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Abstract—By extending the notion of minimum rank distance,
this paper introduces two new relative code parameters of a
linear code C1 of length n over a field extension Fqm and its
subcode C2 $ C1. One is called the relative dimension/intersection
profile (RDIP), and the other is called the relative generalized rank
weight (RGRW). We clarify their basic properties and the relation
between the RGRW and the minimum rank distance. As appli-
cations of the RDIP and the RGRW, the security performance
and the error correction capability of secure network coding,
guaranteed independently of the underlying network code, are
analyzed and clarified. We propose a construction of secure
network coding scheme, and analyze its security performance
and error correction capability as an example of applications of
the RDIP and the RGRW. Silva and Kschischang showed the
existence of a secure network coding in which no part of the
secret message is revealed to the adversary even if any dimC1−1
links are wiretapped, which is guaranteed over any underlying
network code. However, the explicit construction of such a scheme
remained an open problem. Our new construction is just one
instance of secure network coding that solves this open problem.

Index Terms—Network error correction, rank distance, rela-
tive dimension/intersection profile, relative generalized Hamming
weight, relative generalized rank weight, secure network coding.

I. Introduction

Secure network coding was first introduced by Cai and
Yeung [6], and further investigated by Feldman et al. [12]. In
the scenario of secure network coding, a source node transmits
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n packets from n outgoing links to sink nodes through a
network that implements network coding [1], [19], [23], and
each sink node receives N packets from N incoming links.
In the network, there is an adversary who eavesdrops µ links.
The problem of secure network coding is how to encode a
secret message into n transmitted packets at the source node,
in such a way that the adversary obtains as little information as
possible about the message in terms of information theoretic
security.

As shown in [4], [11], secure network coding can be seen
as a generalization of secret sharing schemes [2], [33] or the
wiretap channel II [32] to network coding. The problem of
secret sharing schemes is how to encode a secret message
into n information symbols called shares in such a way that
the message can be recovered only from certain subsets of
shares. In order to solve both problems of secure network
coding and secret sharing schemes, the nested coset coding
scheme [44] is commonly used to encode a secret message
to shares/transmitted packets, e.g., it has been used in [10],
[11], [29], [32], [33], [37]. The nested coset coding scheme
is defined by a linear code C1 ⊆ F

n
qm and its subcode C2 $ C1

with dimC2 = dimC1 − l (l ≥ 1) over Fqm , where Fqm denotes
an m-degree (m > 0) field extension of a field Fq of order q.
From a secret message of l elements in Fqm , it generates each
transmitted packet/each share defined as an element of Fqm .

Duursma and Park [10] defined the coset distance as a
relative code parameter of C1 and C2. The coset distance is
the minimum value of the Hamming weight of codewords
in C1\C2. They investigated the mathematical properties of
the coset distance, and proved that in the case of secret
sharing schemes using the nested coset coding scheme, the
security guarantee of the scheme is exactly expressed in
terms of the coset distance when the message consists of
one information symbol, i.e., l = 1. Motivated by their result
using the coset distance, we [20] generalized their analysis
to a secret message consisting of multiple (l ≥ 1) information
symbols. In [20], it was clarified that the minimum uncertainty
of the message given µ(< n) shares is exactly expressed
in terms of a relative code parameter of C1 and C2, called
the relative dimension/length profile (RDLP) [25]. The paper
[20] also introduced a definition of the security in secret
sharing schemes for the information leakage of every possible
subset of elements composing the message by generalizing
the security definition of strongly secure ramp threshold secret
sharing schemes [43]. It was revealed in [20] that this security
is also exactly expressed in terms of a relative code parameter
of dual codes of C1 and C2, called the relative generalized
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Hamming weight (RGHW) [25], where the coset distance
coincides with the first RGHW. We note that in [25], the
mathematical properties of the RDLP and the RGHW are
extensively investigated in a systematic manner.

A. Our Aims and Motivations

The main aim of this paper is to extend the work in [20] to
the security analysis of secure network coding based on the
nested coset coding schemes, and to demonstrate its security
performance guaranteed over any underlying network coded
network. Namely, the security performance is guaranteed even
over the random network coding [18]. On the other hand,
the adversary in the scenario of network coding might be
able to not only eavesdrop but also inject erroneous packets
anywhere in the network, and the network may suffer from a
rank deficiency of the transfer matrix at a sink node. Hence
the second aim of this paper is to reveal the error correction
capability of secure network coding based on the nested coset
coding schemes with C1 and C2 which is guaranteed over
any underlying network coded network as well as the security
performance.

Simultaneously, we also aim to investigate the security
performance and error correction capability in a general
manner with no restriction on parameters. In particular, we
aim to study them for a smaller extension degree m of Fqm ,
i.e., the packet length. To see the reason why smaller m
deserve investigation in its own right, consider the case where
the secure network coding is implemented as an application
layer overlay network [47] on the Internet. Recall that the
Internet protocol allows an intermediate router to split single
packet into multiple fragments and route those fragments over
different paths [40]. When the packet length m is larger than
the path MTU [40, Section 2.9] (the maximum size that
can avoid fragmentation on every link to a sink), symbols
in a packet can be routed on different paths. Shioji et al.
[34] demonstrated that existing security proofs cannot ensure
the promised security when symbols in a packet are routed
on different paths, because such a case is equivalent to the
situation that an adversary changes the set of eavesdropped
links according to the position of a symbol in a packet. Then,
the maximum possible m is the path MTU, and hence the
packet length m may have to be small, e.g., m < n.

Furthermore, consider the software implementation of the
encoder and decoder of the nested coset coding scheme. Recall
that the encoding and decoding operations are executed not
over the base field Fq but over the field extension Fqm in the
secure network coding scenario. In general, the operations over
the smaller field work faster on software, and hence the size
of Fqm should be as small as possible for the fast encoding
and decoding operations. On the other hand, the intermediate
network nodes execute Fq-linear operations on packets as the
underlying network coding operations. Considering the case
where the random network coding [18] is employed as the un-
derlying network coding, the size of Fq should be appropriately
large to guarantee the feasibility of the underlying network
coded network with high probability near 1. Moreover, we
may be unable to change the size of Fq if the network coded

network is already in-use, and the packet length m may be
naturally only the parameter that can be changed by the source
node. Especially in such cases, the m may have to be small
like m < n in order to attain the system requirements for high-
speed data processing at software encoder and decoder.

From these observations, although the majority of existing
researches of secure network coding, e.g., [31], [37] have
assumed m ≥ n, it is necessary to consider the secure network
coding and its security performance and error correction
capability for an arbitrary m in a general manner.

B. Our Contributions

To these ends, this paper first investigates mathematical
properties of new relative code parameters of a linear code
C1 ⊆ F

n
qm and its subcode C2 $ C1 in a similar manner

to [25] on the RDLP and the RGHW. In Section II of
this paper, we introduce two new relative code parameters
called the relative dimension/intersection profile (RDIP) and
the relative generalized rank weight (RGRW), and give some
basic properties of the RDIP and the RGRW. Similar to the
aim of this paper, Ngai et al. [29] introduced a code parameter
called the network generalized Hamming weight (Network-
GHW), and later Zhang et al. [46] extended Network-GHW
to the relative generalized network Hamming weight (R-
Network-GHW). The value of the (R-)Network-GHW depends
on the underlying network topology and the network code,
and hence the security performance expressed in terms of
the (R-)Network-GHW is not guaranteed independently of
the underlying network code. We will clarify the relation
between the R-Network-GHW and the proposed parameters
in Section II-B. We note that the generalized rank weight
[31] was introduced by Oggier and Sboui concurrently and
independently of the conference version [22] of this paper,
and that the generalized rank weight is a special case of the
RGRW. In Section II, we also point out that the RGRW can
be viewed as a generalization of the minimum rank distance
[15] of a linear code.

In order to measure the security performance of secure
network coding, we first define a criterion called the universal
equivocation Θµ,PS ,X , in Section III, which is the minimum
uncertainty of the message under observation with µ links for
the joint distribution PS ,X of the secret message S and the
transmitted packets X. Although PS ,X have been assumed to be
uniform for the definition of Θµ,PS ,X in the conference version
of this paper [22], we make no assumption regarding PS ,X in
this paper. In [6], [11], [29], [46], the minimum uncertainty
of the message was analyzed, but their analyses depend on
the underlying network code. In contrast, Θµ,PS ,X is guaranteed
independently of the underlying network code. Hence, it is
called universal in the sense of [37]. Next, we introduce the
second criterion. Consider the case where Θµ,PS ,X is less than
the Shannon entropy [8, Ch. 2, p. 13] of the secret message.
Then, some part of the secret message could be uniquely
determined by the adversary. It is clearly desirable that no
part of the secret message is deterministically revealed and
that every part is kept hidden, even if some information of the
secret message leaks to the adversary. From this observation,



we define the universal ω-strong security to be the condition
where the mutual information between any r Fqm -symbols of
the secret message and observed packets from arbitrary ω−r+1
tapped links (1 ≤ r ≤ l) is always zero. Note that ω is defined
independently of the underlying network code and universal.
The universal strong security defined in [21], [36] is a special
case for ω = n − 1.

The rest of Section III of this paper gives the main contribu-
tion of the paper: we demonstrate that the universal security
performance of secure network coding based on the nested
coset coding scheme with C1 and C2 is exactly expressed
in terms of our new code parameters, the RDIP and the
RGRW. This section first presents the upper and lower bound
of the mutual information leaked from a set of tapped links
with an arbitrary distribution PS ,X . By using this analysis, we
demonstrate that the upper and lower bounds of Θµ,PS ,X are
expressed in terms of the RDIP of C1 and C2 for arbitrary PS ,X ,
and the maximum possible value of ω, defined as the universal
maximum strength Ω, is expressed in terms of the RGRW of
dual codes of C1 and C2. Moreover, in terms of Ω, we express
the upper bound of the maximum mutual information between
a part of the secret message and observed packets for arbitrary
PS ,X , which is independent of the underlying network code. In
a later section, we give an example of this analysis for specific
parameters of C1 and C2.

For the error correction problem of secure network coding,
in Section IV, we define the universal error correction capa-
bility against at most t injected error packets and at most ρ
rank deficiency of the transfer matrix of a sink node. This
is called universal because it is guaranteed independently of
the underlying network code, as well as Θµ,PS ,X and Ω. Then,
Section IV gives the other main contribution of the paper: We
clarified that in secure network coding based on the nested
coset coding scheme with C1 and C2, the universal error
correction capability against t errors and ρ rank deficiency
is exactly expressed in terms of the first RGRW of C1 and C2.
Although the conference version [22] of this paper considered
only the case where the transfer matrix is completely known
to each sink node, the analysis in this paper includes not only
the case of known transfer matrices but also the case where
the transfer matrix is unknown to every sink node.

As an example of applications of the above analyses by the
RDIP and the RGRW, Section V of this paper also proposes
a universal strongly secure network coding constructed from
the nested coset coding schemes with C1 and C2 for fixed
parameters, and provides its analysis. An explicit construc-
tion of the nested coset coding scheme that always achieves
Ω = dimC1 − 1 had remained an open problem [36]. Inspired
by Nishiara et al.’s strongly secure threshold ramp secret
sharing scheme [30] using a Reed-Solomon code and its sys-
tematic generator matrix, Section V of this paper proposes an
explicit construction with Ω = dimC1 − 1 using an maximum
rank distance (MRD) code [15] and its systematic generator
matrix, and solves the open problem. The earlier version of the
proposed scheme was presented in the conference paper [21].
We note that in [21], the error correction in the scheme was
not considered at all. With the addition of error correction, the
scheme proposed in this paper is an extension of the earlier

version. Also note that the proposed scheme completely solves
the open problem posed at the end of Section V-B of the survey
paper of Cai and Chan on secure network coding [4].

The analysis of universal security performance of the pro-
posed scheme is provided as an example of applications of the
RDIP and the RGRW by means of the approach in Section III,
which is a different from the analysis in the conference
version [21]. We also provide an analysis of the universal
error correction capability of our scheme as an application
of the RGRW by the approach of Section IV. Note that
by the analyses in Section III and Section IV, the universal
equivocation and error correction capability of the scheme of
Silva and Kschischang [37] can be also easily explained in
terms of the RDIP and the RGRW for MRD codes C1 and C2.
We shall briefly explain the difference between our sample
scheme and [37] in the next subsection.

C. Difference Between Our Scheme and [37]
In [37], Silva and Kschischang [37] proposed a secure

network coding scheme based on the nested coset coding
scheme with MRD codes C1 and C2 [15]. Although our scheme
is based on the nested coset coding scheme using an MRD
code as well as their schemes, there exist several differences
between these two schemes. Table I summarizes the compar-
ison between the scheme in [37] and the proposed scheme
for the universal security performance and the universal error
correction capability.

Both in the proposed scheme and in the scheme of Silva
and Kschischang [37], it is guaranteed that the universal
equivocation Θµ,PS ,X for µ ≤ dimC2 equals the Shannon
entropy H(S ) [8, Ch. 2, p. 13] of the secret message S when
the distribution of the transmitted packets X is conditionally
uniform given S . This implies that no information about the
message leaks out even if any dimC2 links are observed by an
adversary. Both schemes also guarantee that the secret message
is correctly decodable against any t error packets injected
somewhere in the network and ρ rank deficiency of the transfer
matrix of the sink node whenever n−dimC1 +1 > 2t+ρ holds.

Our only assumption is that the network must transport
packets of size m ≥ l + n symbols. Although this necessary
condition on the packet length is greater than the that of
the scheme of Silva and Kschischang given as m ≥ n, our
scheme has an advantage on the universal maximum strength
over their scheme. Unlike Silva et al.’s scheme [37], our
scheme always guarantees the universal maximum strength
Ω = dimC1 − 1 = n − 1 for C1 = Fn

qm . This implies
that in our scheme no information about any r Fqm -symbols
of the secret message is obtained by the adversary with
µ = dimC1 − r tapped links (1 ≤ r ≤ l). In [36], Silva
and Kschischang proved that there exist cases where their
scheme [37] has Ω = dimC1 − 1 = n − 1, and showed that
the sufficient condition on the existence of such a case is
given as m ≥ (l + n)2/8 + logq 16l for the packet length.
However, Ω = dimC1 − 1 = n − 1 is not always guaranteed
in their scheme even if the sufficient condition is satisfied,
and an explicit construction of the scheme that always has
Ω = dimC1 − 1 = n − 1 had been an open problem, as stated
in the previous subsection.



TABLE I
Comparison between the scheme in [37] and our scheme in Section V with the following criteria: The maximum possible number of tapped links µ with no
information leakage of the secret message; The guarantee of the universal maximum strength Ω = dimC1 − 1; The condition to correctly decode the secret

message against t injected error packets and ρ rank deficiency of the transfer matrix at the sink node.

Universal Security Performance Universal Error Correction Capability
Maximum Possible µ with Guarantee of Condition to Correctly Decode the Message Necessary Condition
No Information Leakage Ω = dimC1 − 1 against t Errors and ρ Rank Deficiency on the Size of m

[37] dimC2
Not Always n − dimC1 ≥ 2t + ρ m ≥ n(Ω ≤ dimC1 − 1)

Section V dimC2 Always n − dimC1 ≥ 2t + ρ m ≥ l + n

D. Organization

Here again, we briefly show the structure of this paper. The
remainder of this paper is organized as follows. Section II
defines the RDIP and RGRW of linear codes, and introduces
their basic properties. We also show their relations to the
existing code parameters in this section. Section III defines
the universal security performance over the wiretap network
model, and reveals that the universal security performance of
secure network coding is exactly expressed in terms of the
RDIP and the RGRW. In Section IV, we also reveal that the
universal error correction capability of secure network coding
is exactly expressed in terms of the RGRW. As an example,
an explicit construction of strongly secure network coding is
proposed in Section V, and its security performance and error
correction capability are analyzed by the RDIP and the RGRW.
Finally, Section VI presents our conclusions.

II. New Parameters of Linear Codes and Their Properties
A. Notations and Preliminaries

Let Fq be a finite field containing q elements and Fqm be an
m-degree field extension of Fq (m ≥ 1). Let Fn

q denote an n-
dimensional row vector space over Fq. Similarly, Fn

qm denotes
an n-dimensional row vector space over Fqm . Unless otherwise
stated, we consider subspaces, ranks, dimensions, etc, over the
field extension Fqm instead of the base field Fq.

An [n, k] linear code C over Fn
qm is a k-dimensional subspace

of Fn
qm . Let C⊥ denote the dual code of a code C [26, Ch. 1,

p. 26]. A subspace of a code is called a subcode. For C ⊆ Fn
qm ,

we denote by C|Fq a subfield subcode C∩Fn
q [26, Ch. 7, p. 207].

Observe that dimC means the dimension of C as a vector space
over Fqm whereas dimC|Fq is the dimension of C|Fq over Fq.

For a vector v = [v1, . . . , vn] ∈ Fn
qm and a subspace V ⊆ Fn

qm ,
we denote v q = [vq

1, . . . , v
q
n] and Vq = {v q : v ∈ V}. For a

subspace V ⊆ Fn
qm , we define by V∗ ,

∑m−1
i=0 Vqi

the sum
of subspaces V,Vq, . . . ,Vqm−1

. Define a family of subspaces
V ⊆ Fn

qm satisfying V = Vq by

Γ(Fn
qm ) ,

{
Fqm -linear subspace V ⊆ Fn

qm : V = Vq
}
.

