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Abstract

We study the capacity limits of real-time streaming oversb@rasure channels. A stream of source packets
must be sequentially encoded and the resulting channelemachkust be transmitted over a two-receiver burst-
erasure broadcast channel. The source packets must bensalipeeconstructed at each receiver with a possibly
different reconstruction deadline. We study the assodiatgpacity as a function of burst-lengths and delays at the
two receivers.

We establish that the operation of the system can be divigtedtivo main regimes: bw-delay regimeand a
large-delay regimeWe fully characterize the capacity in the large delay raegifhe key to this characterization
is an inherenslacknessn the delay of one of the receivers. At every point in thisimegwe can reduce the delay
of at-least one of the users until a certain critical valud #rus it suffices to obtain code constructions for certain
critical delays. We partially characterize the capacitythie low-delay regime. Our capacity results involve code
constructions and converse techniques that appear to . nWde also provide a rigorous information theoretic
converse theorem in the point-to-point setting which waslisd by Martinian in an earlier work.

Index Terms

Streaming Communication Systems, Broadcast ChannelsGathmon Message, Delay Constrained Commu-
nication, Application Layer Error Correction, Burst ErasiChannels.

. INTRODUCTION

D elay is often ignored in the analysis of classical commuioocasystems. Traditional error correction
codes are designed to operate on message blocks, and canamdawarily long encoding and
decoding delays. In contrast several emerging applicaoa highly delay-sensitive. Both the fundamental
limits and error correction techniques in such systems carvdry different, see e.g., [ |[1]Z[9], and
references therein.

An information theoretic framework for the study of low-dglstreaming codes has been introduced in
[10]-[12]. The encoder observes a stream of source packedssequentially encodes it into a a stream of
channel packets. The decoder is required to reconstrubt ®aace packet with a maximum delay Bf
units. The proposed channel is a burst erasure channeh krege up td3 packets in a single burst, but
otherwise transmits each packet instantaneously. Thermawi possible rat€’y(B,T') is characterized
by proposing a coding scheme and proving a converse. Wetrefars class of codes as streaming codes
(SCo) throughout this paper.

From a practical point of view, thé3, T') SCo code should be used over a burst-erasure channel, where
the maximum length of any single burstisand the guard interval separating multiple bursts is atl€a
Extensions of SCo codes thats correct both burst and isbéatsures have been recently developed [13],
[14]. Such codes were demonstrated to exhibit significamfopeance gains over the Gilbert-Elliott
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Fig. 1. The source strears[i]} is causally mapped into an output stredmi[:]}. Both the receivers observe these packets via their
channels. The channel introduces an erasure-burst ofldggtand each receiver tolerates a delayZdf for i = 1, 2.

channel and Fritchman channel models, thus opening up ttignexpossibility of developing structured
codes for delay-constrained streaming communication actpral wireless networks.

In this paper we are interested in a different extension efS€0 constructions. Instead of committing
to a particular burst lengti? and delayT’, our constructions adapt to the burst-length introduced by
the channel. When the channel introduces an erasure-bulshgth up toB;, the reconstruction-delay
must be no greater thah,, whereas if the burst-length is larger, s&y, the reconstruction delay can
be increased td@;. Such constructions can be relevant for error concealneghiniques such as adaptive
media playback [15]. Such methods adjust the play-out atefanction of the receiver buffer size, so that
a temporary increase in delay can be naturally accommodaAtedtural way to study such constructions
is to consider a multicast setup involving one sender andregeivers. The two receivers are connected
to the sender over a burst-erasure broadcast channel amdhieateceivers are interested in reconstructing
the same source stream, but with different delays. Oneuexgichannel introduces a burst of length
and the required reconstruction delaylis The second receiver’s channel introduces a burst of leBgth
and the associated reconstruction delayisWe seek to characterize the multicast streaming capacity
C (B, 11, By, Ty) in this paper.

In an earlier work[[16], we investigate the necessary anficgerfit conditions under whict'( By, T, B, T») =
Co(By,Ty) (with B, > By). In particular, we show that if the deldl, of the weaker user is larger than a
certain threshold, then the multicast capacity reducebdcsingle-user capacity of the stronger receiver.
A particular code construction -giversity embedded streaming erasure cof@g-SCo) — is proposed
to achieve this capacity. In the present paper we obtainrglenew results. First, we observe that system
performance can be divided into two operating regimes. Wiath the delayd’; and7; are smaller than
certain thresholds the system operates in a low-delay eeddtherwise it operates in a large-delay regime.
In the latter case we identify a surprisistacknessproperty and use it in our code constructions. The
slackness property enables us to reduce the delay of ed#heiverl or receiver2 to a certain minimum
threshold without reducing the capacity. In the low-delagime the characterization of the capacity is
more challenging. We characterize the capacity for a subfsétis region by proposing a new coding
scheme and a matching converse. For the remainder of thisnrege propose an upper bound on the
capacity, but leave open whether this bound is the true dgp&celiminary results of our work appeared
in [17]. For related work see e.g., [18]-[27] and referenttesein.

II. SYSTEM MODEL

Fig.[1 shows the proposed system model. The transmitterdesca stream of source packéist|}:>o
intended to be received at two receivers. The channel pagkét]},~, are produced causally from the
source stream, i.e.,

x[t] = fu(s[0],. .., st]). @)



The channel of receiverintroduces an erasure-burst of lendgthi.e., the channel output at receivier
at timet is given by
_ |~ teljgit+Bi—1]
yilt] = { x[t] otherwise )

for i = 1,2, and for somej; > 0. Furthermore, user tolerates a delay dt}, i.e., there exists a sequence
of decoding functionsy;;(.) and~(.) such that

and P(s[t] #s[t]) =0, Vt>0, .

The source stream is an i.i.d. process; each source symisahipled from a distributiops(-) over
some finite alphabe$. The channel symbolg[t] belong to some alphabet. The rate of the multicast
code is defined as the ratio of the (marginal) entropy of thercg symbol to the alphabet size i.e.,
R = H(s)/log, |X| and the multicast streaming capaci€y(B;, T, B, 1) is the maximum achievable
rate. Anoptimal multicast streaming erasure code (Mu-S@ohieves such capacity for a given choice
of (B, T}, By, Tz). Without loss of generality, we assume throughout the p#parB, > B;.

Note that our model only considers a single erasure burstoh ehannel. As is the case with (single
user) SCo, our constructions correct multiple erasurstbuseparated sufficiently apart. Also we only
consider the erasure channel model. More general channgélsngan be transformed into an erasure
model by applying an appropriate inner codel[10, Chapter 7].

[1l. M AIN RESULTS

To keep the paper self contained, we first briefly review timglsi user scenario [10]-[12]. We point
the reader to these references as well as a summalrylin [16] floore exhaustive treatment.

A. Single-User Capacity
Theorem 1 (Point-to-Point Capacity: [10])The capacity of a point-to-point system describedy [J)), (2

and [3) (withi =1) is .
== 1'>B
— T+B —
C‘{ 0" T<B, @)

whereT; and B; are replaced by’ and B for simplicity.
The associated code construction involves a two step apiproa

. Construct a low-delay burst-erasure block code (LD-BEBTa} taked" source symbols, s&yo, . .., s7_1)
and generateB parity checks, saypy, . .., pp_1). The resulting codewors = (so, ..., S7_1,P0, - - -, PB—1)
has the property that it can fully recover all erased symlams any erasure burst of length.
Furthermore each of the erased source symbpl®or i € {0,...,7 — 1} is recovered by time
min {i + T, T + B}. An explicit construction of such a code is proposed_ in [{02}

« Apply diagonal-interleaving to the LD-BEBC code to constrthe streaming code.

The resulting streaming code is a time-invariant, systentanvolutional code of memory, that takes

in T source symbols at any given time and outpiitst B symbol. The converse is based on a
periodic erasure channel argument, similar to the uppendiog technique used in classical burst-noise
channels([29, Section 6.10]. The basic idea is to amplifyettiect of a single isolated erasure burst into
a periodic erasure channel and use the capacity of such ae&has an upper bound. We compliment
this argument with a rigorous information theoretic proof (4) in Sectiori IV. The information theoretic
proof is more general and provides a tighter upper bound wieconsider the multicast setup.

1In this work will not be using any special properties of camtimnal codes[[28] and the reader is not assumed to haveisaityi with
this topic. Some properties of SCo codes from the contexbaf@utional codes are discussed [inl[11].][13].
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Fig. 2. Capacity behavior in th@, T>) plane. We holdB; and Fig. 3. Capacity behaviour in thg32, T>) plane. We holdB; and

Bs as constants withEs > B;), so the regions depend on the T} as constants, so the regions depend on the relation betigeen
relation betweerf; and7T: only. The red dashed line shows the andB; only. The dashed line gives the contour of constant capacity
contour of constant capacity in regions (a), (b), (c) and (d) in region (e) as well as in the special cas€lof= B; in region
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B. DE-SCo Construction

In earlier work [16] Badr et. al consider the proposed makicsetup when the delay of the weaker
user i.e., user 2 is sufficiently large.

Theorem 2 (Badr et. al [16]):The multicast streaming capaci€y(B;, 11, B>, 1) in the regime where
By > B, andTy, > oTy + B; (with a = g—f) is given by:

T
S - 5
T 1B (5)

The associated code construction — Diversity Embeddeda®ireg Codes (DE-SCo) — involves
constructing two groups of parity checks: one along the nthagonal and the other along the off-
diagonal and then combining these parity checks in a seitatdnner. We refer the reader to [16] for
the detailed construction. A converse argument is alsoigeovin [16] to establish thdf; is indeed the
smallest possible threshold to achieve the raté€'of

Ch

C. Large Delay Regime

The parameters of the DE-SCo construction in Thedrem 2 falimva larger class which we refer to
as thelarge-delay regimeln particular if at-least one df; and7; is larger than a certain threshold:

Ty > By, (or) Ty, > B+ B. (6)

we have been able to determine the multicast capacity. In&tbis regime consists of all paif§7, 75)
outside the rectangular bd®;, By x [Bs, By + Bs.



Theorem 3:When the delayd’ andT; satisfy (6) andB, > B; the multicast capacity is given by

Cl’ TQZO(Tl“‘Bla
T>—B
c={ mmem DtBishhsahi+B, W)
T T <T, <T)+ By,
Cs, 1 <T.
whereC; = =1 is the single user capacity of user 1,2 and we have defined = £2. =

The proof of Theorerl3 appears in sectioh V.

Remark 1 (Delay-Slackness Property:closer look at [(7) shows that in each of the four cases the
capacity only depends on eith@r or 75, but not on both of them simultaneously. In particular asasho
in Fig.[2 the contour of constant capacity is a piecewise temtdine. On the horizontal portions, the
delayT; can be reduced without reducing the capacity whereas ondttieal portions the dela¥, can
be reduced without reducing the capacity. T¢lmcknessn the delay of the receivers is rather unexpected
and one of the surprises in this work.

We next comment of the key ingredients in the proof of Theof&nThe converse is obtained by
combining the following upper bound with single user capabounds.

Theorem 4:(Upper-Bounds via Periodic Erasure Channel)For any two receivers with burst-delay
parameters of By, T1) and (B, T, ), the multicast streaming capacity is upper-bounded’by C*, where

T>—B
(ﬁ:{gﬁﬁgﬂ>ﬂ+&v

8
T1+132 T2 STI_'_Bl? ( )

The proof of Theorenil4 is provided in sectign VII. It involvesmultaneously using the decoding
constraints of both the receivers to obtain a tighter upemd than a simple point-to-point bound.

We next discuss the achievability part of Theorem 3. The &ieste in[(¥), i.e., whefl, > o1 + By
coincides with the condition of DE-SCo codes in Theotém 2 i [5) applies. The code construction
associated with this region appearslin/[16]. The conswnabf the remainder of the cases i (7) exploits
the delay-slackness property. The second case correspmratgon (b) in FiglLR2, where usérexperiences
slackness in its delay. We can reduEeso that we just hit the boundary of region (a) and then use the
DE-SCo code construction. In contrast, region (c) in Eig. ol corresponds to the third case I (7)
involves slackness in the delay of userWe can reducds till we just hit the boundary of region (d).
For region (d) it can be easily seen that a single-user codader2 is optimal. The details of the above
reductions are presented in section V.

For a subset of region (a), where DE-SCo codes are optimahlsee propose a simpler construction
— Interference Avoidance Streaming Codes (IA-SCo) thay eatjuires us to construct two single user
codes and combine the associated parity checks to avoidaimaterference.

Proposition 1: (Interference-Avoidance SCo)An IA-SCo construction achieves a rate Gf = TEBI
when By = aB; (with « > 1 an integer) and

T, > oT, + Ty 9)

The region associated withl(9) is marked fay) in Fig.[2.

The proposed scheme involves starting with single useastireg code¥’; : (B;,71) andCs : (B, T3),
delaying the parity checks df;, by 77 units and then directly combining them with the parity check
of C; such that they do not interfere with one another. The coragktSCo construction is provided in
Section[V].

D. Low Delay Regime
We next consider the case when the delay paijt 1) falls in the box[B;, By| x [Bs, By + By i.e.,

By <Ty < By, (and) By <T, < By + Bs. (10)



This regime appears to be more challenging and the capaastyphly been established in some special
cases.

Theorem 5:(Capacity in Region (e)) The multicast streaming capacity in region (e) defined/by-
B <Ty, < By + By and B; <11 < B, is given by,

C, = I
C N+ B+ BT

Note that the capacity expressiol only depends o3, and7; via the differenceB, — T5. To identify
the contour of constant capacity in the (e) region it is rettw fix B; and7; and classify the various
regions as shown in Fidl 3. Observe that the streaming dgpfaci any point in region (e) is constant
across the 45-degrees line and is equal to the multicastrigoped at the lowest point on the line
separating regions (e) and (f) in FId. 3.

The complete proof for Theorem 5 is divided into two main pafthe achievability scheme is provided
in Section VIl while the converse is given in Section] IX. Thaehievability involves first constructing a
single usern By, T7) SCo code for the first user and then carefully embedding iaddit parity checks to
satisfy the decoding constraint of userThe converse too involves a new insight of revealing sombef
source symbols to a virtual decoder to obtain a tighter babad a periodic erasure channel argument.

The remainder of the low delay regime is called region (f)e dapacity remains open except in the
special cases of eith@l, = B; or T, = B,.

Theorem 6:(Upper-bound in Region (f)) An upper-bound on the multicast streaming capacity in
region (f) defined byl; < 77 + B; andT; € [By, By is given by,

T2 - Bl
20— B) + (B, —Th)

The above expression equals the streaming capacity # B;.

The proof of the upper bound is given in Section XI. The codestaiction for7} = B, case appears
in Section[X.

The capacity has also been obtained whignr= B, for any 77 € [By, Bs].

