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Abstract

In this paper, we consider the use of lattice codes over Bisgnintegers for implementing a compute-
and-forward protocol in wireless networks when channeksitaformation is not available at the transmitter. We
extend the compute-and-forward paradigm of Nazer and @astpdecoding Eisenstein integer combinations of
transmitted messages at relays by proving the existencesefjaence of pairs of nested lattices over Eisenstein
integers in which the coarse lattice is good for covering thedfine lattice can achieve the Poltyrev limit. Using this
result, we show that both the outage performance and eoroeating performance of nested lattice codebooks over
Eisenstein integers surpasses lattice codebooks ovegrensteonsidered by Nazer and Gastpar with no additional
computational complexity.
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I. INTRODUCTION

Compute-and-forward is a novel relaying paradigm in wssleommunications in which relays in a
network directly compute or decode functions of signalsgraitted from multiple transmitters and forward
them to a central destination. One of the most effective iaysiplement a compute-and-forward scheme
is to employ lattice codes at each transmitter. Since aéaisi closed under integer addition, lattice codes
are naturally suited to decoding integer linear combimegiof transmitted signals.

Lattice codes have been shown to be optimal for several @nobin communications including coding
for the point-to-point additive white Gaussian noise (AW)GiHannel[1] and coding with side information
problems such as the dirty paper coding problem and Wynepiblem [2]. The construction of optimal
lattice codes for these problems requires a lattice thab@ldor channel coding. Since a lattice has
unconstrained power, goodness for channel coding is megsising Poltyrev’s idea of the unconstrained
AWGN channel. In[[3], Poltyrev derives the maximum noiseiaace that a lattice can tolerate while
maintaining reliable communication over the unconstrdimp®int-to-point AWGN channel, which is
referred to as the Poltyrev limit in literature. Loeligerogted the existence of lattices that achieve the
Poltyrev limit by means of Construction A ih![4]. Then, Eretzal., showed that there exists lattices which
are simultaneously good for quantization and can achiexdtityrev limit in [5] which made it possible
to construct nested lattice codes that were able to achimtea)f% log (1 + SNR) over the point-to-point
AWGN channel. There has also been great interest in coristguattice codes with reasonable encoding
and decoding complexities such as Signal Codes and Low yenaitice Codes|[[6],[[7].

In a bidirectional relay network when channel state infarorais available at the transmitters, the
transmitters can compensate for the channel gains andltheaan decode to the sum of the transmitted
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signals, which is a special case of compute-and-forward.tlie system model, it was shown that an
exchange rate of log (1 + SNR) can be achieved using nested lattice codes at the transmitteich is
optimal for asymptotically large signal-to-noise ratiosdgprovides substantial gains over other relaying
paradigms such as amplify-and-forward and decode-amdafor (€], [S]. In [10], a novel compute-and-
forward implementation is proposed for thé x K AWGN interference network where channel state
information is available at the transmitters, which achgethe full X degrees of freedom.

We consider the case when channel state information is relahle at the transmitters. In this case,
an effective way to implement a compute-and-forward schieame allow the relay to adaptively choose
the integer coefficients depending on the channel coeffiddazer and Gastpar have introduced and
analyzed such a scheme which uses lattices over integerthapcave derived achievable information
rates in [11]. In[[12], Feng, Silva and Kschischang haveouhticed an algebraic framework for designing
lattice codes for compute-and-forward. The frameworkl[if] [ quite general in the sense that every
lattice partition based compute-and-forward scheme capubento this framework, including the one
by Nazer and Gastpar in [11]. However, [12] does not provigeeans to identify good lattice partition
based schemes.

In this paper, we contribute to the literature by identitymlattice partition based compute-and-forward
scheme which is particularly good for approximating charowefficients from the complex field. Our
scheme can be regarded as an extension of the scheme in Jaftjdes over Eisenstein integers. We show
that an improvement in outage performance and error-dimgeperformance can be obtained compared
to using lattices over integers. We proceed by proving thistemce of a sequence of nested lattices
over Eisenstein integers in which the coarse lattice is gooadovering and the fine lattice achieves the
Poltyrev limit. Using this result, we can show similar raésuio those in[[11] with integers replaced by
Eisenstein integers. The main improvement in outage araf-earrecting performance is a consequence
of that the use of lattices over Eisenstein integers perthéselay to decode to a linear combination of
the transmitted signals where the coefficients are Eisensteegers, which quantize channel coefficients
better than Gaussian integers.

Recently, we became aware of an independent work by etual. [13] where lattice network codes
over Eisenstein integers are also considered. The mairs fioc[L3] is the analysis of the decoding error
probability, which suggests that lattice network codedtlawier Eisenstein integers can provide significant
coding gains over lattice network codes built over Gaussigegers. Our work differs from [13] in the
following ways. While their focus is on constructing finitenstellations from lattice partitions which
are suitable for compute-and-forward, we consider conogtm of lattices (infinite constellations) over
Eisenstein integers and show the optimality of such coostmi. Moreover, their coding scheme can
be regarded as the concatenation of a linear code over ammgie finite field and a constellation
carved from a lattice partition. On the other hand, our sahéma more general one which is formed
by the quotient group of a lattice over Eisenstein integers s sublattice. It can be shown that the
scheme in[[13] is a special case of ours with hypercube sd&meis generalization is imperative in
the sense that it allows us to show the achievable computagites if one would use such lattices for
compute-and-forward.

The structure of our paper is as follows. In Section] I-A, wedduce the notation that will be used
throughout the paper. In Sectiéd I, we present the systerdeinthat will be considered. In Section
[I] we provide some background on lattices and lattice sode Section IV, we discuss Nazer and
Gastpar’s framework for compute-and-forward![11]. In 8=tV we discuss how lattices over Eisenstein
integers can be used for compute-and-forward in Nazer arstip@es framework and what properties of
these lattices are required in order to achieve computatites formulated similarly to those in [11].
In Section[Vl, we provide numerical results and compare th&ge performance and error-correcting
performance of lattices over natural integers and lattses Eisenstein integers in compute-and-forward.

"Here, we use the term “hypercube shaping” to denote a scheing a properly scaled version of Eisenstein integers gsirshdcoarse)
lattice. Thus, wher¥ or Z[:] are considered, the shape is a hypercube. However, it ictmfat a hypercube iZ[w] is considered.



In Appendix[A, we introduce the notation that is used in ApgigrBl and AppendiX_C, we prove that
there exist a nested pair of Eisenstein lattices which tlaseolattice is good for covering and the fine
lattice achieves the Poltyrev limit.

A. Notational Convention

Throughout the paper, we useto denote the field of real numberS,to denote the field of complex
numbers, and, to denote a finite field of size. Z, Z[i], andZ|[w] are used to denote the set of integers,
Gaussian integers, and Eisenstein integers, respectitvdelyise underlined variables to denote vectors and
boldface uppercase variables to denote matrices,eand X, respectively. We denote th& column of
a matrixX as X;. Also, we use superscrigf to denote the Hermitian operation, e.g?? and X, We
definelog™ (z) £ max(log,(x),0) and denote the Euclidean metric jas||. We denote the all zero vector
in R" as0 and then x n identity matrix asl. We denote the volume of a bounded regibnC R" as
Vol (E) and denote the-dimensional sphere of radiuscentered ap asB(r) = {s : |s| < r}.

II. SYSTEM MODEL

We consider an AWGN network as shown in Hg. 1 whéresource nodesS;, S, ..., S wish to
transmit information toM relay nodesD;, D, ..., Dy, whereM > L. It is assumed that relay nodes
cannot collaborate with each other and are noiselesslyemed to a final destination interested in the
individual messages sent from all the source nodes. Thectblgeof the relay nodes is to facilitate
communication between the source nodes and the final déstina
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Fig. 1. The AWGN Network wheres, Sa, ..., S wish to transmit information tdD;, D», ..., Dy The channel between th® and
D,, is denoted a,;.

