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Abstract

We take an information theoretic perspective on a classicalsparse-sampling noisy linear model and

present an analytical expression for the mutual information, which plays central role in a variety of

communications/processing problems. Such an expression was addressed previously either by bounds,

by simulations and by the (non-rigorous) replica method. The expression of the mutual information

is based on techniques used in [1], addressing the minimum mean square error (MMSE) analysis.

Using these expressions, we study specifically a variety of sparse linear communications models which

include coding in different settings, accounting also for multiple access channels and different wiretap

problems. For those, we provide single-letter expressionsand derive achievable rates, capturing the

communications/processing features of these timely models.

Index Terms

Channel coding, state dependent channels channel, wiretapchannel, multiple access channel (MAC),

replica method, random matrix theory.

I. INTRODUCTION

Compressed sensing [2, 3] is a collection of signal processing techniques that compress sparse analog

vectors by means of linear transformations. Using some prior knowledge on the signalsparsity, and by
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Fig. 1: Noisy compressed sensing setup.

designing efficient encoders and decoders, the goal is to achieve effective compression in the sense of

taking a much smaller number of measurements than the dimension of the original signal. Recently, a vast

amount of research was conducted concerning sparse random Gaussian signals which are very relevant

to wireless communications, see, for example, [1, 4-6] and many references therein.

A general setup of compressed sensing is shown in Fig. 1. The mechanism is as follows: A real

vectorX ∈ R
n is mapped intoV ∈ R

k by an encoder (or compressor)f : Rn → R
k. The decoder

(decompressor)g : Rk → R
n receivesY , which is a noisy version ofV , and outputsX̂ as the estimation

of X. The sampling rate, or the compression ratio, is defined as

q
△
=

k

n
. (1)

In this paper, the encoder is constrained to be alinear mapping, denoted by a matrixH ∈ R
k×n, usually

called thesensing matrixor measurement matrix, whereH is assumed to be a random matrix with i.i.d.

entries of zero mean and variance1/n. On the decoder side, most of the compressed sensing literature

focuses on low-complexity decoding algorithms which are robust to noise, for example, decoders based

on convex optimization, greedy algorithms, etc. (see, for example [5, 7-9]). Although the decoding is,

of course, an important issue, it is not in the focus of this work. The input vectorX is assumed to

be random, distributed according some probability densitythat models the sparsity. Finally, the noise is

assumed to additive white and Gaussian.

In the literature, there is a great interest in finding asymptotic formulas of some information and

estimation measures, e.g., the minimum mean squared error (MMSE), mutual information rates, and other

information measures. Finding these formulas is, in general, extremely complicated, and most of the works

(e.g., [4, 6, 10]) that deal with this problem resort to usingthe replica method which is borrowed from the

field of statistical physics. Although the replica method ispowerful, it is non-rigorous. Recently, in [1] a

rigorous derivation of the asymptotic MMSE was carried out,and it was shown that the results obtained

support the previously known replica predictions. The key idea in our analysis is the fact that by using
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some direct relationship between optimum estimation and certain partition functions [11], the MMSE can

be represented in some mathematically convenient form which (due to the previously mentioned input and

noise Gaussian statistics assumptions) consists of functionals of theStieltjesandShannontransforms. This

observation allows us to use some powerful results from random matrix theory, concerning the asymptotic

behavior (a.k.a. deterministic equivalents) of the Stieltjes and Shannon transforms (see e.g., [12, 13] and

many references therein). Here, however, we are concerned with some input-output mutual information

rates, rather than the asymptotic MMSE. Nonetheless, we show that these information rates are readily

obtained from the results of [1]. It is worthwhile to emphasize that these kind of mutual information rates

formulas are useful and important. For example, with relation to this paper, recently, in [14], the capacity

was derived for single-user discrete-time channels subject to both frequency-selective and time-selective

fading, where the channel output is observed in additive Gaussian noise. This result is indeed important

due to the fact that various mobile wireless systems are subject to both frequency-selective fading and

to time-selective fading.

The works cited above focus on uncoded continuous signals, while in this paper, we concentrate on

coded communication, similarly to [15]. In other words, we use coded sparse signals, and the objective is

to achieve reliable reconstruction of the signal and its support. In [15], sparse sampling of coded signals

at sub-Landau sampling rates was considered. It was shown that with coded and with discrete signals,

the Landau condition may be relaxed, and the sampling rates required for signal reconstruction and for

support detection can be lower than the effective bandwidth. Equivalently, the number of measurements

in the corresponding sparse sensing problem can be smaller than the support size. Tight bounds on

information rates and on signal and support detection performance are derived for the Gaussian sparsely

sampled channel and for the frequency-sparse channel usingthe context of state dependent channels.

It should be emphasized that part of the coding principles and problems that we will consider in this

paper have already appeared in [15], but relying on bounds. Here, the new results facilitate a rigorous

discussion.

The main goal of this paper is to use the previously mentionedmutual information rates in order to

give some new closed-form achievable rates in various channel coding problems, in the wiretap channel

model, and in the multiple access channel (MAC). Particularity, in the first part of these channel coding

problems, we will consider three different cases that differ in the assumptions about the knowledge

available at the transmitter and the receivers. For example, in Subsection IV-B, we will consider the

case in which the sparsity pattern cannot be controlled by the transmitter, but it is given beforehand.

This falls within the well-known framework of state dependent channels [16] (e.g., the Shannon settings
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[17] and the Gel’fand-Pinsker channel [18]). Another interesting result is that when the sparsity pattern is

controlled by the transmitter, a memoryless source maximizes the mutual information rate. It is important

to comment that this result is attributed to the fact that ourmutual information rate formula is valid for

sources with memory, which is not the case in previously reported results that were based on the replica

method. In the second and third parts of the applications, which deal with the wiretap and the MAC

models, respectively, we will consider several cases in thesame spirit. For each of these cases, we provide

practical motivations and present numerical examples in order to gain some quantitative feeling of what

is possible.

The remaining part of this paper is organized as follows. In Section II, the model is presented and

the problem is formulated. In Section IV, the main results concerning channel coding problems are

presented and discussed along with a numerical example thatdemonstrates the theoretical results. In

Section V, achievable rates for the wiretap channel model are presented. Then, in Section VI, we present

an implication for the MAC, and finally, our conclusions appear in Section VII.

II. M ODEL AND PROBLEM FORMULATION

Consider the following stochastic model: Each component,Xi, 1 ≤ i ≤ n, of X = (X1, . . . ,Xn),

is given byXi = SiUi where{Ui} are i.i.d. Gaussian random variables with zero mean and variance

σ2, and{Si} are binary random variables, taking values in{0, 1}, independently of{Ui}. Concerning

the random vectorS = (S1, . . . , Sn) (or, pattern sequence), similarly as in [1], we postulate that the

probability P (S) depends only on the “magnetization"1

ms
△
=

1

n

n
∑

i=1

Si. (2)

In particular, we assume that

P (S) = Cn · exp {nf (ms)} (3)

1The term “magnetization" is borrowed from the field of statistical mechanics of spin array systems, in whichSi is taking

values in{−1, 1}. Nevertheless, for the sake of convince, we will use this term also in our problem.
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wheref (·) is a certain function that is independent ofn, andCn is a normalization constant. Note that

for the customary i.i.d. assumption,f is a linear function. By using the method of types [19], we obtain2

Cn =





∑

s∈{0,1}n

exp {nf (ms)}





−1

=





∑

m∈[0,1]

Ω (m) exp {nf (m)}





−1

·
= exp

{

−n ·max
m

{H2 (m) + f (m)}
}

(4)

= exp {−n [H2 (ma) + f (ma)]} , (5)

whereΩ (m) designates the number of binaryn-vectors with magnetizationm, H2 (·) denotes the binary

entropy function, andma is the maximizer ofH2 (m) + f (m) over [0, 1]. In other words,ma is the

a-priori magnetization thatdominatesP (S). Finally, note that in the i.i.d. case, eachXi is distributed

according to following mixture distribution (a.k.a. Bernoulli-Gaussian measure)

P (x) = (1− p) · δ (x) + p · PG (x) (6)

whereδ (x) is the Dirac function,PG (x) is a Gaussian density function and0 ≤ p ≤ 1. Then, by the

law of large numbers (LLN),1n ‖X‖0
P→ p, where‖X‖0 designates the number of non-zero elements

of a vectorX. Thus, it is clear that the weightp parametrizes the signal sparsity andPG is the prior

distribution of the non-zero entries.

