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Abstract

We pose the deterministic, nonparametric, approximation problem for scalar nonnegative input/output

systems via finite impulse response convolutions, based on repeated observations of input/output signal

pairs. The problem is converted into a nonnegative matrix factorization with special structure for which

we use Csiszár’s I-divergence as the criterion of optimality. Conditions are given, on the input/output

data, that guarantee the existence and uniqueness of the minimum. We propose a standard algorithm of

the alternating minimization type for I-divergence minimization, and study its asymptotic behavior. We

also provide a statistical version of the minimization problem and give its large sample properties.
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Approximation of Nonnegative Systems by

Finite Impulse Response Convolutions

I. INTRODUCTION

Inverse problems are at the core of system modeling and identification. Since the publication of [10] they

have been the subject of a vast technical literature in applied mathematics, engineering, and specialized

applied fields. The focus of this paper is on the subclass of problems for which the models are linear and

time (or space) invariant. Even within this much narrower field the literature is very rich, with many of

the contributions leaning towards specific computational aspects of interest for specialized applications.

The goals of the present paper are to pose the problem of approximation of nonnegative i/o system

by finite impulse response convolutions, when repeated input/output measurements are available, to

propose an algorithm for its solution, and to study its convergence properties. We do not deal with

the computational aspects, which must be tailored on the specific application to be of effective value.

Our attention will moreover be restricted to nonnegative impulse responses, i.e. those for which positive

inputs result in positive outputs.

Early contributions for the class of strictly related nonnegative deconvolution problems, are [12], [8]

for single input/output observations. Following the choice made in those early contributions the criterion

of optimality will be Csiszár’s I-divergence, which as argued in [8] is the best choice for approximation

problems under nonnegativity constraints. From the mathematical point of view the techniques that have

been used in [7] to analyse a nonnegative matrix factorization algorithm are perfectly suited to deal with

the present approximation problem and provide several benefits over the traditional analyses contained

in [8].

We provide explicit conditions for the existence and uniqueness of the minimizer of the criterion in

terms of the data. The algorithm that minimizes the informational divergence criterion is of the alternating

minimization type, and the optimality conditions (the Pythagorean relations) are satisfied at each step.

Exploiting this, we are able to present a proof of convergence which is more transparent than other proofs

in the literature, e.g. [2], [8], and [12]. Contrary to previous contributions our treatment allows form

multiple input/output pairs. The algorithm for the casem = 1 has been studied in [8]. An advantage

of allowing multiple input/output pairs is that this setting leads easily to a statistical analysis. In the

last section of the paper we provide a statistical version ofthe minimization problem and give its large
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sample properties.

We emphasize that here we pursue a nonparametric approach tothe approximation of a given in-

put/output system by a linear time invariant system. No assumptions on the order, which could as well

be infinite, are being made. In doing so we view things from a completely different angle than is usual

for the identification or realization of (nonnegative) linear systems, see [1] for instance. The contributions

of the paper are theoretical. Possible applications of the algorithm are in the field of image processing

and emission tomography. For these we refer for instance to [8], [9], [12] and the references therein.

A brief summary of the paper follows. In Section II we state the problem and formulate conditions for

strict convexity of the objective function, and hence for the existence and uniqueness of the solution. In

Section III the original problem is lifted into a higher dimensional setting, thus making it amenable to

alternating minimization. The optimality properties (Pythagoras rules) of the ensuing partial minimization

problems are established here. In Section IV we derive the iterated minimization algorithm combining

the solutions of the partial minimizations and we present its first properties. Section V is devoted to the

convergence analysis of the algorithm. The Pythagoras rules facilitate compact and transparent proofs. In

the last Section VI, taking advantage of the repeated input/output measurements setup, we give a concise

treatment of a statistical version of the approximation problem, focusing on its large sample properties.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

A discrete time, causal, convolutional systemSh maps input sequences(ut)t∈N ∈ R
N into output

sequences(yt)t∈N ∈ R
N, and is completely characterized by an impulse response sequence(ht)t∈N ∈ R

N,

such that

yt = Shut =

t∑

k=0

hkut−k, t ∈ N. (II.1)

Rewriting equation (II.1), fort = 0, . . . , N , in matrix form, one gets the system of equations




y0
...
...

yN




=




h0 0 · · · · · · 0

h1 h0 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

hN · · · · · · h1 h0







u0
...
...

uN




, (II.2)

compactly written as

y = T (h)u, (II.3)
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having introduced the notationsu = (u0, . . . , uN )⊤, y = (y0, . . . , yN )⊤ andT (h) for the matrix in (II.2).

For m input sequencesuj, with corresponding output sequencesyj, wherej = 1, . . . ,m, equation (II.3)

becomes

Y = T (h)U, (II.4)

whereY =(y1, . . . , ym)∈R (N+1)×m andU =(u1, . . . , um)∈ R
(N+1)×m.

Convention II.1 In expressions containing elements ofU the first index is allowed to run out of range,

posingUij := 0 for all i < 0.

In many practical contexts the inputs and outputsU andY are directly measureddata, while h is not

known or, more generally, a causal convolutional systemSh is not known to exist such thatY = T (h)U .

In either of these cases an interesting problem is to findh such that the approximate relation

Y ≈ T (h)U (II.5)

is the best possible with respect to a specified loss criterion.

In the paper we concentrate on this problem, under the extra condition that (II.5) is the approximate

representation of the behavior of a positive system, i.e. all quantities in (II.5) are nonnegative real numbers.

The goal is the determination of thebest nonnegative sequenceh = (h0, . . . , hN )⊤, where the loss

criterion, chosen to measure the discrepancy between the left and the right hand side in (II.5), is the

I-divergencebetween nonnegative matrices. See [4] for a justification from first principles.