We denote the information vector at the source n§idesw, € F’; Without loss of generality, we assume
that the length of the information vector at each transmitteas the same length Each transmitter is
equipped with an encodéy : Fi — C" that mapsy, to ann-dimensional complex codewortd = & (w,).
Each codeword is subject to the power constraint

Ellz|* < nP. (1)

The message ratB of each transmitter is the length of its message in bits nbzet by the number of
channel uses,

k
R = —loggq. (2)
n



Due to the superposition nature of the wireless medium, eglely m observes

L
Y= hwz+ Zy, 3)
=1

whereh,,,; € C is the channel coefficient betweéh, and.S;. As it can be observed frorhl(3), it is assumed
that there is no inter-symbol interference and eaghy, arrive at the relay simultaneously. Furthermareg,
is ann-dimensional complex vector which consists of identicaligtributed (i.i.d.) circularly symmetric
Gaussian random variables, i€, ~ CN(0,1). Let h,, = [hm1, - , hmr]? denote the vector of channel
coefficients to relaym from all the source nodes. We assume that the retagnly has the knowledge
of the channel coefficient from each transmitter to itsed,,i,,.

Each relay attempts to recover the linear combinaﬁ%n(overFq)

L
im = @ (bmlwl> ) (4)
=1
whereb,,, € F, and letb,, = [by1, - - -, bmz]". Typically b,,;s are chosen based on the network structure
and/or the channel coefficients. It is desirable for the idtr, ..., b,,] to be full-rank which enables

eachw, to be recovered at the final destination. For eag), we define the decod€},, : C" — IF’; and

zm = Gm(ym) is an estimate of . LetP denote a principal ideal domain il such asZ[i] or Zw].
Definition 1 (Average probabmty of error)Equations with coefficient vectots, a, . . . a,,, where each
a,, € PE, are decoded witlaverage probability of errok if

M
Pr(U{im;ﬁim}> <e. (5)
m=1
Definition 2 (Computation rate of relay:): For a given channel coefficient vectér, and equation
coefficient vectora,, € P~, the computation raté (h,,, a,,) is achievable at relayn if for any ¢ > 0
andn large enough, there exist encodéss. . ., £, and there exists a decod@y, such that relayn can
recover its desired equation with average probability obrer as long as the underlying message rate
satisfies
R < R(h,,,qa,,). (6)

“mr =Zm

Due to the fact that the relays cannot collaborate, eacli pitks an integer vectar,, such thatR (h,,, a,,)
IS maximized.
Definition 3 (Computation rate of AWGN networkpiven H = [h,,..., hy] and A = [a,,..., a5,
the achievable computation rate of an AWGN network is defiagd
RH,A) = min#OR(h a,,) (7)

Imo ZEm
Uml

provided that the matrixs (A) = [by,...,by] € FI*M, whereg : PHM — FLM is full rank. If
[by,...,by] is not full rank, R (H, A) = 0.

Note that in this paper, our coding scheme particular camsithe ring of Eisenstein integers, i.®.,=
Z|w], for the reason that will become clear later.



[[I. BACKGROUND ONLATTICES

Due to the fact that the coding scheme that will be consideezily relies on lattices, we now provide
some background knowledge on lattices. For more detailaticds, please refer to [14],/[5], and [1].

Definition 4 (Lattice ovetZ): An n-dimensionalattice over natural integersA™, is a discrete set of
points inR” such thatA™ is a discrete additive subgroup Bf* with rank & wherek < n. Such a lattice
can be generated via a full rank generator maBix R"**

A(n):{A:BQZQGZk}. (8)

For notational convenience, we shall drop the supersanipi® in this paper and denote-dimensional
lattices asA. Also, we refer to lattices over integers @Adattices throughout the paper.

Given a latticeA, we denote theuantizeroperation with respect td as @,, the modulusoperation
with respect toA as mod A, and thefundamental Voronoi regionf A asV,. We denote theovering
radiusandeffective radiusf A asr$®’ andr§", respectively. We denote tisecond momergndnormalized
second momendf A aso% andG (A), respectively. We refer the readers tol[14] for these dédimst

Definition 5 (Goodness for coveringA sequence of latticed is good for coveringf

cov
r

Jnn e = 1 ©)

These lattices are also commonly referred tdragers googdsince it was first shown by Rogers that such
lattices exist([15].
Definition 6 (Goodness for quantizationX sequence of latticed is good for quantizationf

lim G (A) = — (10)

n—oo 2re

In other words, the normalized second moment\afonverges to a sphere’s normalized second moment
asn — oo. Zamir et al,, have shown that such a sequence of lattices €xist [16]. &ret. have also
shown the existence of such a sequence of lattices and ptisatdoodness for covering implies goodness
for quantization|[[5].

Definition 7 (Lattices that achieve the Poltyrev limif)et z be ann-dimensional independent and iden-
tically distributed (i.i.d) Gaussian vector,~ N (0, 6°I). The effective radiuf z, which we denote as
r,, is defined as

r, = n@é (11)
Consider aZ-lattice A and a lattice poini € A, which is transmitted across an AWGN channel:
y=A+z (12)

The maximum likelihood decoder would decode to the lattiospnearest in Euclidean distance go
Therefore, an error would occur only 4f leaves the Voronoi region of. Due to lattice symmetry, this
is equivalent toz leaving the fundamental Voronoi regid.

P.(Ar,) = Pr{z ¢ W}, (13)

where P, (A, r,) denotes the probability of error.
A sequence of-latticesA aregood for AWGN channel codirigfor any r, < 78", lim P, (A,r,) =0

and this decay may be bounded exponentiallyninErez et. al. have shown the existence of such a
sequence of lattices inl[5] and they have referred to therAcdtyrev good

Nonetheless, in order to achieve the Poltyrev capacity & uhconstrained AWGN channel, it is
sufficient forlim P, (A,r,) = 0 for anyr, < r&", i.e., P. (A, r.) does not need to decay exponentially

n-—o0
asn — oo. We refer to such a sequence of latticedadces that achieve the Poltyrev limit this paper.
Loeliger has shown the existence of such lattices in [4].



Definition 8 (Sublattice):A Z-lattice A is a sublattice of (nested in) anoth&rlattice Ay if A C Ay.
A is referred to as theoarse latticeand A is referred to as théne lattice The quotient group\ /A is
referred to as a lattice partition [17].

Definition 9 (Nesting ratio):Given a pair ofn-dimensional nested lattice’s C A, the nesting ratiod

is defined as,
o VO|(VA) %
B <V0|(VAf)) ' a4

Definition 10 (Nested Lattice Codelsiven a fineZ-lattice Ay and a coarsg-lattice A, whereA C Ay,
anested lattice codévoronoi code), which we refer to a5, is the set of all coset leaders ixy that lie
in the fundamental Voronoi region of the coarse lattic§l8]:

L=VnAr={X : Qa(A) =0,A; € As}. (15)

In other words,L is a set of coset representatives of the quotient grbp\.
The coding rateof a nested lattice code, denoted /ass defined as,

R =log9. (16)

A. Construction A folZ-lattices

One way to construcZ-lattices is to use the following procedure, which is reddrto asConstruction
A [19]:
Let ¢ be a natural prime ané, n be integers such thdt < n. Then, letG € ng’f.
1) Define the discrete codebogk= {z = Gy : y € F:} where all operations are ové,. Thus,
xz e Fy.
2) Generate th&-lattice Ac asA¢ 2 {\ € Z" : A mod ¢ € C}, where the mod operation is applied
to each component of.
3) ScaleA¢ with ¢! to obtainA = ¢~ 'A¢.
We would like to note that only the first two steps that we hawatesl in Construction A is required to
build a lattice, since the third step simply scales thedattHowever when Ererzt al. prove the existence
of lattices built with Construction A that are good for cowerin [5], they keep-$" approximately constant
asn — oo andq — oo, which is possible only if the third step is used for scalihg tattice.

B. NestedZ-lattices obtained from Construction-Al[1]

Let A be ann-dimensionalZ-lattice obtained through Construction-A with a corresgiog generator
matrix B. For a givenG € IFZX’“, denote\’ as the corresponding-lattice obtained through Construction-
A using G as the generator matrix of the underlying linear code. GeaeaheZ-lattice Ay asA; = BA'.