Also define

Γi(Fn
qm ) , {V ∈ Γ(Fn

qm ) : dim V = i}.

For Γ(Fn
qm ), we have the following lemmas given in [39].

Lemma 1 ( [39, Lemma 1]). Let V ⊆ Fn
qm be a subspace. Then,

the followings are equivalent; 1) V ∈ Γ(Fn
qm ), 2) There is a basis

of V consisting of vectors in Fn
q. In particular, V ∈ Γ(Fn

qm ) if
and only if dim V |Fq = dim V .

Lemma 2 ( [39]). For a subspace V ⊆ Fn
qm , V∗ is the smallest

subspace in Γ(Fn
qm ), containing V .

Lemma 3 ( [39]). For a subspace V ⊆ Fn
qm , dim V∗ ≤ m·dim V .

B. Definitions of New Parameters

We first define the relative dimension/intersection profile
(RDIP) of linear codes as follows.

Definition 4 (Relative Dimension/Intersection Profile). Let
C1 ⊆ F

n
qm be a linear code and C2 $ C1 be its subcode. Then,

the i-th relative dimension/intersection profile (i-th RDIP) of
C1 and C2 is the greatest difference between dimensions of
intersections, defined as

KR,i(C1,C2) , max
V∈Γi(Fn

qm )
{dim(C1 ∩ V) − dim(C2 ∩ V)} , (1)

for 0 ≤ i ≤ n.

Next, we define the relative generalized rank weight
(RGRW) of linear codes as follows.

Definition 5 (Relative Generalized Rank Weight). Let
C1 ⊆ F

n
qm be a linear code and C2 $ C1 be its subcode. Then,

the i-th relative generalized rank weight (i-th RGRW) of C1
and C2 is defined by

MR,i(C1,C2)

, min
{
dim V : V ∈ Γ(Fn

qm ), dim(C1 ∩ V) − dim(C2 ∩ V) ≥ i
}
,

(2)

for 0 ≤ i ≤ dim(C1/C2).

In [31], Oggier and Sboui proposed the generalized rank
weight under the restriction of the degree m ≥ n. The
generalized rank weight can be viewed as a special case of
the RGRW with C2 = {0} when m ≥ n. In the first version of
this paper, we pointed out this fact, but we did not give its
proof. Later, Ducoat proved this in [9].

Here we briefly explain the relation between these new pa-
rameters and the existing relative parameters defined by a code
and its subcode. For an index set I ⊆ {1, . . . , n}, define a sub-
space EI ,

{
x = [x1, . . . , xn] ∈ Fn

qm : xi = 0 for i < I
}
⊆ Fn

qm .
We have dimEI = |I|. Let Λ(Fn

qm ) and Λi(Fn
qm ) for 0 ≤ i ≤ n

be collections of Fqm -linear subspaces of Fn
qm , defined by

Λ(Fn
qm ) ,

{
EI ⊆ F

n
qm : I ⊆ {1, . . . , n}

}
,

Λi(Fn
qm ) ,

{
EI ∈ Λ(Fn

qm ) : dimEI = i
}
.

The i-th relative dimension/length profile (RDLP) defined
by Luo et al. [25] is obtained by replacing Γi(Fn

qm ) in (1)



with Λi(Fn
qm ). Also, the relative generalized Hamming weight

(RGHW) [25] is given by replacing Γ(Fn
qm ) in (2) with Λ(Fn

qm ).
Additionally, the generalized Hamming weight (GHW) [42] is
obtained by replacing Γ(Fn

qm ) in (2) with Λ(Fn
qm ) and setting

C2 = {0}.

Remark 6. For an arbitrary index set I ⊆ {1, . . . , n}, a basis
of EI is {e(i) = [e(i)

1 , . . . , e
(i)
n ] : i ∈ I} from the definition of EI,

where e(i)
j = 1 if i = j, and e(i)

j = 0 if i , j. This implies that
a basis of EI consists of vectors in Fn

q, and hence we have
EI ∈ Γ(Fn

qm ) from Lemma 1. We thus have Λ(Fn
qm ) ⊆ Γ(Fn

qm )
and Λi(Fn

qm ) ⊆ Γi(Fn
qm ). This implies that the RDIP of linear

codes is always greater than or equal to the RDLP of the codes,
and that the RGRW of linear codes is always smaller than or
equal to the RGHW of the codes.

We also show the relation between the RGRW and the rela-
tive network generalized Hamming weight (R-Network-GHW)
[46]. Let F be a set of some one-dimensional subspaces of
Fn

q. Each subspace in F was defined as a space spanned by
a global coding vector [14, Ch. 2, p. 18] of each link in the
network coded network. (For the definition of global coding
vectors, see Section III-A or [14]). Let 2F be the power set
of F . For 2F , define a set of direct sums of subspaces by

ΥF ,

W ⊆ Fn
q : W =

∑
V∈J

V,J ∈ 2F
 .

We restrict the degree m of field extension Fqm to m = 1,
i.e., C1 and C2 are Fq-linear subspaces of Fn

q. Then, the R-
Network-GHW of C1 and C2 for the network is obtained by
replacing Γ(Fn

qm ) in (2) with ΥF . In addition, the network gen-
eralized Hamming weight (Network-GHW) [29] is obtained
by replacing Γ(Fn

qm ) in (2) with ΥF and set C2 = {0}, as the
relation between the RGHW and the GHW.

Remark 7. Note that in the definitions of R-Network-GHW
and Network-GHW, the field over which the global coding
vectors are defined must coincide with the field over which
linear codes C1 and C2 are defined. Hence, we restricted the
degree m to 1 of the field extension Fqm over which C1 and
C2 are defined. In the case of m = 1, we have ΥF ⊆ Γ(Fn

qm ).
Thus, the RGRW of C1 and C2 for m = 1 is always smaller
than or equal to the R-Network-GHW.

C. Basic Properties of the RDIP and the RGRW

This subsection introduces some basic properties of the
RDIP and the RGRW. They will be used for expressions
of the universal security performance (Section III) and the
universal error correction capability (Section IV) of secure
network coding.

Theorem 8 (Monotonicity of the RDIP). Let C1 ⊆ F
n
qm

be a linear code and C2 $ C1 be its subcode. Then,
the i-th RDIP KR,i(C1,C2) is nondecreasing with i from
KR,0(C1,C2) = 0 to KR,n(C1,C2) = dim(C1/C2), and
0 ≤ KR,i+1(C1,C2) − KR,i(C1,C2) ≤ 1 holds.

Proof: KR,0(C1,C2) = 0 and KR,n(C1,C2) = dim(C1/C2)
are obvious from Definition 4. By Lemma 1, for any subspace

V1 ∈ Γi+1(Fn
qm ), some V2’s satisfying V2 ∈ Γi(Fn

qm ) and V2 $ V1
always exist. This yields KR,i(C1,C2) ≤ KR,i+1(C1,C2).

Next we show that the increment at each
step is at most 1. Consider arbitrary subspaces
V,V ′ ∈ Γ(Fn

qm ) such that dim V ′ = dim V + 1 and
V $ V ′. Let f = dim(C1 ∩ V) − dim(C2 ∩ V) and
g = dim(C1 ∩ V ′) − dim(C2 ∩ V ′). Since

dim(C1 ∩ V) + 1 ≥ dim(C1 ∩ V ′) ≥ dim(C1 ∩ V),

holds and C2 $ C1, we have f + 1 ≥ g ≥ f and hence
KR,i(C1,C2) + 1 ≥ KR,i+1(C1,C2) ≥ KR,i(C1,C2).

We note that if we replace Γi(Fn
qm ) with Λi(Fn

qm ) in Theo-
rem 8, it coincides with [25, Proposition 1] for the monotonic-
ity of the RDLP.

Lemma 9. Let C1 ⊆ F
n
qm be a linear code and C2 $ C1

be its subcode. Then, the i-th RGRW MR,i(C1,C2) is strictly
increasing with i. Moreover, MR,0(C1,C2) = 0 and

MR,i(C1,C2)

= min
{
j : KR, j(C1,C2) = i

}
= min

{
dim V : V ∈ Γ(Fn

qm ), dim(C1 ∩ V) − dim(C2 ∩ V) = i
}
,

for 0 ≤ i ≤ dim(C1/C2).

Proof: First we have

min
{
j : KR, j(C1,C2) ≥ i

}
= min

{
j : ∃V ∈ Γ j(Fn

qm ),

such that dim(C1 ∩ V) − dim(C2 ∩ V) ≥ i
}

= min
{
dim V : V ∈ Γ(Fn

qm ), dim(C1 ∩ V) − dim(C2 ∩ V) ≥ i
}

= MR,i(C1,C2).

We also have{
j : KR, j(C1,C2) = i

}
∩

{
j : KR, j(C1,C2) ≥ i + 1

}
= ∅,

by the basic set theory. Recall that from Theorem 8,
KR, j(C1,C2) is nondecreasing function of j and{
j : KR, j(C1,C2) = i

}
, ∅ for all i ∈ {0, . . . , dim(C1/C2)}.

We thus have

MR,i(C1,C2) = min
{
j : KR, j(C1,C2) ≥ i

}
= min

{
j : KR, j(C1,C2) = i

}
.

Therefore the RGRW is strictly increasing with i and thus

MR,i(C1,C2)

= min
{
dim V : V ∈ Γ(Fn

qm ), dim(C1 ∩ V) − dim(C2 ∩ V) = i
}
,

is established.

In [31, Lemma 1], it was shown that in the case of C2 = {0},
the second RGRW MR,2(C1, {0}) is greater than the first RGRW
MR,1(C1, {0}).

We note that if we replace Γ(Fn
qm ) and KR, j(C1,C2) in

Lemma 9 with Λ(Fn
qm ) and the j-th RDLP, the lemma coincides

with [25, Theorem 3] for the properties of RGHW. Also, if we
replace Γ(Fn

qm ) in Lemma 9 with ΥF , the property of strictly



increasing the RGRW shown in the lemma also becomes the
property of the R-Network-GHW [46, Theorem 3.2].

Now we present the following upper bound of the RGRW.

Proposition 10. Let C1 ⊆ F
n
qm be a linear code and C2 $ C1 be

its subcode. Then, the RGRW of C1 and C2 is upper bounded
by

MR,i(C1,C2) ≤ min {n − dimC1, (m − 1) dimC1/C2} + i, (3)

for 1 ≤ i ≤ dim(C1/C2).

Proof: We can assume that C2 is a systematic code
without loss of generality. That is, we can choose a basis
of C2 in such a way that the set of subvectors consisting
of the first dimC2 coordinates of the chosen basis coin-
cides with the canonical basis of FdimC2

qm . Let S $ Fn
qm be

a linear code such that C1 is the direct sum of C2 and
S. Then, after suitable permutation of coordinates, a basis
of S can be chosen such that its first dimC2 coordinates
are zero. Hence, a code S can be regarded as a code of
length n − dimC2, and we have MR,dimS(S, {0}) ≤ n − dimC2
from the definition of the RGRW. On the other hand, since
MR,dimS(S, {0}) = dimS∗ from the definition of the RGRW
and Lemma 2, and dimS∗ ≤ m · dimS from Lemma 3, we
have MR,dimS(S, {0}) ≤ m · dimS = m · dimC1/C2. We thus
have

MR,dimS(S, {0}) ≤ min {n − dimC2,m · dimC1/C2} .

We shall use the mathematical induction on t. We see that

MR,t(S, {0}) ≤ min {n − dimC1, (m − 1) dimC1/C2} + t, (4)

is true for t = dimS = dimC1 − dimC2. Assume that for
some t ≥ 1, (4) is true. Then, since the Mi(S, {0}) is strictly
increasing with i from Lemma 9, we have

MR,t−1(S, {0}) ≤ MR,t(S, {0}) − 1
≤ min {n − dimC1, (m − 1) dimC1/C2} + t − 1,

holds. Thus, it is proved by mathematical induction that (4)
holds for 1 ≤ t ≤ dim(C1/C2).

Lastly, we prove (3) by the above discussion about the
RGRW of S and {0}. For an arbitrarily fixed subspace
V ⊆ Fn

qm , we have dim(C1 ∩ V) ≥ dim(S ∩ V) + dim(C2 ∩ V),
because C1 is a direct sum of S and C2. Hence,
dim(C1 ∩ V) − dim(C2 ∩ V) ≥ dim(S ∩ V) holds, and we have
MR,i(C1,C2) ≤ MR,i(S, {0}) for 1 ≤ i ≤ dim(C1/C2) from the
definition of the RGRW. Therefore, from the foregoing proof,
we have

MR,i(C1,C2) ≤ MR,i(S, {0})
≤ min {n − dimC1, (m − 1) dimC1/C2} + i, (5)

for 1 ≤ i ≤ dim(C1/C2), and the proposition is proved.

If n − dimC2 ≤ m · dimC1/C2 holds and Γ(Fn
qm ) is re-

placed with Λ(Fn
qm ), this lemma coincides with the generalized

Singleton bound for the RGHW [25, Theorem 4]. Also, if
n − dimC2 ≤ m · dimC1/C2 holds and Γ(Fn

qm ) is replaced with
ΥF , i.e., the RGRW is replaced to the R-Network-GHW, it
becomes [46, Theorem 3.4].

D. Relation between the Rank Distance and the RGRW

Next, we show the relation between the rank distance [15]
and the RGRW. We will use the relation to express the
universal security performance (Section III) and the universal
error correction capability (Section IV) of secure network
coding.

For a vector x = [x1, . . . , xn] ∈ Fn
qm , we denote by S(x) ⊆ Fqm

an Fq-linear subspace of Fqm spanned by x1, . . . , xn. The rank
distance [15] between two vectors x, y ∈ Fn

qm is given by
dR(x, y) , dimFqS(y − x), where dimFq denotes the dimension
over the base field Fq. In other words, it is the maximum
number of coordinates in (y− x) that are linearly independent
over Fq. The minimum rank distance [15] of a code C is given
as

dR(C) , min{dR(x, y) : x, y ∈ C, x , y}

= min{dR(x, 0) : x ∈ C, x , 0}.

Lemma 11. Let b ∈ Fn
qm be an n-dimensional nonzero

vector over Fqm , and let 〈b〉 ⊆ Fn
qm be an Fqm -linear one-

dimensional subspace of Fn
qm spanned by b. Then, we have

dim〈b〉∗ = dR(b, 0).

Proof: Let {γ1, . . . , γm} be an Fq-basis of Fqm . Let
d = dR(b, 0) = dimFqS(b). From the definition of the rank
distance, there exists a nonsingular matrix P ∈ Fn×n

q satisfying

b = [γ1, . . . , γd, 0, . . . , 0]︸                    ︷︷                    ︸
,a∈Fn

qm

P.

For α1, α2 ∈ Fq, β1, β2 ∈ Fqm , we have
α1β

qi

1 + α2β
qi

2 = (α1β1 + α2β2)qi
(0 ≤ i ≤ m − 1). Thus,

since P is a matrix over Fq, we have bqi
= (aP)qi

= aqi
P.

Let 〈b, bq, . . . , bqm−1
〉 ⊆ Fn

qm be an Fqm -linear subspace of
Fn

qm spanned by m vectors b, bq, . . . , bqm−1
, then we have

〈b〉∗ = 〈b, bq, . . . , bqm−1
〉. Hence, since P is nonsingular, we

have

dim〈b〉∗ = dim〈b, bq, . . . , bqm−1
〉

= dim〈aP, aqP, . . . , aqm−1
P〉

= dim〈a, aq, . . . , aqm−1
〉

= rank


a
aq

...

aqm−1

︸ ︷︷ ︸
,T∈Fm×n

qm

.

Since the right n−d columns of T are zero columns, we have
rank T ≤ d. On the other hand, the upper-left d×d submatrix T ′

of T is the generator matrix of Gabidulin code of length d and
dimension d [15], and hence we must have rank T ′ = d. Thus,
we have rank T ≥ d. Therefore, we have dim〈b〉∗ = rank T = d.

Lemma 12. For a code C1 ⊆ Fn
qm and its sub-

code C2 $ C1, the first RGRW can be represented as
MR,1(C1,C2) = min {dR(x, 0) : x ∈ C1\C2}.



Proof: From Lemma 2, MR,1(C1,C2) can be represented
as

MR,1(C1,C2)

= min
{
dim W : W ∈Γ(Fn

qm ), dim(C1∩W) − dim(C2∩W) ≥ 1
}

= min
{
dim W : W ∈ Γ(Fn

qm ),∃v ∈ (C1 ∩W)\C2

}
= min {dim〈v〉∗ : v ∈ C1\C2} .

Therefore, since dim〈v〉∗ = dR(v, 0) for a vector v ∈ Fn
qm from

Lemma 11, we have MR,1(C1,C2) = min {dR(v, 0) : v ∈ C1\C2}.

Lemma 12 immediately yields that MR,1(·, {0}) coincides
with dR(·).

Corollary 13. For a linear code C, dR(C) = MR,1(C, {0}) holds.

Here we introduce the Singleton-type bound of rank dis-
tance [15], [24].

