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Abstract— This paper studies the delay constrained multicast
capacity of large scale mobile ad hoc networks (MANETs).
We consider a MANET consists ofns multicast sessions. Each
multicast session has one source andp destinations. The wireless
mobiles move according to a two-dimensional i.i.d. mobility
model. Each source sends identical information to thep des-
tinations in its multicast session, and the information is required
to be delivered to all the p destinations within D time-slots.
Given the delay constraint D, we first prove that the capacity
per multicast session isO

“

min
n

1, (log p)(log (nsp))
q

D

ns

o”

.1

We then propose a joint coding/scheduling algorithm achieving
a throughput of Θ

“

min
n

1,
q

D

ns

o”

. Our simulations show that
the joint coding/scheduling algorithm achieves a throughput of
the same order (Θ

“

min
n

1,
q

D

ns

o”

) under random walk model
and random waypoint model.

I. I NTRODUCTION

Wireless technology has provided an infrastructure-free and
fast-deployable method to establish communication, and has
inspired many emerging networks including mobile ad hoc
networks (MANETs), which has broad potential applications
in personal area networks, emergency/rescue operations, and
military battlefield applications. For example, the ZebraNet [1]
is an MANET used to monitor and study animal migrations
and inter-species interactions, where each zebra is equipped
with an wireless antenna and pairwise communication is
used to transmit data when two zebras are close to each
other. Another example is the mobile-phone mesh network
proposed by TerraNet AB (a Swedish company) [2], where
the participated mobile phones form a mesh network and can
talk to each other without using the cell infrastructure.

Despite the importance of these emerging applications, the
practical deployment of MANETs has been stunned by the
lack of basic understanding of MANETs. Over the past few
years, there have been a lot of interest in characterizing the
capacity of MANETs under a range of mobility models [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]. Most of these work assumes unicast traf-
fic flows and studies the unicast capacity. However, multicast

1Given non-negative functionsf(n) and g(n): f(n) = O(g(n)) means
there exist positive constantsc and m such thatf(n) ≤ cg(n) for all
n ≥ m; f(n) = Ω(g(n)) means there exist positive constantsc and m
such thatf(n) ≥ cg(n) for all n ≥ m; f(n) = Θ(g(n)) means that
both f(n) = Ω(g(n)) and f(n) = O(g(n)) hold; f(n) = o(g(n))
means thatlimn→∞ f(n)/g(n) = 0; and f(n) = ω(g(n)) means that
limn→∞ g(n)/f(n) = 0.

flows are expected to be predominant in many of emerging
applications. For example, in battlefield networks, commands
need to be broadcast in the network or sent to a specific group
of soldiers. In a wireless video conference, the video needsto
be sent to all the people attending the conference. To support
these emerging applications, it is imperative to have a fun-
damental understanding of the multicast capacity of wireless
networks. In [21], [22]. the authors show that the multicast

capacity ofstatic ad hoc networks isO

(

1√
ns log(nsp)

)

per

multicast session. In [23], the multicast capacity of delay
tolerant networkswithout delay constraints is studied, and
then the delay associated with the maximum capacity is
characterized. In [24], the multicast capacity and delay tradeoff
is established under a specific routing/scheduling algorithm.
In this paper, we study the multicast capacity of large-scale
MANETs under a general delay constraint D. We first obtain
an upper bound on the delay constrained multicast capacity,
which holds for any communication algorithm. We then pro-
pose a joint coding/scheduling algorithm with a throughput
that differs from the upper bound by just a logarithm factor

In [18], the authors establish the optimal delay constrained
unicast capacity. The multicast problem differs from the uni-
cast problem in the following aspects:

• The capacity of MANETs is highly related to the inter-
contact rate (the opportunity two mobiles can commu-
nicate with each other). Since there are multiple des-
tinations in a multicast session, the inter-contact rates
between the source and its destinations and the relays
and their destinations increase. The increase of inter-
contact rates can improve the capacity of MANETs. On
the other hand, in the multicast scenario, the information
needs to be transmitted reliably from the source to all its
destinations, which generates more traffic in the network
and requires more transmission resource than that in
unicast.

• In MANETs, the mobiles communicate with each other
using wireless communication. Due to the broadcast
nature of wireless communication, all mobiles in the
transmission range of a transmitter can simultaneously
receive the transmitted packet. In the unicast scenario,
only the destination of the packet is interested in receiving
the packet; however, in the multicast scenario, all the
destinations belonging to the same multicast sessions are
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interested in the packet. Thus, one transmission might
lead to multiple successful deliveries in the multicast
scenario, which can increase the capacity of MANETs.

Due to these differences mentioned, the multicast capacity
of MANETs obeys a different law from the one for unicast.

In this paper, we study the delay constrained the delay
constrained multicast capacity by characterizing the capacity
scaling law. The scaling approach is introduced in [25],
and has been intensively used to study the capacity of ad
hoc networks including both static and mobile networks. We
consider a MANET consisting ofns multicast sessions. Each
multicast session has one source andp destinations. The
wireless mobiles are assumed to move according to a two-
dimensional independent and identical distributed (2D-i.i.d)
mobility model. Each source sends identical information to
thep destinations in its multicast session, and the information
is required to be delivered to all thep destinations withinD
time-slots. The main contributions of this paper include:

• Given a delay constraint D, we prove
that the capacity per multicast session is

O
(

min
{

1, (log p)(log (nsp))
√

D
ns

})

. We then propose
a joint coding-scheduling algorithm achieving a

throughput of Θ
(

min
{

1,
√

D
ns

})

. The algorithm is
developed based on an information theoretical approach,
where a successful delivery can be separated into three
phases — broadcast, relay and delivery. Each of the
phase can be modeled as a virtual communication
channel. Based on the virtual channel representation,
we propose an algorithm that exploits erasure codes
to guarantee reliable multicast over the virtual erasure
channels. The idea of exploiting coding has been used in
MANETs with unicast flows [16], [15], [18] and mobile
sensor networks [26].