It can be observed that C A, with a coding rate o% log q.

IV. COMPUTE-AND-FORWARD WITH Z-LATTICES

One way to implement network coding for the system model ickemed in this paper is for each relay to
decode taw, individually, then form/ and forward it through the network, which is commonly redeir
as decode-and-forward. As the number of source nddéscrease, decode-and-forward is limited by
self-interference since other transmitted messages ea&ett as noise when decodingutp individually.
Therefore, one way to mitigate the effect of self-interfere would be for relayn to directly decode tg' |
from y instead of decoding ta,’s individually. Such an approach is commonly referred ta:ampute-
and-forward, which was introduced by Nazer and Gastpar 1} §hd results in achieving substantially
higher rates than other forwarding paradigms such as ayrgtifl-forward, decode-and-forward, compress-
and-forward in many situations.



In [11], Nazer and Gastpar use nested lattice codes to ingriethe compute-and-forward paradigm.
Since lattices are closed under integer combinations glags attempt to decode to a linear combination of
codewords with integer coefficients. This can then be shavaotrespond to decoding linear combinations
over the finite field. We briefly discuss how lattice codes amestructed to implement the compute-and-
forward paradigm in[[11].

A fine Z-lattice Ay and a coarsé&-lattice A nested inAy, is constructed as mentioned in Section 111-B
with a coding rateR = %log q. If A is simultaneously good for covering and good for AWGN ch&nne
coding, it follows thatA; is good for AWGN channel coding [1]. Both and A; are scaled such that
o3 = P/2. Following this, the lattice codeboak; NV, is constructed.

Source nodé partitions its information vectow, € F2* into w;*, w/ € F’, and maps them to lattice

codewordsf?, t/ € Ay NV, respectively, via a bijective mapping

d(w) = [Bg'g(Gw)] (17)
vyherew € F§,~andg is the trivial bijective mapping betweef0, 1,--- ,¢ — 1} andF,. Hence,t* =
¢ (wf) ,tf = ¢ (wf). It then constructs dither vectord’, d/, which are uniformly distributed within

V and subtracts these dither vectors from the lattice coddsvgt, ¢/, respectively, and transmits the
following:

o= ([t —d'] modA)+j ([t —d]] modA). (18)
Recall that given a channel coefficient vectgr € CL, relay m observes

L
Y= O iy + 2 (19)
=1

The relay approximates,,, in some sense, by a Gaussian integer veetpe Z[i|* and its goal will be
to recover the following:

[ L
ol = 1> [Ram) ' = S(am)t]]| mod A, (20)

=1

L
v = [ [S (@)t + R (@) ]| mod A. (21)
Li=1 |
It proceeds by removing the dithers and scaling the observatith «,, and therefore,

= v + 2, (22)
and

7 =3 (any,,) + DS (@) df + R () d]
=1

= vh + 2 s (23)
where «,,, is the MMSE scaling coefficient that minimizes the variandez§ ,, + jz! .. The relay
quantizesj’ , 4" to the closest lattice points in the fine lattid¢e modulo the coarse latticd and

estimates the following:
gi)} mod A, (24)

>
S’N
I
[ —|
O
/N -7 N

an)} mod A, (25)
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where() denotes the quantization with respectAte. Finally, the relay map@ffb andﬁfn to ji and jjn
respectively, via),

@E‘l(y) = (GTG)_l Glg™t (q ([B_ly mod AD) , (26)
wherev € . Hence,
~ ~R L
O (o) = £, = D (it @ (b)) . (27)
=1
~ NI L
07 (o) = 1, = P bl o (b)) (28)
=1
where
b =R (a,) mod g, (29)
bl =S (am) mod q. (30)

Note that bothbf, ... b, andbl, ..., b},] are required to be full rank so that decoding each w! at
the final destination is feasible.

In [11], Nazer and Gastpar show the following theorem usimgdoding scheme we have described in
this section.

Theorem 11 (Nazer and Gastparkt relay m, givenh,, € Ct anda,, € Zi]*, a computation rate of

Plhfa, 2\
R(h = log* e —a 31
(1) = log ((ngmn el ) ) @

is achievable.
Given H and assuming that the relays do not cooperate with each, @hehn relay would attempt to
pick an integer vector,, that maximizes its individual computation rate, i, = argmax R(h,,, a,,)

omrYm
a€Lli]t

in order to maximizeR (H, A).

V. COMPUTE-AND-FORWARD WITH LATTICES OVEREISENSTEIN INTEGERS

The main result in this section is that for some channel zattins, higher information rates than those
in Theoren_1ll are achievable. The improved information imtebtained by considering nested lattices
over Eisenstein integers which allow theh relay to decode a linear combination of the foErf:1 amily,
wherea,,; € Z|w]. This result is made precise in Theorém 15.

One of the key challenges in proving this achievability tesuto show the existence of nested lattices
over Eisenstein integers, which we refer toZis|-lattices, where the coarse lattice is good for covering
and the fine lattice can achieve the Poltyrev limit. We woikd to note that, we do not prove the existence
of Z|w]-lattices that are good for AWGN channel coding, i.e. lagidor which the error probability can
be bounded exponentially in, in this paper. Furthermore, we do not require the coarsiedain the
sequence of nested lattices to be simultaneously good foa&NWhannel coding and good for covering.
In order to state our main theorem, it suffices to show thetemce of nested|w]-lattices where the
coarse lattice is good for covering and the fine lattice cdnexe the Poltyrev limit. A similar result is
obtained in [[20], where the coarse lattice is chosen to beal gody for quantization and the fine lattice
to be good for AWGN channel coding in order to achiéybg(l + SNR) using lattice codes for the
point-to-point AWGN channel.

In what follows, we first provide some preliminaries abousdfistein integers and summarize Con-
struction A for Z[w|-lattices. Afterwards, we show that nesté&glu]-lattices where the coarse lattice is



good for quantization and the fine lattice achieves the Raltiimit can be obtained through Construction
A. The existence result can then be used to prove Thebrém Hishvis the main result of this paper.
SinceZ|w| quantizesC better tharZ[i], on the average (over the channel realizations), higherrimdtion
rates are achievable by usifjw]-lattices compared to using-lattices. The superiority of the proposed
scheme will be further confirmed in Sectionl VI where we previdimerical results to compare the outage
performance and error-correcting performance of lattmes natural integers and lattices over Eisenstein
integers in compute-and-forward.

A. Preliminaries: Eisenstein Integers

An Eisenstein integer is a complex number of the farmbw wherea,b € Z andw = —% +j§. The
ring of Eisenstein integer&|w| is a principal ideal domain, i.e, a commutative ring withaato divisors
where every ideal can be generated by a single element. @#lkeknown principal ideal domains a@
andZli]. A unit in Z|w] is one of the following{+-1, +w, +w?}. An Eisenstein integes is an Eisenstein
prime if either one of the following mutually exclusive cations hold [21]:

1) o is equal to the product of a unit and any natural prime congrtee2 mod 3.
2) |o|> = 3 or |o|* is any natural prime congruent to mod 3.
An n-dimensionalZ[w]-lattice can be written in terms of a complex lattice geraratatrix B € C"**:

A={A=Be:ee Zuw} (32)

B. Construction A fofZ|w]-lattices

Let o be an Eisenstein prime withy|* = ¢. SinceZ[w] is a principal ideal domaingZ|w] is an ideal
of Z[w] and together they form the quotient rit#dw)/ oZ|w]. Moreover, sincep is an Eisenstein prime,
oZ|w] is a prime ideal and hence a maximal ideal (a property forcgpal ideal domains). Thus, the
guotient ring is isomorphic to a field

Zlw]/ oZ[w] = F,. (33)

i.e., there exists a ring isomorphism: Z[w]/oZ[w] — F, [22, page 118]. Note that|w] is the union of
q cosets ofoZ|w]

Zlw] = U (oZlw] + 5) (34)
whereS represents the set gfcoset leaders df[w]/oZ[w]. One has the canonical ring homomorphism
[22, page 118] mod pZ[w| : Zjw] — Z|w]/eZ|w] to homomorphically map an element flw| to
its coset leader. Now composingmod ¢Z[w] and o, one obtains the ring homomorphisin = o o
mod pA : Zw] — F,. Note thats can be extended to vectors in a straightforward manner byimgjthe
elements of the vector componentwise to another vectorgade 197]. We would like to mention that the
aforementioned properties also hold for lattices that arestructed over any other principal ideal domain
such asZ or Z[i]. For example, the mod ¢ operation in Construction A foZ-lattices also provides a
ring homomorphism.We now define Construction A #w]-lattices as follows.

