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Abstract

Hilberg’s conjecture about natural language states that the mutual in-
formation between two adjacent long blocks of text grows like a power of
the block length. The exponent in this statement can be upper bounded
using the pointwise mutual information estimate computed for a carefully
chosen code. The bound is the better, the lower the compression rate is
but there is a requirement that the code be universal. So as to improve a
received upper bound for Hilberg’s exponent, in this paper, we introduce
two novel universal codes, called the plain switch distribution and the
preadapted switch distribution. Generally speaking, switch distributions
are certain mixtures of adaptive Markov chains of varying orders with
some additional communication to avoid so called catch-up phenomenon.
The advantage of these distributions is that they both achieve a low com-
pression rate and are guaranteed to be universal. Using the switch dis-
tributions we obtain that a sample of a text in English is non-Markovian
with Hilberg’s exponent being ≤ 0.83, which improves over the previous
bound ≤ 0.94 obtained using the Lempel-Ziv code.
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I Introduction

Hilberg’s conjecture is a hypothesis concerning natural language which states
that the mutual information between two adjacent long blocks of text grows
very fast, namely as a power of the block length [1, 2, 3, 4, 5, 6, 7]. There are
two important information-theoretic results concerning this conjecture. On the
one hand, Hilberg’s hypothesis can be linked with the idea that texts in natural
language refer to large amounts of randomly accessed knowledge in a repetitive
way [8, 9]. On the other hand, Hilberg’s hypothesis can be linked with the fact
that the number of distinct words in a text grows as a power of the text length
[10, 8], the fact known as Herdan’s or Heaps’ law [11, 12]. These two results
make Hilberg’s conjecture interesting and worth direct empirical testing.

To present Hilberg’s conjecture formally, let us introduce some notations.
Consider a probability space (Ω,J , Q) with Ω = {1, 2, ..., D}Z, random variables
Xk : Ω 3 (xi)i∈Z 7→ xk ∈ {1, 2, ..., D}, and distribution Q which is stationary on
(Xi)i∈Z but not necessarily ergodic. Blocks of symbols or variables are denoted
as Xm

n = (Xi)n≤i≤m with Xm
n being the empty block for m < n. Moreover,

for a random variable X we introduce a random variable Q(X) which takes
value Q(X = x) for X = x. The pointwise entropy of variable X is the random
variable

HQ(X) = − logQ(X) (1)

whereas the pointwise mutual information between X and Y is

IQ(X;Y ) = − logQ(X)− logQ(Y ) + logQ(X,Y ). (2)

Having this in mind, Hilberg’s conjecture states that

IQ(Xn
1 ;X2n

n+1) ∝ nβ , β ∈ (0, 1). (3)

Hilberg [1] supposed that β ≈ 0.5 holds for texts in English but his estimate
was very rough, based on Shannon’s psycholinguistic experiment [13].

It is an interesting open question how much the exponent β varies across
different texts and whether it is possibly a text-independent language univer-
sal. This question can be connected to some fundamental limitations of human
memory and attention. Consequently, in this paper, we want to improve the
method of upper bounding Hilberg’s exponent β proposed in [14], which is based
on universal coding [15] or universal distributions [16]. The focus of the present
paper is to develop a better tool for estimating mutual information than used
so far and to demonstrate how it works with an instance of empirical language
data. Whereas we propose some method of upper bounding exponent β and
showing that texts in natural language are non-Markovian, it remains to find a
computational method of lower bounding Hilberg’s exponent β.

