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Abstract

A new universal coding/decoding scheme for random accefsasilision detection is given in the case of two
senders. The result is used to give an achievable joint sathannel coding error exponent for multiple access
channels in the case of independent sources. This expanémiproved in a modified model that admits error free

0 rate communication between the senders.
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|I. INTRODUCTION

This paper addresses a version of the random access modabpEpremides [10] and Wang, Luo [15], which
is similar to the model studied for one-way channels by @Gsi¢d]. In the terminology of this paper, inl[4] the
performance of a codebook library consisting of severaktamt composition codebooks with pre-determined rates
has been analyzed. It has been shown that simultaneouslyafdr codebook the same error exponent can be
achieved as the random coding exponent of this codeboole aldris theorem is used inl[4] to give an achievable

error exponent for joint source-channel coding (JSCC).
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Here, the mentioned results 60f [4] are generalized to (dtsomemoryless) multiple access channels (MACs). A
two-senders random access model is introduced, in whiclsehders have codebook libraries with constant com-
position codebooks for multiple rate choices. The erroroevgmt of Liu and Hughes [8] for an individual codebook
pair is shown to be simultaneously achievable for each amalepair in the codebook libraries, supplemented with

collision detection in the sense of [10], [15]. This is aciei@ via a universal decoder, hence, a positive answer

This paper has been presented in part at ISIT 2013, Istanbul.

Lérant Farkas is with the Department of Analysis, Budapesivéfsity of Technology and Economics, e-mail: Ifarkas@nmame.hu

Tamas Kaéi is with the Department of Stochastics, Budapestdadsity of Technology and Economics and with the MTA-BMBb&iastics
Research Group, e-mail: koitomi@math.bme.hu

The work of the authors was supported by the Hungarian NatiBoundation for Scientific Research, Grant OTKA K1058408e Tvork of
Taméas K6i was also supported by the project "Talent care attiyation in the scientific workshops of BME" (TAMOP - 4.2E210/1-2010-
0009).


http://arxiv.org/abs/1301.6412v3

is given to the question in_[10] whether or not the resultgdhare still valid if the receiver does not know the
channel. Moreover, achievable JSCC error exponents fosinéting independent sources over a MAC are given,
admitting improvements when special error fi@gate communication is allowed between the two senders. The
most direct extension of the JSCC resultlin [4] is obtainethin latter case.

Nazari, Anastasopoulos, and Pradhanlinl [11] derive achieverror exponents for MAC’s using-decoding
rules introduced for one-way channels by Csiszar and Kdm¢§s]. In the present paper a particulardecoder is
used, modified similarly as in [4] and supplemented by a tiokcriterion in order to allow collision detection.
As the proofs follow [[11] closely, it can be seen that othedecoders could also be appropriate, depending on
actual assumptions on the analyzed models.

Note that another multiterminal generalization of the JS@8ult in [4] appears in Zhong, Alajaji, Campbell
[17]. We also mention that this paper, as [4], has connestigith the topic of unequal protection of messages, see
for example Borade, Nakiboglu, Zherig [1].

Finally we list here some connected recent papers. Luolig¢®lralizes the earlier results in [10], [15]. Papers
[14] and [12] by Wang, Ingber, Kochman and Shkel, Tan, Drapepectively, analyze the models and the results
of [4] in the finite blocklength regime. Campo, Vazquez-¥jil&abregas, Koch, Martinez ihl[2] analyze the JSCC

exponent achieved in[4] for one-way channels in greateaildet

II. NOTATION

The notation follows[[4] and [11] whenever possible. All la$bets are finite anthg denotes logarithm to the
base2. The set{1,2,..., M} is denoted byM]. In assertions involving a sequence approachiindpe parameters
on which this sequence depends will be indicated in paraetheAn explicit form of this dependence can be
extracted from the corresponding proof.

Random variabled/, X, Y, etc., with alphabeté/, X', ), etc., will be assigned several different (joint)
distributions. These will be denoted Wy, Pyx, Pyxy, etc. or Vy, Vux, Vuxy, etc., and corresponding
conditional distributions byPx | or Vx |y, etc. The first notation will typically refer to a distinghisd (joint)
distribution, the second one refers to distributions idtrced for technical purposes such as representing joint
types. The family of all distributions ot¥ x X, say, is denoted b/ x X), and the family of all conditional
distributions onX’ conditioned ori/ by P(X|U). If a multivariate distribution, safyxy € P(U x X x Y) is
given thenVy, Vux, Vxu, Vyu, etc. will denote the associated marginal respectivelyditmmal distributions.

The type of amn-length sequence = x125...2, € X™ is the distributionP, € P(X) where P (z) is the
relative frequency of the symbal in x. The joint type of two or mores-length sequences is defined similarly
and, for(u,x) € U™ x X", say, it is denoted by, x). The family of all possible types of sequences A™ is
denoted byP"(X), and for P € P"(X) the set of allx € X™ of type P, = P is denoted byl'p. Foru € U
of type P,, the set of conditional distributiongy|;; € P(X|U/) for which P,Vxy € P (U x X) is denoted by
P"(X|Py). The set of allx € A™ with Py x) = PuVxy, non-empty if and onlyx,; € P™(X|P,), is denoted
by 7y, (u).



DenoteHy (X,Y), Hy (U, X,Y), Iy (X AY') etc. the entropy and mutual information when the randormatées
U, X,Y have joint distributio/xy, Vi xy etc. Denotd(xAy), H(x,y) etc. the information quantitids (X AY),
Hy (X,Y) etc. with Vxy = P ). Moreover, we define multi-information as in! [8] (See als) ¢&ercise 3.9.,
and [16]):

[(X1 A Xo A AXNIY) 2 H(XG]Y) + H(Xo|Y) + - + H(XN]Y) — H(X1, X, ..., Xn[Y). (1)

Note that a similar notation is used with a different mearim¢feung’s book [[13].
Given a MACW : X x Y — Z, the pentagon
(R1,R):0< Ry <I(X AZ|U,Y),
0< R <I(YANZIU,X),Ri+ R <I(X,Y ANZ|U)

)

whereU, X, Y, Z have joint distribution equal t&; Px | Py |y W, is denoted by [W, Py, Px v, Py|y]. The union
of these pentagons, i.e., the capacity region of the MKCis denoted byC (V).

The following elementary facts will be used (see, eld.,:[6])

[P ()] < (n+ DL [P (X|R)] < (0 + 1) (3)
2nH(P) .

