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Abstract

We study the secure and reliable connectivity of wireless sensor networks. Security
is assumed to be ensured by the random pairwise key predistribution scheme of Chan,
Perrig, and Song, and unreliable wireless links are represented by independent on/off
channels. Modeling the network by an intersection of a random K-out graph and an
Erdős-Rényi graph, we present scaling conditions (on the number of nodes, the scheme
parameter K, and the probability of a wireless channel being on) such that the resulting
graph contains no nodes with degree less than k with high probability, when the number
of nodes gets large. Results are given in the form of zero-one laws and are shown to
improve the previous results by Yağan and Makowski on the absence of isolated nodes
(i.e., absence of nodes with degree zero). Via simulations, the established zero-one laws
are shown to hold also for the property of k-connectivity; i.e., the property that graph
remains connected despite the deletion of any k − 1 nodes or edges.

Keywords: Wireless Sensor Networks, Key Predistribution, Random Graphs, Minimum Node
Degree, k-connectivity, Zero-one Laws.

1 Introduction

1.1 Motivation and Background

Wireless sensor networks (WSNs) are distributed collection of small sensor nodes that gather
security-sensitive data and control security-critical operations in a wide range of industrial, home
and business applications [1]. Many applications require deploying sensor nodes in hostile environ-
ments where an adversary can eavesdrop sensor communications, and can even capture a number
of sensors and surreptitiously use them to compromise the network. Therefore, cryptographic pro-
tection is required to secure the sensor communication as well as to detect sensor capture and

∗A short version of this paper (without any proofs) will be presented at IEEE International Symposium on
Information Theory, (ISIT 2014), Honolulu (HI).
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to revoke the compromised keys. Given the limited communication and computational resources
available at each sensor, security is expected to be a key challenge in WSNs [6, 3, 14].

Random key predistribution is one of the approaches proposed in the literature for addressing
security challenges in resource constrained WSNs. The idea of randomly assigning secure keys to
the sensor nodes prior to network deployment was first introduced by Eschenauer and Gligor [6].
Following their original work, a large number of key predistribution schemes have been proposed;
see the survey articles [14, 15] (and references therein).

Here we consider the random pairwise key predistribution scheme proposed by Chan et al. in
[3]: Before deployment, each of the n sensor nodes is paired (offline) with K distinct nodes which
are randomly selected from amongst all other nodes. For each sensor and any sensor paired to it, a
unique (pairwise) key is generated and stored in their memory modules along with their ids. Two
nodes can then secure an existing wireless communication link if at least one of them is paired to
the other so that the two nodes have at least one pairwise key in common. Precise implementation
details are given in Section 2.

Let H(n;K) denote the undirected random graph on the vertex set {1, . . . , n} where distinct
nodes i and j are adjacent if they have a pairwise key in common as described earlier; this random
graph models the random pairwise predistribution scheme under full visibility (whereby all nodes
have a wireless link in between). The random graph H(n;K) is known in the literature on random
graphs as the random K-out graph [2, 7, 8], and is typically defined in the following equivalent
manner: For each of the n vertices assign exactly K arcs to K distinct vertices that are selected
uniformly at random, and then ignore the orientation of the arcs. Several properties of this graph
have been recently analyzed by Yağan and Makowski [19, 20, 23, 22].

Recently, there has been a significant interest [10, 21, 17, 25, 24] to drop the full visibility
assumption and to model and analyze random key predistribution schemes under more realistic
situations that account for the possibility that communication links between nodes may not be
available – This could occur due to the presence of physical barriers between nodes or because
of harsh environmental conditions severely impairing transmission. With this in mind, several
authors [21, 17, 25, 24] have started with a simple communication model where wireless links are
represented by independent channels that are either on (with probability p) or off (with probability
1−p). This suggests an overall modeling framework that is constructed by intersecting the random
K-out graph H(n;K), with an Erdős-Rényi (ER) graph G(n; p) [2].

1.2 Contributions

In this paper, we initiate an analysis towards the k-connectivity for the resulting intersection graph
H ∩G(n;K, p). A network (or graph) is said to be k-connected if its connectivity is preserved
despite the failure of any (k − 1) nodes or links [11]. Therefore, the property of k-connectivity
provides a guarantee of network reliability against the possible failures of sensors or links due to
adversarial attacks or battery depletion; a much needed property given the key application areas of
sensor networks such as health monitoring, battlefield surveillance, and environmental monitoring.
Finally, k-connectivity has important benefits in mobile wireless sensor networks. For instance, if a
network is known to be k-connected, then any k−1 nodes in the network are free to move anywhere
in the network while the rest of the network remains at least 1-connected.

Our main result is a zero-one law for the property that the minimum node degree of H ∩G(n;K, p)
is at least k. Namely, we present scaling conditions on the parameters p and K with respect to
n, such that the resulting graph contains no nodes with degree less than k with probability ap-
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proaching to zero, or one, respectively, as the number of nodes n gets large. The established results
already imply the zero-law for the k-connectivity, since a graph can not be k-connected unless all
nodes have degree at least k. Further, in most random graph models in the literature, including
ER graphs, random geometric graphs [11], and random key graphs [24], the conditions that ensure
k-connectivity coincide with those ensuring minimum node degree to be at least k. This is often
established by showing the improbability of a graph being not k-connected when all nodes have at
least k neighbors. Here, we demonstrate this phenomenon via simulations which suggest that our
zero-one laws hold also for the property of k-connectivity.