Before we show how to upper bound exponent β using a universal distri-
bution, it is important to note that the discussion of Hilberg’s hypothesis is
intimately connected with the question whether the natural language produc-
tion is nonergodic and what its plausible ergodic decomposition is. According
to the ergodic decomposition theorems [17, 18, 8], any stationary measure Q
equals the expectation EQ F , where F = Q(·|I) is the random ergodic measure
for measure Q and I is the shift-invariant algebra. There exist some stationary
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nonergodic measures Q, called Santa Fe processes, for which mutual informa-
tion IQ(Xn

1 ;X2n
n+1) grows according to a power law but the main contribution

of the mutual information comes from identifying the random ergodic measure
F given the block Xn

1 [8, 9]. In that case mutual information IF (Xn
1 ;X2n

n+1) for
the random ergodic measure F itself is negligibly small. The Santa Fe processes
are not irrelevant for our discussion. In their original construction they were
intended as some idealized models for the transmission of knowledge in natural
language. Thus when estimating the exponent in Hilberg’s conjecture we have
first to decide whether we do it for measure Q or for measure F . The methods
for estimating IQ(Xn

1 ;X2n
n+1) and IF (Xn

1 ;X2n
n+1) are very different. We sup-

pose that estimating the mutual information for the nonergodic measure Q is
closer to the original intention of Hilberg although some philosophical problem
remains ‘how many’ ergodic components we actually admit (e.g. do we assume
that Q models texts in a given register of a particular language or in any reg-
ister of any natural language). In contrast to the random ergodic measure F ,
the possibly nonergodic measure Q is not identifiable given a single realization
(Xi)i∈Z. Despite that, it is somewhat baffling that some nontrivial upper bound
for Hilberg’s exponent β, a property of measure Q, can be learned from a single
realization (Xi)i∈Z if the growth of mutual information is uniform in Q.

As we have indicated, our method of upper bounding Hilberg’s exponent
β is based on universal coding. Here we say that a distribution P is weakly
universal if for every stationary distribution Q we have

lim
n→∞

1

n
EQH

P (Xn
1 ) = hQ, (4)

where the entropy rate hQ is

hQ := lim
n→∞

1

n
EQH

Q(Xn
1 ) = inf

k∈N
EQ

[
− logQ(Xk+1|Xk

1 )
]
. (5)

On the other hand, the distribution P is called strongly universal if for every
stationary ergodic distribution Q we have Q-almost surely

lim sup
n→∞

1

n
HP (Xn

1 ) ≤ hQ. (6)

Strongly universal distributions are weakly universal under mild conditions [19].
Dębowski [14] proposed to investigate the empirical law of form

IP (Xn
1 ;X2n

n+1) ∝ nγ , γ ∈ (0, 1), (7)

where P is a strongly universal distribution. Relationship (7), which can be
called the codewise Hilberg conjecture, has been checked experimentally for the
Lempel-Ziv code on a sample of 10 texts in English and it holds surprisingly
uniformly with γ = 0.94 [14]. The same estimate γ = 0.94 has been obtained
for 21 other texts in German and French (work under review).

Are laws (3) and (7) related? In fact, if they hold uniformly for large n then
exponents β and γ can be linked. To see it, the following lemma is helpful.

Lemma 1 ([8]) Consider a function G : N → R such that limkG(k)/k = 0
and G(n) ≥ 0 for all but finitely many n. For infinitely many n, we have
2G(n)−G(2n) ≥ 0.
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If P is weakly universal, the above statement is satisfied for Kullback-Leibler
divergence

G(n) = EQ
[
HP (Xn

1 )−HQ(Xn
1 )
]
. (8)

Hence we obtain that

EQ I
P (Xn

1 ;X2n
n+1) ≥ EQ I

Q(Xn
1 ;X2n

n+1) (9)

holds for infinitely many n. Thus if relationships (3) and (7) hold uniformly for
large n then

γ ≥ β. (10)

In other words, the smaller γ we observe for a text (or methodologically better,
for a large sample of different texts), the better bound it gives for β. It can
also be easily shown that the bound is the tighter, the smaller compression rate
HP (Xn

1 )/n is, with the sole provision that distribution P be weakly universal.
Results of our experiment suggest that this requirement is essential.