Theorem 7:(Capacity in Region (f) at (7o = Bs)) The multicast streaming capacity in region (f)
defined byT, < Ty + B, andT; € [By, B, at the minimum delay case for use?, = B,) is given by,

T

Criry=p,) = T B (13)

The achievability scheme is based on concatenation of thty méiecks of suitably constructed single-
user codes and appears in Secfion| XIl. The proof of the ceavpart for Theorem]7 is provided in
Section XIIl. The technique is significantly different thaarlier converses and involves carefully double-
counting the redundancy arising from the recovery of certaiurce symbols.

This concludes the main results of the paper.

(11)

Cp<Cf = (12)

V. CONVERSE PROOF OFTHEOREM[

In this section we provide an information theoretic coneets Theorenill. While the capacity of the
point-to-point case was established(in![10]+[12], the evsg argument was based on a somewhat informal
use a periodic erasure channel (PEC). Our information #teoapproach is not only more rigorous but
also generalizes to the multicast setting in subsequetibascFurthermore it has the following advantages
over the PEC approach which might also be of interest.

1) The PEC approach requires the channel pagketis a deterministic function of the past source
packets i.e.x[t] must be exactly computed givesi0], ..., s[t]. The information theoretic converse
does not impose this restriction and allows for e.g., stettbha@ncoders.

2) The PEC approach as presented.if [10] requires the code dgdbematic. The information theoretic
approach does not impose this restriction.



3) The PEC approach requires zero error in the recovery df sacrce symbol. The information
theoretic approach can remove this restriction by suitagking Fano’s inequality.
Let us use the following notation:

»] | slal,sla+1],...,8[b—1],s[b], a<b
s[“] N { 0, otherwise (14)
b Wa7Wa+17---7Wb—17Wb7 agb
Wa= { 0, otherwise (15)
To aid us in our proof, let us introduce the terms
i+1)(T+B)—1 i+1)(T+B)—1
Vims| G = x| R (16)

where: = 0,1, 2, .... Note thatV; refers to a group of source packets, wherdgss a group of channel
packets. Fig.}4 shows the time slots that the packets comeiroile Fig.[5 shows the size &f and V.
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Fig. 4. The periodic erasure channel used in proving the iippend of the single user scenario in Theogm 1, but withicatibn of
which packets are in the groups and W;. Grey and white squares resemble erased and unerased syrefpéctively.
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Fig. 5. One period of the periodic erasure channel in Hig. ith Vabels.

We start with the following equations, which are a resulttod {B,7") code. If the firstB channel
packets are erased, and then the riéxthannel packets are received perfectly, tiie7") code can be
used to recover the source packely, . .., s[B — 1]. Using the conditional entropy notation, this can be

written as: H(S[Bal} ‘W()) —0 a7)
B+T-1

Although the nextI’ channel packetx[ S } are received, we cannot assume that the corresponding

source packets[BJrg‘l} are able to be decoded because the code may not be systehoat@cover

those source packets, we can use the next group oherased packets [2((BB++T1;:-_B1}' In general, we

may not need all of these channel packets, but the proof iplemif we have it all available. We can
then write the relation using Fano’'s Inequﬁity

(s[5 | W ) =o. )

2The conditional entropy is zero because the receiver neegsrfectly recover each of the source packets with zera.éwbile we do
not allow vanishingly small error probabilities at the dden the setup can be easily generalized in this case.



The equationd (17) an@_([18) can be generalized to

H(s[ s [ [ o =0 9
H(s [(Tﬁfﬁf?l] X[i(B+T())+B—1} Withy = 0 (20)

Note that the above expressions still only assume that thewe one burst erasure of length. For
instance, in[(19), we assume that the pacheﬁéB;ggl}?‘l} were erased so they are not used in the
expression.

Next, we will prove the following relation fon > 0:

HWE) > HV Y + H(Wn

Vr-lx [n(BJrOT)—l} ) . (21)

For the base case, substitute= 0 into (21). This gives

H(W) = HOV;) + B (Wo|Vi x| 31]) = HOWG) (22)
which is clearly true. We assume that|(21) is true fioe & in the induction step,
HOWE) = H(VE) + H (W |Vt [f04071]). (23)
With the availability of W, one can us€_(19) to recove[’“itéf;?‘l} and [2B) can be re-written as
follows,
H(WE) > H(%k—ls[k(Bk—Egl??—l]) +H(Wk‘vok—ls[k(itgi??—l}x[k(B-i—To)—l—B—l})_ (24)

The detailed steps frond (23) tb(24) is shown in Appendik. A.
Next, we addH (W, |W}) to both sides and then uge{20) to recover the source symbiwésponding

to W, s[@,j(g(f;){g—l] and the following can be written (c.f. Appendix] A),

HWE) > H(VE) + H (Wi |V | C+0E D], (25)

From (23) to [(25) and passing bly (24), we have shown thdt i {2rue forn = k& > 0, then it is
also true forn = k + 1. Thus, by induction[(21) is true for > 0. We take [(2ll) and finalize it as

HWE) > HVP Y + H(Wn

Vi "0 ) = . (26)
Next, we expand the groups of channel packets
HWD) = H(x [T+B—1]X[2(T+B)—1] N _X|:(n+1)(T+B)—1]>

B (T+B)+B n(T+B)+B
n T+B-1
<M N HEHT+B)+4])=(n+1)-T- H(x) (27)
i=0 j=B

and also expand the groups of source packets

<o) =73 (o[
< n(T§>_1H<SM) =n-(T+B)-H(s) (28)

1=0



where step (a) is because the source packets are indepehtentwe can také (26) and write it as
H(Wg) = H(Vg™)
(n+1)-T-H(x)>n-(T+B)-H(s)
(n+1) T S H(s)
n T+B~ Hkx)

Finally, we conclude that anyB,T") streaming erasure code must satisfy
H{(s)
Hx) “T+B
which gives our upper bound of the rate.

R =

(as n — 00) (29)

V. PROOF OFTHEOREM[3

For the converse we start with the upper boundlin (8) in Thaddewhich we reproduce below for
convenience. The proof of Theordm 4 appears setfioh VII.

T>—B
C+:{ rosim 1> Ti+ By
=  Th<Ti+B.
We further tighten the upper-bound in_{30) as follows,

(30)

CY =min {C*,Cy, o} = (31)

min

min m Cl,CQ} Ty > 1T+ By
T+B 701702} T2 §T1+Bl

Through straightforward calculations one can further difytp
: T
ov — min mcl} Ty > T + By
min {70 G} B <Ti+B
C1 2 C,, Ty > Ty + B,
= BBTH-EQ_CM Ty + By <1y <aly + By
g = C, Ti<Th<Ti+ B
CZ é Cd7 T2 S Tl.

(32)

where recall thaty = 22 This completes the proof of the converse.
We discuss the code constructions for each of these regelos/b

A. Region (a)

The code-construction achieving; in region (a) appeared in [16]. We summarize the key-steps fo
completeness and provide an example Wi, 71) — (B>, 13)} = {(2,3) — (4,8)} in Table[l which we
will require in a subsequent example. We will assume for §igiip that B, = aB; wherea is an integer.

. Generate 4 B;,7)) SCo code(s[i], p[i]) consisting of7} source sub-symbols and; parity check
sub-symbols. Recall that the parity check sub-symbols aremted by applying a low-delay burst-
erasure block codes (LD-BEBC) across the main diagonal efstheam of source sub-symbols.

. Generate 4o B, 1) SCo cod€s|i|, q[i]) consisting ofl} + B; sub-symbols where the parity check
symbolsq[i] are generated by applying a LD-BEBC across the oppositeod&gf the stream of
source sub-symbols and with a interleaving factof®f- 1).



[i — 1] (4] [i 4 1] [i + 2] [i + 3] [i + 4]
so[i—1] solt] | soli+1] I soli+2] soli+3] soli+4]
s1li—1] s1[i+1] s1[i+2] s1[i+3] s1[i+4]
Sz[i—l} Sz[i] 82[i+1] S2 [i+2} 82[i+3] 82[i+4]
S0 [i—4}@82[i—2] S0 [i—3}@82 [i—l} S0 [Z'—Q]@Szm S0 [i}@SQ[Z’+2] S0 [i+1}@82[i+3]
So[i—l]@sz[i—i—l}
@D @ @D @ @ @D

s2[i—9]@so[t—T]

s2[i—8]@®so[i—6]

s2[i—T]®so[i—5]

s2[i—6]@so[i—4]

s2[i—5]Dso[i—3]

s2[i—4]®so[i—2]

s1[i—4]®s2[i—3] s1[i—3]®s2[i—2] s1[i—2)Ps2[i—1] s1[i—1]Ps2[i] s1[i]Ps2li+1] s1[i+1]Ps2[i+2]
5 D 5 D D 5
s1[i—9]@so[t—8] s1[i—8]®so[i—T] s1[i—T]Dso[i—6] s1[i—6]@so[i—5] s1[i—5]Dso[i—4] s1[i—4]®so[i—3]
[+ 5] [+ 0] [+ 7] 19 [+ 9] [+ 10]
50[i+5] so[i+6] so[i+7] so[i+8] s0[i+9] so[i+10]
s1[i45] $1[i4-6] s1[i+7] $1[i48] s1[i+9] s1[i410]
sali+5] s2(i+6] sali+7] s2(i+8] s1[i+9] s1[i+10]
soli+2]@sali+4] s0[i+3]®s2[i4-5] so[i+4]®s2[i+6] s0[i45]®s2[i47] 50[i4-6]@s2[i+8] so[i4-7]@s2[i+9]
5] 52 5] 52 52 5]
s2li—3]®so[i—1] s2[i—2]®so7] | sali—1]Pso[i+1] | s2[i]®so[i+2] sali+1]Pso[i+3] sa[i+2]®so[i+4]

s1[i+2]®s2[i+3]
]
S1 [i—3}@80 [i—Q]

s1[i43])®sali+4]
@
S1 [i—2}@80 [i—l}

s1[i+4]®s2[i+5]
©®
S1 [i—l]@sam

s1[i45]®s2[i+6]
@
S1 [i}@SO [i—‘r 1]

51[i46]®s2[i+7]
@
C [i—‘r 1]@80 [i+2]

s1[i+7]Ds2[i+8]
D
s1[i4+2]®so[i+3]

TABLE |

10

RATE 3/5 DE-SCO CONSTRUCTION THAT SATISFY THE REGIONA) POINT DESCRIBED BY USERL WITH (B1,T1) = (2, 3) AND USER?2
WITH (BQ,TQ) = (2B17 2T + Bl) = (47 8).

. The transmitted packet at times given byx[i] = (s[i], p[i] + q[i — T1]).
We omit the steps in decoding as they are rather involved efedt to [16].

B. Region (b)
In region (b) in Fig[2 we show that the rate
- B
Cp =221 T.+B <Ty<aly+B
b Ty— B+ By’ 1+ D1 < 1o S ady + b,
is achievable.

Since the capacity does not dependignwe can reduce the value @f to T, such that we meet the
left hand side with equality i.e., we select

T2 = Ole + Bl,
which in turn implies that
. B
2

Provided thatl; > B, and furthermorel; is an integer we can use{dB;, 7)) — (B,,T5)} DE-SCo
code [16] to achievefli—lB1 = C, and hence for the original point in region (b). The former aition

is equivalent toly > B, + B; which naturally holds in region (b). If} it is not an integer a suitable
expansion of every source symbol is needed as discussed. belo



11

[i — 1] [] [i 4 1]
so[i—1] s3[i—1] sold] s34 soli+1] s3[i41]
s1[i—1] sali—1] s1[4] s4i] s1[i41] sali+1]
soi—1] s5[i—1] s2i] s5(4] sali+1] s5[i41]
s3[i—3]®ss5[t—2] soli—2]®s2[i—1] s3[i—2]@ss[i—1] soli—1]@®s2[t] s3[i—1]@ss[i] solt]®s2[i+1]
S D D S S D

S2 [i—5}@80 [i—4]

S5 [i—5}@83 [i—4}

Sz[i—4]@80[i—3}

85[2'—4]@83[2'—3]

S2 [i—3}@80 [i—Q}

S5 [i—3]@83 [i—Q}

54[i—3]®s2[i—2] s1[i—2]®s5[i—2] s4[i—2]Ps2[i—1] s1[i—1]@ss[i—1] s4[i—1]Ps2[t] s1[8)@ss5[i]

S D D S S D
s1[i—5]®s3[i—5) s4[i—5]®soli—4] s1[i—4]Ps3li—4] s4i—4]Pso[i—3] s1[i—3]®s3[i—3] 54[i—3]@so[i—2]
[i + 2] i + 3] i + 4]
soli+2] s3[i+2] so[i+3) s3[i+3) soli+4] s3[i+4]
s1[i+2] s4[i42] s1[i+3] s4li+3] s1[i+4] sali+4]
s2[i+2] s5[i4-2] sa[i+3] s5[i+3] s1[i+4] s5[i+4]
s3[i]Pss[i+1] soli+1]®s2li+2] s3[i+1]Pss[i+2] soli+2)Ps2[i+3] s3[i+2]®ss5[i+3] so[i+3]Ps2li+4]
@ @ @ @ @ D
sali—2]@so[t—1] s5[i—2]@s3[i—1] sali—1]@®so[i] s5[i—1]@s3[i] sa[i]®so[i+1] s5[t]Dss[i+1]

sali]®sa[i+1] s1[i+1]@ss[i+1] safi+1]®s2[i+2] s1[i+2]Dss[i+2] sali+2]@s2[i+3] s1[i4+3]Dss[i+3]
52 D D 52 52 D
Sl[i—Q}@SS[Z’—Q] S4 [i—2}@80 [i—l} Sl[i—l]@s;g[i—l} S4 [i—l]@sam Slm@SS M S4 m@So[i—‘rl]

TABLE I
RATE 3/5 MU-SCO CONSTRUCTION THAT SATISFY THE REGIONB) POINT DESCRIBED BY USERL WITH (B1,T1) = (1,2) AND USER2
WITH (B2, T2) = (2,4).

« Split each source symbol inte*T; sub-symbolss|i], . . .

such that7} is an integer.

. Construct an expanded source sequefigesuch thatsni + r| =

red{0,...,n—1}. . .

« We apply a DESCo code with parametégta B, nT}) — (naB,n(aT; + B))} to s|-] using the earlier

construction.

With the channel of user 2 introducing, erasures on the original input stream, there will/h8,
erasures on the expanded stream. These will be decoded vd#iag of n(aT) + B) = nT» on the
expanded stream, which can be easily verified to incur a defldy on the original stream.

For user 1 the expanded source stream incurs a delafofwhich reduces to a delay ¢f/} | on the
original stream. This suffices the requirements of user lyasobstructionl; > [T7].

We provide a numerical example below.

1) Example — Source Expansio@onsider a Mu-SCo with parametef§l, 2), (2,4)} which falls in
the (b) region. The capacity is given By= 3/5. The construction is provided in Talile Il. Through direct
calculation note thal}; = 1.5. Hence we implement a source expansion technique avith2 as follows.