Proposition 14 (Singleton-Type Bound of Rank Distance [15],
[24]). Let C ⊆ Fn

qm be a linear code. Then, the minimum rank
distance of C is upper bounded by

dR(C) ≤ min
{
1,

m
n

}
(n − dimC) + 1. (6)

Note that the right-hand side of (6) is n−dimC+1 if m ≥ n
and m

n (n − dimC) + 1 if m < n. A code satisfying the equality
of (6) is called a maximum rank distance (MRD) code [15].
The Gabidulin code [15] is known as an MRD code.

In the following, we shall present some extra properties of
the RGRW MR,i(·, ·) and the minimum rank distance dR(·) by
using the relation between MR,i(·, ·) and dR(·) shown above
and the properties of the RGRW described in the previous
subsection. In the case where m ≥ n, Corollary 15 gives a
generalization of the Singleton-type bound of rank distance
[15], [24] of C ⊆ Fn

qm , and Corollary 16 shows that the
RGRW of C1 ⊆ F

n
qm and C2 $ C1 depends only on C1 when

C1 is MRD. Proposition 17 presents an upper bound of the
first RGRW by combining the Singleton-type bound of rank
distance [15], [24] of C ⊆ Fn

qm for m < n and the upper
bound of the RGRW given in Proposition 10. In the case
where m < n, Corollary 18 gives a tighter upper bound of the
minimum rank distance of C ⊆ Fn

qm for m < n and dimC = 1
than that shown in Proposition 14.

First, Lemma 9 and Proposition 10 yield the following
corollary from Corollary 13 and Proposition 14. This corollary
shows a generalization of the Singleton-type bound of rank
distance [15], [24] of C ⊆ Fn

qm in the case where m ≥ n.

Corollary 15. For a linear code C ⊆ Fn
qm with m ≥ n,

MR,i(C, {0}) ≤ (n − dimC) + i for 1 ≤ i ≤ dimC. The equality
holds for all i if and only if C is an MRD code.

Proof: From Proposition 10, MR,i(C, {0}) ≤ (n−dimC)+ i
is immediate. The RGRW MR,i(C, {0}) is strictly increas-
ing with i from Lemma 9, and MR,dimC(C, {0}) ≤ n
holds. Therefore, from Corollary 13 and Proposition 14,
MR,i(C, {0}) = n − dimC + i for 1 ≤ i ≤ dimC must hold
if and only if C is MRD with m ≥ n.

Next, we give the following corollary of Proposition 10 for
the RGRW of C1 ⊆ F

n
qm and C2 $ C1. This corollary reveals

that when C1 is an MRD code with m ≥ n, the i-th RGRW
MR,i(C1,C2) always coincides with the maximum possible
value of MR,i(C1, {0}), shown in Corollary 15, regardless of
its subcode C2.

Corollary 16. Let m ≥ n. Let C1 ⊆ F
n
qm be an MRD code and

C2 $ C1 be its arbitrary subcode. Then, the RGRW of C1 and
C2 is MR,i(C1,C2) = n − dimC1 + i for 1 ≤ i ≤ dim(C1/C2).

Proof: By the definition of the RGRW in
Definition 5, we first have MR,i(C1,C2) ≥ MR,i(C1, {0}).
Hence, since C1 is MRD with m ≥ n, we have
MR,i(C1,C2) ≥ MR,i(C1, {0}) = n − dimC1 + i
from Corollary 15. On the other hand, we have
MR,i(C1,C2) ≤ n − dimC1 + i from Proposition 10. Therefore,
we have MR,i(C1,C2) = n − dimC1 + i.

By combining Proposition 14 and Proposition 10, we also
have the following proposition only for the first RGRW.
This proposition presents an upper bound of the first RGRW,
obtained by the Singleton-type bound of the rank distance of
C ⊆ Fn

qm for m < n in Proposition 14.

Proposition 17. The first RGRW of a linear code C1 ⊆ F
n
qm

and its subcode C2 $ C2 is upper bounded by

MR,1(C1,C2)

≤ min
{

n − dimC1, (m − 1) dimC1/C2,
m(n − dimC1)

n − dimC2

}
+ 1.

Proof: As in the proof of Proposition 10, let S $ Fn
qm be

a linear code such that C1 = C2 + S. Also, we suppose that
the first dimC2 coordinates of S are zero without loss of gen-
erality. Since S can be viewed as a code of length n−dimC2,
we have the following inequality from Proposition 14.

dR(S) = MR,1(S, {0})

≤
m

n − dimC2
{(n − dimC2) − dimS} + 1

=
m(n − dimC1)

n − dimC2
+ 1.

Thus, from (5),

MR,1(C1,C2) ≤ MR,1(S, {0}) ≤
m(n − dimC1)

n − dimC2
+ 1.

Therefore, from Proposition 10, the proposition is proved.

The following corollary is immediately obtained from
Proposition 17.

Corollary 18. Assume m ≥ 2. For a linear code C ⊆ Fn
qm , we

have the following inequalities.

dR(C) = MR,1(C, {0})

≤


n − dimC + 1 (n ≤ m)
(m − 1) dimC + 1 (n > m, dimC = 1)
m
n (n − dimC) + 1 (n > m, dimC ≥ 2).



This corollary presents a tighter upper bound of dR(C) for
C ⊆ Fn

qm than that shown in Proposition 14, when m < n and
dimC = 1.

Lastly, by using the relation between the RGRW and the
rank distance [15] presented above, we introduce an extra
property of the RDIP KR,i(C1,C2) when C1 is MRD. We define
[x]+ = max{0, x}.

Proposition 19. Let C1 ⊆ Fn
qm be a linear code and

C2 $ C1 be a its subcode. Assume m ≥ n and C1 be
an MRD code. Then, the RDIP of C1 and C2 is given by
KR,µ(C1,C2) =

[
µ − n + dimC1

]+ for 0 ≤ µ ≤ n − dimC2.

Proof: From Corollary 16, we have
MR,i(C1,C2) = n − dimC1 + i for 0 ≤ i ≤ dim(C1/C2).
Thus, from Proposition 9 for i = 1, we have

min
{
µ : KR,µ(C1,C2) = 1

}
= n − dimC1 + 1,

and hence KR,µ(C1,C2) = 0 for 0 ≤ µ ≤ n − dimC1
from Theorem 8. On the other hand, from Proposition 9 for
i = dim(C1/C2), we have

min
{
µ : KR,µ(C1,C2) = dim(C1/C2)

}
= n − dimC1 + dim(C1/C2)︸        ︷︷        ︸

=dimC1−dimC2

= n − dimC2,

and hence KR,n−dimC2 (C1,C2) = dim(C1/C2). Thus, since

KR,n−dimC2 (C1,C2) − KR,n−dimC1 (C1,C2) = dim(C1/C2)
= dimC1 − dimC2,

holds, KR,µ(C1,C2) = µ − n + dimC1 for
n − dimC1 ≤ µ ≤ n − dimC2 must hold from Theorem 8.
Therefore, the proposition is established.

III. Universal Security Performance of Secure Network
Coding

This section derives the security performance of secure
network coding based on the nested coset coding scheme [44],
which is guaranteed independently of the underlying network
code construction.

This section first presents the network model with errors,
and introduces the wiretap network model and the nested coset
coding scheme in secure network coding. Next, we define
the universal equivocation, the universal ω-strong security
and the universal maximum strength as the universal security
performance of secure network coding on the wiretap network
model. We then give the main contribution of this paper: we
exactly express the universal security performance of secure
network coding based on the nested coset coding scheme in
terms of the RDIP and the RGRW.

A. Network Model with Errors

We first introduce the basic network model in which no
errors occur in the network. As in [6], [11], [29], [37], [46],
we consider a multicast communication network represented
by a directed acyclic multigraph with unit capacity links, a

single source node, and multiple sink nodes. We assume that
linear network coding [19], [23] is employed over the network.
Elements of a column vector space Fm×1

q are called packets.
Assume that each link in the network can carry a single Fq-
symbol per one time slot, and that each link transports a single
packet over m time slots without delays, erasures, or errors.

The source node produces n packets X1, . . . , Xn ∈ F
m×1
q and

transmits X1, . . . , Xn on n outgoing links over m consecutive
time slots. Define the m× n matrix X = [X1, . . . , Xn]. The data
flow on any link can be represented as an Fq-linear combi-
nation of packets X1, . . . , Xn ∈ F

m×1
q . Namely, the information

transmitted on a link e can be denoted as beXT ∈ F1×m
q , where

be ∈ F
n
q is called a global coding vector [14, Ch. 2, p. 18]

of e. Suppose that a sink node has N incoming links. Then,
the information received at a sink node can be represented
as an N × m matrix AXT ∈ FN×m

q , where A ∈ FN×n
q is the

transfer matrix of the network constructed by gathering the
global coding vectors of N incoming links. The network code
is called feasible if each transfer matrix to each sink node has
rank n over Fq, otherwise it is called rank deficient. The rank
deficiency of the network coded network [35], [37], [38] is
defined by

ρ , n −min {rank A : A at each sink node} ,

i.e., the maximum column-rank deficiency of the transfer
matrix A among all sink nodes. As in [35], [37], [38], ρ is
also referred to as ρ erasures.

The above setup of the network coded network is referred
to as an (n × m)q linear network [37]. We may also call it a
ρ-erasure (n × m)q linear network when we need to indicate
the rank deficiency ρ of the network.

Now we extend the basic model of the (n × m)q linear
network defined above to incorporate packet errors, as [35],
[37]. We define the network model with errors as follows.

Definition 20 (t-Error (n×m)q Linear Network). Suppose that
the network is an (n × m)q linear network. Also suppose that
at most t error packets, represented by Z ∈ Fm×t

q , are injected
from t links chosen arbitrarily in the network. That is, the
information transported over a link e with the global coding
vector be is represented by beXT+ feZT ∈ F1×m

q , where fe ∈ F1×t
q

corresponds to the overall linear transformation applied to the
injected error packets Z on the route to the link e. Then, the
network is called a t-error (n × m)q linear network.

This t-error (n × m)q linear network may also be called
a t-error-ρ-erasure (n × m)q linear network for the rank
deficiency ρ. Note that in the t-error (n × m)q linear network,
the information received at a sink node is expressed as

YT = AXT + DZT ∈ FN×m
q , (7)

where D ∈ FN×t
q is constructed by gathering fe’s of incoming

links e’s to the sink node, and hence D corresponds to the
overall linear transformation applied to Z on the route to the
sink node.

The system of linear network coding is called coherent if
the transfer matrix A is known to each sink node, otherwise
it is called noncoherent.



B. Wiretap Network Model and Nested Coset Coding Scheme

Following [37], [46], assume that in the t-error (n × m)q

linear network defined in Definition 20, there is an adversary
who observes packets transmitted on any µ links. We also
assume that the adversary knows the coding scheme applied
at the source node and all the global coding vectors in the
network.

Let W be the set of µ links observed by the adversary,
and let BW ∈ F

µ×n
q be the transfer matrix whose rows are the

global coding vectors be’s associated with the links e’s in W.
The information obtained by the adversary can be expressed
by

WT = BWXT + FWZT ∈ F
µ×m
q , (8)

where FW ∈ F
µ×t
q is constructed by gathering fe’s of links e’s

in W, and FWZT ∈ F
µ×m
q corresponds to the errors. In the

following, we consider the reliable transmission of a secret
message through this wiretap network model.

The procedure of the secure message transmission over the
wiretap network model is called secure network coding [6],
[11], [29], [37], [46]. In the scenario of secure network coding,
first regard an m-dimensional column vector space Fm×1

q as Fqm ,
and fix l for 1 ≤ l ≤ n. Let S = [S 1, . . . , S l] ∈ Fl

qm be the secret
message of l packets. Under the adversary’s observation of µ
links, the source node wants to transmit S as small information
leakage to the adversary as possible. To protect S from the
adversary, the source node encodes S to the transmitted vector
X = [X1, . . . , Xn] ∈ Fn

qm of n packets according to some kind
of coding scheme. Then, the source node finally transmits X
as an m×n matrix over Fq to sink nodes through the network.
In this paper, we assume that the source node knows nothing
about the errors that occur in the network, as in the model of
[37], [46].

In the secure network coding described in [11], [29], [37],
[46], S is encoded by the nested coset coding scheme [7], [10],
[41], [44] at the source node. In secure network coding based
on the nested coset coding scheme, S is encoded to X at the
source node as follows.

Definition 21 (Nested Coset Coding Scheme). Let C1 ⊆ F
n
qm

be a linear code over Fqm (m ≥ 1), and C2 $ C1 be its
subcode with dimension dimC2 = dimC1 − l over Fqm . Let
ψ : Fl

qm → C1/C2 be an arbitrary linear bijection. For a
secret message S ∈ Fl

qm , we randomly choose X from a
coset ψ(S ) ∈ C1/C2. We make no assumption on the joint
distribution PS ,X unless otherwise stated.

In [7], [10], [20], the nested coset coding scheme is called
a secret sharing scheme based on linear codes. Definition 21
includes the Ozarow-Wyner coset coding scheme [32] as a
special case with C1 = Fn

qm .
Corresponding to X transmitted from the source node, the

sink node receives a vector of N packets Y ∈ FN
qm . The

decoding of S from Y will be discussed in Section IV.

C. Definition of the Universal Security Performance

In order to measure the security performance of secure
network coding in the above model, this subsection presents

two criteria. The security performance measured by our criteria
is guaranteed independently of the underlying network code,
hence we call them universal.

Let H(X) be the Shannon entropy for a random variable X,
H(X|Y) be the conditional entropy of X given Y , and I(X; Y) be
the mutual information between X and Y [8, Ch. 2, pp. 12–19].
The entropy and the mutual information are always computed
using logqm .

1) Universal Equivocation: First, we define universal
equivocation as follows.

Definition 22 (Universal Equivocation). Assume that the se-
cret message S is chosen according to an arbitrary distribution
PS over Fl

qm , and suppose that S is encoded to the transmitted
packets X ∈ Fn

qm by a certain coding scheme. We make no
assumption on the joint distribution PS ,X . Then, the universal
equivocation Θµ,PS ,X of the coding scheme is the minimum
uncertainty of S given BXT for all B ∈ Fµ×n

q , defined as

Θµ,PS ,X , min
B∈Fµ×n

q

H(S |BXT)

= H(S ) − max
B∈Fµ×n

q

I(S ; BXT).

We will also call max
B∈Fµ×n

q

I(S ; BXT) in the above equation the

maximum amount of information leakage to the adversary.

Note that the conditional entropy of S given BXT is consid-
ered in Definition 22. But, we need to consider the adversary
in the t-error (n×m)q linear network as the model presented in
Section III-B, i.e., we need to consider the conditional entropy
of S given W that contains the errors, as given in (8). In order
to justify this difference between Definition 22 and the wiretap
network model, we derive the following proposition.

Proposition 23. Fix a matrix B ∈ F
µ×n
q arbitrarily. Let

S ∈ Fl
qm be chosen according to an arbitrary distribution, and

let X ∈ Fn
qm be chosen according to an arbitrary distribution

such that S is uniquely determined from X by some surjection.
Suppose that E ∈ Fµqm is chosen according to an arbitrary
distribution. Then, for WT = BXT + ET, H(S |W) ≥ H(S |BXT)
always holds.

Proof: Observe that S ↔ BXT ↔ W forms a
Markov chain. By the data processing inequality [8, Ch. 2,
pp. 32–33], we have I(S ; BXT) ≥ I(S ; W), which implies
H(S |W) ≥ H(S |BX).

The statement equivalent to Proposition 23 was given in [46,
Theorem 4.1]. This proposition shows that for µ tapped links,
the uncertainty of at least Θµ,PS ,X defined by Definition 22 is
always guaranteed even if errors occur in the network. In other
words, from Proposition 23, we can see that Definition 22
considers the most advantageous case for the adversary in the
wiretap network model given in Section III-B, as with the
model considered in [37], [46].

As the security measure for secure network coding, the
maximum uncertainty of S given BWXT for all possible W’s
of tapped links was considered in [6], [11], [29], [46], where
m = 1. However, the security measure in [6], [11], [29],
[46] is dependent on the underlying network coded network,



i.e., it is not universal. On the other hand, as defined in
Definition 22, Θµ,PS ,X does not depend on the set of possible
W’s of tapped links in the network. Thus, Θµ,PS ,X is guaranteed
on any underlying network code, and hence it is universal.

Silva and Kschischang proposed a scheme based on the
nested coset coding scheme with MRD codes C1,C2 [37]
with which no information of S is obtained from any
dimC1 − l = dimC2 links for any distribution of S when the
conditional distribution of X given S is uniform over ψ(S ),
provided m ≥ n. That is, their scheme guarantees the universal
equivocation ΘdimC1−l,PS ,X = H(S ) for any distribution of S .

2) Universal ω-Strong Security and Universal Maximum
Strength: Definition 22 defines the universal equivocation
Θµ,PS ,X as the security measure for all the components of a
secret message S = [S 1, . . . , S l]. Consider the case where
Θµ,PS ,X < H(S ), i.e., some information of the secret message
leaks to the adversary. Then, some components of S 1, . . . , S l

could be uniquely determined by the adversary. It is clearly
desirable that no component of S 1, . . . , S l is deterministically
revealed and that every symbol S i is kept hidden, even if some
information of S leaks to the adversary. Hence, we can say
that the number of tapped links such that every symbol S i is
kept hidden represents the resiliency or strength of the coding
scheme against eavesdropping. Now we focus on such security
and give the following definition as the resiliency of the coding
scheme against eavesdropping.