OEEyE < |Tp| < 2"HP) andQ™(Tp) < 27 "PPIQ i P e pr(x), 4)
n
2nHV(X|U) n nHy (X|U) ; n

CESEIEL < TV, (w) <27 if Vxju € P"(X|Pa), Vux = PuVxu, ®)

W (y|x) = 2PV X IWIP)+HV (YIX) whereVyy = Py (6)

Here the conditional information divergence is defined by

D(Py x[|W[Px) £ Px(2) D(Py|x—|[W(-|2)), ()
reX

whereD(Py | x—,||W (:|r)) is the I-divergence between the given conditional distidns on alphabe}.
Finally the variational distance between distributidhs@ on alphabetY is

I1P=QI 2> [P(z) — Q). (8)

zeX
I1l. RANDOM ACCESS WITH COLLISION DETECTION
In this model two transmitters try to communicate over a MACwith one common receiver. The channi€l
is unknown to the senders and may also be unknown to the ezdgiut see Remarks 5 ahtl 7). Both senders have

multiple codebooks of block length. We assume that a common auxiliary sequemég given, and the codewords’

conditional type onu is fixed within codebooks, but can vary from codebook to codéb



Definition 1. Let a finite sel/, a sequenca € U™ of type Py € P™(U), positive integers/; and M>, conditional
distributions{ Py, € P"(X|Py),i € [M]}, {P}; € P"(¥|Pv),j € [Ms]}, rates{R},i € [Mi]} and {R}, j €
[Ms]} be given parameters.

A constant composition codebook library pair of lengthwith the above parameters is a pai, B) where
A and B consist of constant composition codebo¢ks, A2, ..., AM) resp. (B!, B?,..., BM2) such thatA’ =
{x},xb,...x}.} and BY = {y{,y},...y},} with x, € Tp, (u) andy] € Tp, (w), i € [Mi], j € [M,)],

) 1 . ) . 2 xX|u Y|U
Ni= PnRiJ, Nj = PnRéJ, a € [Ni], be [N]].

Remark 1.In the above definition all parameters can dependroiote thatl/ is fixed in Theorent]l and it is

assumed thad/; and M> grow at most subexponentially with.

Before sending messages, each transmitter chooses ong obdebooks independently of the other sender.
Denote this selection byi, j) € [M;i] x [Ms]. The transmitters do not share the result of their selestioith
each other, neither with the receiver. The senders sendmmodsx’, x]. The decoder’s outputh is either a
quadruple(i, é, 7, 13) or "collision". The receiver is required to decode quadeupla, j, b) if the rate pair(R?, R%)
of the chosen codebooks is in the inteHionf C[W, Py, P§(|U, P{}‘U] and to declare "collision" otherwise; cf. [10].
Hence, two types of error are defined, one of them should bédl smeording as(R:, R}) is in the interior of

C[W, Py, P, Pl

Y|U] or not.

Definition 2. For the codebook$A®, B7), the average decoding error probabilityrr, (i, j) is

|A"| | B
1 o
— Z ZPr{rh # (i,a,j,b)|x,,x] are senf. 9)
NfNQ a=1 b=1
The average collision declaration error probabilifyrr.(i, j) is defined by
1 |A"| |57 o
— Z Z Pr{m # "collision"|x,, x] are sen}. (10)
NNy =5

To state our main theorem we need the following notions; titkex L H refers to Liu and Hughes, the authors of
[8].
Vuxyz € PUXX XY XZ):

Viw =Viu(Pu, Pxju, Pyiv) £ ; (11)
Vux = PuPxu,Vuoy = PuPy v}

EXru(R1, W, Py, Pxjy, Pyy) &
£ min  [D(VzxyullW|Vxyv) + v(X AY|U) + |1y (X AY Z|U) — Ry[*], (12)
Vuxyz€VLu

EYLu(R2, W, Py, Px v, Pyjy) £

£ min [D(VZ\XYUHW“/XYU) + Iv(X AN Y|U) + |Iv(Y A\ XZ|U) — R2|+], (13)

Vuxyz€VLu

IHere, interior is meant in the relative topology of the nayative quadrant. In particular, the rate p&ifd, 0) with 0 < Ry < I(XAZ|U,Y)
belong to the interior of the pentagdn (2).



EXYru(Ry,Ro, W, Py, Pxyu, Pyjy) &

£ min [D(Vz|XYU||W|VXYU)+Iv(X/\Y|U)+|Iv(X/\Y/\Z|U)—Rl —R2|+], (14)
Vuxyz€VLH
Epn (R, Ry, W, Py, Pxu, Pyy) £ min{EX1m, EYLm, EXYin}. (15)

Theorem[L shows that the error exponent[df [8] for an indi@ldeodebook pair is achievable for this general

setting, also guaranteeing that the probability of callisdeclaration error goes tbwhen it is required.

Theorem 1. For eachn let constant composition random access codebook librararpaters as in Definitioh]1
be given with a common sét, and with %long — 0, %logMQ — 0 asn — oo. Then there exist a sequence
o (jUl,1X|, |V, 1Z], M1, M2) — 0 and for eachn a constant composition codebook-library p&id, B) with the
given parameters, and decoder mappings with the followirogerties:

(l) For all (’L,_]) S [Ml] X [MQ]

Erra(i,j) < o~ (Ern (R Ry, W.Pu Py P ) —6n) (16)

(i) If (R}, R}) is not in the interior ofC[W, Py, Py ;;, P},,] then
Err.(i,j) < dp. 17)
Remark 2.The exponenty (R}, R, W, Pu, Py, Py,;) in part () of TheorenilL is positive ift R}, R}) is in

the interior of C[W, Py, PX‘U, P37/|U]

The next packing lemma is an extension of Lemma 4 in [11] fes thultiple codebooks setting, it provides the

appropriate codebook library pair for TheorEin 1.

Lemma 1. Let a sequence of constant composition random access coklibeary parameters be given as in
Theoren(ll. Then there exist a sequeAgéif|,|X|, ||, M1, M) — 0 and for eachn a constant composition
codebook-library pair(.A4, B) with the given parameters such that for afyk) € [M;]? and (j,1) € [M2]? and
forall Vv ¢yy €PPU XX x X x Y xY):

K9 [Vixy] < 27n(IV(X/\Y\U)fRifR;‘76;)7 (18)
K]i,j[VUXXY] < 2—n(Iv(XAXAY|U)—R;’—R%—R’f—é;)7 (19)
KMV y] < 2—n(1v(XAYAY\U)—R§—Rg—R;—é;)’ (20)
K Vi syy] < 27n(IV(X/\)A(/\Y/\Y|U)7R§7R;‘7R’f7RL275;)’ 21)
where
IWVuxy] £ ZZ]lT" oy (WX, yy), (22)
a=1b=1
Ni Nj Nf
i ok od
K Vyxxy] ZZ ZﬂT" o (u,Xg, X, ¥7)s (23)

a=1b=1 c=1
c#alif i=k



J L
N; NJ

K [Vyxyy] ZZ Z]IT" Y (u, x5, y7, %), (24)

a=1b=1 d=1
d#£bif j=1

1 NJ

Kllcjl UXXYY ZZ Z Z Ly ux@X’ZJ%J&)- (25)

Vuxxyvy
a=1b=1 c=1
c#aif i= kd#mu !