Finally, we consider the following observation model

Y = AHX +W , (7)

whereY is the observed channel output vector of dimensionn, A is n × n diagonal matrix with i.i.d.

diagonal elements withP {Ai,i = 1} = q = 1−P {Ai,i = 0} whereAi,i denotes theith diagonal element,

H is n × n random matrix, with i.i.d. entries of zero mean and variance1/n. The components of the

noiseW are i.i.d. Gaussian random variables with zero mean and unitvariance. The matrixAH is also

known as thesensing matrix. We will assume thatA andH are available at the receiver, and thatA is

fixed, namely, given some realization, which determines thenumber of ones on the diagonal, which will

be denoted byk. We denote byq
△
= k/n the sampling rate, or the compression ratio.

2Throughout this paper, for two positive sequences{an} and{bn}, the notationsan

·

= bn andan ≈ bn mean equivalence

in the exponential order, i.e.,limn→∞

1

n
log (an/bn) = 0, and limn→∞ (an/bn) = 1, respectively. For two sequences{an}

and{bn}, the notationan ≍ bn means thatlimn→∞ (an − bn) = 0.
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In this paper, we are concerned with the followingmutual information rates

I1 △
= lim sup

n→∞

I (Y ;X |A,H)

n
, (8)

and

I2 △
= lim sup

n→∞

I (Y ;U |A,H ,S)

n
, (9)

which are central in a variety of communications and processing models, see [14, 6, 15], and references

therein. Usually,I1 is evaluated using thereplica method(see, e.g., [6, 10]), while forI2 a classical

closed-form expression exists [6]. Based on the results in [1], we provide an analytic expression for

I1, which is derived rigorously, and is numerically consistent with the replica predictions. The analytic

expressions ofI1 andI2 will lead us to the main objective of this paper, which is to explore the various

applications of these quantities in some channel coding problems.

III. M UTUAL INFORMATION RATES

In this subsection, we provide the analytic expressions forI1 andI2. In the following, we first provide

a simple formula forI1 which is based on the replica heuristics, and is proved in [6]. For i.i.d. sources,

wheref (·) is linear, we have the following result [6, Claim 1].

Claim 1 (I1 via the replica method)Let B0,X0, Z be independent random variables, withB0 ∼
Bernoulli-p, X0 ∼ N

(

0, σ2
)

, andZ ∼ N (0, 1), and defineV0
△
= B0X0. Then, the limit supremum

in (8) is, in fact, an ordinary limit, and

I1 = I
(

V0;V0 + η−1/2Z
)

+ q

[

log
q

η
+

(

η

q
− 1

)

log e

]

(10)

whereη is the non-negative solution of

1

η
=

1

q

(

1 + mmse
(

V0|V0 + η−1/2Z
))

. (11)

If the solution of (11) is not unique, then we select the solution that minimizesI1 given in (10).

The replica method is not rigorous. Nevertheless, based on arecent paper [1], where methods from

statistical physics and random matrix theory are used, it ispossible to deriveI1 rigorously. Before we

state the result, we define some auxiliary functions of a generic variablex ∈ [0, 1]:

b (x)
△
=

−
[

1 + σ2 (q − x)
]

+

√

[1 + σ2 (q − x)]2 + 4σ2x

2σ2x
, (12)

g (x)
△
= 1 + σ2xb (x) , (13)

June 4, 2018 DRAFT
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Ī (x)
△
=

q

x
ln g (x)− ln b (x)− σ2qb (x)

g (x)
, (14)

V (x)
△
=

σ4b2 (x) x2

2g2 (x)
, (15)

L (x)
△
=

σ2b (x)

2g2 (x)
, (16)

and

t (x)
△
= f (x)− x

2
Ī (x) + V (x)

[

maqσ
2 + q

]

. (17)

The mutual information rateI1 is given in the following theorem.

Theorem 1 (I1 via the results of [1])Let Q be a random variable, distributed according to

PQ (w) =
1−ma
√

2πPy

exp

(

− w2

2Py

)

+
ma

√

2π (Py + q2σ2)
exp

(

− w2

2 (Py + q2σ2)

)

(18)

wherema is defined as in (5) andPy
△
= maσ

2q + q. Let us define

K (Q,α1, α2)
△
=

1

2

[

1 + tanh

(

L (α1)Q
2 − α2

2

)]

(19)

whereα1 ∈ [0, 1] andα2 ∈ R. Let L′ (m) andt′ (m) designate the derivatives ofL (m) andt (m) w.r.t.

m, respectively, and letm◦ andγ◦ be solutions of the system of equations

γ◦
△
= −E

{

K (Q,m◦, γ◦)Q
2L′ (m◦)

}

− t′ (m◦) , (20a)

m◦
△
= E {K (Q,m◦, γ◦)} . (20b)

In case of more than one solution,(m◦, γ◦) is the pair with the largest value of

t (m◦) +

(

m◦ −
1

2

)

γ◦ + E

{

1

2
L (m◦)Q

2 + ln

[

2 cosh

(

L (m◦)Q
2 − γ◦

2

)]}

. (21)

Finally, define

h (γ◦,m◦) = γ◦

(

m◦ −
1

2

)

+ E

{

1

2
L (m◦)Q

2 + ln

[

2 cosh

(

L (m◦)Q
2 − γ◦

2

)]}

. (22)

Then, the limit supremum in (8) is, in fact, an ordinary limit, and

I1 =
1

2
σ2maq +H2 (ma) + f (ma)− t (m◦)− h (γ◦,m◦) . (23)

The proof of Theorem 1 is a special case of the one in [1], wherethe asymptotic MMSE was considered.

Nonetheless, we provide in Appendix A a proof outline. Comparing Claim 1 and Theorem 1, it is seen

that the results appear to be analytically quite different.Nevertheless, numerical calculations indicate that

they are, in fact, equivalent. A representative comparisonappears in Fig. 2.
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Fig. 2: Mutual information rateI1 as a function of the sampling rateq, for SNR = 10dB, 15dB, 20dB

andp = 0.2.

Contrary toI1, the mutual information rateI2 can be fairly easily calculated using, again, random

matrix theory. Let

F (x, y)
△
=

(

√

x (1 +
√
y)2 + 1−

√

x (1−√
y)2 + 1

)2

. (24)

The information rateI2 is given in the following theorem.

Theorem 2([6, Theorem 2]) The information rateI2 is given by

I2 = p log

[

1 + qσ2 − 1

4
F
(

qσ2,
p

q

)]

+ q log

[

1 + pσ2 − 1

4
F
(

qσ2,
p

q

)]

− 1

4σ2
F
(

qσ2,
p

q

)

log e.

(25)

Equipped with closed-from expressions ofI1 andI2, we are now in a position to propose and explore

several applications of these information rates.

IV. CHANNEL CODING

In this section, we consider three different cases that are related to channel coding problems. Generally

speaking, the main differences among these cases is in the available knowledge of the transmitter and the

June 4, 2018 DRAFT
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receiver about the source. In the following applications, it is assumed that bothA andH are available

at the receiver, but are unavailable to the transmitter. Accordingly, the matrixAH can be considered

as part of the channel output, and the mutual information of interest isI (Y ,A,H ;X). Thus, by using

the chain rule of the mutual information and the fact thatA andH are statistically independent of the

sourceX, we readily obtain that

I (Y ,A,H ;X) = I (Y ;X |A,H) , (26)

and

I (Y ,A,H ;U |S) = I (Y ;U |A,H ,S) , (27)

which are simply identified as (8) and (9), respectively. Keeping these observations in mind, our goal

is to provide achievable rates in various channel coding problems, which will only require us to know

the mutual information ratesI1 and I2. Finally, note that part of the following coding principleshave

already appeared in [15], but relying on bounds.