Furthermore, our results with k = 1 constitute an improvement of the previous results by Yağan
and Makowski [18, 21] on the absence of isolated nodes (i.e., absence of nodes with degree zero) in
H ∩G(n;K, p). Namely, we show that the threshold for absence of isolated nodes (which is also the
threshold for 1-connectivity) characterized in [18, 21] is not valid unless the limit limn→∞ pn ∈ [0, 1]
exists, a condition that was enforced throughout in [18, 21]. Instead, our main result indicates a
new threshold function which does not require the existence of limn→∞ pn. More importantly, we
show that the new threshold function is stronger in that it indicates a sharper transition of the
graph H ∩G(n;K, p) (as the parameters K and p increase) from having at least one isolated to
having no isolated nodes almost surely; see Section 4.2 for details. We believe that the precise
characterization of the threshold for absence of isolated will also pave the way to improving the
results of [18, 21] for 1-connectivity of H ∩G(n;K, p).

Finally, our main contributions include a key confinement result that not only eases the proof
of our main result, but is likely to play a key role in studying any monotone increasing1 property
of the graph H ∩G(n;Kn, pn); e.g., k-connectivity, existence of certain subgraphs, etc. In a nut-
shell, this confinement result shows that when seeking results for the asymptotic k-connectivity
of H ∩G(n;Kn, pn) with the parameters K and p scaled with number of nodes n, we can restrict
our attention to a subclass of structured scalings (referred throughout as admissible scalings). In
other words, we show that the aforementioned results (and others in the same vein) need only be
established for such strongly admissible scalings. See Section 5.1 for details of the confinement
argument, followed in Section 5.2 by its several useful consequences that arise in our context.

1.3 Notation and conventions

A word on the notation: All statements involving limits are understood with n going to infinity. The
random variables (rvs) under consideration are all defined on the same probability triple (Ω,F ,P).
Probabilistic statements are made with respect to this probability measure P, and we denote the
corresponding expectation operator by E. The indicator function of an event E is denoted by 1 [E].
Distributional equality is denoted by =st. In comparing the asymptotic behaviors of the sequences
{an}, {bn}, we use an = o(bn), an = O(bn), an = Ω(bn), and an = Θ(bn), with their meaning
in the standard Landau notation. Namely, we write an = o(bn) as a shorthand for the relation
limn→∞

an
bn

= 0, whereas an = O(bn) means that there exists c > 0 such that an ≤ cbn for all n
sufficiently large. Also, we have an = Ω(bn) if bn = O(an), or equivalently, if there exists c > 0 such
that an ≥ cbn for all n sufficiently large. Finally, we write an = Θ(bn) if we have an = O(bn) and
an = Ω(bn) at the same time.

1A graph property is called monotone increasing if it holds under the addition of edges in a graph.
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1.4 Organization of the Paper

The paper is organized as follows: In Section 2, we give a formal model for the random pairwise
key predistribution scheme of Chan et al., and introduce the induced random K-out graph. In
particular, the main model H ∩G(n;K, p) considered in this paper, i.e., the intersection of a random
K-out graph with an Erdős-Rényi graph, is introduced in Section 2.3. The main result of the paper
concerning the minimum node degree of H ∩G(n;K, p) is presented in Section 3. In Section 4, we
compare our results against the classical results of Erdős-Rényi and then against earlier results by
Yağan and Makowski [21] on the absence of isolated nodes in H ∩G(n;K, p). Also in Section 4.3,
we provide numerical results in support of our analytical results. The proof of the main result is
initiated in Section 5 where we establish an important confining result that significantly eases the
rest of the proof; there we also establish some preliminary scaling results to be used throughout.
The proof of our main result is outlined in Section 6 and the necessary steps are established in
Sections 7 through 11.

2 Model

2.1 The random pairwise key predistribution scheme

Interest in the random pairwise key predistribution scheme of Chan et al. [3] stems from the
following advantages over the original Eschenauer - Gligor scheme: (i) Even if some nodes are
captured, the secrecy of the remaining nodes is perfectly preserved; (ii) Unlike earlier schemes, this
pairwise scheme enables both node-to-node authentication and quorum-based revocation. See also
[16] for a detailed comparison of these two classical key predistribution schemes.

We parametrize the pairwise key distribution scheme by two positive integers n and K such that
K < n. There are n nodes, labelled i = 1, . . . , n, with unique ids Id1, . . . , Idn. Write V = {1, . . . , n}
and set V−i = V −{i} for each i = 1, . . . , n. With node i, we associate a subset Γn,i(K) of K nodes
selected uniformly at random from V−i, We say that each of the nodes in Γn,i(K) is paired to node
i. Thus, for any subset A ⊆ V−i, we require

P [Γn,i(K) = A] =







(n−1
K

)−1
if |A| = K

0 otherwise.

(1)

Put differently, the selection of Γn,i(K) is done uniformly amongst all subsets of V−i which are of
size K and we further assume that rvs Γn,1(K), . . . ,Γn,n(K) are mutually independent.

Once this offline random pairing has been created, we construct the key rings Σn,1(K), . . . ,Σn,n(K),
one for each node, as follows: Assumed available is a collection of nK distinct cryptographic keys
{ωi|ℓ, i = 1, . . . , n; ℓ = 1, . . . ,K}. Fix i = 1, . . . , n and let ℓn,i : Γn,i(K) → {1, . . . ,K} denote
a labeling of Γn,i(K). For each node j in Γn,i(K) paired to i, the cryptographic key ωi|ℓn,i(j)

is associated with j. For instance, if the random set Γn,i(K) is realized as {j1, . . . , jK} with
1 ≤ j1 < . . . < jK ≤ n, then an obvious labeling consists in ℓn,i(jk) = k for each k = 1, . . . ,K
so that key ωi|k is associated with node jk. Of course other labelings are possible. Finally, with
node j paired to node i, the pairwise key ω⋆

n,ij = [Idi|Idj |ωi|ℓn,i(j)] is constructed and inserted in the
memory modules of both nodes i and j. The key ω⋆

n,ij is assigned exclusively to the pair of nodes
i and j, hence the terminology pairwise predistribution scheme. The key ring Σn,i(K) of node i is
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the set