• Finally, we evaluate the performance of our algorithm
using simulations. We apply the algorithm to the 2D-
i.i.d. mobility model, random-walk model and random
waypoint model. The simulations confirm that the results
obtained form the 2D-i.i.d. model holds for more realistic
mobility models as well.

We would like to remark that(a) Similar to the uni-
cast scenario [3], the mobility significantly improves the
throughput. While the multicast capacity of a static network
is O

(

1√
ns lognsp

)

, our algorithm achieves a throughput of

Θ(1) when D = ns. (b) Our result again demonstrates the
substantial benefit of using coding. While the algorithm in
[24] achieves a throughput ofΘ

(

1
p
√
nsp log p

)

with an average

delayΘ(
√
nsp log p), our algorithm achieves a much higher

throughputΘ
(

4

√

p log p
ns

)

with the same delay.

II. M ODEL

We consider a mobile ad hoc network withns multicast
sessions in this paper. Each multicast session consists of one
source node andp destination nodes as shown in Figure 1.
Thus, there aren , ns(p + 1) mobiles in the network. A

Fig. 1. A MANET with two multicast sessions, where dst(1,1) and dst(1,2)
are the destinations of src 1, and dst(2,1) and dst(2,2) are the destinations of
src 2. A mobile can serve as a relay for other multicast sessions.

source sends identical information to all its destinations, and
mobiles not belonging to the multicast session can serve as
relays. All mobiles are assumed to be positioned in a unit
torus, where the left and right edges are connected, and top and
bottom edges are also connected. For the theoretical analysis,
we assume the mobiles move two-dimensional identical and
independently distributed mobility model (2D-i.i.d. mobility
model) [6] such that:(i) at the beginning of each time slot,
a mobile randomly and uniformly selects a point from the
unit torus and instantaneously moves to that point; and(ii)
the positions of mobiles are independent of each other, and
independent from time slot to time slot.

Each mobile is equipped with a wireless antenna, and can
communicate with another mobile within the transmission
radius. We first assume that each mobile can adapt power
and use an arbitrary transmission radius, and obtain a general
upper-bound on the delay-constrained multicast capacity.Then
we propose a joint coding/scheduling algorithm which(i)
achieves a near-optimal throughput, and(ii) requires only two
transmission ranges{L1, L2}, whereL1 is for sending out
information from sources, andL2 is for delivering packets to
their destinations.

We also adopt the protocol model introduced in [27] for the
wireless interference. Letαi denote the transmission radius of
nodei, then a transmission from nodei to nodej is successful
under the protocol model if and only if the following two
conditions hold:(i) the distance between nodesi and j is
less thanαi, and (ii) if mobile k is transmitting at the same
time, then the distance between nodek and nodej is at
least (1 + ∆)αk (see Figure 2), where the∆ > 0 defines
a guard zone around the transmission. We adopt this protocol
model because nodes can transmit with different powers (i.e.,
different transmission radius) under this model, which allows
us to obtain a general upper bound on the multicast capacity
of MANETs. Note that under this protocol model, the receiver
of node i associates an exclusion region which is a disk
with radius∆αi/2 and centered at the receiver of nodei.
All exclusion regions associated with successful transmissions
should be disjoint from each other. We furtherassume that
each successful transmission can transmit W bits per time-
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slot.

Fig. 2. The two transmissions can succeed simultaneously ifthe distance
between nodej and nodek is larger than(1+∆)αk and the distance between
nodei and nodeh is larger than(1 +∆)αi.

III. M AIN RESULTS AND INTUITION

In this section, we present the main results of this paper
along with the key intuition. We use the virtual channel idea
proposed in [18] to analyze heuristically our system.

Fig. 3. The three phases of a typical delivery

In general, a successful delivery consists of three phases
(see Figure 3):

• Phase-I, the packet is transmitted from the source to some
relay node;

• Phase-II, the relay moves to the neighborhood of one of
the p destinations of the packet; and

• Phase-III, the relay sends the packet to its destination.
Each of these phases can be thought as a virtual channel as
in Figure 4.

• Reliable broadcasting channel:To avoid interference,
the exclusion regions of successful transmissions should
be disjoint with each other. To simplify our heuristic
analysis, we assume all sources use a common transmis-
sion radiusL1 for sending out the information. We also
assume each exclusion region has an areaπ(L1)

2. 2 Here

2Note these two assumptions, along with other assumptions introduced in
this section, are for the purpose of a heuristic argument. Our results hold
without these assumptions.

Fig. 4. The virtual channel representation of a multicast session

we omit the constant∆ for simplicity. Thus, the number
of simultaneous broadcasting at one time slot is at most

1
π(L1)2

. On average, each source hasP1 fraction of time
to transmit, where

P1 =
1

π(L1)2ns
.

Thus, the throughput of each broadcasting channel is

W

π(L1)2ns
.

On average, each packet will be received byπ(L1)
2n

nodes in the neighborhood, and hasπ(L1)
2n duplicate

copies in the network.
• Unreliable relay channel (erasure channel):We assume

that all relays use a common transmission radiusL2 for
sending packets to their destinations. The probability that
a duplicated packets does not fall into the transmission
range of a specific one of itsp destinations duringD
consecutive time slots is

Pmiss = (1 − π(L2)
2)D.