The inputX in the previous section was considered as continuous uncoded signal. However, in the

following applications, we will deal with coding problems.Accordingly, we use codes and allow the

use of the channel (7) forn times as required by the code length. The whole codebook is ofsize2nR

codewords. The transmitter chooses a codewordX and transmits it over the channel.

A. Controlled sparsity pattern

Here, the sparsity patternS, as well as the Gaussian signalU , are assumed to be controlled and

given at the transmitter. The constraints are on the averagesupport power,σ2, and the sparsity rate, that

is the probabilityp
△
= P (Si = 1). One motivation for this setting is, for example, in case where the

transmit antennas (conveyingX) are remote, and “green" communications constraints enforce shutting

off a fraction (1− p) of the antennas, corresponding to the sparsity of the pattern S. Here, since the

shut-off pattern can be controlled, it can be used to convey information as well. We have the following

immediate result.

Theorem 3 (reliable coding rate)Assume the source-channel statistics assumptions that aregiven in

Section II, and assume thatS and U can be controlled by the transmitter. Then,I1 in (23) (or in

(10)) is an achievable information rate for reliable communication.

Proof: Since bothS andU are controlled, thenX is also controlled. Note, however, thatS is not

provided to the receiver beforehand. Thus, this is just a channel with inputs(S,U ) and outputY , where

June 4, 2018 DRAFT
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the matricesH and A are provided to the receiver only (the transmitter is aware of the statistics of

course). Therefore, an achievable coding rate is given by (recall (26))

lim sup
n→∞

I (S,U ;Y |A,H)

n
= lim sup

n→∞

I (X;Y |A,H)

n
, (28)

which is exactlyI1.
Recall that the information rateI1, given in Theorem 1, is valid also for sources that are not necessarily

memoryless, as we allowed the model given in (3) with a general function f . It is then interesting to

check whether optimization over this class of sources can help to increaseI1. Let

F
△
= {f : [0, 1] → (−∞, 0] , f ∈ A [0, 1]} (29)

whereA [0, 1] is the class of analytic functions on the interval[0, 1]. Then, according to (3), our class

of sources is uniquely determined by the set of functionsF . Also, let fL designate the affine function

fL (m) = am+b, wherea, b ∈ R, and recall that substitution offL in the pattern measure (3) corresponds

to a memoryless assumption of the sparsity pattern. We have the following result. Finally, letPs be the

set of probability distributions of the form of (3).

Theorem 4 (memoryless pattern is optimal overPs) Under the asymptotic average sparsenesscon-

straint, defined as

lim
n→∞

1

n
E

{

n
∑

i=1

Si

}

= p, (30)

the following holds

max
Ps

I1 ≡ max
F

I1 = I1|f=fL
. (31)

In words, memoryless patterns give the maximum achievable rate overPs.

Proof: See Appendix B

Intuitively speaking, Theorem 4 is essentially expected due to the natural symmetry in our model induced

by the assumptions onA andH , that are given only at the receiver side (had these matricesbeen known

to the transmitter, this result may no longer be true). Also,note that whenS = (1, 1, . . . , 1), namely,

the source is not sparse, we obtain a MIMO setting, in which itis well-known that the Gaussian i.i.d.

process achieves capacity [20]. In the following, we show that the optimal distribution of the pattern

sequence must be invariant to permutations.

June 4, 2018 DRAFT
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Theorem 5 (permutation invariant distribution)Let S be the set of all probability distributions ofS,

and letSΠ denote the set of all probability distributions that are invariant to permutations. Then,

max
S

I1 = max
SΠ

I1. (32)

Proof: The maximization ofI (Y ;X|A,H) over S boils down to the maximization of the

conditional entropyH (Y |A,H), namely,

argmax
S

I (Y ;X|A,H) = argmax
S

H (Y |A,H) (33)

= argmax
S

E

[

log
1

P (Y |A,H)

]

. (34)

Recall that

P (Y |A,H) =

∫

Rn

dxP (x)P (Y |A,H ,x) . (35)

Since the columns ofAH are i.i.d. and(A,H) are known solely to the receiver, it is evident that

the conditional entropyH (Y |A,H) is invariant to permutations ofS in P (S). To see this, letPπ (S)

denote some permuted version ofP (S), namely,Pπ (S) = P (ΠS) whereΠ is a permutation matrix

corresponding to some permutation. Accordingly, letPπ (X) be the probability distribution ofX induced

by the permuted distributionPπ (S). Finally, let Hπ (Y |A,H) designate the conditional entropy ofY

given (A,H) whereX is distributed according toPπ (X). Then,

Hπ (Y |A,H) = −E

{

log

∫

Rn

dxPπ (x)P (Y |A,H ,x)

}

(36)

= −E

{

log

∫

Rn

dxPπ (Πx)P (Y |A,H ,Πx)

}

(37)

= −E

{

log

∫

Rn

dxP (x)P (Y |A,H ,Πx)

}

(38)

where in the second equality we changed the variablex 7→ Πx which permutes the vectorx according

to the permutation used inPπ (S). Now,

Hπ (Y |A,H) = −E

{

log

∫

Rn

1

(2π)k/2
dxP (x) exp

(

−1

2
‖Y −AHΠx‖2

)

}

(39)

= −
∫

dP (y|A,H) dP (A,H)

[

log

∫

Rn

1

(2π)k/2
dxP (x) exp

(

−1

2
‖y −AHΠx‖2

)

]

(40)

= −
∫

dP
(

y|A,HΠ
T
)

dP
(

A,HΠ
T
)

[

log

∫

Rn

1

(2π)k/2
dxP (x) exp

(

−1

2

∥

∥y −A(HΠ
T )Πx

∥

∥

2
)

]

(41)

June 4, 2018 DRAFT



12

= −
∫

dP (y|A,H) dP (A,H)

[

log

∫

Rn

1

(2π)k/2
dxP (x) exp

(

−1

2
‖y −AHx‖2

)

]

(42)

= H (Y |A,H) (43)

where in the third equality we changed the variableH 7→ HΠ
T , and the forth equality follows from

the facts thatHΠ
T
Πx = Hx and that(A,H) are i.i.d. and thusP

(

A,HΠ
T
)

= P (A,H).

Continuing, letP∗ ∈ S denote the probability distribution that maximizeI (Y ;X |A,H). Let Π∗

denote the set of probability distributions obtained fromP∗ by all possible permutations ofS, and thus

each is achieving the maximalI (Y ;X |A,H). Also, let

Pinv (S)
△
=

1

|Π∗|
∑

P∈Π∗

P (S) . (44)

Note thatPinv (S) ∈ SΠ, namely,Pinv (S) is invariant to permutations. Finally, letH (Y |A,H) |Pinv and

H (Y |A,H) |P∗
designate the conditional entropies ofY given(A,H) whereS is distributed according

to Pinv andP∗, respectively. Thus, from the concavity ofH (Y |A,H) w.r.t. P (·|A,H), we have that

H (Y |A,H) |Pinv

△
= −E







log
∑

s∈{0,1}n

Pπ (S)P (Y |A,H ,S)







(45)

≥ − 1

|Π∗|
∑

P∈Π∗

E







log
∑

s∈{0,1}n

P (S)P (Y |A,H ,S)







(46)

= H (Y |A,H) |P∗
(47)

where (47) follows from the fact that the conditional entropy is the same for all members ofΠ∗ as was

mentioned previously.

It is tempting to tie Theorems 4 and 5 to infer that the optimaldistribution ofS overS is memoryless.

However, there is still a little gap. Indeed, despite the fact that permutation invariant distributions must

depend on the pattern only through the magnetization, not every such distribution can be expressed as

the one in (3), due to the smoothness requirement off . For example, in case of uniform distributions

over types, the functionf is not continuous. Nonetheless, roughly speaking, it is evident that one can

approximate arbitrarily closely such non-smooth behaviors by a respectively smooth functionf . So, we

conjecture that the maximum mutual information is indeed achieved by a memoryless source.

Finally, we present in Fig. 3 the mutual information rateI1 as a function of the sampling rateq and

the SNR forp = 0.2. It can be seen that increase of the rate or/and the SNR results in an increase of

I1, as one should expect.
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Fig. 3: Mutual information rateI1 as a function ofq and the SNR forp = 0.2.

