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Hilberg Exponents:

New Measures of Long Memory in the Process

Łukasz Dębowski∗

Abstract

The paper concerns the rates of power-law growth of mutual infor-

mation computed for a stationary measure or for a universal code. The

rates are called Hilberg exponents and four such quantities are defined for

each measure and each code: two random exponents and two expected

exponents. A particularly interesting case arises for conditional algorith-

mic mutual information. In this case, the random Hilberg exponents are

almost surely constant on ergodic sources and are bounded by the ex-

pected Hilberg exponents. This property is a “second-order” analogue

of the Shannon-McMillan-Breiman theorem, proved without invoking the

ergodic theorem. It carries over to Hilberg exponents for the underly-

ing probability measure via Shannon-Fano coding and Barron inequality.

Moreover, the expected Hilberg exponents can be linked for different uni-

versal codes. Namely, if one code dominates another, the expected Hilberg

exponents are greater for the former than for the latter. The paper is con-

cluded by an evaluation of Hilberg exponents for certain sources such as

the mixture Bernoulli process and the Santa Fe processes.
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I Preliminaries and main results

According to a conjecture by Hilberg [1, 2], the mutual information between two
adjacent long blocks of text in natural language grows like a power of the block
length. This property strongly differentiates natural language from k-parameter
sources, for which the mutual information is proportional to the logarithm of
the block length [3, 4, 5]. In [6, 7] a class of stationary processes, called Santa
Fe processes, has been exhibited, which feature the power-law growth of mutual
information. Moreover, it was shown in [6] that Hilberg’s conjecture implies Her-
dan’s law, an integrated version of the famous Zipf’s law in linguistics [8]. Later,
Dębowski [9, 10] tested Hilberg’s conjecture experimentally by approximating
the mutual information with the Lempel-Ziv code [11] and a newly introduced
universal code called switch distribution [10]. Whereas the estimates of mutual
information for the Lempel-Ziv code grow roughly as a power law for both a
k-parameter source and natural language, cf. [12], the other code does reveal
the difference predicted by Hilberg’s conjecture: the estimates of mutual infor-
mation for the switch distribution grow as a power law for natural language
whereas only logarithmically for a k-parameter source [13].
To provide more theory for Hilberg’s conjecture, in this paper we abstract

from its empirical verification and we investigate the bounding rates for power-
law growth of mutual information evaluated for an arbitrary stationary proba-
bility measure or for a universal code. We call these rates Hilberg exponents,
to commemorate Hilberg’s insight. The formal definition rests on the following
preliminaries:

(i) Let X be a countable alphabet. Consider a probability space (Ω,J , Q)
with Ω = X

Z, discrete random variables Xk : Ω ∋ (xi)i∈Z 7→ xk ∈ X, and
a probability measure Q which is stationary on (Xi)i∈Z but not necessarily
ergodic. Blocks of symbols or variables are denoted as Xm

n = (Xi)n≤i≤m.
We introduce shorthand notation Q(xn

1 ) = Q(Xn
1 = xn

1 ). The expectation
of random variable X with respect to Q is written EQ X and the variance
is VarQ X .

(ii) Moreover, measure Q will be compared with codes, which for uniformity
of notation will be represented in our approach as incomplete measures P ,
i.e., a code P in our approach is a function that satisfies P (xn

1 ) ≥ 0 and
the Kraft inequality

∑

xn
1
P (xn

1 ) ≤ 1.1 Subsequently, for a code P (or for

measure Q), we define the pointwise mutual information between blocks

IP (n) = − logP (X0
−n+1)− logP (Xn

1 ) + logP (Xn
−n+1). (1)

In the formula log stands for the binary logarithm.

Now we may define the Hilberg exponents:

Definition 1 (Hilberg exponents) Define the positive logarithm

log+ x =

{

log(x+ 1), x ≥ 0,

0, x < 0.
(2)

1Here we deviate from the standard definition. Usually a code is a function C : X∗ →

{0, 1}∗ with length
∣

∣C(xn
1 )

∣

∣, where 2−|C(xn
1 )| is a certain code in our sense. An instance of

such a code C is the Lempel-Ziv code [11].
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For a code P we introduce

γ+
P = lim sup

n→∞

log+ IP (n)

logn
, (3)

γ−
P = lim inf

n→∞

log+ IP (n)

logn
, (4)

δ+P = lim sup
n→∞

log+ EQ IP (n)

logn
, (5)

δ−P = lim inf
n→∞

log+ EQ IP (n)

logn
. (6)

The above numbers will be called: γ+
P—the upper random Hilberg exponent, γ

−
P—

the lower random Hilberg exponent, δ+P—the upper expected Hilberg exponent,
and δ−P—the lower expected Hilberg exponent.

Exponents γ±
P are random variables, whereas δ

±
P are constants. By definition,

γ+
P ≥ γ−

P ≥ 0, (7)

δ+P ≥ δ−P ≥ 0. (8)

Let us remark that Hilberg exponents for P = Q quantify some sort of long-
range non-Markovian dependence in the process. In particular, for Q being the
measure of an IID process or a hidden Markov process with a finite number of
hidden states, mutual information EQ IQ(n) is zero or bounded, respectively,
and hence δ±Q = γ±

Q = 0. The same is true for k-parameter sources since

IQ(n) is proportional to k logn [3, 4, 5]. However, if information IQ(n) grows
proportionally to nβ where β ∈ [0, 1] then γ±

Q = δ±Q = β. There exist some
simple non-Markovian but still mixing sources [7], being a generalization of the
Santa Fe processes, for which δ±Q can be an arbitrary number in range (0, 1).
The are a few reasons why we introduce so many Hilberg exponents, for

each stationary measure Q and each code P . The first one is that the pointwise
mutual information IP (n) may grow by leaps and bounds. Consequently, the
upper bounding power-law function may rise faster than the respective lower
bounding power-law function. This may happen indeed. The second reason is
that, a priori, different rates of growth might be observed for the pointwise and
the expected mutual information. If they are equal, this should be separately
proved. As for the final reason, whereas we are here most interested in case P =
Q, some reason for investigating the pointwise mutual information IP (n) for
P 6= Q is that, paradoxically, sometimes it is easier to say something about Q-
typical behavior of IP (n) than about IQ(n). As we will show, this concerns not
only statistical applications, where we do not know Q, but also some theoretical
results, where Q is known. Thus our definition is not too generic.
In the following we will show that Hilberg exponents satisfy a number of

relationships that impose some order among them. The first thing we note are
inequalities