Let o be an Eisenstein prime and= |o|?. Note thatg is either a natural prime or the square of a natural
prime. Also letk, n be integers such thdt < n and letG € F;**. Similar to aZ-lattice, aZ[w]-lattice
can be obtained by Construction A [14].

1) Define the discrete codebodk= {z = Gy : y € F:} where all operations are ové,. Thus,

x e Fy.

2) Generate the-dimensionalZ|w]-lattice Ac asA¢ = {\ € Z[w]" : 5()\) € C}.

3) ScaleA¢ with p~! to obtainA = p~!Ac.

Once again, we would like to note that only the first two stdy tve have stated in Construction A is
required to build &|w]-lattice. However,due to the fact that we will prove the &ige ofZ|w]-lattices
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that are good for covering in this paper using similar preshhiques in.[5], we also require the third step
which scales the lattice. An example of such a constructigh W= 1,n = 1,G = [1], o = 2 — /3],

g = 7 and the corresponding ring homomorphism is shown in [Eig.n2thls figure, the green circles
representZ|w] and the red lines represent the boundaries of their Vorcegibns. It can be observed
that there are exactly = |o|* = 7 lattice points that belong td@|w] that lie within each Voronoi region of
the lattice points that belong t@Z[w]. It can also be verified that the mapping (labeling) in Eigranf
Zw]/oZ|w]) to F, , i.e.,q is indeed a ring homomorphism. We would like to note that #tgde in Fig[2

is trivially Z[w]. Unfortunately, we were not able to provide a less trivialifegwith a larger dimensional
Z|w]-lattice. This is due to the fact that even a two-dimensidijal-lattice requires four real dimensions
to be drawn, which is not feasible.

Fig. 2. Ac¢ with G = [1] and the corresponding ring homomorphism

Givenn, k, ¢, we define arin, k, ¢, Z|w]) ensemble as the setBfw|-lattices obtained through Construction-
A where for each of these lattice&;; are i.i.d with a uniform distribution oveF,.

Theorem 12:A lattice A drawn from an(n, k, ¢, Z|w]) ensemble, wheré < n but grows faster than
log®n, ¢ is a natural prime congruent to mod 3, and wherek, ¢ satisfy

(9 ()T

B () Y O e
v (B Y
”%< 2) <2exp<l> (riﬂf) | )

and

ff
T'min < r/e\ < 2rmin7 (36)
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where0 < r,;, < 1, is good for covering, i.e,

T Acov

e — 1, (37)
in probability asn — oo.

Proof: We would like to note that the steps we follow in this proof aienilar to the proof of
Theorem 2 in[[5]. The most important differences are as ¥aslonstead of considering the lattice points
that lie within the fundamental Voronoi region of the lati€™, which is ann-dimensional unit cube, we
consider the lattice points that lie within the fundamentatonoi region of the latticeZ|w|", which is
ann-dimensional hexagon. Furthermore, since we are constidiny congruent tol mod 3, Bertrand’s
postulate is not sufficient to show the existence of sutiat satisfied (35) and (36) asggrows. Therefore,
we use the result in [23] to show such prime numbers existti@rest of the proof, see Appendix B.
We would like to note that a variant of Theoréml 12 can also e for ¢ congruent to2 mod 3,
which in this case we can construtfrom linear codes oveF ..

Corollary 13: A lattice A drawn from an(n, k, ¢, Z|w]) ensemble, wheré < n but grows faster than
log? n and wherek, ¢ satisfy [35) and[{36) is good for quantization, i.e.,

1
G(A) — e’ (38)
in probability asn — oo.
Proof: It was shown in[[16] that a lattice ensemble which is good fovering is necessarily good

for quantization. Thus from Theoreml12, the result follows. [ |

C. NestedZ|w]-lattices obtained from Construction-A

NestedZ|w]-lattices can be obtained from Construction-A very simtlaZ-lattices as mentioned in
SectiorIII-B. The coarse lattic& is obtained through Construction-A as mentioned in Sed#d3iwith
a corresponding generator matik For a givenG € FZX"?, denote)’ as the corresponding|w]-lattice
obtained through Construction-A usiifg as the generator matrix of the underlying linear code. Geaer
the Z|w]-lattice Ay asA; = BA'. It can be observed that C A with a coding rate of% log q. Given
n, k, ¢ and A whereA is a Z[w|-lattice obtained from Construction-A, we define the k, ¢, A, Z[w))
ensemble as the set of lattices obtained franand Construction-A as previously mentioned where for
each of these lattices, the elements of the generator neitthe underlying linear codés;; is i.i.d with
a uniformly distribution oveit,.

Theorem 14:There exists a pair of nestéw]-lattices where the coarse lattice is good for covering
and the fine lattice achieves the Poltyrev limit.

Proof: For this proof, we build nested|w]-lattices as mentioned above. Using our result from Theo-
rem[12, we pick a coarse latticewhich is good for covering. We then pidk; from the(n, k, ¢, A, Z]w])
ensemble as described in Section V-C and show that the Miskietiawka theorem can be proven for
this ensemble [4]. We would like to note that the steps wewolare very similar to the steps followed in
[4]. Some of the important differences are as follows. Siweeare constructin@Lw]-Iattices, we consider

the fundamental Voronoi region of the latti#éw]™ which has a volume o(@) . Therefore this should

be taken into account when V@V,\f) is kept constant as& — oo. In the detailed proof provided in
Appendix[C, it can be observed that a lattite picked from the(n, k, ¢, A, Z[w]) ensemble achieves the
Poltyrev limit as long as the generator matixof A is full rank. We would like to note that this result
is a generalized version of what was stated.in [4] whBre&vas assumed to be an identity matrix. One
of the consequences of picking an arbitrary full rank maiixwould be that), might stretch out in
some dimensions while shrinking in others. Nonethelesgesthe growth of; in Theorem 1R ensures
thatq — oo, there is exactly one element in the kernelbotontained in the bounded region, i.e., the left
term of (114) vanishes, and the result holds.
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Now, we are ready to state the main theorem in the paper.
Theorem 15:At relay m, givenh,, anda,,, a computation rate of

P|hHa 2 !
" ~ oot 2_ _~1=meml 39
R(_m7gm) og ((HQmH 1‘|‘P||hm||2 ! ( )

whereaq,,, € Z|w], is achievable.
Proof:

We would like to note that the steps we follow in this proof &egy similar to the proof of Theorem
5 in [11]. Nonetheless, there are some important differerwee would like to point out. Since,,; are
Eisenstein integers in our framework, their real and imagircomponents are not independent and we
cannot use a real and imaginary decomposition as in [11]cefbee, the channel coefficients and channel
noise cannot be decomposed into real and imaginary compoeéher. Due to this, we are constrained
to employ Z[w]-lattices in our framework. Furthermore, in order to obtajp from a,,, we use a ring
homomorphismz, which can be thought of as the equivalent of a modulo opmrdr a,, € Z. We
would also like to mention that this proof can be trivialltexded to the case where information vectors
at transmitters have different lengths by considering aisece of nested lattice codes. We proceed as
follows.

Using the result from Theorem 14, a fi#go]-lattice A ; and a coarsé|w]-lattice A, which is nested in
Ay with a corresponding coding ra@: % log ¢, is chosen such that, achieves the Poltyrev limit and
A is good for covering. Both\ and A, are scaled such that = P. Following this, the lattice codebook
Ay NV, is constructed.