P(S)

X (U ,S)U YP(Y |X ,A,H)X

Fig. 4: Gel’fand-Pinsker channel.

B. Unknown sparsity pattern

In this subsection, we consider the case where the sparsity pattern is unknown to all parties. The vector

U is treated as the information to be transmitted over the channel. In this setting, we have the following

result.

Theorem 6 (unknown sparsity pattern)The channelP (·|X ,A,H), defined in Section II, has an achiev-

able rate given by

R = I1 −H2 (ma) . (48)
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Proof: This is a channel with inputU and outputY , where the matricesA andH are known only

to the receiver. Therefore,

I (U ;Y |A,H ,S) ≥ I (U ;Y |A,H) (49)

= I (U ,S;Y |A,H)− I (S;Y |U ,A,H) (50)

≥ I (X;Y |A,H)−H(S), (51)

and the result follow, after normalizing byn and taking the limitn → ∞.

Yet another interesting setting is the case in which the transmitter cannot control the sparsity pattern

that is given beforehand. This pattern,S, is considered to bechannel stateavailable non-causally/causally

to the transmitter solely. The vectorU is treated as the information to be transmitted over the channel.

This framework falls within the well-known Gel’fand-Pinsker channel [18] and the Shannon settings

[17], for non-causal and causal knowledge ofS, respectively. This is illustrated in Fig. 4. A possible

motivation for this setting is when the transmitter, that produces the inputU , knows the pattern of

switched antennas/shut-off pattern (“green" wireless), but cannot control it. In the following, customary

to the Gel’fand-Pinsker and the Shannon settings, the channel state is assumed an i.i.d. process such that

p
△
= P (Si = 1).

For the case where the side information is available at the transmitter only causally, the capacity

expression has been found by Shannon in [17], and is given by

max
P(v),u(v,s)

I (V ;Y |A,H) (52)

whereU (V ,S) is a deterministic function ofV andS. Note that the auxiliaryV should be chosen

independently of the state [21], while the transmitted signal can depend on the state. Now, since the

sparsity pattern is given, we can adapt the power of the transmitted signal accordingly, that is, we do

not transmit at times whenSi = 0. Accordingly, let us chooseV = U ′, whereU ′ is a Gaussian random

vector with independent elements, each with zero mean and variancep−1σ2. The transmitted signal is

U = S ⊙ V (which maintains the average power constraint), where⊙ denotes the Hadamard product,

and thusX = S ⊙U = S ⊙ V , where we have used the fact thatS ⊙ S = S. Therefore, (52) reads

I (V ;Y |A,H) = I
(

U ′;Y |A,H
)

. (53)

Unfortunately, we were unable to derive a closed-from expression for the information rate corresponding

to I (U ′;Y |A,H). Nonetheless, we note that

I
(

U ′;Y |A,H
)

= I
(

U ′,S;Y |A,H
)

− I
(

S;Y |U ′,A,H
)

(54)
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Fig. 5: Achievable rate in the uncontrolled sparsity pattern case, as a function ofq and the SNR, for

p = 0.2.

= I (X;Y |A,H)− I (S;Y |A,H) (55)

≥ I (X;Y |A,H)−H (S) . (56)

Accordingly, the achievable rate is given byI1,S −H2 (p), whereI1,S is given in (10) withσ2 replaced

by p−1σ2, that is the overall SNR is scaled frompσ2 to σ2. Thus, the improvement due to the knowledge

of S at the transmitter side compared to Theorem 6 is evident. Forthe non-causal case, namely, the

Gel’fand-Pinsker channel, we could not find a good choice forthe auxiliary variableV . In [22], the

related case of fading (which may be binary) given as side information known to the transmitter only

was considered.

Theorems 3 and 6 demonstrate how important it is to be able to control the sparsity patternS. Indeed,

it can be seen that the gap between these two achievable ratesis exactlyH2 (p) which quantifies our

uncertainty at the receiver regarding the source support. This is illustrated in Fig. 5, which shows the

achievable rate as a function ofq and the SNR, forp = 0.2. It can be seen that there is a significant

region of rates and SNR’s for which the achievable rate is zero (within this region, the subtractive term

in (48) dominates). This is attributed to the fact that the sparsity pattern is uncontrolled, and can be

interpreted as the overhead required to the transmitter to adapt to the channel state.
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C. The sparsity pattern is carrying the information

In this subsection, we consider the case where the information is conveyed viaS, while U plays the

role of a fading process, known to nobody. In this case, we have the following result.

Theorem 7 (informative sparsity pattern)Consider the case in whichS is carrying the information and

U is unknown both to the receiver and the transmitter. Then, the achievable rate is given byR = I1−I2.

Proof: Evidently, under the theorem settings, what matters is the mutual informationI (S;Y |A,H)

which readily can be expressed as

I (S;Y |A,H) = I (Y ;U ,S|A,H)− I (Y ;U |A,H ,S) (57)

= I (Y ;U ,S|A,H)− I (Y ;U |A,H ,S) (58)

= I (Y ;X |A,H)− I (Y ;U |A,H ,S) , (59)

and thus Theorem 7 follows, after normalizing byn and taking the limitn → ∞.

Note that similarly to Subsection IV-A, an optimization over the input distribution can be considered.

Nonetheless, by using the same arguments it can be shown thatthere is no gain by using sources with

memory. In the following, we consider the high SNR regime. Itis not difficult to show that for largeσ2,

the behavior ofI2 is as follows [6, Eq. (34)]

I2 = min {q, p} log
(

1 + 4min {q, p}σ2
)

+O (1) (60)

Note that the prelog constant (a.k.a. the degree of freedom)in the above term ofI2 is just the asymptotic

almost-sure rank of the matrixAHS, as one should expect. Similarly, the prelog ofI1 is alsomin {q, p}.

Thus, if we let

I △
= lim

n→∞

I (S;Y |A,H)

n
, (61)

then following the last observations regarding the prelogsof I1 andI2, it can be seen that the information

rateI converges in the high SNR regime to a finite value that is independent ofσ2. This is not surprising

due to the obvious fact thatI ≤ H2 (p). Fig. 6 shows the achievable rate forp = 0.2. It is evident that

due to the fading induced byU , there is a significant decrease in the achievable rate.

V. THE WIRETAP CHANNEL

In the wiretap channel [23], symbols that are transmitted through a main channel to a legitimate receiver

are observed by an eavesdropper across a wiretap channel. The goal of coding for wiretap channels is to
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Fig. 6: Achievable rate when the sparsity pattern is carrying the information, as a function ofq and the

SNR, for p = 0.2.

facilitate error-free decoding across the main channel, while ensuring that the information transfer rate

across the wiretap channel would be as small as possible. A desirable property here isweak secrecy,

which means that the normalized mutual information betweenthe source and the wiretap channel output

will tend to zero.

In our problem, we consider the case in which the legitimate user receives

Y 1 = A1H1X +W 1, (62)

while the eavesdropper receives

Y 2 = A2H2X +W 2. (63)

We assume that the statistics ofH1 andH2 are the same, namely, both are random matrices with i.i.d.

elements having variance1/n. So is the case for the Gaussian noisesW 1 andW 2. The difference is,

however, between the matricesA1 andA2, where forA1 we defineq1
△
= P

(

A
(1)
i,i = 1

)

, for A2 we define

q2
△
= P

(

A
(2)
i,i = 1

)

, and it is assumed thatq1 ≥ q2. The motivation could be processing limitations, that

is the legitimate receiver has stronger processors, and hence can process more outputs/measurements,
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going via different jamming patterns, as well as cloud processing (that is the legitimate receiver gets

controlled access to more outputs, than the non-legitimateone which has to collect these by chance).

In a fashion similar to the previous section, we consider here two different cases: Controlled or

uncontrolled sparsity pattern (by the transmitter), and unavailable a-priori to both the legitimate and

the eavesdropper users. Another configuration that can be considered is when the sparsity patternS is

available to both the legitimate user and the eavesdropper,which was already studied in [24].