γ−
P ≤ γ+

P ≤ 1, (9)

δ−P ≤ δ+P ≤ 1, (10)

which hold in the following cases:
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(i) For P = Q: Let k(n) and l(n) be nondecreasing functions of n, where
k(n) + l(n) → ∞. By an easy generalization of the Shannon-McMillan-
Breiman theorem [14, 15, 16], we have Q-almost surely that

lim
n→∞

1

k(n) + l(n) + 1

[

− logQ(X
l(n)
−k(n))

]

= hQ, (11)

where hQ is the entropy rate of measure Q (hQ is a random variable if Q
is nonergodic). Hence limn→∞ IQ(n)/n = 0 and so γ−

Q ≤ γ+
Q ≤ 1 holds

Q-almost surely. Moreover, by stationarity,

lim
n→∞

1

k(n) + l(n) + 1
EQ

[

− logQ(X
l(n)
−k(n))

]

= EQ hQ. (12)

Hence limn→∞ EQ IQ(n)/n = 0 and so δ−Q ≤ δ+Q ≤ 1.

(ii) For P being universal almost surely and in expectation: Let k(n) and l(n)
be nondecreasing functions of n, where k(n) + l(n) → ∞, as previously.
Here, we will say that a code P is universal almost surely if for every
stationary distribution Q we have Q-almost surely

lim
n→∞

1

k(n) + l(n) + 1

[

− logP (X
l(n)
−k(n))

]

= hQ, (13)

where hQ is the entropy rate of measureQ. In that case limn→∞ IP (n)/n =
0 so γ−

P ≤ γ+
P ≤ 1 holds Q-almost surely. Moreover, we will say that a

code P is universal in expectation if for every stationary distribution Q
we have

lim
n→∞

1

k(n) + l(n) + 1
EQ

[

− logP (X
l(n)
−k(n))

]

= EQ hQ. (14)

In that case limn→∞ EQ IP (n)/n = 0 so δ−P ≤ δ+P ≤ 1.

Equality (13) can be satisfied since stationary ergodic measures are mutually
singular. Moreover, almost surely universal codes exist if and only if the al-
phabet X is finite [17]. Some example of an almost surely universal code is
the Lempel-Ziv code [11]. We also note that an almost surely universal code

P is universal in expectation if − logP (X
l(n)
−k(n)) ≤ C(k(n) + l(n) + 1) for some

constant C > 0 [18]. In particular, the Lempel-Ziv code satisfies this inequality.
As we have indicated, there are quite many Hilberg exponents, for different

measures and for different codes. Seeking for some order in this menagerie, we
may look for results of three kinds:

(i) For a fixed code P and a measure Q, we relate the random exponents γ±
P

and the expected exponents δ±P .

(ii) For two codes P and R, we relate the exponents of a fixed kind, say δ±P
and δ±R for some measure Q.

(iii) For a fixed code P and a measure Q, we directly evaluate exponents γ±
P

and δ±P .
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In the following we will present some results of these three sorts. They have
varying weight but they shed some light onto unknown territory.
The first kind of results could be called “second-order” analogues of the

Shannon-McMillan-Breiman (SMB) theorem (11). The original idea of the SMB
theorem was to relate the asymptotic growth of pointwise and expected entropies
for an ergodic process Q with P = Q. With some partial success, this idea was
then extended to the case when the code P was different to the underlying
measure Q [19, 20, 21]. In contrast, relating the random Hilberg exponents γ±

P

and the expected Hilberg exponents δ±P means relating the speed of growth of
the pointwise and expected mutual informations, which are differences of the
respective entropies. This is a somewhat subtler effect than the SMB theorem,
hence our “second-order” terminology. In this domain we have achieved an in-
teresting result. For an arbitrary code P with exponent δ−P > 0, let us introduce
parameter

ǫP = lim sup
n→∞

log+
[

VarQ IP (n)/EQ IP (n)
]

logn
. (15)

Our result is a sandwich bound for random Hilberg exponents in terms of the
expected Hilberg exponents for P = Q:

Theorem 1 For an ergodic measure Q over a finite alphabet, random Hilberg
exponents γ±

Q are almost surely constant. Moreover, we have Q-almost surely

δ+Q ≥ γ+
Q ≥ δ+Q − ǫQ, (16)

δ−Q ≥ γ−
Q ≥ δ−Q − ǫQ, (17)

where the left inequalities hold without restrictions, whereas the right inequalities
hold for δ−Q > 0.

As we have written, this theorem may be considered an analogue of the SMB
theorem for the mutual information of the underlying measure.
We cannot refrain from mentioning the uncommon technique that has led

us to proving Theorem 1. It is remarkable that this result can be demon-
strated without invoking the ergodic theorem. Instead, we use an auxiliary
“Kolmogorov code”

S(xn
1 ) = 2−K(xn

1 |F ), (18)

where K(xn
1 |F ) is the prefix-free Kolmogorov complexity of a string xn

1 given
an object F on an additional infinite tape [22, 23]. The object F can be an-
other string or, in our application, a definition of some measure. Respectively,
quantity IS(n) is the conditional algorithmic mutual information. By some ap-
proximate translation invariance of Kolmogorov complexity, we can show that
the random Hilberg exponents γ±

S are almost surely constant on ergodic sources
Q. This fact constitutes a novel contribution of algorithmic information the-
ory to the study of stochastic processes. Further, using Markov inequality and
Borel-Cantelli lemma, we can show that γ±

S ≤ δ±S on ergodic sources Q, as
well. To complete the rough idea of the proof of Theorem 1, let us mention
that γ±

S = γ±
Q and δ

±
S = δ±Q if we condition the Kolmogorov complexity on the

distribution Q, i.e., if we plug F = Q in (18). This follows by Shannon-Fano
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coding and Barron inequality [24, Theorem 3.1]. In this way we obtain the
left inequalities in (16)–(17). The right inequalities are demonstrated in quite
a similar fashion, using some auxiliary quantities for the Kolmogorov code S,
which we will call inverse Hilberg exponents.
Now let us proceed to the second kind of results, those for two codes. Here

our results are modest. Let us note that in applications we often do not know
the underlying measure and we cannot compute the Kolmogorov complexity
but we can compute some other universal codes such as the Lempel-Ziv code.
Thus it would be advisable to relate Hilberg exponents for computable (in the
sense of the theory of computation) universal codes to Hilberg exponents for
the Kolmogorov code S or the underlying measure Q. For a universal code, we
may suppose that the longer the code is, the larger Hilberg exponents it has.
This hope is partly confirmed by the following simple theorem.