Here the subscriptsc’# a if i = k" and 'd # b if j = I’ mean that in case of = k respectively; = [ we do not

include in the sums the terms corresponding to indicesd b respectively.

Remark 3.Actually, (22)-[25) are equal t6 if V does not fulfill marginal conditions determined by the prisa

conditional distributions for the codebooks.

Proof: Choose a constant composition codebook library pdir3) at random, i. e, for all € [M;], 5 € [Ms]
the codewords ofd?, B/ are chosen independently and uniformly frdf;@ ) and T" ( ) respectively. We

first claim that under this random selection the expectedegbf the expressmns of form

Ki_j[VUXY]zn(IV(XAY\U)fRifR%)v (26)
K}j [VUXXy]2n(IV(XAXAYIU)—Ri—R%—R,f)’ (27)
Kli,j[Vnyy]2n(Iv(X/\Y/\Y|U)7R§7R;‘*Rlz)7 (28)
K;’% Vi sys] on(ly (XAXAY AY |U)— R} —R}—R¥) (29)

are bounded above by a polynomialofthat depends only on the alphabet si¥#s |X|, |)V|. We establish this
claim for (29), the other cases are similar. Now(ifa) # (k,c) and (j,b) # (I,d) then

E(Lzy (WX, X5 YY) = Y P(X, =x)PXE=%)P(Y] =y)P(Y;=7), (30)
UXXYY ety )E
”&XY?W

whereX? X’g,Yg,Yfi denote the random codewords. Usiag (5) ddd (1), the su_inig3ounded above by

27n(IV(X/\)A(/\Y/\Y|U))(n + 1)2|u|(|x\+|y\)_ (31)

Recalling the definition ofVi and Ng in Definition[d, this establishes the claim for{29).

Next, denote byS the sum of the expressions of forin {26)4(29) for allj, k, I and joint typeV,, y ¢y v
As M,, Ms grow at most subexponentially with, and the number of joint types is polynomial, it follows that
E[S] < 273, for suitables,, (U, |X|, ||, My, My) — 0. Hence, there exists a realization of the codebook library
pair with S < 913, Then, clearly, inequalitie$ (18)-(21) hold. [ |

Proof of Theoreni]l: Lemmall provides the appropriate constant compositionlmmalelibrary pair(.A, B).

To construct the decoder, define P(UX X x Y x Z) = R by a(Vuxyz) = Iv (X AY AZ|U). In the first stage
of decoding, the receiver tries to find indicks [M;], ¢ € [Nf], [e[My), de [Ng] which uniquely maximize

a@hXﬁ,yLZ)—'Rf—‘Ré, (32)



wherez denotes the output sequence anis evaluated on the joint type ¢fi, x*,y!,, z). If the decoder succesfully
finds a unique maximize(rl%, &1, cZ), the second stage of decoding starts. In this stage, to d#alcwallisions, the

decoder checks the following three inequalities:

I(xf Ay Azlu) = RY — Ry > ny, (33)
I(x Ayl zlu) — R >y, (34)
I(ylui AxE zlu) — R > n,, (35)

wheren,, (U], |X|, Y|, |Z|, M1, M2) — 0 is an appropriately chosen positive sequence. If the abioee inequal-
ities are fulfilled then the decoder decodeﬁs yg as the codewords sent, if at least one of them is not fulfilled,
then the decoder reports “collision”.

The necessary calculations can be found in Appehdlix B. [ ]

Remark 4.Using threshold criterion (33)-(85) is a key idea of this @apA somewhat similar idea for one-way
channels appears in the proof of Theorem 1[in [14]. Note dlab this threshold criterion is essential for collision

detection, but is not necessary for achieving part (i) ofareen[1.

Remark 5.Appendix[@ shows that if the universal decoder in the prooTle¢oreni]l is used, the collision error

probability may not go to zero exponentially fast. Nevelehs, it is possible to modify this decoder by increasing
the thresholdy, to some positive constant. This could give rise to a coltisgsror exponent at the expense of
decreasing the exponent of decoding error and possiblyinigad collision declaration also for rate pairs inside

their pentagons. Using a constant positive threshold appeasonable mainly if the receiver knows the channel.

Remark 6.When both senders have only one codebook, then maximiziagh y, A z|lu) — Ry — R» is equivalent

to minimizing H(x., y4|u, z) which was the decoder of [8].

Remark 7.0ther a-decoders can also be used (but could be more difficult toyaeglif the receiver knows the
channellV, the functiona: can depend oM. For the sake of brevity, the expurgation method for mudtiptcess
channel in[[11] is not used in this paper. However, it is palssio prove an expurgated version of Lemma 1 which

yields larger achievable error exponent for small rates.

IV. ERROR EXPONENTS IN SOURCECHANNEL CODING

Let two independent discrete memoryless sources (D8S)Q-2 with alphabetsS;, S» be given. We want to
transmit these sources over MAE. We apply the results of Sectignllll to get achievable ersgroment in classical
source-channel coding setting and in a slightly modifiedirsgtvhere a special error free rate communication
is allowed between the senders. A standing assumption srs#gtion is thatH (Q1), H(Q-2)) is in the interior of

C(W), hence, the sources can be reliably transmitted over chafine



A. Classical setting

Definition 3. A source-channel code of lengthis a mapping triple(f1, f2, ) with encodersf; : S} — A™,
fo: 8% — Y™ and decoderp : Z" — S x S%.

Definition 4. The error probability of a source-channel codé , f2, ¢) of lengthn is defined by

Err(fi, fa,0) = Y Q(s1)Q3(s2)pe(s1,2), where (36)
(s1,82)€
Pe(s1,82) = W"({z € 2" : p(z) # (s1,82)}|f1(s51), f2(s2)). (37)

Definition 5. A number€ > 0 is called achievable error exponent for transmission ofrsesiQ1, 2 over channel
W if to everyd > 0 and for every sufficiently large there exists source-channel co@g, f», ¢) of lengthn with

Err(fy, f2,¢) less than2—m(€-9),

For arbitraryl{ let G (i) andG2 (/) be the set of all mapping®, log |S1|] — P(X|U) and[0,log |Sa|] — P(V|U)

respectively, and define

gj(Q17Q27W) £ sup sup gj(QlaQ27Wa PUaglaQQ) (38)

91€G1(U)
PyePU) goeGaU)

where

Ej(Q1,Q2, W, Py, g1,92) = 0<R1H<1}51 ™ e1(R1, Q1)+ea(Ra, Q2)+Eru (R1, Ro, WPUagl(R1)7g2(R2))}7 (39)
0< Ry<log | 95|

ande;(R1,Q1), e2(R2,Q2) are the source reliability functions

e(RoQ) 2 | min  D(PIQ). i€ {12} (40)

The following theorem shows th&tj(Q1, @2, W) is an achievable error exponent for this source-channehgod
scenario. More exactly, we show that for any choiceRf, g1, g2, the exponen€;(Q1,Q2, W, Py, g1,92) is
achievable even if the senders and the receiver do not knevedhrces and the channel; if they do know them,
they can optimize inPy, g1, g2, to achievef;(Q1,Q2, W) (the suprerum of achievable error exponents is an
achievable error exponent). Note that in both cases theabfikS,, S», X, ), Z are assumed to be known by the

senders and the receiver.