A. Controlled sparsity pattern

In this subsection, we consider the case whereS is controlled by the transmitter, but, is unavailable a-

priori to both the legitimate user and the eavesdropper. Thesecrecy capacityis the highest achievable rate

that allows perfect weak secrecy, or, in other words, maximal equivocation for the wiretapper. Accordingly,

as we deal with degraded channels, our setting is just a special case of [25], and the secrecy rate is given

by

lim
n→∞

1

n
[I (Y 1;X|A1,H1)− I (Y 2;X|A2,H2)] (64)

which involves onlyI1 terms. Thus, we have the following result.

Theorem 8 (controlled sparsity pattern)Assume thatS is controlled by the transmitter, but is available

a-priori to neither the legitimate user nor the eavesdropper. Then, the achievable secrecy rate is given

by R = I1,L − I1,E, where I1,L and I1,E are the information rates of the legitimate user and the

eavesdropper, given in (10), withq replaced byq1 andq2, respectively.

Note that similarly to the discussion in Subsection IV-A, one can consider an optimization of the above

achievable rate over the class of sources defined in (3), namely, exploiting the fact thatS does not have

to be Bernoulli. However, by repeating the same steps as in Theorem 4, it can be shown that there is no

gain by using any other source pattern other than the Bernoulli one.

Theorem 9 (memoryless pattern is optimal overPs) Let F be defined as in (29), and letPs be the

set of probability measures in the form of (3). Then, under the asymptotic average sparsity constraint,

namely,

lim
n→∞

1

n
E

{

n
∑

i=1

Si

}

= p, (65)

the following holds

max
Ps

{I1,L − I1,E} = max
F

{I1,L − I1,E} = {I1,L − I1,E}|f=fL
. (66)
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Fig. 7: Secrecy rate when the sparsity pattern is controlled, as a function ofq1 and the SNR, forp = 0.2

andq2 = 0.3.

In words, memoryless patterns give the maximum achievable rate overPs.

Proof: See Appendix C.

Again, this result is expected due to the symmetry of the assumed model, and the fact thatA andH

are available only at the receivers side. Had these matricesbeen known also to the transmitter, then by

controlling the sparsity pattern better secrecy is expected. Finally, similarly to the discussion in Subsection

IV-C, in the high SNR regime, it is evident that forq1 ≥ q2 ≥ p the achievable secrecy rate is converges

in the high SNR regime to a ïňĄnite value that is independent of the SNR. However, ifq1 ≥ p > q2,

then the secrecy rate grows without bound withσ2 with prelog constant given by(p− q2).

Fig. 7 shows the secrecy rate as a function ofq1 and the SNR forp = 0.2 andq2 = 0.3. It can be seen

that whenq1 = q2 the secrecy rate vanishes, as one should expect. Also, for any q1 > 0.3, increasing

the SNR resulting in an increasing of the secrecy rate, and similarly stronger legitimate receivers can

achieve higher secrecy rate.
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B. Unavailable sparsity pattern

In this subsection, we consider the case where the sparsity pattern is known to nobody, and the vector

U is treated as the information to be transmitted over the channel. As before, since we deal with degraded

channels, our setting is just a special case of [25], and the secrecy rate is now given by

lim
n→∞

1

n
[I (Y 1;U |A1,H1)− I (Y 2;U |A2,H2)] (67)

Thus, we have the following result.

Theorem 10 (unavailable sparsity pattern)Assume thatS is known to nobody. Then, an achievable

secrecy rate is given by

I1,L − I2,E −H2 (p) (68)

Proof: Using (67), we note that

I (Y 1;U |A1,H1)− I (Y 2;U |A2,H2)
(a)
= I (X ;Y 1|A1,H1)− I (S;Y 1|U ,A1,H1)

− I (X;Y 2|A2,H2) + I (S;Y 2|U ,A2,H2) (69)

(b)

≥ I (X;Y 1|A1,H1)−H (S)

− I (X;Y 2|A2,H2) + I (S;Y 2|A2,H2) (70)

(c)

≥ I (X ;Y 1|A1,H1)−H (S)− I (U ;Y 2|A2,H2,S) (71)

where (a) follows from the chain rule of the mutual information,(b) follows from the fact that

I (S;Y 2|U ,A2,H2) ≥ I (S;Y 2|A2,H2), which in turn is due to

I (S;Y 2|A2,H2) ≤ I (S;Y 2,U |A2,H2) (72)

= I (S;U |A2,H2) + I (S;Y 2|UA2,H2) (73)

= I (S;Y 2|U ,A2,H2) (74)

where the first passage is due to the data processing inequality. Finally, (b) follows from (59). Therefore,

(68) readily follows from (71).

Fig. 8 shows the secrecy rate as a function ofq1 for p = 0.2, various values of the SNR, andq2 = 0.1

andq2 = 0.2. The results illustrate, again, the importance of controlling the sparsity pattern.
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Fig. 8: Secrecy rate when the sparsity pattern is unavailable, as a function ofq1 and the SNR, forp = 0.2

andq2 = 0.3.

C. Uncontrolled sparsity pattern

Finally, we consider the case in whichS is non-causally available to the transmitter, but cannot be

controlled, that is,S plays the role of a state as in Subsection IV-B. The problem ofsecrecy capacity

here, is not fully solved, but an insightful achievable region was found in [26]. This achievable rate is

given by

lim
n→∞

1

n
[I (V ;Y 1|A1,H1)−max {I (V ;S) , I (V ;Y 2|A2,H2)}] (75)

whereV −(U ,S)−(Y 1,Y 2). Note that, as before,Y 2 can be represented as a degraded version ofY 1.

Evidently, this achievable rate is again composed ofI1 terms, as well asI (V ;S). TakingV = SU , we

obtain the following result.

Theorem 11 (uncontrolled sparsity pattern)Assume thatS is a non-causal state information, that is

unavailable a-priori to both the legitimate user and the eavesdropper. Then, the achievable secrecy rate

is given by

R = I1,L −max {H2 (p) ,I1,E} . (76)
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Fig. 9: Secrecy rate in case of an uncontrolled sparsity pattern, as a function ofq1 and the SNR, for

p = 0.2 andq2 = 0.3.

Theorems 8 and 11 demonstrate some gain that results from theability to control the sparsity pattern

control the sparsity patternS. Indeed, it can be seen that for high SNR there is no difference between

the two achievable secrecy rates. However, below some SNR level, when the sparsity pattern cannot be

controlled, the binary entropyH2 (p) dominatesI1,E, and the resulting secrecy rate is smaller than the

secrecy rate in case of controlled sparsity pattern.

Fig. 9 shows the achievable rate as a function ofq1 and the SNR, forp = 0.2 andq2 = 0.3. It can be

seen that the result is similar to Fig. 6, that is

I1,L −max {H2 (p) ,I1,E} = I1,L −H2 (p) . (77)

Accordingly, this means that under the above specific choiceof p and q2, the loss in the secrecy rate

is attributed more to the fact that the sparsity pattern cannot be controlled, than due to the presence of

a wiretapper. In order to illustrate the loss due to the wiretapper, we consider the following example.

Figures 10a and 10b show, respectively, the achievable rateandI1,L−H2 (p), as a function ofq1 and the

SNR, for p = 0.2 and q2 = 0.5. In this case the eavesdropper has a strong processor, so it can process

more measurements compared to the previous example. Accordingly, it is evident that in this case the
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wiretapper plays a role, and the loss in the secrecy rate is now more significant.
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Fig. 10: (a) Secrecy rate and (b)I1,L −H2 (p) in case of an uncontrolled sparsity pattern as a function

of q1 and the SNR, forp = 0.2 andq2 = 0.5.

VI. T HE MULTIPLE ACCESSCHANNEL

In this section, we consider the symmetric3 MAC settings [27], in which several senders send

information to a common receiver. In our case, we have the following setting: The sequence{Ui} are

now the signals corresponding to different non-cooperative remote users, and the constraint is that on

the average, one cannot employ more thanpn transmit antennas. The pattern sequence is assumed to

be i.i.d. Here, theith user can control the signalUi, as well asSi (adhering, of course, to the rule that

P (Si = 1) = p). We have the following result.