Definition 24 (Universal ω-Strong Security and Universal
Maximum Strength). Let SZ = (S i : i ∈ Z) be a tuple whose
indices belong to a subset Z ⊆ {1, . . . , l}. We say that the
coding scheme attains universal ω-strong security if we have

I(SZ; BXT) = 0, ∀Z,∀B ∈ F(ω−|Z|+1)×n
q , (9)

for uniformly distributed S and conditionally uniformly dis-
tributed X given S . The maximum possible value of ω in the
scheme is called universal maximum strength Ω of the coding
scheme, defined by

Ω , max
{
ω : I(SZ; BXT) = 0,

∀Z ⊆ {1, . . . , l},∀B ∈ F(ω−|Z|+1)×n
q

}
. (10)

The universal strong security defined in [36] is a special
case of Definition 24 for Ω = n − 1 and C1 = Fn

qm . Unlike
the definition of Θµ,PS ,X in Definition 22, we have considered
the case where the secret message S is uniformly distributed
and the transmitted packets X are conditionally uniformly
distributed given S . This is because the value of I(SZ; BXT) is
dependent on the conditional distribution of X given SZ, while
Θµ,PS ,X does not have such dependence. Without assuming a
joint probability distribution on S and X, we cannot have a
meaningful sufficient condition for I(SZ; BXT) = 0 in (10).

In Definition 24, the mutual information between a part of
S and BXT is considered, and the errors Z contained in the
eavesdropped information are not considered. This is based on
the same reason that errors are not considered in Definition 22.
That is, from Proposition 23, the universal Ω-strong security
is always guaranteed even if errors occur in the network.

As in [17], [27], [36], a scheme with universal ω-strong
security does not leak any |Z| components of S even if at most

ω− |Z|+ 1 links are observed by the adversary, provided that
PS ,X satisfies the assumption in Definition 24. Moreover, this
guarantee holds over any underlying network code as Θµ,PS ,X .
Hence, ω and Ω are also universal. In Corollary 30, we will
present an upper bound of I(SZ; BXT) with arbitrary PS ,X in
terms of Ω.

D. Expression of the Universal Security Performance in Terms
of the RDIP and RGRW

In this subsection, we express Θµ,PS ,X and Ω given in
Section III-C in terms of the RDIP and RGRW.

We first give a lemma for the mutual information between
the message and information observed by the adversary. From
now on, for a matrix M ∈ Fµ×n

qm , we represent a row space of
M over Fqm by row (M) , {uM : u ∈ Fµqm } ⊆ Fn

qm . For a set
A, denote by UA the random variable uniform on A. For a
random variable V and a set A(V) depending on V , denote
by UA(V) the random variable conditionally uniform on A(V)
given V . For three random variables A, B, C, denote by D(A‖B)
the relative entropy [8, Ch. 2, p. 18] between probability
distributions PA and PB. Also we denote by D(A‖B|C) the
conditional relative entropy [8, Ch. 2, p. 22] between two
conditional probability distributions PA|C and PB|C given C.

Lemma 25. Let C1 ⊆ F
n
qm be a linear code and C2 $ C1

be its subcode with dimC2 = dimC1 − l. Assume that a
random variable S ∈ Fl

qm is chosen according to an arbitrary
distribution over Fl

qm . For a bijective function ψ : Fl
qm → C1/C2

and given S , let X ∈ Fn
qm be a random variable arbitrarily

distributed over a coset ψ(S ) ∈ C1/C2. Fix a matrix B ∈ Fµ×n
qm

over Fqm arbitrarily, and let WT = BXT ∈ F
µ×1
qm . Then, we have

the following three statements.
1) For any distributions of S and X, we have

I(S ; W) ≤ dim(C⊥2 ∩ row (B)) − dim(C⊥1 ∩ row (B))
+ D(X‖Uψ(S )|S ), (11)

and

I(S ; W) ≥ dim(C⊥2 ∩ row (B)) − dim(C⊥1 ∩ row (B))
− D(S ‖UFl

qm
). (12)

2) If both S and X are uniformly distributed over Fl
qm and

C1 respectively, the equalities in (11) and (12) hold,
i.e., I(S ; W) = dim(C⊥2 ∩ row (B)) − dim(C⊥1 ∩ row (B)).

3) If I(S ; W) = 0 holds for a distribution of S that assigns
a positive probability to every element in Fl

qm , then we
have dim(C⊥2 ∩ row (B)) − dim(C⊥1 ∩ row (B)) = 0.

Proof: See Appendix A.

Note that the matrix B in Lemma 25 is defined over the field
extension Fqm , while the transfer matrix B to the wiretapper
is restricted to the subfield Fq in the wiretap network model
defined in Section III-B.

Cai and Yeung [3], [5], [6] considered the security condition
of secure network coding such that the adversary obtains no
information about the secret message when S and X are chosen
according to distributions that assign positive probabilities



to all the secret messages and the transmitted packets [4,
Lemma 3.1]. Their security condition corresponds to the
statement 3) in Lemma 25 and the fact that I(S ; W) = 0
when dim(C⊥2 ∩ row (B)) = dim(C⊥1 ∩ row (B)) holds and X is
conditionally uniform over ψ(S ) given S from (11). Note that
in the statement 3) in Lemma 25, we made no assumption on
the distribution of X, unlike [4, Lemma 3.1]. For an arbitrary
joint distribution of S and X, Zhang and Yeung [45] gener-
alized the security condition of [3], [5], [6] that corresponds
to the statement 3) in Lemma 25. We should note that in
the statement 3) in Lemma 25, we assumed the distribution
of S that assigns a positive probability to every message, in
order to express the condition in terms of the dimensions of
subspaces. The proof of Lemma 25 (See Appendix A) can be
adapted to the case of arbitrarily distributed S , and we can
easily show that if I(S ; W) = 0 for PS , we have I(S ′; W ′) = 0
for any PS ′ satisfying {s : PS ′ (s) > 0} ⊆ {s : PS (s) > 0}.
Further, unlike [3], [5], [6], [45], Lemma 25 additionally
derived the upper and lower bounds of the mutual information
leaked to the adversary by using the relative entropy for
arbitrarily distributed S and X. In the following, we shall
derive the security performance expressed in terms of the
RDIP and the RGRW by using Lemma 25, which is guaranteed
independently of the underlying network coded network.

Here we recall that if an Fqm -linear space V ⊆ Fn
qm admits a

basis in Fn
q, then V ∈ Γ(Fn

qm ) by Lemma 1. Since the transfer
matrix B is defined over the base field Fq in Section III-B, this
implies

row (B) ∈ Γ(Fn
qm ). (13)

We give the following theorem for the maximum amount of
information leakage to the adversary, defined in Definition 22.

Theorem 26. Consider the nested coset coding scheme with
C1, C2 and ψ in Definition 21. Then, the maximum amount of
information leakage to the adversary, defined in Definition 22,
is in the range of

KR,µ(C⊥2 ,C
⊥
1 ) − D(S ‖UFl

qm
)

≤ max
B∈Fµ×n

q

I(S ; BXT)

≤ KR,µ(C⊥2 ,C
⊥
1 ) + D(X‖Uψ(S )|S ). (14)

If both the secret message S and the transmitted packets
X are uniformly distributed over Fl

qm and C1 respectively,
the maximum amount of information leakage exactly equals
max
B∈Fµ×n

q

I(S ; BXT) = KR,µ(C⊥2 ,C
⊥
1 ). If the maximum amount of

information leakage is exactly zero for a distribution of S that
assigns a positive probability to every element in Fl

qm , we have
KR,µ(C⊥2 ,C

⊥
1 ) = 0, which corresponds to [4, Lemma 3.1].

Proof: By Lemma 1 and (13), we have{
row (B) : B ∈ Fµ×n

q

}
=

⋃
i≤µ

Γi(Fn
qm ). (15)

From Lemma 25, we have

max
B∈Fµ×n

q

I(S ; BXT)≤ max
B∈Fµ×n

q

{
dim(C⊥2 ∩row (B))−dim(C⊥1 ∩row (B))

}
+ D(X‖Uψ(S )|S ), (16)

and

max
B∈Fµ×n

q

I(S ; BXT)≥ max
B∈Fµ×n

q

{
dim(C⊥2 ∩row (B))−dim(C⊥1 ∩row (B))

}
− D(S ‖UFl

qm
). (17)

For the first terms on the right-hand side of (16) and (17), we
have

max
B∈Fµ×n

q

{
dim(C⊥2 ∩ row (B)) − dim(C⊥1 ∩ row (B))

}
= max

V∈
⋃

i≤µ Γi(Fn
qm )

{
dim(C⊥2 ∩ V) − dim(C⊥1 ∩ V)

}
(by (15))

= max
{
KR,i(C⊥2 ,C

⊥
1 ) : i ≤ µ

}
(by Definition 4)

= KR,µ(C⊥2 ,C
⊥
1 ). (by Theorem 8) (18)

Therefore, we have (14).
If S and X are uniform over Fl

qm and C1 respectively, we
have I(S ; BXT) = dim(C⊥2 ∩ row (B))−dim(C⊥1 ∩ row (B)) from
Lemma 25. Therefore, for the uniformly distributed S and X,
we have maxB∈Fµ×n

q
I(S ; BXT) = KR,µ(C⊥2 ,C

⊥
1 ) by (18).

Finally, we prove the last statement. Assume that
maxB∈Fµ×n

q
I(S ; BXT) = 0 holds for a distribution of S that

assigns a positive probability to every element in Fl
qm . Then, we

have dim(C⊥2 ∩row (B))−dim(C⊥1 ∩row (B)) = 0 simultaneously
for all B ∈ F

µ×n
q from Lemma 25. Therefore, we have

KR,µ(C⊥2 ,C
⊥
1 ) = 0.

This theorem includes the condition such that the maximum
amount of information leakage is exactly zero. This corre-
sponds to the security condition of secure network coding
given in [3]–[6], for all possible sets of tapped links, as
Lemma 25 for one set of possible tapped links. We note that
while our condition is independent of the underlying network
code, i.e., universal, their security condition is dependent on
the underlying network code. Further, as Lemma 25, we should
note that the distribution of X is arbitrary in the last statement
in Theorem 26.

Theorem 26 immediately yields the following proposition
for the universal equivocation.

Proposition 27. Consider the nested coset coding scheme with
C1, C2 and ψ in Definition 21. Then, the universal equivocation
Θµ,PS ,X , defined in Definition 22, is in the range of

H(S ) − D(X‖Uψ(S )|S ) − KR,µ(C⊥2 ,C
⊥
1 )

≤ Θµ,PS ,X

≤ l − KR,µ(C⊥2 ,C
⊥
1 ).

When both the secret message S and the transmitted packets
X are uniformly distributed over Fl

qm and C1 respectively, we
have Θµ,PS ,X = l − KR,µ(C⊥2 ,C

⊥
1 ).

Also from Theorem 26, we obtain the following corollary.

Corollary 28. Consider the transmission of X ∈ Fn
qm over the

wiretap network, which is generated from the secret message S
by the nested coset coding scheme with C1, C2 and ψ, defined
in Definition 21. Then, we have the following four statements
for an arbitrarily fixed j ∈ {1, . . . , l}.



1) If the adversary observes µ < MR, j(C⊥2 ,C
⊥
1 ) links, the

maximum amount of information leakage in Defini-
tion 22 is at most j − 1 + D(X‖Uψ(S )|S ) between S and
observed packets;

2) If the adversary observes µ ≥ MR, j(C⊥2 ,C
⊥
1 ) links, the

maximum amount of information leakage is at least
j − D(S ‖UFl

qm
) between S and observed packets.

3) If the adversary observes µ = MR, j(C⊥2 ,C
⊥
1 ) links, there

exist PS ,X and B by which the adversary obtains the mu-
tual information j between S and the observed packets
BXT; and

4) If the maximum amount of information leakage is ex-
actly zero for a distribution of S that assigns a positive
probability to every element in Fl

qm , the number of tapped
links is µ < MR,1(C⊥2 ,C

⊥
1 ), which again corresponds to

[4, Lemma 3.1].

Proof: Since we have

min
{
µ : KR,µ(C⊥2 ,C

⊥
1 ) = j

}
= MR, j(C⊥2 ,C

⊥
1 ),

from Lemma 9, we obtain KR,µ(C⊥2 ,C
⊥
1 ) = j and

KR,µ−1(C⊥2 ,C
⊥
1 ) = j − 1 for µ = MR, j(C⊥2 ,C

⊥
1 ). This implies

that from Theorem 26, the maximum amount of information
leakage is at most j − 1 + D(X‖Uψ(S )|S ) from less than
MR, j(C⊥2 ,C

⊥
1 ) links. Also, the maximum amount of informa-

tion leakage is at least j − D(S ‖UFl
qm

) from MR, j(C⊥2 ,C
⊥
1 )

or more links. Also note that when S and X are uniformly
distributed, the maximum information leakage for µ is exactly
equal to KR,µ(C⊥2 ,C

⊥
1 ) by Theorem 26, and recall again that

min
{
µ : KR,µ(C⊥2 ,C

⊥
1 ) = j

}
= MR, j(C⊥2 ,C

⊥
1 ). Thus, statements

1)–3) are proved.
When maxB∈Fµ×n

q
I(S ; BXT) = 0 holds for a distribution

of S that assigns a positive probability to every element
in Fl

qm , we have KR,µ(C⊥2 ,C
⊥
1 ) = 0 from Theorem 26,

and MR,1(C⊥2 ,C
⊥
1 ) = min

{
µ : KR,µ(C⊥2 ,C

⊥
1 ) = 1

}
holds from

Lemma 9. Therefore, statement 4) is proved.

Statement 1) in Corollary 28 shows that if the transmitted
packets X are chosen uniformly at random from a coset
ψ(S ) given S , the adversary obtains no information of the
message S from any MR,1(C⊥2 ,C

⊥
1 ) − 1 links, independently

of the distribution of S . In contrast, if X is not uniform and
D(X‖Uψ(S )|S ) > 0, the information of S leaks out from less
than MR,1(C⊥2 ,C

⊥
1 ) links.

In [31, Proposition 2], Oggier and Sboui introduced a
special case of Corollary 28 for j = 1, C1 = Fn

qm and uniformly
distributed X ∈ C1, in terms of the minimum rank distance.
Namely, they showed that the adversary obtains no information
of S from any dR(C⊥2 ) − 1 = MR,1(C⊥2 , {0}) − 1 links.

Ngai et al. [29] and Zhang et al. [46] analyzed the lower
bound of the uncertainty of the secret message by the (R-
)Network-GHW in the case where the transmitted packets
X are uniformly distributed over ψ(S ). Proposition 27 and
Corollary 28 correspond to their results using (R-)Network-
GHW. We should note that unlike [29], [46], we considered the
case where both S and X are arbitrarily distributed, and derived
both upper and lower bounds. Further, while our analyses
using the RDIP and the RGRW are universal, the analyses

using (R-)Network-GHW in [29], [46] are dependent on the
underlying network code.

Lastly, we express Ω in Definition 24 in terms of the
RGRW. In order to derive Ω, we first introduce the following
proposition that reveals the mutual information between a part
of the message S and observed packets of the adversary in
the case where S and the transmitted packets X are arbitrarily
distributed.

Proposition 29. Consider the nested coset coding scheme and
fix C1, C2 and ψ in Definition 21. For a subset Z ⊆ {1, . . . , l},
let SZ , (S i : i ∈ Z), and C3,Z be a subcode of C1 defined by

C3,Z ,
⋃

S i=0:i∈Z,
S j∈Fqm : j<Z

ψ([S 1, . . . , S l]). (19)

Also, define a bijective function ψZ : F|Z|qm → C1/C3,Z by

ψZ(SZ) ,
⋃

S j∈Fqm : j<Z

ψ([S 1, . . . , S l]). (20)

Then, the maximum amount of the mutual information be-
tween SZ and BXT is in the range of

KR,µ(C⊥3,Z,C
⊥
1 ) − D(SZ‖UF|Z|qm

)

≤ max
B∈Fµ×n

q

I(SZ; BXT)

≤ KR,µ(C⊥3,Z,C
⊥
1 ) + D(X‖UψZ(SZ)|SZ). (21)

If both S and X are uniformly distributed
over Fl

qm and C1 respectively, it exactly equals
max
B∈Fµ×n

q

I(SZ; BXT) = KR,µ(C⊥3,Z,C
⊥
1 ).

Proof: For a subset Z ⊆ {1, . . . , l}, C3,Z is an
Fqm -linear subspace satisfying C2 ⊆ C3,Z ⊆ C1 and
dimC3,Z = dimC1 − |Z|. Observe that SZ is chosen from F|Z|qm

according to the distribution PSZ , and that X can be regarded
as a random variable chosen from a coset ψZ(SZ) ∈ C1/C3,Z
according to the conditional distribution PX|SZ given SZ. Also
recall that ψZ is bijective. Hence, the information leakage of
SZ in the nested coset coding with C1 and C2 according to
PS ,X is equal to the one in the nested coset coding scheme
with C1 and C3,Z according to PSZ,X , where PSZ,X is the joint
distribution of SZ and X. Thus, by Theorem 26, (21) holds.
Assume that S and X are uniformly distributed over Fl

qm and
C1, respectively. Then, SZ is uniform over F|Z|qm , and from the
definition of ψZ in (20), X is also uniform over ψZ(SZ) given
S . Therefore, we have maxB∈Fµ×n

q
I(SZ; BXT) = KR,µ(C⊥3,Z,C

⊥
1 ).