Recall that after sent out from the source, each source
packet will haveπ(L1)

2n copies. So the probability that
none of the duplicated packets falls into the transmission
ranges of thep destinations duringD consecutive time
slots is

Pmiss2= (1− π(L2)
2)Dπ(L1)

2n,

which is the erasure probability of the relay channel.
• Reliable receiving channel:Consider the transmissions

from relays to destinations. When a packet is being trans-
mitted from a relay, it is delivered to all the destinations
in the transmission range of the relay. We name one of
the deliveries astarget delivery, and the rest asfree-ride
deliveries. Note that all exclusion regions associated with
the successful targeted deliveries should be disjoint from
each other. With a common transmission radiusL2, a
successful target-delivery associates an exclusion region
with areaπ(L2)

2. So the number of target deliveries at
one time slot is no more than

W

π(L2)2
.
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Furthermore, along with each target delivery, there are

(p− 1)π(L2)
2

free-ride deliveries on average. Thus, we can expect

W (1 + (p− 1)π(L2)
2)

π(L2)2

deliveries at each time slot. Since the destinations be-
longing to the same multicast session request identical
information, so the throughput per multicast session is

W
1 + (p− 1)π(L2)

2

nspπ(L2)2
=

W

nspπ(L2)2
+

W (p− 1)

nsp

bits per time slot.

Let λ denote the multicast capacity, i.e., the maximum
throughput per multicast session. Based on the virtual channel
representation, we can conclude heuristically that

λ = max
L1,L2

min

{

(

1−
(

1− π(L2)
2
)πD(L1)

2n
) W

π(L1)2ns
,

W

nspπ(L2)2
+

W (p− 1)

nsp

}

= Θ

(

√

D

ns

)

,

where the transmission radiiL1 andL2 solving the maximiza-

tion areL∗
1 = Θ

(

1
2
√
ns

)

andL∗
2 = Θ

(

1
4
√

p2Dns

)

.

We would like to comment that all analysis above is heuris-
tic, which however captures the key properties determining
the delay constrained multicast capacity. The rigorous analysis
will be presented in the rest of the paper, where we will prove
the following main results:
Main Result 1: Given the delay constraintD, the multicast
capacityλ (per multicast session) is

λ =























0, if D = o

(

3

√

ns

(log p)2(log(nsp))2

)

;

Θ(1), if D = ω
(

ns

(log p)2(log(nsp))2

)

;

O
(

(log p)(log(nsp))
√

D
ns

)

, otherwise.

Main Result 2: There exists a joint coding/scheduling algo-

rithm achieving a throughput ofΘ
(√

D
ns

)

whenD is both

ω( 3
√
ns log(nsp)) ando(ns).

IV. U PPERBOUND

In this section, we present an upper-bound on the mulitcast
capacity of MANETs. Note that multicast in MANETs is
different from unicast in the following aspects:

• A mobile can send a packet to any of itsp destinations,
which increases inter-contact rates.

• When a packet is transmitted, it can be received by all the
destinations in the transmission range, which increases
the efficiency of the transmission.

Let Λj[T ] to be the number of bits that are delivered to
destinationj before their deadlines expire, up to timeT. and

Λ[T ] =
∑

j Λj [T ]. Furthermore, letB[T ] denote the bits
delivered by target deliveries up to timeT.

Note that in the multicast scenario, one transmission might
lead to multiple successful deliveries when the destinations
belonging to the same multicast session are close to each
other. We first show that the number of occasions that more
thanκ(1 + pγ2) log(nsp) destinations belonging to the same
sessions are in a disk with radiusγ is small. For a destination
j, we let H(j, γ, t) denote the number of destinations that
belong to the same multicast session as nodej and are within
a distance ofγ from j at time t. We further define

Zγ,κ[T ] =

T
∑

t=1

∑

j

1H(j,γ,t)≥κ(1+pγ2) log(nsp).

Lemma 1: There existsκ > 0, independent ofns and p,
such that for anyγ ∈ (0, 1]

E[Zγ,κ[T ]] ≤
T

(nsp)2
(1)

holds.
Proof: The proof is presented in Appendix A.

The next lemma establishes a fundamental connection be-
tweenB[T ] andΛ[T ].

Lemma 2: The following inequality holds:

E[Λ[T ]] ≤ κ log(nsp)E [B[T ]] +
12κWT

∆2
p(log p) log(nsp).

Proof: The proof is presented in Appendix B.
Based on the lemma above, we further obtain the following

two results, which charaterize the delay contrained throughput
without using relays and only using relays, respectively.

Lemma 3: Consider the 2D-i.i.d. mobility and the protocol
model. Suppose that packets have to be directly transmitted
from sources to their destinations. Then, we have

E[Λ[T ]] ≤ κ log(nsp)

(

WT

√

32

∆2

√
nsp

)

+
12κWT

∆2
p(log p) log(nsp). (2)

Proof: The proof is presented in Appendix C.
Lemma 4: Consider the 2D-i.i.d. mobility. Suppose that

packets have to be transmitted from relays to their destinations.
Then, we have

E[Λ[T ]] ≤ κ log(nsp)

(

√

32

∆2
WTp

√

nsD

)

+
12κWT

∆2
p(log p) log(nsp). (3)

Proof: The proof is presented in Appendix D.
The next theorem presents an upper bound on the delay
constrained multicast capacity.
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Theorem 5: The delay constrained multicast capacity under

the 2D-i.i.d. mobility and protocol model is

λ =























0, if D = o

(

3

√

ns

(log p)2(log(nsp))2

)

;

Θ(1), if D = ω
(

ns

(log p)2(log(nsp))2

)

;

O
(

(log p)(log(nsp))
√

D
ns

)

, otherwise.