Source nodé maps its information vectow, € F’, whereq = |¢|* and g is an Eisenstein prime, to a
lattice codeword; € A; N V,, respectively, via a bijective mapping,

t =1(w) = [Be o (Gu)], (40)

whereos was defined in Sectidn ViB. It then constructs a dither vedtpwhich is uniformly distributed
within V, and subtracts this dither vector from the lattice codewsgrand transmits the following:

El - [El - C—il] mOd A (41)

Given a channel coefficient vectar, € CZ, relay m observes

L
Yo=Y hwz+ z,. (42)
=1

The relay approximates, , in some sense, by an Eisenstein integer vegtpe Z[w]" and its goal will
be to recover the following:

L
v, = [Z <amlm] mod A, (43)

=1
It proceeds by removing the dithers and scaling the observatith «,,, and therefore,

L
i o=y + Y amd, (44)
=1
whereq,, is the MMSE coefficient.
Thengm is quantized to the closest lattice point in the fine latt\gemodulo the coarse latticé and
estimates the following:
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0, = @, (7,,)] mod A, (45)

where ()5, denotes the quantization with respect A¢p. The remaining steps of the proof would be
identical to the steps in the proof of Theorem 5Iin/[11] witle thnly difference being as follows. The
relay mapsi,, to f viai~!, where

L
v (B,) =f =(GTG) " G (o([B7'%, mod A])) = €D by, (46)
=1

andb,,; = o (ap).

Due to the fact thad is good for covering and the dithers are uniformly distrdzliin ), , the probability
density function of the equivalent noisg, ,, is upper-bounded by a zero-mean complex Gaussian with
a variance that approachgs,,|? + P||anh,, — a,,||> multiplied by a constant as — oo ([11, Lemma
8]). We would like to note that the error probability (%req ¢ VAf) goes to zero as — oo, however this
decay is not necessarily exponentialinsince we have only proven the existenceZab|-lattices which
achieve the Poltyrev limit and this result does not proviglermation about the error exponents of such
lattices. Nonetheless, it is sufficient to achieve the cdiatmn rate in[(3D). [ |

Given H and assuming that the relays do not cooperate with each, @hehn relay would attempt to
pick a,, € Z|w]" that maximizes its individual computation rate, i, = arg max R(h,,, a,,) in order

a€Z[w]L
to maximizeR (H, A). A straightforward method to determine the optim_gj[ \;vould be to employ an
exhaustive search over all, that satisfied|a,,||* < 1+]|k,,||>P (LI, Lemma 1]). One major challenge in
the compute-and-forward paradigm is that for lafg@nd L, exhaustively searching optima|, becomes
infeasible. Nonetheless, this problem can be molded intdfereht form which enables the utilization
of much more efficient algorithms (sele [12] fdi:] and [13] for Z[w] for example.) In the following
subsection, we review this approach for the sake of compudste

D. An efficient algorithm for choosing,,

As can be seen in[([11]), upon scalipg with the MMSE coefficient,,, the effective noise variance
at relaym, which we denote asg;,,, can be computed as

O-gff,m = |Oém|2 + PHamﬁm - Qm||27 (47)

where
Pha,
Oy = —— .
1+ ||k, |I?

Furthermore, the achievable computation rate at each oelaybe expressed in terms Bfand oz, as

(48)

P
R (s @) = log™ | — : (49)
eff,m
Therefore,
argmax R (h,,, a,,) = argmin oy ... (50)

a,, €Z[w] a,, EL[wE

=m =m
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We now take a closer look aztgﬁ,m. Substituting[(4B) in[(47), it can be observed that

) P2l h, hta

ZmZmiim=Zm

= Paflq  —
Ueﬁ,m QG 14+ P||hm||2
Ph, bl
= P ([T —=m=m 51
o (1- T R oD
Due to the Matrix Inversion Lemma [24],
Ph, bl 1
I———mm _ — ([+Ph ki), 52
T+ P, =+ Pholtn) 52
andog;,, can be expressed as

1

Oettm = Palt (I+ Ph,hll) " a (53)

m:*

Note that (I+P@m@ﬁ), which we denote a$, is a Hermitian matrix. Therefore, the singular value
decomposition o can be expressed 38DV ¥, whereD is a diagonal matrix which has the eigenvalues
of S as non-zero entries and is an orthogonal matrix which has the corresponding eigetove of S

in its columns. Hence,

Oottm = Pall (VD™'VT)

= P|D™*Vg, |I?, (54)
and therefore it can be concluded that
argmin og; ,, = argmin ID"Y2VHg |12 (55)
a,, EZ[w] " a,, €Z[w] L

Thus, the search in_(55) is equivalent to finding the non-zeiwimal Euclidean norm point generated
by D-'/2VH as aZ|w]-lattice, which is commonly referred to as the shortest megroblem (SVP).

For reasonable values df, e.g. L. < 32, one of the shortest lattice vectors can be found via a Pohst
enumeration or a Schnorr-Euchner enumeration in a way airnal standard sphere decoding/[25][26]. A
polynomial-time method to approximate {55) is based on LeHuction [27]. For our lattices, an LLL
over Z[w] should be used as devised by Napias for Euclidean rinds [#3Jiding bothZ[:] and Z[w].

Also in [29], LLL has been proposed in a different methodglagth no singular value decomposition
of S. Finding approximately optimat,, efficiently is an active research area. The interested reiade
referred to[[30] and the references therein.

VI. NUMERICAL RESULTS

In this section, we present some numerical results on thé\adile computation rates with|w]-
lattices and compare them to the maximum achievable ratts ZAvlattices. We consider the case of
L = 2 transmitters and there &/ = 1 relay. For a given channel coefficient vectarlet Rz (k) and
R (h), denote the maximum achievable rate usiig]|-lattices andZ-lattices, respectively, i.e.,

Plfal? \ 7
hoP) — 1 + 2_ 1= =2
Re(h P) = ma, log ((”Q” i+ PIaE) ) =
and
o Plfap 7!
b D) — ] + 2_ == . 57
Ra(h P) = max log ((”@” A -

In Fig.[3, we fixh; = 1 and choosé, such thatk(h,), (hy) € [—4, 4]. We would also like to note that
we do not impose a probability distribution @n. For each paifh; = 1, hy), we plot the region where
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Re(h,)

Fig. 3. Regions off (h2) , S (he) whereRg(h, P) > Re(h, P), Ra(h, P) < Re(h, P) ofr Rg(h, P) = Re(h, P): SNR=10 dB

Ra(h) > Re(h), Ra(h) < Re(h) or Rg(h) = Re(h). For the total number of realizations considered,
Re > Ra, Re < Rg. andRg = R for 22.6%, 15.9%, and 61.5% of the realizations, respectively.
One might expect thak|w|-lattices would attain a greater maximum achievable ratenwh is closer

to an Eisenstein intege¥,-lattices would attain a greater maximum achievable ratenwh is closer

to a Gaussian integer and both lattices would achieve thee saaximum achievable rate when is
closer to a natural integer. However as seen from [Hig. 3,rddwors also contribute to the maximum
achievable rate. For example whggh,|| > ||hy|| or ||ho]| < ||h1]|, the relay chooses, = 0, ||az|| = 1 or
|la1]| = 1, ||az|| = 0, respectively since treating the other transmitted sigsahoise (decode-and-forward)
results in maximum achievable rate. Also, the MMSE scaliogfficient o plays a very important role
as seen in[(22)[(23) and(44). Note tHail(56) dnd (57) can kteewras

h 2
Rl P) = max,log™ | 155 ?HZHZHEHQ — 1"
(58)
and
2
Ra(h, P) = Jnax, log™ lal|2 + P tlglfj\"ﬁhlll — p"a?) )’
(59)
respectively.