For given nonnegative matricesM andN of the same size,M is said to be absolutely continuous with

respect toN , denotedM ≪ N , if elementwiseMij = 0 for all (i, j) such thatNij = 0. TheI-divergence

between the nonnegative matrices of the same sizeM , andN is defined as

I(M ||N) :=
∑

ij

(
Mij log

Mij

Nij

−Mij +Nij

)
, (II.6)

if M ≪ N , otherwise setI(M ||N) := +∞ In definition (II.6) we also adopt the usual conventions

0
0 = 0 and0 log 0 = 0. This leads to

Problem II.2 For givenY ≥ 0 andU ≥ 0, find a nonnegative vectorh = (h0, . . . , hN )⊤ ∈ H := R
N+1
+

such that

F (h) := I(Y ||T (h)U)

is minimized overH.
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Remark II.3 In Problem II.2 one can assume, without loss of generality, thatS :=
∑

ij Yij = 1. Indeed,

for any S > 0, put Ỹij = Yij/S and Ũij = Uij/S. It then holds thatI(Y ||T (h)U) = SI(Ỹ ||T (h)Ũ ),

and sinceS does not depend onh the two problems have the same minimizers. This property will be

useful in Section V.

Problem II.2 is well posed if there exists at least oneh ∈ R
N+1
+ such thatF (h) is finite. From

definition (II.6) it follows thatF (h) is finite if and only ifY ≪ T (h)U , or equivalently iff(T (h)U)ij > 0

for all (i, j) such thatYij > 0. Since

(T (h)U)ij =

i∑

k=0

hkUi−k,j, (II.7)

the following condition characterizes the data(U, Y ) that produce a well posed Problem II.2.

Condition II.4 For all (i, j) such thatYij > 0 there existsℓ ≤ i such thatUℓj > 0.

Condition II.4 is rather weak. In terms of the data sequencesit states that ifyji > 0 thenujℓ > 0 for some

ℓ ≤ i, i.e. if the present output is strictly positive then the present or at least one of the past inputs must

be strictly positive. This condition is always satisfied if the data(U, Y ) are produced by linear, causal

systems.

We prove below that, under a stronger condition on the data(U, Y ), the lossF (h) is strictly convex,

a property that simplifies the study of the existence and uniqueness of the solution of Problem II.2.

Condition II.5 For all i ∈ {0, . . . , N} there existsj ∈ {1, . . . ,m} such thatYij > 0 andU0j > 0.

Condition II.5 is strictly stronger than Condition II.4, but still rather weak. Physically it states that for

each timei there exists at least one experimentj with strictly positive initial inputU0j and strictly

positive outputYij at time i. This condition holds e.g. under the (stronger) assumptionthat for some

experimentj, with initial input U0j > 0, the output trajectoryYij is strictly positive.

Lemma II.6 Under Condition II.5 the lossF (h) is strictly convex on its effective domain, that is the set

{h : F (h) < ∞}.

Proof: The elementsHkl of the HessianH of the lossF (h) are

Hkl :=
∂2F

∂hk∂hl
(h) =

∑

ij

Yij

(T (h)U)2ij
Ui−k,jUi−l,j.
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It is enough to show thatH is strictly positive definite. Letx ∈ R
N+1, then

x⊤Hx =
∑

kl

Hklxkxl =
∑

ij

Yij

(T (h)U)2ij
(U ∗ x)2ij,

where(U ∗x)ij =
∑

l xlUi−l,j. Let x⊤Hx = 0. By nonnegativity of the summands, this only happens if
Yij

(T (h)U)2ij
(U ∗x)2ij = 0 for all i, j. SinceF (h) < ∞ on its effective domain, we must haveT (h)Uij > 0 as

soon asYij > 0. Hencex⊤Hx = 0 iff Yij(U∗x)ij = 0 for all i, j, which gives a system of linear equations

in x. For everyi fixed and summing overj one explicitly obtains
∑

k(
∑

j YijUi−k,j)xk = 0. This gives

a system of equations in which the matrix of coefficients is lower triangular with
∑

j YkjU0j as thek-th

diagonal element. Hence this system of equations hasx = 0 as its only solution iff
∑

j YkjU0j > 0 for

all k, but the latter constraint is guaranteed by Condition II.5,hence the Lemma is proved.

We are now ready to state the existence and uniqueness result. The proof is deferred to Section IV.

Proposition II.7 Assume Condition II.5 is satisfied, then Problem II.2 admitsa unique solution.

We write below the standard Kuhn-Tucker necessary conditions for a vectorh to be a minimizer ofF (h).

Note that, due to the convexity of the divergenceF (·) and the concavity of the nonnegativity constraint,

the Kuhn-Tucker conditions are sufficient for optimality (see e.g. [13, Theorem 2.19]). Condition II.5,

guarantees the strict convexity ofF (·) and therefore the uniqueness of the optimizer. Here, and elsewhere

in the paper, a dot� in place of an index denotes summation with respect to the dotted index, e.g.

Mi� :=
∑

j Mij

Denoting∇F (h)k := ∂F (h)
∂hk

, for k = 0, . . . , N , the Kuhn Tucker conditions assert that, if the vectorh

minimizesF (h) subject to the constraintshk ≥ 0, then

∇F (h)k = 0 if hk > 0, (II.8)

∇F (h)k ≤ 0 if hk = 0, (II.9)

where the partial derivatives∇F (h)k are explicitly given by

∇F (h)k = −
m∑

j=1

N∑

i=k

YijUi−k,j∑
p hpUi−p,j

+

N−k∑

l=0

Ul�. (II.10)

Example II.8 To illustrate that the minimizersh may be interior points (allhk > 0) or boundary points

(somehk = 0), we consider the following toy example. Letm = 1 andN = 1, thenT (h)U is a two

dimensional vector with componentsh0u0 andh0u1 + h1u0. The functionF is given by

F (h) = y0 log
y0

u0h0
− y0 + u0h0 + y1 log

y1
h0u1 + h1u0

− y1 + h0u1 + h1u0.
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Condition II.4 for well-posedness reads: ify0 > 0, thenu0 > 0, and if y1 > 0 thenu0 > 0 or u1 > 0.