Theorem 2. LetU, Py € P(U), g1 € G1(U) and g2 € G2(U) be given. There exist a source-channel code for
eachn and a sequence,, (|S1], [Sz], [U], X, |V],|Z]) — 0 with

Err(fu, fa, ) < 27" (@@ WoPU,01,02)7om) (41)



Proof: Approximatg Py, g1, g2 by Py[n] € P*(U), g1[n] : [0,log |S1]] = P"™(X|Py(n)), g2[n] : [0,log|Sa|] —
P"(Y|Py(n)) such that

sup |[Prgi(Ri) — Poln]gs[n](R)|| < v, (42)
R;€[0,log |S;|]

with v, (U, | X, |V]) =0, i € {1,2}.

Letu € 7% |, be arbitrary. LetP}, PZ, ..., len(sl)| andP}, P%,..., szn(sz)| denote all possible types from
P"(S1) and P"(S;) respectively. Choosé/, = |P™(S1)| and My = |P™(Sq)|. For all i € [M;], j € [M2] let
R} and R}, be equal tol log T,

and%log|T;g| respectively, and lePy;; and PéIU be equal tog [n](R?),
g2[n](R%) respectively. Applying Theorefl 1 with these parameterssictem the resulting codebook library pair
(A, B) and the decoder mappingsatisfying [16) for all(, j) € [M;] x [Ma)].

Let f1 : S} — &A™ and f; : 8§ — Y™ be mappings which map eadl‘g{ and T;g to A’ and B’ respectively.
Let p : 2" — SP' x S§ be the mapping which first determines a codeword pair fodn3) using ¢, then uses

the inverse off; and f, to determine the source sequences. The crucial step is lbwifty equation
[P (S|P (S2)]

Err(f1, fa, ¢ Z Z QT Th,):
|Tn | | Z Z Pe(s1,82). (43)

2 S1 ET” So ET”

Note that the second line df (43) i5rr,(i, 7) in the terminology of Theoreiln 1. Hence substitutingl (16p i(3)
and using[(¥),[{40), and#2) with the continuity of the preseformation measures, this theorem is proveds

To analyze the achieved exponent it is useful to considefdh@ving expression:

ESLH(Ql,QQ,W) é max min |:61(R1,Ql),eg(RQ,QQ),ELH(Rl,RQ,W):|, (44)

0<Rq<log|Sq]|
0<Rg<log|Sa]

where
Era(Ry, Ry, W) 2 sup sup Eru|Ri, Ro, W, Py, Pxju, Py|u]. (45)

Py |y €P(XIU)
PyePU
UEPU Py vep i

Remark 8.In [8] it is proved that the suprerum if_(45) is attained wit| = 4.

Note that€sru(Q1,Q2, W) was introduced in[]7] as an exponent achievable by sepamateees and channel
coding, which can be improved replacifigy (R1, Rz, W) by the reliability function of channdlV’. This statement,
however, has turned out not so easy to prove. The main diffiégslthat the channel coding exponent holds for
average (rather than maximal) error, and the classicaksatoding schemes yield non-uniformly distributed output
(see, for example| [3]). Even the proper definition of "sapasource-channel coding” is not particularly obvious.
In [14] a possible definition is given (for one-way channdiat easily extendable to multiple access channels)

which circumvents the mentioned difficulty using shareddamness. Under that definitiod,s;z(Q1,Q2, W)

2We use here the fact that distributions on a finite set can iferody approximated by types.
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is certainly achievable by separate source-channel cothmgwe believe this should also be true under a more
appealing definition. This question, through of interesitgelf, is a side issue for this paper. The emphasis is on

the fact that€s. (Q1, @2, W) > 0 and on the following proposition.

Proposition 1. £5(Q1, Q2. W) > Espu(Q1,Q2, W).

Proof: Restricting the suprerum to constant functigns g- in (38), £7(Q1, @2, W) can be lower-bonded by

sup sup min [el(Rlan)+e2(R2aQ2)+5LH(R15R2aVVapUaPX\UaleU)}- (46)
u Py y €P(x|u) 0SE1=<log|Sy|
pyerw) U 0<R5<log|Sa]

Pyiveriu)
As a consequence of Remdrk 8 the suprerum is attaindd jn l{éBe, there exisk;, R;, P, P%y and P,
with

5SLH(Q11 QQa W) = min |:€1 (RTa Q1)7 62(R§7 Q?)a 5LH(RT1 R;a Wa P[j'a P;(|Ua P;‘U)j| . (47)
Using this notation[{46) can be lower-bounded by

min [61(R1,Q1)+€2(R2,Q2)+5LH(Rl,R2,W,P5, XU {5|U)] (48)
0<Ry<log|S1|
0<R3<log|S2|

Using the definition ok (R, Q1), e2(Ra, Q2) andEr g (R, Ro, W, Py, Px |y, Py|y)] it can be seen that for any
(Rl,Rg) with 0 < Rl < lOngl| and0 < Rg < lOg|Sg| it is true thatel(Rl,Ql) > 61( T,Ql) or GQ(RQ,QQ) >
es(R3,Q2) or ELu(Ry, Ro, W, Py, Py s Pyyy) = Enm(RY, Ry, W, Py, Py, Py ). Via this fact and [(46)H(48)

the proposition is proved. ]
Remark 9.In Propositior L the inequality is strict except in very speécases.

B. Speciald rate communication is allowed between senders

In this subsection we allow error fréerate communication between the senders. More exactly,eatowing
definition shows, it is assumed that the senders are ableféomneach other about the types of their source

sequences.

Definition 6. A type-informed source-channel code of lengtis a mapping triple(f1, f2, ) with encodersf; :
S X P™(S2) = X", fa: 8§ x P™(S1) — Y™ and decoderp : Z" — S x S%.