Thus the question of upper bounding Hilberg’s exponent β boils down, if
we assume uniform information growth in (3), to finding appropriate universal
distributions. Many methods have been proposed for compression of texts in
natural language, e.g.: Lempel-Ziv (LZ) code [15], n-gram models [20, 21, 22],
prediction by partial match (PPM) [23], context tree weighting (CTW) [24],
probabilistic suffix trees (PST) [25], grammar-based codes [26], PAQ codes [27],
and switch distributions [28]. These compression schemes can be divided into
two classes: (a) preadapted distributions, which are trained on large corpora
and achieve low compression rate—as low as 0.88 bpc (bits per character) for
WinRK 3.1.2,1 and (b) adaptive distributions, which are not pre-trained and
achieve larger compression rate but are proven to be universal. Whereas the
distributions proposed so far belong either to class (a) or (b), for upper bounding
Hilberg’s exponent, we need a distribution that would combine the advantages
of classes (a) and (b), namely low compression rate and universality.

In this paper we propose and investigate two novel universal distributions,
one of which is not preadapted and the other is preadapted. The point of
our departure is a modification of the switch distributions proposed in [28,
29]. The idea of a switch distribution is to use a mixture of adaptive Markov
chains of varying orders but, at each data point, the probabilities are partly
transferred among different orders. In this way, lower order Markov chains are
used to compress the data exclusively until enough information is gathered to
predict new outcomes with higher order chains. This avoids so called catch-
up phenomenon and leads to much better compression than while there is no
transmission of probabilities among different Markov chain orders [28]. If we
combine the idea of the switch distribution with smoothing proposed in [30,
p. 111] and the idea of a universal distribution called R measure, proposed in
[16], we obtain another new universal compression scheme, which is efficiently
computable. This scheme will be called the plain switch distribution. It is not
preadapted yet. The preadapted switch distribution is obtained by initializing
the Markov chains with frequencies coming from a large corpus and letting
them gradually adapt to the compressed source. It will be shown that the
1http://www.maximumcompression.com/data/text.php
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preadapted switch distributions is also universal. For the considered input text
the nonpreadapted and the preadapted switch distributions achieve almost the
same ultimate compression rate 2.21 bpc, approximately twice smaller than for
the LZ code. This figure is not so favorable as for the WinRK 3.1.2 but we have
a guarantee that the switch distributions are universal.

Once we have constructed the universal switch distributions, we can use
them for upper bounding Hilberg’s exponent. In the previous paper [14], the
LZ code was used for a sample of texts in English which yielded γ = 0.94.
Here using the plain switch distribution we obtain a slightly tighter bound
γ = 0.83. Surprisingly, the preadapted switch distribution yields almost the
same compression rate for long blocks as the plain switch distribution and does
not give a tighter bound for γ. Differences in the estimates of γ may also stem
from differences in data representation. In [14] the alphabet of D = 27 symbols
was used. Here we use D = 256 and obtain γ = 0.89 for the LZ code. It is
important to underline that meaningful estimates of γ can be only obtained
using universal distributions. As we show, if a nonuniversal distribution is
used, the pointwise mutual information can be very low despite a good-looking
compression rate. To a certain extent this also applies to the preadapted switch
distribution, where the pointwise mutual information is low for short blocks.

There remains a question what the estimates of the codewise Hilberg ex-
ponent γ tell about the true Hilberg exponent β for texts in natural language.
In particular, how large can the difference between γ and β be in case of the
considered universal codes? Let us recall that for memoryless sources, i.e., IID
processes with β = 0, the pointwise mutual information of the LZ code is of or-
der IP (Xn

1 ;X2n
n+1) ∝ n/ log n [31] so empirically we should observe γ ≈ 1. Thus

the difference between between γ and β can be close to 1. Moreover, observing
γ ≈ 1 for the LZ code we cannot reject the hypothesis that the source is IID. In
contrast, for stationary Markov chains, the pointwise mutual information of a
Bayesian mixture of Markov chains, which is the building block for the switch
distribution, cf. [32], is only of order IP (Xn

1 ;X2n
n+1) ∝ log n [33] so empirically

we should observe γ ≈ 0 in that case. The same property carries over to the
switch distributions introduced in this paper. Thus, observing γ > 0 for a
switch distribution, we are compelled to reject the hypothesis that the source is
a Markov chain. Possibly, β > 0 may hold in that case. In other words, given
the presented empirical data, Hilberg’s conjecture may be true but we need still
some stronger evidence in favor of this hypothesis, such as a nontrivial lower
bound for exponent β (work under review).