Theorem 2 Let fn be such that

lim sup
n→∞

log+ |fn|
logn

= 0. (19)

Suppose that for codes P and R and a stationary measure Q we have

EQ [− logP (Xn
1 )] ≤ EQ [− logR(Xn

1 )] + fn, (20)

lim
n→∞

1

n
EQ [− logP (Xn

1 )] = lim
n→∞

1

n
EQ [− logR(Xn

1 )] . (21)

Then

δ+R ≥ δ−P . (22)

The simple proof of the above proposition rests on this lemma:

Lemma 1 ([6]) Consider a function G : N → R such that limk G(k)/k = 0
and G(n) ≥ 0 for all but finitely many n. For infinitely many n, we have
2G(n)−G(2n) ≥ 0.

To prove Theorem 2, it suffices to put G(n) = − logR(Xn
1 ) + logP (Xn

1 ) + fn
and use subadditivity of the function log+, i.e., inequality

log+(x + y) ≤ log+ x+ log+ y. (23)

The most useful applications of Theorem 2 are as follows: Condition (20) is
satisfied, with fn = 2 logn + C, where C > 0, for any computable code R and
unconditional Kolmogorov code P (xn

1 ) = 2−K(xn
1 ), where K(xn

1 ) is the uncon-
ditional prefix-free Kolmogorov complexity of a string xn

1 . Moreover condition
(20) is satisfied, with fn = 0, for any code R and P = Q. Condition (21) is sat-
isfied if P and R are universal in expectation or if R is universal in expectation
and P = Q. Moreover, conditions (20) and (21) are satisfied with fn = 0 for
R = Q and P = E [25], where E is the random ergodic measure given by

E = Q(·|I) (24)

where I is the shift-invariant algebra [26, 6].
Let us remark that inequality (22) is not very strong. We have been able

to relate only the upper expected Hilberg exponents with the lower expected
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Hilberg exponent. It would be more interesting if, for two different codes, we
were able to compare the random exponents of the same kind, i.e., an upper
exponent with an upper exponent and a lower exponent with a lower exponent.
This requires relating functions IP (n) and IR(n). But even relatively simple
cases, such as comparing IQ(n) and IE(n), where E is the random ergodic
measure (24), are not trivial. In that case, IQ(n) − IE(n) equals triple mutual
information between two blocks and the shift-invariant algebra, which may be
negative. Therefore we leave strenghtening Theorem 2 as an open problem.
To end this introduction, we mention the third kind of results, which concern

analytic evaluation of Hilberg exponents for concrete examples of processes. As
we have indicated, the expected Hilberg exponents for IID processes, Markov
processes, and hidden Markov processes do vanish because the mutual informa-
tion is either zero or bounded. To investigate less trivial cases, in this paper, we
will consider three kinds of other sources. These will be: the mixture Bernoulli
process, the original Santa Fe processes mentioned in the very beginning of this
paper [6, 7], and some modification of the Santa Fe processes. It should be noted
that all analyzed processes are conditionally IID. The pointwise mutual infor-
mation IQ(n) for such sources is equal to a difference of redundancies. As shown
in [3, 4, 5], in case of k-parameter processes, such as the mixture Bernoulli pro-
cess, the redundancy grows proportionally to k log n. For this reason all Hilberg
exponents do vanish for the mixture Bernoulli process. For completeness we will
reproduce the relevant simple calculation in this paper. In contrast, the second
example, the original Santa Fe process, exhibits a stronger dependence, namely
IQ(n) grows proportionally to nβ, where β ∈ (0, 1) is a certain free parameter
of the process. Therefore all four Hilberg exponents are equal to β. In the third
example, we can, however, modify the definition of the Santa Fe process so that
the upper expected exponent is δ+Q = β for an arbitrary parameter β ∈ (0, 1)

whereas the lower expected exponent is δ−Q = 0. This shows that upper and
lower Hilberg exponents need not be equal.
The further contents of the paper is as follows. In Section II, we discuss

properties of Hilberg exponents for the Kolmogorov code S. In Section III,
we translate these results for the underlying measure Q, proving Theorem 1.
Finally, in Section IV, we evaluate Hilberg exponents for the mixture Bernoulli
process and the Santa Fe processes.

II Kolmogorov code

A prominent role in our demonstration of Theorem 1 will be played by the Kol-
mogorov code (18), whose properties will be discussed in this section. Although
the results of this section are used in the next section to prove Theorem 1,
they can be regarded as facts of some independent interest. For this reason, we
assemble them into a separate narrative unit.
To begin with, let us note that, for a finite alphabet X, the Kolmogorov code

is universal almost surely and in expectation, simply because it is dominated
by the Lempel-Ziv code. Independently, universality of the Kolmogorov code
has been previously shown by Brudno [27] in the context of dynamical systems.
Although Kolmogorov complexity itself is incomputable, the Hilberg exponents
for the Kolmogorov code can be evaluated in some cases and enjoy a few nice
properties. These properties stem from the fact that function IS(n) equals the
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algorithmic mutual information

IS(n) = K(X0
−n+1|F ) +K(Xn

1 |F )−K(Xn
−n+1|F ), (25)

an important concept in algorithmic information theory.
Now let us present some new results. A simple but important fact is that

the random Hilberg exponents are almost surely constant on ergodic sources.
This fact is a consequence of approximate shift-invariance of Kolmogorov com-
plexity. That property seemingly has not been noticed so far and it provides an
interesting link between algorithmic complexity and ergodic theory.

Theorem 3 Consider code (18) and an ergodic measure Q over a finite alphabet
X. Exponents γ−

S and γ
+
S are Q-almost surely constant.

Remark: The random Hilberg exponents can be different for different ergodic
sources, so for nonergodic sources they can be random.

Proof: For t > 0, from the shortest program that computes xn
1 , we can con-

struct a program that computes xt+n
t+1 , whose length exceeds the length of the

program for xn
1 no more than K(xn+t

n+1|F )+C, where C > 0. Analogously, from

the shortest program that computes xt+n
t+1 , we can construct a program that

computes xn
1 , whose length exceeds the length of the program for x

t+n
t+1 no more

than K(xt
1|F ) + C. This yields

∣

∣K(xn
1 |F )−K(xt+n

t+1 |F )
∣

∣ ≤ max
{

K(xt
1|F ),K(xn+t

n+1|F )
}

+ C.