As one can see from the denominators[inl (58) andl (59), it igatde to aligna (a) with A as much
as possible in order to minimize the second term. Howeveenih¢ Z[i]?,h ¢ Z|w]®, or the elements of
h cannot be written as the ratio of Gaussian integers or Bisenmtegers, ot is not a rotated version
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of a Gaussian integer vector or Eisenstein integer vegtdy,— oo (J|a|| — oo) for perfect alignment.
Unfortunately, this results in the first term of the denontwnao grow and hence there is a tradeoff.
Therefore even though, might be closer to an Eisenstein integer (Gaussian integer): is aligned
better with a vector irZ[i]* (Z|w]?), the magnitude of this vector might be too large and thusrgeta
computation rate may be achieved by choosing Z[i]? (a € Z[w]’).

- - =Rgp(h,P)

bits/complex dimension

0 5 10 15 20 25 30 35
SNR(dB)

Fig. 4. A comparison ofRg(h, P) andR¢ (h, P) for h = [1.4193 4 j0.2916;0.1978 + j1.5877]

In Fig.[4, we fix the channel realization to the= [1.4193 + j0.2916;0.1978 + ;j1.5877] and compare
Re(h, P), Ra(h, P) for different SNRs. For this particuldt, it can be observed that[w]-lattices can
achieve substantially higher rates thadattices in the medium SNR regime. We would like to note that
this is not necessarily the case for every channel reabizationetheless it is a perfect example of how
channel realizations affect the performanceZab]-lattices andZ-lattices. Therefore, a larger number of
channel realizations should be considered in order to mdk& aomparison of their performance in the
average sense.

A. Outage performance comparison@lattices vs.Z|w]-lattices in compute-and-forward

In this subsection, we compare the outage performancedatibdes ovefZ and lattice codes over
Z|w] for compute-and-forward. Given a target rdte and a probability distributior® on h, i.e. h ~ P,
we define the outage event of usidglattices andZ|w]-lattices asRq(h) < Rr and Rg(h) < Rr,
respectively. In Figll5, we plot the outage probability withv]-lattices andZ-lattices as a function of
SNR (P) whereR (hy),S (hy), R (h2), S (he) ~ N(0,1). We average over 100000 realizationsioft
each SNR and choose the target rate tafhe= 1/2log, 7 bits/symbol/Hz. As seen in Figl 5, there is a
0.4 dB gain from usindZ|w]-lattices instead oZ-lattices in terms of outage performance. We would like
to note that this gain comes with no additional computalicoeanplexity.

B. Error correcting capability ofZ-lattices vs.Z[w]-lattices in compute-and-forward
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Fig. 5. Outage Probability of.[w] Lattices vsZ Lattices

In this subsection, we compare the error-correcting cédipabi lattice codes ovefZ and lattice codes
over Z|w| for compute-and-forward. Before we do that, we would likeptmint out that in general, the
nested lattice shaping adopted in the previous sectionerig difficult to be implemented. In fact, it is
equivalent to the SVP and hence is NP-hard. In practice, on&ldrade performance for complexity by
considering the use of hypercube shaping. Then the promxdezine would reduce to the concatenation
of a linear code oveF, with a constellation corresponding to a set of minimum epegset leaders of
the quotient ringZ|w]/oZ|w] (or Z/qZ). In the following, we compare the error-correcting cafigbfor
this practical scheme.

In order to construct a lattice code over Eisenstein inegee have used a rate 1/2, regular (3,6),
uniformly distributed edge weight, length 10000 LDPC codeeroF,; and mapped each codeword
component to the constellation carved fr@ijv|/5Z[w| via a ring homomorphism. In order to construct a
lattice code over natural integers, we have used a rateeg@lar (3,6), uniformly distributed edge weight,
length 10000 LDPC code ovef; and mapped each codeword component to the coset leadere of th
quotient ringZ/5Z, i.e. {—2,—1,0, 1,2}. Note that for the lattice code over natural integers, wesii®r
F5 due to the real and imaginary decomposition. We have gesterH0000 channel realizations, used
these channel realizations over a range of SNR, and we hatteghkthe average symbol error probability
of these lattice codes for the compute-and-forward franmkewas seen in Figl 16 simulation results show
that lattice codes over Eisenstein integers outperfortitéatodes over integers by roughly 0.4 dB, which
is consistent with our outage simulation results.

VIlI. CONCLUSION

In this paper, we have shown the existence of lattices overstein integers that are simultaneously
good for quantization and that achieve the Poltyrev limite3e lattices were then used to generate lattice
codes over Eisenstein integers which were implemented dorpate-and-forward and thus enable the
relays to decode to linear combinations of lattice pointthviiisenstein integer coefficients instead of
Gaussian integers. Due to the fact that Eisenstein integenstize channel coefficients better than Gaussian
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Fig. 6. Symbol error rate of.[w] Lattices vsZ Lattices

integers, one can expect an increased achievable congutate on average. Simulation results suggest
that for compute-and-forward, lattice codes over Eisenstéegers provide improved outage performance
and error-correcting performance in the average senseam@upo lattice codes over integers without the
cost of additional computational complexity.

APPENDIX

In this section, we provide the proofs for Theorém 12 and Tédl4. We would like to note that
the proof techniques used in proving Theorem 12 are verylairto those used iri [5] and our proof of
Theoreni 14 is largely based on the prooflin [4]. However,dlee a few steps that have to be re-derived
since Eisenstein integers are considered. We present tine proof for the purpose of completeness. We
first give some definitions and preliminaries that will beweseful for the proofs.

A. Notations and Definitions fdf|w]-lattices

In [14, p. 54], it is stated that an-dimensional complex lattice can be equivalently thougha® a
2n-dimensional real lattice by the following mapping

A A = [RA1)) S(AD)) -+ - R(A(n) S(A(n))]"
(60)

where the left hand side is amdimensional complex lattice point and the right hand silets 2n-
dimensional real representation. Thus we shall consgieimensional Eisentein lattices 2s-dimensional
real lattices and us€™ andR?" interchangeably. We shall now introduce the notation thifithe used
in this section.

« S0 S\ 0, whereS is any discrete set.

. V: Fundamental Voronoi region of the latti@w]".

« GRID: The latticep™'Z[w|", wherep is an Eisenstein prime.

e ¥ =2 mod V=2 mod Z[w]" =z — Qg (x) wherez € C".
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A* = A mod V, whereA is any set inC™ and the mod V operation is done element-wise.

A’ £ A\ {0} whereACR", ACC"or ACF?

A: An n-dimensionalZ|w]-lattice nested in GRID, i.eA C GRID .

Vol(-): Volume of a closed set ift”, or equivalently volume of a closed setR¥".

GRID": GRIDN V.

B(r):A complex n-dimensional, or equivalently re@n-dimensional, closed set of points inside a
sphere of radiug centered at the origin.

A*: The lattice constellation, i.e\* = A N V. Note thatA* can generaté\ as follows:

A=A+ Zw]". (61)

M = |A*|: Cardinality of the lattice constellation.
A Apointin A%, ie€{0,--- , M —1}.

Note that by our construction, the lattices chosen from (thek, ¢, Z|w])-lattice ensemble are periodic
modulo the regioV. Thus we can restate all the properties of our lattice in $apfrthe lattice constellation
A* that lies withinV. The (n, k, q, Z|w])-lattice ensemble has the following properties:

1) Aj = 0 deterministically.

Proof: 0 is always a valid lattice point due to the definition of a ltiand0* = 0. Thus the
result holds. [ |

2) A; is distributed uniformly over GRIDfor i € {1,---, M — 1} where M = ¢*.

Proof: Each element ofG is chosen uniformly oveit,, therefore each codeword of the
underlying linear code is distributed uniformly ov&f. Due to last step in Construction A in
Section’\V-B where the lattice is scaled with! and the ring homomorphisi, the result holds.m

3) The differencg A} — A;)* is uniformly distributed over GRIDfor all i # j.

Proof: This result holds due to the previous property and the defimibf the x operation. B

4) |A*| = ¢* with high probability ifn — k& — oo

Proof:
k
Pr{rankG) < k} <> Pr{z ¢Gi = Q}
#0 i=1
=q7"(¢" - 1), (62)
wherec; would be elements of & x 1 coefficient vectorc. u

We shall refer toB(r)* = B(r) mod V as aV-ball. Under the assumption that< 3, we say that
(A*+ B(r))" is aV-covering if

ve lJ a+Br) . (63)

AEA*

Note thatA + B(r) is a covering if and only if A* + B(r))"is a V-covering

In our lattice ensemble, we will constrain< n for some0 < g < 1. Therefore PfrankG) # k}
goes to zero at least exponentially.df is full rank, there areM/ = ¢* many codewords that lie iw.

