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Abstract

We take an information theoretic perspective on a classigatse-sampling noisy linear model and
present an analytical expression for the mutual inforrmatishich plays central role in a variety of
communications/processing problems. Such an expressisnagtdressed previously either by bounds,
by simulations and by the (non-rigorous) replica methode Bxpression of the mutual information
is based on techniques used in [1], addressing the minimuiannsguare error (MMSE) analysis.
Using these expressions, we study specifically a varietypafse linear communications models which
include coding in different settings, accounting also faultiple access channels and different wiretap
problems. For those, we provide single-letter expressimms derive achievable rates, capturing the

communications/processing features of these timely nsodel

Index Terms

Channel coding, state dependent channels channel, wichtamel, multiple access channel (MAC),

replica method, random matrix theory.

. INTRODUCTION

Compressed sensing [2, 3] is a collection of signal proogssichniques that compress sparse analog

vectors by means of linear transformations. Using somer fmowledge on the signaparsity and by
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Fig. 1: Noisy compressed sensing setup.

designing efficient encoders and decoders, the goal is teaxleffective compression in the sense of
taking a much smaller number of measurements than the diameokthe original signal. Recently, a vast
amount of research was conducted concerning sparse rana@oissian signals which are very relevant
to wireless communications, see, for example, [1, 4-6] amadyreferences therein.

A general setup of compressed sensing is shown in Fig. 1. Téehamism is as follows: A real
vector X € R” is mapped intoV € R* by an encoder (or compressof): R* — R*. The decoder
(decompressor) : R¥ — R” receivesY’, which is a noisy version of’, and outputsX as the estimation

of X. The sampling rate, or the compression ratio, is defined as

(1)

1>
NS

In this paper, the encoder is constrained to bi@ear mapping, denoted by a matrid € R**™, usually
called thesensing matrixor measurement matrixvhere H is assumed to be a random matrix with i.i.d.
entries of zero mean and variantg:. On the decoder side, most of the compressed sensing diterat
focuses on low-complexity decoding algorithms which areusi to noise, for example, decoders based
on convex optimization, greedy algorithms, etc. (see, f@mple [5, 7-9]). Although the decoding is,
of course, an important issue, it is not in the focus of thigkwd@he input vectorX is assumed to
be random, distributed according some probability dertsiit models the sparsity. Finally, the noise is
assumed to additive white and Gaussian.

In the literature, there is a great interest in finding asytiptformulas of some information and
estimation measures, e.g., the minimum mean squared 8BtM8E), mutual information rates, and other
information measures. Finding these formulas is, in gdnexeremely complicated, and most of the works
(e.g., [4, 6, 10]) that deal with this problem resort to udingreplicamethod which is borrowed from the
field of statistical physics. Although the replica methogbdsverful, it is non-rigorous. Recently, in [1] a
rigorous derivation of the asymptotic MMSE was carried @ it was shown that the results obtained

support the previously known replica predictions. The kigai in our analysis is the fact that by using
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some direct relationship between optimum estimation amgicepartition functions [11], the MMSE can
be represented in some mathematically convenient formh(oige to the previously mentioned input and
noise Gaussian statistics assumptions) consists of turad of theStieltjesandShannortransforms. This
observation allows us to use some powerful results fromganahatrix theory, concerning the asymptotic
behavior (a.k.a. deterministic equivalents) of the Sésland Shannon transforms (see e.g., [12, 13] and
many references therein). Here, however, we are conceritadsame input-output mutual information
rates, rather than the asymptotic MMSE. Nonetheless, we shat these information rates are readily
obtained from the results of [1]. It is worthwhile to emplzesthat these kind of mutual information rates
formulas are useful and important. For example, with refatb this paper, recently, in [14], the capacity
was derived for single-user discrete-time channels sulbjeboth frequency-selective and time-selective
fading, where the channel output is observed in additivesSian noise. This result is indeed important
due to the fact that various mobile wireless systems areestibp both frequency-selective fading and
to time-selective fading.

The works cited above focus on uncoded continuous signdide wn this paper, we concentrate on
coded communication, similarly to [15]. In other words, wsewcoded sparse signals, and the objective is
to achieve reliable reconstruction of the signal and itspsuip In [15], sparse sampling of coded signals
at sub-Landau sampling rates was considered. It was shaatrwith coded and with discrete signals,
the Landau condition may be relaxed, and the sampling ratpsired for signal reconstruction and for
support detection can be lower than the effective bandwigtfuivalently, the number of measurements
in the corresponding sparse sensing problem can be smh#erthe support size. Tight bounds on
information rates and on signal and support detection padace are derived for the Gaussian sparsely
sampled channel and for the frequency-sparse channel tlsingontext of state dependent channels.
It should be emphasized that part of the coding principled amoblems that we will consider in this
paper have already appeared in [15], but relying on boundse,Hhe new results facilitate a rigorous
discussion.

The main goal of this paper is to use the previously mentianetlial information rates in order to
give some new closed-form achievable rates in various alasoting problems, in the wiretap channel
model, and in the multiple access channel (MAC). Partiétylain the first part of these channel coding
problems, we will consider three different cases that diffe the assumptions about the knowledge
available at the transmitter and the receivers. For exanipl&ubsection IV-B, we will consider the
case in which the sparsity pattern cannot be controlled kytthnsmitter, but it is given beforehand.

This falls within the well-known framework of state depentiehannels [16] (e.g., the Shannon settings
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[17] and the Gelfand-Pinsker channel [18]). Another ieting result is that when the sparsity pattern is
controlled by the transmitter, a memoryless source maxmihe mutual information rate. It is important
to comment that this result is attributed to the fact that mutual information rate formula is valid for
sources with memory, which is not the case in previously megoresults that were based on the replica
method. In the second and third parts of the applicationsctwHeal with the wiretap and the MAC
models, respectively, we will consider several cases irs#tme spirit. For each of these cases, we provide
practical motivations and present numerical examples demto gain some quantitative feeling of what
is possible.

The remaining part of this paper is organized as follows. &ct®n Il, the model is presented and
the problem is formulated. In Section 1V, the main result®ia@ning channel coding problems are
presented and discussed along with a numerical exampledérabnstrates the theoretical results. In
Section V, achievable rates for the wiretap channel modepagsented. Then, in Section VI, we present

an implication for the MAC, and finally, our conclusions appé Section VII.