Thus

∣

∣IS(n)−
[

K(Xt
t−n+1|F )−K(Xt+n

t+1 |F ) +K(Xt+n
t−n+1|F )

]
∣

∣

≤ 3max
{

K(X−n+t
−n+1|F ),K(Xt

1|F ),K(Xn+t
n+1|F )

}

+ 3C.

Now we notice that for a finite alphabet we have

K(X−n+t
−n+1|F ),K(Xt

1|F ),K(Xn+t
n+1|F ) ≤ Ct,

where C > 0. Hence by inequality (23) functions γ−
S and γ

+
S are shift-invariant.

Since Q is ergodic, it means they must be Q-almost surely constant. �

Subsequently, we will give some bounds for the random Hilberg exponents
in terms of the expected Hilberg exponents. To achieve this goal, we need
two lemmas and some additional definition. In the following, we will write

a(n)
+
> b(n) if a(n) + C ≥ b(n) for all arguments n and a C ≥ 0, whereas

a(n)
+
< b(n) if a(n) ≤ b(n) + C under the same conditions. We also write

a(n)
+
= b(n) if a(n)

+
> b(n) and a(n)

+
< b(n).

The following lemma is the first step on our way. It says that mutual infor-
mation IS(n) is almost a nondecreasing function.

Lemma 2 Consider code (18). For all m ≥ 1, we have

IS(n+m)
+
> IS(n)− 4 logm. (26)

7



Proof: For strings u and v, denote the algorithmic mutual information

I(u : v|F ) = K(u|F ) +K(v|F )−K(u, v|F ). (27)

We have I(u : v|F )
+
> 0 [23]. Concatenating strings decreases their complexity.

Namely,

K(uv|F )
+
< K(u, v|F )

+
< K(uv|F ) +K(|v| |uv, F ),

where |v| is the length of v. Hence

IS(n+m) + 4 logm
+
> I(a, b : c, d|F )

whereas

IS(n)
+
= I(b : c|F )

where a = X−n
−n+m+1, b = X0

−n+1, c = Xn
1 , and d = Xm

n+1.

Using identity K(u, v|F )
+
= K(u|F )+K(v|u,K(u|F ), F ) [23], we can further

show the data processing inequality for the algorithmic mutual information,

I(a, b : c, d|F )
+
= I(a, b : c|F ) + I(a, b : d|c,K(c|F ), F )

+
> I(a, b : c|F )

+
= I(b : c|F ) + I(a : c|b,K(b|F ), F )

+
> I(b : c|F ),

which proves the claim. �

With the above lemma we can prove another auxiliary result. This result
says that Hilberg exponents for the Kolmogorov code can be defined using only
a subsequence of exponentially growing block lengths.

Lemma 3 Consider code (18). We have

γ+
S = lim sup

k→∞

log+ IS(2k)

log 2k
, (28)

γ−
S = lim inf

k→∞

log+ IS(2k)

log 2k
, (29)

δ+S = lim sup
k→∞

log+ EQ IS(2k)

log 2k
, (30)

δ−S = lim inf
k→∞

log+ EQ IS(2k)

log 2k
. (31)

Proof: By Lemma 2, for n = 2k +m, where 0 ≤ m < 2k, we have

IS(n) ≤ IS(2k+1) + 4 log(2k −m) + C ≤ IS(2k+1) + 4k + C.

8



Thus

lim sup
n→∞

log+ IS(n)

logn
≤ lim sup

k→∞

log+(IS(2k+1) + 4k + C)

log 2k

≤ lim sup
k→∞

log+ IS(2k+1)

log 2k
+ lim sup

k→∞

log+(4k + C)

log 2k

= lim sup
k→∞

log+ IS(2k)

log 2k
.

This proves (28) since trivially we have a converse inequality.
Now let n = 2k +m, where 0 < m ≤ 2k. From (26), we obtain

IS(n) ≥ IS(2k)− 4 logm− C ≥ IS(2k)− 4k − C.

Thus

lim inf
n→∞

log+ IS(n)

logn
≥ lim inf

k→∞

log+(IS(2k)− 4k − C)

log 2k+1

≥ lim inf
k→∞

log+ IS(2k)

log 2k+1
− lim sup

k→∞

log+(4k + C)

log 2k+1

= lim inf
k→∞

log+ IS(2k)

log 2k
.

This proves (29) for trivially we have a converse inequality.
The proofs of (30) and (31) are analogous. �

To finish the preparations, we need some auxiliary concept. Recall that
algorithmic mutual information (27) is greater than a constant. Using this
result, for the Kolmogorov code we can introduce the following inverse Hilberg
exponents.

Definition 2 (inverse Hilberg exponents) Consider code (18). Let B be
such that IS(n) +B ≥ 1. Define

ζ+S = lim sup
n→∞

log+
[

EQ(I
S(n) +B)−1

]−1

logn
, (32)

ζ−S = lim inf
n→∞

log+
[

EQ(I
S(n) +B)−1

]−1

logn
. (33)

The above numbers will be called: ζ+S—the upper inverse expected Hilberg expo-
nent and ζ−S—the lower inverse expected Hilberg exponent.

We have ζ+S ≥ ζ−S ≥ 0, whereas δ+S ≥ ζ+S and δ
−
S ≥ ζ−S by the Jensen inequality

EQ X ≥
[

EQ X−1
]−1
for X > 0.

Now we may state and prove the theorem which links the expected and the
random Hilberg exponents for the Kolmogorov code. It will be first stated and
proved for general stationary (not necessarily ergodic) measures over a countable
alphabet. Subsequently, we will present a corollary for ergodic measures and
some strengthening for a finite alphabet.

Theorem 4 Consider code (18) and an arbitrary stationary measure Q. Then:

9



(i) δ+S ≥ γ+
S Q-almost surely and ess supQ γ+

S ≥ ζ+S .

(ii) δ−S ≥ ess infQ γ−
S and γ

−
S ≥ ζ−S Q-almost surely.

Proof:

(i) Let ǫ > 0. Observe that from the Markov inequality we have

∞
∑

k=1

Q

(

IS(2k) +B

(2k)δ
+

S
+ǫ

≥ 1

)

≤
∞
∑

k=1

EQ IS(2k) +B

(2k)δ
+

S
+ǫ

≤ A+
∞
∑

k=1

(2k)δ
+

S
+ǫ/2

(2k)δ
+

S
+ǫ

< ∞,

where A < ∞. Hence, by the Borel-Cantelli lemma, we have Q-almost
surely

lim sup
k→∞

log+(IS(2k) +B)

log 2k
≤ δ+S + ǫ.