(4)

Proof: From Lemma 3 and Lemma 4, we can see that the
throughput by using relay dominates the throughput without
relay, which implies that the delay constrained multicast
capacity satisfies:

E[Λ[T ]] ≤ κ log(nsp)

(

√

32

∆2
WTp

√

nsD

)

+
36κWT

∆2
p(log p) log(nsp)

= O

(

T (log p)(log(nsp))

√

D

ns

)

,

which leads to the last case.
Note whenD = ω

(

ns

(log p)2(log(nsp))2

)

, it can be easily

verified that (log p)(log(nsp))
√

D
ns

= ω(1). However, each
source can send out at mostW bits per time-slot, soλ ≤ W,
which leads to the second case.

Next whenD = o

(

3

√

ns

(log p)2(log(nsp))2

)

, it is easy to

verify thatDλ = o(1). This means under the delay constraint
D, the information can be transmitted is less than one bit.
We assume bit is the smallest quantity for information, so the
capacity is zero in this case.

V. JOINT CODING-SCHEDULING ALGORITHM

In this section, we propose new algorithms that almost
achieve the upper bound obtained in the previous section. We
can two different cases:ns = Θ(1) andns = ω(1). For the
first case, we can use simple round-robin scheduling algorithm
to achieve the maximum throughput. For the second case, we
introduce a joint coding-scheduling algorithm that leverages
erasure-codes and yields a throughput very close to the upper
bound.

A. Case 1: ns = Θ(1)

When ns = Θ(1), a simple scheme is to let the sources
broadcast their packets to all the mobiles in the network in a
round-robin fashion. It is easy to see that the throughput in
this case isΘ(1) per multicast session.

B. Case 2: ns = ω(1)

To approach the upper bound obtained in Theorem 5. In this
subsection, we propose a scheme which exploits coding. This
scheme achieves a significantly larger throughput than those
without coding.

To exploit coding to approach the delay constrained mul-
ticast capacity, in our algorithm, we code data packets into
coded packets using rate-less codes — Raptor codes [28].

Assume thatQ data packets are coded using the Raptor codes.
The receiver can recover theQ data packets with a high
probability after it receives any(1+δ)Q distinct coded packets
[28].

We use a modified two-hop algorithm introduced in [3],
which consists two major phases — broadcasting and receiv-
ing. At the broadcasting phase, we partition the unit torus into
square cells (broadcasting cells) with each side of length equal
to 1/

√
ns, which is of the same order as the optimalL∗

1. All
sources use a transmission radius

√
2/

√
ns in the broadcast-

ing phase. To avoid interference caused by transmissions in
neighboring cells, the cells are scheduled according to thecell
scheduling algorithm introduced in [25] so that each cell can
transmit for a constant fraction of time during each time slot,
and concurrent transmissions do not cause interference. We
assume each cell can support a transmission of two packets
during each time slot. In the receiving step, the unit square
is divided into square cells (receiving cells) with each side of
length equal to1/ 4

√

nsp2D. The transmission radius used in
this phase is

√
2/ 4
√

p2nsD.
Similar as in [18], we define four classes of packets in

the network: We also define and categorize packets into four
different types.

• Data packets: uncoded data packets.
• Coded packets: Packets generated by Raptor codes.
• Duplicate packets: Each coded packet could be broadcast

to other nodes to generate multiple copies, called dupli-
cate packets.

• Deliverable packets: Duplicate packets that are in the
same destination with one of its destinations.

Joint Coding-Scheduling Algorithm: We group every2D
time slots into a supertime slot. At each supertime slot, the
nodes transmit packets as follows:

(1) Raptor encoding: Each source takesD500
√

D/ns data
packets, and uses Raptor codes to generateD coded
packets.

(2) Broadcasting: This step consists ofD time slots. At
each time slot, in each cell, one source is randomly
selected to broadcast a coded packet to9(p + 1)/10
mobiles in the cell (the packet is sent to all mobiles
in the cell if the number of mobiles in the cell is less
than9(p+ 1)/10).

(3) Deletion: After the broadcasting phase, all nodes check
the duplicate packets they have. If more than one du-
plicate packet belongs to the same multicast session,
randomly keep one and drop the others.

(4) Receiving:This step requiresD time slots. At each time
slot, if a cell contains no more than two deliverable
packets, the deliverable packets are broadcast in the cell;
otherwise, no node in the cell attempts to transmit. At the
end of this step, all undelivered packets are dropped. The
destinations decode the received coded packets using
Raptor decoding.

Theorem 6: SupposeD is both ω( 3
√
ns log(nsp)) and

o(ns), and the delay constraint isD. For sufficiently largens,
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at the end of each super time slot, every source successfully
transmits

D

500

√

D

ns

packets to allp destinations with a probability1− 1
nsp

.
Proof: We follow the analysis in [18] to prove the

following three steps:

(1) Step 1: During the broadcasting step, with a high
probability, a source sends outD

3 coded packets;
(2) Step 2: After the deletion step, with a high probability,

a source has at least2D
15 coded packets that each of them

has more than4p5 duplicate copies in the network.

(3) Step 3: Each destination receives more thanD400

√

D
ns

distinct coded packets after the broadcasting, which

guarantees that it can decode the originalD
500

√

D
ns

data
packets with a high probability.

Analysis of step 1
Let Bi[t] denote the event that nodei broadcasts a coded

packet to9(p+1)/10 mobiles at time slott. According to the
definition ofBi[t], we have that

Pr (Bi[t]) = Pr (≥ 9p/10 mobiles in the cell)

·Pr (i is selected| ≥ 9p/10 mobiles in the cell)

≥ Pr (≥ 9p/10 destinations in the cell)

·Pr (i is the only source in the cell) .