We split each source symbal:] into six sub-symbolssy[i],. .., ss[i] and construct an expanded
source sequencsl:] such thats[2:] = (so[i], s1[i], s2[i]) and §[2i + 1] = (s3]d], s4[i], s5]i]). We use the
{(2,3), (4,8)} DE-SCo code (see Tablé I) that we applysjg to produce the parity checks[-] and
transmitp[:] = (p[2i], p[2¢ + 1]) along withs[:] at time:. It can be verified directly that the resulting
code corrects a single erasure with a delay sfymbols and an erasure-burst of lengtlvith a delay of
4.

, $n27, 1 1] Wheren is the smallest integer

(‘Srnf‘l [Z]7 Tt S(r+1)n7~“1—1[i]) where
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(a) IA-SCo Code Construction fam,,m)=(1,2) and (B,,12)=(2,6)

[i — 1] [4] [i + 1] [i + 2] [i + 3] [i + 4]
| soli—1] | s0d) soli+1] so[i+2) soli+3] soli+4]
s1fi—1] [5100] s1fit1] s1[i+2] s1[i+3] s1[i+4]
soli—3]®s1[i—2] so[i—2]@s1[i—1] | soli—1]@®s1[7] | soli]|®s1]i+1] soli+1]®s1[i+2] soli+2]®s1[i+3]
D 5 D D 5 5
soli—T7]®s1[i—5] so[i—6]®s1[i—4] soli—5]®s1[i—3] so[i—4]®s1[i—2] soli—3]®s1[i—1] soli—2]@®s1[7]
(b) DE-SCo Code Construction for,,1,)=(1,2) and (B,,72)=(2,5)

[i — 1] [4] [i +1] [i + 2] [i + 3] [i + 4]
soli—1] soli soli+1] soli+2) so[i+3] soli+4]
s1[i—1] s1[] s1li+1] s1[i+2] s1[i+3] s1[i+4]
soli—3]|Ps1[i—2] soli—2]®s1[i—1] soli—1]®s1[i] sold]@s1[i+1] so[i+1]Ds1[i+2] so[i+2]Ps1[i+3]
5 D D 5 5 D
s1[i—6]@so[i—5] | s1[i—5]@so[i—4] | si[i—-4]Dsoli—3] | s1[i—-3]Dso[i—2] | s1[i—2]@so[i—1] s1[i—1]@sol]
TABLE Il

RATE 2/3 CODE CONSTRUCTIONS THAT SATISFY USER WITH (B1,71) = (1,2) AND USER2 WITH B2 = 2. THE TWO POINTS
{(1,2) — (2,6)} AND {(1,2) — (2,5)} LIES IN REGION(A).

C. Region (c)

Region (c) is sandwiched betwe#&h < T, < T + B; and also satisfies; > B, in Fig.[2. The capacity
is given by

T
Ty + By

For the achievability scheme, we use an approach similaegmn (b). We can reduce the deldy
of user2 in region (c) so that it meets thg, = T, line without changing the capacity.. We can then
apply a single usefB,, T}) code that simultaneously satisfies both the users. Cldaidycbde is feasible
sinceT} > B,. The rate of this SCo code meets the capacity. Note also tealavnot requiresource
expansionn this step.

C. = (34)

D. Region (d)
In this regionT, < T} and B, > B;. It suffices to serve use&r and the upper bound shows that the
capacityC, = C; is also achieved using a single user SCo of parame¢feysls).

VI. IA-SC0o CONSTRUCTION (PROPOSITIONI])

We first provide a simple example to illustrate the main ideaibhd IA-SCo and then provide the
general construction. We note that the IA-SCo codes achiewecapacity in a subset of region (a) in
Fig.[2. While 1A-SCo codes do not provide any new capacityltestheir construction is much simpler
than DE-SCo and perhaps easier to generalize when thereaeethan two receivers.

A. Example

Consider an example with the first and second users expergebarst erasures of length; = 1 and
B; = 2 symbols respectively (i.eq = 2) and the corresponding delay for the first usefjs= 2. From
Prop.[1 we have thaf, = 6. Table[dll(a) illustrates the 1A-SCo construction. For qeemison the optimal
DE-SCo construction achievirifj, = 5, proposed in[[16] is provided in Tablellll(b).
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The construction of the IA-SCo code is as follows. We splithegource symbos|:] into two sub-
symbolss,[i] ands, [i] of equal size. Lep, [i] = so[i —2] B s1[i — 1] be the parity check associated with the
(1,2) SCo-codel[10] and let,[i] = so[i — 4] & s1[i — 2] be the parity check for th&, 4) SCo-code([10].
The parity check row is obtained by combining@] = pi[i] ® p2[i — T1] i.e., by shiftingp.[i] by 7} units
and then combining. The parity check stregp are then concatenated with the source symbols as shown
in Table[Il(a).

When an erasure of one symbol occurs say at i — 1 for userl, it needs to recoves|i — 1] at
time ¢ = i + 1. Note that userl can cancel the second row of parity chegks$|, which combines
unerased sub-symbols. For ugesuppose that a burst erasure of len@th= 2 symbols occurs at times
t=1—2,i— 1. User2 simply ignores the parity checkgi| and ¢[i + 1]. Starting from¢ =i + 2, the
parity checkg, [-] are functions of symbolsi], s[i+1], ... and do not involve the erased symbsjs— 1]
ands[i — 2|. Therefore we can subtrapt[-] from ¢[i + 2], ..., q[i + 6] and recovem,|i], ..., ps[i + 4],
which suffice to recover the missing symbols.

B. General Construction

The main idea behind the general construction is to statt b single-user codes for the two users,
(B1,T1) and (aBy,a17) and delay the parity checks of the secondyyso that they can be combined
with the parity checks of user without causing any interference to the two users.

Throughout our discussion we |t =7 andB; = B and B, = aB andTy, = oT + T.

1) Code Construction:

. LetC; be the single-user code of user[11[10],/[16]. Assume that thece symbols|:] are divided

into 7' sub-symbolgsy|i], . . ., sr_1]i]) and combined to producB parity check sub-symbols'[i] =
(pbli), - - ., p_1[i]) according to

pili) = s;li = T) + hy(spli— (j+T — B),...,sr[i— (j+1)]), j=0,....B—1.  (35)

. Let(C, be a rate”; SCo with parameter& B, oT") also obtained by splitting the source symbols into
T sub-symbolgsy[i], . .., s7_1]i]) combined to producé parity checksp'[i] = (pil[d], ..., p% ,[i])
according to the vertical interleaving property in [16§.].

Pili) = sili — oT) + hy(spli —a(j+ T = B)),...,sr—1li — (j + 1)a]),j =0,...,B—1. (36)

. ConstructC,; whose symbols have the forfs[i], q[i]), whereq[i] = p'[i] + p"'[i — T]. Intuitively the
stream of parity checkp![-] is delayed byl symbols and then the resulting non-interfering streams
are combined.

Clearly the rate of,; equalsC;. We need to show that user 1 and user 2 can recover from erasure

bursts of B and By = aB within delays ofT" andT; = oT + T respectively.

2) User 1 Decoding:Assume that the symbols at timig .., 7+ B — 1 are erased on user 1's channel.
By virtue of C;, symbols|i + k] (for k =0,1,..., B—1) can be recovered by timet k + 7" using parity
checksp![i + BJ,...,p'[i + k + T]. Thus it suffices to show that we can recoyéfi + k| from qli + k]
fork=B,...,B+T—1.

First note that the'[i+ k] for k = B, ..., T can be directly recovered frony: + k] since the interfering
parity checksp™[-] only consist of source symbols before timendeed the parity check dt= T is

qli + T = p'[i + T] + p"[i]

and from [36) the sub-symbols ip"'[;] only depend on the source symbols before tim&hus upon
receivingq[i + T user 1 can recover the erased symijgl Furthermore, we can also compyt€|i + 1]
which only consists of source symbols up to tifrend upon receiving|i+7+1] can compute'[i+7+1]
from

plli+T+1]=q[i+T+1] —p"[i+1].
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T=2 (code C))

C] O [ [ [ L] B 2] [ [ o] [ 2] [ [
| t

T=4 (code C,)

(a) Step (1) (b) Step (2) (c) Step (3)
Fig. 6. Main steps of finding the upper-bound for #i@, 2) — (2, 4)} point through one period illustration of the Periodic Er@sGhannel.
Grey and white squares resemble erased and unerased syeddstively.

In turn it recoverss[: + 1]. Continuing this process it can recover all the erased sisrpo+ k| by time
1+ T+ k.

3) User 2 Decoding:Suppose that the symbols at time. ., i+ B, — 1 are erased on user 2’s channel.
By virtue of Cy, symbols|i + k] (for £ = 0,1,...,B, — 1) can be recovered by timée+ k + oT
using parity checkp!'[i + By),...,p![i + k + oT]. To establish[{9) it suffices to show that symbols
p'[i + Byl,...,p"[i + k + «T] can be recovered from symbaigi + T+ Bs),...,q[i + k + oT + T).
Indeed since

qli + By +T] =p'[i + B+ T| + p"[i + By,

it suffices to observe that user 2 can cangBi + B, + 7] upon receivingq|i + By + 1. It however
immediately follows from[(35) thap'[i + B, + T involves source symbols at timet B, or later (the
construction limits the memory in the channel input streanptteviousT' symbols). The symbolg![-]

after this time also depend @] at timei + B, or later.

VIl. PROOFOF THEOREM4

We first provide an example to illustrate the upper boundgiperiodic erasure channel. Then we outline
the general periodic erasure channel (PEC) based argufieatly we provide a rigorous information
theoretic converse.

A. Example

The main steps of this proof can be illustrated by first cosi$id) a specific exampld,(1,2) —(2,4)}
which is shown in Figld6. We consider a periodic erasure chlnith each period having two consecutive
erasures followed by three unerased symbols. Thus, onetagnby using cod&, = (2,4) to recover
the erasure at timé, wtih a delay of4, leaving only one erasure at time(c.f. Fig.[6(b)). Now, code
C, = (1,2) can be used as it is capable of recovering this one erasunéwitdelay of2 (i.e., by time3)
(c.f. Fig.[6(c)). Let us assume that the code is systematictans one can recover the symbols at time
2, 3 and4 from their corresponding unerased channel symbols. Tmescan recover a total &f source
symbols from3 unerased channel symbols which implies t84i is an upper-bound of this channel.

B. PEC based Converse
For the general case of Theoréin 4, we start by the dase, T + B; and then consid€er, < T; + B;.

Lemma 1:WhenT; > T + By, suppose there exists a sequence of feasible encodingdus€tf;(-)}
and decoding functiong~:;(-)} and {v%(-)}. Then there also exist decoding functiofng-) that can
reproduce the source symbalg|, over a channel with periodic bursts as stated below

{*, te [T, Tk + By — 1]

37
x[t], te€ [TF+ By, TF —1] 37)

whereT* = kT, + k(By — By), k =0,1,. ..
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c=1T,+ By — B, c=DBy+T)

T, T,
Lnk CETT T T T T TTI T T I T I T I T I I T g Lnk CETT T T T TITTI T IT I T I T I T I T I T I Tg:--
a= By — B By Ty a= By — B By Ty
b= DBy b= B,
(a) To > T + B. (b) Ty <Ti + B.

Fig. 7. One period illustration of the Periodic Erasure Gtedrin Fig.[4 to be used for proving the multicast upper-bopnavided in
Theoren( 4.

An illustration of one period of the proposed periodic-eraschannel (fromif® to 7) in the case
T, > Ty + By is shown in FigL7(a). The capacity of the periodic erasur@nael in Lemmall is

Ty, — By
C< —F———. 38
- T2 — B1 + B2 ( )
To establish Lemma]1, it suffices to show that by tifi& — 1, the receiver is able to recover
symbolsx[0], ..., x[T* — 1]. We first show that by tim@™ — 1, the receiver is able to recover symbols
x[0],...,x[T* —1]. Since only symbolx[0],...,x[B, — 1] are erased by tim&* — 1 we focus on these

symbols.

Consider a single-burst channel that introduces a burstrggth B, from timest = 0,1,..., By — 1.
Note that this channel behaves identically to the periodistochannel up to tim@* — 1. Applying
the decoderyy () for t = 0,1,...,(By — B;) — 1, the receiver recovers symbaf)], ..., s[t] with a
delay of 75 i.e., by timeT! — 1 and hence it also recovers the channel packéls ..., x[t] via (T). It
remains to show that the symbols at time (B, — B;),..., B, — 1 are also recovered by ting' — 1.
One cannot apply the decodey,(-) to recover these symbols since the decoding will requirebsym
beyond timeT™, which are available on the single-burst channel but nothenperiodic burst channel.
However, to recover these symbols we use the multicast gyojpé the code as follows. Consider a
channel that introduces a single erasure burst of ledgjtibetween timeg = (By — By),..., By — 1.
Note that up to timel™ — 1, this channel is identical to our periodic burst-erasuranciel (which has
recoveredx[0], ..., x[By; — B; — 1]). For this channel, and hence the periodic erasure chansiely the
decodery,(-) the source symbols are recovered by time+ 7, — 1 < 7' — 1. Furthermore vial[{l), the
erased channel symba$B, — By],...,x[B, — 1] are also recovered by tiniE! — 1. Since the channel
introduces periodic bursts, the same argument can be szp&atecover all symbols up to tinie* — 1
for eachk.

The same argument applies in the case whern< 77 + B; (in Fig. [4.(b)) except that the periodic
bursts are stated as,

k k
x,  te [T, TF+ By —1] (39)
x[t], t€ [T"+ By, TF —1]

whereT* = k(T + B,) and the theorem follows.

C. Information Theoretic Converse

Recall that our PEC argument assumed that (1) the channkétsadt| are deterministic functions of
the source packets up to timg(2) the channel code is systematic and (3) the recovery hamten with
zero error. All of these assumptions can be removed by Kiagotd the information theoretic converse
discussed next.

We start by proving the first cage > 7 + B;. We use the periodic erasure channel shown in[Fig. 7.(a),
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where each period haB, erasures followed by, — B; non-erasures. We can assign
a=DBy—B;, b=DBy, c¢=DBy+T1,— B; (period length)
=[] v
We define the capability of thé, = (B;,T}) andC, = (B»,T3) codes by,
H(s[i] x[jigll]x[lal]) =0 (40)
H(slil|x| 5% x| 51]) = 0. (41)

We use mathematical induction to prove that for 0

HWDY > H(VPY) + H(Wn

sl )). z
The base case for_(#2) is given by substituting: 0 into it:

H(W) > HOVGY) + H(Wo[Vi'x[31]) = HOW) (43)
which is obviously true. For the induction step, let us skartassuming that(42) is true for = k,

H(WE) > H(VEY) + H(Wk)ﬁ/ok‘lx[kcgl} ) (44)
In the first part of the induction step, some entropy maniputa are applied (c.f. Appendik.]B), to
show that:

oy () )

These entropy manipulations can be summarized in two mapssthe first of which is recovering the

first « = B, — B; source symbolss[’“*;‘l} using codeC, defined in [(41l) due to the availability of

kc+b—1

W, while the second step is recovering the nexta = B, source symbols[ fota

in (40).
In the second part, we adbl (W,.1|W¢) to both sides of the inequality. Because the channel code is
not necessarily systematic, we will use the additional aeapackets inV;,, to help decode the source

packet&[(kzclfb‘l} (detailed steps are shown in Appendix. B).