Σn,i(K) =
{

ω⋆
n,ij, j ∈ Γn,i(K)

}

∪

{

ω⋆
n,ji,

j = 1, . . . , n
i ∈ Γn,j(K)

}

Two nodes i and j, can secure an existing communication link if and only if Σn,i(K)∩Σn,j(K) 6=
∅ which holds if at least one of the events i ∈ Γn,j(K) or j ∈ Γn,i(K) takes place. Namely, it is
plain that

[Σn,i(K) ∩ Σn,j(K) 6= ∅] = [i ∈ Γn,j(K)] ∪ [j ∈ Γn,i(K)]

Both events can take place, in which case the memory modules of node i and j both contain
the distinct keys ω⋆

n,ij and ω⋆
n,ji. It is plain by construction that this scheme supports distributed

node-to-node authentication.

2.2 Random K-out graphs

The pairwise key predistribution scheme naturally gives rise to the following class of random graphs:
With n = 2, 3, . . . and positive integer K < n, we say that the distinct nodes i and j are K-adjacent,
written i ∼K j, if and only if they have at least one key in common in their key rings, namely

i ∼K j iff Σn,i(K) ∩ Σn,j(K) 6= ∅. (2)

Let H(n;K) denote the undirected random graph on the vertex set {1, . . . , n} induced by the
adjacency notion (2). This ensures that edges in H(n;K) represent pairs of sensors that have at
least one cryptographic key in common, and thus that can securely communicate over an existing
communication channel. Let λn(K) define the edge assignment probability in H(n;K); i.e., we have

P [i ∼K j] = λn(K) (3)

for any distinct i, j ∈ V. It is easy to check that

λn(K) = 1 − P [i 6∈ Γn,j(K) ∩ j 6∈ Γn,i(K)] = 1 −

(

(

n−2
K

)

(n−1
K

)

)2

=
2K

n− 1
−

(

K

n− 1

)2

. (4)

The random graph H(n;K) is known in the literature on random graphs as the random K-out
graph [2, 8], or random K-orientable graph [7]. Those references adopt the following definition,
which can easily be seen to be equivalent to the adjacency condition (2): For each of the n vertices
assign exactly K arcs to K distinct vertices that are selected uniformly at random, and then ignore
the orientation of the arcs. The directed version of this graph (i.e., with the orientation of the arcs
preserved) has also been studied; e.g., see the work by Philips et al. [12], who showed that the
diameter of the directed K-out graph concentrates almost surely on two values.

2.3 Intersection of random graphs

As mentioned earlier, we assume a simple wireless communication model that consists of indepen-
dent channels, each of which can be either on or off. Thus, with p in (0, 1), let {Bij(p), 1 ≤ i <
j ≤ n} denote i.i.d. {0, 1}-valued rvs with success probability p. The channel between nodes i and
j is available (resp. up) with probability p and unavailable (resp. down) with the complementary
probability 1 − p.
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Distinct nodes i and j are said to be B-adjacent, written i ∼B j, if Bij(p) = 1. B-adjacency
defines the standard Erdős-Rényi (ER) graph G(n; p) on the vertex set {1, . . . , n} [2]. Obviously,
P [i ∼B j] = p.

The random graph model studied here is obtained by intersecting the random graphs induced
by the pairwise key predistribution scheme, and by the on-off communication model, respectively.
Namely, we consider the intersection of H(n;K) with the ER graph G(n; p). In this case, distinct
nodes i and j are said to be adjacent, written i ∼ j, if and only they are both K-adjacent and
B-adjacent, namely

i ∼ j iff Σn,i(K) ∩ Σn,j(K) 6= ∅ and Bij(p) = 1. (5)

The resulting undirected random graph defined on the vertex set {1, . . . , n} through this notion
of adjacency is denoted H ∩G(n;K, p). The relevance of H ∩G(n;K, p) in the context of secure
WSNs is now clear. Two nodes that are connected by an edge in H ∩G(n;K, p) share at least one
cryptographic key and have a wireless link available to them, so that they can establish a secure
communication link.

Throughout we assume the collections of rvs {Γn,1(K), . . . ,Γn,n(K)} and {Bij(p), 1 ≤ i < j ≤
n} to be independent, in which case the edge occurrence probability in H ∩G(n;K, p) is given by

P [i ∼ j] = P [i ∼K j]P [i ∼B j] = pλn(K). (6)

3 The result

Our main technical result is given next. To fix the terminology, we refer to any mapping K : N0 →
N0 as a scaling (for random K-out graphs) provided it satisfies the natural conditions

Kn < n n = 1, 2, . . . . (7)

Similarly, we let any mapping p : N0 → [0, 1] define a scaling for Erdős-Rényi graphs.
To lighten the notation we often group the parameters K and p into the ordered pair θ ≡ (K, p).

Hence, a mapping θ : N0 → N0 × [0, 1] defines a scaling for the intersection graph H ∩G(n; θ)
provided that the condition (7) holds.

Theorem 3.1 Consider scalings K : N0 → N0 and p : N0 → [0, 1] such that limn→∞(n−2Kn) = ∞
and lim supn→∞ pn < 1. With the sequence γ : N0 → R defined through

pnKn

(

1 −
log(1 − pn)

pn
−

Kn

n− 1

)

= log n + (k − 1) log log n + γn (8)

we have

lim
n→∞

P

[

Min node degree of

H ∩G(n; θn) is no less than k

]

=











0 if lim
n→∞

γn = −∞

1 if lim
n→∞

γn = +∞.
(9)
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The proof of Theorem 3.1 passes through the method of first and second moments [8], applied to
the random variable counting the number of nodes with degree ℓ, with ℓ = 0, 1, . . . , k−1. Although
this technique is standard in the literature, its application to the intersection graph H ∩G(n; θ) is
far from being straightforward due to intricate dependencies amongst the degrees of nodes. The
proof of Theorem 3.1 is given in Sections 6 through 11.