[I. MODEL AND PROBLEM FORMULATION

Consider the following stochastic model: Each componéft,1 < i < n, of X = (X3,...,X,),
is given by X; = S;U; where {U;} are i.i.d. Gaussian random variables with zero mean andneei
o2, and{S;} are binary random variables, taking values{in 1}, independently of U;}. Concerning
the random vectoS = (54,...,.5,) (or, pattern sequence), similarly as in [1], we postulate that the

probability P (S) depends only on themagnetizatioft

Al
In particular, we assume that
P(S) = C, -exp {nf (ms)} (3)

IThe term “magnetization" is borrowed from the field of stiatal mechanics of spin array systems, in whighis taking

values in{—1,1}. Nevertheless, for the sake of convince, we will use thimtatso in our problem.
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where f () is a certain function that is independentafandC,, is a normalization constant. Note that

for the customary i.i.d. assumptiofi,is a linear function. By using the method of types [19], weadtst
-1

C, = Z exp{nf (ms)}
se{0,1}"
-1

= > Q(m)exp{nf(m)}

me[0,1]
= exp { - max {Hs (m) + f (m)} } (4)
= exp {—n[Ha (ma) + f (ma)]}, (5)

where(2 (m) designates the number of binatyvectors with magnetizatiom, . (-) denotes the binary
entropy function, andn, is the maximizer ofty (m) + f (m) over [0, 1]. In other words,m, is the
a-priori magnetization thatiominatesP (S). Finally, note that in the i.i.d. case, eadh is distributed

according to following mixture distribution (a.k.a. Beull>-Gaussian measure)
P(z)=(1—=p)-6(x)+p- Pa(x) (6)

whered (x) is the Dirac function,P; (z) is a Gaussian density function afd< p < 1. Then, by the
law of large numbers (LLN)L || x|, 5, where || X||, designates the number of non-zero elements
of a vectorX. Thus, it is clear that the weight parametrizes the signal sparsity aRg is the prior
distribution of the non-zero entries.

Finally, we consider the following observation model
Y=AHX +W, (7)

whereY is the observed channel output vector of dimensipm is n x n diagonal matrix with i.i.d.
diagonal elements witk { A, ; =1} = ¢ = 1-P {A;; = 0} whereA,; denotes théth diagonal element,
H is n x n random matrix, with i.i.d. entries of zero mean and variab¢e. The components of the
noiseW are i.i.d. Gaussian random variables with zero mean andvariince. The matrixA H is also
known as thesensing matrixWe will assume thatd and H are available at the receiver, and thtis
fixed, namely, given some realization, which determinesntin@mber of ones on the diagonal, which will

be denoted by:. We denote by, 2 k/n the sampling rate, or the compression ratio.

2Throughout this paper, for two positive sequenées} and {b,}, the notations,, = b, anda, ~ b, mean equivalence
in the exponential order, i.elim,_c = log (an/b,) = 0, andlim,_, (a./b,) = 1, respectively. For two sequencés., }

n

and{b, }, the notationa,, < b, means thatim, _, (an — bn) = 0.
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In this paper, we are concerned with the followimgitual information rates

I(Y: X|A H
7 2 Jim sup M, (8)
n—00 n
and
I(Y U A H
Iy élimsup (Y;U]4, ’S), 9)

n—00 n

which are central in a variety of communications and praocgssiodels, see [14, 6, 15], and references
therein. Usually,Z; is evaluated using theeplica method(see, e.g., [6, 10]), while fof, a classical
closed-form expression exists [6]. Based on the resultsljnwye provide an analytic expression for
7,, which is derived rigorously, and is numerically consistesith the replica predictions. The analytic
expressions of; andZ, will lead us to the main objective of this paper, which is tplexe the various

applications of these quantities in some channel codinglenos.

[1l. M UTUAL INFORMATION RATES

In this subsection, we provide the analytic expressiongfaandZ,. In the following, we first provide
a simple formula forZ; which is based on the replica heuristics, and is proved inH6f i.i.d. sources,

where f (-) is linear, we have the following result [6, Claim 1].

Claim 1 (Z; via the replica method)let By, Xy, Z be independent random variables, wifB, ~
Bernoullip, Xo ~ N (0,0%), andZ ~ N (0,1), and definel; = ByXp. Then, the limit supremum

in (8) is, in fact, an ordinary limit, and

jh:[(%ﬂ@+n4m2>+qhg%+<g—1>byﬁ (10)
wheren is the non-negative solution of
1 1
== (1 + mmse(V()]Vo + 77_1/22>> . (11)
n 4q

If the solution of (11) is not unique, then we select the sotuthat minimizesZ; given in (10).

The replica method is not rigorous. Nevertheless, based @tent paper [1], where methods from
statistical physics and random matrix theory are used, jioissible to deriveZ; rigorously. Before we

state the result, we define some auxiliary functions of a gemariablez < [0, 1]:

A —[1+a2(q—w)}+\/[1+a2(q—w)]2+4a2x

202x

b () , (12)
g(2) 21+ 0% (z), (13)
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— A q
I(x)==Ing(xz)—Inb 14
(#) = $ing (@) =Inb() - =5 (14)
A otb? (z) 22
A o?b(x)
and
A x - 9
t(x)=f(x)— EI () +V (z) [maqa + q] . @a7)
The mutual information rat&; is given in the following theorem.
Theorem 171, via the results of [1])Let @ be a random variable, distributed according to
1—m, w? Mg w?
P = - - 18
@ (v) 2, T < 2Py> N @, + o) " < 2(Py + q202)> (19)
wherem,, is defined as in (5) and 2 mqo2q + q. Let us define
2 _
K (Q,a1,a0) 2 % [1 + tanh <W>] (19)

wherea; € [0,1] anday € R. Let L' (m) andt’ (m) designate the derivatives @f(m) andt (m) w.r.t.

m, respectively, and letr, and~, be solutions of the system of equations

Yo £ ~E{K (Q.mo,70) QL' (mo) } — t' (o), (20a)

mo £ E{K (Q,mo,70)} (20b)

In case of more than one solutiofi., 7,) is the pair with the largest value of

t(mo) + <m — %) Yo +E {%L (mo) Q* +In [2 cosh (%ﬂ } . (21)

Finally, define

h (Yo, Mo) = Yo <m - %) +E {%L (mo) @* +In [2 cosh (%ﬂ } : (22)

Then, the limit supremum in (8) is, in fact, an ordinary liraind
1
Ty = So%maq + Ha (ma) + f (ma) = (mo) = h (yo,mo) . (23)

The proof of Theorem 1 is a special case of the one in [1], wirer@symptotic MMSE was considered.
Nonetheless, we provide in Appendix A a proof outline. CormgaClaim 1 and Theorem 1, it is seen
that the results appear to be analytically quite differdl@vertheless, numerical calculations indicate that

they are, in fact, equivalent. A representative comparigpears in Fig. 2.

June 4, 2018 DRAFT



0.8 T T T T T
[TCSV], SNR = 10dB "]

Our, SNR = 10dB —
0.7 v [TCSV], SNR = 15dB : -~

...... Our, SNR = 15dB
0.6| = = =[TCSV], SNR = 20dB
= = =Our, SNR = 20dB s

051

0.4r

0.3

Mutual information l (bit/symbol)

0.2

0.1F

O 1 Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sampling rate — q

Fig. 2: Mutual information rat&; as a function of the sampling rate for SNR = 10dB, 15dB, 20dB
andp =0.2.

Contrary toZ;, the mutual information rat€, can be fairly easily calculated using, again, random

matrix theory. Let

]:(:L",y)é<\/3:(1+\/§)2+1—\/w(l—\/§)2+1>2. (24)

The information rateZ, is given in the following theorem.

Theorem 2([6, Theorem 2]) The information ratg, is given by

1 1 1
I, =plog |1+ qo? — = F q027£ +qlog |1 +po? —=F qa2,g - —F qa2,g loge.
4 q 4 q 402 q
(25)
Equipped with closed-from expressionsifandZ,, we are now in a position to propose and explore

several applications of these information rates.