} using(C; defined

HWE) = HVE) + H (W [V ) ]). (46)

The working in [(46) shows that if (42) is true for = k, then it is also true fom = k + 1. By
induction, (42) is true fon > 0. Finally,

HWDY > HVPY) + H(Wn

ek ]) = HOGY.

Using the fact that all of the channel packets have the sarremn and all of the source packets have
the same entropy, we can continue to get

HW§) > H(Vg)
(n+1)-(Ty — By)-H(x) >n-(Ty + By — By) - H(s)
ntl  T-B_ H)
n Ty+By,—B — Hx)

(47)
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Finally, we get

H(S) < T2 — Bl
H(X)_TQ—Bl—}—BQ.
Therefore, any{(B;,T1), (Bs, T3)} code withT, > T} + B; must satisfy[(48).

For the case with, < T} + B;, the same proof applies except that the values, fandc are updated
as follows,

R= (asn — 00) (48)

a=DBy—B;, b=DB,, c¢=By+1T; (period length)
and again we end up having,
HW§) > H(Vy ™)
(n+1)-Ty-H(x) >n-(T1+ By) - H(s)
n+1 Tl H(S)
. > .
n T1 + B2 - H(X)

(49)

In other words,
H(S) Tl
H(X) - Tl -+ BQ '

Therefore, any( By, T}), (Bs, T3) code withT, < T} + B; must satisfy[(50).

R = (asn — 00) (50)

VIIl. CoDE CONSTRUCTION INREGION (E) (THEOREM[5))

Recall that region (e) in Fi¢] 2 and FIg. 3 is contained within> B, +T}, T, > B, andT, < B; + B;.
Since the capacity’, given by
Ty
C, = 51
271+ By + By —Th, (51)
is constant along each 45-degree line starting from theline B; + T in the (B, Ty) plane in Fig[38,
we can parameterize tHe and B, as

T2:T1+Bl+m, Bng1+k+m,

wherem > 0 is the number of steps upwards on the 45 line in Elg. 3 staftiogp 7, = 77 + B; line
dividing regions (e) and (f), and whereis an integer taking values froih to B;, which horizontally

spans region (e) frorfl, = B; + B, to Ty = B,. Substituting into[(51) we have
11

= — 2

Ce 2Ty + k’ (52)

which we will show is achievable.

In Appendix[C we provide two examples of the code constrastiwith parameterg(4,5), (7,10)}
and{(3,5),(7,9)}. These examples compliment the general description betmvaight be worthwhile
reading in parallel with this section.

The construction generates three layers of parity checllscarefully combines them to satisfy the
decoding constraints of both the receivers. The main cocistn steps are described below.

« Split each source symboisi| in 77 sub-symbols

sli] = (sold], ..., sm-1[i])

« Apply aC, = (B4, T3) single user SCo code to the source symhdlsproducingB; parity check
sub-symbols

p'[i] = (P[], - -, P, 1 [i])
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at each time by combining the source sub-symbols along the diagonal,
p;[l] = SJ[Z - Tl] + h;l(sBl[i _.] - Tl + Bl]a SRRE) STl—l[i _.] - 1])7 j = {07 17 ERRE) Bl - 1}

« Apply a C, repetition code to the source symbelg| with a delay of7s, i.e., the corresponding
parity check symbols are,

p'[i] = (o[, - - prali]) = (s0li = Tal, .. sy [i = To]) = sli — T). (53)

« Concatenate the two streamy:] andp''[-] with a partial overlap as illustrated if_(54). In particular,
the two streams of parity checks|-] and p''[-] are concatenated with the laB{ — k rows of the
first added to upper mog®; — k£ rows of the second.

So [’L]

ST_1 [’L]
Poli]

=] ﬁ_}gol[?]_ . (5)

P, _1li] +$p—k-1li — T2]
SBl_k[’i — Tg]

STi—1 [’L — Tg]

We further combine the last, — (B, — k) parity checks ofp''[;] with additional parity checks of
code(s as explained below.
. Consider the two cases:

(A) Th <2(B, — k)

— Apply aCs = (B3, T3) = (T1 — (B1 — k), By — k) single user SCo code on the ldst — k parity

checksub-symbols of’;, (p;[],...,p%s,_1[.]) constructingl; — (B; — k) parity checks
p*[i] = (Polil, - - - Py~ (5, —p)-1[i])
at each time by combining the lagy — k parity checksub-symbols(p}[]. ..., pj,_,[]), along

the main diagonal, i.e.,
D;li) = Phgsli = 5] + 1} (Phsp, i = 5 = Ts + Bsl, o phyy i = 5 — 1)),

forj:{O,l,...,Tl— (Bl—]{?)—l}
— Combine aA; = —T; shifted version of the produced stream of parity chegks| to the last
T, — (B — k) rows of x[.], thus,



(B)

where

p’[t]|, = W], -

Pili]

pfgl_l[i]
3B1—k[7; — TQ]

i STl—l[i — TQ]

is the parity-checkp?[t;] shifted to timet,.
We note that the construction &fi] in (65) requires us to have access to source symbols after
time i as the parity checkp?[i + 71| may include source symbols after timeSince our encoder
is causal we cannot have access to these source symboéadnge transmit only the causal part
of the underlying parity checks. In particular, we decongeach parity check into two parts as
follows. For anyt, < t; we have,

where ﬁ?[tl]} ., denotes the causal part of the parity check with respeat twhereasﬁf.[tl]}

sli]
pold]

P[]
+So[i — TQ]

_'_SBl—k—l[i — Tg]
+pili + T,

0% (w1 li + T .,

7p§11—(31—k’)—1 [tl] ‘t2)

pi[t] ‘t2 = po[t] }t2 + P[] ‘tQ

denotes the hon-causal part of the parity check with redpefti.e.,
ﬁ?[tl]‘tz = fj(S[tQ], S[tz — 1], S[tQ — 2] .. )
ﬁi[tl]‘tz = gj(S[tg + 1], S[tz + 2] .. )

The resulting input symbol at timeis given by

SBl_k[i — Tg]

i STl_l[i — Tg]

sli]
Poli]

P
+S(] [7, — TQ]

+5p,—k—1[t — Th]
+pli + T1)|

%

+ﬁ%1—(31—k)—1[i + Tl] "L

The symbolx[i] in (B9) is the transmitted symbol at timie

T > 2(31 — k‘)

19

(55)

(56)

(57)
(58)

(59)

Since,B; — k > T, — (B, — k), a SCo of parameterd; — (B; — k), B; — k) constructed in case
(A) is not feasible and is thus replaced by a set of SCo codwmsthié associated values of, B;
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andk we let
Tl—(Bl—]{?):T<B1—]{?)+q, q<(Bl—k;) (60)

— Let
CS,n - (BS,naT?),n) = (Bl - kaBl - k)a n = ]-7 s T

be a set ofr SCo repetition codes applied on the lagB, — £ parity checksub-symbols
(pilil, ..., P, _1[i]) and repeating them to constructsets of parity check vectors each of
size B; — k as follows,

p*"[i] = (py" ], ..., o1 [i]) = (Pi[i + (B — k)],...,p, 1 [i + (B — k)]),  (61)

at each time, i.e., &;, code is a(B, — k, B; — k) SCo repetition code shifted back by
(n+1)(By — k).

— Let C3,11 be a(Bs,41,15,41) = (¢, B1 — k) SCo again applied on the lagt; — k£ par-
ity check sub-symbols(p,[i], ..., p%,_[i]) and then constructing parity checksp®'![i] =
(py" i), ..., 2" 'li]) at each time by combining the la&; — k parity checksub-symbols,
(pkl-], - - -, pB,_1[]), along the main diagonal.

— Concatenate the set of streapis®[.] for n = 1,...,7 andp>"![] after introducing a shift of
Asz .41 = =T in the later. The output symbol at times,

sl1]
poli]
' i p}c—l[[?] T
1| +Solt —
x[i] = Pilfl ol (62)
Pry1li] +sp,-kali — T
sp—kli — o] +pgli]
i sty-1[i — 13 +153c’f1_(31—k)_1[i] i
where
Bold)s - -+ Pry—(Br-ry—1 1) = B> [dl] ... D> [i] |, P> [0 + Th] ) (63)
is the concatenation of thet 1 parity check sub-streams for the codisg, forn =1,...,r+1,

respectively. Since each of the firsof these sub-streams is composedif— £ parity check
sub-symbols while the last of which is composed qoparity check sub-symbols, then the
p®[i] has a sum of (B, — k) + ¢ = Ty — (B: — k) parity check sub-symbols which will be
denoted by the parity check sub-symbols of cdgdgthe set of code§Cs1,Cs,...,Cs41}),
and hence can be combined with the |ast- (B, — k) parity check sub-symbols of codg,
Pl - - 7 1 [4]).
Since there ard’; source sub-symbols and two streams of parity checks one BitAnd the other
with 77 parity check sub-symbols for eveff source sub-symbols but partially overlappingi — &

rows, it follows that the rate of the code 5§1+31T—1(Bl—k) = 2Tflpl+k = C, (c.f. Fig.[8).

A graphical representation of such coding scheme is itistr in Fig[ 8. The horizontal axis represents
time while the vertical axis represents the index of subisyisin the channel symbol at each time instant.
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t=[i-B,] =[] t=[+B-k] t=[i+T ] t=[1+T,]

=[i-B,+T,]
N
T, Layer (1) >~ SL]
2
k
5 1 Layer (2) L pi)
Layer (3)
T, \ pLl
Layer (4) Pl
%f—/\
Pl P[t1=S[t-T,]
R
. e Pl
Erased Non-Erased

Fig. 8. A graphical illustration of both the Encoding and Deing Steps for a general point lying in the (e) Region. Theels on the
right show the layers spanned by each set of parity checksguitbols. The labels at the bottom show the intervals in wieiabh set of
parity check sub-symbols combine erased source sub-sgmbol

We divide each channel symbol into four layers,

. Layer (1) contains th&} source sub-symbols
. Layer (2) contains the first of the B; parity check sub-symbolg![-] produced by cod€,
. Layer (3) has the remaining, — k parity check sub-symbolp'[-] of C; combined with the first
By — k of the the parity check sub-symbojs''[-] produced by the repetition codé;.
. Layer (4) has the remaining, — (B; — k) parity check sub-symbols @k, combined with the parity
checks ofCs.
Note that two overlaps between codes exist in this codingrseh The first is between codés andC,
and takes place in layer (3), while the second is betw&eandC; and takes place in layer (4).

A. Decoding of User 1

A burst erasure of lengtl; in the intervalZ, = [i — B;,i — 1] can be directly recovered using the
stream of parity checkg![-] in the interval[i,i + T} — 1] = [ts,t4) (c.f. Fig.[8) produced by codé
within a delay of7;. The overlapping parity checks''[t] = s[t — T3] in this interval consist of source
symbols from the intervel, = [i — T5,i+ 1) — 15 — 1| = [i = T} — By —m,i — By —m — 1] which are
unerased (i.eZ, NZ; = ® sincem > 0).
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B. Decoding of User 2

Suppose that the symbols in the interdal= [i — B,,i — 1] are erased by the channel of user 2. We
start by summarizing the main decoding steps. Thereaftedegeribe each step in detail.

« Step (1) (Recovery ofp![-]): The parity checks of codé;, p?[-] in the interval[i, . .., i+ T, — By —1]

(in layer (4)) are capable of recovering the I&st-k sub-symbols op'[t] for t € {i+To—B,, ..., i+
T, — 1} by time ¢.

. Step (2) (Removal ofp![-]): Subtractp![-] in layer (3) starting at — B, + T».

. Step (3) (Removal ofp3[]): Compute and subtragt®[-] in layer (4) starting at — B, + Tb.

« Step (4) (Recovery usingp[-]): Usep![t] for t € {i + To — B,,...,i + Ty — 1} to recover the

erased source symbol&[i — By, ..., s[i — 1]).

Step (1) (Recovery ofp![-]): Step (1) involves applying codé; in computing some missing parity
checksp![t]. This is the most elaborate step and is established in thenfiolg lemma.

Lemma 2: The parity check sub-symbof§[t] for t € {i+T,—B,,...,i+Ti—1} andj € {k,..., By —
1} can be recovered using the parity check symipgls| in the intervali, . ..,i + T, — By — 1] (in layer
(4)) by timet, i.e., with a zero delay.

Since the proof of Lemmil 2 is rather long it is deferred to Ampe. [D.

Step (2) (Removal ofp'[]): Next we show that the parity check sub-symbol<efin layer (3) are
free of interference starting & = i + B; — k. This is because the parity check sub-symbol€,oin the
interval [i + By — k,i+ 1y — 1] = [t3,t4 — 1] are recovered in Step (1) and those appearing at tiné;
and later are functions of unerased source symbols at timaesl later (this follows from the fact that a
(B,T) SCo code has a memory @).

Step (3) (Removal ofp3[-]): We next claim that the rest of parity check sub-symbol€.oh layer (4)
are also free of interference. In case (A) considered bgethie follows immediately from the memory of
the SCo code. The parity check sub-symbol€ohas a memory off; = B; — k and thus these parity
checks at time + B; — k combine parity check sub-symbols ©f of timei+ B, —k—T5+T1, =i+ 1}
and later (where the addition &f; is due to the shift back applied on these parity checks). blae
we have shown in Step (2) that the parity check sub-symbols, @it time: + 7; and later combines
only unerased source symbols from timand the claim follows. While for case (B), the same argument
follows in the lastq rows. But for the firstr(B; — k) rows of layer (4), the parity checks @k are
repetition codes. These are either recovered in Step (2pmtam only unerased source symbols.

Step (4) (Recovery usingp'[-]): Step (4) uses the previous two steps to recover the paritgkche
sub-symbols of’; in layers (3) and (4) starting at"'[i + B; — k| = s[i + By — k — Ty] = s[i — By] and
thus the erased source-symbols can be recovered.

IX. THE CONVERSE FOR REGION (E) (THEOREMIS])

We want to prove that the capacity is at m%{m in the (e)-region defined by the inequalities
By, <T, < By+ By andT2 >T, + B;.

We start by considering the examplét, 5) — (7,10)} illustrating the steps of the converse proof. We
again use the periodic erasure channel strategy with agefidtength12 and the first7 of which are
erased. With7 erasures, codé, = (7,10) can recover the first two symbols at timeand 1 by time 10
and11, respectively (c.f. Fig. 9(b)). Since codg = (4,5) is not capable of recovering the remainifig
erasures, we reveal the first of which to the decoder. Nhwcan recover the source symbols at times
3 to 6 by times8 to 11, respectively (i.e., incurring a delay 6fsymbols). Again with the assumption
of systematic encoding, one can see that a rate/of upper-bounds the capacity of this channelsas
channel symbols where able to decddef the erased source symbols.