From Proposition 29 and the definition of the universal
maximum strength Ω in Definition 24, we give the following
upper bound of maxB∈Fµ×n

q
I(SZ; BXT) for arbitrarily distributed

S and X, which is expressed in terms of Ω.

Corollary 30. Consider the nested coset coding scheme de-
fined in Definition 21 with the universal maximum strength
Ω. Then, for fixed µ and Z ⊆ {1, . . . , l}, we have

max
B∈Fµ×n

q

I(SZ; BXT) ≤
[
µ −Ω + |Z| − 1

]+
+ D(X‖UψZ(SZ)|SZ),



where ψZ(SZ) is defined by (20).

Proof: When S and X are uniformly distributed, we have
maxB∈Fµ×n

q
I(SZ; BXT) = KR,µ(C⊥3,Z,C

⊥
1 ) from Proposition 29.

Recall that the RDIP KR,µ(C⊥3,Z,C
⊥
1 ) is monotonically increas-

ing with µ from Theorem 8, and that maxB∈Fµ×n
q

I(SZ; BXT) = 0
if µ ≤ Ω − |Z| + 1 from Definition 24. We thus have

KR,µ(C⊥3,Z,C
⊥
1 ) ≤

[
µ −Ω + |Z| − 1

]+ .
Therefore, from Proposition 29, we have

max
B∈Fµ×n

q

I(SZ; BXT) ≤ KR,µ(C⊥3,Z,C
⊥
1 ) + D(X‖UψZ(SZ)|SZ)

≤
[
µ −Ω + |Z| − 1

]+
+ D(X‖UψZ(SZ)|SZ),

for arbitrarily distributed S and X.

This corollary shows that if the universal maximum strength
Ω is known, the maximum amount of information leakage
of SZ to the adversary can be estimated by calculating
D(X‖UψZ(SZ)|SZ) depending on distributions of S and X.
This also implies that when D(X‖UψZ(SZ)|SZ) > 0 for some
Z, a part of the secret message might be revealed to the
wiretapper from µ < Ω − |Z| tapped links. Here, we note
that D(X‖UψZ(SZ)|SZ) is always zero for any ψ and any Z
when S and X are uniformly distributed over Fl

qm and C1,
respectively. From these observations, we can say that since S
and X are assumed to be uniform in Definition 24, the universal
maximum strength Ω represents the resiliency of the scheme
against eavesdropping in the ideal environment in which every
part of the secret message is hidden.

By Proposition 29, we have the following theorem which
exactly expresses Ω in terms of the RGRW.

Theorem 31. Fix C1,C2 and ψ in Definition 21, and con-
sider the corresponding nested coset coding scheme with
uniformly distributed S and X. For a subset Z ⊆ {1, . . . , l},
let SZ , (S i : i ∈ Z) and C3,Z be a subcode of C1, defined by
(19). Then, the universal maximum strength Ω of the scheme,
defined in Definition 24, is given by

Ω = min
{
MR,1(C⊥3,Z,C

⊥
1 ) + |Z| : Z ⊆ {1, . . . , l}

}
− 2.

Proof: The universal maximum strength Ω, i.e., the
maximum value of ω, is given as

Ω

= max
{
ω : I(SZ; BXT) = 0,∀Z ⊆ {1, . . . , l},∀B ∈ F(ω−|Z|+1)×n

q

}
= min

{
µ : Z⊆{1, . . . , l},∃B∈F(µ−|Z|+1)×n

q , I(SZ; BXT)=1
}
−1

(by Definition 24)

=min
{
µ+|Z|−1:Z⊆{1, . . . , l},∃B∈Fµ×n

q , I(SZ; BXT)=1
}
−1

= min
Z⊆{1,...,l}

{
min

{
µ : ∃B∈Fµ×n

q , I(SZ; BXT)=1
}
+|Z|−1

}
−1

= min
Z⊆{1,...,l}

min

µ : max
B∈Fµ×n

q

I(SZ; BXT) = 1

 + |Z| − 1

 − 1

= min
Z⊆{1,...,l}

{
min

{
µ : KR,µ(C⊥3,Z,C

⊥
1 ) = 1

}
+ |Z| − 1

}
− 1

(by Proposition 29)

= min
Z⊆{1,...,l}

{
MR,1(C⊥3,Z,C

⊥
1 ) + |Z|

}
− 2. (by Lemma 9)

In order to derive the exact value of Ω, we must calculate
the RGRW’s of C1 and C3,Z’s for all possible Z’s as shown
in Theorem 31. Thus, the calculation of Ω involves the search
for the minimum value of the RGRW over the exponentially
large set for l. Here, we give the upper and lower bounds of
Ω. The bounds can be obtained by calculating only l values
of RGRW’s, hence they are useful for estimating the value of
Ω in nested coset coding schemes. An upper bound of Ω is
simply obtained by Theorem 31 as follows.

Proposition 32. Fix C1,C2 and ψ in Definition 21, and
consider the corresponding nested coset coding scheme with
uniformly distributed S and X. For i ⊆ {1, . . . , l}, let C3,{i} be a
subcode of C1, defined in (19) for Z = {i}. Then, the universal
maximum strength Ω of the scheme is upper bounded by

Ω ≤ min
{
MR,1(C⊥3,{i},C

⊥
1 ) : 1 ≤ i ≤ l

}
− 1.

We also give a lower bound of Ω. For a subset
J ⊆ {1, . . . ,N} and a vector c = [c1, . . . , cN] ∈ FN

qm ,
let PJ (c) be a vector of length |J| over Fqm , obtained
by removing the t-th components ct for t < J . For ex-
ample for J = {1, 3} and c = [1, 1, 0, 1] (N = 4),
we have PJ (c) = [1, 0]. The punctured code PJ (C) of
a code C ⊆ FN

qn is given by PJ (C) ,
{
PJ (c) : c ∈ C

}
.

The shortened code CJ of a code C ⊆ FN
qm is defined

by CJ ,
{
PJ (c) : c = [c1, . . . , cN] ∈ C, ci = 0 for i < J

}
. For

example for C = {[0, 0, 0], [1, 1, 0], [1, 0, 1], [0, 1, 1]} (N = 3)
and J = {2, 3}, we have CJ = {[0, 0], [1, 1]}.

Proposition 33. Fix C1,C2 and ψ in Definition 21, and
consider the corresponding nested coset coding scheme with
uniformly distributed S and X. Define a lengthened code of
C1 by

C′1 ,
{
[S , X] : S ∈ Fl

qm and X ∈ ψ(S )
}
⊆ Fl+n

qm .

Let {i} , {1, . . . , l + n}\{i}. For each index 1 ≤ i ≤ l, we define
a punctured code D1,i of C′1 as D1,i , P

{i} (C
′
1) ⊆ Fl+n−1

qm , and
a shortened code D2,i of C′1 as D2,i , (C′1)

{i} ⊆ F
l+n−1
qm . Then,

the universal maximum strength Ω of the scheme is lower
bounded by

Ω ≥ min
{
MR,1(D⊥2,i,D

⊥
1,i) : 1 ≤ i ≤ l

}
− 1. (22)

Proof: See Appendix B.

Remark 34. In [20], the security analysis of secret sharing
schemes based on linear codes was given in terms of the
relative dimension/length profile and the relative generalized
Hamming weight [25]. By replacing the RDIP and the RGRW
in all the theorems given in this section with the RDLP and the
RGHW and restricting shares to be uniformly distributed over
C1, we can obtain the theorems presented in [20]. In particular,
Theorem 26 and Proposition 27 become [20, Theorem 4], and
Corollary 28 becomes [20, Theorem 9, Corollary 11]. Also,
Theorem 31 and Theorem 33 become [20, Theorem 12], where



we note that in the case of secret sharing schemes, the exact
value of Ω in Theorem 31 coincides with its lower bound
given in Theorem 33.

Remark 35. In [29], [46], the security analysis of secure
network coding in the case of packet length m = 1 was
given in terms of the (relative) network generalized Hamming
weight (R-)Network-GHW. By replacing the RGRW with the
(R-)Network-GHW and restricting transmitted packets to be
uniformly distributed over C1, Corollary 28 becomes [29, The-
orem 7], [46, Lemma 4.3]. Note that since the (R-)Network-
GHW is determined according to the global coding vectors of
all links as we explained in Section II-B, their security analysis
by the (R-)Network-GHW is dependent on the underlying
network code construction, unlike our analysis by the RDIP
and RGRW.

IV. Universal Error Correction Capability of Secure
Network Coding

This section reveals the error correction capability of the
nested coset coding scheme which is guaranteed independently
of the underlying network code construction. Here, recall that
as described in the end of Section III-A, the system of network
coding is called coherent if the transfer matrix is known to
each sink node and otherwise it is called noncoherent. In
this section, we shall consider the error correction not only
over the coherent system of network coding but also over the
noncoherent system. Here we note that the decoding of the
secret message is executed independently by each sink node
in the network. Hence, from now on, only one sink node may
be assumed without loss of generality and for the sake of
simplicity.

We first give a definition of error correction capability in
secure network coding. Now we consider a coding scheme
that is a generalization of the nested coset coding scheme,
described as follows.

Definition 36. Let S be a set of possible secret messages. Let
PS be a collection of sets of n-dimensional vectors over Fqm

such that |PS| = |S| and each element in PS is a non-empty set.
Assume that there exists a certain bijective function between S
and PS. The coding scheme first maps a secret message S ∈ S
to a unique set XS ∈ PS (XS ⊆ F

n
qm , |XS | > 0) of n-dimensional

vectors by the bijective function. Then, an element X ∈ XS is
chosen from XS and served as n packets transmitted through
the network.

Here we note that in the nested coset coding scheme
with C1 and C2, S = Fl

qm , XS = ψ(S ) ∈ C1/C2 and
PS = {XS : S ∈ S} = C1/C2, as defined in Definition 21. The
reason we consider Definition 36 is that we need to analyze
the error correction capability in generalized fashion in the
case of the noncoherent network coding system, due to the
modification to the nested coset coding scheme as described
later in Section IV-B. For this generalized coding scheme, we
define the following error correction capability in the model
of network coding described in Section III-A.

Definition 37 (Universally t-Error-ρ-Erasure-Correcting).
Consider the t-error-ρ-erasure (n × m)q linear network in

Definition 20. Consider a coding scheme defined in Def-
inition 36. Then, the coding scheme is called univer-
sally t-error-ρ-erasure-correcting, if every S ∈ S can be
uniquely determined from YT = AXT + DZT ∈ FN

qm for
∀A ∈ FN×n

q : rank A ≥ n − ρ,∀X ∈ XS ,∀D ∈ FN×t
q ,∀Z ∈ Ft

qm .

As defined in Definition 37, the capability of universally
t-error-ρ-erasure-correcting is guaranteed on any underlying
network code, and hence it is called universal. Silva et
al.’s secure network coding scheme [37, Section VI] uses
MRD codes C1 and C2, and it is universally t-error-ρ-erasure-
correcting when the minimum rank distance [15] of C1 is
greater than 2t + ρ.

In the following subsections, we explain the coding scheme
executed at the source node in the both cases of a coherent
system and a noncoherent system, and present the main
theorems about universal error-correction capability for both
cases. The derivations of these main theorems are given in
Appendix C, and they are a natural generalization of the work
in [35] from the ordinary encoding scheme of a linear code
and the rank distance to the nested coset coding scheme and
the RGRW.

A. Case of Coherent System

First we explain the fundamental case of a coherent network
coding system, i.e., the transfer matrix A is known to the
sink node. In this case, the source node simply encodes a
secret message S ∈ S = Fl

qm to the transmitted n packets
X ∈ XS = ψ(S ) by the nested coset coding scheme with C1,C2,
as explained in Section III-B. And then, PS = C1/C2. Finally,
X ∈ Fn

qm is regarded as an m×n matrix over Fq, and transmitted
through the network.

In this setting over the coherent network coding system,
the universal error correction capability of the nested coset
coding scheme is exactly expressed in terms of the first RGRW
MR,1(C1,C2) as follows.

Theorem 38. Consider the t-error (n × m)q linear network
in Definition 20. Then, the nested coset coding scheme with
C1,C2 in Definition 21 is universally (i.e., simultaneously for
all A ∈ FN×n

q with rank deficiency at most ρ) t-error-ρ-erasure-
correcting if and only if MR,1(C1,C2) > 2t + ρ.

Proof: See Appendix C, where the detailed proof itself is
given in Appendix C-B.

B. Case of Noncoherent System

As described in Section III-A, the transfer matrix A is
unknown to the sink node in the case of a noncoherent
network coding system. In this case, the source node appends
appropriate packet headers to the packets generated by the
nested coset coding scheme. The addition of packet headers
is called the lifting construction [38]. Since the information
of global coding vectors are carried by the packet headers in
the lifting construction, this allows the scheme to be decoded
when A is unknown.

The lifting construction [38] of the nested coset coding
scheme is described in detail as follows. Let m̃ be the degree



of a field extension Fqm̃ , and let φm̃ : Fqm̃ → Fm̃×1
q be an

Fq-linear isomorphism that expands an element of Fqm̃ to a
column vector over Fq with respect to some fixed basis for
Fqm̃ over Fq. Suppose m > n. Let m̃ , m − n, and let
C1 ⊆ F

n
qm̃ and C2 $ C1 be a linear code and its subcode,

respectively. By the nested coset coding scheme with C1,C2,
we generate X̃ ∈ Fn

qm̃ from a secret message S ∈ S = Fl
qm̃ .

Then, expanding X̃ = [X1, . . . , Xn] ∈ Fn
qm̃ to an m̃ × n matrix

φm̃(X̃) , [φm̃(X̃1), . . . , φm̃(X̃n)] ∈ Fm̃×n
q over the base field

Fq, we construct X ∈ Fn
qm of transmitted n packets that is

represented as XT =
[
I φm̃(X̃)T

]
∈ Fn×m

q as a matrix over Fq,
where the identity matrix I ∈ Fn×n

q is the packet header. Hence,
XS and PS is given by

XS = XS ,lift ,

{
X =

[
I

φm̃(X̃)

]
: X̃ ∈ ψ(S )

}
,

PS = Plift ,
{
X ∈ XS ,lift : S ∈ Fl

qm̃

}
, (23)

where X ∈ Fn
qm is regarded as an m × n matrix over Fq. Here,

recall that we defined S(X) ⊆ Fqm for X = [X1, . . . , Xn] ∈ Fn
qm

as an Fq-linear subspace of Fqm spanned by X1, . . . , Xn, and
note that dimFqS(X) = n is always guaranteed for all X ∈ XS ,lift

and all XS ,lift ∈ Plift by the packet header I.

Remark 39. The packet headers of the lifting construction do
not convey the information generated from the secret message,
and convey only the information of the global coding vectors
(and errors). Thus, appending packet headers does not affect
the security given in Section III.

The following proposition shows that in this setting of the
lifting construction of the nested coset coding scheme in the
noncoherent system, the universal error correction capability
is exactly expressed in terms of the first RGRW MR,1(C1,C2)
as in the coherent system.

Proposition 40. Assume m > n, and consider the t-error
(n × m)q linear network in Definition 20. Consider the lifting
construction of the nested coset coding scheme with C1 ⊆ F

n
qm̃

and C2 $ C1 for m̃ = m − n, as described in Section IV-B.
Then, the scheme is universally t-error-ρ-erasure-correcting if
and only if MR,1(C1,C2) > 2t + ρ.

Proof: See Appendix C, where the detailed proof itself is
given in Appendix C-C.

This proposition also implies that by applying the lifting
construction, the correction capability of the nested coset cod-
ing scheme is maintained even over the noncoherent network
coding system.

V. A Construction of Secure Network Coding and Its
Analysis

This section proposes a construction of the nested coset
coding scheme with C1 and C2. We also show its universal
security performance and universal error correction capability
as an example of the analyses in Section III and Section IV
using the RDLP and the RGRW. By adding the error cor-
rection, the proposed scheme is an extension of the universal
strongly secure network coding scheme based on an MRD

code with a systematic generator matrix, presented in our ear-
lier conference paper [21]. As well as the scheme of Silva and
Kschischang [37], the proposed scheme guarantees the uni-
versal equivocation ΘdimC1−l,PS ,X = H(S ) when the conditional
distribution of X given S is uniform on ψ(S ), and it is univer-
sally t-error-ρ-erasure-correcting when n−dimC1 + 1 > 2t +ρ.
Moreover, unlike Silva et al.’s scheme, our scheme guarantees
the universal maximum strength Ω = dimC1−1, which means
that no part of the secret message is deterministically revealed
from the eavesdropped information observed from at most
dimC1−1 links over any underlying network code. An explicit
construction of the nested coset coding scheme satisfying
Ω = dimC1 − 1 had remained an open question [38], and
hence we solve this open question by the proposed scheme.