Since the nodes are uniformly and randomly positioned,
from the Chernoff bound, we have

Pr (≥ 9p/10 destinations in the cell) ≥ 1− 2e−
p

300 .

Note that there arens sources in the network, so

Pr (Bi[t]) ≥
(

1− 2e−
p

300

)

(

1− 1

ns

)ns−1

,

which implies that for largep andns, we have

Pr (Bi[t]) ≥ 0.36.

Then from the Chernoff bound again, we have that for suffi-
ciently largeD,

Pr

(

D
∑

t=1

1Bi[t] ≥
D

3

)

≥ 1− e−
D

3000 (5)

Thus, with high probability, more thanD/3 coded packets
are broadcast, and each broadcast generates9p/10 copies.

Analysis of step 2
For analysis purpose, we dropped some of the duplicate

packets to guarantee that a mobile carries at most one packet
for each multicast session other than the session it belongsto.
We next study the number of coded packets that have more
than4p/5 duplicate copies.

Note that the number of duplicate packets of sessioni
left in the network after the deletion is equal to the number

of distinct mobiles receiving duplicate packets from session
i. Assume that sourcei sends outDb coded packets. The
number of duplicate copies left after the deletion is the same
as the number of nonempty bins of the following balls-and-
bins problem:There are nsp−1 bins. At each time slot, 9p/10
bins are selected to receive a ball in each of them. This process
is repeated by Db times.

Let N1 to be the number of duplicate packets belonging to
multicast sessioni after the deletion. From Lemma 22 in [18],
we have

Pr (N1 ≥ (1− δ)(nsp− 1)p̃1) ≥ 1− 2e−δ2(nsp−1)p̃1/3,

where

(nsp− 1)p̃1 = (nsp− 1)
(

1− e−Db× 9p

10
× 1

nsp−1

)

≥ (nsp− 1)
(

1− e−
9Db
10ns

)

≥ (nsp− 1)

(

9Db

10ns
− 1

2

(

9Db

10ns

)2
)

≥ 44

49
Dbp.

where the last inequality holds for sufficiently largens (recall
that D = o(ns) under the assumption of the theorem).
Choosingδ = 1/50, we have that for sufficiently largens

andp,

Pr

(

N1 ≥ 22

25
Dbp

∣

∣

∣

∣

D
∑

t=1

1Bi[t] = Db

)

≥ 1− 2e−
D

10000 . (6)

Given that there are more than22Dbp/25 duplicate packets
left in the network, we can easily verify that more than
2Db/5 coded packets will have4p/5 duplicate copies because
otherwise less than22Dbp/25 duplicate packets would be left.
Letting Ai denote the number of coded packets of sessioni,
which has more than4p/5 duplicate packets after the deletion,
we have

Pr

(

Ai ≥
2D

15

∣

∣

∣

∣

D
∑

t=1

1Bi[t] ≥
D

3

)

≥ 1− 2e−
D

10000 . (7)

Note that after the deletion, all duplicate packets belonging
to the same multicast session are carried by different mobile
nodes.

Analysis of step 3
We consider a coded packet of multicast sessioni, which

has at least4p5 duplicate copies after the deletion. LetDl[t]
denote the event that the coded packet is delivered to itslth

destination at time slott.
First we consider the probability that one of the duplicate

copies of the coded packet is in the same cell with itslth

destination. In the receiving phase, we use the cell with each
side of length equal to1/ 4

√

nsp2D, so the average number of
nodes in each cell is

ns(p+ 1)
√

nsp2D
≥
√

ns

D
.
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Recall that the duplicate packets belonging to the same mul-

ticast session are carried by distinct mobiles after the deletion,
so their mobilities are independent. Assuming the number of
duplicate copies of the coded packet under consideration is
M, we have

Pr
(

only one copy is deliverable to thelth destination
)

= M 1√
nsp2D

(

1− 1√
nsp2D

)M−1

.

Note thatM < p, so asns → ∞, we have
(

1− 1
√

nsp2D

)M−1

→ e
− 1

√

nsD → 1.

For sufficiently largens, we have

Pr
(

only one copy is deliverable to thelth destination
)

≥ 39

50
√
nsD

. (8)

Next, we consider the probability that the duplicate copy is
delivered given that it is the only copy which is deliverable
to the lth destination. Suppose we havēM nodes in the
cell containing thelth destination. According to the Chernoff
bound, we have

Pr

(

M̄ ≤ 11

10

√

ns

D

)

≥ 1− e−
1

300

√
ns
D . (9)

Note the deliverable copy to thelth destination will be
delivered if theM̄ − 2 other mobiles (other than the mobile
carrying the copy and thelth destination for the copy) do not
carry deliverable packets and there are no deliverable packets
for the M̄ − 2 mobiles.

Now given K mobiles already in the cell, we study the
probability that no more deliverable packet appears when we
add another mobile. First, the new mobile should not be the
destination of any duplicate packets already in the cell. Each
mobile carries at mostD duplicate packets, so at mostKD
duplicate packets are already in the cell. Each duplicate packet
hasp destinations. For each duplicate packet, we have

Pr (the new mobile is its destination) =
p

ns(p+ 1)−K
.

Thus, from the union bound, we have

Pr (the new mobile is a new destination)

≤ pKD
ns(p+1)−K . (10)

Note that each source sends out no more thanD duplicate
packets and each duplicate packet has no more thanp copies,
so at mostKDp mobiles carry the duplicate packets towards
theK existing mobiles in the cell, and

Pr (new added mobile brings new deliverable packets)

≤ KDp

ns(p+ 1)−K
. (11)

From inequalities (10) and (11), we can conclude that the
probability that the new added mobile does not change the
number of deliverable packets in the cell is greater than

1− 2KDp

ns(p+ 1)−K
.