Theorem 12 (MAC)Consider the MAC under the aforementioned assumptions, andlet (R1, . . . , Rn)

denote the rates of then users. Then,

Rα ≤ (1− α)−1 I1,α (78)

whereRα is the sum-rates ofn (1− α) users (no matter which ones, due to symmetry), where0 ≤ α < 1,

and I1,α equals toI1 but with p replaced by(1− α) p. Particularity, the sum-rates (corresponding to

α = 0) is given byI1.

3The symmetry is in the sense that all the users transmit at equal power levels.
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Proof: The case ofα = 0 follows directly from the MAC capacity region [27]. For the second part,

we wish to find the achievable rate ofn (1− α) users, namely, in the MAC capacity region we condition

on the signals produced by the othernα users, and the achievable is given by

I
(

X(1−α);Y |Xα,A,H
)

(79)

whereXα (and similarly forX(1−α)) correspond to thenα users. This can be thought as

Y = AHX +W (80)

= AHX(1−α) +AHXα +W , (81)

and thus (79) is equivalent as to examineI1 but with p 7→ (1− α) p. Finally, due to the fact thatI1 is

normalized byn, we need to re-normalize the result by multiplying it by(1− α)−1.

VII. C ONCLUSIONS

In this paper, we examine the problem of sparse sampling of coded signals under several basic channel

coding problems. In the first part, we present closed-form single-letter expressions for the input-output

mutual information rates, assuming a compressed Gaussian linear channel model. These results are based

on rigorous analytical derivations which agree with previously derived results of the replica method. In

the second part, we present achievable rates in several channel coding problems, in the wiretap channel

model, and in the multiple access channel (MAC). Specifically, for channel coding problem, we consider

three cases that differ in the available knowledge of the transmitter and the receiver about the source,

and particularity, regarding the sparsity pattern. The results quantify, for example, how important is it

to be able to control the sparsity pattern. Also, we show thatwhen this pattern can be controlled by

the transmitted, then, a memoryless source maximizes the mutual information rate, given some sparsity

average constraint. Then, we consider the wiretap channel model for which several cases were studied.

The problems considered are timely and motivated by processing limitations, where the legitimate receiver

has stronger processors, and hence can process more outputs/measurements, going via different jamming

patterns, as well as cloud processing. Here, the results demonstrate, for example, our inherent limits

in achieving some degree of secrecy as a function of the sampling rates of the legitimate user and the

eavesdropper. Finally, in a fashion similar to the previousdiscussion, in case that the sparsity pattern

can be controlled by the transmitter, we show that the secrecy rate cannot be increased by using sparsity

patterns that are not memoryless.
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APPENDIX A

PROOF OUTLINE OF THEOREM 1

In this appendix, we give a proof outline of Theorem 1. It should be emphasized that Theorem 1 is

a special case of the problem considered in [1], and here we emphasize the required modifications. The

analysis consists of three main steps, which will be presented in the sequel, along with specific pointers

to the proof in [1].

The first step in the analysis is to find a generic expression ofthe mutual information for fixedk, n.

This is done by using a relationship between the mutual information and some partition function [28].

To this end, we define the following function,

Z (y,H ,A)
△
=

∫

Rn

µ (dx) exp
[

−‖y −AHx‖2 /2
]

. (A.1)

According to our source model assumptions, the input distribution is given by

µ (x) =
∑

s∈{0,1}n

P (s)
∏

i: si=0

δ (xi)
∏

i: si=1

1√
2πσ2

e−
1

2σ2
x2

i . (A.2)

Now,

I (Y ;X |A,H) = E







log
exp

(

−‖Y −AHX‖2 /2
)

Z (y,H ,A)







(A.3)

= −1

2
E

{

‖Y −AHX‖2
}

− E {logZ (y,H ,A)} (A.4)

= −n

2
− E {logZ (Y ,H ,A)} . (A.5)

Next, as shown in4 [1, Eqs. (57)-(64)]

Z (y,A,H) = exp

(

−1

2
‖y‖2

)

·
∑

s∈{0,1}n

P (s)G (y,A,Hs) (A.6)

where

G (y,A,Hs)
△
=

exp
{

1
2y

TAHsH
sHT

sA
Ty
}

√

det
(

σ2HT
sA

TAHs + Is
)

, (A.7)

where Hs denotes the restriction ofH on the supportS = {i ∈ N : Si 6= 0}, and Hs △
=

(

HT
sA

TAHs +
1
σ2 Is

)−1
. Thus,

I (Y ;X|A,H)

n
= −1

2
+

1

2

[

maσ
2q + 1

]

− 1

n
E







log
∑

s∈{0,1}n

P (s)G (Y ,A,Hs)







4In the notation of [1],H andHs correspond toAH andAHs in our notations.
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=
1

2
σ2maq −

1

n
E







log
∑

s∈{0,1}n

P (s)G (Y ,A,Hs)







, (A.8)

and therefore, in view of (A.8), we wish to calculate the limit

lim
n→∞

1

n
E {logZn (Y ,A,H)} △

= lim
n→∞

1

n
E







log
∑

s∈{0,1}n

P (s)G (y,A,Hs)







. (A.9)

This concludes the first step. Now, it can be seen from (A.7) that (A.9) contains terms that are recognized

as an extended version of the Stieltjes and Shannon transforms [29] of the matrixHT
sA

TAHs. In the

field of random matrix theory, there is a great interest in exploring the asymptotic behavior, and in

particular finding thedeterministic equivalentof such transforms (see, for example, [12, 13]). Evidently,

under some conditions, it is well-known that these transforms asymptotically converge for a fairly wide

family of matrices.

Following the last observation, in the second step, we show that these functions converge, with

probability tending to one, asn → ∞, to some random functions that are much easier to work with.

Accordingly, the following lemma is essentially the core ofour analysis; it provides approximations (which

are asymptotically exact in the almost sure (a.s.) sense) ofG and (A.9). For simplicity of notations, we

let ms
△
= n−1

∑n
i=1 si, and recall the auxiliary variables defined in (12)-(17). The following lemma is

proved in [1, Appendix B, C].

Lemma 1 (asymptotic equivalence)Under the assumptions and definition presented earlier, thefollowing

relations hold in the almost sure (a.s.) sense:

lim
n→∞

1

n
ln det

(

σ2HT
sA

TAHs + Is
)

= msĪ (ms) , (A.10)

and

lim
n→∞

1

n

[

yTAHsH
sHT

sA
Ty − fn

]

= 0, (A.11)

where

fn
△
= 2 · V (ms)

‖y‖2
n

+ 2 · L (ms)

∥

∥HT
sA

Ty
∥

∥

2

n
. (A.12)

Finally, for largen andk, and for(y,A,H)-typical sequences, the functionZn (y,A,H) is lower and

upper bounded as follows

Z− (y,A,H) ≤ Zn (y,A,H) ≤ Z+ (y,A,H) , (A.13)
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where

Z± (y,A,H)
△
= Cn ·

∑

s∈{0,1}n

exp

{

n

(

t̃ (ms) + L (ms)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
si ± ϕ

)}

, (A.14)

in which Cn is the normalization constant inP (s) (see (3)), and

t̃ (m)
△
= f (m)− m

2
Ī (m) + V (m)

‖y‖2
n

, (A.15)

and the fluctuation termϕ is typically lower and upper bounded by a vanishing term thatis uniform in

s, namely,|ϕ| ≤ O (1/n)5.

The proof of Lemma 1 is obtained by invoking recent powerful methods from random matrix theory,

such as, the Bai-Silverstein method [30]. Equipped with Lemma 1, our next and last step is to assess the

exponential order ofZ± (y,A,H) using large deviations theory. The following analysis can be found

in detail in [1, Appendix C]. For completeness, we provide the main ideas here as well.