For the general case, the periodic erasure channel to beisisédwn in Fig[ 10, where each period
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[o] 4] (2] [3] [2] [5] (6] [7] [e] [e] [ae] [11] (o] (1] [2] [ [2] [5] [6] [7] [e] [e] [i] [1]

|
| ' 4
T=10 (code C,)
(a) Step (1) (b) Step (2)
T=5 (code C))
i vy vy
(o] [+] 2 [3] [=] [5] [&] [] [] [] [1] [1] (o] [1]1 2 3] [«] [5] [6] [7] [e] [] [1] [1]
(c) Step (3) (d) Step (4)

Fig. 9. Main steps of finding the upper-bound for thet,5) — (7,10)} point lying in Region (e) through one period illustration of
the Periodic Erasure Channel. Grey and white squares résardsed and unerased symbols respectively while hatcheates resemble
symbols revealed to the receiver.

has B, erasures followed b{; non-erasures. We can assign
a="1T,+ By — TQ, b= By — B, c¢= B,, d= By +1T (periOd |ength,)
W, — X[(z’—‘rl)d—l] Vi—s |:z'd+'a—1] S [(i+1)d—1] .

id+c id id+b
The idea behind the converse proof is similar to before, bstead we have two decoding functions to
use.
We use the decoder of receiver 2 to recoy ?51] within a delay of7, using the channel packets

X [dzl] . We then reveal the channel symb&l%;l . The decoder of receiver 1 can now be used to recover

d—1
c

the nextB; source packets, which are the packeﬁé;l], usingx[ } again. In general, we may not

have a systematic code, so everx fdzl is received, we may not be able to recover the corresponding

d—1
c

source pack&t[d;l]. Insteads[ can be recovered using the second decoder and the first amdsec

sets of channel packets that are not erasedxi[égl} andx[%i:cl :

So far, we have recovered; + By — T») + B1 + Ty = 2T} + By + By — T, source packets, using
2T, channel packets. We do not include the source pa é’t;s1 , because it cannot be decoded from

the information in the unerased channel packets. The chéasea period of3, + 77 packets, and if we
hadn periods, then we would be able to recovéRT} + B; + By — T3) source packets using: + 1)7;
channel packets. Therefore, we can suppose that the uppad lmm the multicast streaming capacity is
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given by
n-(2I1+ By +By—Ty)-H(s) < (n+1)-T\ - H(x)
= g((i)) = n;:l ' 2T1+BlTJerg—T2
L h (64)

"+ By + By — T

The more formal proof is given below.
Vo Vi Va
— — N — —
I

Link: L PP TP TP T PR PRI T T PRI T]
S~ S S
W1 W2

Wo

Fig. 10. The periodic erasure channel used to prove an ugperdbon capacity in region (e) indicating which symbols argrioupsiV;

andV;. Grey and white squares resemble erased and unerased syrabpéctively.

a:T1+BQ—T2
—>
b:BQ—Bl
—
Linke CLTHETTETT T T
C:BQ
d= By + T

One period of the periodic erasure channel in [Eiy.with labels.

Fig. 11.
Proof: From the(B;,T;) decoder, we have far> 0:
o ) = &
From the(B,,T>) decoder, we have far> 0:
(o[ ) <o @
H (s e[ i) =0, (67)
We want to use mathematical induction to prove thatrfor 0
HWE) = B + H (W Vi x [ ]). (68)
The base case fof_(68) is given by substituting 0 into it:
HWy) > HV; ) + H(Wo| Vi x[ 3] ) = HOv) (69)
which is obviously true. Let us assume thatl(68) is truerfet k. This gives:
(70)

HWE) > H(VE Y + H(Wk‘%’“‘lx[kdo‘l]).
We can manipulate the expression in two parts. In the firdt par uselV, to recover the source packets
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[4] [i + 1] [i + 2] [i + 3] [ + 4] [i + 5]
sol1] so[i+1] so[i+2] so[i+43] soli+4] so[i+4-5]
s1li] s1[i+1] s1[i+2] s1[i+3] s1[i+4] s1[i+5]

soi—4] s0[i—3)] s0[i—2] soli—1] soli] soli+1]
s1[i—4] s1[i—3] s1[i—2] s1[i—1] s1[i] s1[i+1]
soli—6]+s1[i—5] | soli=5]+s1[i—4] | soli—4]+s1[i—3] | soli—3]+s1[i=2] | soli—2]+s1[i—1] soli—1]+s1]i]
TABLE IV

Mu-SCo COoDE CONSTRUCTION FOR(B1,T1) = (4,4) AND (B2,T2) = (5,6). THIS POINT ACHIEVES THE UPPERBOUND GIVEN IN
THEOREMEBIAS T = B1 = 4.

kd+a—1 kd+c—1 .
s[ rd ] ands[ P ] and one can write,

HWE) > H<%k—1s[kdzg—1]s[kizi;1}) n H<Wk‘volc—1s[kd—;;—l}s[kc}lf—;—j_gl]x[kd-i-oc—l])’ (71)

where the first term on the R.H.S. gives the entropy of thecgosymbols recovered in previous periods
V! as well as the source symbols recovered in this step due tavdilbility of 1V,. The second term
gives the remaining ambiguity i/, to be used in the next step. The detailed steps ffarh (70) fpig71
shown in Appendix_E.

In the second part, we adll (W,1|W¢}) to both sides of the inequality. Because the channel code is

not necessarily systematic, we will use the additional aeapackets il to help decode the source
packet%[(kz;ldc‘lj/. The corresponding steps provided in Appenfix. E shows that

HWE) = BV + H (Wi Vx| )0 ]) (72)

The working in [11B) shows that if (68) is true far = k, then it is also true fom = k + 1. By
induction, (68) is true fon > 0. Finally,

HWG) = HOE ) + H (W v~ [ ]) = 5.

0

Using the fact that all of the channel packets have the sarremn and all of the source packets have
the same entropy, we can continue to get
H(Wg) > H(Vy™)
n -+ 1 Tl H(S)

. > . 7
n 2T1—|—Bl—|—BQ—T2 - H(X) ( 3)
Finally, we get 5
H(s T1
= < . 74
R ST B -5 ®" 7> (74)
Therefore, any( By, T}), (Bs, Tz) code in the (e)-region must satisfy {74). [ |

X. ACHIEVABILITY SCHEME IN REGION (F) AT 17 = B; (THEOREMI[@))

We begin with an example df(4,4) — (5,6)} Mu-SCo construction of ratg/5, as shown in Table V.
A (4,4) SCo repetition code is then applied resulting in the first taavs of parity checks and then a
(By — By, Ty —T1) = (1,2) SCo is applied and the resulting parity checks are shiftediby 4 forming
the last row. Note that the first user can recover from anytbenasure of lengtht within a delay of
4 symbols using the first two rows of parity check sub-symbbls. the second user, assume a burst
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erasure of lengthy takes place from time—5 to i — 1. Notice that useR recoverss;[i — 5] and sq[i — 5]
respectively from the last two parity checks at time i + 1 i.e., with a delay ofl; = 6. The rest of the
erased source symbols are recovered with a deladk; ef 4 using the repetition code.

A. Code Construction

Our proposed code construction, which achieves the minirdetay for userl i.e., T} = B; is as
folows
. LetC, be the single usefB,, 1) = (71,71) SCo obtained by splitting each source symg| into
(To — By) = (T3 — T) sub-symbols

S[Z] = (SO[iL sy ST2—T1—1[7;])
and repeating them to produ¢é, — 7)) parity check sub-symbols.
p'[i] = (woli], - Py alil) = (soli = T4, -, s1,-my 1 [i = Th]) = sli = Th]. (75)

« LetC, be a(B, — By,T, —T7) SCo also obtained by splitting each source syn#jglinto (7 —
By) = (Ty — T1) sub-symbolgsy[il, ..., sm,_1—1[i]) and then constructingB, — B;) parity checks
II . . II . II . . . . .
p i) = (polil,-. ., pB,_p,_1i]) at each time by combining the source sub-symbols along thie ma
diagonal.
« Concatenate the two streamis:] andp!![-] after introducing a shift of} in the second stream. The
output symbol at time is x[i| = (s[i], p'[z], p"[i — T1]).
Since there ard;, — 77 and B, — B, parity check sub-symbols for eveiy — T source sub-symbols,

i [T To-T: _ +
it follows that the rate of the code 57— = ;-

B. Decoding at User 1

A burst erasure of lengt®;, can be directly recovered using the stream of parity chetKsproduced
by code(C; within a delay of7;. Recall that this immediately follows since the parity dkeof the two
codes are concatenated and not added.

C. Decoding at User 2

Suppose that the symbols at time- B,,...,i — 1 are erased by the channel of user 2. We first show
how the receiver can recoveft| for t € [i — By, i — B; — 1] at timet + T5. To recovers[t], the codeC,
which is a(T, — Ty, B, — By) code, can be used provided that the corresponding parityksh&tarting
at time i — B, are available. Due to the forward shift @i = B; applied in our construction, these
parity checks appear starting at time- < and are clearly not erased. Secondly for the recovery[if
we also need the source symbols in the intefval B,,t + T, — T3]. The C, repetition code guarantees
that these are in fact available by timer 75. This shows that all the erased symbols in the interval
[i — By,i — By — 1] can be recovered. The remaining symbols in the intgival B, i — 1] are recovered
using theC; repetition code.

XI. UPPERBOUND FOR REGION (F) (THEOREMI[G))

The converse proof for region (f) is similar to the proof fegion (e). We shall use Fig. 12 ahd 13 to
illustrate the periodic erasure channel used in this priath period, in this case, contaifs erasures
followed by T; — By non-erasures, for a total d¥, + 7, — B; symbols.

Ba+T>

The first B, — B; source symbols can be recovered with cdédefrom x[ BQ‘Bl}, which are the
T, — By unerased channel symbols. We can seedh&t recovered at timé&,, while s, g, iS recovered

at time B, + T, — B; — 1. CodeC; recovers the next, — T} source symbols, which is[BrBéngl‘l .
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Vo Vi Va
T~ o~ T~

——t —N— —N— — —
Link: LA 0 P11ttt ti e rrrrred--

S~ S S

Wy Wi Wy

Fig. 12. The periodic erasure channel used to prove the fiserubound in region (f) showing the locations of the symliolgroupsV;
and W;. Grey and white squares resemble erased and unerased syragpéctively.

a
>

b

—

Linke LA T ETTET LT

C

d

— > —> —>
T, —ThBs — By T> — By

Fig. 13. One period of the periodic erasure channel in [Eiy.with labels

We then reveal the remaining channel symbols in the blockoérased symbols, which are the symbols

Ba—1 . . Bo+To—B1—1 H
BQ—BH-TQ—TJ' Finally, codeC, is used to recoves B } using two sets ofl, — B; unerased

: Bo+4T2—B1—1 2B>+21>—-2B1—1
channel symbols, which ane[ T ] andx[ 3Byt Ty B ]

x|

In this one period ofB, + T, — B, symbols, we have recovered[BroBl‘l], s[BTBé:_Tng‘I and

s[B”gz‘Bl}. This is a total of2(T, — B,) + (B, — 1)) source symbols recovered ByT, — B;) channel

symbols. We can extrapolate that2(7, — B,) + (B> — 11)) source symbols can be recovered (y+
1)(T, — By) channel symbols. As in region (d) proof, we can suppose Heatpper bound on the capacity
is:

H(s) < (n+1)(Ty — By)
H(x) ~ n(2(Ty — B1) + (Bs — T1))
n— 00 T2 - Bl
2Ty, — By) + (B, — Ty)
Ot = 1= B (76)

P 2(Ty — By)) + (By — Ty)
For the formal proof, we assign the following:

a=By— By, b=By—B1+1Ty,—1T;, ¢=DB,, d=By+T,— B; (period length)

_ [+na-1 _ idro-1]_[ G+1)d—1
Wi_x[( id-)i-c ]’ Vi_s[ id ]S[( idzrc }

From codeC,, we have for; > 0:

(s ) = o
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From codeC,, we have fori > 0:

(e[ e ) <o 2z
1 (s G0 | x5 wi) =0 (79)
We want to show, using mathematical induction, that:fo¥ 0

HWE) > HVP Y + H(Wn

v ). (80)
The base case for_(BO) is given by:

H(Wo) = HV; ) + (Wi 'x[3]) = W) (81)
which is true. For the induction step, we assumé (80) is tone:f= k,

VO"—lx[”do—l} ) (82)

The second term of the R.H.S. can be used to recoV&r?~" | ands _’“iﬁj] through codeg, and

C1, respectively. The corresponding entropy manipulatiorspaovided in AppendiX.JF and the following
is deduced,

HWE) > HVY) + H(Wn

kd kd 0

HWE) > H<V0k—1s[kd+b—1}> _'_H<Wk)%k—1s[kd+b—l:X[kd+c—1]) (83)

Next, we addH (W, ,|Wg) to both sides and show that the newly addgg, ; is capable of recovering

the source symbols[(kz;ldc‘l} corresponding tdV,

HWER) = HOVGE) + H (Wi Vi [ ©F)01]) (84)

The working out of [(84) is provided in Appendix] F.
The working in [88) and[{84) shows that [f(80) is true for= k, then it is true forn = k£ + 1. By
induction, (80) is true fon > 0. Therefore,

HWD > H(V2Y) + H(Wn

Ve[ ) = H O,

We can use the fact that the source symbols have the sam@ynatnd the same for channel symbols to
obtain:
H(Wg) = H(Vg™)
(85)

In other words,
H(s) 1h— By

<
H(X) - Q(Tg - Bl) + (B2 - Tl)
Therefore, [(86) governs an}y(B;,T}), (B2, T»)} code in the (f)-region.