By arbitrariness of ǫ and by inequality (23), the bound is true with ǫ = 0
and B = 0, which implies δ+S ≥ γ+

S Q-almost surely by Lemma 3.

Now we will prove that ess supQ γ+
S ≥ ζ+S . Denote ess supQ γ+

S = β and

let ǫ > 0. Then Q(γ+
S > β + ǫ/2) = 0 whence

Q
(

IS(n) +B ≥ nβ+ǫ infinitely often
)

= 0. (34)

Denote p(n) = Q
(

IS(n) +B < nβ+ǫ
)

. We have

EQ

(

IS(n) +B
)−1 ≥ n−β−ǫp(n).

By (34), limn→∞ p(n) = 1. Hence ζ+S ≤ β + ǫ. Since ǫ was arbitrary, this
implies the claim.

(ii) The proof is analogous to the proof of (i). Write ess infQ γ−
S = β and let

ǫ > 0. Then Q(γ−
S < β − ǫ/2) = 0 whence

Q
(

IS(n) ≤ nβ−ǫ infinitely often
)

= 0. (35)

Denote p(n) = Q
(

IS(n) > nβ−ǫ
)

. We have

EQ IS(n) ≥ nβ−ǫp(n).

By (35), limn→∞ p(n) = 1. Thus δ−S ≥ β − ǫ. Since ǫ was arbitrary, this
implies δ−S ≥ ess infQ γ−

S .

Now we will show the second claim. Let ǫ > 0. From the Markov inequality

∞
∑

k=1

Q

(

IS(2k) +B

(2k)ζ
−

S
−ǫ

≤ 1

)

≤
∞
∑

k=1

EQ(I
S(2k) + B)−1

(2k)−ζ−

S
+ǫ

≤ A+

∞
∑

k=1

(2k)−ζ−

S
+ǫ/2

(2k)−ζ−

S
+ǫ

< ∞,

10



where A < ∞. Thus, by the Borel-Cantelli lemma, Q-almost surely

lim inf
k→∞

log+(IS(2k) +B)

log 2k
≥ ζ−S − ǫ.

As in (i), we may put ǫ = 0 and B = 0, whence γ−
S ≥ ζ−S Q-almost surely

follows by Lemma 3.

�

Let us also present some add-ons to Theorem 4. Using Theorem 3, Theorem
4 can be specialized for ergodic measures over a finite alphabet in an interesting
way, which will be used later.

Corollary 1 By Theorem 3, for an ergodic measure Q over a finite alphabet,
equalities γ+

S = ess supQ γ+
S and γ

−
S = ess infQ γ−

S hold Q-almost surely. Hence,
Q-almost surely we have

δ+S ≥ γ+
S ≥ ζ+S , (36)

δ−S ≥ γ−
S ≥ ζ−S . (37)

It is remarkable that inequalities (36) and (37) are demonstrated without in-
voking the ergodic theorem.
Let us observe one more simple fact. Namely, for a finite alphabet X, the

bound for the random Hilberg exponents given by Theorem 4 can be slightly
strengthened since ess supQ γ+

S ≥ EQ γ+
S and EQ γ−

S ≥ ess infQ γ−
S .

Theorem 5 Consider code (18) and an arbitrary stationary measure Q. Then:

(i) EQ γ+
S ≥ ζ+S if the alphabet X is finite.

(ii) δ−S ≥ EQ γ−
S .

Proof:

(i) Function − log is convex. Hence we can use the Fatou lemma and the
Jensen inequality,

EQ γ+
S = EQ lim sup

n→∞

log(IS(n) +B)

logn

≥ lim sup
n→∞

EQ
log(IS(n) +B)

logn

≥ lim sup
n→∞

EQ

[

− log(IS(n) +B)−1

logn

]

≥ lim sup
n→∞

[

− logEQ(I
S(n) +B)−1

logn

]

= ζ+S ,

since the functions under the limits are bounded above.

11



(ii) Reasoning as above,

EQ γ−
S = EQ lim inf

n→∞

log(IS(n) +B)

logn

≤ lim inf
n→∞

EQ
log(IS(n) +B)

logn

≤ lim inf
n→∞

logEQ(I
S(n) +B)

logn
= δ−S ,

since the functions under the limits are nonnegative.

�

III The underlying measure

In this section we will prove Theorem 1, which provides a bound for the random
Hilberg exponents of the underlying measure Q in terms of the measure’s ex-
pected Hilberg exponents. For this goal, we will use the results of the previous
section. Our technique rests on a few observations. The first observation is
that four out of six Hilberg exponents for the Kolmogorov code are equal to the
Hilberg exponents for the underlying measure Q if we use a special conditional
Kolmogorov code. In this code, the definition of measure Q is fed to the Turing
machine on an additional infinite tape, i.e., F = Q. By the Shannon-Fano cod-
ing and the Barron inequality, such a Kolmogorov code is equal to the measure
Q in a sufficiently good approximation.

Theorem 6 Consider code (18) with F = Q, where Q is an arbitrary stationary
measure. Then:

(i) δ−S = δ−Q and δ
+
S = δ+Q.

(ii) γ−
S = γ−

Q and γ
+
S = γ+

Q Q-almost surely.

Proof:

(i) The Shannon-Fano coding gives

− logS(xn
1 ) = K(xn

1 |Q) ≤ − logQ(xn
1 ) + 2 logn+ C (38)

for a constant C > 0 [28]. Hence from the source coding inequality

EQ HS(n) ≥ EQ HQ(n),

we obtain

∣

∣EQ IS(n)−EQ IQ(n)
∣

∣ ≤ 4 logn+ 2C. (39)

Thus by inequality (23), δ−S = δ−Q and δ
+
S = δ+Q.

12



(ii) Observe that Q-almost surely we have the following Barron inequalities,
viz. [24, Theorem 3.1],

lim
n→∞

[

− logS(Xn
−n+1) + logQ(Xn

−n+1)
]

= ∞,

lim
n→∞

[− logS(Xn
1 ) + logQ(Xn

1 )] = ∞,

lim
n→∞

[

− logS(X2n
−n+1) + logQ(Xn

−n+1)
]

= ∞.