Definition 7. The error probability of a type-informed source-channetledf:, f2, ») of lengthn is defined by

Erro(fi, fa,0) = Y QT (s1)Q5 (s2)pey(s1,52), (49)
(s1,82)€
wherepe, (s1,82) = W"({z € Z" : ¢(z) # (s1,82) }Hf1(s1, Ps,), f2(82, Ps,)). (50)

Definition 8. A number&, > 0 is called achievable error exponent for type-informed #iassion of source§,,
Q- over channelV if to everyd > 0 and for every sufficiently large there exists type-informed source-channel
code(f1, fo, @) of lengthn with Errg(f1, f2, @) less than2—"(Eo—9),
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For arbitraryl{ let Go1(U) and Gy 2(U) be the set of all mapping®, log|S1|] x [0,log|Ss|] — P(X|U) and
[0,log|S1]] x [0,1log |Sa|] — P(Y|U) respectively, and definjo(Q1, Q2, W) by

Sllp sup gjO(QlaQQaVVaPUaglaQQ) (51)

91€Go,1(U)
PUeP(M) 92€Go,2(U)

where

Ejo(Q1,Q2, W, Py, g1,92) = 0<R1H<1H}g‘sl‘ [el(Rla Q1)+e2(Ra, Q2)+Eru (R, Ro, W, Py, g1(R1, Ra), g2(R1, Ra)) |-
(52)

0<Rg<log|Sa|

Remark 10.In (&1) we take suprerum over a larger set tharid (38), hefiggQ1, Q2, W) > £5(Q1,Q2, W).

The following theorem shows that for any choice Bfi, g1, g2 the exponent€jo(Q1,Q2, W, Py, g1, g2) is
achievable even if the senders and the receiver do not knewdbrces and the channel (the alphabets are known);

if they do know them, they can optimize i, g; and g, to achievefj;(Q1, Q2, W).

Theorem 3. LetU, Py € P(U), g1 € Go1(U) and g2 € Go,2(U) be given. There exist a type-informed source-

channel code for each and a sequencg,,(|S1], |Sz2|, ||, |X|,|V|,|Z|) — 0 with

ET”’O(fl, f, (,0) < 9—n(€jo(Q1,Q2,W,Pu,91,92) —fin) (53)

Proof: Approximate unformly in variational distance (similarlg & (42)) Py, g1, g2 by Py[n] € P™(U),
g1[n] : [0,1og [S1]] x [0,log |Sa]] = P"(X| Py (), galn] : [0,log |Sy]] x [0,log|Sal] = P" (V| Py (n)).

Let PL, P2, ... PP 50 and P P2, ... P77 52| denote all possible types from™(S;) and P™(S,) re-
spectively. We use Theorelm 1 with the following parameteet.u € T" be arbitrary. The senders have the
same number of codebooks in their codebook librarids:= M, = |P"(S1)||73”(Sg)| We index the codebooks
in the codebook libraries by pai(&, ), k € [|P™(S1)]], | € [|[P™(S2)|]. For all possible indicesk, !) let R(k’l and
R(“ be equal to> log T | and+ log [T} | respectively, and IePXkI[lJ) andPYkH? be equal taj; [n ]( (k1) R(k l))
g2 [n](RYC l), Ré’“ l)) respectlvely. Applylng Theorefd 1 with these parametersiciem the resulting codebook library
pair (A, B) and the decoder mapping

Let fi : S x P™(S2) — X™ and fz : 8§ x P™(S1) — Y™ be the mappings which map ea@‘l;}lk x {P}} C
St x P™(Sy) and Ty, x {PF} C S5 x P"(51) to A%V and B respectively. Letp : 2" — Sf' x Sy be the
mapping which first éetermines a codeword pair frof B) using¢, then uses the inverse ¢f and /> to determine

the source sequences. The following equation finishes thef frecause its second part f&rq((k,1), (k,1)) in

the terminology of Theoremm 1 (see also the end of the prooftefofeni2).

[P™(S1)| |P™(S2)]
ETT f17f27 Z Z Qn ( Pl |Tn | | | Z Z peo 51752 (54)
k=1 S ET"k S2 ET"

Pl
2
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The following theorem gives a simpler equivalent form foe tchieved exponent.

Theorem 4. The achievable expone®tjo(Q1,Q2, W) for type-informed transmission of sourc€s, ()2 over

channellV is equal to

pmin ey (Ry, Q1) + ea(Re, Q2) + Enm (R, Ry, W), (55)
<Rp<log|Sy]|
0<Rg<log|Sa]|

Proof: Using (45) the last term if{%2) can be upper-bounded by (R1, R2, W). Hence, [(5b) upper-bounds
Ejo(Q1,Q2, W).

The other direction can be proved in the following way. Denby Py (R1, R2), Px|u(R1, R2), Pyju (R, Rz)
the maximizing distributions in[{45). Using Remdrk 8 it caa &ssumed that for each rate paR;, R>) the
cardinality of the support of; (R;, R2) is 4. Denote this support bya, b, ¢, d}.

In (51) leti be [k] and Py be the uniform distribution on this set. For each rate &ir, R2) divide [£] into
4 disjoint setsSs, 8 € {a,b,c,d} such thatPy(Sz) approximatesPy (R1, R2)(8). Foru € Sg, 8 € {a,b,c,d},
let g1 (R, R2) andgz(R1, R2) conditioned onu be Px y—s(R1, R2) and Py y—g(R1, Re) respectively. With this
particular choice

Era(R1,Ra, W, Py, g1(R1, R2), 92(R1, R2)) (56)

approximate<,, g (R1, Ro, W) uniformly in (Ry, Re) ask goes to infinity. This establishes the other directiamn.

Remark 11.Theoren{# provides the most direct counterpart of the JSGGitran [4]. Note, howevever, that the

achievability of the error exponent in Theoréin 4 has beergut@nly with type-informed encoders.

Remark 12.Analogously to Lemma 2 of_[4], it follows from{%4) that eveh this special error free) rate

communication is allowed between the senders the errormeqacannot be greater than

pmin ey (Ry, Q1) + ea(Re, Q) + E(Ry, Ry, W) (57)
<Rp<log|S1|
0<Rg<log|S2a|

where&(R1, Ry, W)] is the (unknown) reliability function of chann&. If not only this speciab rate communi-
cation is allowed, but the chann@l has positive) error capacity, thed (57) is easily achievable by commuiniga
the types of the source sequences to the receiver afith symbols. Not entering here the question whether the
last assertion holds even if no communication whatsoevatlgsved between senders, we only mention that we

believe to have a counterexample.

V. CONCLUSIONS

A version of the random access model has been studied. Weshawn that the error exponent of [8] for an in-
dividual codebook pair is simultaneously achievable faheeodebook pair in the codebook libraries, supplemented
with collision detection in the sense of [10], [15]. Moreovthis has been achieved with a universal decoder. In
particular, a positive answer has been given to the questif§hQ] whether or not the results there are still valid

if the receiver does not know the channel.
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The random access model has been connected with the prolblsour@e-channel transmission of independent
sources via MAC. We have given an achievable error expomwethiis problem together with an improvement when
error free0 rate communication is allowed between the senders. Thisowement is the most direct counterpart
of the JSCC result in_[4].