IV. CHANNEL CODING

In this section, we consider three different cases thatedadad to channel coding problems. Generally

speaking, the main differences among these cases is in #ilatzde knowledge of the transmitter and the
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receiver about the source. In the following applicationss iassumed that botd and H are available
at the receiver, but are unavailable to the transmitter.ofdiagly, the matrix A H can be considered
as part of the channel output, and the mutual informatiomtefrest is/ (Y, A, H; X). Thus, by using
the chain rule of the mutual information and the fact tiatnd H are statistically independent of the

sourceX, we readily obtain that
I(Y,AAH;X)=I(Y;X|AH), (26)
and
I(Y,A H;U|S)=1(Y;U|A,H,S), (27)

which are simply identified as (8) and (9), respectively. iieg these observations in mind, our goal
is to provide achievable rates in various channel codindplpraos, which will only require us to know
the mutual information rate$; andZ,. Finally, note that part of the following coding principlésive
already appeared in [15], but relying on bounds.

The input X in the previous section was considered as continuous udcsideal. However, in the
following applications, we will deal with coding problem8ccordingly, we use codes and allow the
use of the channel (7) for times as required by the code length. The whole codebook szef2"?

codewords. The transmitter chooses a codew®rdnd transmits it over the channel.

A. Controlled sparsity pattern

Here, the sparsity patter, as well as the Gaussian signél, are assumed to be controlled and
given at the transmitter. The constraints are on the avesagport powerg?, and the sparsity rate, that
is the probabilityp 2 P(S; = 1). One motivation for this setting is, for example, in case mehthe
transmit antennas (conveyiny) are remote, and “green” communications constraints eafghutting
off a fraction (1 — p) of the antennas, corresponding to the sparsity of the pafierHere, since the
shut-off pattern can be controlled, it can be used to conmfryrmation as well. We have the following

immediate result.

Theorem 3 (reliable coding rateAssume the source-channel statistics assumptions thagieea in
Section Il, and assume tha& and U can be controlled by the transmitter. Thef, in (23) (or in

(10)) is an achievable information rate for reliable commation.

Proof: Since bothS andU are controlled, theX is also controlled. Note, however, thétis not

provided to the receiver beforehand. Thus, this is just aeébwith inputs(S,U) and outpuy”, where
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the matricesH and A are provided to the receiver only (the transmitter is awdréhe statistics of

course). Therefore, an achievable coding rate is given ésall (26))

lim sup I(S\U;Y|A H) = lim sup M, (28)

n—00 n n—00 n

which is exactlyZ;. |
Recall that the information rat&, given in Theorem 1, is valid also for sources that are notssarily
memoryless, as we allowed the model given in (3) with a gérfaration f. It is then interesting to

check whether optimization over this class of sources c#m teeincrease’;. Let

2

F ={f:10,1] = (—0,0], f e A[0,1]} (29)

where A4 [0, 1] is the class of analytic functions on the intery@l1]. Then, according to (3), our class
of sources is uniquely determined by the set of functighsAlso, let f; designate the affine function
fr (m) = am+b, wherea, b € R, and recall that substitution ¢f, in the pattern measure (3) corresponds
to a memoryless assumption of the sparsity pattern. We lmevéotlowing result. Finally, let?, be the

set of probability distributions of the form of (3).

Theorem 4 (memoryless pattern is optimal oZéy) Under the asymptotic average sparsenessn-

straint, defined as

N Y B
S B {Z Sz} = 0)
the following holds

max I, = max Ty =Ty, - (31)

In words, memoryless patterns give the maximum achievaliée aver;.

Proof: See Appendix B |
Intuitively speaking, Theorem 4 is essentially expectee wuthe natural symmetry in our model induced
by the assumptions oA and H, that are given only at the receiver side (had these matbees known
to the transmitter, this result may no longer be true). Alsate that whenS = (1,1,...,1), namely,
the source is not sparse, we obtain a MIMO setting, in whidl ivell-known that the Gaussian i.i.d.
process achieves capacity [20]. In the following, we shouat tihe optimal distribution of the pattern

sequence must be invariant to permutations.
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Theorem 5 (permutation invariant distributiorbet . be the set of all probability distributions &,

and let.71; denote the set of all probability distributions that areairi&nt to permutations. Then,

11 = 1. 32
max Ip = max Iy (32)

Proof: The maximization of/ (Y; X|A, H) over . boils down to the maximization of the

conditional entropyH (Y| A, H), namely,

arg max I1(Y;X|AH)= arg max H(Y|A H) (33)
1
Recall that
P(Y|A, H) :/ deP () P(Y|A,H,x) . (35)

Since the columns ofAH are i.i.d. and(A, H) are known solely to the receiver, it is evident that
the conditional entropy? (Y'|A, H) is invariant to permutations o§ in P (S). To see this, leP, (S)
denote some permuted version BfS), namely,P. (S) = P (ILS) whereIl is a permutation matrix
corresponding to some permutation. Accordinglylet X') be the probability distribution oX induced
by the permuted distributiof? (.S). Finally, let H, (Y |A, H) designate the conditional entropy ®f
given (A, H) where X is distributed according t&, (X). Then,

H.(Y|A,H)= —E{log/n dxP, (a:)]P’(Y\A,H,a:)} (36)
= -FE {log/n daP, (Ilz)P (Y |A, H,Hm)} (37)
__E {log/n d:c]P’(:c)IP’(Y]A,H,Ha:)} (38)

where in the second equality we changed the variable IIx which permutes the vectar according

to the permutation used i, (S). Now,

1 1
H,(Y|A H)=—-E {log/n deﬂb () exp <—5 Y — AHHa:H2> } (39)
=— /dIP’ (y|A, H)dP (A, H) [log/n (%T%/zdaﬂ?’ () exp <—% ly — AHH:I:H2>] (40)

L

— —/dIP’ (y|A, HII") dP (A, HIIT) [log/R 770 P () exp <—% |y — A(HHT)H:I:H2>]

" (27)

(41)
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S /dIP’ (y|A, H)dP (A, H) llog /R dep () exp <—% |y — AHm\|2>] (42)

=H(Y|A,H) (43)

where in the third equality we changed the variable— HTII', and the forth equality follows from

the facts thatH I TIz = Hx and that(A, H) are i.id. and thu® (A, HII") = P (A, H).
Continuing, letP, € . denote the probability distribution that maximiZ€Y; X|A, H). Let II,

denote the set of probability distributions obtained frmby all possible permutations &, and thus

each is achieving the maximal(Y; X |A, H). Also, let

A1

IP)inv (S) — m

> P(S). (44)
Pell.

Note thatPin, (S) € 11, namely,Pin, (S) is invariant to permutations. Finally, l1¢f (Y |A, H) |p,, and
H (Y |A, H) |p, designate the conditional entropies¥fgiven (A, H) whereS is distributed according
to P,y andP,, respectively. Thus, from the concavity &f (Y |A, H) w.r.t. P(:|A, H), we have that

H(Y|AH)lp, = -EJlog Y P.(S)P(Y|A H.S) (45)
se{0,1}"
z—Hl Y Eqlog Y P(S)P(Y|A,H,S) (46)
| *’Pel‘[* s€{0,1}"
=H(Y|A, H)p, (47)

where (47) follows from the fact that the conditional enyrap the same for all members of, as was
mentioned previously. |

It is tempting to tie Theorems 4 and 5 to infer that the optidiatribution of.S over.” is memoryless.
However, there is still a little gap. Indeed, despite thd that permutation invariant distributions must
depend on the pattern only through the magnetization, netyesuch distribution can be expressed as
the one in (3), due to the smoothness requiremenf.dfor example, in case of uniform distributions
over types, the functiorf is not continuous. Nonetheless, roughly speaking, it isleni that one can
approximate arbitrarily closely such non-smooth behavinr a respectively smooth functigh So, we
conjecture that the maximum mutual information is indeekieaed by a memoryless source.