The Condition II.5 for strict convexity reads:y0y1u0 > 0. One checks by immediate inspection that strict

convexity doesn’t hold ify0 = 0 of y1 = 0.

In this simple case the minimizingh∗ = (h∗0, h
∗
1)

⊤ can be written explicitly by inspection. Since

F (h) ≥ 0, with equality if and only ifY = T (h)U , one gets that, ify1u0 − y0u1 ≥ 0, thenh∗0 = y0

u0

andh∗1 = y1u0−y0u1

u2

0

satisfies the constraintsh∗ ≥ 0 and attains the minimumF (h∗) = 0. On the other

hand, if y1u0 − y0u1 < 0, then the boundary pointh∗0 = y0+y1

u0+u1

, andh∗1 = 0 satisfies the constraints

h∗ ≥ 0. Checking thath∗ satisfies the Kuhn Tucker conditions guarantees that it is a minimizer. From

equation (II.10) one gets∂F
∂h0

(h∗) = 0, and ∂F
∂h1

(h∗) = u0

u1(y0+y1)
(u1y0 − u0y1) ≥ 0, in agreement with

(II.8) and (II.9). See also Remark II.9 below for more general considerations.

In solving Problem II.2, minimizersh∗ at the boundary ofH = R
N+1
+ , i.e. with some zero components,

are the rule rather than an exception. This is illustrated inthe following remark.

Remark II.9 We analyse here the conditions that produce interior and boundary solutions of Problem II.2,

limiting the discussion to the casem = 1 which is more transparent. If the minimizerh belongs to the

interior of the domainH, then it can be found imposing that∇F (h)k = 0 for all k = 0, . . . , N , i.e. from

equation (II.10),

∇F (h)k = −
N∑

i=k

yiui−k∑
p hpui−p

+

N−k∑

l=0

ul = 0. (II.11)

Assume thatu0 > 0. Denotingti :=
∑

p hpui−p, the above constraints become

∇F (h)k = −
N∑

i=k

yiui−k

ti
+

N∑

i=k

ui−k = 0. (II.12)

For k = N this reduces to

−yNu0
tN

+ u0 = 0,

and one getstN = yN . Substitution into equation (II.12) fork = N − 1 gives,

−yN−1u0
tN−1

+ u0 −
yNu1
tN

+ u1 = 0,

and one getstN−1 = yN−1. Completing the recursion one gets the system of equations satisfied by the

optimal h,

yi = ti =

i∑

p=0

hpui−p, for i = 0, . . . , N. (II.13)
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In other words the only interior solution, if it exists, corresponds to perfect modeling,Y = T (h)U . Note

that, to find the unknownh, system (II.13) can be rewritten as follows




y0
...
...

yN




=




u0 0 · · · · · · 0

u1 u0 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

uN · · · · · · u1 u0







h0
...
...

hN




,

which is an alternative way of writing (II.2). The computation of the solution by Cramer’s rule gives

necessary and sufficient conditions on the data(u, y), in terms of a number of determinants, for the

existence of a feasible solution,h ∈ H. If at least one of these conditions is violated, a feasible solution

of Problem II.2 will necessarily be a boundary point. In thissense boundary point solutions are the rule

rather than the exception.

III. L IFTED VERSION OFPROBLEM II.2

To solve Problem II.2 we propose an alternating minimization algorithm, following the approach

adopted for the derivation of the NMF algorithm in [7] and. Inparticular, we use a variation on the lifting

technique pioneered by [5] and followed in [7], recasting Problem II.2 as a double minimization in a larger

space. Here and in the following sections bold capitals, e.g. M, will denote matrices (tensors actually)

with three indices. The ambient space in which the lifted problem objects live isH3 := R
(N+1)×(N+1)×m
+ ,

and specifically onY , andW , two subsets ofH3 defined below in terms of the given data(Y,U),

Y = { Y ∈ H3 : Yi�j = Yij } ,

W = {W ∈ H3 : Wilj = hlUi−l,j, for someh ∈ H } .

Remark III.1 As a consequence of Convention II.1, allW ∈ W have elementsWilj = hlUi−l,j = 0

for i < l..

Remark III.2 For anyW ∈ H3 let W ∈ R
(N+1)×m
+ be its marginal, with elementsWij := Wi�j. Note

that

W ∈ W =⇒ Wij =
∑

l

hlUi−l,j. (III.1)
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It follows that, if Y ∈ Y ∩W, the data(Y,U) can be described with a perfect modelY = T (h)U , since

equation (III.1) and the definition ofY, imply thatYij =
∑

l hlUi−l,j.

We consider below two divergence minimization problems in the ambient spaceH3.

Problem III.3 GivenW ∈ H3, minimize the divergenceI(Y||W) overY ∈ Y .

Problem III.4 GivenY ∈ H3, minimize the divergenceI(Y||W) overW ∈ W .

Both problems have explicit solutions. Problem III.3, the first, has already been solved in [7]. For ease

of reference, we adapt the result below.