In general little is known about the tightness of error exgrs for MACs, and this applies for the achieved error
exponents of this paper. However, for a specific class of M#@sauthors have a heuristic proof that (i) the error
exponentE g (R1, Re, W) of Liu and Hughes is tight for "large('R;, R2) (ii) the exponent in Theoref 4 is tight
if the minimum in [B5) is attained fofR;, R2) as in (i) (iii) this exponent is not achievable if no commuation

is allowed between the senders. We intend to return to thisi®lsewhere.

APPENDIXA

SIMPLE IDENTITY FOR MULTI-INFORMATION
The following lemma is useful in Appendix]B.
Lemma 2 (Special case of Theorem 1 ir_[16])Let a vector valued random variableX;, X,..., Xx,U) be

given. Let(Z, 7) be a partition of[N], Z = {i1,i2,..., ik} J = {j1,J2,-- -, jN—k - ThenI( X1 AXoA---AX,|U)

is equal to

(X, AXig A AXG JU) U X AXGju A A Xy U)X, Xy, X AXG Xy, Xy [U). (B8)

Proof:
I(Xy A X A AXR|U) =D H(XG|U) + Y H(X;|U) = H(Xy, Xa, .., X |U) (59)
€T jeTJ
= (DCHGIU) — H(Xi, A Xiy A A X, [U)) (60)

i€l

+ (Z H(X7|U) - H(le NXjy N A XjN—klU))
JjeJ

+ (H(Xil AXig Ao AXo |U) + H(X;, A Xy A A Xy, |U) — H(Xy, Xo, ... ,Xn|U)).

APPENDIXB

PROOF OFTHEOREMI[I] (CALCULATIONS)

In this section we suppose that a codebook library pair aseimhal is given, and prove rigorously that, with

the decoder specified in the proof of Theorlem 1, it fulfills &reor requirements.

Proof of part (i) of Theorer]1

Step 1: Some definitions
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The following definitions are meant for all possible combimas of indicesi € [M;], j € [Ma], a € [N{],
b e [N]], k € [My], | € [Ms). Note that sets denoted by normal fonts consish-#éngth sequences, while sets

denoted by calligraphic fonts consist of joint distributso The expressiofi H refers to the word "threshold".

z e Z": 1(xi ANy] Azlu) — Ri — R} <n, or
THé’le; = I(x} Ay}, zlu) — Ri <n, or (61)
I(yg AXE zlu) — R < .
z€ 2" : a(u,x,,y},2) — Rj - R}
A > a(u,x¥,yl, z) — RF — R}, for all (62)
k € [Mi],l € [Ma)],c € [NF],d € [N}].

Vnyzép(UXXxyXZ):
N Vuox = PUP;(‘Uv Voy = PUP{/‘U
THY 2 Ty (X AY, Z|U) — R <, or (63)
Iy (Y A X, Z|U) — R}, <, or
Iy(X AY AZ|U) — Ri — R}, <.

Vixsyz EPUXX XX XY xZ):

a(Vuxyz) — Ri < a(Vygy,) — RE,

vayl A . ©y
VUX :PUP;QUa VUX :PUP)IQ(‘U’
Voy = PUP}j/\U'
Vioxyyz EPUXX XY XY xZ):
j 5 l
vy;*j N aVuxyz) — Ry <a(Vyxy,) — R, (65)

Vox = PUP;(‘Ua Voy = PUP{/‘Ua

Vg = PuPlyg.

Vixsyyz EPUXXE XX XY XY xZ):

a(Vuxyz) — R} — R},

VY = <o(Vygyz) — Bi — R, (66)
Vux = PuPyy, Vux = PPy,

Voy = PuP)yy, Viy = PuPyy.

A

THYS £ THY APHUx X x Y x Z) e
VAT AV AP UX X X X x Y x Z) (68)
VY EVYIT NP U X X x Y x Y x Z) )

VXY EVXYI NP UX X x X xYx Y x Z) (70)
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ETH"Y = min [D(VZ\UXY”W“/UXY) +Iy (X AY|U) (71)
Vuxyz€TH"
EXT & min [D(VZ\UXYHW“/UXY)+IV(X/\Y|U)—|— |IV()~(/\X,Y,Z|U)—R’1“|+} (72)
Voxxyz €V’
evjii e min [ D(WVuxy W Vixy) + v(X AY|U) + |1y (¥ A X,Y, ZU) - RY|*| (73)
VoxyvzEVY)’
EXY)] & min {D(VZ|UXY||W|VUXY) +Iy (X AY|U)
VoxxyvzEVXY
. o +
+ IV(X,YAX,Y,Z|U)+IV(XAY|U)—R’f—Rg} } (74)

Step 2: Relating error probabilities to packing functions

For all (i,5) € [My] x [Mz] we have

N{ N}
.. n 0] |t J
Errq(i,g) < NN E E w (THa)b|xa,yb) (75)
1472 a=1b=1
] Ni Nj Nj
n 4,7 |t J
NN D W U vy
1 2 a=1 b=1 c=1
c#a
1 Ni N3 N
n 4,7 |t J
NN D W Uiy
172 g=1 b=1 d=1
d#b
1 Ni N} Ni N
n 2,7 |t J
+NiNjZZW U U Vviixi.yi
172 g=1 b=1 c=1 d=1
c#a d#b
My Ni N} NY
n k,j|i J
+ZNiNjZZW U Vv i v
2? 172 g=1b=1 c=1
Mo 1 N} Ng Ny
n il i J
e s S (i
=L 14Y2 g=1p=1 d=1
J
My My N N NY Nj
n k)i J
PYY LSS (U U v
2? é;l 1472 a=1b=1 c=1d=1
i ]

For the sake of brevity, we introduce the following notatidor the terms of the right-hand side of equatibnl (75):

Errq(i,j) < th™ + errorXii’j + errorin’j + errorXYiZj

M Mo My M,

+ E errorX;” + E errorY;"”’ + E E errorXY]. (76)
k=1 =1 k=1 1=1
ki 1#j ki 1]

In words,th®7 is the average probability of the event that the sent coddsvdo not fulfill the threshold criterion
(33)-(33) when codebook pa(, j) was chosen by the senders. The other terms correspond teettegya probability

that the sent codewords do not uniquely maximizé (32).
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We claim that the terms of{¥6) can be bounded via packingtiome of Lemmd1l in this way:

thii < Z (2—"[D(VZ\UXYHW|VUXY)] KLJ(VUXY)) (77)
Vuxyz€ NZNJ
TN
errorX,i’j < Z (Q—R[D(VZ\nyHW\VUXY)] - Jmln{2_"IV(XAZ|XYU)K,i’j(VUXXy),Ki’j(VUXY)})
Vuxxyz€ NiN;
vaTid
(78)
errorY}i’j < Z (Q—R[D(VZ\nyHW\VUXY)] - Jmm{Q—nIv(?/\Z|XYU)Kli7J’(VUXYY)7Km’(VUXY)})
Vuxyvz€ NiN;
vy
(79)
errorX¥yl < 32 (el min e e SO G(V ) K Vo))
Vuxxyvz€ 1
vavi
(80)
First let us prove inequality (T7).
1 Ni NJ
'l = ZZW" (TH;’uxa,yb) (81)
14¥2 q=1p=1

zNJ

B D T A i BSOS N

Vnyzga 1b=1 N1N2
THM 3

In (82) we have used6). Usingl(5) we obtain

|ze 2" : P,

(i yiz) = =V|< Iy (u, xi yl) . gnliv (ZIUXY)], (83)
Substituting inequality(83) il (81) and{82) and takingoimiccount the definition of packing functidt/ [V xy |
from Lemmall, the bound{¥7) follows.

