12

]

+
1

2
log2 G1G2 (69f)

R1+R2 ≤ C[S11 + S12 + S13] + C

[

G1
S22

1 + S12

]

+
1

2
log2 G2 −

1

2
(69g)

2R1+R2 ≤ C

[

G2
S11 + S13 + δ + S11S23/(1 + S21)

1 + S21 + 2S23

]

+ C[S11 + S12 + S13] +
1

2
log2 G1G2

+ C

[

S21 + S23 +
S22

1 + S12

]

(69h)

2R1+R2 ≤ C

[
S31

1 + S21

]

+ C[S11 + S12 + S13]−
1

2

+ C

[

S21+ S23+
S22

1+ S12

]

+
1

2
log2 G1G2 (69i)

R1+2R2 ≤ C

[

S12 +
S11 + S13 + δ + S11S23/(1 + S21)

1 + S21 + 2S23

]

+ C

[

G1
S22

1 + S12

]

+ C[S21 + S22 + S23]

+
1

2
log2 G1G2, (69j)

where

δ ,
(√

S11S23 ±
√

S13S21

)2

,

G1 ,
1 + 2S21 + 2S23 + S2

21 + 2S21S23

1 + 3S21 + 3S23 + 2S2
21 + 4S21S23

,

G2 ,
1 + S12

1 + 2S12
.

To illustrate the procedure for bounding the gap, we show
the single-rate gaps in the sequel. Consider,

∆R1
= (6a)− (69a)

= C[S11 + S31]− C[S31]

= C

[
S11

1 + S31

]

≤ 1

2
, (70)

where the last inequality is due toS31 ≥ S11, otherwise, the

gap would be unbounded. Additionally,

∆R1
= (6b)− (69b)

= C[S11 + S13] +
1

2
− C[G2(S11 + S13)]

≤ 1

2
− 1

2
log2 G2 ≤ 1, (71)

where the last two inequalities are due to12 ≤ G2 ≤ 1. For
R2 we have,

∆R2
= (6c)− (69c)

= C[S22]− C[G1S22] +
1

2

≤ 1

2
− 1

2
log2 G1 ≤ 1, (72)

where the last two inequalities are due to12 ≤ G1 ≤ 1. In
summary, if we compare the appropriate pair of bounds and
we assumeS31 ≥ S11, we obtain the following gaps

∆R1
≤ 1

2
, ∆R1+R2

≤ 2,

∆R1
≤ 1, ∆R1+R2

≤ 2,

∆R2
≤ 1, ∆2R1+R2

≤ 3,

∆R1+R2
≤ 2, ∆2R1+R2

≤ 3,

∆R1+R2
≤ 2, ∆R1+2R2

≤ 5

2
.

Therefore, the gap between the outer bound and the full DF
inner bound, whenS31 ≥ S11, is 1 bit per real dimension at
most.

APPENDIX H
PROOF OFPROPOSITION2 (PARTIAL DF CONSTANT GAP)

The analysis of the gap for the partial DF scheme follows
similar steps as for the full DF scheme. We enlarge the set of
auxiliary random variables used in Appendix G with

U1 = h31X1 + Z ′
3. (73)

Then, we reduce the achievable region using the assumptions
of independence betweenX1 andX3 and the upper bound in
the binning term, which gives us,

R1 ≤ I(U1;Y3|X3Q) + I(X1;Y1|V1U1V2X3Q), (74a)

R1 ≤ I(X1X3;Y1|V2Q), (74b)

R2 ≤ I(X2;Y2|V1V3Q)− 1

2
, (74c)

R1+R2 ≤ I(X1X3;Y1|V1V2V3Q)+I(V1X2V3;Y2|Q),(74d)

R1+R2 ≤ I(U1;Y3|V1X3Q) + I(X1;Y1|V1U1V2X3Q)

+ I(V1X2V3;Y2|Q)− 1

2
, (74e)

R1+R2 ≤ I(X1V2X3;Y1|V1V3Q)+I(V1X2V3;Y2|V2Q),
(74f)

R1+R2 ≤ I(U1;Y3|V1X3Q) + I(X1V2;Y1|V1U1X3Q)

+ I(V1X2V3;Y2|V2Q)− 1

2
, (74g)