Combining these facts with the Shannon-Fano coding (38) yields

∣

∣IS(n)− IQ(n)
∣

∣ ≤ 4 logn+ 2C.

for sufficiently large n, Q-almost surely. Thus by inequality (23), γ−
S = γ−

Q

and γ+
S = γ+

Q holds on a set of full measure.

�

Theorem 6 implies two more specific corollaries of an independent interest.
The first result states that Hilberg exponents for a computable measure Q are
equal to Hilberg exponents for unconditional prefix-free Kolmogorov complexity.

Corollary 2 If measure Q is computable then for code P (xn
1 ) = 2−K(xn

1 ), where
K(xn

1 ) is unconditional prefix-free Kolmogorov complexity of x
n
1 , we have

IP (n)
+
= IS(n),

where we use code (18) with F = Q again. This implies γ−
Q = γ−

S = γ−
P and

γ−
Q = γ+

S = γ+
P Q-almost surely, whereas δ−Q = δ−S = δ−P and δ

+
Q = δ+S = δ+P .

The second result concerns a nonergodic measure with a given ergodic decom-
position. It says that Hilberg exponents for this nonergodic measure are almost
surely constant on almost all ergodic components of the measure.

Corollary 3 Suppose that measure Q has the random ergodic measure E given
by (24). We have Q = EQ E, so by the properties of integral, any set of full
Q-measure has full E-measure Q-almost surely. This implies that for code (18)
with F = Q, we have γ−

S = γ−
Q and γ

+
S = γ+

Q E-almost surely for Q-almost all
values of measure E. By Theorem 3, in case of a finite alphabet, this means
that γ−

Q and γ
+
Q are E-almost surely constant for those values of measure E.

What lacks for the proof of Theorem 1 is a computable lower bound for the
inverse Hilberg exponents, defined in the previous section for the Kolmogorov
code S. For an arbitrary code P with δ−P > 0, let us introduce parameter
ǫP given by formula (15). First, we will show that the difference between the
expected and the inverse Hilberg exponents δ±S − ζ±S is bounded by parameter
ǫS and then we will show that ǫS = ǫQ for F = Q.

Theorem 7 Consider code (18) and an arbitrary stationary measure Q. If
δ−S > 0 then ζ+S ≥ δ+S − ǫS and ζ

−
S ≥ δ−S − ǫS.
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Proof: Let α ∈ (0, 1). By IS(n) +B ≥ 1 and by Markov inequality we obtain

EQ(I
S(n) +B)−1 ≤ Q

(∣

∣IS(n)−EQ IS(n)
∣

∣ ≥ α(EQ IS(n) +B)
)

+
1

(1− α)(EQ IS(n) +B)

≤ VarQ IS(n)

α2(EQ IS(n) +B)2
+

1

(1− α)(EQ IS(n) +B)
.

Hence

[

EQ(I
S(n) +B)−1

]−1 ≥ (EQ IS(n) +B)

(

VarQ IS(n)

α2(EQ IS(n) +B)
+

1

(1 − α)

)−1

,

which implies the claim by log(x/y) = log x− log y, δ−S > 0, and inequality (23).
�

Subsequently, we will prove that parameter ǫS for the conditional Kol-
mogorov code with F = Q is equal to parameter ǫQ for the underlying measure.

Theorem 8 Consider code (18) with F = Q, where Q is an arbitrary stationary
measure. If δ−Q > 0 then ǫS = ǫQ.

Proof: Since δ−Q > 0, by inequality (39), we obtain

ǫS = lim sup
n→∞

log+
[

VarQ IS(n)/EQ IQ(n)
]

logn
.

In the following, we have

VarQ IS(n) ∈
[

(

√

VarQ IQ(n)−
√

VarQ(IS(n)− IQ(n))

)2

,

(

√

VarQ IQ(n) +
√

VarQ(IS(n)− IQ(n))

)2
]

.

Thus, to show ǫS = ǫQ it suffices to prove that

lim sup
n→∞

log+ VarQ(I
S(n)− IQ(n))

logn
= 0.

To demonstrate the latter fact, we will use Shannon-Fano coding (38) and a
stronger version of Barron’s inequality, viz. [24, Theorem 3.1], namely,

Q(− logP (Xn
1 ) + logQ(Xn

1 ) ≤ −m) ≤ 2−m, (40)

which holds for an arbitrary code P . Hence we obtain

Q(
∣

∣IS(n)− IQ(n)
∣

∣ ≥ 4 logn+ C +m) ≤ 2−m

for a certain constant C. Subsequently, this yields

EQ

(

IS(n)− IQ(n)
)2 ≤ (4 logn+ C)2 +

∞
∑

m=0

(4 logn+ C +m+ 1)22−m

≤ A(log n)2 +B

for certain A,B > 0, which proves the claim. �
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Now we may prove Theorem 1.

Proof of Theorem 1: Apply Corollary 1 from the previous section and The-
orems 6, 7, and 8 from this section. �

Although Theorem 1 does not refer to Kolmogorov complexity, an open question
remains how parameter ǫQ can be evaluated in nontrivial cases (i.e., for a process
not being a memoryless source). In Section IV, we will exhibit two processes
for which δ+Q = γ+

Q and δ
−
Q = γ−

Q . Our evaluation of Hilberg exponents for these
processes is direct, without bounding the parameter ǫQ. We are not aware of
any process for which δ+Q > γ+

Q or δ
−
Q > γ−

Q .

IV Exponents for particular sources

Hilberg exponents can be effectively evaluated in certain cases. In this section
we shall compute exponents γ±

Q and δ
±
Q related to the underlying measure Q of

the process. For IID processes, these Hilberg exponents are trivially equal zero
since there is no dependence in the process. Equalities δ±Q = 0 hold also for
Markov processes over a finite alphabet and hidden Markov processes with a
finite number of hidden states, since the expected mutual information is bounded
for measures of those processes by the data-processing inequality. Hence, in that
case, we also have γ±

Q = 0 by Theorem 1.
Some simple example of a process with unbounded mutual information is

the mixture of Bernoulli processes over the alphabet X = {0, 1}, which we will
call the mixture Bernoulli process:

Q(xn
1 ) =

∫ 1

0

θ
∑n

i=1
xi(1− θ)n−

∑n
i=1

xidθ =
1

n+ 1

(

n
∑n

i=1 xi

)−1

. (41)

Although Xi are dependent for this measure Q, we will show that the related
Hilberg exponents also vanish.
It should be noted that the mixture Bernoulli process is a conditionally