Starting from the mobile carrying the duplicate packet and the
lth destination of the packet, the probability that the number
of deliverable packets does not change after adding additional
M̄ − 2 mobiles is greater than

M̄
∏

K=2

(

1− 2KDp

ns(p+ 1)−K

)

≥
(

1− 2M̄Dp

ns(p+ 1)− M̄

)M̄−2

.

WhenM̄ ≤ 11
10

√

ns

D , we have that for sufficiently largens,

2M̄Dp

ns(p+ 1)− M̄

(

M̄ − 2
)

≤ 2.5,

and

M̄
∏

K=2

(

1− 2pKD

ns(p+ 1)−K

)

≥ e−2.5. (12)

Now according to inequalities (8), (9), and (12), we can
conclude that for sufficiently largens,

Pr (Dl[t]) ≥
1

16

1√
nsD

, (13)

which implies at each time slot, a coded packet with at least
4p/5 duplicate copies is delivered to itslth destination with a
probability at least 1

16
√
nsD

.

Note at each time slot, one destination can receive at most
one packet. So the number of distinct coded packets delivered
to the lth destination of multicast sessioni is the same as the
number of nonempty bins of following balls-and-bins problem:
Suppose we have 2D

15 bins and one trash can. At each time slot,
we drop a ball. Each bin receives the ball with probability

1
16

√
nsD

, and the trash can receives the ball with probability
1− P, where

P =
D

120
√
nsD

.

Repeat this D times, i.e., D balls are dropped. Note the
bins represent the distinct coded packets, the balls represent
successful deliveries, and a ball is dropped in a specific bin
means the corresponding coded packet is delivered to the
destination.

Let Xi,l denote the number of distinct coded packets
delivered to destinationl of sessioni. Under the condition
that at least 2D/15 coded packets of session i have more than
4p/5 duplicate copies each, Xi,l is the same as the number of
nonempty bins of the above balls-and-bins problem. Choose
δ = 1/6. From Lemma 22 in [18] we have

Pr
(

Xi,l ≥ 5
6
2D
15

(

1− e
− D

16
√

nsD

)∣

∣

∣Ai ≥ 2D
15

)

≥ 1− 2e
− D

810

„

1−e
−

D
16

√

nsD

«

.
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Using the fact that1− e−x ≥ x− x2/2 for anyx ≥ 0

Pr

(

Xi,l ≥
D

400

√

D

ns

∣

∣

∣

∣

∣

Ai ≥
2D

15

)

≥ 1− 2e
D

13000

q

D
ns . (14)

Note thatD
√

D
ns

→ ∞ under the assumption of the theorem
(D = ω 3

√
ns log(nsp)).

Summary
Combining inequalities (5), (7) and (15), we can conclude

that

Pr

(

Xi,l ≥
D

400

√

D

ns

)

≥ 1− e−
D

3000 − e−
D

10000 − 2e
D

13000

q

D
ns .

Furthermore, for sufficiently largens andp, we also have

Pr

(

Xi,l ≥
D

400

√

D

ns
for all i, l

)

≥ 1− nsp

(

e−
D

3000 − e−
D

10000 − 2e
D

13000

q

D
ns

)

≥ 1− 1

nsp
,

where the last inequality holds under the assumption of the
theorem (D = ω 3

√
ns log(nsp)). Note that a destination can

decode theD
500

√

D
ns

data packets after gettingD400

√

D
ns

coded
packets with a high probability, so the theorem holds.

From the theorem above, we can see that the throughput
per multicast session is

D

500

√

D

ns
× 1

2D
= Θ

(

√

D

ns

)

.

VI. SIMULATIONS

In this section, we use simulations to verify our theoretical
results. We implement the joint coding-scheduling algorithm
for different mobility models, including 2D-i.i.d. mobility,
random walk model and random waypoint model. We consider
an MANET consisting ofns multicast sessions, and the
mobiles are deployed in an unit square withns sub-squares.
The random walk model and random waypoint model are
defined in the following:

• Random Walk Model: At the beginning of each time
slot, a mobile moves from its current sub-square cell
to one of its eight neighboring sub-squares or stays at
the current sub-square. Each of the actions occurs with
probability1/9.

• Random Waypoint Model [29]: At the beginning of
each time slot, a mobile generates a two-dimensional
vector V = [Vx, Vy], where the values ofVx and Vy

are uniformly selected from[1/
√
ns, 3/

√
ns]. The mobile

moves a distance ofVx along the horizontal direction, and
a distance ofVy along the vertical direction.

A. Multicast throughput with different numbers of sessions

In this simulation, the number of multicast sessions (ns)
varies from200 to 1000, each multicast session containsp =
10 destinations, and the delay constraint is set to be2D = 200
time slots. Figure 5 shows the throughput per2D time slots
of the three mobility models with different values ofns.

3

Our theoretical analysis indicates that the throughput is

Θ
(

2D
√

2D
ns

)

. To verify this , we plot α
(

2D
√

2D
ns

)

in
Figure 5, whereα = 0.09 is obtained by using Matlab to fit
the simulation data of the random walk model. Our simulation
result shows that the throughput under the three mobility

models all evolves asΘ
(√

D
ns

)

. Also, the 2D-i.i.d. mobility
has the largest throughput and the random walk model has
the smallest throughput. This is because the distance a mobile
can move within a time slot is the largest under the 2D-i.i.d.
model and is the smallest under the random walk model.Our
results indicates that the throughput is an increasing function
of the mobility speed (the distance a mobile can move within
a time slot).
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Fig. 5. Throughput per multicast session per2D time slots with different
n′

ss

B. Multicast throughput with different delay constraints

In this simulation, we fixns = 500 and p = 10, and
changeD from 100 to 400 with a step size of50. We also
use Matlab to fit the data under the random walk model to get
the coefficientα = 0.075. For all three mobility models, the
simulation results match the theoretical order result.