Proposition III.5 The solution of Problem III.3, denotedY∗ orY∗(W), satisfies

Y
∗
ilj =

Yij

Wij
Wilj,

moreover

I(Y∗(W)||W) = I(Y ||W ), (III.2)

which, if W ∈ W , reads

I(Y∗(W)||W) = I(Y ||T (h)U). (III.3)

The solution of Problem III.4, the second, is detailed in thenext proposition. Here and elsewhere in

the paper we use the notation

αk =

k∑

l=0

Ul�, k = 0, . . . , N.

Proposition III.6 Assume thatU0� > 0. The solution of Problem III.4, denotedW∗ orW∗(Y), satisfies

W
∗
ilj = h∗l Ui−l,j, where h∗l =

Y
�l�

αN−l

,

moreover, ifY ∈ Y, the vectorh∗ ∈ S := {h ∈ H :
∑N

k=0 hkαN−k =
∑

ij Yij}.

Proof: SinceW ∈ W , we in fact optimize overh ∈ H. Trivial manipulations of the objective

function reduce the problem to the explicit minimization of

−
N∑

l=0

Y
�l� log hl +

N∑

l=0

hlαN−l,
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which is attained ath∗. Finally, if Y ∈ Y, checking thath∗ ∈ S is immediate,

N∑

k=0

h∗kαN−k = Y
���

=
∑

ij

Yij.

Now we can make the connection between the original minimization Problem II.2 and the two partial

minimization Problems III.3 and III.4.

Proposition III.7 It holds that

min
Y∈Y

min
W∈W

I(Y||W) = min
h∈H

I(Y ||T (h)U),

moreover, ifh∗ is the minimizer on the right andW∗ its correspondent inW,

I(Y∗(W∗)||W∗) = I(Y ||T (h∗)U).

Proof: Fix Y ∈ Y andW ∈ W , and letY∗ = Y
∗(W) be the solution of Problem III.3 withW

as input. From equation (III.3), one has

I(Y|W) ≥ I(Y∗(W)||W)

= I(Y ||T (h)U)

≥ inf
h∈H

I(Y ||T (h)U).

It follows that

min
Y∈Y

min
W∈W

I(Y||W) ≥ inf
h∈H

I(Y ||T (h)U).

Conversely, fixh ∈ H and letW be the corresponding element inW , i.e. with Wilj = hlUi−l,j then,

again from equation (III.3),

I(Y |T (h)U) = I(Y∗(W)||W)

≥ min
Y∈Y

min
W∈W

I(Y||W),

which yields

inf
h∈H

I(Y ||T (h)U) ≥ min
Y∈Y

min
W∈W

I(Y||W).

Next we check the value of the minimum. Proposition II.7 guarantees the existence of a minimizer of the

right hand side, call ith∗ ∈ H, and letW∗ be the corresponding element ofW . Then, using (III.3) once

more, one getsI(Y ||T (h∗)U) = I(Y∗(W∗)||W∗), which shows that(Y∗(W∗),W∗) is a minimizing

pair.
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The solutions of the two partial minimization problems share the essentialPythagorean property(see

e.g. [6] and [3]) which, in the present context, is derived below.

Lemma III.8 In Problem III.3, withW fixed, for allY ∈ Y,

I(Y||W) = I(Y||Y∗(W)) + I(Y∗(W)||W). (III.4)

In Problem III.4, withY fixed, for allW ∈ W ,

I(Y||W) = I(Y||W∗(Y)) + I(W∗(Y)||W). (III.5)

Proof: Equation (III.4) follows by a straightforward computation. We proceed to the proof of

equation (III.5). We first compute

I(Y||W)− I(Y||W∗(Y))

=
∑

ilj

Yilj log
W

∗
ilj

Wilj

+
∑

ilj

Wilj −
∑

ilj

W
∗
ilj

=
∑

l

Y
�l� log

h∗l
hl

+
∑

ilj

(
Wilj −W

∗
ilj

)
. (III.6)

Next we compute

I(W∗(Y)||W)

=
∑

ilj

W
∗
ilj log

W
∗
ilj

Wilj

+
∑

ilj

Wilj −
∑

ilj

W
∗
ilj

=
∑

il

Y
�l�

αN−l

Ui−l,� log
h∗l
hl

+
∑

ilj

(
Wilj −W

∗
ilj

)

=
∑

l

Y
�l� log

h∗l
hl

+
∑

ilj

(
Wilj −W

∗
ilj

)
, (III.7)

which coincides with (III.6).

IV. A LGORITHM

We propose here an iterative algorithm for the solution of the minimization Problem II.2. The algorithm

is of the classic alternating minimization type, and is derived using the results of the previous section.

Abstractly, one starts at an initialW0 ∈ W , and implements the alternating minimization scheme

. . . Wt 1−→ Y
t 2−→ W

t+1 1−→ Y
t+1 . . . ,
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where the superscriptt denotes the value at thet-th iteration. The arrow
1−→ denotes an instance of the

first partial minimization, Problem III.3, the matrix at thetail of the arrow is the given input, and the

matrix at the head is the optimal solution. For instanceW
t 1−→ Y

t means thatYt = Y
∗(Wt). The

meaning of
2−→ is analogous, and represents an instance of the second partial minimization, Problem III.4.

For instanceYt 2−→ W
t+1 means thatWt+1 = W

∗(Yt). The hope is that the alternating minimizations

produce a sequence of iterates(Wt,Yt) converging to the pair(W∗,Y∗(W∗)) of Proposition III.7, thus

solving Problem II.2. This is indeed the case, as proved in Section V. Here we concentrate on producing

a computational version of the algorithm sketched above in abstract terms.

Note that, at each iteration,Wt is completely specified by the fixed dataU and by the vectorht ∈ H.