The extra conditions enforced by Theorem 3.1 are required for technical reasons; i.e., for the
method of moments to be applied successfully to the aforementioned count variables. However,
we remark that these conditions are mild and do not preclude their application in realistic WSN
scenarios. First, the condition lim supn→∞ pn < 1 enforces that wireless communication chan-
nels between nodes do not become available with probability one as n gets large. The situation
lim supn→∞ pn = 1 that is not covered by our result is reminiscent of the full visibility case con-
sidered in [22], and is not likely to hold in practice. In fact, as the number of nodes gets large, it
may be expected that pn goes to zero due to interference associated with a large number of nodes
communicating simultaneously. Second, the condition limn→∞(n− 2Kn) = ∞ will already follow if
2Kn ≤ cn for some c < 1. Given that 2Kn is equal to the mean number of keys stored per sensor in
the pairwise scheme [23], this condition needs to hold in any practical WSN scenario due to limited
memory and computational capability of the sensors. In fact, Di Pietro et al. [4] noted that key
ring sizes on the order of log n are feasible for WSNs.

We now present a simple corollary of Theorem 3.1, that will help in comparing our main result
with the classical results of Erdős-Rényi [5].

Corollary 3.2 Consider scalings K : N0 → N0 and p : N0 → [0, 1] such that limn→∞(n−2Kn) = ∞
and lim supn→∞ pn < 1. With the sequence γ : N0 → R defined through

pnKn

n− 1

(

1 −
log(1 − pn)

pn
−

Kn

n− 1

)

=
log n + (k − 1) log log n + γn

n
(10)

we have

lim
n→∞

P

[

Min node degree of

H ∩G(n; θn) is no less than k

]

=











0 if lim
n→∞

γn = −∞

1 if lim
n→∞

γn = +∞.
(11)

Proof. Pick scalings K : N0 → N0 and p : N0 → [0, 1] such that limn→∞(n − 2Kn) = ∞ and
lim supn→∞ pn < 1. Define the sequence γ : N0 → R through (8). For this scaling, we have

pnKn

n− 1

(

1 −
log(1 − pn)

pn
−

Kn

n− 1

)

=
log n + (k − 1) log log n + γn

n− 1

=
log n + (k − 1) log log n + γn + logn+(k−1) log logn+γn

n−1

n

=
log n + (k − 1) log log n + γn(1 + o(1)) + o(1)

n
. (12)

Comparing (12) with (10), we get the desired result (11) from (9) as we note that

lim
n→∞

γn = +∞ if and only if lim
n→∞

(γn(1 + o(1)) + o(1)) = +∞

lim
n→∞

γn = −∞ if and only if lim
n→∞

(γn(1 + o(1)) + o(1)) = −∞.
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4 Comments and Discussion

4.1 Comparison with Erdős-Rényi Graphs

For each p in [0, 1] and n = 2, 3, . . ., let G(n; p) denote the Erdős-Rényi graph on the vertex set
{1, . . . , n} with edge probability p. It is known that edge assignments are mutually independent in
G(n; p), whereas they are strongly correlated in H(n;K) in that they are negatively associated in
the sense of Joag-Dev and Proschan [9]; see [21] for details. Thus, H(n;K) cannot be equated with
G(n; p) even when the parameters p and K are selected so that the edge assignment probabilities
in these two graphs coincide, say λ(n;K) = p. Therefore, H ∩G(n; θ) cannot be equated with an
ER graph either, and the results obtained here are not mere consequences of classical results for
ER graphs.

However, some similarities do exist between H ∩G(n; θ) and ER graphs. We start by presenting
the following well-known zero-one law for k-connectivity in ER graphs [5]: For any scaling p : N0 →
[0, 1] satisfying

pn =
log n + (k − 1) log log n + γn

n
(13)

for some γ : N0 → R, it holds that

lim
n→∞

P [ G(n; pn) is k-connected ]

= lim
n→∞

P [ G(n; pn) has min. node degree ≥ k ] =







0 if γn → −∞

1 if γn → +∞.
(14)

We now compare this with our main result by means of Corollary 3.2. Notice that the right-
hand sides of the scalings (10) and (13) are exactly the same, and so are the corresponding zero-one
laws (11) and (14), respectively. In the case of the ER graph G(n; pn), the left-hand side of (13)
corresponds to the edge probability pn. We now explore how the left-hand side of (10) is related to
the corresponding edge probability pnλn(Kn) (viz. (6)) of the graph H ∩G(n; θn). First, we recall
(4) and use the fact that log(1 − pn) ≤ −pn to get

pnKn

n− 1

(

1 −
log(1 − pn)

pn
−

Kn

n− 1

)

≥ pnλn(Kn).

Hence, in ER graphs the threshold of k-connectivity, and of minimum node degree being at least k,
appears when the link probability is compared against (log n+(k−1) log log n)/n. In H ∩G(n; θn),
our result shows that the threshold appears when a quantity that is always larger than the link prob-
ability pnλn(Kn) is compared against (log n+ (k− 1) log log n)/n. This indicates that H ∩G(n; θn)
tends to exhibit the property that all nodes have at least k neighbors easier than ER graphs; i.e.,
this property can be ensured by a smaller link probability between nodes (which leads to smaller
average node degree).