Finally, we present in Fig. 3 the mutual information rdteas a function of the sampling rateand
the SNR forp = 0.2. It can be seen that increase of the rate or/and the SNR gdaudin increase of

71, as one should expect.
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Fig. 4: Gel'fand-Pinsker channel.

B. Unknown sparsity pattern

In this subsection, we consider the case where the spagstiigrp is unknown to all parties. The vector
U is treated as the information to be transmitted over the élamn this setting, we have the following

result.

Theorem 6 (unknown sparsity patteriipe channeP (-| X, A, H), defined in Section I, has an achiev-

able rate given by

R=7T —Hs(ma). (48)
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Proof: This is a channel with inpul/ and outputY’, where the matricedd and H are known only

to the receiver. Therefore,

I(U;Y|A,H,S)>I1(U;Y|A, H) (49)
=I(U,S;Y|A,H)—I(S;Y|U,A H) (50)

>I1(X;Y|A H)—H(S), (51)

and the result follow, after normalizing by and taking the limitn — cc. [ |

Yet another interesting setting is the case in which thestratter cannot control the sparsity pattern
that is given beforehand. This pattef),is considered to behannel statavailable non-causally/causally
to the transmitter solely. The vectéf is treated as the information to be transmitted over the dlan
This framework falls within the well-known Gel'fand-Pinsk channel [18] and the Shannon settings
[17], for non-causal and causal knowledge $f respectively. This is illustrated in Fig. 4. A possible
motivation for this setting is when the transmitter, thabdguces the inpulU, knows the pattern of
switched antennas/shut-off pattern (“green" wirelesg},dannot control it. In the following, customary
to the Gel'fand-Pinsker and the Shannon settings, the aliatate is assumed an i.i.d. process such that
PEP(S; =1).

For the case where the side information is available at tAesmitter only causally, the capacity

expression has been found by Shannon in [17], and is given by

max I (V;Y|A, H) (52)
P(v),u(v,s)

whereU (V, S) is a deterministic function oV and S. Note that the auxiliaryy" should be chosen
independently of the state [21], while the transmitted aigran depend on the state. Now, since the
sparsity pattern is given, we can adapt the power of the riméates! signal accordingly, that is, we do
not transmit at times whef; = 0. Accordingly, let us choos® = U’, whereU’ is a Gaussian random
vector with independent elements, each with zero mean anidneap—'02. The transmitted signal is
U = S ® V (which maintains the average power constraint), wherdenotes the Hadamard product,

and thusX = So U = S ® V, where we have used the fact thgit> S = S. Therefore, (52) reads
I(V;Y|AH)=I1(U'Y|A H). (53)

Unfortunately, we were unable to derive a closed-from esgiom for the information rate corresponding

to I (U';Y|A, H). Nonetheless, we note that

I(UY|AH)=1(U,S;Y|A,H) - I(S;Y|U, A, H) (54)
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Fig. 5: Achievable rate in the uncontrolled sparsity pattease, as a function af and the SNR, for
p=0.2.

=I(X;Y|A H)—I(S;Y|A, H) (55)

>I1(X;Y|A H)—H(S). (56)

Accordingly, the achievable rate is given By s — H2 (p), whereZ, g is given in (10) witho? replaced
by p~1o?, that is the overall SNR is scaled fropa? to o2. Thus, the improvement due to the knowledge
of S at the transmitter side compared to Theorem 6 is evident.th®mon-causal case, namely, the
Gel'fand-Pinsker channel, we could not find a good choicetlfi@r auxiliary variableV'. In [22], the

related case of fading (which may be binary) given as siderin&tion known to the transmitter only
was considered.

Theorems 3 and 6 demonstrate how important it is to be ableritra the sparsity patter. Indeed,
it can be seen that the gap between these two achievableisagasctly Hs (p) which quantifies our
uncertainty at the receiver regarding the source supptit iE illustrated in Fig. 5, which shows the
achievable rate as a function gfand the SNR, fop = 0.2. It can be seen that there is a significant
region of rates and SNR’s for which the achievable rate is feithin this region, the subtractive term
in (48) dominates). This is attributed to the fact that tharsjyy pattern is uncontrolled, and can be

interpreted as the overhead required to the transmittedaptato the channel state.
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C. The sparsity pattern is carrying the information

In this subsection, we consider the case where the infoomasi conveyed viaS, while U plays the

role of a fading process, known to nobody. In this case, we lthg following result.

Theorem 7 (informative sparsity patter@onsider the case in whic8 is carrying the information and

U is unknown both to the receiver and the transmitter. Thenatthievable rate is given by = 7, — 7.

Proof: Evidently, under the theorem settings, what matters is theuah information/ (S;Y |A, H)

which readily can be expressed as

I(S;Y|AH)=1(Y;U,S|A,H)—I1(Y;U|A H,S) (57)

= I(Y;U,S|AH)-I(Y:U|A H,S) (58)

—I(Y;X|A,H)-I(Y;U|A H,S), (59)

and thus Theorem 7 follows, after normalizing hyand taking the limitn — ooc. [ |

Note that similarly to Subsection IV-A, an optimization ovbe input distribution can be considered.
Nonetheless, by using the same arguments it can be showth#ratis no gain by using sources with
memory. In the following, we consider the high SNR regimés Ihot difficult to show that for large?,

the behavior ofZ; is as follows [6, Eq. (34)]
T = min {q, p}log (1 + 4min {q,p} 0%) + O (1) (60)

Note that the prelog constant (a.k.a. the degree of freedtothe above term of; is just the asymptotic
almost-sure rank of the matrid H S, as one should expect. Similarly, the prelodZefis alsomin {q, p}.
Thus, if we let

Ié lim w7 (61)

n—o00 n
then following the last observations regarding the prelwigs, andZ,, it can be seen that the information
rateZ converges in the high SNR regime to a finite value that is iedépnt ofs%. This is not surprising
due to the obvious fact that < H, (p). Fig. 6 shows the achievable rate for= 0.2. It is evident that

due to the fading induced b/, there is a significant decrease in the achievable rate.

V. THE WIRETAP CHANNEL

In the wiretap channel [23], symbols that are transmittedubh a main channel to a legitimate receiver

are observed by an eavesdropper across a wiretap chaneeyjoBlhof coding for wiretap channels is to
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Fig. 6: Achievable rate when the sparsity pattern is cagyhe information, as a function @f and the
SNR, forp = 0.2.

facilitate error-free decoding across the main channellendnsuring that the information transfer rate
across the wiretap channel would be as small as possible.skatie property here isieak secrecy
which means that the normalized mutual information betwbersource and the wiretap channel output
will tend to zero.