R =

. (asn — 00) (86)

XIl. Cobe CONSTRUCTIONFOR REGION (F) AT T, = By (THEOREM(Y))

We simply use a concatenation of two codes — one for usand one for useR. In particular, we
divide each source symbol infl§ sub-symbols, apply 8B3;,7;) SCo to getB; parity check sub-symbols,
apply the(T3,T>) SCo which is just a repetition code resultinglin parity check sub-symbols and finally
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i i+ 1) i+ 2] (i +3] i+ 4) i + 5]
sol1] so[i+1] so[i+2] so[i+43] soli+4] so[i+4-5]
s1[i] s1[i+1] s1[i+2] s1[i+3] s1[i+4] s1[i+5]
s2l] safi+1] s2[i+2] so[i+3] safi-+4] s2[i+5]

so[i—3]+s2[i—1] soli—2]+s2li] soli—1]+sa[i+1] so[i]+sa[i+2] soli+1]+s2[i+3] | soli+2]+sali+4]

s1[i—3]+s2[i—2] s1[i—2]+s2[i—1] s1[i—1]+s2[i] s1[i]+s2[i+1] s1[i+1]+s2[i+2] s1[i+2]+s2[i+3]
so[i—4] so[i—3] s0[i—2] so[i—1] sol4] so[i-+1]
s1[i—4] s1[i—3] s1[i—2] s1[i—1] s1[i] s1[i41]
so[i—4] s2[i—3] sali—2] sali—1] s2[i] sali41]
TABLE V

Mu-SCo CoDE CONSTRUCTION FOR(B1,T1) = (2,3) AND (B2,T2) = (4,4). THE RATE OF3/8 OF SUCHMU-SCO IS THE CAPACITY
GIVEN IN THEOREM[ZIFORT:> = B2 CASE IN REGION(F).

concatenate them to have, + 77 parity check sub-symbols for eadh source sub-symbol (i.e., a rate
of 2T1T-11-Bl = Cf(1=8,))-

Consider the example df(2,3) — (4,4)} code in Tablé V. Each source symbols is divided ifito= 3
sub-symbols. AB;,T:) = (2,3) SCo is applied to generate the first two rows of parity chetksmbols
which are concatenated to three more rows of parity checlsgnibols generated by thé,, T,) = (4,4)
repetition code. User and2 can recover from bursts of lengrand4 within delays of3 and4 respectively
by considering the corresponding rows of parity checks evhiéglecting the other rows.

XIll. THE CONVERSE FOR REGION (F) AT T, = By (THEOREMIY))

The converse for Theorem 7 depends on double recovery of sooree symbols, once using co@e
and another using,. We illustrate the main idea of such converse through cenisig the specific point
{(2,3)—(4,4)} shown in Fig[L14. We start by considering a periodic erashesmoel with period lengtf.
The first4 symbols are erased while the rest are unerased. ¥\&ttasures, codé, = (4,4) can recover
the first two symbols at timé and1 by time 4 and 5, respectively. We note that the channel symbol at
time i is sufficient to recover the source symbol at tilme4 (i.e., no more channel symbols are required).
In step (3) in Fig[L I gives the main idea of this conversec&irthere are two remaining erasures, the
source symbol at time can be recovered using = (2, 3) within a delay of3 (i.e., by time5). Also, the
same source symbol can be decoded u€ingy time 6 (double recovery). The remaining erasure can be
recovered using; by time 6. Moreover, the repetition codg, = (4,4) can recover the source symbols
at time 4, 5 and6 from their corresponding channel symbols. Therefore, bneet channel symbols are
capable of recovering a total &f source symbols (symbol at timeis recovered twice) which implies
that a rate of3/8 is an upper-bound.

For the general case, the corresponding periodic erasaraehto be used for proving the upper-bound
is given in Figurd 15. Each period h@s erasures followed b§{; non-erasures.

It so happens that th&, = T, restriction means that we can prove the converse by onlyyzngl
one period. The reason will be made clear later. But this Kfieg the proof and allows us to study the
technique of double counting source packets more easily.

In Figure[16, we have the first period of the erasure chanret. Key is to show that the received

channel packets 32;7;1‘1 alone can recover all of the source packets in the periodihiene is enough

information in the channel packets to recover some of thecgopackets twice. The fact that we have
two decoders allows some of the source packets to be decgdeditually exclusive groups of channel
packets, but when we put all of the channel packets togetiherredundant information in the channel

packets does affect the maximum achievable rate of the code.

The source packets that can be recoverec 2;T1‘1l ares[Tlo‘l}, s[BBTBI ] ands[Bf%Tl‘l]. As
2 2—D1 2

Figure[16 shows, the first two groups of source packets quefae overlap consists of the packets
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T=4 (code C,)

(a) Step (1) (b) Step (2)
T=3 (code C)) T=3 (code C))
0 1 2 8 4 5 6 0 1 2 3 4 5 6

T=4 (code C,)

(c) Step (3) (d) Step (4)

Fig. 14. Main steps of finding the upper-bound for th&, 3) — (4,4)} point lying in Region (f) through one period illustration tife
Periodic Erasure Channel. Grey and white squares resemdgeceand unerased symbols respectively.

By T B T Bs T

& N & () S & S & N & S
< 7 < 7 < 7 < 7 < 7 < 7

Fig. 15. The periodic erasure channel used to prove an upperdoon capacity in region (f) for the special cage= B..

s[ Bj;l—_B}J' The reason why we can use a single period in the proof is Becthe B, = T, constraint

allows us to decode the final group of source pack%%;:';l‘l] using only the packets[BﬁTl‘l} and

Bs
does not require any future channel packets.
Assuming that what we have just described is possible, therhave7; channel packets recovered

Fig. 16. One period of the periodic erasure channel in [Eiyy.with labels.
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277 + B; source packets. We should be able to write the relation:

(2T1 + Bl) : H(S) S T1 . H(X)
H(S) T1
H(x) — 211 + By
The formal proof shows that this is indeed possible.
Proof: We can split the proof into three major parts.
1. The source packel%Tl‘Bl‘l} can be recovered from the channel packe{t@”TjB;Bl‘l] using the

0
(B2, By) decoder, so we can write

H(s| "0 |x[ ] ) =0 (88)

R= (87)

Next, we can write

H(X[BﬁTgBl—lD _ H<S:Tl—gl—l:X[BﬁTgBl—lD _ H<S[T1—1031—1} ‘X[Bz—i-T}g;Bl—l])
@ H(s [T1—§1—1:|X[Bz+TlB;B —1D
S R )
N TR [ [N K

We used[(88) to remove the negative term before step (a).
2. In this step, we want to prove the following inequality far> B, + T} — B; — 1:

> st = 1 (s[]) (o[ ]) - ][ B ) oo
1=DB>
Using the first decoder with é3;,77) property, we can write the following relation:

H(s[i — T X[i_TerBl}x[i_T()l_l]) = 0. (91)

Using the(B,, Bs) decoder, we can write the following relation:
H(s[z’ - Bg]‘x[z’]x[i_BOQ_ID ~0 (92)
which can be used in the following steps
x[i-%-l]) - H(s[z’ — Byx][i] x[i- 2-1]) . H(s[z’ — By)|x[ilx
)

@ H<s[¢ - BQ]x[z']}x{i— [ D
s[i — Ba]x _BO_I :

— H(s[i — Ba]) + H (x[i]
H(x[i]) > H(s[i — Bs]) + H(x[z’] ‘s[i - Bﬂx[i‘OB?] ) (93)

The second decoddr_(92) was used to remove the negative tfarelstep (a).
Now we can use mathematical induction to prdve (90). For #eeltase, we substitute= B, + 1 —

H(x[i]

Therefore,
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2 HE) > m(s[m 8] a(s[ %5
n H(X|:B2+T1B;B1—1] )S[Tl—gl—l]S[B;g_lel}x T1—1031—1D
= H(s[Tl_gl_l]) + H(X[BQ+T}3;Bl_1] }s Tl_gl_l]x[ﬂ_gl_l]). (94)

This is proved by the result of (89).
Assume that[(90) is true fan = j, which gives us

i:i% H(xli]) > H(s[j—Osz —|—H<s[Bj2__7;§1D +H<x[g2] S|:j_OB2]S[Bj2:%1:|X[j—OB2:|>. (95)

We addH (x[j + 1]) to both sides, and usk (91) andl(92) to recover the sourcedgrih+ 1 — B| and
s[j + 1 — T3] respectively giving:

ZB m(efl) > 1 (s[5 ) a (s[mm]) (e[ s s [ < [ ])- (o)
The corresponding detailed steps are provided in Appef8ixBy induction, we have proved (90) for

mZBQ+T1—Bl—1
3. We substituten = B, + T} — 1 into (90)

Bo+T1—-1

o = (o[ o ) ¢ (e B )
We can recoves 32221‘1} from x[Bfg;l‘l] given the previous channel symbod%BQO‘l} using decoder
2, SO we can write

([ e ]) =o. =
Using (98), we continue witH (97) to get (c.f. AppendiX. G):
S = (s[5 - (o [757)) 9

Finally, we use the fact that all source symbols have the samtrpy and all channel symbols have
the same entropy to write,

Z H(x[i]) > H(s[Tlo_l}) + H(s[BBJrTB_l])
=By
T1 . H(X) Z (2T1 + Bl) H(S)
H(S) Tl
= <
k H(x) — 211 + By (100)
which is the proper upper bound. [ |

XIV. CONCLUSION

We study a multicast extension of the low-delay codes foeastring over burst erasure channels.
The proposed setup has several interesting implicatiormsn Fa capacity point of view, we observe an
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interesting interplay between the delay of the two recsivér particular, in the large delay regime we
characterize the capacity and observe a surprising dédalirsess property i.e., for most parameters, the
delay of one of the receivers can be reduced up to a certdinatrvalue without reducing the capacity.
In the low-delay regime the capacity has only been partieligracterized. New code constructions are
developed for various regimes. Our constructions gengraitidy checks in multiple layers and carefully
combine them to meet the require decoding constraints.

Our ongoing work involves further investigating the capaan the low-delay regime. Furthermore the
results in this work are a step towards developing robusteting code constructions, which can be used
in time-varying channel conditions where the burst-lengghnot be determined apriori.

APPENDIX A

PROOF OF (24) AND (25)
The steps to get the result in{24) is as follows: Using (24)haee that

HOWE) = BV + H (Wi vt [0, (101)

This can be further simplified as follows.
HOWE) = H(VE) + B (W[ vt [ D))

@ H(ka—l) X H(s :k(BkJ(FQ:FT?—l' W, Vok—lx-lc(B-i-T)—l:)

k(B+T)+B-1 k=1 [ k(B+T)—1] ;
= H (s[M v [M w)

®) H<V0k—1) +H<S:k(BkJ(r2:f?_l: W, ‘/()lc—lx:k(B—i-T)—l:)

© H(%k—1)+H<S:k(BkJ(rgl+T£;—1: Vok—1x:k(B+T)—1]>
[k(B+T)—1])
0

I H(Wk‘%’“_ls [k(B+T)+B—1}
@ H(%k—1)+H<S[k(B+T)+B—1' V()k—l) _'_H<Wk‘%k—1s[k(B—i—T)—kB—l}X[kz(B—i-T)—l])

ol

k(B+T)
k(B+T) k(B+T) 0

© _ _ _ .
> (s ]) (s [ [ e ]). 02

Step (a) uses the joint entropy expansion formula, step ¢b¥y {{IP) to remove the negative term and
step (c) is a joint entropy expansion. Step (d) uses the Fattdource packets are independent of each

other, so therefore the source packeEé Bkg;;’f 1] must be independent of the past channel packets

x[ . Step (e) joins the first two terms from (d), and also uses dlee that conditioning reduces

entropy in the last term and the result in(24) follows.
To get the result in((25), we start by addiaff W, ,|IW}) to both sides of({24) to get,

H(wk—i—l)

k(B+T)—
0

> (Vs [ ME]) o (v [ [ ] ) v
H(\/Ok 15[’f BkJ(fg:TB 1 ) + H(Wk’ ) + H(sz-ﬁ-l‘R Wk)

S (o) ()

© H<V0k 1S[k(B+g+—;B 1-> +H<S[(k+g+BT+£B ]Wlf+1 R) — H<S[(k;j<1§(+BT+fB ”R W]fﬂ)
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(d) k—1_| k(B+T)+B-1 k+1)(B+T) k+1
= H(Vo [ (kJ(rBJIF D (S[( JrB+T++B ]W " )R)
(e) k—1_ | k(B+T)+B-1 k+1)(B+T)
:H(Vo ! [(I:(_B—i-—;“ D (S[( +B+T++B ”R)
k k=1 | (k+1)(B+T)-1 (B T B-1
+H<Wk+1V 1 [ +k((B++T } [ +T)+ ])

vk 1S[k(B+T)+B—1D
kE(B+T) k(B+T)+B 0 k(B+T)
+H<W,f+1 Vix [ B+T +B- 1]
(9) -1
éH(ka 1. [ (k+1) BB++TT ]) ( ‘Vk [k(B+TO)+B 1}) +H<Wk+1’vk [k(B+TO)+B I}Wk>

> H(‘/Qk)‘l'H(Wk-i-l‘Vk [k—i—l )(B+T)— D’ (103)

X
() H<V0k—1 [ k(B+T)+B— 1]) <S[ (k+1)(B+T)— ]

where R = Vs ’“(Bkgi}?‘l x[’“(BJrTO)*B‘l] Step (a) introduces extra conditions in the final term,

SO entropy is reduced, step (b) uses the joint entropy famaiep (c) uses the joint entropy expansion
formula and step (d) uses (20) to remove the negative term)irS(ep (e) uses the joint entropy formula
again to expand the second term of (d) and step (f) uses theéhf@icsource packets are independent of
previous channel packets. Step (g) once again uses theejoirdpy formula and_(25) follows.

APPENDIX B

PrROOF OF(45) AND (46)

The working out of[(4b) is as follows:
HOWE) = BV + 1 (W] v [ 557])

= HOG 8 (3 W ) - (s ] )

S e T el
e ) e )
() (e o)
) RIS N )
(g ) el o )

e e e )
i) e )
() Gl e )

i e )
i) e o)
> n(s[]) s oo

We use[(4D) to remove the negative term before step (a). &iyilve remove the negative term before
step (c) using[(41). Steps (b) and (d) use the fact that squackets are independent of each other and
of previous channel packets.
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While for (48), we start by addind/ (W,.,|W7) to both sides of[(45) to get,

B = 1 (V[ ]) i (wal vt <[] ) + v

< H<V0k_1s[kczi_1}> kﬂ‘vok 1 [kcg 1]X[kc+0b 1})

-l ) e o o)
_H<S[(kzlfb_l] V- 1S[kc-|];l; I}X[kcﬂo 1]Wlf+1>

) H(Vb’“‘l [kc—i—b 1D < [(k-]i;cl+cb 1:|Wk+1 Vk 1 [kc—;l;—l}x[kc—i-ob—l])

:H<%k—1 [kc—i—b 1}) ( [(k:lfb 1”vk 1 [kc:i—l]x[lﬁc—kob—l])
+H(W,f+1 S|:(k+1c 1} [kc-‘,—b 1])

§H<V0k—1 [(k—i—l ])_'_H<Wk+1‘v0k 1 |:(k+;ic—1:|x[kc+ob—1:|>

> H(VF) + H(W,f“

vix[“])

— H(VH) +H<Wk‘%kx|:(k+lo)c—1:|> +H<Wk+1 %kx[(k—i-l())c—l]wk)
> HOVE) + H (Wi [V [ =01 (105)

0

Step (e) follows by the fact that conditioning reduces gmtrenowing thativ—! ¢ x[’“*ob‘l] and thus

H(Wkﬂ %k‘lss[kc*,;ﬁ‘jx ket~ ) < H(Wi1|Wi), and again we remove the negative term before step

(f) using (41). Step (g) uses the fact that source packetindependent of each other aiid|(46) follows.
APPENDIX C

EXAMPLES OF CODE CONSTRUCTION IN THE(E) REGION

We give the construction for two specific points in this regidable V] shows the code construction for
the point{(4,5) — (7, 10) } whereas Table_VIll shows the code construction for the pfiBit5) — (7,9)}|.
In both casesk = 1 andm = 1. The former satisfie§d; < 2(B; — k) whereas the latter satisfies
T > Q(Bl — k?)