The situation is more intricate if it holds that limn→∞ pn = 0, whence we have

log(1 − pn) = −pn −
p2n
2

(1 + o(1)).

This leads to

pnKn

n− 1

(

1 −
log(1 − pn)

pn
−

Kn

n− 1

)

=
pnKn

n− 1

(

2 −
Kn

n− 1
+

pn
2

(1 + o(1))

)

8



=
pnKn

n− 1

(

2 −
Kn

n− 1

)

(

1 +
pn
2

·
1 + o(1)

2 − Kn

n−1

)

= pnλn(Kn)(1 + Θ(pn)) (15)

= pnλn(Kn)(1 + o(1)), (16)

where in (15), we used the fact that 1 ≤ 2 − Kn

n−1 ≤ 2 since Kn ≤ n − 1. Thus, in the practi-
cally relevant case when the wireless channels become weaker as n gets large, the threshold for
minimum node degree of H ∩G(n; θn) to be at least k appears when a quantity that is asymptot-
ically equivalent to link probability is compared against (log n + (k − 1) log log n)/n; a situation
that is reminiscent of the ER graphs. A similar observation was made in [21] for the threshold of
1-connectivity and absence of isolated nodes.

Nevertheless, it is worth mentioning that even under limn→∞ pn = 0, the zero-one laws for the
minimum node degree being at least k in ER graphs and H ∩G(n; θn) are not exactly analogous.
This is because, the term o(1) in (16) may change the behavior of the sequence γn appearing in
(10) as it is given by

γn = npnλn(Kn)(1 + Θ(pn)) − log n− (k − 1) log log n

= npnλn(Kn) − log n− (k − 1) log log n + Θ(np2nλn(Kn))

= npnλn(Kn) − log n− (k − 1) log log n + Θ(Knp
2
n)

as we note that λn(Kn) = Θ(Kn/n). It is now clear that, even under limn→∞ pn = 0, the two
results, (14) under (13) and (11) under (10), may be deemed analogous if and only if Knp

2
n is

bounded, i.e., Knp
2
n = O(1). Combining, we can conclude that for the two graphs, G(n; pn) and

H ∩G(n;Kn, pn), to exhibit asymptotically the same behavior for the property that their minimum
node degrees are at least k, the parameter scalings should satisfy

pn = o(1) and Knp
2
n = O(1).

4.2 Comparison with results by Yağan and Makowski for k = 1

We now compare our results with those by Yağan and Makowski [21] who established zero-one
laws for 1-connectivity, and for the absence of isolated nodes (i.e., absence of nodes with degree
zero) in H ∩G(n; θ). Here, we present their result in a slightly different form: Consider scalings
K : N0 → N0 and p : N0 → (0, 1) such that

pnKn

(

2 −
Kn

n− 1

)





1 − log(1−pn)
pn

2



 ∼ c log n, (17)

for some c > 0. Assume also that limn→∞ pn = p⋆ exists. Then, we have

lim
n→∞

P [H ∩G(n; θn) is connected]

= lim
n→∞

P [H ∩G(n; θn) contains no isolated nodes ] =







0 if c < 1

1 if c > 1.
(18)

9



To better compare this result with ours, we set k = 1 and rewrite our scaling condition (8) as

pnKn

(

2 −
Kn

n− 1

)





1 − log(1−pn)
pn

− Kn

n−1

2 − Kn

n−1



 = log n + γn (19)

under which Theorem 3.1 gives

lim
n→∞

P

[

H ∩G(n; θn)

has no isolated nodes

]

=







0 if γn → −∞

1 if γn → +∞.

We now argue how our result on absence of isolated nodes constitutes an improvement on the
result of [21]. The assumption that limit limn→∞ pn = p⋆ exists was the key in establishing (18)
under (17) and our results in this paper explains why. First, it is clear that if p⋆ = 0, then

lim
n→∞





1 − log(1−pn)
pn

2



 = 1 = lim
n→∞





1 − log(1−pn)
pn

− Kn

n−1

2 − Kn

n−1





so that the left hand sides of (19) and (17) are asymptotically equivalent. Next, if p⋆ > 0, then it
follows that Kn = O(log n) (see [21]) under (17). This again yields the asymptotical equivalence of
the left hand sides of (19) and (17). Therefore, under the assumption that pn has a limit, a scaling
condition that is equivalent to (17) is given by

pnKn

(

2 −
Kn

n− 1

)





1 − log(1−pn)
pn

− Kn

n−1

2 − Kn

n−1



 ∼ c log n, (20)

with the results (18) unchanged.
Comparing (19) with (20), we see that our absence of isolated nodes result is more fine-grained

than the one given in [21]. In a nutshell, the scaling condition (20) enforced in [21] requires a
deviation of γn = ±Ω(log n) (from the threshold log n) to get the zero-one law, whereas in our
formulation (19), it suffices to have an unbounded deviation; e.g., even γn = ± log log · · · log n will
do. Put differently, we cover the case of c = 1 in (18) under (20) and show that H ∩G(n; θn) could
be almost surely free of or not free of isolated nodes, depending on the limit of γn; in fact, if (20)
holds with c > 1, we see from Theorem 3.1 that H ∩G(n; θn) is not only free of isolated nodes but
also all of its nodes will have degree larger than k for all k = 1, 2, . . ..