The further organization of the paper is as follows. In Section II, we present
the plain switch distribution. In Section III, we discuss the preadapted switch
distribution. In Section IV, we investigate the codewise Hilberg’s conjecture (7)
experimentally using the introduced distributions.

II The plain switch distribution

The frequency of substring wk1 ∈ {1, 2, ..., D}
k in string zn1 ∈ {1, 2, ..., D}

n will
be denoted as

c(wk1 |zn1 ) =

n−k∑
i=0

1
{
wk1 = zi+ki+1

}
. (11)
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The plain switch distribution is defined as follows:

Definition 1 (plain switch distribution) Define conditional probabilities
B(xn+1|xn1 ,−1) = D−1 and

B(xn+1|xn1 , k) =
c(xn+1

n+1−k|xn1 ) +B(xn+1|xn1 , k − 1)

c(xnn+1−k|x
n−1
1 ) + 1

. (12)

Let coefficients pn ∈ (0, 1), where n = 0, 1, 2, ..., satisfy
∏∞
n=0 pn > 0. Put also

qn = 1− pn. We define the partial switch distribution P (xn1 , k) by conditions

P (x1,−1) = p0B(x1| − 1), (13)

P (x1, 0) = q0B(x1|0), (14)

P (xn1 , k) = 0 for k < −1 or k ≥ n, (15)

P (xn+1
1 , k) = [pnP (xn1 , k) + qnP (xn1 , k − 1)]B(xn+1|xn1 , k)

for n ≥ 1 and −1 ≤ k ≤ n. (16)

The total probability for block xn1 according to the switch distribution is

P (xn1 ) =

n−1∑
k=−1

P (xn1 , k). (17)

The scheme of computing P (xn1 ) is depicted in Figure 1.

Remark 1: Condition
∏∞
n=0 pn > 0 holds for instance if we fix

pn = exp
[
−(n+ 1)−α

]
, α > 1. (18)

Value α is a parameter.
Remark 2: Probability B(xn+1|xn1 , k) defines an adaptive k-th order Markov

model. Probability P (xn1 , k) represents the mass of the adaptive k-th order
Markov model modified by communication with models of lower orders. The
motivation for this communication, carried out in formula (16), is that lower
order Markov models should be solely used for compression until enough data
are collected to predict new outcomes with higher order Markov models, cf., the
catch-up phenomenon described in [28]. Distribution P (xn1 ) is a special case of
the general scheme of switch distributions considered by [28, 29] to overcome
the catch-up phenomenon. In contrast to the models discussed in [28, 29], the
switch distribution considered here is universal in the sense made precise in the
Introduction and still can be efficiently computed.

Remark 3: Probability B(xn+1|xn1 , k) of an adaptive k-th order Markov
model so as to be defined for all xn1 is smoothed using probability B(xn+1|xn1 , k−
1) of an adaptive (k − 1)-th order Markov model in a way inspired by [30, p.
111]. Thus we add the probability of a lower order B(xn+1|xn1 , k − 1) in the
numerator and 1 in the denominator rather than using the Laplace rule or the
Krichevski-Trofimov rule, i.e., adding α ∈ (0, 1] in the numerator and αD in the
denominator as in, e.g., [16]. We have checked that this trick works better for
natural language data than the Laplace or Krichevski-Trofimov rules.

Remark 4: The infinite mixture of probabilities B(xn+1|xn1 , k) for orders
k = 0, 1, 2, ..., smoothed using the Laplace or Krichevski-Trofimov rules, was
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Figure 1: The scheme of computing P (x31).

investigated in [16] under the name of R measure and shown to be a universal
distribution. Our construction is quite similar in spirit but avoids the catch-up
phenomenon.