R1+R2 ≤ I(X1V2X3;Y1|Q) + I(X2;Y2|V1V2V3Q)− 1

2
,

(74h)
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R1+R2 ≤ I(U1;Y3|X3Q) + I(X1V2;Y1|V1U1X3Q)

+ I(X2;Y2|V1V2V3Q), (74i)

2R1+R2 ≤ I(X1X3;Y1|V1V2V3Q) + I(X1V2X3;Y1|Q)

+ I(V1X2V3;Y2|V2Q), (74j)

2R1+R2 ≤ I(X1X3;Y1|V1V2V3Q)+I(X1V2;Y1|V1U1X3Q)

+ I(U1;Y3|X3Q) + I(V1X2V3;Y2|V2Q), (74k)

2R1+R2 ≤ I(U1;Y3|V1X3Q) + I(X1;Y1|V1U1V2X3Q)− 1

2
+I(X1V2X3;Y1|Q)+I(V1X2V3;Y2|V2Q), (74l)

R1+2R2 ≤ I(X1V2X3;Y1|V1V3Q) + I(X2;Y2|V1V2V3Q)

+ I(V1X2V3;Y2|Q), (74m)

R1+2R2 ≤ I(U1;Y3|V1X3Q) + I(X1V2;Y1|V1U1X3Q)− 1

2
+I(X2;Y2|V1V2V3Q)+I(V1X2V3;Y2|Q). (74n)

We can compare these bounds with a larger subset of the outer
bound (5): (5a)–(5i), (5l)–(5n), and (5r)–(5s).

Half of the bounds in (74) are the same as in (68), while
the other half –composed by the bounds (74a), (74e), (74g),
(74i), (74k), (74l), and (74n)– have the following new terms:

I(U1;Y3|X3Q) = C[S31] +
1

2
log2 G31,

I(U1;Y3|V1X3Q) = C

[
S31

1 + S21

]

+
1

2
log2 G32,

I(X1;Y1|V1U1V2X3Q) = C

[

G2
S11

1 + S21 + S31

]

,

I(X1V2;Y1|V1U1X3Q) = C

[

S12 +
S11

1 + S21 + S31

]

+
1

2
log2 G2

where

G31 ,
1 + S31

1 + 2S31
, and G32 ,

1 + S21 + S31

1 + S21 + 2S31
.

Let us analyze only one of the gaps that change,

∆R1
= (6a)− (74a)= C[S11 + S31]− C[S31]

− 1

2
log2 G31 − C

[

G2
S11

1 + S21 + S31

]

≤ C

[
S21

1 + S31

]

− 1

2
log2 G31G2 ≤ 3

2
, (75)

where the last inequality is due toS31 ≥ S21, otherwise, the
gap would be unbounded.

The gap between each pair of bounds in the inner and outer
bound is,

∆R1
≤ 3

2
, ∆R1+R2

≤ 2,

∆R1
≤ 1, ∆R1+R2

≤ 2,

∆R2
≤ 1, ∆2R1+R2

≤ 3,

∆R1+R2
≤ 2, ∆2R1+R2

≤ 7

2
,

∆R1+R2
≤ 5

2
, ∆2R1+R2

≤ 7

2
,

∆R1+R2
≤ 2, ∆R1+2R2

≤ 5

2
,

∆R1+R2
≤ 5

2
, ∆R1+2R2

≤ 3.

In the previous calculations we assumed thatS31 ≥ S21.
Therefore, under this condition, the gap between the outer
bound and the partial DF inner bound is1.5 bits per real
dimension at most.

APPENDIX I
PROOF OFPROPOSITION3 (CF CONSTANT GAP)

In this section, we show the constant gap result for the CF
inner bound. As with the previous two schemes, we propose
some simplifications to help in the analysis which, at the
same time, reduce the region. First, we only take the region
RCF0 (16) into account. This means that we force both end
users to decode the compression index when we have already
stated in the proof of the scheme that sometimes is better to
ignore this message.

Second, the compressed channel observation of the relay
is obtained by adding an independent Gaussian noiseZ ∼
N (0, N) to its channel output,

Ŷ3 = Y3 + Z.