In our problem, we consider the case in which the legitimaster weceives
Y, =AH X + W, (62)
while the eavesdropper receives
Y, = A,H X + Wo. (63)

We assume that the statistics Hf; and H, are the same, namely, both are random matrices with i.i.d.
elements having variance/n. So is the case for the Gaussian noi3®%s and W,. The difference is,
however, between the matricals and As, where forA; we defineg; = P (Aflz) = 1), for A, we define

0 & P <AZ(2Z) = 1), and it is assumed that > ¢». The motivation could be processing limitations, that

is the legitimate receiver has stronger processors, andehean process more outputs/measurements,
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going via different jamming patterns, as well as cloud pssogy (that is the legitimate receiver gets
controlled access to more outputs, than the non-legitirmagewhich has to collect these by chance).
In a fashion similar to the previous section, we considereh®vo different cases: Controlled or
uncontrolled sparsity pattern (by the transmitter), andvailable a-priori to both the legitimate and
the eavesdropper users. Another configuration that can beidered is when the sparsity patte$nis

available to both the legitimate user and the eavesdropgech was already studied in [24].

A. Controlled sparsity pattern

In this subsection, we consider the case whgtie controlled by the transmitter, but, is unavailable a-
priori to both the legitimate user and the eavesdropper.sBoeecy capacitis the highest achievable rate
that allows perfect weak secrecy, or, in other words, mak@gaivocation for the wiretapper. Accordingly,

as we deal with degraded channels, our setting is just aapmxge of [25], and the secrecy rate is given
by

1
hIIl — [I (Yl;X|A1,H1) — I(YQ;X|A2,H2)] (64)

n—oo n

which involves onlyZ; terms. Thus, we have the following result.

Theorem 8 (controlled sparsity patter®yssume thatS is controlled by the transmitter, but is available
a-priori to neither the legitimate user nor the eavesdroppleen, the achievable secrecy rate is given
by R = 7,1 — Z;,g, WhereZ, ;, andZ; r are the information rates of the legitimate user and the

eavesdropper, given in (10), withreplaced byg; and¢., respectively.

Note that similarly to the discussion in Subsection IV-Aearan consider an optimization of the above
achievable rate over the class of sources defined in (3), lgasloiting the fact thatS does not have
to be Bernoulli. However, by repeating the same steps as @fEm 4, it can be shown that there is no

gain by using any other source pattern other than the Bdirané.

Theorem 9 (memoryless pattern is optimal o¥éy) Let .# be defined as in (29), and le¥, be the
set of probability measures in the form of (3). Then, under dsymptotic average sparsity constraint,

namely,

S W L
nh_{r;o EE {Z} Si} =p, (65)
the following holds

max {Thp —Tipp =max {lyr —Dop} = {Tor — Tuedlpy, - (66)
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In words, memoryless patterns give the maximum achievatiée over;.

Proof: See Appendix C. |

Again, this result is expected due to the symmetry of the rassumodel, and the fact that and H

are available only at the receivers side. Had these matbeea known also to the transmitter, then by
controlling the sparsity pattern better secrecy is exgkdétmally, similarly to the discussion in Subsection

IV-C, in the high SNR regime, it is evident that for > ¢» > p the achievable secrecy rate is converges
in the high SNR regime to alAnite value that is independent of the SNR. Howeveg;if> p > q¢o,

then the secrecy rate grows without bound withwith prelog constant given bgp — ¢2).

Fig. 7 shows the secrecy rate as a functiom,0adnd the SNR fop = 0.2 andgs = 0.3. It can be seen
that wheng; = ¢» the secrecy rate vanishes, as one should expect. Also, jora 0.3, increasing
the SNR resulting in an increasing of the secrecy rate, amilagly stronger legitimate receivers can

achieve higher secrecy rate.
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B. Unavailable sparsity pattern

In this subsection, we consider the case where the spaityrp is known to nobody, and the vector
U is treated as the information to be transmitted over the mélas before, since we deal with degraded

channels, our setting is just a special case of [25], and ¢keesy rate is now given by

. 1
lim — [I (Yl; U’Al,Hl) — I(YQ; U’AQ,HQ)] (67)

n—oo N

Thus, we have the following result.

Theorem 10 (unavailable sparsity patterAssume thatS is known to nobody. Then, an achievable

secrecy rate is given by

Ti.p, —Io,g — Ha (p) (68)

Proof: Using (67), we note that

I(Y;U|A, Hy) — 1(Y2;U|Ag, Ho) @ I(X;Y 1A, Hy) —I1(S;Y1|U, Ay, Hy)

—I(X;Y2’A27H2)+I(S;Y2‘U,A2,H2) (69)
(b
> 1 (X;Y 1A, Hy) — H(S)
—I(X;Y2|A2,H2)—|—I(S;Y2|A2,H2) (70)

(¢)
> 1(X;Y1|A, Hy) — H(S) - 1(U;Y2|A, Hy, S) (71)

where (a) follows from the chain rule of the mutual informationf)) follows from the fact that

I(S;Y U, Ay, Hy) > 1(S;Y2|As, Hy), which in turn is due to

I(S;Y2|A2,H2) § I(S, YQ,U|A2,H2) (72)
=1(S;U|A3,H2)+1(S;Y2|UAs Hs) (73)
=1(S;Y2|U, A2, Hy) (74)

where the first passage is due to the data processing inggéatially, (b) follows from (59). Therefore,
(68) readily follows from (71). [ |
Fig. 8 shows the secrecy rate as a functiomofor p = 0.2, various values of the SNR, and = 0.1

and g, = 0.2. The results illustrate, again, the importance of coritrglthe sparsity pattern.
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C. Uncontrolled sparsity pattern

Finally, we consider the case in whic$l is non-causally available to the transmitter, but cannot be
controlled, that is,S plays the role of a state as in Subsection IV-B. The problerseafrecy capacity
here, is not fully solved, but an insightful achievable oggivas found in [26]. This achievable rate is

given by

lim L [I(V;Y1|A1, Hy) —max{I (V;S),I(V;Y3|A2, Ho)}] (75)

n—oo N
whereV — (U, S) —(Y'1,Y2). Note that, as befor& » can be represented as a degraded versidrof
Evidently, this achievable rate is again composed;oferms, as well ag (V'; S). TakingV = SU, we

obtain the following result.

Theorem 11 (uncontrolled sparsity patterAssume thatS is a non-causal state information, that is
unavailable a-priori to both the legitimate user and theesdvopper. Then, the achievable secrecy rate

is given by
R = Il,L — max {7‘[2 (p) ,ILE} . (76)
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Theorems 8 and 11 demonstrate some gain that results frombiligy to control the sparsity pattern
control the sparsity patterS. Indeed, it can be seen that for high SNR there is no differdretween
the two achievable secrecy rates. However, below some SR lhen the sparsity pattern cannot be
controlled, the binary entrop${, (p) dominatesZ; g, and the resulting secrecy rate is smaller than the
secrecy rate in case of controlled sparsity pattern.