Computationally it is more efficient to work only with the vectors ht ∈ H, one therefore has to shunt

the Y
t steps of the alternating minimization, and move directly from W

t to W
t+1. This leads to the

following scheme. For givenht ∈ H, define the correspondingWt
ilj = htlUi−l,j and use it as input in

the first partial minimization. The solution, computed according to Proposition III.5, is

Y
t
ilj = Yij

htlUi−l,j∑i
p=0 h

t
pUi−p,j

. (IV.1)

Use nowY
t
ilj as input in the second partial minimization. The solution, computed according to Propo-

sition III.6, is

ht+1
k =

Y
t
�k�∑N−k

l=0 Ul�

, (IV.2)

with

Y
t
�k� =

N∑

i=k

m∑

j=1

YijUi−k,j∑
p h

t
pUi−p,j

htk. (IV.3)

To shunt theYt step it is enough to combine equations (IV.1), (IV.2), and (IV.3) to obtain the following

iterative algorithm, solely in terms ofht vectors and original data(U, Y ).

Algorithm IV.1

ht+1 = I(ht),

where the mapI acts on the components ofht as follows

ht+1
k = Ik(h

t) :=
htk∑N−k

l=0 Ul�

m∑

j=1

N∑

i=k

YijUi−k,j∑
p h

t
pUi−p,j

. (IV.4)

For further reference it is convenient to introduce the functions Gk defined implicitly as (see equa-

tion (IV.4))

Ik(h
t) := htkGk(h

t).
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The initial pointh0 ∈ H is chosen such thatF (h0) < ∞. If the data satisfyU0� > 0, a sufficient condition

for F (h0) < ∞ is h0 > 0 componentwise.

Remark IV.2 Note that, under the assumptionU0� > 0, the functionsGk(h) are continuous at all points

h such thatY ≪ T (h)U .

Properties of Algorithm IV.1

1) The algorithm decreases the divergenceI(Y ||T (ht)U) at each step. Indeed, by construction and

Propositions III.5 and III.6, we have

I(Y |T (ht+1)U) = I(Yt+1||Wt+1)

≤ I(Yt||Wt+1)

≤ I(Yt||Wt) = I(Y |T (ht)U). (IV.5)

In Proposition IV.3 we will exactly quantify the decrease.

2) If for somet the vectorht is a perfect model, i.e.Y = T (ht)U , then

m∑

j=1

N∑

i=k

YijUi−k,j∑
p h

t
pUi−p,j

=

m∑

j=1

N∑

i=k

∑
p h

t
pUi−p,jUi−k,j∑
p h

t
pUi−p,j

=

N−k∑

l=0

Ul�,

hence, from equation (IV.4),ht+1 = ht, i.e. perfect models are fixed points of the algorithm.

3) If for some t the gradient∇F (ht) = 0, i.e. ht is a stationary point ofF (h), then, using equa-

tion (II.10) to rewrite the recursion (IV.4),

ht+1
k = htk

(
1− ∇F (ht)k∑N−k

l=0 Ul�

)
= ht, (IV.6)

i.e. stationary points ofF (h) are fixed points of the algorithm. Moreover, we recognize a stability

property of the recursion. Ifht is such thatF is increasing (decreasing) in thek-th coordinate of

ht, thenht+1
k < htk (ht+1

k > htk).

4) The vectorsht belong to the simplexS, as it follows from Proposition III.6

5) Assume the condition of Lemma II.6. If a starting valueh0k > 0, thenhtk > 0 for all t > 0.

6) We omit the details of the following trivial consistency check. IfN = 0, the solution of Problem II.2

is h∗ = h∗0 =
Y0�

U0�

, the algorithm producesh1 = h∗, and stays there.

We are now in the position to prove Proposition II.7.
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Proof: of Proposition II.7 We assume that the condition of Lemma II.6 is satisfied, one can take

h = 1, i.e.hk ≡ 1 to have all elements ofT (1)U positive and hence, for this choice ofh, theI-divergence

F (1) = I(Y ||T (1)U) is finite. Take thenh0 = 1 as a starting value of Algorithm IV.1, which at the

first step producesh1 with F (h1) ≤ F (h0) according to Equation (IV.5). Moreover, sinceh1 is (partly)

computed according to the second minimization problem, we have in view of Proposition III.6 that

h1 ∈ S, a compact set. Hence we can confine our search for a minimum ofF to S.

The functionsdij : x → Yij log
Yij

x
− Yij + x (for x ≥ 0) have a minimum atx = Yij, also if Yij = 0.

Choose a sufficiently small positiveε < min{Yij : Yij > 0}. Then a minimizer ofF has to belong to

F = {h ∈ H : (T (h)U)ij ≥ ε, for all i, j such thatYij > 0}, and thus finding a minimizer ofF can

be confined to the compact setS ∩ F . We next show that this set is nonempty, for a judiciously chosen

ε > 0. Let λ > 0 and considerλ1. SinceU0� > 0, we can chooseλ such thatλ
∑N

k=0 = S, hence for

this λ we haveλ1 ∈ S. Redefine, if necessary,ε > 0 such that alsoε < minj(T (λ1)U)0j , thenλ1 ∈ F ,

showing thatS ∩ F is non-void.

SinceF is continuous on this set, a minimizer indeed exists. Moreover, sinceF is strictly convex, it

has a unique minimizer, once there exists one.

Next we quantify the update gain of Algorithm IV.1 at each step.

Proposition IV.3 It holds that

I(Y ||T (ht)U)− I(Y ||T (ht+1)U)

= I(Yt||Yt+1) + I(Wt+1||Wt).