Let us prove now inequality (80). The bounds](78) dnd (79) lmamproved analogously.

Ni NI
o 1 1 2 . .
error XYl = ——53 > W” U U VI v (84)
1°%2 a=1b=1 = d=1
c;éalfz k d#£bif j=1
< Z Z Z 9—n[D( VZ\UXY||W\VUXY)+HV(Z|UXY)] ‘z € 2" : for some(c, d) P(u,xg,x’g,y{;,yé,z) — V‘
Vuxxyvz€ a=1b=1 2
vavi?
(85)
In 83) we have used6). Usinfgl (5) we obtain two bounds
|z € 2" - for some(c,d) Py, i w1yt = V] <1z (u,xi,yi) - 2nHv(ZIUXY)] (86)
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and

|z € 2™ : for some(c,d) Pl kol iyt a) = 14
Nt N - .

< Y imy(wxxbylyy) -2t XL (87)
c=1 d=

c#aif i=k d#bifljzl
Substituting inequalitie$ (86),_(B7) in_(84) andl(85) arkirtg into account the definition of packing functions from
Lemmall, the bound(80) follows.
Step 3: Error exponents of type [11]

The following consequences of Lemifna 2 are used in this step:

Iy(XAXAY|U) =Ty (X AX,Y|U)+ Iy (X AY|U), (88)
Iy (X AY AY|U) =TIy (Y AX,Y|U) + Ty (X AY|U), (89)
Iy(XAXAYAYU) =TIy (X, Y AX,Y|U)+ Iy (X AY|U) + Iy (X AY|U). (90)

SubstituteN; = {2"R§J and NJ = {2"R§J in inequalities [(717),[{78) [(719) an@ (80), use Lemma 1 to whmeind
the packing functions. Then udd (3) and the above idenf@8s(90), take into account the uniform continuity (the
alphabets are finite) of the present information measuresrger to exchang@ %"’ to TH"’ and VXZ’i’j to

VX7 etc.) and draw the following conclusions:

thid < 2—n(£”.FHW'—6;’)7 (91)
eTTOTXIi’j < 2771(5)(’?].7571)7 error}fli’j < 2*"(5}/17;’]‘*571)’ (92)
ermrXY,i’lj < 9 n(EXYi=6,) (93)

for some sequencé, (|4, |X|, ||, |Z|) — 0.
Step 4: Final calculations

The following inequalities are consequences of the chdm far mutual information and Lemnid 2:
(X AX,Y,Z|U) > Iy (X AY, Z|U), (94)
Iy(YAX,Y,Z|U) > 1y (Y A X, Z|U), (95)
Iy(X,2YAX,Y,ZIU)+ Iy (X AY|U) > Ty (X, Y AZ|U) + Ty (X AY|U) =Ty (X AY A Z|U). (96)

Via inequalities [[34),[{35) and(6) the exponefits;”’, £Y;"’/, £XV;/ can be bounded from below in the
following way:

EXY > min [DWVauxy | [WIVixy) + Iv(X AYU) + [Ty (X AY, Z|U) - BE[*] (97)
Vuxgyz€VXY’
e 7> min[DWVguxy W Vuxy) + v(X AY|U) + |y (V A X, Z|U) - Ry[*] (98)
Vuxyvz€VV?
EXYl > min [D(VZ|UXY||W|VUXY)+1V(XAY|U)+ [Ty (X AY A Z|U) — R} —Rgﬂ.
VoxxyvzEVXYY

(99)
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If we examine definitiond (64J-(66) and take into account beaf we can draw the following two conclusions.
If Vi xgyz € VXY thenly (X AY, Z|U) — RE is not smaller tharly (X AY, Z|U) — Ry If Vi yy5, € VIV
thenIy (Y A X, Z|U) — R} is not smaller thardy (Y A X, Z|U) — R). Using these conclusions to lower-bound the
right hand sides of (97)=(99) leads to the following inedfied

EX, > EXpY, EYQ] Z €YY, EXY > EXY]Y, (100)

where for anys € {X,Y, XY} the expressio 37, is equal tof3.u (R}, R, W,PU,Pg’qU,PQU).

Now we examine the relationship between expor&fiti*/ and exponent€ X7, £Y,%, EXY 4. For the
sets on which the minima are taken we havg(’’ C V}:fH = VLH(PU,chlU,Pé‘U), see [(Il1). Furthermore, for
any Vuxyz € THY there exist3 € {X,Y, XY} such that the difference between the optimized functiorthén

definition of ETH*J and 5@% evaluated inVy xy 7 is at leastn,,. These considerations lead to the inequality
min(EX )l EYh, EXY L) < ETHY + 1, (101)

As M; and M, grow subexponentially im, part (i) of Theoreni11 is proved via inequaliti€s¥76).1(928), (100),
(I01). Note that in this pam, (||, |X|, |V|, |Z|, M1, M2) can be arbitrary positive sequence which goe$ s
n — oo. However, it will turn out from the proof of part (ii) that threequence),, has to converge t6 sufficiently

slowly.

Proof of part (ii) of Theorenh]l

Step 1: Some definitions
The following definitions are meant for all possible combiols of indicesi € [M.], j € [Ms], k € [M],

[ € [M3]. The symbolC refers to "complement in some sense".

Voxyz EPUXX XY xZ):
Vox = PuPyy, Vov = PPy,

CTHY 21, (X AY, Z|U) = R. > n,, (102)

Iy (Y A X, Z|U) — R}, >,

Iy (X AY AZ|U) — R, — R} > n,,.

Vixsyz EPUXX XX XY xZ):
Vux = PuPyy, Vg = PPy,
Vuy :PUP;J}‘U,

Iy (X AY, Z|U) — RE > n,,

Iy (Y A X, Z|U) — R} > n,,

Iy (X AY A Z|U) — RY — R}, > .