Fig. 9 shows the achievable rate as a functiorg;0édnd the SNR, fop = 0.2 andg¢, = 0.3. It can be

seen that the result is similar to Fig. 6, that is
Ty —max{Hz2(p),Z1,p} =T1,. —Ha2(p). (77)

Accordingly, this means that under the above specific chofce and ¢,, the loss in the secrecy rate
is attributed more to the fact that the sparsity pattern oabe controlled, than due to the presence of
a wiretapper. In order to illustrate the loss due to the &pper, we consider the following example.
Figures 10a and 10b show, respectively, the achievablerat&; ; — 7, (p), as a function of;; and the
SNR, forp = 0.2 and ¢, = 0.5. In this case the eavesdropper has a strong processor, aon firocess

more measurements compared to the previous example. Aogbydt is evident that in this case the
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wiretapper plays a role, and the loss in the secrecy ratevismore significant.
1

1
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Fig. 10: (a) Secrecy rate and (B) ;, — H> (p) in case of an uncontrolled sparsity pattern as a function

of ¢; and the SNR, fop = 0.2 andg, = 0.5.

VI. THE MULTIPLE ACCESSCHANNEL

In this section, we consider the symmetriMAC settings [27], in which several senders send
information to a common receiver. In our case, we have thievithg setting: The sequendd/;} are
now the signals corresponding to different non-coopegatemote users, and the constraint is that on
the average, one cannot employ more thantransmit antennas. The pattern sequence is assumed to
be i.i.d. Here, theth user can control the signal;, as well asS; (adhering, of course, to the rule that

P (S; = 1) = p). We have the following result.

Theorem 12 (MAC)Consider the MAC under the aforementioned assumptions,leingr,..., R,)

denote the rates of the users. Then,
Ra<(l-a) ' T (78)

whereR,, is the sum-rates of (1 — «) users (no matter which ones, due to symmetry), whetea < 1,
andZ; , equals toZ; but with p replaced by(1 — «) p. Particularity, the sum-rates (corresponding to

a = 0) is given byZ;.

3The symmetry is in the sense that all the users transmit atl gupwver levels.
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Proof: The case ofx = 0 follows directly from the MAC capacity region [27]. For thecond part,
we wish to find the achievable rate of 1 — «) users, namely, in the MAC capacity region we condition

on the signals produced by the other users, and the achievable is given by
I(X(-a)3Y|Xa, A H) (79)
where X, (and similarly for X ;) correspond to the.x users. This can be thought as

Y = AHX +W (80)

= AHX(_ o)+ AHX,+W, (81)

and thus (79) is equivalent as to examihebut with p — (1 — «) p. Finally, due to the fact thal; is

normalized byn, we need to re-normalize the result by multiplying it by— o). [ |

VIlI. CONCLUSIONS

In this paper, we examine the problem of sparse sampling adéasignals under several basic channel
coding problems. In the first part, we present closed-fomglstletter expressions for the input-output
mutual information rates, assuming a compressed Gaussear khannel model. These results are based
on rigorous analytical derivations which agree with pregiy derived results of the replica method. In
the second part, we present achievable rates in severahehanding problems, in the wiretap channel
model, and in the multiple access channel (MAC). Specifictdr channel coding problem, we consider
three cases that differ in the available knowledge of thastmEtter and the receiver about the source,
and particularity, regarding the sparsity pattern. Thailtesquantify, for example, how important is it
to be able to control the sparsity pattern. Also, we show tia¢n this pattern can be controlled by
the transmitted, then, a memoryless source maximizes theamimformation rate, given some sparsity
average constraint. Then, we consider the wiretap channdehfor which several cases were studied.
The problems considered are timely and motivated by praugfimitations, where the legitimate receiver
has stronger processors, and hence can process more dugagarements, going via different jamming
patterns, as well as cloud processing. Here, the resultognate, for example, our inherent limits
in achieving some degree of secrecy as a function of the $agngdtes of the legitimate user and the
eavesdropper. Finally, in a fashion similar to the previdissussion, in case that the sparsity pattern
can be controlled by the transmitter, we show that the sgaege cannot be increased by using sparsity

patterns that are not memoryless.

June 4, 2018 DRAFT



25

APPENDIXA

PROOFOUTLINE OF THEOREM 1

In this appendix, we give a proof outline of Theorem 1. It dddoe emphasized that Theorem 1 is
a special case of the problem considered in [1], and here wihasize the required modifications. The
analysis consists of three main steps, which will be preskimt the sequel, along with specific pointers
to the proof in [1].

The first step in the analysis is to find a generic expressiah@imutual information for fixed:, n.
This is done by using a relationship between the mutual inédion and some partition function [28].

To this end, we define the following function,

A
2y HA)2 [ pe)es |-y - AHal? /2], (A1)
According to our source model assumptions, the input 8istion is given by
1 1o
p@y= Y Ps) [] 0@) [ —e =" (A2)
se{0,1}" i: ;=0 i 5;=1 2mo?
Now,
exp (— Y — AHX| /2)
I(Y;X|A H)=E[ log 7w HA) (A.3)
1 2
= —5E{IY - AHX|*} —E{log Z (. H. A)} (A4)
- —g —E{logZ(Y,H,A)}. (A.5)
Next, as shown ih[1, Egs. (57)-(64)]
1
Zw At e (5 lul): Y B0 A (A6)
se{0,1}"
where
lyTAH HSHL AT
G (y, A 1, & DY AHMHA ) (A7)
\det (02 HYATAH,; + I,)
where H; denotes the restriction off on the supportS = {ieN:S;#0}, and H* 2

(HYATAH, + L1,)7". Thus,

I(Y;X|A H) 1 1 9 1
e =gty [mad®g 1] - ~E{log Y P(s)G(Y, A Hy)

n
se{o0,1}"

“In the notation of [1],H and H s correspond tcAH and AH s in our notations.
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1, 1
= 50' Maeq — EE IOg Z P (S) g (Ya Aa HS) ) (AS)
se{0,1}"

and therefore, in view of (A.8), we wish to calculate the timi

.1 A1
lim —E {log %, (Y, A, H)} = lim —E { log > P(s)G(y. A Hy)y. (A.9)

e se{0,1}"
This concludes the first step. Now, it can be seen from (A.&) ¢A.9) contains terms that are recognized
as an extended version of the Stielties and Shannon transf{29] of the matrixH. AT AH 5. In the
field of random matrix theory, there is a great interest inlesipg the asymptotic behavior, and in
particular finding thedeterministic equivalerf such transforms (see, for example, [12, 13]). Evidently,
under some conditions, it is well-known that these tramafasymptotically converge for a fairly wide
family of matrices.

Following the last observation, in the second step, we shuat these functions converge, with
probability tending to one, a8 — oo, to some random functions that are much easier to work with.
Accordingly, the following lemma is essentially the coreoof analysis; it provides approximations (which
are asymptotically exact in the almost sure (a.s.) sensg) arfid (A.9). For simplicity of notations, we
let m 2 -1 >, si, and recall the auxiliary variables defined in (12)-(17)eTbllowing lemma is

proved in [1, Appendix B, C].