4.3 Numerical results and a conjecture

We now present some numerical results to check the validity of Theorem 3.1, particularly in the
non-asymptotic regime, i.e., when parameter values are set in accordance with real-world wireless
sensor network scenarios. In all experiments, we fix the number of nodes at n = 2000. Then for
a given parameter pair (K, p), we generate 200 independent samples of the graph H ∩G(n;K, p)
and count the number of times (out of a possible 200) that the obtained graphs i) have minimum
node degree no less than k and ii) are k-connected, for k = 1, 2, . . .. Dividing the counts by 200,
we obtain the (empirical) probabilities for the events of interest.
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Figure 1: a) Probability that all nodes in H ∩G(n;K, p) have degree at least 2 as a function of K
for p = 0.3, p = 0.5, p = 0.7, and p = 0.9 with n = 2000. b) Probability that H ∩ G(n;K, p) is
2-connected as a function of K for p = 0.3, p = 0.5, p = 0.7, and p = 0.9 with n = 2000. The two
figures being indistinguishable suggests that an analog of Theorem 3.1 holds also for the property
of k-connectivity.

In Figure 1(a), we depict the resulting empirical probability that each node in H ∩G(n;K, p)
has degree at least 2 as a function of K for various p values. For each p value, we also show the
critical threshold of having minimum degree at least 2 asserted by Theorem 3.1 (viz. (8)) by a
vertical dashed line. Namely, the vertical dashed lines stand for the minimum integer value of K
that satisfies

pK

(

1 −
log(1 − p)

p
−

K

n− 1

)

> log n + log log n (21)

Even with n = 2000, we can observe the threshold behavior suggested by Theorem 3.1; i.e., the
probability that H ∩G(n;K, p) has minimum node degree at least k transitions from zero to one
as K varies very slightly from a certain value. Those K values match well the vertical dashed
lines suggested by Theorem 3.1, leading to the conclusion that numerical experiments are in good
agreement with our theoretical results.

Figure 1(b) is obtained in the same way with Figure 1(a), this time for the probability that
H ∩G(n;K, p) is 2-connected.2 It is clear that two figures show a strong similarity with curves
corresponding to each p value being almost indistinguishable. This raises the possibility that an
analog of the zero-one law given in Theorem 3.1 holds also for the property of k-connectivity
in H ∩ G(n;K,P ). This would be reminiscent of several other random graph models from the
literature where the two graph properties (min. node degree ≥ k and k-connectivity) shown to
be asymptotically equivalent; e.g., see ER graphs [5] (viz. (14)), random key graphs and their
intersection with ER graphs [13, 24], and random geometric graphs over a unit torus [11].

2The definition of k-connectivity given here coincides with the notion of k-vertex-connectivity used in the literature.
k-vertex-connectivity formally states that the graph will remain connected despite the deletion of any k− 1 vertices,
and k-edge-connectivity is defined similarly for the deletion of edges. Since k-vertex-connectivity implies k-edge-
connectivity [5], we say that a graph is simply k-connected (without referring to vertex-connectivity) to refer to the
fact that it will remain connected despite the deletion of any k − 1 nodes or edges.
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Figure 2: a,b) With n = 2000 and p = 0.5, the probability that all nodes in H ∩ G(n;K, p) have
degree at least k, and the probability that H∩G(n;K, p) is k-connected are plotted, respectively, as
a function of K. c,d) With n = 2000 and K = 125, the probability that all nodes in H∩G(n;K, p)
have degree at least k, and the probability thatH∩G(n;K, p) is k-connected are plotted, respectively
as a function of p.

To drive this point further, we have conducted an extensive simulation study and compared the
empirical probabilities for the properties of minimum node degree is at least k, and k-connectivity
in graph H ∩ G(n;K,P ). Some of the results are reported in Figures 2(a)-2(d), and they strongly
suggest the equivalence of these two properties in H∩G(n;K,P ) as well. This leads us to cast the
following conjecture, which is the analog of Theorem 3.1 for k-connectivity.

Conjecture 4.1 Consider scalings K : N0 → N0 and p : N0 → [0, 1] such that limn→∞(n−2Kn) =

12



∞ and lim supn→∞ pn < 1, and a sequence γ : N0 → R defined through (8). Then,

lim
n→∞

P [H ∩G(n; θn) is k-connected] =







0 if γn → −∞

1 if γn → +∞.

We close this section with a few comments on Conjecture 4.1, before we start the proof of our
main result in the next section. First, it is clear that if a graph has minimum node degree less than
k, i.e., it has at least one vertex whose degree is less than or equal to k − 1, then it will be not
k-connected. This is because the graph can be made disconnected by taking all the neighbors of
the node with degree ≤ k− 1; i.e., by taking less than or equal to k− 1 nodes. Therefore, Theorem
3.1 already establishes the zero-law of the Conjecture 4.1. Namely, it is clear under the enforced
assumptions on the scalings that

lim
n→∞

P [H ∩G(n; θn) is k-connected] = 0 if γn → −∞.

Therefore, it only remains to establish the one-law in Conjecture 4.1. In view of Theorem 3.1, this
will follow if it is shown that

lim
n→∞

P

[

H ∩G(n; θn) is not k-connected
⋂

H ∩G(n; θn) has min. degree ≥ k

]

= 0 if γn → +∞. (22)

Exploring the validity of (22) is one of the main directions to be followed in the future work.

5 Preliminaries

Before we give a proof of Theorem 3.1, we collect in this section some preliminary results that will
be used throughout.

5.1 A reduction step: Confining γn

A key step in proving Theorem 3.1 is to restrict the deviation function γn defined through (8) to
satisfy γn = ±o(log n); i.e., that

lim
n→∞

γn
log n

= 0. (23)

Some useful consequences of (23) are established in Section 5.2. In this section, we will show that
(23) can be assumed without loss of generality in establishing Theorem 3.1. More precisely, we will
show that

Theorem 3.1 under γn = ±o(lnn) ⇒ Theorem 3.1 (24)

First, we establish the fact that γn defined through (8) is monotone increasing in both param-
eters pn and Kn.