First, note thatZ± (y,A,H) can be equivalently rewritten as

Z± (y,A,H) = Cn ·
∑

ms

exp
{

n
(

t̃ (ms)± ϕ
)}

Ẑ (y,A,H ,ms) (A.16)

where the summation is overms ∈ [0/n, 1/n, . . . , n/n], and

Ẑ (y,A,H ,ms)
△
=

∑

s: m(s)=ms

exp

(

L (ms)

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

(A.17)

where with slight abuse of notations, the summation is performed over sequencess with magnetization,

m (s)
△
= n−1

∑n
i=1 si, fixed toms. For the sake of brevity, we will omit the± sign. In the following, we

will find the asymptotic behavior ofẐ (y,A,H ,ms), and then the asymptotic behavior ofZ± (y,A,H).

For Ẑ (y,A,H ,ms), we will need to count the number of sequences{s}, having a given magnetization

ms, and also admit some linear constraint. Accordingly, consider the following set

Fδ (ρ,m)
△
=

{

v ∈ {0, 1}n :

∣

∣

∣

∣

∣

n
∑

i=1

vi − nm

∣

∣

∣

∣

∣

≤ δ,

∣

∣

∣

∣

∣

n
∑

i=1

viui − nρ

∣

∣

∣

∣

∣

≤ δ

}

(A.18)

where{ui}ni=1 is a given sequence of real numbers. Thus, the above set contains binary sequences that

admit two linear constraints. We will upper and lower bound the cardinality ofFδ (ρ,m) for a given

δ > 0, m, andρ. Then, we will use the result in order to approximatêZ (y,A,H ,ms). Using methods

that are customary to statistical mechanics, we have the following result which is proved in [1, Appendix

C, eqs. (C.15)-(C.32)].

5Physically, over the typical set, this fluctuation will not affect the asymptotic behavior of anyintensivequantity, namely,

a quantity that does not depend onn (e.g., the dominant magnetization).
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Lemma 2For largen and anyτ > 0 the cardinality ofFδ (ρ,m) is upper and lower bounded as follows

(1− τ)V−δ ≤ |Fδ (ρ,m)| ≤ Vδ (A.19)

where

log V±δ
△
=

1

2

(

α◦
n
∑

i=1

ui − nγ◦

)

− [α◦ (nρ∓ δ)− γ◦ (nm∓ δ)] +

n
∑

i=1

log

[

2 cosh

(

α◦ui − γ◦

2

)]

,

(A.20)

in which α◦, γ◦ are given by the solution of the following equations

ρ =
δ

n
+

1

2n

n
∑

i=1

ui +
1

2n

n
∑

i=1

tanh

(

α◦ui − γ◦

2

)

ui, (A.21)

and

m =
δ

n
+

1

2
+

1

2n

n
∑

i=1

tanh

(

α◦ui − γ◦

2

)

. (A.22)

For the purpose of assessing the exponential behavior ofẐ (y,A,H ,ms), let us defineui =
∣

∣yThi

∣

∣

2
.

The main observation here is that̂Z (y,A,H ,ms) can be represented as

Ẑ (y,A,H ,ms) = 2n
∫

D⊂R

exp (nL (ms) ρ)Cn (dρ) (A.23)

whereD is the codomain6 of ρ, and{Cn} is a sequence of probability measures that are proportional

to the number of sequencess with
∑n

i=1 siui ≈ nρ, and
∑n

i=1 si ≈ nms. These probability measures

satisfy the large deviations principle [31, 32], with the following respective lower semi-continuous rate

function

I (ρ) =















log 2− n−1 logV0, if ρ ∈ D

∞, else

(A.24)

whereV0
△
= limδ→0 Vδ given in (A.20). Indeed, by definition, the probability measure Cn is the ratio

between|Fδ (ρ,ms)| and 2n (the number of possible sequences). Thus, for any Borel setB ⊂ D, we

have thatlimn→∞ n−1 logCn (B) = −I (ρ). Accordingly, due to it large deviations properties, applying

Varadhan’s theorem [31, 32] on (A.23), one obtains

Ẑ (y,A,H ,ms) → exp [n (log 2 + L (ms) ρ
◦ − I (ρ◦))] (A.25)

6Note that we do not need to explicitly defineD simply due to the fact that the exponential term in (A.23) is concave (see

(A.26)), and thus the dominatingρ are the same overD or overR.
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whereρ◦ is given by (using the fact that the exponential term is convex)

ρ◦ = argmax
ρ∈R

{log 2 + L (ms) ρ− I (ρ)}

= argmax
ρ∈R

{

L (ms) ρ+ n−1 logV0

}

. (A.26)

The maximizer,ρ◦, is the solution of the following equation

L (ms) +
1

n

∂

∂ρ
logV0 = 0. (A.27)

Now, it can be readily shown that (see, [1, Appendix C, eqs. (C.40)-(C.42)])

1

n

∂

∂ρ
logV0 = −α◦. (A.28)

Thus, using (A.28) and (A.27), we may conclude thatα◦ = L (ms). Now,

L (ms) ρ
◦ + n−1 log V0

∣

∣

ρ◦
= msγ

◦ +
1

n

n
∑

i=1

L (ms)ui − γ◦

2
+

1

n

n
∑

i=1

log

[

2 cosh

(

L (ms)ui − γ◦

2

)]

△
= h̃ (γ◦,ms) . (A.29)

Therefore,

Ẑ (y,A,H ,ms) → exp
(

nh̃ (γ◦,ms)
)

(A.30)

whereγ◦ solves the following equation (see (A.22))

ms =
1

2n

n
∑

i=1

[

1 + tanh

(

L (ms)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

. (A.31)

Thus far, we approximatedẐ (y,A,H ,ms). Recalling (A.16), the next step is to approximate

Z± (y,A,H). Using (A.30), and applying once again Varadhan’s theorem (or simply, the Laplace method

[33, 34]) on (A.16), one obtains that

Z± (y,A,H) = Cn ·
∑

ms

exp
[

n
(

t̃ (ms)± ϕ
)]

Ẑ (y,A,H ,ms) (A.32)

·
= Cn · exp

{

n
(

h̃ (γ◦,m◦
s) + t̃ (m◦

s)± ϕ
)}

(A.33)

where the dominatingm◦
s is the saddle point, i.e., one of the solutions to the equation

∂

∂m
f (m)− 1

2
Ī (m)− m

2

∂

∂m
Ī (m) +

∂

∂m
V (m)

‖y‖2
n

+
∂

∂m
h̃ (γ◦,m) = 0 (A.34)

where we have used the fact thatt̃ (m) = f (m) − mĪ (m) /2 + n−1V (m) ‖y‖2. Simple calculations

reveal that the derivative ofh (γ◦,m) w.r.t. m is given by

∂

∂m
h̃ (γ◦,m) = γ◦ +

1

2n

n
∑

i=1

[

1 + tanh

(

L (m)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m)

∂m

∣

∣yThi

∣

∣

2
. (A.35)
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Thus, substituting the last result in (A.34), we have that

γ◦ (m◦
s) =− 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦
s)

∂m◦
s

∣

∣yThi

∣

∣

2 − ∂

∂m◦
s

f (m◦
s) +

1

2
Ī (m◦

s)

+
m◦

s

2

∂

∂m◦
s

Ī (m◦
s)−

∂

∂m◦
s

V (m◦
s)

‖y‖2
n

. (A.36)

So, hitherto, we obtained that the asymptotic behavior ofZ̃± (y,H , s) is given by (A.33), and the various

dominating terms are given by

γ◦ (m◦
s) = − 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦
s)

∂m◦
s

∣

∣yThi

∣

∣

2 − ∂

∂m◦
s

f (m◦
s) +

1

2
Ī (m◦

s)

+
m◦

s

2

∂

∂m◦
s

Ī (m◦
s)−

∂

∂m◦
s

V (m◦
s)

‖y‖2
n

, (A.37a)

m◦
s =

1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

. (A.37b)

Therefore, using (A.16) we obtain

lim
n→∞

1

n
logZ (y,A,H) = lim

n→∞

1

n
logCn + lim

n→∞

[

h̃ (γ◦,m◦
s) + t̃ (m◦

s)
]

. (A.38)

The last thing that is left is to show a concentration property of the saddle point equations given in

(A.37), and obtain instead the saddle point equations givenin (20), which will be also used to assess the

limit in (A.38). Accordingly, we finally obtain that

lim
n→∞

1

n
logE {Z (y,A,H)} = lim

n→∞

1

n
logCn + h (γ◦,m◦

s) + t (m◦
s) . (A.39)

This is done by using the theory of convergence of backwards martingale processes, and can be found

in [1, Appendix C, eqs. (C.73)-(C.97)]. So, eventually, using the relation in (A.8), we finally obtain that

lim
n→∞

1

n
I (Y ;X |A,H) =

1

2
σ2maq − lim

n→∞

1

n
logCn − h (γ◦,m◦

s)− t (m◦) (A.40)

=
1

2
σ2maq +H2 (ma) + f (ma)− h (γ◦,m◦

s)− t (m◦) , (A.41)

where in the last equality we have used (5) in order to calculate the limit limn→∞ n−1 logCn.