Third, the random variables used in the scheme have the
following structure. Given the independent random variables
V1, V2, X ′

1, andX ′
2, all distributed according toN (0, 1), we

constructX1 andX2 as follows:

X1 =
√

α1P1V1 +
√

ᾱ1P1X
′
1,

X2 =
√

α2P2V2 +
√

ᾱ2P2X
′
2

whereαi ∈ [0, 1] andᾱi , 1−αi. Furthermore, inspired by [2]
and taking into account the presence of the relay’s compressed
channel output, we choose the fixed power split strategy

ᾱ1

(

1 + S21 +
S31

1 +N

)

= 1,

ᾱ2 (1 + S12) = 1.

The expression of the bounds (14) in the Gaussian case,
where we have assumedN3 = 1 for simplicity, can be found
at the bottom of next page.

We start by calculating the gap for the single rateR1 ≤ I12a
with the bound (5a) from the outer bound:

∆R1
= I(X1;Y1Y3|X2X3Q)− I(X1;Y1Ŷ3|V2X3Q)

≤ 1

2
log2{1 + S11 + S31}

− 1

2
log2

{
(1 +N)(1 + S11/2) + S31

1 +N

}

(76a)

=
1

2
log2

{

1 +
(1 +N)S11/2 +NS31

(1 +N)(1 + S11/2) + S31

}

≤
{

1
2 + C

[
N

1+N

]

if S31 < S11

log2
3
2 + C[N ] if S31 ≥ S11

(76b)

where in (76a) we have reduced the expression of the inner
bound by adding(1 + N)ᾱ2 in the denominator and then,
we apply the fixed power split strategy; and (76b) is obtained
by eliminating either(1 + N)(1 + S11/2) or S31 from the
denominator and taking into account thatS31 ≶ S11.



22

Next, we compareR1 ≤ I12b with the bound (5b):

∆R1
= I(X1X3;Y1|X2Q)− [I(X1X3;Y1|V2Q)− I1]

≤ 1

2
log2{1 + S11 + S13}+

1

2

− 1

2
log2

{
N(1 + S11 + S13)

(1 +N)(1 + ᾱ2S12)

}

(77a)

≤ 1

2
+

1

2
log2

{
2(1 +N)

N

}

= 1 + C

[
1

N

]

(77b)

where in (77a) we have already reduced the expression of the
inner bound by eliminating the term̄α2S12. If S31 < S11, the
gap forR1 is dominated by (77b), since it is always greater
than (76b), otherwise, the gap is the maximum of both.

Upper bounds on the gap of single rates and sum-rates can
be derived using the expressions from the outer bound (5a)–
(5c), (5f)–(5k), (5n)–(5q), and (5s)–(5t), and the assumption
S31 < S21 is needed for the gap to be bounded. These upper
bounds on the gap were analyzed numerically, due to their
complexity, and after cumbersome calculations the largestgap
comes from the sum-rate:

∆R1+R2
≤ min{(5h), (5k)} − [ I13 + I23 ]

≤ max{(5k)− [ I13b + I23a ], (5h)− [ I13b + I23b ]}

≤ 1+ C

[
1

N

]

+max

{

C[N ]+ C

[
1 + 2N

2 +N

]

, 1+ C

[
1

N

]}

.

The value ofN that minimizes this gap isN ≈ 1.81, with the
gap per real dimension being approximately1.32 bits.

APPENDIX J
PROOF OFPROPOSITION4 (LIMITED RELAYING BENEFIT)

Let us defineRo′(P1) as the outer bound region composed
by the bounds (5a), (5c), (5i)–(5k), (5q), and (5t). This new
outer bound is analogous to the outer bound presented by
Telatar and Tse [3] with the addition of theantennaY3.

If the quality of the source-to-relay link is really low, this
extra antenna does not provide much information and thus,
both outer bounds should be within a constant gap. Since
the gap between Han-Kobayashi’s inner bound and Telatar-
Tse’s outer bound is half a bit, it follows that Han-Kobayashi
scheme is within a constant gap to our outer bound under the
aforementioned conditions.