IID 1-parameter source. The pointwise mutual information IQ(n) for condi-
tionally IID sources is equal to a difference of redundancies. Moreover, as
shown in [3, 4, 5], for k-parameter processes, the redundancy is proportional
to k logn. Formally, this suffices to prove that the Hilberg exponents for the
mixture Bernoulli process are zero. Nevertheless, we feel it may be better to
present a complete calculation, which is not that long. By the results of [5], our
reasoning can be generalized to mixtures of k-parameter exponential families
but we skip this topic to present a simple example in a sufficient detail.
For the direct evaluation of the Hilberg exponents, it is convenient to intro-

duce a few further notations. Let the (expected) entropy of a random variable
X be written as

HQ(X) = EQ [− logQ(X)] , (42)

whereas the (expected) mutual information between variables X and Y will be
written as

IQ(X ;Y ) = HQ(X) +HQ(Y )−HQ(X,Y ). (43)
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Moreover, we define the partial sums

Tn =
0
∑

i=−n+1

Xi, (44)

Sn =

n
∑

i=1

Xi. (45)

Now we can state the following result for the expected Hilberg exponents.

Theorem 9 For measure (41), we have δ+Q = δ−Q = 0.

Proof: It can be easily shown that X0
−n+1 and X

n
1 are conditionally indepen-

dent given Tn and Sn. Hence

IQ(n) = − log
Q(Tn)Q(Sn)

Q(Tn, Sn)
(46)

so the expected mutual information equals EQ IQ(n) = IQ(Tn;Sn). Variable
Sn assumes under Q each value in {0, 1, ..., n} with equal probability (n+1)−1.
Hence 0 ≤ IQ(Tn;Sn) ≤ HQ(Sn) = log(n+ 1), which implies the claim. �

The random Hilberg exponents γ±
Q for the mixture Bernoulli process also

vanish. This follows from δ±Q = 0 by Theorem 1. It may be insightful, however,

to compute γ±
Q directly, following the calculation scheme in [3, 4, 5].

Theorem 10 For measure (41), γ+
Q = γ−

Q = 0 holds Q-almost surely.

Proof: Measure Q defined in (41) is not ergodic. Its random ergodic measure
(24) takes values of the IID measures

E(xn
1 ) = θ

∑
n
i=1

xi(1 − θ)n−
∑

n
i=1

xi ,

where θ is a random variable uniformly distributed on (0, 1). Now we will
show that γ+

Q = γ−
Q = 0 holds E-almost surely for any θ, which implies that

γ+
Q = γ−

Q = 0 holds Q-almost surely. For this aim we will use the Stirling
approximation

n! =
√
2πn

(n

e

)n

(1 + o(1)) .

Hence the logarithm of the binomial coefficient is

(

n

k

)

=
1

2
log

1

2π
+

1

2
log

n

k(n− k)
+ nH

(

k

n

)

+ o(1),

whereH(p) = −p log p−(1−p) log(1−p) is the entropy of probability distribution
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(p, 1− p). Thus we obtain

IQ(n) = log
(n+ 1)2

2n+ 1
+ log

(

n
Tn

)(

n
Sn

)

(

2n
Tn+Sn

)

= log
(n+ 1)2

2n+ 1
+

1

2
log

1

2π

+
1

2
log

n

Tn(n− Tn)
+

1

2
log

n

Sn(n− Sn)

− 1

2
log

n

(Tn + Sn)(n− Tn − Sn)

+ nH

(

Tn

n

)

+ nH

(

Sn

n

)

− 2nH

(

Tn + Sn

2n

)

+ o(1).

The sequel is straightforward. Define the partial sums Tn =
∑0

i=−n+1 Xi

and Sn =
∑n

i=1 Xi. Quotients Sn/n and Tn/n converge to θ E-almost surely.
Further, we may use the Taylor expansion

H

(

Tn

n

)

= H (θ) +H ′ (θ)

(

Tn

n
− θ

)

+
1

2
H ′′ (θ1)

(

Tn

n
− θ

)2

,

where θ1 ∈
[

Tn

n , θ
]

, and its analogues for other entropies. This yields

IQ(n) = log
(n+ 1)2

2n+ 1
+

1

2
log

1

2πθ(1 − θ)

+
1

2
nH ′′ (θ1)

(

Tn

n
− θ

)2

+
1

2
nH ′′ (θ2)

(

Sn

n
− θ

)2

− nH ′′ (θ3)

(

Tn + Sn

2n
− θ

)2

+ o(1).

By the law of the iterated logarithm,

lim sup
n→∞

|Tn − nθ|√
n log logn

= C

for a cerrtain C ∈ (0,∞) holds E-almost surely, and we have similar laws for
Sn and Tn + Sn. Hence

lim sup
n→∞

∣

∣

∣

∣

IQ(n)− log
(n+ 1)2

2n+ 1
− 1

2
log

1

2πθ(1 − θ)

∣

∣

∣

∣

≤ A log logn

for a certain A ∈ (0,∞). Thus γ+
Q = γ−

Q = 0 holds E-almost surely for any θ.
�

In the next example we will exhibit a process for which Hilberg exponents
do not vanish. This process, introduced in [6, 7] under the name of a Santa
Fe process is also conditionally IID (nonergodic) but does not constitute a k-
parameter source. Its construction is partly motivated linguistically. Namely, we
have certain statements Xi that describe for randomly selected indices Ki = k
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the values of some random binary variables Zk, where the set of available indices
is countably infinite, k ∈ N.
Formally, the Santa Fe process (Xi)i∈Z is a sequence of variables Xi which

consist of pairs

Xi = (Ki, ZKi
), (47)

where processes (Ki)i∈Z and (Zk)k∈N are independent and distributed as follows.
First, variables Zk are binary and uniformly distributed,

Q(Zk = 0) = Q(Zk = 1) = 1/2, (Zk)k∈N ∼ IID. (48)

Second, variables Ki obey the power law

Q(Ki = k) = k−1/β/ζ(β−1), (Ki)i∈Z ∼ IID, (49)

where β ∈ (0, 1) is a parameter and ζ(x) =
∑∞

k=1 k
−x is the zeta function. Let

us note that, formally, random variable Y =
∑∞

k=1 2
−kZk could be considered a

single random real parameter of the process but the distribution of the process
(Xi)i∈Z is not a differentiable function of this parameter. For this reason the
Santa Fe process is not a 1-parameter source.
Like in the case of the mixture Bernoulli process, the Hilberg exponents for

the Santa Fe process are all equal but, unlike the case of the mixture Bernoulli
process, they do not vanish. Their common value is the parameter β in the
distribution (49).