For the sake of simplicity, this section considers the funda-
mental case of a coherent network coding system. In the case
of noncoherent network coding, we can simply customize the
proposed scheme by the lifting construction as we described
in Section IV-B

A. Theorems for Nested Coset Coding Scheme with MRD
codes

In this subsection, we first introduce some theorems for the
nested coset coding scheme using MRD codes C1 ⊆ F

n
qm and

C2 $ C1. These theorems will be used in the next subsection to
clarify the security performance and error correction capability
of our proposed scheme. We note that they can be also
used to reveal the performance of the scheme proposed by
Silva and Kschischang [37]. This will be briefly explained in
Section V-C3.

First, we present the following two theorems that are estab-
lished regardless of the choice of ψ in the nested coset coding
scheme. For an arbitrary linear code C1 ⊆ F

n
qm and an MRD

code C2 $ C1 with m ≥ n, since the dual of an MRD code is
also MRD [15], [24], we have KR,µ(C⊥2 ,C

⊥
1 ) = [µ − dimC2]+

(0 ≤ µ ≤ dimC1) by Proposition 19. Thus, for the univer-
sal equivocation Θµ,PS ,X , we immediately have the following
theorem from Proposition 27.

Theorem 41. Assume m ≥ n. Let C1 ⊆ F
n
qm be an arbitrary

linear code and let C2 $ C1 be its subcode. Suppose that C2
is an MRD code. Write l = dimC1 − dimC2. Then, for the
nested coset coding scheme with C1 and C2 in Definition 21,
the universal equivocation is in the range of

H(S ) − D(X‖Uψ(S )|S ) −
[
µ − dimC2

]+
≤ Θµ,PS ,X

≤ l −
[
µ − dimC2

]+ ,
for 0 ≤ µ ≤ dimC1.

This theorem shows that if X is uniform, the universal
equivocation is ΘdimC2,PS ,X = H(S ). Also for the universal
error correction capability, we immediately have the following
theorem from Corollary 16 and Theorem 38.

Theorem 42. Assume m ≥ n. Let C1 ⊆ F
n
qm be a linear code

and let C2 $ C1 be its subcode. Suppose that C1 is an MRD
code. Then, the nested coset coding scheme with C1 and C2 in



Definition 21 is universally t-error-ρ-erasure-correcting if and
only if 2t + ρ < n − dimC1 + 1.

Next, we present a theorem for the universal maximum
strength, which is dependent on the setting of ψ unlike
Theorem 41 and Theorem 42. We have the following theorem
immediately from Corollary 16 and Theorem 31 since the dual
of an MRD code is also MRD.

Theorem 43. Assume m ≥ n. Let C1 ⊆ F
n
qm be a linear code

and let C2 $ C1 be its subcode. Write l = dimC1 − dimC2.
Let a bijective function ψ : Fl

qm → C1/C2 be fixed in such a
way that for all Z ⊆ {1, . . . , l}, an Fqm -linear subspace C3,Z
defined in (19) is an MRD code with dimC3,Z = dimC1 − |Z|

and dR(C3,Z) = n − dimC1 − |Z| + 1. Then, the nested coset
coding scheme with C1, C2 and ψ in Definition 21 guarantees
the universal maximum strength Ω = dimC1 − 1.

In the next subsection, we present an explicit construction
of the nested coset coding scheme that satisfies all the assump-
tions in Theorems 41, 42 and 43 simultaneously.

B. Description of the Proposed Scheme

Recall that the punctured code and shortened code
of a code C ∈ FN

qm to J ⊆ {1, . . . ,N} are re-
spectively defined by PJ (C) =

{
PJ (c) : c ∈ C

}
and

CJ =
{
PJ (c) : c = [c1, . . . , cN] ∈ C, ci = 0 for i < J

}
, where

PJ (c) for c ∈ FN
qm represents a vector of length |J| obtained by

removing the t-th components of c for t < J . Assume that the
degree m of the field extension Fqm satisfies m ≥ l+n. Then, the
proposed scheme generates the transmitted n packets X ∈ Fn

qm

by the following setting of the nested coset coding scheme.
First, we set the linear codes C1,C2 ⊆ F

n
qm . Let D be an

[l + n, k] MRD code over Fqm with dimD = k(≥ l) and
a systematic generator matrix G =

[
I P

]
∈ Fk×(l+n)

qm . Let
L , {l + 1, . . . , l + n} be an index set. Define C1 , PL(D)
as a punctured code of D to the index set L. Also define
C2 , DL as a shortened code of D to the index set L. Here
we note the following facts for C1,C2. Since an MRD code
over FN

qm with m ≥ N is also an MDS code over Fqm [15],
a k × k matrix over Fqm consisting of arbitrary k columns of
G is always nonsingular, and hence dim PL(D) = dimC1 = k.
Also, since the MRD code D is also MDS [15], the shortening
of D to L simply reduces the dimension of D over Fqm by l,
i.e., dimDL = dimC2 = k − l. Also, we should note that from
the definition of the punctured code and shortened code, we
have C2 ⊆ C1, and dimC1 − dimC2 = dimC1/C2 = l.

Next, we set the bijective function ψ : Fl
qm → C1/C2. We

define submatrices of the systematic generator matrix G of D
as follows.

G ,

 I ∆G


}
l rows

O G2
}

k − l rows︸︷︷︸
l columns

︸︷︷︸
n columns

Then, we set ψ by ∆G ∈ Fl×n
qm as follows.

ψ(S ) , S ∆G + C2 ∈ C1/C2. (24)

We note that G1 ,
[

∆G
G2

]
∈ Fk×n

qm is the generator
matrix of C1, and G2 ∈ F(k−l)×n

qm is the generator ma-
trix of C2. Also note that since rank ∆G = l from
dimC1 − dimC2 = rank G1 − rank G2 = l, ψ is bijective.

In our scheme, we execute the nested coset coding scheme
with these settings of C1, C2 and ψ, and generate the trans-
mitted packets X. Then, the source node transmits X over
the network as described in Section III-A, and the sink node
receives Y and attempts to obtain the secret message from
Y . The universal security performance and the universal error
correction capability of our scheme is clarified in the next
subsection.

Remark 44. Consider the case where D and G are not an
MRD code and its systematic generator matrix but a Reed-
Solomon code and its systematic one respectively in the
above settings. Then, this nested coset coding scheme becomes
the strongly-secure secret sharing scheme of Nishiara and
Takizawa [30]. Similarly to the relation between the wiretap
channel II and secure network coding, our scheme can be
viewed as a generalization of their scheme [30] for network
coding.

C. Analyses on the Proposed Scheme

As an example of applications of the analyses of Section III
and Section IV using the RDIP and the RGRW, this subsection
presents the analyses on the proposed scheme described in the
previous subsection. We first reveal the security performance
and error correction capability of our scheme. Next, we
discuss the required packet length in our scheme. Finally, we
summarize the comparison of the proposed scheme with the
scheme of Silva and Kschischang [37].

1) Security Performance and Error Correction Capability
of the Proposed Scheme: Here, we analyze the security per-
formance and the error correction capability of the proposed
scheme using the theorems presented in Section V-A.

First, in order to show that assumptions in Theorems 41–
43 are satisfied in our scheme, we introduce the following
lemmas about a shortened code and a punctured code of an
MRD code.

Lemma 45. Let m ≥ N, and C ⊆ FN
qm be an MRD code of

length N over Fqm . For a subset I ⊆ {1, . . . ,N} satisfying
I ⊇ {dimC + 1, . . . ,N}, let CI ⊆ F

|I|

qm be a shortened
code of C ⊆ FN

qm to I. Then, CI is an MRD code with
dimCI = dimC − N + |I| and dR(CI) = N − dimC + 1.

Proof: Since the MRD code C is also MDS [15]
and I ⊇ {dimC + 1, . . . ,N}, the shortening of C to I
simply reduces the dimension of C over Fqm by N − |I|,
i.e., dimCI = dimC − N + |I|.

Since m ≥ N and shortened codes can be viewed as
subcodes, we have

dR(CI) ≥ dR(C)
= N − dimC + 1.

On the other hand, from m ≥ N and the Singleton-type bound



for the rank distance given in Proposition 14, we have

dR(CI) ≤ |I| − dimCI︸  ︷︷  ︸
=dimC−N+|I|

+1

= N − dimC + 1.

Therefore, we have dR(CI) = N − dimC + 1.

Lemma 46. Let m ≥ N, and C ⊆ FN
qm be an MRD code

of length N over Fqm . For a set I ⊆ {1, . . . ,N} satisfying
|I| ≥ N − dimC and |I| ≥ dimC, let PI(C) ⊆ F|I|qm be a
punctured code of C to I. Then, PI(C) is an MRD code with
dim PI(C) = dimC and dR(PI(C)) = |I| − dimC + 1.

Proof: Since an MRD code is also MDS, a dimC×dimC
matrix over Fqm consisting of arbitrary dimC columns of
the generator matrix of C is always nonsingular. Thus, the
dimension of a punctured code PI(C) of length |I|(≥ dimC)
is dim PI(C) = dimC.

The puncturing of C to I reduces the minimum rank
distance of C by at most N − |I| (≤ dimC) from
the definition of rank distance [15]. This implies that
dR(PI(C)) ≥ dR(C) − N + |I|. From m ≥ N, we thus have

dR(PI(C)) ≥ dR(C) − N + |I|

= |I| − dimC + 1.

On the other hand, from m ≥ N and the Singleton-type bound
for the rank distance given in Proposition 14, we have

dR(PI(C)) ≤ |I| − dim PI(C) + 1
= |I| − dimC + 1.

Therefore, we have dR(PI(C)) = |I| − dimC + 1.

By the above lemmas, we finally derive the following propo-
sitions for the universal security performance and the universal
error correction capability in our scheme, and show that our
scheme satisfies Theorems 41, 42 and 43 simultaneously.

Proposition 47. Consider the nested coset coding scheme
proposed in Section V-B. Then, the universal equivocation
Θµ,PS ,X of the scheme is in the range of

H(S ) − D(X‖Uψ(S )|S ) −
[
µ − dimC2

]+
≤ Θµ,PS ,X

≤ l −
[
µ − dimC2

]+ ,
for 0 ≤ µ ≤ dimC1 = k.

Proof: From Lemma 45, since m ≥ l + n, we
have dimC2 = k − l, and C2 is an MRD code with
dR(C2) = n + l − k + 1. Thus, from Theorem 41, we have
the proposition.

Proposition 48. The nested coset coding scheme proposed in
Section V-B is universally t-error-ρ-erasure-correcting if and
only if 2t + ρ < n − k + 1.

Proof: From Lemma 46, since m ≥ l + n, we have
dimC1 = dimD = k, and C1 is an MRD code with
dR(C1) = n − k + 1. Therefore, the proposition is proved from
Theorem 42.

Proposition 49. The nested coset coding scheme proposed in
Section V-B has the universal maximum strength Ω = k − 1.

Proof: Recall dimD = k. For a subset Z ⊆ {1, . . . , l}, let
Z , {1, . . . , l, l + 1, . . . , l + n}\Z. Denote by D

Z
⊆ Fl+n−|Z|

qm a
shortened code of D to Z. Since D ⊆ Fl+n

qm is an MRD code
with m ≥ l + n and Z ⊇ {l + 1, . . . , l + n} ⊇ {k + 1, . . . , l + n}
from l ≤ k, D

Z
is an MRD code with dimD

Z
= k − |Z| and

dR(D
Z

) = l+n−k+1 from Lemma 45. Since ψ in the proposed
scheme is specified by the systematic generator matrix G of D
as (24), we can see that for Z, C3,Z in (19) can be defined as a
punctured code ofD

Z
to an index set {l+1−|Z|, . . . , l+n−|Z|},

i.e., it is obtained by eliminating first l − |Z| coordinates of
codewords in D

Z
. Hence, from Lemma 46, C3,Z ⊆ F

n
qm is an

MRD code with dimC3,Z = k−|Z| and dR(C3,Z) = n−k−|Z|+1.
Therefore, we have the proposition from Theorem 43.

Here we note that in the proposed scheme, the exact value
of Ω derived in Proposition 49 coincides with the upper and
lower bounds of Ω that are respectively given by Proposi-
tion 32 and Proposition 33. The reason is as follows. For
i ∈ {1, . . . , l} and {i} = {1, . . . , l + n}\{i}, define the punctured
code D1,i , P

{i} (D) and the shortened code D2,i , D {i} .
Then, D2,i is MRD with dimD2,i = k − 1 from Lemma 45.
Since the dual of an MRD code is also MRD, we have
MR,1(D⊥2,i,D

⊥
1,i) = n − dimD⊥2,i + 1 = k from Corollary 16.

Thus, we obtain Ω ≥ k − 1 from Proposition 33. On the
other hand, the subcode C3,{i} is MRD with dimC3,{i} = k − 1
as shown in the proof of Proposition 49. We thus have
MR,1(C⊥3,{i},C

⊥
1 ) = n − dimC⊥3,{i} + 1 = k. Therefore Ω ≤ k − 1

holds from Proposition 32.
2) Required Packet Length m: Assume that m < N in

Lemma 45 and Lemma 46. Then, Lemma 45 and Lemma 46
do not always hold. We give here a specific case in which
Lemma 45 and Lemma 46 do not hold. Considering the case
where m < N and additionally m < |I| in Lemma 45, we have

dR(CI) ≤
m
|I|

(|I| − dimCI) + 1 =
m
|I|

(N − dimC) + 1,

by the Singleton-type bound for rank distance. Since m < |I|,
this clearly shows that Lemma 45 does not hold in the case.
Also, when m < N and m < |I| in Lemma 46, we have

dR(PI(C)) ≤
m
|I|

(|I| − dim PI(C)) + 1 =
m
|I|

(|I| − dimC) + 1,

and hence Lemma 46 does not hold in the case. Hence, we
can see that m ≥ N is a necessary condition for Lemma 45
and Lemma 46 to hold. This also implies that Propositions
47–49 do not always hold if the packet length is m < l + n
in our scheme. Thus, the assumption m ≥ l + n is a necessary
condition for our scheme to always satisfy Propositions 47–49
simultaneously.

3) A Comparison of the Security and the Error-Correction
Capability: Here we summarize the comparison of our scheme
with the scheme of Silva and Kschischang. First we present a
comparison about the security and error correction capability.
The scheme of Silva and Kschischang [37] is the nested coset
coding scheme using a linear code C1 ⊆ F

n
qm and its subcode

C2 $ C1 where both C1 and C2 are MRD with m ≥ n.



This immediately yields that Theorem 41 and Theorem 42 are
simultaneously established in their scheme as in our scheme.
However, their scheme does not specify the bijective function
ψ in such a way that the condition in Theorem 43 is always
satisfied, and hence their scheme does not always guarantee
the universal maximum strength Ω = dimC1 − 1. On the other
hand, our scheme simultaneously satisfies Theorems 41–43 as
shown in Propositions 47–49. Especially, one specific reason
why our scheme satisfies Proposition 49 is that the bijective
function ψ in our scheme is specified by the systematic
generator matrix G of D as (24). Therefore, we can see that
our scheme clearly has the advantage over their scheme in
terms of the strong security.

Next we give a comparison about the required packet length.
In [36, Theorem 8], Silva et al. showed that there exist cases
where their scheme in [37] satisfies the universal maximum
strength Ω = dimC1 − 1, and that the sufficient condition on
the existence of such a case is m ≥ (l + n)2/8 + logq 16l for
packet length. In contrast, we have demonstrated an explicit
construction of the nested coset coding scheme satisfying
Ω = dimC1 − 1 whenever m ≥ l + n is satisfied. Furthermore,
we always have l + n < (l + n)2/8 + logq 16l for l ≥ 1 and
n ≥ 2. Therefore, our condition for the packet length is less
demanding than that of Silva et al.’s sufficient condition.

VI. Conclusion

In this paper, we have introduced two relative code pa-
rameters, the relative dimension/intersection profile (RDIP)
of a linear code C1 ⊆ F

n
qm and its subcode C2 $ C1 and

the relative generalized rank weight (RGRW) of C1 and C2.
We have also elucidated some basic properties of the RDIP
and the RGRW. We have clarified the relation between the
RGRW and the Gabidulin’s rank distance [15], that between
the RGRW and the relative generalized Hamming weight
[25], and that between the RGRW and the relative network
generalized Hamming weight [46]. As applications of the
RDIP and the RGRW, the security performance and the
error correction capability of secure network coding based on
the nested coset coding scheme with C1 and C2 have been
analyzed and clarified. We have revealed that the security
performance and the error correction capability, guaranteed
independently of the underlying network code, are expressed
in terms of the RDIP and the RGRW. Further, we have
proposed an explicit construction of the nested coset coding
scheme, and have analyzed its universal security performance
and universal error correction capability by using the RDIP and
the RGRW. As well as the scheme of Silva and Kschischang
[37], the proposed scheme guarantees, independently of the
underlying network code, that no information of the secret
message is obtained from any µ ≤ dimC2 tapped links when
the transmitted packets are uniformly distributed over C1, and
that the secret message is correctly decodable against any t
error packets injected somewhere in the network and ρ rank
deficiency of the transfer matrix of the sink node whenever
n−dimC1+1 < 2t+ρ holds. Moreover, our scheme also always
guarantees that no part of the secret message is revealed to the
adversary with µ ≤ dimC1 − 1 tapped links when the secret

message and transmitted packets are uniformly distributed,
unlike Silva et al.’s scheme [36], [37].