We only show one of these gaps here, but all of them can
be derived similarly. The expression for (5j) in the Gaussian
case, i.e., (6j), is

(R1 +R2)IS−IRC

= I(X1;Y1Y3|V1X2X3) + I(X1X2;Y2Y3|X3)

≤ C

[
S11 + S31

1+S21+S31

]

+C[S21+S22+S31(1+S22)] , (78)

while the analogous bound in Telatar-Tse’s outer bound is

(R1 + R2)IC

= I(X1;Y1|V1X2) + I(X1X2;Y2)

= C

[
S11

1 + S21

]

+ C[S21 + S22] . (79)

Then, we calculate the gap between (78) and (79)

∆ob = (R1 +R2)IS−IRC − (R1 +R2)IC

= C

[
2S31

1 + S11 + S21

]

− C

[
S31

1 + S21

]

+ C

[

S31

1 + S21

1+S22

]

≤ C

[
2S31

1 + S11 + S21

]

+ C

[

S31

1 + S21

1+S22

]

.

The gap in this sum-rate can be upper bounded by1 bit given
thatS31 ≤ S11 andS31 ≤ S21/(1 + S22). Further analysis of
the other bounds assures that the gap between outer bounds
is half a bit per rate ifS31 ≤ S11/(1 + S12) and S31 ≤
S21/(1+S22) hold. Therefore, the use of the relay can improve
the rate by at most1 bit per real dimension compared to the
Han-Kobayashi scheme without the relay.

I11 = min

{
1

2
log2

{
(1 +N)(1 + ᾱ1S11 + ᾱ2S12) + ᾱ1S31(1 + ᾱ2S12)

(1 +N)(1 + ᾱ2S12)

}

,
1

2
log2

{
N(1 + ᾱ1S11 + ᾱ2S12 + S13)

(1 +N)(1 + ᾱ2S12)

}}

,

I12 = min

{
1

2
log2

{
(1 +N)(1 + S11 + ᾱ2S12) + S31(1 + ᾱ2S12)

(1 +N)(1 + ᾱ2S12)

}

,
1

2
log2

{
N(1 + S11 + ᾱ2S12 + S13)

(1 +N)(1 + ᾱ2S12)

}}

,

I13 = min

{
1

2
log2

{
(1 +N)(1 + ᾱ1S11 + S12) + ᾱ1S31(1 + S12)

(1 +N)(1 + ᾱ2S12)

}

,
1

2
log2

{
N(1 + ᾱ1S11 + S12 + S13)

(1 +N)(1 + ᾱ2S12)

}}

,

I14 = min

{
1

2
log2

{
(1 +N)(1 + S11 + S12) + S31(1 + S12)

(1 +N)(1 + ᾱ2S12)

}

,
1

2
log2

{
N(1 + S11 + S12 + S13)

(1 +N)(1 + ᾱ2S12)

}}

,

I21 = min

{
1

2
log2

{
(1 +N)(1 + ᾱ1S21 + ᾱ2S22) + ᾱ1S31(1 + ᾱ2S22)

(1 +N)(1 + ᾱ1S21) + ᾱ1S31

}

,
1

2
log2

{
N(1 + ᾱ1S21 + ᾱ2S22 + S23)

(1 +N)(1 + ᾱ1S21) + ᾱ1S31

}}

,

I22 = min

{
1

2
log2

{
(1 +N)(1 + ᾱ1S21 + S22) + ᾱ1S31(1 + S22)

(1 +N)(1 + ᾱ1S21) + ᾱ1S31

}

,
1

2
log2

{
N(1 + ᾱ1S21 + S22 + S23)

(1 +N)(1 + ᾱ1S21) + ᾱ1S31

}}

,

I23 = min

{
1

2
log2

{
(1 +N)(1 + S21 + ᾱ2S22) + S31(1 + ᾱ2S22)

(1 +N)(1 + ᾱ1S21) + ᾱ1S31

}

,
1

2
log2

{
N(1 + S21 + ᾱ2S22 + S23)

(1 +N)(1 + ᾱ1S21) + ᾱ1S31

}}

,

I24 = min

{
1

2
log2

{
(1 +N)(1 + S21 + S22) + S31(1 + S22)

(1 +N)(1 + ᾱ1S21) + ᾱ1S31

}

,
1

2
log2

{
N(1 + S21 + S22 + S23)

(1 +N)(1 + ᾱ1S21) + ᾱ1S31

}}

.
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[27] I. Marić, R. D. Yates, and G. Kramer, “Capacity of Interference Channels
With Partial Transmitter Cooperation,”IEEE Trans. Inf. Theory, vol. 53,
no. 10, pp. 3536–3548, Oct. 2007.