Also, ann-dimensionaly is known to have a volume %@) . Then the volume of the Voronoi region

of our lattice is equal tc(@) ¢~ *. In our analysis very similar ta [5], we will hold the effeati radius
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of the Voronoi region of\, denoted as$" approximately constant as— oo. This implies the following:

) () ey
TV T e ()T

3\ /nyn 1
— V2 LQ (ﬁ) (1 +0 (—)) . (64)
2 (Tiﬁ) e n
Note thatg can either be a natural prime congruent tanod 3 or the square of a natural prime congruent
to 2 mod 3, nonetheless we shall restrigtto be a natural prime congruent to mod 3 for the sake of
simplicity. We would like to note that it is not possible toegers" constant as: grows sincey has to be

a natural prime congruent tb mod 3 andk has to be an integer. Therefore, we will relax this condition
to

ff
Tmin < T8 < 2Fmin, (65)

asn grows, whered < r,,;, < i Although we have restricteq to be a natural prime congruent 1o

mod 3, with the assumption of < gn for g8 < 1, (€8) can be satisfied for any large enougtue to the

following. Let ¢* be the real number that satisfiés|(64) for a radiug:qf;,,. Then,q*k = +
VB(\/%2T’HL’L'7L)

g < q< 22k, (66)

and from [65),g must satisfy

Finally, to show that for each > 4 in our sequence a correspondiqgxists that satisfie$ (66), we use
the following lemma.
Lemma 16 ([2B]): There always exists a natural prime congruent tmod 3 between integers: and
2m wherem > 4. )
We would also like to note that from (64), the growthofs O(n?). Thus,
lim n/q=0. (67)

n—oo

B. Proof: Existence of[w]-lattices that are good for covering

The proof of this theorem is divided into two parts. In thetfpart, sufficient conditions are obtained
such that most Eisenstein lattices in the ensemble are &lownplete”V-coverings. In the second part,
stricter conditions are imposed such that most of the Eeserattices in the ensemble aremplete
V-coverings and thusomplete coverings .

Part 1. Almost complete covering

Denoted to be half of the largest distance between any two pointslidatithin the Voronoi region
of an element in GRID.

d=,/—. (68)

Note that by [(66)d — 0 asn — oco.

Consider the lattice constellatioh* of the ensemble and defing, k, such thatk;, + &k, = k. We
shall denote the Eisenstein lattice constellation obthinem the firstk; columns ofG by A*[k;] and let
A*[k;+7],7 =1,--- , ko denote the Eisenstein lattice constellation obtained filoenfirstk; + j columns
of G. Let z be an arbitrary point such that € V. Let S;(z) denote the set of GRID points within a
modulo distance: — d from = whered was defined in[(68).

Si(z) = GRID* N (z + B(r — d))* . (69)
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Furthermore, denots,(z) to be the set of GRID points such that their Voronoi regiorersect a sphere
of radiusr — 2d centered atr.

Sy(z) ={y € GRID*: (y+ o~ 'V) N (z+B(r—2d))"}.
(70)
It can be observed thd,(z) C Si(x). Thus, the cardinality of,(z) can be bounded as:
[S1(2)] > [Sa(2)| = [Vi(r — 2d) Vol (o™ V)]
= [q"(v3/2)Vilr — 20| (71)

By the second property of the ensemble, the probability thist covered by a sphere of radigs — d)
centered at any point of*[k;] satisfies

Pr{z € (Aj[k1] + B(r —d))*} =
S1(z)]/q" > (V3/2) "Vis(r — 2d),
(72)

fori=1,---, M, — 1 where M; = ¢* and A} is theith point of A*. The indicator random variablg
fori=1,---,M; —1is defined as

B 1, if z € (Ak1] + B(r—d))"
i = m(z) {0, otherwise

Note thati = 0 is not considered sinc&j[k;] = 0 deterministically. Thusy; is statistically independent
of bothi andz. DefineX = X' (z) as follows:

Hence,X is equal to the number of nonzero codewofds- d)-coveringz. Computing the expectation
of X and using the lower bound frorh (72),

Mi—1
E(X) =Y E(n)
=1
> (M; — 1) (V3/2)"Vi(r — 2d). (74)
Since then,’s are pairwise independent and thus uncorrelated, sirtal§] one has
Var(X) < E(X). (75)
Using (7%), by Chebyshev’s inequality, for amy> 0
Pr{|)( — B(X)] > 2" E(X)} < 2\2/%(()2) <o, (76)
Define
u(v) = B(X) = 27/ E(X). (77)
Then from [76),
PH{X < u(v)} < 27%. (78)

If u(v) >1, P{X < 1} is upper-bounded bg~2" as well.
A point z € V will be referred agemotefrom a discrete set of pointd if it is not » — d-covered by
(A+ B(r—d))", i.e. if z does not belong to afr — d)- sphere centered at any point df Therefore,
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X(z) < 1 implies that % is remote fromA*[k,]”. Define Q (.A) to be the set of (continuous) points which
are remote from the discrete sdt DenoteQ; = Q (A*[k; +1¢]),i=0,1,--- , ky and define

4 = |Qil/Vol (V) (79)
to be the fraction of (continuous) points 1 which are remote from\*[k; + ¢]. Then,
%l = [ 1(¥(@) < e (80)
1%
< [ 1@ < nv) e (81)
%
under the condition that(~) > 1. Then, from [[78) we have
E(q) <27, (82)
Applying Markov’s inequality we get
Pr{qo > 2"FE(q)} < 27". (83)
Using (82),
Pr{ig >27"} <27 (84)

Therefore, by takingy — oo and keepingu(v) > 1, this probability can be made arbitrarily small as
n — oo. In order to satisfy these constraints it is sufficient teetak= o(logn) and E(X’) > n* for some
A > 0. By (74) this would be satisfied if we choose a radiusuch that

m (v3 /2) . (85)

Hence, we conclude that for these choice of parameters, ést fattices chosen from the, &, ¢, Z|w))
ensemblealmost all points are covered by spheres of radius d.

¢ —1=

Part 11: Complete covering

We would like to obtain an ensemble @fw]-lattices such that most of its members are able to cover
all the points inV. Q(A) is redefined to be the set of GRipoints, i.e.,z € GRID* which are remote
from A andg; is redefined to be the fraction of GRi1points that are remote from* [k, + i|. Therefore,
an (r — d)-covering of all GRID points implies an-covering of all points inV.

By augmenting the generator mati@& with an additional small number of columnas(k, < k), the
fraction of uncovered GRIDpoints can be made smaller thaj GRID*| which implies that all GRID
points arer — d-covered. We proceed as follows.