A. Example (1){(4,5) — (7,10)} = k=1,m =1

The code construction achieving the optimal rate5pf1 is illustrated in Tablé V. In this example,
we walk through the steps of both the encoder and the decd@denote that this point resembles case
(A) defined byT; < 2(B; — k) in the general code construction given in Sectlon.IVIII.

« Encoder

— Each source symbol is divided infg = 5 sub-symbolgso[.], ..., s4].]). ACi = (4,5) is applied
along the diagonal of such source sub-symbols produéing= 4 parity check sub-symbols
(pol.],---,ps[]) defined as follows,

po[l] = So[’i — 5] + 84[7: — 1]
pl[’L] = Sl[i — 5] + S4[i — 2]
pg[’t] = Sg[i — 5] + S4[i — 3]
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[4] [i + 1] [i + 2] [i + 3] [i + 4] [i + 5]

(1) soli] soli+1] soli+2] so[i+3] soli+4] so[i+5]

s1[i] s1[i+1] s1[i+2] $1[i43] s1[i+4] s1[i+5]
s2[i] sali+1] sali+2] s2[i+3] sa[i+4] sa[i+5]
s3[i] s3li+1] s3li+2] s3[i43] s3[i+4] s3[i+5]
sa[i] sali+1] sali+2] s4[i43] sali+4] s4li+5]

(2) poli] poli+1] poli+2] poli+3] poli+4] poli+5]

(B) | soli—101+p1li] | soli~91+pili+1] | soli—8l+puli+2] | soli—71+puli+3] | soli—6]+pili+4] | sofi—5l+puli-+5]
s1[i—10]+p2[i] s1[i—9)+p2[i+1] | s1[i—8]+p2[i+2] | s1[i—7]+p=2[i+3] | s1[i—6]+p2[i+4] | s1[i—5]+p2[i+5]
s2[i—10]+p3[i] s2[i—9)+ps[i+1] | s2li—8]+ps[i+2] | s2li—7]+ps[i+3] | s2[i—6]+ps[i+4] | s2[i—5]+ps3[i+5]

4) s3[i—10] s[i—9] sli—8] s3li—17] s3[i—6] s3li—5]

+ + + + + +
prli+2+7sli+4] | prli+3]+psli+5] | prlit4]+psli+6] | prli+5]+psli+7) | puli+6]+psli+8] | pali+7)+psli+9]
s4[i—10] s4li—9] s4[i—8] s4[i—7] $4[i—6] s4[i—5]

+ + + + + +
Pali+2]+pa[i+3] | p2li+3]+psli+4] | pali+4]+pali+5] | P2li+5]+p3[i+6] | pali+6]+pa[i+7] | P2li+7]+p3[i+8]

TABLE VI

RATE 5/11 MU-SCo CODE CONSTRUCTION FOR THE POINT(B1,71) = (4,5) AND (B2,T2) = (7,10) LYING IN REGION (E). THIS
POINT IS ALSO ILLUSTRATING CASE(A) DEFINED BY 71 < 2(B; — k). FOR THE CAUSAL PART OF PARITY CHECK SUBSYMBOLS OF(C;

SHIFTED BACK TO TIME ¢ — ¢, WE WRITE p;[i] INSTEAD 0Fﬁj[l’]|i7t FOR SIMPLICITY.

— Then, theT; = 5 parity check-symbols of cod&, = (10, 10) which are repetitions of the source
sub-symbols such that![i] = s;[i —10] for j € {0,...,4} are concatenated to the parity checks
of C, with partial overlap ofB; — k = 3 rows as shown in Table VI.
- ACy = (T, — (B, —k),By — k) = (2,3) SCo code is applied on the lag; — k£ = 3 rows
of parity check sub-symbols @, (pi1[.], p2[.], ps[.]) producingT} — (B; — k) = 2 parity check
sub-symbols(p3[.], p3[.]). The produced parity checks is shifted back’By= 5 and combined
with the last two rows of parity check sub-symbols®f
We note that applying a shift back @ = 5 on the parity check sub-symbols 6f explains why
pali] = p1li+2]+psli+4] appears at timéand noti+5. Moreover, since; [i+2]+ps[i+4] in general
combines source sub-symbols at time 3 and earlier, they can not appear at tilmas this violates
the causality of the code construction. Thus, the causalgbauch parity checks shifted to any time
instantt (denoted b)ﬁj[.]\t) is to be sent instead. For example, the first parity checkssufbol of
Cs at timei is p3[i+ 5] = p1[i + 2] + pa[i +4] = s1[i — 3] + s4[i + 1] + s3[i — 1] + s4[i]. The causal part
of this parity check is sent instead, i.g3[i + 5]|, = pu[i + 2|, + psli + 4]|, = s1[i — 3] + s3li — 1.
According to Fig[8, we divide each channel packet into fayets,
— Layer (1) contains the first five rows which are the source suhbols.
— Layer (2) contains the next row.
— Layer (3) contains the next three rows where overlap betweemparity checks of code and
C, takes place.
— Layer (4) contains the last two rows. The overlap betweerptrgy checks of codeS, and(Cs
takes place.
Decoder
With a burst erasure of length; = 4 taking place at times$i — 4,: — 1], the decoder at user 1
simply uses the first four rows of parity checks at tilies+ 4| after subtracting the unerased source
sub-symbolssg[t], s1[t], s2[t] for t € {i — 10,...,7 — 6}. For user 2, we assume a burst erasure of
length B, = 7 at times[i — 7,7 — 1]. The decoding steps are as follows.

— Step (1):Recoverp;[i + 3] andp;[i + 4] for j = {1,2,3}.
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(@) In layer (3), spanning the second, third and fourth rofvpawity checks, one can see that
the parity check sub-symbols 6§ in the interval[i, i + 2] are unerased source sub-symbols.
Thus, the corresponding combined parity check sub-synmidifals can be computed in this
interval.

(b) In the same layer but in the intervgl+ 5, 00), the parity check sub-symbols 6f are of
indicesi+ 5 and later. Using the fact thaB,, 7}) SCo code has a memory 6f symbols, it
can be easily shown that these parity check sub-symbolsioenanly source sub-symbols
of time ¢ and later which are not erased and thus can be computed a¢cvie{L06)).

(c) Steps (a) and (b) show that all the parity check sub-sysnbb(C; in layer (3) can be
computed except for the interval+ 3,7 + 4].

(d) The parity check sub-symbols 6§ in layer (4) spanning the last two rows of parity check
sub-symbols in the intervdl, i 4+ 2] are again unerased source sub-symbols and thus can
be cancelled and the corresponding parity check sub-symial; can be computed in this
interval.

(e) The parity-check sub-symbols 6f in the intervalli, i + 2],

(pg[i+5]‘i pg[i+6]\i+1 pg[i+7Hi+2)
p?[i_‘_g)]‘ p?[i+6”i+1 pzl))[i“'?” ’

%

(207)
142
can recover the remaining two columns of parity-check subkbols of C; in the interval

[i + 3,71+ 4] lying in layer (3),
pi[i + 3] pifi +4
(p2[i—0—3] pali + 4] ) ,
psli + 3] pali +4]

sinceC; is a(2,3) SCo code whose parity-check sub-symbols are shifted back by 5.
However, only the causal part of the parity check<gfare available. Thus, the non-causal
part is to be computed and added to the causal-part to retioeasriginal parity checks of
the SCo code. Using (106), it can be seen that the recovetyeofibn-causal part does not
require the availability of source sub-symbols after fime- 3. For examplep?[i + 5]}i =
pili+2)+psli+4] = s1[i—3]+sa[i]+s3[i—1]+s4[i], while 3[i+5]|, = pi[i+2]| +ps[i+4]|, =
sili — 3] + ss[i — 1], i.e., the non-causal part @fi + 5]|. is pi[i + 5]|, = 2s4[i] which is
clearly available before timé+ 3. Thus the non-causal portions of all the parity checks are
computed and them_(1D7) is applied.
— Step (2): After recovering these parity check sub-symbols, the decodn cancel their effect in
the second, third and fourth rows of parity checks (laye) &)Yimes: + 3 andi + 4. Moreover,
in the same rows and starting at time- 5 all parity checks of cod€; combine only unerased
source symbols (c.fL{106)) and thus can be cancelled as well
— Step (3): Furthermore, one can see that the parity check sub-symibafs mterfering in the
last two rows (layer (4)) starting at time-3 combine parity check sub-symbols ©f of indices
i + 5 and later which was shown before to combine unerased soulzsysnbols (c.f.[(106)).

According to Step (2) and (3), the parity checksGaf= (10, 10) repetition code in layers (3)
and (4) are now free of any interference fram- 3 and later. Thus, the decoder of user 2 is
capable of recovering the erased source sub-symbols imteeval [ — 7,7 — 1].



[4] [i + 1] [i + 2] [i + 3] [i + 4] [i + 5]

1 soi] soli+1] soli+2] so[i+3] soli+4] so[i+5]
s1[i] s1i+1] s1[i+2] s1[i+3] s1[i+4] $1[i45]
s2[i] sai+1] sali+2] sa[i+3] sali+4] s2[i+5]
s3[i] s3i+1] s3li+2] s3[i+3] s3[i+4] s3[i45]
sa[i] sali+1] sali+2] s4li+3] sali+4] S4[i45]

2 poli] poli+1] poli+2] poli+3] poli+4] poli+5]

3 so[i—9]+p1[d] so[i—8]+p1[i+1] | so[i—T]+p1[i+2] | so[i—6]+p1[i+3] | so[i—5]+pi[i+4] | soli—4]+p1li+5]

s1[i—9]+p2]d] s1[i—8]+pai+1] | s1[i—7]+p2[i+2] | s1[i—6]+p2[i+3] | s1[i—5]+pali+4] | si[i—4]+pa[i+5]
4| soli—9+pi[i+2] | s2li—8]4p1[i+3] | soli—T+p1li+4] | s2(i—6]+p1[i+5] | soli=5]+p1[i+6] | sali—4]+pi[i+7]
s3[i—9]+p2(i+2] | s3[i—8]4+p2[i+3] | s3[i—T]+p2li+4] | s3[i—6]+p2li+5] | s3[i—5]+p2i+6] | s3[i—4]+p2(i+7]
s4[i—9] s4[i—8] s4[i—7] s4[i—6] s4[i—5] s4li—4]
+ + + + + +

P1[i+3]+p2[i+4]

P1[i+4]+p2[i+5]

P1[i45]+D2[i+6)]

P1[i46]+D2[i+7)

P1[i4+7)+P2[i+8]

P1[i+8]+P2[i+9)]

TABLE VI
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RATE 5/11 Mu-SCo CoDE CONSTRUCTION FOR THE POINT(B1,T1) = (3,5) AND (Ba2,T2) = (7,9) LYING IN REGION (E). THIS POINT

B. Example (2){(3,5) — (7,9)} = k=1,m=1

k3

IS ALSO ILLUSTRATING CASE(B) DEFINED BY T > 2(B; — k). FOR THE CAUSAL PART OF PARITY CHECK SUBSYMBOLS OFC;
SHIFTED BACK TO TIME i — ¢, WE WRITE j5; [i] INSTEAD OF f3;[1] | ., FOR SIMPLICITY.

Again the capacity equals/11. The code construction achieving such rate is illustratedable[VII.
The reason we give the detailed encoding and decoding stemé more example is to show the main
differences between case (A); < 2(B; — k) illustrated by the previous exampl{g4,5) — (7,10)} and
case (B):T1 > 2(By — k) illustrated by this example(3,5) — (7,9)}.

« Encoder

— Each source symbol is divided infg = 5 sub-symbolss,.],. .., s4[.]) (layer (1)). AC; = (3,5)

is applied along the diagonal of such source sub-symbolduging B, = 3 parity check sub-
symbols(po[.], p1[.], p2[.]) defined as follows,

— Then, theT; = 5 parity check-symbols of codé, =

Do [Z]
p1lf]
1214

So[’i — 5] + Sg[i — 2]
Sl[i — 5] + S4[’i — 2]
SQ[’i — 5] + Sg[’i — 4] + S4[i — 3]

(108)

(9,9) which are repetitions of the

corresponding source sub-symbols are concatenated tatitye ghecks of’; with partial overlap
of B, — k = 2 rows as shown in Table VII.
— SinceTy =5 > 4 = 2(B; — k), this point falls in case (B), one can write — (B; — k) =
r(Bi —k)+qas3=1(2)+1,ie,r=1andqg = 1. Thus,r +1 = 2 SCo codes are to be
constructed. The first is a repetition code of paramefgrs= (B, — k,B; — k) = (2,2) is
applied on the lasB; — k = 2 rows of parity check sub-symbols 6f, (p:[.], p2[.]) producing

(B, —k) = 2 parity check sub-symbolgp[-],

pi[]) which are then shifted back ®&fB; —k) = 4

symbols, while the second isGa., = (¢, B1—k) = (1,2) SCo code applied again on the last two
rows of parity check sub-symbols ¢f along the main diagonal producing one row of parity
check sub-symbolgj;|[-] which is shifted back by’ = 5 symbols. The parity check sub-symbols
of C;; andCs » (denoted byCs) are then concatenated formifig — (B, — k) = 3 rows of parity
check sub-symbols and then combined with the last three cdvpsrity check sub-symbols of

3A proof of this in the general case is provided in the proof efima® in AppendikD.
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Cy (layer (3)).
The same causality argument stated in the previous exanpplkesa and the causal parts of the
corresponding parity check sub-symbols shifted to any tinsgtantt¢ denoted byﬁj[.]\t are sent
instead (c.f. Table_ V).
Similar to the previous example, we divide each channel gtaicko four layers (c.f. Fig.18),
— Layer (1) contains the first five rows which are the source suhbols.
— Layer (2) contains the next row.
— Layer (3) contains the next two rows where overlap betweenptrity checks of codes, and
C, takes place.
— Layer (4) contains the last three rows. The overlap betwherparity checks of cod&s, and
C; takes place.
Decoding:
For userl, the decoding is similar to the previous example. We assurberst erasure of length
B, = 3 taking place at time$i — 3,7 — 1]. One can recover the parity checks of cadlein the
first three rows of parity checks at timés: + 4] after subtracting the unerased combined source
sub-symbolssg[t], s1[t], s2[t] for t € {i —9,...,7 — 5}. For user 2, we assume a burst erasure of
length B, = 7 in the intervalli — 7,7 — 1]. The decoding steps are as follows.
— Recoverp,i + 2|, p;[i + 3] andp;[i + 4] for j = {1, 2}.