Now we will show that the switch distribution (17) is both strongly and
weakly universal. First we need this simple fact:

Lemma 2 Introduce notation

B(xnl |xl−1l−k, k) =

n∏
i=l

B(xi|xi−11 , k). (19)

The switch distribution satisfies the following:

i) there exists a constant δ−1 > 0 such that for all n ≥ 1 we have

P (xn1 ) ≥ δ−1D−n, (20)

ii) for each k ≥ 0 there exists a constant δk > 0 such that for all n ≥ k + 1
we have

P (xn1 ) ≥ δkB(xnk+1|xk1 , k). (21)
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Proof: For n ≥ 1 we have

P (xn1 ) ≥

(
n−1∏
i=0

piB(xi+1|xi1,−1)

)
≥ δ−1P (xn1 | − 1). (22)

where δ−1 =
∏∞
i=0 pi > 0. Thus we have claim (i). On the other hand, for k ≥ 0

and n ≥ k + 1 we obtain

P (xn1 ) ≥

(
k∏
i=0

qiB(xi+1|xi1, i)

)(
n−1∏
i=k+1

piB(xi+1|xi1, k)

)

=

(
k∏
i=0

qi

)
D−k

(
n−1∏
i=k+1

pi

)
B(xnk+1|xk1 , k)

≥ δkB(xnk+1|xk1 , k), (23)

where

δk =

(
k∏
i=0

qi

)
D−k

( ∞∏
i=k+1

pi

)
> 0. (24)

Hence the claim (ii) follows. �

Combining Lemma 2(ii) with the ergodic theorem we obtain the proof of
universality.

Theorem 1 The switch distribution is strongly and weakly universal.

Proof: Let Q be a stationary ergodic distribution. Since the alphabet of Xi

is finite, by the ergodic theorem differences B(Xn|Xn−1
1 , k) − Q(Xn|Xn−1

n−k−1)
converge to 0 Q-almost surely. Hence

lim
n→∞

1

n

[
− logB(Xn

k+1|Xk
1 , k)

]
= lim
n→∞

1

n

[
−

n∑
i=k+1

logQ(Xi|Xi−1
i−k−1)

]
. (25)

Applying the ergodic theorem again, we obtain

lim
n→∞

1

n

[
−

n∑
i=k+1

logQ(Xi|Xi−1
i−k−1)

]
= EQ

[
− logQ(Xk+1|Xk

1 )
]
. (26)

Now we combine these facts with Lemma 2(ii), which yields

lim sup
n→∞

1

n
[− logP (Xn

1 )] ≤ inf
k∈N

lim
n→∞

1

n

[
− logB(Xn

k+1|Xk
1 , k)

]
(27)

= inf
k∈N

EQ
[
− logQ(Xk+1|Xk

1 )
]

= hQ. (28)

Hence the distribution P is strongly universal. Moreover, as shown in [19], the
claim of Lemma 2(i) and the strong universality are sufficient conditions that
distribution P be weakly universal. �
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A naive implementation of the switch distribution P (xn1 ) has the time com-
plexity O(n4) for the following reason: There are O(n2) calls of B(xl+1|xl1, k)
where k, l ≤ n and in a naive implementation each B(xl+1|xl1, k) has time com-
plexity O(kl). This is, however, a very careless approach and usually we can do
much better. Let us denote the maximal length of a substring that appears at
least twice in a string zn1 as

L(zn1 ) := max
{
k : ∃wk1 : c(wk1 |zn1 ) > 1

}
. (29)

For brevity, L(zn1 ) will be called the depth of zn1 .

Theorem 2 The value of the switch distribution P (xn1 ) can be computed in time
O(ns) where s = L(xn1 ) is the depth of xn1 .

Remark: The depth L(Xn
1 ) is bounded by O(log n) for a large class of pro-

cesses called finite-energy processes. They can be obtained by dithering ergodic
processes with an IID noise [34]. For texts in natural language, an experiment
indicates that the depth L(xn1 ) is of order O((log n)α), where α < 4 [35].