Choosek; andq such thatk; grows faster thaog? n and [64) and[(85) are satisfied. Define the set

S =Nk U (AN [k1] + {07 (Gr,11) NV}, (86)

whereo is the ring isomorphism defined in section V-B. Also note that

q—1

ANk +1] = [ (M k] + 07" ([m - (Grya)] mod g)) (87)

m=0

Hence,S C A*[k; + 1] andg; is upper-bounded by GRlD‘* SinceA*[ki] + {o7' (G, 1) NV} is an inde-

pendent shift of\*[k;], conditioned om\*[k,], the event that is remote fromA*[k;]+ {071 (G, 41) NV}
is independent from whether is remote fromA*[k;] and the probability of such an eventgs Then,

2S) |\ _
E{pRmﬂq}—ﬁ. (88)
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Due to the fact thaS C A*[k; + 1], we haveE {q|q} < ¢3. By Markov’s inequality,

Pr{Ql > QWE(CH\QO)’QO}- (89)
Therefore,
Prlg <27 ¥|g <2} >1-27, (90)
From Bayes’ rule and_(84),
Prlp <22} > Prlg < 2% gy <277} (91)
>(1-27)(1-27). (92)
Repeating this procedure for= 0,1, ..., ks — 1, we obtain
Q@41 < 2" E(qi1lq) (93)
< 27¢f, (94)

with probability at least —2~7. Hence, the intersection of all thesge events and the event that < 27~
has the probability1 — 27) (1 — 277)", which implies

Gy < 22k2(v—u)—v. (95)
We would like to choosé such that
Gk, < q¢ " = 9—nloga, (96)

The interpretation of_(96) ig., = 0 since there ar@™ points in GRID. Therefore, choosing = v — 1
and

ks = [logn + loglog q], (97)
or faster suffices. Due to the fact that= k; + k», we conclude that with probability at least
(1 . 2—1/) (1 . 2—u+1)(10gn4rloglogq) (98)

A*[k] satisfiesqr, < ¢~", in other words every: € GRID* is covered by at least one sphere of radius
(r —d). We would like to impose a condition om such that bothv — oo and the probability in[(98)
goes to 1 as — oc. It suffices to choose

v = 2log (logn + loglogq) . (99)

Note that asu(v) > 1, the probability that there remains a point GRID* that is not(r — d)-covered
is arbitrarily small as: — oo. If every point of GRID is (r — d)-covered, therV is r-covered. Thus, the
probability of a complete covering with spheres of radiugoes to 1 where satisfies(sed _(85))

A

M = gtk — n 9)" k2 1
1 Vs(r — 2d) <\/§/ ) 1 (100)
< n)\ <\/§/2>n q(log n+loglog q)+1 (101)
- VB(’I“ — Qd)
)\ n
— v <\/§/2> 9log g[(log n+loglog g)+1] (102)
VB(’I“ - Qd)
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From (100) and[(102),

r 2n VB <,r) A k2

- _ PV 103

e \/VB(T —2a) "1 -
< T . /21, 9(log glogn-tlog gloglog g+logq) /2n (104)
—\r—2d

For pcov — 1, the left-hand side of (103) should go to 1. Hence, we regedeh of the three terms on
the right-hand side of (104) goes to 1. Froml(67) dnd (68)plibWs thatd — 0 asn — oo provided

thatk < pn and g < 1. Therefore,
,
li =1. 1
i (5 (109)

For any fixed\ > 0, we havelim,,_,., n*/?" = 1. Also, sincek grows faster thamog® n, by (64) we have
log p grows slower thamw log(n/logn). Then,

lim 2(logqlogn+10gqloglogq+logq)/2n —1. (106)
n—00

Thus, we have tha@ — 1 in probability asn — oo which completes the proof.
TA

C. Proof: Existence of good nest&dw|-lattices

Using our result from Theorem 12, l&tbe ann-dimensionalZ|w]-lattice obtained through Construction-
A with a corresponding generator matidix which is good for covering.

Definition 17: A setC of linear (n, k) linear code ovel} is balancedif every nonzero element df}
is contained in the same number, denotedNyyof codes fromC.

Note that for fixedn, &, and ¢, the set of all linear(n, k) codes ovefF, is balanced. We shall now
state Lemma 1 in [4].

Lemma 18:Let f(-) be an arbitrary mapping; — R and letC be a balanced set of linea, k) codes
overFF,. Then, the average over all linear codgsn C of the sum)___., f(c) is given by

k_
(XS =51 % fo) (107
CeC ceC’ ve(lF:;)'

For proving Theorerh 14, we shall use nes#d|-lattices obtained from Construction-A as mentioned
in Sectior V-C. A scaled version df- denoted ag A, wherey € Rt and A was defined in sectidn ViB
is constructed. Then, we multiplyA- with the generator matriB8 and obtain the latticé ; = yYBA¢. It
can be observed thavZ|w]" C yoA C A; and there are* elements of\ ; that lie within the fundamental
Voronoi region ofypA. Hence, the volume of the fundamental region\gfis

Vol (Vy,) =+*"¢" " (?) Vol (Vy) . (108)

We can now extend the Minkowski-Hlawka Theorem [in [4] to Bistein lattices as follows, following
similar steps.

Theorem 19:(Minkowski-Hlawka Theorem:Let f be a Riemann integrable functid®® — R of
bounded support(i.ef(v) = 0 (if ||v|| exceeds some bound). Then for any integevhere( < k£ < n,
and any fixed VdlV,, ), the approximation

Y s avelvn) T [, (109)

2n
CeC veg(vBAL) R
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whereC is any balanced set of lineén, k) codes oveif, and whereg;(-) : C* — R?" as in [60), becomes
exact in the limitg — oo, v — 0, 4?"¢"* (*ég) Vol (V) = Vol (Vy,) fixed. Note that these conditions
imply thatvq — oc.

Proof:
1
|—Z f) (110)
€9(vBAy)
[ f(yBo) ...
= veg((2lw])'):3(v)=0
Y J6BY) (111)
vEG(Z[w]):5(v)EC!
= > f(yBv)

ve(9(2lwl™)’):6(v)=0

ZZ >, f(Bv) (112)

C’EC cel | veg(Ziw|™):6(v)=c

= > f(yBv)

veg((Zw]™) ):5(v)=0

k
q° —1
+ — E f(vBw) (113)
" —1 _
ce(Fp) | veg(Z[w]™):6(v)=c
= f(vBv)

veg((Z[w]™)'):6(v)=0

k

q°—1

L ST DI {¢1-DF (114)
veg(Z[w]™):6(v)#0

where the step froni_(112) t6 (1]13) is due to Lenima 18 and dukedaict thatf has bounded support,
the left term of [(11K) vanishes for sufficiently large and the right term of.{114) becomes

¢ -1

e (%) Vol (V) ! - f(v)dv, (115)

which becomes exact in the limit as— thq — o0, i.e, a Riemann sum approaching to a Riemann
integral. Note that the term—2"¢*—" ;) appears in front of the integral in_(115) since it is the
reciprocal of the volume of the fundamental Voronoi regidn\g = vBAc. u
Suppose now that a transmitter selects a codewdrdm an Eisenstein lattica € C" (or equivalently
R?") and z is transmitted over an AWGN channel where a random noiseowect C"(or equivalently
R?") gets added with the variance of eazh components equal t&, /2. The receiver obtaing = z + z
and tries to recover. Furthermore, lef; C R?" be a set of typical noise vectors. We say thatarbiguity
occurs ify can be written in more than one way gas= z + ¢ wherexz € A ande € E. Let Pamyr be
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the probability of ambiguity given that € £. Assuming that the receiver is able to recoyewhenever
z € FE and there is no ambiguity, the probability of decoding eisoupper-bounded by

PeSPamUE+P<§¢E>' (116)

Due to the fact that Minkowski-Hlawka theorem can be prov@m;, the following theorem immediately
follows.[4]

Theorem 20:Let £ be a Jordan measurable bounded subsé@?dfand letk be an integer such that
0 < k < n. Then, for anys > 0, for all sufficiently largeg, and for all sufficiently smally, the arithmetic
average ofP,ny over all latticesA; = yBA¢, C € C, which we denote a®%,myz, is bounded by

Pamiis < (1+6)Vol(E)/Vol (Vs ) , (117)

whereC is any balanced set of linean, k) codes ovel, and where Vo[V, ) £ N2 gn=R\ol(V,) <ﬁ>n

2
is the fundamental volume of the latticas = YBA¢, C € C.
Note that as» — oo, I/ will approach the shell of @&n-dimensional ball with radius, = /nF,. Thus

(\/Erg)n

< ==
VoI(E) < Vol(B(y/nP.)) Tt D as n — oo, (118)

which immediately follows that
2n
- 7‘2
PamUE < (1 + 5) off ) (119)
"yBAc

asn — oo. This implies thatPymgz — 0 asn — oo for r, < rgf[f\c. Hence for a given latticd ; = yBA¢,
Pamyr — 0 in probability asn — co. Taking into account thaP(z ¢ £) — 0 asn — oo, from (116) we
conclude thatP, — 0 in probability asn — oo. This completes the proof.
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