APPENDIX B

PROOF OFTHEOREM 4

The first equality is obvious. First, by definition (see, (5)), ma is the solution of the following equation

ma =
1

2

[

1 + tanh

(

f ′ (ma)

2

)]

. (B.1)
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Note that according to (30),ma = p. Consider first a polynomial function

f (x) =

M
∑

k=1

αk
xk

k
(B.2)

for x ∈ [0, 1], whereM > 0 is natural, and{al} are parameters. Substitutingf in (23), we see that

maximizingI1 amounts to maximizing the following function

κ (α1, . . . , αM )
△
=

M
∑

k=1

αk
mk

a

k
−

M
∑

k=1

αk
mk

◦

k
− t̃ (m◦)− h (γ◦,m◦) (B.3)

where

t̃ (m◦)
△
= t (m◦)− f (m◦) . (B.4)

Now, we take the partial derivative ofκ (α1, . . . , αM ) w.r.t. αl for 1 ≤ l ≤ M , and readily obtain that

∂

∂αl
κ (α1, . . . , αM ) =

ml
a

l
− ml

◦

l
−

M
∑

k=1

αlm
k−1
◦

∂m◦

∂αl
− ∂m◦

∂αl

∂t̃ (m◦)

∂m◦
− ∂h (γ◦,m◦)

∂αl
(B.5)

=
ml

a

l
− ml

◦

l
− ∂m◦

∂αl

∂t (m◦)

∂m◦
− ∂h (γ◦,m◦)

∂αl
(B.6)

where (B.6) follows from (B.4). Using (22) we obtain

∂h (γ◦,m◦)

∂αl
=

∂γ◦
∂αl

(

m◦ −
1

2

)

+ γ◦
∂m◦

∂αl
+ E

{

1

2

∂L (m◦)

∂m◦

∂m◦

∂αl
Q2

}

+ E

{

1

2
tanh

(

L (m◦)Q
2 − γ◦

2

)[

∂L (m◦)

∂m◦

∂m◦

∂αl
Q2 − ∂γ◦

∂αl

]}

(B.7)

= γ◦
∂m◦

∂αl
+ E

{

K (Q,m◦, γ◦)
∂L (m◦)

∂m◦

∂m◦

∂αl
Q2

}

(B.8)

where the last equality follows from (20b) and the definitionin (19). Thus, on substituting (B.8) in (B.6),

one obtains

∂

∂αl
κ (α1, . . . , αM ) =

ml
a

l
− ml

◦

l
− ∂m◦

∂αl

∂t (m◦)

∂m◦
− γ◦

∂m◦

∂αl
− E

{

K (Q,m◦, γ◦)
∂L (m◦)

∂m◦

∂m◦

∂αl
Q2

}

=
ml

a

l
− ml

◦

l
− ∂m◦

∂αl

[

γ◦ +
∂t (m◦)

∂m◦
+ E

{

K (Q,m◦, γ◦)
∂L (m◦)

∂m◦
Q2

}]

=
ml

a

l
− ml

◦

l
(B.9)

where the last equality follows from (20a). Setting the above derivatives (for1 ≤ l ≤ M ) to zero, we

see that the stationary sequence of parameters{αk} is determined by the solution of the equation

ma = m◦. (B.10)
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To wit, this equation means that the optimal sequence is to bechosen such that the prior and the posterior

magnetizations, namely,ma andm◦, respectively, be the same. Accordingly, using (B.3) and (B.10), we

obtain that

κ (α1, . . . , αM )|ma=m◦

= −t̃ (ma)− h (γ◦,ma) , (B.11)

which according to the definitions ofm◦, h (γ◦,ma), and t̃ (ma) given in (20), (22), and (B.4),

respectively, is a function off (·) (or, equivalently of{ai}) only throughf ′ (ma). However, by (B.1),

we see that the average sparseness constraint fixes the valueof f ′ (ma) to

f ′ (ma) = 2 · arctan (2ma − 1) . (B.12)

Therefore,κ (α1, . . . , αM )|ma=m◦

given in (B.11) is essentially independent of the specific choice of

{al} that admitma = m◦. Now, in terms of{αi}, the solution to (B.10) may not be unique. More

importantly, there must be a solution corresponding to the memoryless source assumptions, as one can

simply fix αi = 0 for 2 ≤ i ≤ M , and then tuneα1 such that (B.10) holds true. Thus, due to the fact

that I1 is a concave functional w.r.t.f (·), we may conclude that this specific choice cannot decrease

the maximal value ofκ (·), and hence also that ofI1. Finally, using standard approximation arguments,

since the above derivation is valid for any polynomial, one can approximate any functionf (·) by using

its Taylor series expansion, and obtain the same conclusion.

APPENDIX C

PROOF OFTHEOREM 9

The first equality is obvious. The second equality is proved exactly in the same way as in the proof

of Theorem 4. Let us start with polynomialf given by

f (x) =

M
∑

k=1

αk
xk

k
(C.1)

for x ∈ [0, 1], whereM > 0 is natural, and{al} are parameters. Then, substitutingf in (23), we see that

maximizingI1,L−I1,E amounts to maximizing the following function (recall thatma is fixed under the

average sparseness constraint)

κ (α1, . . . , αM )
△
=−

M
∑

k=1

αk

mk
◦,L

k
− t̃L (m◦,L)− hL (γ◦,L,m◦,L)

+

M
∑

k=1

αk

mk
◦,E

k
− t̃E (m◦,E) + hE (γ◦,E,m◦,E) (C.2)

June 4, 2018 DRAFT



33

where the subscripts “L" and “E" are referring to the legitimate user and the eavesdropper,respectively.

For example,m◦,L andm◦,E designate the posterior magnetizations of the legitimate and the eavesdropper

users, respectively. Also, similarly to the notations usedin the proof of Theorem 4, we define

t̃L (m◦,L)
△
= tL (m◦L

)− f (m◦,L) , (C.3)

and similarly fort̃E (m◦,E). Now, we take the partial derivative ofκ (α1, . . . , αM ) w.r.t.αl for 1 ≤ l ≤ M ,

and similarly to (B.6), we obtain that

∂

∂αl
κ (α1, . . . , αM ) = −

ml
◦,L

l
+

ml
◦,E

l
. (C.4)

Setting the above derivatives (for1 ≤ l ≤ M ) to zero, we see that the stationary sequence of parameters

{αk} is determined by the solution of the equation

m◦,L = m◦,E . (C.5)

To wit, this equation means that the optimal sequence is to bechosen such that the posterior magnetizations

(of the legitimate user and the eavesdropper) be the same. Accordingly, using the last result and (B.3),

we obtain that

κ (α1, . . . , αM )|m◦,L=m◦,E
= −t̃L (m◦,L)− hL (γ◦,L,m◦,L) + t̃E (m◦,L) + hE (γ◦,E ,m◦,L) , (C.6)

which according to the definitions of the various quantitiesin (C.6) depends onf (or, equivalently of{ai})

only through its derivativef ′ (m◦,L) (or, equivalentlyf ′ (m◦,E)). However, equation (C.5) essentially fixes

the value off ′ (m◦,L), and thusκ|m◦,L=m◦,E
is independent of the specific choice of source parameters

{al} that admitm◦,L = m◦,E . Whence, using exactly the same arguments as in the proof of Theorem

4, we conclude that the memoryless choice cannot decrease the maximal value ofκ (·), and hence also

that of I1,L − I1,E.
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