Proof: We can knock down the complexity of an individual call of B(xl+1|xl1, k)
to a constant if we store the frequencies of substrings tested in formula (12) and
we increment them on line. Some further important savings can be done if we
know the depth s = L(xn1 ). The value of s can be computed in time O(n) by
building the suffix tree of xn1 [36]. Once we have that s, let us observe that

B(xl+1|xl1, k) = B(xl+1|xl1, s) (30)

holds for all k > s.
Thus we can flush all probabilities P (xn1 , k) for k > s into a dummy variable

P (xn1 , •). In the following, without affecting the value of P (xn1 ), the recursion
(15)–(16) can be altered to

P (xn1 , k) = 0 for k < −1 or k ≥ n, (31)

P (xn1 , •) = 0 for n < s+ 1, (32)

P (xn+1
1 , k) = [pnP (xn1 , k) + qnP (xn1 , k − 1)]B(xn+1|xn1 , k)

for n ≥ 1 and −1 ≤ k ≤ min(n, s), (33)

P (xn+1
1 , •) = [P (xn1 , •) + qnP (xn1 , s)]B(xn+1|xn1 , s) for n ≥ s+ 1. (34)

The formula for the total probability becomes

P (xn1 ) =

s∑
k=−1

P (xn1 , k) + P (xn1 , •). (35)

Hence the time complexity of P (xn1 ) is of order O(ns). �

The space complexity of the switch distribution can also be reduced by
observing that in order to compute B(xl+1|xl1, k) we only need to store the
frequencies of substrings w that appear in xn1 at least twice and the frequencies
of their extensions wa, where a ∈ {1, 2, ..., D}. These strings can be also found
while building the suffix tree of xn1 .

Parameter s in the algorithm (31)–(35) will be called the depth of the switch
distribution. Without a significant change of P (xn1 ), the depth of the switch
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distribution can be chosen as much smaller than the depth of string xn1 . This
fact can be also used for the further speed-up of computation. Fixing the depth,
however, leads asymptotically to the Q-almost sure bound

lim
n→∞

1

n
[− logP (Xn

1 )] = lim
n→∞

1

n

[
− logB(Xn

s+1|Xs
1 , s)

]
(36)

= EQ [− logQ(Xs+1|Xs
1)] (37)

if Q is ergodic. Conditional entropy EQ [− logQ(Xs+1|Xs
1)] is greater than hQ.

III The preadapted switch distribution

Often we want to predict or compress data xn1 that are generated by a class of
complex unknown distributions Q that partly resemble the empirical distribu-
tion of another, much larger data yj1. Such a case arises in particular in the
compression of texts in natural language. Then using a universal distribution
such as the plain switch distribution need not be the best approach, since this
distribution has to learn all frequencies of substrings from the data xn1 . A com-
peting approach is to use frequencies of substrings from the larger data yj1. This
can yield a better compression rate for finite data xn1 . The problem of using
a fixed empirical distribution of yj1 is, however, that it is not universal. The
source of the problem lies in using non-adaptive substring frequencies. A sim-
ple solution for this problem is to initialize the substring frequencies with the
frequencies coming from yj1 and let them gradually adapt to xn1 . In this way we
obtain a preadapted universal compression scheme. One can suppose that this
scheme may compress better than both the plain switch distribution and the
empirical distribution of yj1.

Let us clarify this idea.

Definition 2 (fixed switch distribution) Let yj1 be a fixed sequence, called
the training data. Define conditional probabilities B(xn+1|xn1 ,−1) = D−1 and

B(xn+1|xn1 , k) =
c(xn+1

n+1−k|y
j
1) +B(xn+1|xn1 , k − 1)

c(xnn+1−k|y
j−1
1 ) + 1

. (38)

Using these B(xn+1|xn1 , k), we define the fixed switch distribution P via formulae
(13)–(17).

For short blocks xn1 , the fixed switch distribution can achieve much lower
compression rate than the plain switch distribution but it is not universal. To
obtain a universal distribution which combines the advantages of the fixed switch
distribution and the plain switch distribution, we may consider a compromise
between expressions (12) and (38). This can be done easily as follows.