Section V of this paper presented only one instance of
the nested coset coding scheme that has specific universal
security performance and universal error correction capability,
i.e., specific values of RDIP and RGRW. We believe that
the security scheme should be designed according to the
system requirements and environments. Hence, how to design
a pair of a linear code C1 and its subcode C2 from arbitrarily
given RDIP and RGRW is left as an important open problem
for future work. Another possible avenue is to derive other
types of bounds of the RGRW, e.g., generalizing the Gilbert-
Varshamov bound of the rank distance [16] for the RGRW,
etc.

Recall that the theory of the RDIP and RGRW established
in this paper is similar to the theory of the GHW [42] that
was proposed to investigate the security performance of coding
schemes on the Wiretap Channel II [32]. The specific coding
schemes based on maximum distance separable codes have
been already known as optimal ones in the Wiretap Channel
II. However, the theory of the GHW is not regarded as
unnecessary, because it is important and required to reveal the
security performance of any coding schemes on the Wiretap
Channel II. As a conclusion of this paper, we allege that
this importance of the GHW is exactly same as what we
have established in this paper about the RDIP and RGRW
for network coding.

Appendix A
Proof of Lemma 25

We first give the following lemma that will be used to prove
Lemma 25.

Lemma 50. Let C1 ⊆ F
n
qm be a linear code and C2 $ C1 be

its subcode. For an arbitrary subspace V ⊆ Fn
qm , we have

dim(C1 ∩ V) − dim (C2 ∩ V)

= dimC1/C2 − dim(C⊥2 ∩ V⊥) + dim(C⊥1 ∩ V⊥).

Proof: For a linear subspace C ⊆ Fn
qm , we have

dimC+dim(C⊥∩V⊥) = dim V⊥+dim(C∩V). Thus, by letting
C = C1 and C = C2 in this equation, we obtain

0 = dimC1 + dim(C⊥1 ∩ V⊥) − dim V⊥ − dim(C1 ∩ V),

and

0 = dimC2 + dim(C⊥2 ∩ V⊥) − dim V⊥ − dim(C2 ∩ V),

respectively. Therefore, the lemma is established by these
equalities since dimC1 − dimC2 = dimC1/C2.

Next we recall that for random variables A ∈ A and B ∈ B,
we have the following relations among the conditional entropy
and the (conditional) relative entropy [8, Ch. 2, p. 27]:

H(A) = log |A| − D(A‖UA), (25)
H(A|B) = EB

[
log |A(B)|

]
− D(A‖UA(B)|B), (26)

where A ∈ A(b) with probability one given B = b and EB

denotes the expectation over the probability distribution PB.



In the following, we will use these relationships to prove the
lemma.

Recall that for each S = s, a coset ψ(s) ∈ C1/C2 is
uniquely determined. Also observe that for given W = w
as a realization of W, there exists a unique coset
X(w) = {x ∈ C1 : BxT = wT} ∈ C1/(row (B)⊥ ∩ C1). Observe
that X belongs to ψ(s) ∩ X(w) when S = s and W = w, and
that

|ψ(s) ∩ X(w)| = |ψ(0) ∩ X(0)| = |C2 ∩ (row (B)⊥ ∩ C1)|
= |C2 ∩ row (B)⊥ |.

Hence we have

logqm |ψ(s) ∩ X(w)| = logqm

∣∣∣C2 ∩ row (B)⊥
∣∣∣

= dim
(
C2 ∩ row (B)⊥

)
,

for any s and w. Thus, by (26), we have

H(X|S ,W) = dim
(
C2 ∩ row (B)⊥

)
− D(X‖Uψ(S )∩X(W)|S ,W).

(27)

Also observe that X is distributed over X(w) when W = w,
and that

logqm |X(w)| = logqm

∣∣∣C1 ∩ row (B)⊥
∣∣∣ = dim

(
C1 ∩ row (B)⊥

)
,

for any w. Thus, by (26), we obtain

H(X|W) = dim
(
C1 ∩ row (B)⊥

)
− D(X‖UX(W)|W). (28)

Recall that X is distributed over a coset ψ(s) ∈ C1/C2 for
fixed S = s, and logqm |ψ(s)| = dimC2 for any s. Thus, by (26),
we have

H(X|S ) = dimC2 − D(X‖Uψ(S )|S ). (29)

Let a subspace W = {xBT : x ∈ C1}. For the cardinality of
W, we have

logqm |W| = dimW = dimC1 − dim(C1 ∩ row (B)⊥).

Thus, by (25), we have

H(W) = logqm |W| − D(W‖UW)

= dimC1 − dim(C1 ∩ row (B)⊥) − D(W‖UW). (30)

Recall that for given B and fixed X = x, W = xBT is
uniquely determined. This implies H(W |X) = 0. Thus, by
H(W |S , X) ≤ H(W |X) = 0 and the nonnegativity of the entropy
function [8, Ch. 2, p. 14], we have

H(W |S , X) = 0. (31)

By expanding I(S ; W) and substituting (27), (29), (30) and

(31) into the expanded equation (32), we obtain

I(S ; W)
= I(S , X; W)︸      ︷︷      ︸

=H(W)−H(W |S ,X)

− I(X; W |S )︸     ︷︷     ︸
=H(X|S )−H(X|S ,W)

= H(W)︸︷︷︸
=dimC1−dim(C1∩row(B)⊥)−D(W‖UW)

(by (30))

−H(W |S , X)︸      ︷︷      ︸
=0

(by (31))

− H(X|S )︸  ︷︷  ︸
=dimC2−D(X‖Uψ(S ) |S )

(by (29))

+ H(X|S ,W)︸      ︷︷      ︸
=dim(C2∩row(B)⊥)−D(X‖Uψ(S )∩X(W) |S ,W)

(by (27))

(32)

= dimC1−dimC2︸             ︷︷             ︸
=l

−dim
(
C1∩row (B)⊥

)
+dim

(
C2∩row (B)⊥

)
+ D(X‖Uψ(S )|S ) − D(W‖UW) − D(X‖Uψ(S )∩X(W)|S ,W)

≤ l−dim
(
C1∩row (B)⊥

)
+dim

(
C2∩row (B)⊥

)︸                                                    ︷︷                                                    ︸
=dim(C⊥2 ∩row(B))−dim(C⊥1 ∩row(B)) (by Lemma 50)

+D(X‖Uψ(S )|S ),

which proves (11).
On the other hand, observe that the number of pos-

sible S for any given W = w is exactly equal to
qm·dim(C1∩row(B)⊥)/qm·dim(C2∩row(B)⊥). Also recall that the relative
entropy is nonnegative [8, Ch. 2, p. 26]. Thus, by applying
(26) to the set {s ∈ Fl

qm : w = xBT, x ∈ ψ(s)} that depends on
the realization W = w, we have the following inequality.

H(S |W) ≤ dim(C1 ∩ row (B)⊥) − dim(C2 ∩ row (B)⊥).

Thus,

I(S ; W) = H(S ) − H(S |W)
≥ H(S ) − dim(C1 ∩ row (B)⊥) − dim(C2 ∩ row (B)⊥)
= H(S ) − l + dim(C⊥2 ∩row (B)) − dim(C⊥1 ∩row (B))

(by Lemma 50)
= dim(C⊥2 ∩row (B))−dim(C⊥1 ∩row (B))−D(S ‖UFl

qm
),

(by (25))

which proves (12). Thus, we have the statement 1) in the
lemma.

Here, we show the equalities in (11) and (12)
for the uniformly distributed S and X. Assume that
S is uniform over Fl

qm . Then, from (25), we have
D(S ‖UFl

qm
) = l − H(S ) = 0. Also, when X is uniform

over C1, i.e., uniform over ψ(S ), we have H(X|S ) = dimC2
and hence D(X‖Uψ(S )|S ) = dimC2 − H(X|S ) = 0 from (26).
Therefore, the equalities in (11) and (12) hold, and we have
the statement 2) in the lemma.

Finally, we show the statement 3) for the distribution of S
that assigns a positive probability to every element in Fl

qm . Let
PS be a distribution of S such that all elements in Fl

qm have
positive probabilities, and assume that I(S ; W) = 0 holds for
PS . Recall that the mutual information is expressed in terms
of the relative entropy [8, Ch. 2, pp. 18–19] as

0 = I(S ; W) =
∑

s

PS (s)D(WS =s||W).



where WS =s is the random variable with the distribution
PW |S =s. Thus, D(WS =s||W) = 0, i.e., PW |S =s = PW , simultane-
ously holds for all s ∈ Fl

qm from the nonnegativity of relative
entropy [8, Ch. 2, p. 26].

Here, consider another random variable S ′ with an arbi-
trary distribution PS ′ , and the corresponding random vari-
able W ′. Here we assume that the conditional probability
of W ′ given S ′ is the same as that of W given S , which
means that PW′ |S ′=s = PW |S =s = PW = PW′ for all s. By
I(S ′|W ′) =

∑
s PS ′ (s)D(W ′S ′=s||W

′), we see I(S ′|W ′) = 0.
In particular, for the uniformly distributed S ′ we have
I(S ′; W ′) = 0 and D(S ′‖UFl

qm
) = 0, and hence we have

0 = I(S ′; W ′) ≥ dim(C⊥2 ∩ row (B)) − dim(C⊥1 ∩ row (B)),

from (12). Therefore, since

dim(C⊥2 ∩ row (B)) − dim(C⊥1 ∩ row (B)) ≥ 0,

holds, we have dim(C⊥2 ∩ row (B))− dim(C⊥1 ∩ row (B)) = 0.

Appendix B
Proof of Proposition 33

From the definition of C′1, D2,i is a subcode of D1,i
with dimension dimD2,i = dimD1,i − 1 = dimC1 − 1
over Fqm for each i ∈ {1, . . . , l}. Let L , {1, . . . , l} and
SL\{i} , [S 1, . . . , S i−1, S i+1, . . . , S l] for 1 ≤ i ≤ l. For S i ∈ Fqm ,
define a coset

τ(S i) ,
{
[SL\{i}, X] : SL\{i} ∈ Fl−1

qm and X ∈ ψ([S 1, . . . , S l])
}

∈ D1,i/D2,i.

Here we define Z
{i} , P

{i} ([S , X]) = [SL\{i}, X] ∈ D1,i.
Recall that S 1, . . . , S l are mutually independent and uniformly
distributed over Fqm . Thus, Z

{i} can be regarded as the one
generated from a secret message S i ∈ Fqm by a nested
coset coding scheme with D1,i and D2,i according to the
uniform distribution over τ(S i), that is, Z

{i} ∈ τ(S i) is chosen
uniformly at random from τ(S i) ∈ D1,i/D2,i. Therefore, we
have I(S i; DZT

{i}
) = 0 for any D ∈ F

µ×(n+l−1)
q whenever

µ < MR,1(D⊥2,i,D
⊥
1,i) from Corollary 28.

For an arbitrary subset R ⊆ L\{i}, define a matrix FR that
consists of |R| rows of an (l − 1) × (l − 1) identity matrix,
satisfying [S j : j ∈ R]T = FRS T

L\{i}. Here we note that
FR ∈ F

|R|×(n+l−1)
qm is defined as a matrix over the base field Fq.

For an arbitrary matrix B ∈ Fk×n
q (0 ≤ k ≤ n), let µ = |R|+k and

D =
[

FR O
O B

]
∈ F(|R|+k)×(n+l−1)

q . Then, since DZT
{i}

=
[

[S j: j∈R]T

BXT

]
,

we have the following equality from the foregoing proof.

0 = I(S i; DZT
{i}

) = I(S i; S R, BXT), (33)

whenever |R| + k < M1(D⊥2,i,D
⊥
1,i). Let

R′ , R ∪ {i} = {r1, . . . , r|R|+1}. Since S 1, . . . , S l are mutually
independent, the mutual information between S R′ and BXT is

given by

I(S R′ ; BXT) = H(S R′ ) − H(S R′ |BXT)

=

|R|+1∑
j=1

H(S r j ) −
|R|+1∑
j=1

H(S r j |BXT, S {r1,...,r j−1})

=

|R|+1∑
j=1

I(S r j ; BXT, S {r1,...,r j−1}),

from the chain rule [8, Ch. 2, p. 16]. Since the mutual
information is nonnegative [8, Ch. 2, p. 27], we have
I(S R′ ; BXT) = 0 if and only if I(S r j ; BXT, S {r1,...,r j−1}) = 0
for all r j ∈ R′. By substituting i = r j in (33),
we always have I(S r j ; BXT, S {r1,...,r j−1}) = 0 only for r j

if |R| + k < M1(D⊥2,r j
,D⊥1,r j

). Thus, we always have
I(S R′ ; BXT) = 0 for arbitrary k and R′ whenever
|R| + k < min

{
M1(D⊥2,i,D

⊥
1,i) : 1 ≤ i ≤ l

}
holds. Therefore,

we prove that the universal ω-security is attained whenever
ω < min

{
MR,1(D⊥2,i,D

⊥
1,i) : 1 ≤ i ≤ l

}
, and we have (22).

Appendix C
Derivation of theMain Theorems of Universal

Error-Correction Capability

In this appendix, we first briefly review Silva et al.’s
approach [35, Section III]. Next, by using their approach,
we analyze the error correction capability of the nested coset
coding scheme over the coherent network coding system and
derive Theorem 38. We finally extend the analysis to the
noncoherent systems and also derive Proposition 40. Here
we note that these derivations of theorems in Section IV
are natural generalizations of the work in [35] to the error
correction of the nested coset coding scheme.

A. Brief Review of Silva et al.’s Approach

First we give a brief review of the approach of [35, Section
III]. Consider a transmission of data over a channel in which
there exists an adversary. Let the channel be specified by a
finite input alphabet P (e.g., a code), a finite output alphabet Q
(e.g., a vector space), and a collection of fan-out sets QP ⊆ Q

for all P ∈ P (e.g., a collection of cosets). For each input
P ∈ P, the output Q of the channel is constrained to be
in QP but is otherwise arbitrarily chosen by an adversary. A
decoder for P is any function P̂ : Q → P ∪ { f }, where f < P
denotes a decoding failure, i.e., detected errors. When P ∈ P
is transmitted and Q ∈ QP is received, a decoder is said to be
successful if P̂(Q) = P. We also say that a decoder is infallible
if it is successful for all Q ∈ QP and all P ∈ P.

Assume that the fan-out sets for a input P is given as

QP = {Q ∈ Q : ∆(P,Q) ≤ t} ,

for some ∆ : P × Q → N. The value ∆(P,Q) is called the
discrepancy between P and Q for the given channel, which
represents the minimum effort required for an adversary in
the channel to transform P to Q. The value t represents the
maximum effort of the adversary allowed in the channel.
The problem is to decode P from Q by correcting at most



t discrepancy. Then, the minimum-discrepancy decoder is
defined by

P̂ = arg min
P∈P

∆(P,Q).

The relation between the discrepancy function and the error
correction capability of this decoder was given in [35] as
follows.

Definition 51 ( [35, Definition 1]). For a discrepancy function
∆ : P×Q → N, let δ(P, P′) = min {∆(P,Q) + ∆(P′,Q) : Q ∈ Q}.
Then, ∆ is said to be normal if, for all P, P′ ∈ P and all
0 ≤ i ≤ δ(P, P′), there exists some Q ∈ Q such that ∆(P,Q) = i
and ∆(P,Q) = δ(P, P′) − i.

Theorem 52 ( [35, Proposition 1, Theorem 3]). Let
δ(P) = min {δ(P, P′) : P, P′ ∈ P, P , P′}. Suppose ∆(·, ·) is
normal. Then, the minimum discrepancy decoder P̂ is infallible
if and only if t ≤ b(δ(P) − 1)/2c.

B. How to Prove Theorem 38

By applying the above approach [35, Section III] to the
secure network coding over the coherent network coding
system in Section IV-A, this subsection derives Theorem 38,
i.e., the universal error correction capability of the nested coset
coding scheme with C1,C2 for given A, expressed in terms of
the first RGRW.

Recall that the received packets Y are given by
YT = AXT+DZT in the setup of Section III-B, and that X ∈ Fn

qm

is chosen from a set XS ∈ PS corresponding to S ∈ S by a
certain coding scheme defined in Definition 36. Note that we
do not restrict the coding scheme to the nested coset coding
scheme here. From now on, we write X , XS for the sake of
simplicity. Suppose that the transfer matrix A is known to the
sink node as in Section IV-A. Here, we define the discrepancy
function between X and Y for given A by

∆A(X,Y)

, min
{
r∈N : ∃D∈FN×r

q ,∃Z ∈Fr
qm ,∃X∈X,YT = AXT+DZT

}
.

(34)

This definition of ∆A(X,Y) represents the minimum number
r of error packets Z required to be injected in order to
transform at least one element of X into Y , as [35, (9)]. For
the discrepancy function ∆A(X,Y), the minimum discrepancy
decoder is given as

X̂ = arg min
X∈PS

∆A(X,Y).

Note that “the minimum discrepancy decoder P̂ is infallible” in
Theorem 52 means that for the discrepancy function ∆A(X,Y),
“any t error packets can be corrected by the coding scheme
for given A using the minimum discrepancy decoder X̂.” In
the following, we will show that ∆A(X,Y) is normal.