Lemma 1 (asymptotic equivalencender the assumptions and definition presented earliefptiosving

relations hold in the almost sure (a.s.) sense:

1 _
lim_—In det (c’HLATAH + Is) = msI (my), (A.10)
and
1
lim ~ [y’ AHH HL ATy — f,] =0, (A.11)
n—oo n
where
2 HT AT 2
fnéz.V(ms)@w.L(ms)w. (A.12)

Finally, for largen andk, and for(y, A, H)-typical sequences, the functio#, (y, A, H) is lower and

upper bounded as follows

"Jf—(yvA7H)§gn(yvA7H)Sg-i-(y?AvH)v (A13)
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where
A - L~y 7y 2.
% (y, A, H)=C, s;{o 1:}nexp {n (t<ms>+L<ms>ni§:1 ly"h| Szicp>}, (A.14)

in which C,, is the normalization constant ii(s) (see (3)), and

2
F(m) 2 f(m) — %f(m) +V (m) @ (A.15)

and the fluctuation ternp is typically lower and upper bounded by a vanishing term thatniform in

s, namely,|¢| < O (1/n)°.

The proof of Lemma 1 is obtained by invoking recent powerftiods from random matrix theory,
such as, the Bai-Silverstein method [30]. Equipped with bearil, our next and last step is to assess the
exponential order of#, (y, A, H) using large deviations theory. The following analysis canféund
in detail in [1, Appendix C]. For completeness, we provide thain ideas here as well.

First, note that?} (y, A, H) can be equivalently rewritten as

% (y,AJH)=C, - Zexp {n (f(ms) + gp)} 3 (y, A, H,my) (A.16)
where the summation is ovets € [0/n,1/n,...,n/n|, and
7y, AHm)= S exp (L (ma) > |y"hil” si> (A.17)
s: m(8)=m i=1

where with slight abuse of notations, the summation is peréal over sequenceswith magnetization,
m(s) 251 > si, fixed tom,. For the sake of brevity, we will omit the sign. In the following, we
will find the asymptotic behavior o’ (y, A, H, m), and then the asymptotic behavior@f. (y, A, H).
For (y, A, H,m), we will need to count the number of sequenge}, having a given magnetization

my, and also admit some linear constraint. Accordingly, cdesthe following set

n n
E vV —nm E Vil; —
i=1 =1

where{u;}!"_; is a given sequence of real numbers. Thus, the above sett®hiaary sequences that

fé(pvm)é{ve{ovl}n: §5>

np| < 5} (A.18)

admit two linear constraints. We will upper and lower bouhd tardinality of 75 (p,m) for a given
o > 0, m, andp. Then, we will use the result in order to approxim&‘;e(y,A,H,ms). Using methods
that are customary to statistical mechanics, we have tht@fiolg result which is proved in [1, Appendix
C, egs. (C.15)-(C.32)].

SPhysically, over the typical set, this fluctuation will ndfemt the asymptotic behavior of arigtensivequantity, namely,

a quantity that does not depend an(e.g., the dominant magnetization).
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Lemma 2For largen and anyr > 0 the cardinality ofF; (p, m) is upper and lower bounded as follows

(L=7)V_s < |Fs(p,m)| < Vs (A.19)
where
log Vﬂ:é = Z u; — ny° a®(npF o) —~° (nmF0)]+ z": log |2 cosh Ui —°
Z i=1 2 ’
(A.20)

in which a®,~° are given by the solution of the following equations

) 1 — 1 — a’u; —°
i=1 =1

and
1 au; —
m= — 5 E tanh < ) . (A.22)

For the purpose of assessing the exponential behaviﬁf of, A, H, m,), let us defines; = |yThi\2.

The main observation here is that (y, A, H,m) can be represented as
3 (y, A,H,my) = 2"/ exp (nL (ms) p) €, (dp) (A.23)
DCR

where D is the codomaif of p, and {%,} is a sequence of probability measures that are proportional
to the number of sequenceswith > | s;u; ~ np, and>_ " | s; = nmg. These probability measures
satisfy the large deviations principle [31, 32], with thdldwing respective lower semi-continuous rate
function

log2 —n~tlogV,, ifpeD
I(p)= (A.24)

0, else

where )y 2 limgs_,o Vs given in (A.20). Indeed, by definition, the probability maes%,, is the ratio
between|F5 (p, ms)| and2™ (the number of possible sequences). Thus, for any BoreBsetD, we
have thatlim,, .., n~!log %, (B) = —I (p). Accordingly, due to it large deviations properties, ajpdy
Varadhan'’s theorem [31, 32] on (A.23), one obtains

Z (y, A, H,m,) — exp[n(log2 + L (ms) p° — I (p°))] (A.25)

5Note that we do not need to explicitly defifiz simply due to the fact that the exponential term in (A.23)dscave (see

(A.26)), and thus the dominating are the same oveb or overR.
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wherep° is given by (using the fact that the exponential term is cghve

p° =argmax {log2+ L (ms)p—1(p)}
pER

= argmax {L (ms)p+ n~tlog Vot (A.26)
P
The maximizerp®, is the solution of the following equation
10
L (ms) + ——1logVy =0. (A.27)
n dp
Now, it can be readily shown that (see, [1, Appendix C, eqA@E(C.42)])
1
L0 1oy = —a°. (A.28)
nop

Thus, using (A.28) and (A.27), we may conclude théat= L (m). Now,

n

1 L s T ° 1 " L s i — °
L(my) o + n~Mlog Vo, = mgr® 4 = 3 L =0 Lgyg, [2008h< (ms) ui = )]
" ni:l

; 2 2
=1
2R (7, ms). (A.29)
Therefore,
"%z(y>A7H>mS) — eXp (’I’LiL (707ms)) (A30)
where~° solves the following equation (see (A.22))
1 L (my) [yThi|* —+°
me = o= ; 1 + tanh ( 5 . (A.31)

Thus far, we approximated? (y, A, H,ms). Recalling (A.16), the next step is to approximate
Z, (y,A, H). Using (A.30), and applying once again Varadhan’s theo@msi(ply, the Laplace method
[33, 34]) on (A.16), one obtains that

% (y,A H)=C, Zexp t(ms) £ )] % (y, A, H,m,) (A.32)

= Cyexp {n (h (7°,m2) + E(m3) o) } (A.33)
where the dominating» is the saddle point, i.e., one of the solutions to the eqnatio

2 m) — 3 m) ~ 20T (m) + -V (m )”3;” PR Gm) =0 (A3

where we have used the fact thiaim) = f (m) — mI (m) /2 4+ n~'V (m) ||y||>. Simple calculations

reveal that the derivative of (v°, m) w.r.t. m is given by

2
1 + tanh (L(m) [y bl - )] OL (m | Thi | (A.35)

0+, 6 o 1L
a0 m = +2nz

i=1

2
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Thus, substituting the last result in (A.34), we have that

n

oo 1 Lmd) |y hil* =\ 0L(m) | 7, 2 0 L 1o

v (mS)__%z:I 1+tanh< 5 Im? ly" hl _8m§f(m5)+§l(m5)
mg a T o a o HyH2

+ 5 8m°[(m5)_8mov(m5) o (A.36)

s

So, hitherto, we obtained that the asymptotic behavidfofy, H, s) is given by (A.33), and the various

dominating terms are given by

oo L L) [y il =\ oL @) | pyp 2 D Lo 1o
7¥° (my3) = 5 2 1 + tanh < 5 s ‘y hz‘ — E?mgf(mS) + §I(ms)
mg a T o a o Hy”2
+ D) 8m§I(m8) - 8—7712‘/(7718) T, (A37a)
n L o Thi 2 __AO
mo =+ 1+tanh< (m3) |y" hil” = )] . (A.37b)
2n prt 2
Therefore, using (A.16) we obtain
1 1 ~ -
lim —log & (y, A, H) = lim —logC,, + lim [h (v, m3)+t(m3)| . (A.38)
n—oo n n—oo n n—o00