CTHX} & (103)
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Vixyyz EPUXX XY xYxZ):
Vux = PuPy . Voy = PUP{/|U7
Voy = PuPyp,

CTHYM 2 ) | (104)
Iv(X AY,Z|U) = Ry >,
Iv(YAX,Z|U) = R >y,
Iy(X AY AZ|U) - R: — R, > n,,.
Vuxzyyz €
PUXXXxXXYXYXZ):
Vox = PUP)i(\Uv Vux = PUP)IC(\Uv
CT’HXJJ% 2 Voy = PUP%U, Voy = PUP;Z/‘U, (105)
IV(X A i/a Z|U) - le > Mo
Iv(Y A X, Z|U) — R, > nn,
Iy (X AY A Z|U) — RE — R > n,.
ECTHY 2~ inf [ D(Vzuxy|[WVuxy) + (X A YD) (106)
Vuxyz€CTHI
ECTHX' & inf [D(VZ|UXY||W|VUXY) +Iy(XAY|U)+ |y (X AX,Y, Z|U) — R’fﬂ
VioxzyzECTHX?
(107)
ECTHY? & inf [D(VZ‘UXY||W|VUXY) +IV(XAY|U) + |Iv(Y A XY, Z|U) — R§|+}
VUXYY/ZGCT’H)};J
(108)
ECTHXY, 2 f [D(VZ‘UXY||W|VUXY) FIy(X AY|U)
VoxxyvzECTHXY
~ o~ ~ ~ +
+ IV(X,Y/\X,Y,ZlU)—i—IV(X/\Y|U)—R’f—Ré‘ } (109)
Step 2: Calculations
L MM
Brrein) € w0 0 W" (2: for some: € [Mi],1 € [Mo,c € [NF].d € [NY], 2 ¢ THL I, ¥]). (110)
1772 a=1b=1

Using union bound, it is possible to expafd (110) similadyFary(i, j) is expanded in[{45). The differences are
that instead ofTHé’fl; its complement should be taken and instead of thé/%tthe complement of the séIijl
should be taken for allk, ¢, 1, d) # (i,a,j,b).

Replicating the proof of part (i) leads to the following statents. For some sequenie(|i/|, |X|, |V, | Z]) — 0,
the first term in the upper bound &rr.(i,j) (where the complement dFH;b is present) can be upper-bounded

by
g m(ECTH =5, (111)
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while the sum of the other terms can be upper-bounded by tleving expression:

My M-
22 n(ECTHX} —4.) )+22 n(ECTHY," 65! )+iiz n(ECTHXY[]-8,") (112)
k=11=1

It remains to show thaf(111) anH:CllZ) approﬁclﬁ 1y > 0 goes to0 sufficiently slowly.

Using the definitions of the sets (103), (104) ahd {105), ipregsions[{107)[(108), and {109) the positive part
signs|...|* can be lower-bounded by,. As M;, M, grow at most subexponentially in we are done with
expression[(112).

To prove rigorously the claim abolf(111) we need the foltmpargument. In part (ii) of Theore 1 it is assumed

that (Ri, R}) is not in the interior ofC[W, Py, P Hence, the distributio®; P: P{”UW is in TH.

Pl
X|U7 Y\U]‘ X|U

Actually for eachVy xy 7z € CTH", one of the following inequalities holds

(X AY.ZIU) ~Tppy pyw(X AY.Z|U) >, (113)
(Y A X, ZIU) =g, p oy w(Y AX,ZIU) > 1, (114)
W(XAY AZU) = Tp i pi (X AY AZIU) > 1. (115)

XUt y|u

Using uniform continuity of mutual information, it followthat there exists some(n,, [U|,|X|,|V],|Z]) > 0
such that if Vyxyz € CTH® then its variational distance frorﬁ’UPXWP{/lUW is at leasty. Note that if
Vuxyz € CTH" thenVy; = Py by definition, hence|Vy xy 7z — PUPX|UPY|UW|| is equal to

ZPU(U’) Z |VXYZ\U:u(x7yaZ) _P)i(|U:uP§|U:uW(x7yaz)|' (116)

uweU (z,y,2)EXXYXZ
It follows that for eachVy xy z € CTH" there existsu € U such that the variational distance Wy zjy—. and
P§<|U uP37/|U W is at leasty;a 5. Note also that in[A06D (Vo xv [[WVuxy) + Iv (X AY|U) is equal
to D(VXYZ|U||PX‘UP§J/|UW|PU)- Hence, taking into account the Pinsker inequality afd l{é)dlaim about{{111)
follows.

Altogether, part (ii) of Theorerl1 is proved.

APPENDIXC

NONEXISTENCE OF COLLISION ERROR PROBABILITY EXPONENT IN THPROOF OFTHEOREM[T]

The following proposition shows thal (112) does not go toozekponentially fast, under very reasonable

assumptions on the codebook library pair.
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Proposition 2. Let us assume that a positive real numbgrand a constant composition codebook-library pair as

in Definition[1 is given such that for somie= [M;], j € [M2], k € [M;] the conditional distributionsP;'ﬂU and

P, are equal, the rate paifR}, R}) is not in the interior ofC[W, Py, Pk ;;, P} ;], and
k
Ley ey, pp o w (X AY, Z|U) = R > i, (117)
IPUP)"(‘UP{,‘UW(Y/\ZlU)_R]lC_Ré > M- (118)

ThenECTHX ]’ defined by[{103) and(ID7) is equal ig.

Pj

Remark 13.Inequalities[(117) and{118) imply that the rate fd’, R}) is in the interior ofC[W, Py, Py Y‘U].

v

Proof: Let the joint distribution ofU, X, Y, Z) be equal toPUP;'qUPj W. Let X* be independent ok given

YU
UY Z with conditional distribution orUY Z equal to the conditional dis‘tribution of onUY Z. Furthermore, let
X** be independent ofX,Y, Z) givenU with conditional distribution o/ equal to the conditional distribution of
X onU. Let us denote the joint distribution ¢, X, X*Y, Z)and(U, X, X**Y, Z) by V* andV** respectively.
For alle € [0,1] define joint distributionV= by (1 — e)V* 4 eV**,

For ¢ equals to0 or 1, and hence for alt € [0,1] it follows that D(VZ ;v [[W[Viixy) + v (X AY|U) and
Iy (X A X|U,Y, Z) are equal td). Keeping in mind[(107), define(¢) by

Iy« (X AX,Y,Z|U) — R¥ =1y (X AY, Z|U) — RE. (119)

Thenr(0) > n, by (II7), and-(1) equals—R¥. Using continuity we can find, with differencer(sg) — 1, > 0
arbitrary small. Note that by the chain rule for mutual imf@tion and Lemmal2 bothy-, (Y A X, Z|U) and
Iye (X AY A Z|U) are not less thaiy -, (Y A Z|U). Hence, using conditiof {11L8) it follows th&t is in set
(103). Taking into accounf(1D7), this proposition is prbve [ |
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