C. Multicast throughput with different session sizes

In this simulation,ns = 500, the delay constraint is set to
be 2D = 200, andp varies from4 to 40 with a step size of
4. Figure 7 shows that the throughput is almost invariant with
respect top.

From the simulations above, we can see that theΘ
(√

D
ns

)

throughput is achievable not only under 2D-i.i.d. model, but

3In our simulations, we only count the number of distinct packets delivered
that are successfully delivered before their deadlines expire. We do not
consider coding and decoding in our simulations.
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also under more realistic models such as random walk model
and random waypoint model as well, which indicates that the
theoretical results we obtain based on the 2D-i.i.d. mobility
model hold for more realistic models as well.

VII. C ONCLUSION

In this paper, we studied the delay constrained multi-
cast capacity of large-scale MANETs. We first proved that
the upper-bound on throughput per multicast session is

O
(

min
{

1, (log p)(log (nsp))
√

D
ns

})

, and then proposed a
joint coding-scheduling algorithm that achieves a throughput

of Θ
(

min
{

1,
√

D
ns

})

. We also validated our theoretical
results using simulations, which indicated that the results based
on 2D-i.i.d. model are also valid for random walk model and
random way point model. In our future research, we will
study(i) the impact of mobile velocity on the communication
delay and multicast throughput; and(ii) the delay constrained
multicast capacity of MANETs with heterogeneous multicast
sessions, e.g., different multicast sessions have different sizes
and different delay constraints.
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APPENDIX A: PROOF OFLEMMA 1

Recall that each multicast session containsp destinations.
The probability that a mobile is within a distance ofγ from
nodej is πγ2. Thus,H(j, γ, t) is a binomial random variable
with p− 1 trials and probability of a successπγ2, and

E[H(j, γ, t)] = (p− 1)πγ2.

Now chooseκ such that

κ(1 + pγ2) log(nsp) > (p− 1)πγ2. (15)

Note that (p−1)πγ2

(1+pγ2) log(nsp)
< π for nsp > 3, so we can choose

κ independent ofns andp. Next, define

δ =
κ(1 + pγ2) log(nsp)

(p− 1)πγ2
− 1,

which is positive due to inequality (15).
According to the Chernoff bound [30], we have

Pr
(

H(j, γ, t) > κ(1 + pγ2) log(nsp)
)

≤
(

eδ

(1 + δ)1+δ

)(p−1)πγ2

≤
(

e

1 + δ

)(p−1)πγ2(1+δ)

=

(

e

1 + δ

)κ(1+pγ2) log(nsp)

=





e
κ(1+pγ2) log(nsp)

(p−1)πγ2





κ(1+pγ2) log(nsp)

≤(a) e−κ(1+pγ2) log(nsp)

≤ e−κ log(nsp),

where inequality(a) holds for anyκ such that
e

κ(1+pγ2)(log p+log ns)
(p−1)πγ2

≤ e−1.

Thus, we can conclude that there existsκ > 0, which is
independent ofns andp, such that

E[Zγ,κ[T ]] ≤ E





∑

j:j is a destination

T
∑

t=1

1H(j,γ,t)≥κγ2 log(nsp)





=

T
∑

t=1

∑

j

E
[

1H(j,γ,t)≥κγ2 log(nsp)

]

≤ nspTe
−κ log(nsp),

and the theorem holds by guaranteeingκ > 2.

APPENDIX B: PROOF OFLEMMA 2

First, we present some important inequalities that will be
used to obtain the upper-bound on throughput. LetR[T ]
denote the number of bits that are carried by the mobiles
other than their sources at timeT (including those whose
deadlines have expired), andαB the transmission radius used
to deliver bit B. The following lemma is presented in [18].
Inequality (16) holds since the total number of bits transmitted
or received inT time slots cannot exceednspWT. Inequality
(17) holds since the total number of bits transmitted to relay
nodes cannot exceedns(p+1)WT. Inequality (18) holds since
each successful target delivery associates an exclusion region
which is a disk with radius∆αB/2.

Lemma 7: Under the simplified protocol model, the follow-
ing inequalities hold:

Λ[T ] ≤ nspWT (16)

|R[T ]| ≤ ns(p+ 1)WT (17)
B[T ]
∑

B=1

∆2

4
(αB)

2 ≤ WT

π
(18)

where |R[T ]| is the cardinality of set R[T ].
�

We index the target deliveries usingB. Let βB denote the
number of deliveries associated with target deliveryB. Given
a γ ∈ [0, 1], we classify the target-deliveries according toαB.
We say a target-delivery belonging to class(γ,m) if 2m−1γ ≤
αB < 2mγ. Thus,Λ[T ] can be written as

E[Λ[T ]] ≤ E





B[T ]
∑

B=1

βB1αB<γ



+

⌈− log2 γ⌉
∑

m=1

E





B[T ]
∑

B=1

βB12m−1γ≤αB<2mγ



 .