(@) Inlayer (3), spanning the second and third rows of patitgcks, one can see that the parity
check sub-symbols d, in the interval[i, i + 1] are unerased source sub-symbols. Thus, the
overlapping parity check sub-symbols @f can be computed in this interval.

(b) In the same layer but in the intervgl+ 5, c0), the parity check sub-symbols 6f are of
indicesi+5 and later. Using the fact th&f3;, 77) SCo code has a memory @f symbols, it
can be easily shown that these parity check sub-symbols icenumly source sub-symbols
of time 7 and later which are not erased and thus can be computed gs.fv¢l08)).

(c) In steps (a) and (b), we show that all the parity check suhbols ofC; in layer (3) can
be computed except for the intenjak- 2,7 + 4]. Let us mark the uncomputed parity check
sub-symbols as erased source sub-symbols with two rowshaied tolumns.

(d) Moreover, the parity check sub-symbols®f in layer (4) spanning the last three rows of
parity check sub-symbols in the interali + 1| are again unerased source sub-symbols and
thus can be cancelled and the corresponding parity checkygubols ofC; can be computed
in this interval.

(e) Csis a concatenation dfs ; = (2, 2) repetition code producing two parity-check sub-symbols
(p3l.],Pi[.]) and aCs» = (1,2) SCo code producing a single parity-check sub-symi3ol.

At time ¢ andi + 1, the parity checks of; ;,

< olil|; ) _ < pili + 2]
pilil], poli + 2]
thus, p1[7 + 2]}Z, and poi + 2]\2. can be directly recovered, while their corresponding non-
causal parts can be computed before time2. Similarly, p;[i + 3]}i andpy i + 3]\2. can be
recovered at timeé+ 1 and their corresponding non-causal parts can be retriesfutdy + 3.
The remaining column(p, [i + 4] |, po[i +4Hi)T can be recovered using the parity checks of
C32 = (1,2) SCo code at timé andi + 1, p3[i] and p3[i + 1] in a similar way used in the
previous example.
After recovering these parity check sub-symbol€gfthe decoder can cancel their effect in the
second and third rows of parity checks (layer (3)) at times2, i + 3 andi + 4. Moreover, in
the same rows and starting at time- 5 all parity checks of cod€; combine only unerased
source symbols (c.f[{108)) and thus can be cancelled as well
— Remove interference in layer (4) starting at time 2.
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-1 1 il

k+1 1

layer (3)

s B, r
— r
N
5] < r
z
r
\ T, +k-1 1 r

Fig. 17. Diagonal Embedding of parity checks for the coretiom in sectior VIl The parity checks®[:] are applied using &Ts, Bs)
SCo code onto the lagB; — k parity checks ofp’[] in layer 3. The parity checks®[-] are shifted back by} units as discussed before.

The parity check sub-symbols 6f interfering in the last two rows (layer (4)) starting at time
i + 2 are of indices + 4 and later which are either recovered in Step (1) or can beiledéd
as they combine unerased source sub-symbols [(c.f] (108)).

— Use the parity-checks in layer (3) and (4) to recoser— 7|, ...,s[i — 1].

According to Step (3) and (4), the parity checksCgfin layers (3) and (4) are now free of any
interference starting at time+ 2 and thus, the decoder of user 2 is capable of recovering the
erased source sub-symbols.

APPENDIX D
PROOF OFLEMMA.[2

The parity-check sub-symbols 6% in the interval[ty, t3 — 1] = [i,7 — By + T» — 1] are source sub-
symbols in the intervalty — T, t5 — To — 1] = [i — T»,i — By — 1] which are not erased. Thus, they can
be computed and subtracted to recover the combined pdmagkcsub-symbols af; and the causal part
of that of C; in layers (3) and (4), respectively. More specifically, trity-check sub-symbolg; [-] for
j1€{k,..., By — 1} andgp’ [-] for j, € {0,..., Bs — 1} are recovered.

Recall thatC; is a (Bs,T3) is a SCo code applied by taking the |dst — k parity check sub-symbols
of C; as source sub-symbols.

Let us define the parity-check symbols that need to be reedvas

W[t] = (U)()[t], v JwTs—l[t]) = (p}g[t], s 7plBl—1[t])’ (109)
We first consider case (A) i.e., whéRi < 2(B; — k). Since(C; is an SCo which involves diagonal
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interleaving of Low Delay - Burst Erasure Block Codes (LDHBE), the diagonals that span the sub-
symbols of interest are as follows:

d, = (woli +7),...,wpa[i+7+ T3 = 1), p3li + 7+ T3),...,p5, 1 [i + 7+ T3+ B — 1]),
Tel,...,T3+Bg—1 (110)

Since the parity check sub-symbols @f are shifted back by = T3 + B3 keeping only their causal
part, the corresponding diagonals of interest are
dr = (’LUQ[Z + T’], ce ,wT:s_l[i +7r+ T3 - 1],]58[1 +r+ Tg”i—l—r—Bg’

..,ﬁ?ég_l[i+r+T3+Bg—1]} (111)

i+r—1)'

where recall thaj-@“j[tl]\t2 denotes the causal part of the parity chegk,] w.r.t. ¢, (c.f. (517)).
With every parity check sub-symbol projected to a differtamie instant, one can clearly see thhtis
no more a code-word of an LD-BEBC code.
The following conditions are sufficient to establish Lemifia.
cl The diagonalg, for r € {1,...,73 + B3 — 1} span all the parity-check sub-symbols that need to be
recovered, i.e.pj[-] for j € {k,..., By — 1} in the intervallts, t, — 1] = [i + T — By, i + 11 — 1].

c2 The decoder can compute the non-causal part of each-phét;kpf.[-] in the intervallt,, t3 — 1] and
reduce((1111) to(110). This step should not violate the zieday constraint for any erased symbol on
the diagonal i.e. the non-causal part of the parity-ched:ksumbOIp;’?1 t.] responsible for the recovery
of a given parity checku,,[t,] should combine source sub-symbe[g which are both, not erased
and from time earlier than,.

c3 Each diagonad, should have no more thaBs; erased sub-symbols.

For c1, we note that the diagond coverswy, _; [i+T5] = pj, _,[i+73] which is the lower left most sub-
symbol that needs to be recovered./At T3+ B; — 1, one can see that, combinesw,[i+713+ Bs—1]| =
pili + T3 + B3 — 1] which is the upper right most sub-symbol that needs to bevezed. Fig[1l7 easily
illustrates that the diagonal, for » € [1, 75 + B; — 1] cover all of the erased sub-symbols.

For c2, we note that all elements of a diagodalcombine source symbolg:] from timei +r — 1
and earlier according to the diagonal interleaving propeftSCo codes. Thus, one can conclude that the
non-causal part of any parity-check sub-sympﬁi +r+1T3 +j]\i+r_33+j forj€0,...,B3—1ind, is
just a combination of source symbols in the interial » — Bs + 7,4+ — 1]. Thus the entire non-causal
part of each parity check is available before timer and the reduction td (110) is possible for eath

Finally note that the zero delay constraint also requires tie symbolsv;[t] with ¢ > i+ T3 in d, be
made available before time= i+ r. Since eachv,[t] for t > i 4+ T only consists of combinations of
source symbols ifi, i+ r — 1] these symbols can be explicitly computed by the decodemby i+ r — 1
and c2 follows.

For c3, we divide the values of into three intervals.

o d, forr e {1,...,T1—T3}

In this range, one can see that the following symbols ardablei

(wo[l +T], .. ~7wT3—T’—1[i —|—T3 — 1],]5%:5_7“[@' —|—T3 —|— Bg], Ce ,]5%3_1[2. —I—T —|—T3 —|— B3 — 1]),

which are a total off; sub-symbols in the beginning and the end of the diagathalshich contains
T3 + B3 sub-symbols. In other words, each such diagonal Basrased sub-symbols happening in
a burst.

o d, for r {Tl—Tg—l—l,...,Tg}
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In these diagonals, the following symbols are available,

(woli + 7], ..., wry i + Ty — 1) wp, i + Th], ..., wpya[i + 7 + Ty — 1), pai + r + T3]
)t '7133B3—1[7;+T+T3 +B3 - 1])7

The first group is a total of; — r consecutive sub-symbols, while the other two groups arda to
of » consecutive sub-symbols. This implies that each such delgh. has B; erased sub-symbols
in a burst.

o d, fOI’TG{Tg—Fl,...,Tg—FBg—]_}
The available sub-symbols in these diagonals are,

(wry—[i +Th), .y wnya i+ + T3 — 1), Boli + 7 + T3], . . ., Py —ra[i + 215 + By — 1)),

which are again a total df; consecutive sub-symbols which implies that the considdragonalsd,
has B; erased sub-symbols in a burst and the c3 follows. We noteLbé8EBC codes are capable
of recovering wrap-around burst which may start at the enthefblock and wrap around to the
beginning of that block.

WhenT; > 2(B; — k) note thatC; is a concatenation of + 1 codes, the first of which are repetition
codes with parity check sub-symbols given byl(61). Theséypeheck sub-symbols in the interval i +
(B; —k)—1] can be used to recover the causal part of the parity-checkymbols(p;[t1], . . ., pj, _;[t1])
fort,e {i+(Bi—k),....i+(r+1)(Bi—k)—1}={i+Ty— Bs,...,i+ 1Ty —q— 1}. The non-causal
part of these parity-check sub-symbols combine sourcesgaibols in the intervali, t; — 1] which are
not erased and thus can be recovered.

The remaining; columns of parity-check sub-symbdilg, [t.], . . ., p%,_;[t2]) for ¢ € {i+ (r+1)(B; —
k), ..,i+(r+1)(B—k)+q—1}y={i+T1—q,...,i+ Ty — 1} can be recovered using the parity-
check sub-symbols af;, 1 = (¢, B1 — k). This step is similar to that of recovering tfié — (B, — k)
columns of parity-check sub-symbols 6f usingCs; = (171 — (B, — k), B; — k) done above, except that
Bs =T, — (By — k) is replaced byB; 1 = q.

APPENDIX E
PrROOF OF (71) AND (72)
One can get the result if([71) through the following steps,

0
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HOWE) = BV + H (Wi v x [ 45)




43

i )
(i ) (e )
e e A RO Y e A P N I
We use [(66) to remove the negative term before step (a). &imilwe remove the negative term before
step (c) using[(85). Steps (b) and (d) use the fact that squackets are independent of each other and

of previous channel packets.
The following steps help finding the result in {72),

H(WE
e e e R (T e e G IR
2 (oo o ) e o B e )
(g o) e g e o )

k

_H<S[(k+1d 1} ‘V [kd—i— l]s d+c—1]x[kd+ I]Wk-',-l)

kd+ k kd+b 0
(s s ]) g e s )
-l B e T b )
S g (e e
0 (e ) - s o)
= HE) + B (WE v [ ])
— H(VF) + H(Wk‘%kx[’fdgc—l]) - H (Wi |V 5557 Wi
> H(VF) + H(Wkﬂ‘%kx[(kﬂo)d_lb (113)

Once again, we remove the negative term before step (e) asid@67). Steps (f) uses the fact that each
source packet is independent of each other.

APPENDIX F
PrROOF OF (83) AND (84)
For the result in[(83), we walk through the following steps,

H(WE) > HVE) + H(Wk‘%’“‘l )
a5 e ) <
(5 i s
- o ) )
v { j Wl s[5 x5 )

‘V
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X
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®) H<V0k—1s[kd-il;g—l]> +H(S[kiﬁ;1] ’Vok—ls[kd—il;z—l]x[kd-i-oa—l})
I H(Wk‘vbk—ls[kd:g—l]x[kdt)a—l}>
2 () O ) o

The negative terms in (a) and (b) are removed uding (78) [@fdré&pectively.
Next, we start by addind? (W,1|W¢) to both sides of[(83) to find_(84) as follows:

H(Wy™)
> H<%k—1s:kd4k-z—1:) +H(Wk‘%k—ls[kd—gs—l]x:kd-ibc—l}) - H (W[ WE)
> H<%k—1s:kd+b—1:) +H(Wk‘%k—ls[kd—i-b—l]x_kd+c—1})

kd kd | 0

‘l’ H(Wk+1|%k—ls :kd-;;z—l] x |:kd+0—1] Wéﬂ)

0
> H(V(]k—ls :kdzg—1:) I H(W:—l—l’%k—ls[kd—;g—l:X[kd—l—oc—l})
= H(VOk—ls _kd:g—l_ ) + H(s [(kz;ldc_l} W}f—i—l‘%k—ls [kd—i};g—l] < |:kd-|z]c—1]>
k+1)d— —1_ | kd+b— kd+c—
_H<s[( ‘]L'Cll_)i_cl”vok 15[ h 1]X[ - 1]”4?“)

© H<%k—1s[kd—£z—l]) +H(S[(k;g;z:zc—1] ’%k—ls[kd—};g—l}x[kd—ibc—l}>
X H(Wlf+1 ka—ls[kd—i—b—l}S[(k—i—l)d—l}x[kd—i-c—l}>

kd kd+-c 0

@ H(VE) + H<W:+l‘%kx[kd4bc_l}>
— H(V}) _'_H<Wk‘v~0kx|:kd+oc—1:|)+H<Wk+1 %kx[kdﬁ-oc—l]wk>
%kx[(kﬂo)d—lD (115)

The negative in (c) is removed using [79). Step (d) followenfrthe fact that source symbols are
independent and_(84) follows.

> H(Vy) + H<Wk+1

APPENDIX G

PrROOF OF (©6) AND (Q9)
The steps to gef (96) are,

i H (xli])

g H(S[j—OBz]) +H<S[g2—_7;1]) +H<X[]§2} s[j_OB2:|S[Bj2:J;1]X|:j_OB2])
+H(S[j+1— By]) + H(X[j + 1]’5[]' +1-— B2]x[j+10_132]

2 1 (s[5 ) + A (s[ 475 ]) + 2 (x5 s[5 s

_ H(s [j+1O—BQD I H<S[Bj2—él]> + H(s[j +1-— Tl]X[j;';}
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e N AN N )
() o[ o1 m o)
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Step (a) is the addition of (93) and (90), step (b) use$ (91kmoove the negative term in the previous
step, and step (c) uses the fact that the source packetsdapemmdent of each other. The result is the

form (QQ) form =1+ 1.
While the working out to get (99) is as follows,

Z (i)

> 1 (s[ 70 ]) (s 25 ] ) + 1 (e s s <)
) Gl e
) i) e

O o[y |y el ol e b o e )
— H(s _T10—1_> + H(s _31322_-;1]) + H(s[Bz-g;—l ’S[Tlo-l}s[BiQ__Bll]X[B%—l})
_I_H(X[B2+T1—1} ’S[Tl—l}S[BerTl 1 X[B2—1D
Bo 0 Bo—B; 0
) o) ¢ e e )
= 1 (s| ")) + 0 (s ") (117)

where step (d) makes use 6f[98).
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