Proposition 5.1 With p in (0, 1) and a positive integer K < n, the function

γn = pK

(

1 −
log(1 − p)

p
−

K

n− 1

)

− log n− (k − 1) log log n (25)

is monotone increasing in p and K.
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Proof. We first show that γn is monotone increasing in p. Taking the derivative of (25) with
respect to p, we get

d

dp
γn =

d

dp

(

pK −K log(1 − p) − p
K2

n− 1

)

(26)

= K + K
1

1 − p
−

K2

n− 1

≥ K + K
1

1 − p
−K (27)

≥ 0,

where, in (27) we used the fact that K ≤ n− 1.
Next, we show that γn is monotone increasing in K as well. To see this, take the derivative of

(25) with respect to K to get

d

dK
γn =

d

dK

(

pK −K log(1 − p) − p
K2

n− 1

)

(28)

= p− log(1 − p) − 2
Kp

n− 1
≥ p− log(1 − p) − 2p (29)

≥ 0, (30)

where in (29) and (30), we used the facts that K ≤ n− 1 and log(1 − p) ≤ −p, respectively.

Recall that any mapping (K, p) : N0 → N0 × [0, 1] defines a scaling provided that the condition
(7) is satisfied. We now introduce the notion of an admissible scaling.

Definition 5.2 A mapping (K, p) : N0 → N0× [0, 1] is said to be an admissible scaling if (7) holds,
and the sequence γ : N0 → R defined through (8) satisfies (23).

The relevance of the notion of admissibility flows from the following two results.

Proposition 5.3 Consider a scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n − 2Kn) = ∞,
lim supn→∞ pn < 1, and the sequence γ : N0 → R defined through (8) satisfying

lim
n→∞

γn = ∞.

Then, there always exists an admissible scaling (K̃, p̃) : N0 → N0×[0, 1] with limn→∞(n−2K̃n) = ∞,
lim supn→∞ p̃n < 1 and such that

K̃n ≤ Kn and p̃n ≤ pn, n = 1, 2, . . . (31)

whose deviation function γ̃ : N0 → R defined through

γ̃n = p̃nK̃n

(

1 −
log(1 − p̃n)

p̃n
−

K̃n

n− 1

)

− log n− (k − 1) log log n (32)
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satisfies both conditions
lim
n→∞

γ̃n = ∞ (33)

and
γ̃n = o(log n). (34)

Proof. Under the enforced assumptions on the scaling (K, p) : N0 → N0× [0, 1] and the deviation
sequence γn associated with it, pick K̃n = Kn, γ̃n = min{log log n, γn} for each n = 1, 2, . . ., and
define the sequence p̃n through

γ̃n = p̃nKn

(

1 −
log(1 − p̃n)

p̃n
−

Kn

n− 1

)

− log n− (k − 1) log log n (35)

Note that since γ̃n is monotone increasing in p̃n (see Proposition 5.1), the relation (35) will uniquely
define p̃n. Since γ̃n ≤ γn by construction, we have p̃n ≤ pn in view of of the fact that deviation
sequences are monotone increasing in p. Thus, the pair K̃n, p̃n satisfies (31). It is also plain from
γ̃n = min{log log n, γn} and the fact that limn→∞ γn = ∞, that we have (33) and (34). Finally, it
is clear that limn→∞(n− 2K̃n) = ∞ (since K̃n = Kn) and lim supn→∞ p̃n < 1 since p̃n ≤ pn.

The next result is an analog of Proposition 5.3 for the case limn→∞ γn = −∞.

Proposition 5.4 Consider a scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n − 2Kn) = ∞,
lim supn→∞ pn < 1, and the sequence γ : N0 → R defined through (8) satisfying

lim
n→∞

γn = −∞.

Then, there always exists an admissible scaling (K̃, p̃) : N0 → N0×[0, 1] with limn→∞(n−2K̃n) = ∞,
lim supn→∞ p̃n < 1 and such that

K̃n ≥ Kn and p̃n ≥ pn, n = 1, 2, . . . (36)

whose deviation function γ̃ : N0 → R defined through (32) satisfies both conditions

lim
n→∞

γ̃n = −∞ (37)

and
γ̃n = −o(log n). (38)

Proof. The proof of Proposition 5.4 is a bit more tricky than that of Proposition 5.3. This time,
we start by setting γ̃n = max{γn,− log log n} under the enforced assumptions on the scalings Kn,
pn and the associated deviation sequence γn defined through (8). It is plain that we have (37) and
(38). Thus, we only need to find scalings p̃n and K̃n that satisfy

γ̃n = p̃nK̃n

(

1 −
log(1 − p̃n)

p̃n
−

K̃n

n− 1

)

− log n− (k − 1) log log n (39)
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together with (36), limn→∞(n−2K̃n) = ∞, and lim supn→∞ p̃n < 1. Since the deviation sequence is
monotone increasing (viz. Proposition 5.1), and we have γ̃n ≥ γn, we can attempt to construct the
scalings p̃n and K̃n as in the proof of Proposition 5.3. Namely, set K̃n = Kn, choose the sequence
p̃n = p̃⋆n that satisfies

γ̃n = p̃⋆nKn

(

1 −
log(1 − p̃⋆n)

p̃⋆n
−

Kn

n− 1

)

− log n− (k − 1) log log n (40)

It is plain that we have p̃⋆n ≥ pn since γ̃n ≥ γn . If it holds that lim supn→∞ p̃⋆n < 1, then we are
done by choosing p̃n = p̃⋆n and K̃n = Kn.