Theorem 11 For process (47), we have δ+Q = δ−Q = β.

Proof: By [7, Proposition 1], EQ IQ(n) grows proportionally to nβ . This im-
plies the claim. �

Theorem 12 For process (47), γ+
Q = γ−

Q = β holds Q-almost surely.

Proof: By Theorems 1 and 11 it suffices to prove that γ−
Q ≥ β. Let V (kn1 )

denote the set of distinct values in sequence kn1 . We have

Q(Xn
1 ) = Q(Kn

1 )2
− cardV (Kn

1 ).

Hence

IQ(n) = cardV (K0
−n+1) + cardV (Kn

1 )− cardV (Kn
−n+1)

= card(V (K0
−n+1) ∩ V (Kn

1 )).
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Let Ln = nβ(1−ǫ), where ǫ > 0. We have

Q
(

{1, 2, ..., ⌊Ln⌋} 6⊂ V (K0
−n+1) ∩ V (Kn

1 )
)

≤
⌊Ln⌋
∑

k=1

Q(k 6∈ V (K0
−n+1) ∩ V (Kn

1 ))

≤
⌊Ln⌋
∑

k=1

[

Q(k 6∈ V (K0
−n+1)) +Q(k 6∈ V (Kn

1 ))
]

=

⌊Ln⌋
∑

k=1

2(1−Q(Ki = k))n

≤ 2Ln

[

1− L
−1/β
n

ζ(β−1)

]n

= 2Ln exp
[

n ln(1− L−1/β
n /ζ(β−1))

]

≤ 2Ln exp
[

−nL−1/β
n /ζ(β−1)

]

≤ 2nβ exp
[

−nǫ/ζ(β−1)
]

.

Since

∞
∑

n=1

Q
(

{1, 2, ..., ⌊Ln⌋} 6⊂ V (K0
−n+1) ∩ V (Kn

1 )
)

< ∞,

hence, by the Borel-Cantelli lemma, sets {1, 2, ..., ⌊Ln⌋} are Q-almost surely
subsets of V (K0

−n+1) ∩ V (Kn
1 ) for all but finitely many n. In consequence,

IQ(n) ≥
⌊

nβ(1−ǫ)
⌋

for those n, which implies γ−
Q ≥ β since ǫ was chosen arbi-

trarily. �

It should be noted that both the measures of the mixture Bernoulli process
and the Santa Fe processes are nonergodic and computable. Hence Corollaries 2
and 3 apply to these sources. There exist also mixing (i.e., ergodic in particular)
and computable measures Q for which exponents δ+Q = δ−Q assume an arbitrary
value in (0, 1). These processes can be constructed as a modification of the
original Santa Fe process (47). For the construction, see [7].
The third example will be a process for which the upper and the lower

expected Hilberg exponents are different. The process is a slight modification
of the Santa Fe process, though different than that discussed in [7]. Consider a
sequence of fixed numbers (ak)k∈N where ak ∈ {0, 1}. Let

Xi = (Ki, YKi
), (50)

where Yk = akZk, whereas processes (Ki)i∈Z and (Zk)k∈N are independent and
distributed as for the original Santa Fe process. If ak 6= 0 for some k, process
(50) is also nonergodic.

Theorem 13 There exists such a sequence (ak)k∈N that for process (50), we
have δ+Q = β and δ−Q = 0.
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Proof: Analogously as in the proof of [7, Proposition 1], we obtain

EQ IQ(n) =

∞
∑

k=1

ak

(

1−
(

1− A

k1/β

)n)2

,

where A := 1/ζ(β−1). In case of the original Santa Fe process, we have ak = 1
for all k and then EQ IQ(n) is asymptotically proportional to nβ [7, Proposition
1]. Thus, it is sufficient to show that δ+Q ≥ β and δ−Q ≤ 0 for a certain sequence
(ak)k∈N.
We have two bounds

(

1− A

k1/β

)n

≥ max

{

0,
nA

k1/β

}

,

(

1− A

k1/β

)n

= exp

(

n ln

(

1− A

k1/β

))

≤ exp

(

− nA

k1/β

)

.

Hence

EQ IQ(n) ≤
⌊n2β⌋
∑

k=1

ak +
∞
∑

k=⌊n2β⌋+1

ak

(

nA

k1/β

)2

≤
⌊n2β⌋
∑

k=1

ak + 1 +A2n2

∫ ∞

n2β

1

k2/β
dk

=

⌊n2β⌋
∑

k=1

ak + 1 +A2n2 β

2− β
(n2β)

β−2

β ≤
⌊n2β⌋
∑

k=1

ak +

(

1 +
A2β

2− β

)

,

EQ IQ(n) ≥
∞
∑

k=1

ak

(

1− exp

(

− nA

k1/β

))

≥
⌊nβ⌋
∑

k=1

ak (1− exp (−A)) .

Having these two auxiliary results, we can easily show that δ+Q ≥ β and

δ−Q ≤ 0 for the following sequence (ak)k∈N. Let (bm)m∈N and (cm)m∈N be two
sequences of natural numbers, where additionally c0 = 0 and

⌊

cβm−1

⌋

<
⌊

b2βm
⌋

<
⌊

cβm
⌋

for all m, and let (ǫm)m∈N be a sequence of real numbers ǫm = β/m. We put

ak =

{

0,
⌊

cβm−1

⌋

< k ≤
⌊

b2βm
⌋

,

1,
⌊

b2βm
⌋

< k ≤
⌊

cβm
⌋

.

As for sequences (bm)m∈N and (cm)m∈N, we choose them to satisfy

⌊

cβm−1

⌋

+

(

1 +
A2β

2− β

)

≤ bǫmm ,

(
⌊

cβm
⌋

−
⌊

b2βm
⌋

) (1− exp (−A)) ≥ cβ−ǫm
m .
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In this way we obtain

EQ IQ(bm) ≤
⌊

cβm−1

⌋

+

(

1 +
A2β

2− β

)

≤ bǫmm ,

EQ IQ(cm) ≥
(⌊

cβm
⌋

−
⌊

b2βm
⌋)

(1− exp (−A)) ≥ cβ−ǫm
m .

Hence δ+Q ≥ β and δ−Q ≤ 0, as requested. �

Evaluation of random Hilberg exponents for process (50) seems difficult.
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