We define the ∆-distance [35] between X and X′, induced
by ∆A(X,Y), as

δA(X,X′) , min
{
∆A(X,Y) + ∆A(X′,Y) : Y ∈ FN

qm

}
, (35)

for X,X′ ∈ PS. Let δA(PS) be the minimum ∆-distance given
by

δA(PS) , min
{
δA(X,X′) : X,X′ ∈ PS,X , X′

}
.

Lemma 53 ( [35, Lemma 4]).

min
{
r∈N : D∈FN×r

q ,Z ∈Fr
qm ,YT = AXT+DZT

}
= dR(XAT,Y).

Lemma 54. ∆A(X,Y) = min
{
dR(XAT,Y) : X ∈ X

}
.

Proof: From Lemma 53, we have

∆A(X,Y)

= min
{
r∈N : D∈FN×r

q ,Z ∈Fr
qm , X∈X,YT = AXT+DZT

}
= min

{
min

{
r∈N : D∈FN×r

q ,Z ∈Fr
qm ,YT = AXT+DZT

}
: X∈X

}
= min

{
dR(XAT,Y) : X ∈ X

}
.

Lemma 55. For X,X′ ∈ PS, we have

δA(X,X′) = min
{
dR(XAT, X′AT) : X ∈ X, X′ ∈ X′

}
. (36)

Proof: First we have

δA(X,X′)

= min
{
∆A(X,Y) + ∆A(X′,Y) : Y ∈ FN

qm

}
= min

{
min

{
dR(XAT,Y) : X ∈ X

}
+

min
{
dR(X′AT,Y) : X′ ∈ X′

}
: Y ∈ FN

qm

}
= min

{
dR(XAT,Y) + dR(X′AT,Y) : X ∈ X, X′ ∈ X′,Y ∈ FN

qm

}
.

(37)

The rank distance satisfies the triangle inequality
dR(XAT, X′AT) ≤ dR(XAT,Y) + dR(X′AT,Y) for ∀Y ∈ FN

qm [15].
This lower bound can be achieved by choosing, e.g., Y = XAT.
Therefore, from (37), we have (36).

Lemma 56. The discrepancy function ∆A(X,Y) is normal.

Proof: Let X,X′ ∈ PS and let 0 ≤ i ≤ d = δA(X,X′).
Then, d = min

{
dR(XAT, X′AT) : X ∈ X, X′ ∈ X′

}
from

Lemma 55. Let X̄ ∈ X and X̄′ ∈ X′ be vectors satisfying
d = dR(X̄AT, X̄′AT). Here, we can always find two vectors
W,W ′ ∈ Fn

qm such that W + W ′ = (X̄′ − X̄)AT, dimFqS(W) = i
and dimFqS(W ′) = d−i, as shown in the proof of [35, Theorem
6]. Taking Ȳ = X̄AT +W = X̄′AT−W ′, we have dR(X̄AT, Ȳ) = i
and dR(X̄′AT, Ȳ) = d − i. We thus obtain ∆A(X, Ȳ) ≤ i and
∆A(X′, Ȳ) ≤ d − i from Lemma 54. On the other hand,
since δA(X,X′) = d, we have ∆A(X,Y) + ∆A(X′,Y) ≥ d
for any Y ∈ Fn

qm from (35). Therefore, ∆A(X, Ȳ) = i and
∆A(X′, Ȳ) = d − i hold.

As [35, Theorem 7] obtained by [35, Theorems 3 and 6],
we have Proposition 57 from Theorem 52 and Lemma 56 by
the approach of Appendix C-A.

Proposition 57. Consider the t-error (n×m)q linear network in
Definition 20. Suppose that for a secret message S ∈ Fl

qm , the



transmitted n packets X ∈ X are generated by a coding scheme
defined in Definition 36. Then, the minimum discrepancy
decoder for ∆A(X,Y) is infallible for any fixed A if and only
if t ≤ b(δA(PS) − 1)/2c.

This proposition implies that the coding scheme given in
Definition 36 is guaranteed to determine the unique set X
against any t packet errors for any fixed A if and only if
δA(PS) > 2t. Here we note that if X is uniquely determined,
S is also uniquely determined from Definition 36.

In the following, we restrict the coding scheme to the nested
coset coding scheme with C1 and C2, and present a special case
of Proposition 57 expressed in terms of the RGRW. That is,
we set S = Fl

qm and PS = C1/C2 as defined in Definition 21.

Lemma 58.

δA(C1/C2) = min{dR(XAT, X′AT) : X, X′ ∈ C1, X′ − X < C2}.

Proof:

δA(C1/C2)
= min

{
δA(X,X′) : X,X′ ∈ C1/C2,X , X

′}
= min

{
min

{
dR(XAT, X′AT) : X∈X, X′ ∈X′

}
:

X,X′ ∈C1/C2,X,X
′
}

= min
{
dR(XAT, X′AT) : X∈X∈C1/C2, X′ ∈X′ ∈C1/C2,X,X

′
}

= min
{
dR(XAT, X′AT) : X, X′ ∈ C1, X′ − X < C2

}
.

Lemma 59 ( [28, Ch. 4, p. 211], [35]). For an arbitrary
vector x ∈ Fn

qm and an arbitrary matrix A ∈ FN×n
q , we have

dimFqS(xAT) ≥
[
dimFqS(x) + rank A − n

]+
.

Lemma 60. Fix x ∈ Fn
qm and ρ ∈ {0 . . . , n} arbitrarily. Then,

there always exists A ∈ FN×n
q with rank A = n− ρ that satisfies

the equality dimFqS(xAT) =
[
dimFqS(x) − ρ

]+
in Lemma 59.

Proof: First represent an n-dimensional vector x ∈ Fn
qm

over Fqm as an m × n matrix over the base field Fq, denoted
by Mx ∈ F

m×n
q . Here we note that dimFqS(xAT) = rank MxAT.

We define by 〈Mx〉 ⊆ F
n
q and 〈A〉 ⊆ Fn

q row spaces of Mx

and A over Fq, respectively. The rank of MxAT is given
by rank MxAT = rank A − dim

(
〈Mx〉

⊥ ∩ 〈A〉
)

[28, Ch. 4,
p. 210], where 〈Mx〉

⊥ ∈ Fn
q is the dual of 〈Mx〉 over Fn

q. If
dim〈Mx〉

⊥ ≤ n − ρ, i.e., if rank Mx = dimFqS(x) ≥ ρ, we can
always choose A satisfying rank A = n − ρ and 〈A〉 ⊇ 〈Mx〉

⊥.
Then, for such A, we have 〈Mx〉

⊥ = 〈Mx〉
⊥ ∩ 〈A〉 and hence

rank MxAT = rank A︸ ︷︷ ︸
n−ρ

− dim
(
〈Mx〉

⊥ ∩ 〈A〉
)︸           ︷︷           ︸

=〈Mx〉
⊥

= n − ρ − dim〈Mx〉
⊥︸      ︷︷      ︸

=n−rank Mx

= rank Mx − ρ

= dimFqS(x) − ρ.

On the other hand, if dim〈Mx〉
⊥ > n − ρ, i.e., if

rank Mx = dimFqS(x) < ρ, we can always choose A satisfying

rank A = n − ρ and 〈A〉 $ 〈Mx〉
⊥. Then, for such A, we have

〈A〉 = 〈Mx〉
⊥ ∩ 〈A〉 and hence

rank MxAT = rank A − dim
(
〈Mx〉

⊥ ∩ 〈A〉
)︸                 ︷︷                 ︸

=rank A

= 0.

Therefore, the lemma is established.

For the rank deficiency ρ = n − rank A, we have[
dR(X, X′) − ρ

]+
≤ dR(XAT, X′AT) from Lemma 59, and there

always exists A ∈ FN×n
q depending on (X, X′) such that the

equality holds from Lemma 60. Thus, from Lemma 58, we
have the following inequalities for an arbitrarily fixed A with
rank A = n − ρ.

min
A∈FN×n

q :rank A=n−ρ
δA(C1/C2)

=
[
min

{
dR(X, X′) : X, X′ ∈ C1, X′ − X < C2

}
− ρ

]+
=

[
min {dR(X, 0) : X ∈ C1, X < C2} − ρ

]+
=

[
MR,1(C1,C2) − ρ

]+ . (by Lemma 12)

Thus, for 1 ≤ i ≤ ρ, we have

min
A:rank A=n−ρ

δA(C1/C2) < min
A:rank A=n−(ρ−i)

δA(C1/C2),

and hence we obtain

min
A:rank A≥n−ρ

δA(C1/C2) = min
A:rank A=n−ρ

δA(C1/C2)

=
[
MR,1(C1,C2) − ρ

]+ .
Therefore, from Proposition 57 for PS = C1/C2, Theorem 38
is proved.

C. How to Prove Proposition 40

In this subsection, we extend the analysis for the coherent
network coding system, given in Appendix C-B, to one for the
noncoherent system in the setup of Section IV-B. We derive
Proposition 40, i.e., an expression for the error correction
capability of the lifting construction [38] of the nested coset
coding scheme in terms of the RGRW. Here we recall that only
one sink node has been assumed without loss of generality.

As in Appendix C-B, we first consider the correction
capability of the generalized coding scheme defined in Defini-
tion 36. Recall that in the noncoherent network coding system,
the transfer matrix A at the sink node is unknown. Define
the discrepancy function between X = XS ∈ PS and Y for
unknown A with at most ρ rank deficiency, as follows:

∆ρ(X,Y)

, min
{
r ∈ N : ∃D ∈ FN×r

q ,∃Z ∈ Fr
qm ,∃A ∈ FN×n

q ,∃X ∈ X,

YT = AXT + DZT, rank A ≥ n − ρ
}

= min
{
∆A(X,Y) : A ∈ FN×n

q , rank A ≥ n − ρ
}
, (38)

where the second equality is obtained by (34). The definition
of ∆ρ(X,Y) represents the minimum number r of error packets
Z required to be injected in order to transform at least
one element of X into Y , for at least one transfer matrix



A satisfying rank A ≥ n − ρ. For ∆ρ(X,Y), the minimum
discrepancy decoder is given as

X̂ = arg min
X∈PS

∆ρ(X,Y). (39)

We also define ∆-distance between X and X′, induced by
∆ρ(X,Y), as

δρ(X,X′)

, min
{
∆ρ(X,Y) + ∆ρ(X′,Y) : Y ∈ FN

qm

}
= min

{
∆A(X,Y) + ∆A′ (X′,Y) : A, A′ ∈ FN×n

q ,Y ∈ FN
qm ,

rank A ≥ n − ρ, rank A′ ≥ n − ρ
}
,

where the second equality is obtained by (38). Let δρ(PS) be
the minimum ∆-distance given by

δρ(PS) , min
{
δρ(X,X′) : X,X′ ∈ PS,X , X′

}
.

Observe that from Lemma 54, we can rewrite ∆ρ(X,Y) as

∆ρ(X,Y)

= min
{
dR(XAT,Y) : X ∈ X, A ∈ FN×n

q , rank A ≥ n − ρ
}
. (40)

Also, from Lemma 55, we have

δρ(X,X′)

= min
{
dR(XAT, X′A′T) : X ∈ X, X′ ∈ X′, A, A′ ∈ FN×n

q ,

rank A ≥ n − ρ, rank A′ ≥ n − ρ
}
. (41)

Lemma 61. The discrepancy function ∆ρ(X,Y) is normal.

Proof: Let X,X′ ∈ PS and let 0 ≤ i ≤ d = δρ(X,X′).
Let A, A′ ∈ FN×n

q be fixed matrices that minimize (41), and
then suppose that X̄ ∈ X and X̄′ ∈ X′ are vectors satisfying
d = dR(X̄AT, X̄′A′T). Here, we can always find two vectors
W,W ′ ∈ Fn

qm such that W + W ′ = X̄′A′T − X̄AT, dimFqS(W) = i
and dimFqS(W ′) = d − i, as shown in the proof of [35,
Theorem 13]. Taking Ȳ = X̄AT + W = X̄′A′T − W ′, we have
dR(X̄AT, Ȳ) = i and dR(X̄′A′T, Ȳ) = d − i. We thus obtain
∆ρ(X, Ȳ) ≤ i and ∆ρ(X′, Ȳ) ≤ d − i from (40). On the other
hand, since δρ(X,X′) = d, we have ∆ρ(X,Y) + ∆ρ(X′,Y) ≥ d
for any Y ∈ Fn

qm from (38). Therefore, ∆ρ(X, Ȳ) = i and
∆ρ(X′, Ȳ) = d − i hold.

As [35, Theorem 14], we have Proposition 62 from Theo-
rem 52 and Lemma 61 by the approach of Appendix C-A.

Then, we have the following proposition by the approach
of Appendix C-A.

Proposition 62. Consider the t-error (n × m)q linear network
in Definition 20. Suppose that for a secret message S ∈ S,
the transmitted n packets X ∈ X are generated by a cod-
ing scheme defined in Definition 36. Then, the minimum
discrepancy decoder for ∆ρ(X,Y) is infallible if and only if
t ≤ b(δρ(PS) − 1)/2c.

This proposition implies that the coding scheme given in
Definition 36 is guaranteed to determine the unique set X
against any t packet errors if and only if δρ(PS) > 2t.

In the following, we restrict X to that generated by the
lifting construction [38] of the nested coset coding scheme,

as described in Section IV-B, and we shall express the error
correction capability given in Proposition 62 in terms of the
RGRW. Recall that in the lifting construction of the nested
coset coding scheme, C1 ⊆ F

n
qm̃ and C2 $ C1 are a linear code

and its subcode for m̃ = m − n, respectively. Also recall that
S = Fl

qm̃ , XS = XS ,lift and PS = Plift defined in (23). We will
consider the error correction capability in this setup. Here, we
introduce the following proposition given in [35].

Proposition 63 ( [35, Proposition 18]). For X, X′ ∈ Fn
qm , we

have

min
{
dR(XAT, X′A′T) : A, A′ ∈ FN×n

q ,

rank A ≥ n − ρ, rank A′ ≥ n − ρ
}

=
[
dimFq

(
S(X)+S(X′)

)
−min

{
dimFqS(X), dimFqS(X′)

}
−ρ

]+
.

From this proposition, we have the following lemma.

Lemma 64.

δρ(Plift) = min
{[

dR(X̃, X̃′) − ρ
]+

: X̃, X̃′ ∈ C1, X̃′ − X̃ < C2

}
.

Proof: Since the transmitted packets are generated by the
lifting construction of the nested coset coding scheme, we
have dimFqS(X) = n for all X ∈ X and for all X ∈ Plift.
For X ∈ X ∈ Plift and X′ ∈ X′ ∈ Plift, we thus have

dimFq

(
S(X) +S(X′)

)
−min

dimFqS(X)︸       ︷︷       ︸
=n

, dimFqS(X′)︸        ︷︷        ︸
=n

 − ρ
= rank

[
I I

φm̃(X̃) φm̃(X̃′)

]
−min{n, n} − ρ

= rank
[

I 0
φm̃(X̃) φm̃(X̃′) − φm̃(X̃)

]
︸                                   ︷︷                                   ︸

=n+rank (φm̃(X̃′)−φm̃(X̃))

−n − ρ

= rank (φm̃(X̃′) − φm̃(X̃)︸             ︷︷             ︸
=φm̃(X̃′−X̃)

) − ρ

= dimFqS(X̃′ − X̃) − ρ

= dR(X̃, X̃′) − ρ,

where in the first equality, X and X′ ∈ Fn
qm are regarded as m×n

matrices over Fq, XT =
[
I φm̃(X̃)T

]
and X′T =

[
I φm̃(X̃′)T

]
,

respectively. Thus, by combining Proposition 63 and (41), we
have the following equation for XS ,lift,XS ′,lift ∈ Plift.

δρ(XS ,lift,XS ′,lift)

= min
{[

dR(X̃, X̃′) − ρ
]+

: X ∈ XS ,lift, X′ ∈ XS ′,lift

}
= min

{[
dR(X̃, X̃′) − ρ

]+
: X̃ ∈ ψ(S ), X̃′ ∈ ψ(S ′)

}
. (by (23))



Therefore, we finally have

δρ(Plift)

= min
{
δρ(X,X′) : X,X′ ∈ Plift,X , X

′
}

= min
{

min
{[

dR(X̃, X̃′) − ρ
]+

: X̃ ∈ ψ(S ), X̃′ ∈ ψ(S ′)
}

:

ψ(S ), ψ(S ′) ∈ C1/C2, ψ(S ) , ψ(S ′)
}

= min
{ [

dR(X̃, X̃′) − ρ
]+

: X̃ ∈ ψ(S ) ∈ C1/C2,

X̃′ ∈ ψ(S ′) ∈ C1/C2, ψ(S ) , ψ(S ′)
}

= min
{[

dR(X̃, X̃′) − ρ
]+

: X̃, X̃′ ∈ C1, X̃′ − X̃ < C2

}
.

From Lemma 64, we have

δρ(Plift) + ρ = min
{
dR(X̃, X̃′) : X̃, X̃′ ∈ C1, X̃′ − X̃ < C2

}
= min

{
dR(X̃, 0) : X̃ ∈ C1, X̃ < C2

}
= MR,1(C1,C2). (by Lemma 12)

Thus, from Proposition 62 for PS = Plift, Proposition 40 is
proved.
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