Proof: Recall thatWt+1 is the result of the second minimization problem withYt given. Invoking

Equation (III.5), we have

I(Yt||Wt) = I(Yt||Wt+1) + I(Wt+1||Wt). (IV.7)

On the other hand,Yt+1 is the result of the first minimization problem withWt+1 given. Hence

Equation (III.4) yields

I(Yt||Wt+1) = I(Yt||Yt+1) + I(Yt+1||Wt+1). (IV.8)

Substitution of (IV.8) into (IV.7) yields

I(Yt||Wt)

= I(Yt||Yt+1) + I(Yt+1||Wt+1) + I(Wt+1||Wt).
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To finish the proof apply (III.3) to bothI(Yt||Wt) andI(Yt+1||Wt+1).

Notice that the update gain is the sum of two non-negative contributions, one from the first minimization

and one from the second. The latter term can be given in an alternative expression, which will be useful

later (see proof of Lemma V.1). We have

I(Wt+1||Wt) =

N∑

l=0

Ul�

N−l∑

k=0

(ht+1
k log

ht+1
k

htk
− ht+1

k + htk)

=

N∑

k=0

(

N−k∑

l=0

Ul�)I(ht+1
k ||htk)

=

N∑

k=0

αN−kI(ht+1
k ||htk).

Recall that eachht belongs toS, since
∑N

k=0 h
t
kαN−k =

∑N
ij Yij =: S. Let

ptk := αN−kh
t
k/S, k = 0, 1 . . . N,

thenpt := (pt0, . . . , p
t
N ) is a probability vector and

SI(pt+1||pt) = S
∑

k

pt+1
k log

pt+1
k

ptk

=
∑

k

αN−kh
t+1
k log

ht+1
k

htk

=
∑

k

(αN−kI(ht+1
k ||htk) + pt+1

k − ptk)

=
∑

k

αN−kI(ht+1
k ||htk).

It follows that

I(Wt+1||Wt) = SI(pt+1||pt). (IV.9)

V. A SYMPTOTICS

We turn to the asymptotic behaviour of Algorithm IV.1. The main result of the section is Theorem V.3.

The preparatory lemmas, much in the spirit of [12], [8], and [2], are typical of this class of problems. See

also [9] for a recent example. Our proofs, contrary to the cited references, rely heavily on the optimality

results for the partial minimizations (the Pythagoras rules of Lemma III.8). As a consequence proofs are

short and transparent.
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First we use the Pythagoras rules for the updatesY
t andWt+1. SinceYt = Y

∗(Wt) andWt+1 =

W
∗(Yt), from Lemma III.8 we get the following identities, valid foranyY ∈ Y andW ∈ W ,

I(Y||Wt) = I(Y||Yt) + I(Yt||Wt) (V.10)

I(Yt||W) = I(Yt||Wt+1) + I(Wt+1||W). (V.11)

Moreover, from Proposition III.5 we also have

I(Yt||Wt) = I(Y ||T (ht)U). (V.12)

Suppose thath∞ is a fixed point of Algorithm IV.1, with correspondingW∞ ∈ W and letY∞ =

Y
∗(W∞). Then we also have

I(Y∞||W∞) = I(Y ||T (h∞)U). (V.13)

For simplicity throughout this section we assume, without loss of generality, thatS =
∑

ij Yij = 1, see

Remark II.3. Then we have thatptk = αN−kh
t
k. The update equation (IV.2) is equivalent to

pt+1
k = Y

t
�k�. (V.14)

In correspondence to the fixed pointh∞, let us definep∞ asp∞k = αN−kh
∞
k , then

p∞k = Y
∞
�k�. (V.15)

Sincept andp∞ are probability vectors, by the lumping property of the I-divergence, see [6, Lemma 4.1],

it holds that

I(p∞||pt+1) ≤ I(Y∞||Yt). (V.16)

We will also need the following

Lemma V.1 Limit points of the sequence(ht) are fixed points of Algorithm IV.1.

Proof: Since the divergenceI(Y |T (ht)U) is decreasing int, it has a limit. Hence we obtain from

Proposition IV.3 thatI(Wt+1||Wt)→ 0. From (IV.9) it follows thatI(pt+1||pt) → 0. Suppose thath∞

is a limit point of (ht), thenp∞ is a limit point of (pt). Let h̃ be the iteration of the algorithm ifht is

replaced withh∞ andp̃ be its counterpart, sõh = I(h∞). By continuity ofI(·), which follows from the

continuity of theGk, we then getI(p̃||p∞) = 0 and hencẽp = p∞, which entailsh̃ = h∞, soh∞ is a

fixed point of the algorithm.

We are now ready to prove
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Lemma V.2 Let h∞ be a limit point of Algorithm IV.1, thenI(p∞||pt) is decreasing int.

Proof: From (V.16) and (V.10) withY = Y
∞ we have

I(p∞||pt+1) ≤ I(Y∞||Yt)

= I(Y∞||Wt)− I(Yt||Wt).

Applying the second Pythagorean rule (III.5) to the first term in the right hand side, withY = Y
∞ and

henceW∗ = W
∞, we get

I(Y∞||Wt) = I(Y∞||W∞) + I(W∞||Wt).

By Lemma V.1 a limit point of the sequence(ht) is also a fixed point of the algorithm. Hence we have

Y
∞ = Y

∗(W∞) and we deduce from Proposition III.5 thatI(Y∞||W∞) = I(Y ||T (h∞)U). A direct

computation, similar to that leading to (IV.9), yieldsI(W∞||Wt) = I(p∞||pt). By also using (V.12),

we finally obtain

I(p∞||pt+1)

≤ I(p∞||pt)− I(Y ||T (ht)U) + I(Y ||T (h∞)U)

≤ I(p∞||pt),

since Proposition IV.3 implies thatI(Y ||T (ht)U) is decreasing int and henceI(Y ||T (h∞)U) ≤
I(Y ||T (ht)U).

The main result on the asymptotic behavior of Algorithm IV.1is given in the next theorem.