Definition 3 (preadapted switch distribution) Let yj1 be a fixed sequence,
called the training data. Define conditional probabilities B(xn+1|xn1 ,−1) = D−1

and

B(xn+1|xn1 , k) =
c(xn+1

n+1−k|y
j
1x
n
1 ) +B(xn+1|xn1 , k − 1)

c(xnn+1−k|y
j
1x
n−1
1 ) + 1

. (39)

Using these B(xn+1|xn1 , k), we define the preadapted switch distribution P via
formulae (13)–(17).
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As in the plain case, we can show that the preadapted switch distribution
is universal and efficiently computable. The proof of universality relies on the
observation that the influence of training data yj1 on the probability of long
blocks xn1 is asymptotically negligible.

Theorem 3 The preadapted switch distribution is strongly and weakly univer-
sal.

Proof: Analogously to the plain switch distribution, the preadapted switch dis-
tribution satisfies the analogue of 2. Having this fact in mind, we can prove the
universality. Let Q be a stationary ergodic distribution. Since the alphabet of
Xi is finite, by the ergodic theorem differences B(Xn|Xn−1

1 , k)−Q(Xn|Xn−1
n−k−1)

converge to 0 Q-almost surely. The further reasoning proceeds like the proof of
Theorem 1. �

Theorem 4 The value of the preadapted switch distribution P (xn1 ) can be com-
puted in time O((j + n)s) where s = L(yj1x

n
1 ).

Proof: The complexity of an individual call of B(xl+1|xl1, k) can be reduced to
a constant if we record the frequencies of substrings tested in formula (39) and
we increment them on line. Initializing these frequencies takes time O(js). Let
us also observe that

B(xl+1|xl1, k) = B(xl+1|xl1, s) (40)

holds for all k > s. Thus without affecting the value of P (xn1 ), the algorithm
(15)–(16) can be changed to (31)–(34) and the formula for the total probability
becomes (35). Thus the time complexity of P (xn1 ) is of order O((j + n)s). �

The space complexity of the preadapted switch distribution can also be re-
duced by noticing that in order to compute B(xl+1|xl1, k) we only have to record
the frequencies of substrings w that appear in yj1x

n
1 at least twice and the fre-

quencies of their extensions wa, where a ∈ {1, 2, ..., D}.

IV Measuring codewise Hilberg exponent γ

Here we describe a simple experiment that we have performed using the three
switch distributions and the Lempel-Ziv code. As the training data we have
taken The Complete Memoirs by J. Casanova (6,719,801 characters), and as
the compressed text—Gulliver’s Travels by J. Swift (579,438 characters). Both
texts were downloaded from the Project Gutenberg.2 The alphabet size was set
as D = 256. The switch distributions were computed using transition probabil-
ities pn of form (18) with α = 1.001 since we observed that the lower the α is
the better compression is achieved. Moreover, we have used algorithm (31)–(35)
with fixed depth s = 7 since more than 99.99% of the probability mass in the
observed cases concentrated in P (xn1 , k) with k ≤ 4. Hence it was a safe ap-
proximation. The Lempel-Ziv code was computed by our own implementation
for the ASCII encoding of the text. The results are presented in Tables 1 and 2
and Figures 2 and 3.

2http://www.gutenberg.org/
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Preadapted Switch / Gulliver’s Travels
Fixed Switch / Gulliver’s Travels

Figure 2: Compression rates for the switch distributions and the LZ code.
The solid line is the least square regression y = 11.51n−0.127, computed for
the plain switch distribution. The dotted line is the least square regression
y = 12.66n−0.0625, computed for the LZ code.