Note thatβB > κ(1 + pγ2) log(nsp) implies that

H(dB , 2γ, t) ≥ κ(1 + pγ2) log(nsp)

as shown in Figure 8, wheredB is the destination receiving
the target delivery, so we have

βB1αB<γ ≤κ(1 + pγ2) log(nsp)1 αB<γ
H(dB ,2γ,t)<κ(1+pγ2) log(nsp)

+ βB1 αB<γ
H(dB ,2γ,t)≥κ(1+pγ2) log(nsp)

. (19)
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Fig. 8. H(dB , 2γ, t) ≥ βB

Furthermore, it can be easily verified that

E





B[T ]
∑

B=1

βB1 αB<γ
H(dB ,2γ,t)≥κ(1+pγ2) log(nsp)





+

⌈− log2 γ⌉
∑

m=1

E





B[T ]
∑

B=1

βB1 2m−1γ≤αB<2mγ
H(dB ,2m+1γ,t)≥κ(1+pγ222m) log(nsp)





≤(a)
pWT

n2
sp

2

=
WT

n2
sp

, (20)

where inequality (a) yields from Lemma 1.
Now from the inequalities (19) and (20), we have for any

0 < γ < 1,

E[Λ[T ]] (21)

≤ WT

n2
sp

+ κ log(nsp)





(

1 + pγ2
)

E





B[T ]
∑

B=1

1αB<γ



+

⌈− log2 γ⌉
∑

m=1

(

1 + p22mγ2
)

E





B[T ]
∑

B=1

12m−1γ≤αB<2mγ









≤(b)
WT

n2
sp

+ κ log(nsp)
(

1 + pγ2
)

E [B[T ]] +

κ log(nsp)

⌈− log γ/ log 2⌉
∑

m=1

p22mγ2 WT

π 22m−2∆2γ2

4

≤ WT

n2
sp

+ κ log(nsp)
(

1 + pγ2
)

E [B[T ]] +

32κWT

π∆2
(− log γ)p log(nsp)

≤ κ log(nsp)E [B[T ]] +
12κWT

∆2
p(log p) log(nsp),

where inequality (b) yields from inequality (18), and the last
inequality holds whenγ = 1√

p .

APPENDIX C: PROOF OFLEMMA 3

We first bound the total number of targeted deliveries under
the constraint that sources need to directly send information
to their destinations. Letsi denote the source of multicast
sessioni, di,j denote thejth destination of multicast session

i, andD(si, t) the distance between sourcesi and its nearest
destination, i.e.,

D(si, t) = min
1≤j≤p

dist(si, di,j)(t).

Thus, we have

Pr (D(si, t) ≤ L) ≤ 1− (1− πL2)p,

which implies

E

[

T
∑

t=1

ns
∑

i=1

1D(si,t)≤L

]

≤ WTnspπL
2.

Since at mostW bits a source can send during each transmis-
sion, we further have

E [B[T ]] = E





B[T ]
∑

B=1

1αB≤L



+ E





B[T ]
∑

B=1

1αB>L





≤ E

[

T
∑

t=1

ns
∑

i=1

1D(si,t)≤L

]

+ E





B[T ]
∑

B=1

1αB>L





≤ WTnspπL
2 + E





B[T ]
∑

B=1

1αB>L



 .

Next, applying the Cauchy-Schwarz inequality to inequality
(18), we can obtain that





B[T ]
∑

B=1

αB





2

≤





B[T ]
∑

B=1

1









B[T ]
∑

B=1

(αB)
2





≤ B[T ]
4WT

π∆2
,

which implies that
√

4WT

π∆2

√

E[B[T ]] ≥ E

[
√

4T

π∆2
B[T ]

]

≥ E





B[T ]
∑

B=1

αB





≥ LE





B[T ]
∑

B=1

1αB>L





≥ L
(

E[B[T ]]−WTnspπL
2
)

,

where the first inequality follows from the Jensen’s inequality.

Now we chooseL =
√

E[B[T ]]
2WTnspπ

, we can obtain that

WT

√

32

∆2

√
nsp ≥ E[B[T ]].

By substituting into the bound onΛ[T ] in Lemma 2, we have

E[Λ[T ]] ≤ κ log(nsp)

(

WT

√

32

∆2

√
nsp

)

+

36κWT

∆2
p(log p) log(nsp).
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Denote byH(b) the minimum distance between the relay
carrying bit b and any of thep destinations of the bit during
D consecutive time slots. We have

Pr (H(b) ≤ L) ≤ 1− (1− πL2)Dp,

which implies

E





∑

b∈R[T ]

1H(b)≤L



 ≤ ns(p+ 1)WTπL2Dp,

and

E [B[T ]] = E





B[T ]
∑

B=1

1αB≤L



+ E





B[T ]
∑

B=1

1αB>L





≤ E





B[T ]
∑

B=1

1H(B)≤L



+ E





B[T ]
∑

B=1

1αB>L





≤ ns(p+ 1)WTπL2Dp+ E





B[T ]
∑

B=1

1αB>L



 .

(22)

Next, applying the Cauchy-Schwarz inequality to inequality
(18), we can obtain that





B[T ]
∑

B=1

αB





2

≤





B[T ]
∑

B=1

1









B[T ]
∑

B=1

(αB)
2





≤ B[T ]
4WT

π∆2
,

which implies that
√

4WT

π∆2

√

E[B[T ]] ≥ E

[
√

4T

π∆2
B[T ]

]

≥ E





B[T ]
∑

B=1

αB





≥ LE





B[T ]
∑

B=1

1αB>L





≥ L
(

E[B[T ]]− ns(p+ 1)WTπL2Dp
)

,

where the first inequality follows from the Jensen’s inequality
and the last inequality follows from inequality (22)

Since the inequality holds for anyL > 0. By choosing

L =
√

E[B[T ]]
2WTπns(p+1)pD , we can obtain that

√

32

∆2
WTp

√

nsD ≥ E[B[T ]].

After substituting into (22), we have

E[Λ[T ]] ≤ κ log(nsp)

(

√

32

∆2
WTp

√

nsD

)

+
12κWT

∆2
p(log p) log(nsp).
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