Theorem V.3 The sequence of iteratesht converges to a limith∞ which minimizesh → I(Y ||T (h)U).

Proof: Since all ht belong to the simplex, see property 5 in the list above, whichis compact,

the sequence(ht) has a convergent subsequence,htn → h∞, for someh∞. For the corresponding

sequence(pt) sequence it holds thatptn → p∞. By continuity of the I-divergence in the second argument,

I(p∞||ptn) =∑k:p∞

k >0 p
∞
k log p∞

k

p
tn
k

, we then haveI(p∞||ptn) → 0. The monotonicity result of Lemma V.2

then yieldsI(p∞||pt) → 0, which impliespt → p∞, equivalentlyht → h∞. Recall from Lemma V.1

that the limith∞ is a fixed point of the algorithm. Hence we have from (IV.6)

h∞k = h∞k

(
1− ∇F (h∞)k∑N−k

l=0 Ul�

)
.
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If h∞k > 0, then∇F (h∞)k = 0. We now consider the case where someh∞k = 0. Consider (IV.4), and

write it as the product

ht+1
k = htkGk(h

t).

It follows thatht+1
k = h0k

∏t
j=0Gk(h

j). Since we have convergence of thehtk, we must haveGk(h
∞) ≤ 1,

otherwise the product would explode. Indeed, supposeGk(h
∞) > 1, henceGk(h

∞) > 1 + ε for some

ε > 0. Continuity ofGk(·) at h∞, which holds sinceF (h∞) < ∞, yields limt→∞Gk(h
t) ≥ 1+ε, hence

eventuallyGk(h
t) > 1 + ε/2, which contradicts that theht convergence. We conclude∇F (h∞)k ≥ 0.

Altogether, we obtain that for the limith∞ the Kuhn-Tucker conditions (II.8), (II.9) forF are satisfied.

Since these conditions are also sufficient in view of the convexity of F , [13, Theorem 2.9],h∞ minimizes

F .

Although Theorem V.3 establishes convergence of the algorithm, it does not give any information on

the rate of convergence. In fact, it is possibly a hard grind to get results in this direction. The following

example shows that even in a simple case, depending on the exact circumstances, different rates may

occur.

Example V.4 Here we continue the toy Example II.8. The update equation (IV.4) for ht1 becomes

ht+1
1 = ht1

y1
ht0u1 + ht1u0

.

Assume again the second case,y1u0 − y0u1 < 0, and y1 > 0 to avoid a trivial recursion. Choose

ε ∈ (0, y0u1−y1u0

u0+u1

). We know from Theorem V.3 thatht0 → y0+y1

u0+u1

andht1 → 0. Henceht0u1 + ht1u0 →
y0+y1

u0+u1

u1, and thus for somet0 > 0 and t ≤ t0 one hasht0u1 + ht1u0 >
y0+y1

u0+u1

u1 − ε and therefore

ht+1
1 ≤ ht1

y1(u0 + u1)

(y0 + y1)u1 − ε(u0 + u1)
=: htkgε.

Hence we have, at least asymptotically, convergence ofht1 → 0 at an exponential rate, sincegε < 1 by

the choice ofε. Note that, in the notation of the proof of Theorem V.3, we have G1(h
∞) = y1(u0+u1)

(y0+y1)u1

=

g0 < 1.

The convergence of theht0 could possibly be slower than exponential, sinceG0(h
∞) = 1. This will

be investigated now. The update equation forh10 reads

ht+1
0 =

y0
u0 + u1

+ ht0
y1u1

(u0 + u1)(ht0u1 + ht1u0)
.

Let vt0 := ht0 − h∞0 = ht0 − y0+y1

u0+u1

. Tedious computations lead to the recursion forvt0,

vt+1
0 = − y1u0

(u0 + u1)(ht0u1 + ht1u0)
ht1.
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Since the factor in front ofht1 stabilizes around its limit value− y1u0

u1(y0+y1)
andht1 converges exponentially

fast to zero, the latter property is shared byvt0.

Next we investigate the case where an exact solution exists,y1u0 − y0u1 ≥ 0. Let vtk = htk − h∞k and

yt1 = ht0u1+ht1u0. Putting thevtk in a vectorV t = (vt0, v
t
1)

⊤, one arrives after more tedious computations

at the recursion

V t+1 =
u1
yt1




u0

u0+u1

−1




(
h∞1 −h∞0

)
Vt

≈ u1
y1




u0

u0+u1

−1



(
h∞1 −h∞0

)
Vt =: AV t.

Clearly the matrixA in front of Vt at the right hand side is singular. Its eigenvalues are0 and u1(y0+y1)
(u0+u1)y1

,

where the latter one is smaller than1 if we assume the strict inequalityy1u0 − y0u1 > 0. Hence, also

here one has exponential stability.

What is left is the casey1u0−y0u1 = 0. Now the matrixA has an eigenvalue equal to 1. We investigate

the exact equation forV t in this case,

V t+1 =
u1
yt1



0 − y0

u0+u1

0 y0

u0



V t.

It follows that for t ≥ 1

vt0 = − u0
u0 + u1

vt1,

and henceyt1 = y1 +
u2

0

u0+u1

vt1. This leads to the recursion

vt+1
1 =

y1
y1 + wvt1

vt1,

with w = u2

0

u0+u1

. This recursion has the solution

vt1 =
v01y1

wv01t+ y1
.

We conclude that nowvt1 and hence alsovt0 tend to zero at rate1/t instead of exponentially.