HP (xn1 )/n [bpc]
n LZ plain switch preadapted switch fixed switch
2 7.7459 8.3547 6.4605 7.2124
4 10.2089 8.6367 6.2363 6.2506
8 10.1347 8.4657 5.847 5.5963
16 10.1122 8.1227 5.8676 5.6687
32 9.9482 6.9604 5.1395 5.0712
64 9.8816 6.8478 4.9319 4.8489
128 9.4894 6.7355 5.254 5.8753
256 9.1817 5.9023 4.9481 5.2167
512 8.8427 5.2381 4.7506 4.8141
1024 8.5069 4.6831 4.414 4.626
2048 8.0525 4.1411 4.0127 4.4325
4096 7.7158 3.9809 3.8476 4.4953
8192 7.3084 3.6209 3.5361 4.4023
16384 6.9471 3.3941 3.3238 4.3935
32768 6.5467 3.0459 3.0114 4.3422
65536 6.1909 2.7745 2.7504 4.327
131072 5.865 2.5342 2.5223 4.3188
262144 5.5665 2.3759 2.3664 4.3142
524288 5.2928 2.2252 2.213 4.3126

Table 1: Compression rates for the switch distributions and the LZ code.
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Figure 3: Pointwise mutual information for the switch distributions and the
LZ code. The solid line is the least square regression y = 1.395n0.834, computed
for the plain switch distribution. The dashed line is the least square regression
y = 0.946n0.863, computed for the preadapted switch distribution. The dotted
line is the least square regression y = 1.209n0.887, computed for the LZ code.
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IP (x
n/2
1 ;xnn/2+1) [bits]

n LZ plain switch preadapted switch fixed switch
2 -1.32 -0.71 -0.64 -2.14
4 -6.04 -1.13 -0.67 0.52
8 -3.99 1.37 -0.5 0.62
16 -4.96 5.3 1.27 0.59
32 5.25 37.5 4.96 0.65
64 4.26 38.26 1.8 0.62
128 27.27 49.6 28.22 -2.47
256 61.92 100.78 -3.89 0.57
512 155.1 166.76 -29.5 0.64
1024 353.89 345.54 156.62 0.64
2048 789.56 668.01 441.52 0.63
4096 1554.31 954.54 786.68 0.65
8192 3187.28 2128.53 1945.46 0.65
16384 6119.95 4017.21 3558.77 0.64
32768 11608.28 7062.68 6551.43 0.65
65536 22241.83 13877.79 13549.91 0.63
131072 41621.75 26852.4 25727.25 0.64
262144 78530.25 47113.91 45313.69 0.59
524288 142330.87 81859.85 81873.95 0.6

Table 2: Pointwise mutual information for the switch distributions and the LZ
code.

In Figure 2 and Table 1, the quality of compression can be compared for
the particular distributions. Among the universal schemes, the best compres-
sion is given by the preadapted switch distribution followed by the plain switch
distribution followed by the LZ code. However, our hope that the preadapted
switch distribution will significantly beat the plain switch distribution has not
been fully confirmed. Indeed for short blocks the preadapted switch distribu-
tion mimics the behavior of the fixed switch distribution and performs much
better than the plain switch distribution. Alas, for long blocks the difference
between the two universal switch distributions becomes negligible. Ultimately,
both universal switch distributions compress the text twice better than the LZ
code. For no universal code we can observe the ultimate stabilization of the
compression rate. On the other hand, the fixed switch distribution, which is
not universal, stabilizes ultimately at the constant rate of 4.31 bpc.

The stabilization of the fixed switch distribution is clearly visible in Figure 3
and Table 2, which concern the pointwise mutual information. Namely, we can
see that pointwise mutual information for the fixed switch distribution does not
grow, whereas for the other distributions, which are universal, the pointwise mu-
tual information grows rather fast. The tightest bound for the pointwise mutual
information is obtained in the case of the plain switch distribution, which gives
the exponent γ = 0.83 for the codewise Hilberg conjecture (7). It is surprising
that the pointwise mutual information for the two other universal distributions
grows almost at the same rate, despite the large difference of compression rates
between the universal switch distributions and the LZ code.

As we have indicated in the Introduction, observing γ > 0 for the switch
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distribution, we have to reject the hypothesis that the source is a Markov chain.
Possibly, Hilberg’s conjecture (3) may be true but we need still some stronger
evidence for this hypothesis such as a lower bound for the exponent β.
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