The last thing that is left is to show a concentration propeift the saddle point equations given in
(A.37), and obtain instead the saddle point equations giv€R0), which will be also used to assess the

limit in (A.38). Accordingly, we finally obtain that

1 1
lim —logE{Z (y,A,H)} = le ElogC’n +h(y°,mg) +t(mg). (A.39)

n—oo n
This is done by using the theory of convergence of backwaradimgale processes, and can be found

in [1, Appendix C, egs. (C.73)-(C.97)]. So, eventuallyngsthe relation in (A.8), we finally obtain that

nh_)rrgo %I(Y; X|A H) = %ojmaq - nh_)IIC;lO % log C,, — h (v°,m3) —t(m°) (A.40)
1
= 507 mag + Ha (ma) + f (ma) = h (7%, m) =t (m°), (A.41)

where in the last equality we have used (5) in order to caleutae limitlim,, ., n~!log C,,.

APPENDIX B

PROOF OFTHEOREM4

The first equality is obvious. First, by definition (see, (5)), is the solution of the following equation

ma:%[l—i—tanh <f,(;”a)>]. (B.1)
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Note that according to (30)5, = p. Consider first a polynomial function

M
T
f(z)= Zak? (B.2)
k=1
for z € [0,1], where M > 0 is natural, and{a;} are parameters. Substitutingin (23), we see that

maximizingZ; amounts to maximizing the following function

k(o anm Zak — B (Yo, mo) (B.3)
where
- A
t(mo) =t(mo) — f (mo). (B.4)
Now, we take the partial derivative af(«,...,ay) W.r.t. o; for 1 <[ < M, and readily obtain that
0 ml ml ko1 0me  Omo Ot (mo)  Oh (Yo, mo)
9 - — Mo o - - ’ B.5
80[;’{ (a1, anr) l Zalm Oqy Oa;  Ome Oqy (B-5)
l !
My My 8mo Ot (mo)  Oh (70, M0) (B.6)
l l 0oy  Ome ooy

where (B.6) follows from (B.4). Using (22) we obtain
ah(’ymmo) . 0 <m . 1) + Oamo —i—E{laL (mo) amoQ2}

Oay  Oq 2 7 8041 2 Ome, O
+ B L tann ((£0) @7 =% m° am" g2 2 (B.7)
2 l Oy
omo OL (m )
- /YO 8 +E{ (Q7m0770) 8mo 80[[ } (B8)

where the last equality follows from (20b) and the definitior{19). Thus, on substituting (B.8) in (B.6),

one obtains
0 mfl ml  Om, Ot (mo) oms OL (mo) Oms o
8—045(0[1’ o) = 1l o Ome — 0oy —E{K(Q,mo,%) Om, Ooy @ }
ml mbl  Om, At (mo) OL (mo) 9
- T - T - aal fYO + amo + E {K (Q;mth’YO) amo Q }:|
! !
=T _ o (B.9)

where the last equality follows from (20a). Setting the abderivatives (forl <[ < M) to zero, we

see that the stationary sequence of paramdters$ is determined by the solution of the equation

Mg = M. (B.10)
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To wit, this equation means that the optimal sequence is tthbeen such that the prior and the posterior
magnetizations, namelyp, andm,, respectively, be the same. Accordingly, using (B.3) and QB we

obtain that

(ar, . an)] —m, = —t(ma) — b (Yo, ma) (B.11)

which according to the definitions ofu,, h(v.,m.), and t(m,) given in (20), (22), and (B.4),
respectively, is a function of (-) (or, equivalently of{a;}) only through f’ (m,). However, by (B.1),

we see that the average sparseness constraint fixes theofaften,) to
f (mgy) =2 -arctan (2m, — 1) . (B.12)

Therefore, s (a1, . .., an)l,,. -, given in (B.11) is essentially independent of the specifioich of

{a;} that admitm, = m.. Now, in terms of{«;}, the solution to (B.10) may not be unique. More
importantly, there must be a solution corresponding to tleenoryless source assumptions, as one can
simply fix o;; = 0 for 2 < ¢ < M, and then tunev; such that (B.10) holds true. Thus, due to the fact
that Z; is a concave functional w.r.tf (-), we may conclude that this specific choice cannot decrease
the maximal value of (-), and hence also that @. Finally, using standard approximation arguments,
since the above derivation is valid for any polynomial, oa@ epproximate any functiofi(-) by using

its Taylor series expansion, and obtain the same conclusion

APPENDIXC

PROOF OFTHEOREM 9

The first equality is obvious. The second equality is proveacdy in the same way as in the proof

of Theorem 4. Let us start with polynomidl given by

M l'k
fz)= Zak? (C.2)
k=1

for x € [0, 1], whereM > 0 is natural, anda; } are parameters. Then, substitutifign (23), we see that
maximizingZ, ;, — Z; r amounts to maximizing the following function (recall that, is fixed under the

average sparseness constraint)

LA
Ko, .. on) ==Y ap Ij: —tr (mo,) — hr (Yo,L,Mo,L)
-1
M mkE ~
+) o ; —tg (Mmo,r) + hE (Yo,B,M0,E) (C.2)
k=1
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where the subscriptsL" and “E" are referring to the legitimate user and the eavesdropespectively.
For examplem, 1, andm, g designate the posterior magnetizations of the legitimatetae eavesdropper

users, respectively. Also, similarly to the notations usethe proof of Theorem 4, we define

i (mo) 2t (moy) — £ (mar), (C.3)

and similarly fort g (mo,r). Now, we take the partial derivative 8f(ay, ..., ap) Wrt.ag forl <1 < M,

and similarly to (B.6), we obtain that
L m

0 m}) LB
— = — . C4
aal"{(ah ,Oé]\/[) I + I ( )

Setting the above derivatives (for< [ < M) to zero, we see that the stationary sequence of parameters

)

{ax} is determined by the solution of the equation

Mo, [, = Mo, E- (C5)

)

To wit, this equation means that the optimal sequence is thbsen such that the posterior magnetizations
(of the legitimate user and the eavesdropper) be the sanwardiogly, using the last result and (B.3),

we obtain that

K (a17 e ’aM)‘mo,L=mo,E = _t~L (mO,L) —hr, (’Yo,La mo,L) + t~E (mo,L) +hg (707E7 mo,L) s (C6)

which according to the definitions of the various quantitie€C.6) depends oif (or, equivalently of a;})
only through its derivativg’ (m. 1) (or, equivalentlyf’ (m. g)). However, equation (C.5) essentially fixes

the value off’ (mo r), and thusx|,, _, . is independent of the specific choice of source parameters

mo,

{a;} that admitm, ; = m. . Whence, using exactly the same arguments as in the proohebrém
4, we conclude that the memoryless choice cannot decreasadkimal value of: (-), and hence also
that OfILL — II,E-
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