VI. STATISTICS

In the previous sections we focussed on the minimization ofI(Y ||T (h)U), whereY andU were given

matrices and we presented an algorithm that asymptoticallyyields the minimizer. In the present section

we concentrate on a statistical version of the minimizationproblem and its large sample properties. Recall

that Y,U ∈ R
(N+1)×m. We will give limit results for the optimizingh = hm, whenm → ∞ and the
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pair of columns(Y i, U i) of Y,U (i = 1, . . . ,m) form an i.i.d. sample. For each fixedm, Algorithm IV.1

can be used to findhm, which now becomes a random vector as well.

Write I(Y ||T (h)U) =
∑m

i=1 I(Y i||T (h)U i), with theY i andU i the columns of the matricesY and

U respectively. We assume that the pairs(Y i, U i) are i.i.d. In what follows, we let,contrary to the

previously employed notation, (Y,U) be a random vector that has the same distribution as each of the

(Y i, U i). Moreover we assume for the entriesYj and(T (h)U)j of Y andT (h)U the ‘true’ relationship

Yj = (T (h∗)U)jδj , (VI.1)

whereh∗ is an interior point and theδj ≥ 0 are assumed to be independent ofU . In the present context

it is more appropriate to have a multiplicative disturbanceδj , than an additive one as in e.g. least squares

estimation.

The displayed relationship can be summarized as

Y = ∆T (h∗)U,

where∆ is diagonal with entriesδj, andU and ∆ independent. Moreover, we imposeE∆ = I, the

identity matrix, soE δj = 1.

Lemma VI.1 Assume the model(VI.1), EUj < ∞, E δj = 1, andE δj log δj < ∞. Then it holds that

E I(Y ||T (h)U) = E I(T (h∗)||T (h)U)

+
∑

j

(E (T (h∗)U)jE (δj log δj)− E (T (h∗)U)j).



20

Proof: Let us first computeE I(Yj||(T (h)U)j). We get

E I(Yj||(T (h)U)j)

= E {Yj log
Yj

(T (h)U)j
− Yj + (T (h)U)j}

= E {(T (h∗)U)jδj log
(T (h∗)U)jδj
(T (h)U)j

− (T (h∗)U)jδj + (T (h)U)j}

= E {(T (h∗)U)jδj(log
(T (h∗)U)j
(T (h)U)j

+ log δj)

− (T (h∗)U)jδj + (T (h)U)j}

= E (T (h∗)U)j log
(T (h∗)U)j
(T (h)U)j

E δj

+ E (T (h∗)U)jE (δj log δj)

− E (T (h∗)U)jE δj + E (T (h)U)j

=
(
E (T (h∗)U)j log

(T (h∗)U)j
(T (h)U)j

− E (T (h∗)U)j
)
E δj

+ E (T (h∗)U)jE (δj log δj)− E (T (h∗)U)j + E (T (h)U)j

= E I((T (h∗)U)j ||(T (h)U)j)E δj − E (T (h)U)jE δj

+ E (T (h∗)U)jE (δj log δj)− E (T (h∗)U)j + E (T (h)U)j

= E I((T (h∗)U)j ||(T (h)U)j)

+ E (T (h∗)U)jE (δj log δj)− E (T (h∗)U)j .

It follows that minimizing the functionh 7→ E I(Y ||T (h)U) (referred to below as the limit criterion)

is equivalent to minimizingh 7→ E I(T (h∗)U ||T (h)U).

Proposition VI.2 Let P(U0 > 0) > 0 andEU2
j < ∞ for all j. The limit criterionh 7→ E I(Y ||T (h)U) is

strictly convex on the set where it is finite (and hence on a neighbourhood ofh∗) and has a unique minimum

for h = h∗.

Proof: The proof of strict convexity is similar to the proof of LemmaII.6. We show that the Hessian

H(h) at h of the limit criterion is strictly positive definite on the set where the limit criterion is finite.

A computation shows that thekl-element of this matrix is equal to

H(h)kl = E

∑

j

(T (h∗)U)j
(T (h)U)2j

Uj−kUj−l.
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Clearly,H(h) is finite in a neighborhood ofh∗. Hence

x⊤H(h)x = E

∑

j

(T (h∗)U)j
(T (h)U)2j

(U ∗ x)2j .

Hence the expression inside the expectation can only be zeroif U ∗ x = 0 a.s. UsingP(U0 > 0) >

0, we argue as in the proof of Lemma II.6 to deduce thatx = 0 iff x⊤H(h)x = 0. Clearly, the

limit criterion has a minimum equal to zero ath = h∗. Conversely,E I(T (h∗)U ||T (h)U) = 0 iff

I(T (h∗)U ||T (h)U) = 0 a.s., which happens iffT (h∗)U = T (h)U a.s. Writing this equality elementwise,

(T (h∗)U)j = (T (h)U)j = 0, we obtainh = h∗ under the condition thatP(U0 > 0) > 0. We conclude

that h = h∗ is the unique minimizer ifP(U0 > 0) > 0.

Proposition VI.3 LetP(U0 > 0) > 0 andEU2
j < ∞ for all j, moreover assume thath∗ is an interior point.

The estimatorŝhm, defined as the minimizers of the objective function
∑m

i=1 I(Y i||T (h)U i) are consistent.

Moreover, this sequence is asymptotically normal, for somepositive definiteΣ ∈ R
(N+1)×(N+1) we have

√
m(ĥm − h∗)

d→ N(0,Σ).

Proof: The limit criterionh 7→ E I(Y ||T (h)U) is strictly convex, therefore from [11, Problem 5.27]

we conclude that the conditions of [11, Theorem 5.7] are satisfied and consistency follows.

To show that the estimatorŝhm are asymptotically normal with covariance function as given in [11,

Theorem 5.23] (although a specific expression for it is not particularly useful), we have to show that the

HessianH(h∗) at h∗ of the limit criterion is strictly positive definite. But this follows from the proof of

Proposition VI.2 upon takingh = h∗.
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