[28] M. Cardone, D. Tuninetti, R. Knopp, and U. Salim, “New Outer Bounds
for the Interference Channel with Unilateral Source Cooperation,” in
Information Theory (ISIT), 2014 IEEE International Symposium on, Jun.
2014, pp. 1426–1430.

[29] G. Bassi, P. Piantanida, and S. Yang, “Capacity to Within a Constant
Gap for a Class of Interference Relay Channels,” inProc. 51st Annual
Allerton Conf. Commun., Control, Comput., Oct. 2013, pp. 1300–1306.

[30] V. S. Annapureddy and V. V. Veeravalli, “Gaussian Interference Net-
works: Sum Capacity in the Low-Interference Regime and New Outer
Bounds on the Capacity Region,”IEEE Trans. Inf. Theory, vol. 55, no. 7,
pp. 3032–3050, Jul. 2009.

[31] G. Kramer, “Outer Bounds on the Capacity of Gaussian Interference
Channels,”IEEE Trans. Inf. Theory, vol. 50, no. 3, pp. 581–586, Mar.
2004.

[32] H.-F. Chong, M. Motani, and H. K. Garg, “A Comparison
of Two Achievable Rate Regions for the Interference
Channel,” in UCSD-ITA, Feb. 2006. [Online]. Available:
http://ita.ucsd.edu/workshop/06/talks/papers/276.pdf

[33] H.-F. Chong, M. Motani, H. K. Garg, and H. El Gamal, “On The
Han-Kobayashi Region for the Interference Channel,”IEEE Trans. Inf.
Theory, vol. 54, no. 7, pp. 3188–3195, Jul. 2008.

[34] X. Wu and L.-L. Xie, “On the Optimal Compressions in the Compress-
and-Forward Relay Schemes,”IEEE Trans. Inf. Theory, vol. 59, no. 5,
pp. 2613–2628, May 2013.

[35] A. Behboodi and P. Piantanida, “Mixed Noisy Network Coding and
Cooperative Unicasting in Wireless Networks,”IEEE Trans. Inf. Theory,
vol. 61, no. 1, pp. 189–222, Jan. 2015.

[36] I. Csiszár and J. Körner,Information Theory: Coding Theorems for
Discrete Memoryless Systems. Akadémiai Kiado, Budapest, 1982.

[37] G. Bassi, P. Piantanida, and S. Yang, “Constant-Gap Results and
Cooperative Strategies for a Class of Interference Relay Channels,” in
Information Theory (ISIT), 2014 IEEE International Symposium on, Jun.
2014, pp. 1421–1425.

http://arxiv.org/abs/1011.5065
http://ita.ucsd.edu/workshop/06/talks/papers/276.pdf

	I Introduction
	I-A Related Work
	I-B Contribution and Outline

	II Problem Definition
	III Outer Bound
	IV Inner Bounds
	IV-A Decode-and-Forward
	IV-B Compress-and-Forward

	V Constant Gap Results and Discussion
	V-A DF Scheme Achieves Capacity to Within 1.5 Bits
	V-B CF Scheme Achieves Capacity to Within 1.32 Bits
	V-C Limited Relaying Benefit
	V-D Numerical Example

	VI Summary and Concluding Remarks
	Appendix A: Strongly Typical Sequences and Delta-Convention
	Appendix B: Proof of Theorem 1 (IS-IRC Outer Bound)
	Appendix C: Proof of Corollary 1
	Appendix D: Proof of Theorem 2 (Partial DF Scheme)
	D-A Code Generation
	D-B Encoding Part
	D-C Decoding Part

	Appendix E: Proof of Corollary 2 (Full DF Scheme)
	Appendix F: Proof of Theorem 3 (CF Scheme)
	F-A Code Generation
	F-B Encoding Part
	F-C Decoding Part
	F-C1 Final Region RCF3
	F-C2 Final Regions RCF1 and RCF2
	F-C3 Final Region RCF0


	Appendix G: Proof of Proposition 1 (Full DF Constant Gap)
	Appendix H: Proof of Proposition 2 (Partial DF Constant Gap)
	Appendix I: Proof of Proposition 3 (CF Constant Gap)
	Appendix J: Proof of Proposition 4 (Limited Relaying Benefit)
	References