On the other hand, if (40) is satisfied with lim supn→∞ p̃⋆n = 1, then we set

p̃n = min {max{pn, 0.5}, p̃
⋆
n} , n = 1, 2, . . . (41)

so that p̃n ≥ pn and lim supn→∞ p̃n < 1 hold. Then pick a positive real number K̃⋆
n ≤ n − 1 such

that it satisfies

γ̃n = p̃nK̃
⋆
n

(

1 −
log(1 − p̃n)

p̃n
−

K̃⋆
n

n− 1

)

− log n− (k − 1) log log n, (42)

and set K̃n = ⌈K̃⋆
n⌉. Note that K̃⋆

n is uniquely defined from (42) since γ̃n is monotone increasing in
K̃⋆

n (see Proposition 5.1). We will first show that the deviation sequence associated with the pair
(p̃n, K̃n) is the same with that associated with (p̃n, K̃

⋆
n) within an additive constant. Namely, with

γ̃′n defined through

γ̃′n = p̃nK̃n

(

1 −
log(1 − p̃n)

p̃n
−

K̃n

n− 1

)

− log n− (k − 1) log log n

we will show that
γ̃′n = γ̃n + O(1). (43)

This will ensure that (37) and (38) are still in effect with γ̃′n replaced by γ̃n. In order to obtain
(43), we note that K̃n < K̃⋆

n + 1 and write

γ̃′n − γ̃n ≤ p̃n − log(1 − p̃n) − p̃n
2K̃⋆

n + 1

n− 1
≤ p̃n − log(1 − p̃n) = O(1), (44)

where in the last step we used the fact that lim supn→∞ p̃n < 1.
Now, with K̃n = ⌈K̃⋆

n⌉ where K̃⋆
n is defined in (42), we have to show that K̃n ≥ Kn and that

limn→∞(n − 2K̃n) = ∞. First, since p̃n ≤ p̃⋆n, we must have K̃⋆
n ≥ Kn so that the pair (p̃n, K̃

⋆
n)

leads to same deviation sequence γ̃n with the pair (p̃⋆n,Kn); this is plain from Proposition 5.1. This
establishes K̃n ≥ Kn and the only condition which is yet to be shown is that limn→∞(n− 2K̃n) =
∞. To see this, first note from (41) that p̃n ≥ 0.5 for all n sufficiently large since we have
lim supn→∞ p̃⋆n = 1. Then, from (42) we get

γ̃n + log n + (k − 1) log log n = p̃nK̃
⋆
n

(

1 −
log(1 − p̃n)

p̃n
−

K̃⋆
n

n− 1

)

≥ p̃nK̃
⋆
n

(

2 −
K̃⋆

n

n− 1

)

≥ p̃nK̃
⋆
n

≥ 0.5K̃⋆
n (45)
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for all n sufficiently large. Thus, in view of limn→∞ γ̃n = −∞, we conclude from the last inequality
that K̃⋆

n = O(log n). Since K̃⋆
n ≤ K̃n < K̃⋆

n + 1, this also ensures that K̃n = O(log n). The desired
condition limn→∞(n − 2K̃n) = ∞ is now established and this concludes the proof of Proposition
5.4.

Propositions 5.3 and 5.4 will pave the way in establishing the desired reduction step (24) through
the following coupling argument. In a nutshell, the following result shows that the probability
P [Min node degree of H ∩G(n;Kn, pn) is no less than k] is monotone increasing in Kn and pn.

Proposition 5.5 Consider a scaling (K, p) : N0 → N0 × [0, 1]. Then for any scaling (K̃, p̃) : N0 →
N0 × [0, 1] such that (36) holds, we have

P

[

Min node degree of

H ∩G(n;Kn, pn) is no less than k

]

≤ P

[

Min node degree of

H ∩G(n; K̃n, p̃n) is no less than k

]

(46)

Similarly, for any scaling (K̃, p̃) : N0 → N0 × [0, 1] such that (31) holds, we have

P

[

Min node degree of

H ∩G(n;Kn, pn) is no less than k

]

≥ P

[

Min node degree of

H ∩G(n; K̃n, p̃n) is no less than k

]

(47)

Proof. It is plain that it suffices to establish only one of the desired results (46) or (47) under
(36) or (31), respectively. We will establish (46) under (36) by showing the existence of a coupling
such that H ∩ G(n;Kn, pn) is a spanning subgraph of H ∩ G(n; K̃n, p̃n). In this case, it is easy to
conclude that (e.g., see the work by Rybarczyk [13, pp. 7])

P[H ∩G(n;Kn, pn) has property P] ≤ P[H ∩G(n; K̃n, p̃n) has property P]. (48)

for any monotone increasing3 graph property P. It is straightforward to see that the property
that the minimum node degree is no less than k is monotone increasing (and so is the property of
k-connectivity).

We now show that, if (36) holds, i.e., if K̃n ≥ Kn and p̃n ≥ pn, then

H ∩G(n;Kn, pn) ⊆ H ∩G(n; K̃n, p̃n). (49)

The required coupling argument will be completed in two steps owing to the independence of
H(n;Kn) and G(n; pn) in the construction of the intersection graph H ∩ G(n;Kn, pn). First, we
argue that if p̃n ≥ pn, then there exists a coupling that establishes

G(n; pn) ⊆ G(n; p̃n) (50)

We use the same arguments as in [24]. Pick independent Erdős-Rényi graphs G(n, pn/p̃n) and
G(n, p̃n) on the same vertex set; note that we can construct G(n, pn/p̃n) with link probability pn/p̃n
since pn/p̃n ≤ 1 under the enforced assumptions. It is plain that the intersection G(n, pn/p̃n) ∩
G(n, p̃n) will still be an Erdős-Rényi graph (due to independence) with edge probability given by
p̃n · pn

p̃n
= pn. In other words, we have G(n, pn/p̃n) ∩ G(n, p̃n) =st G(n, pn). Consequently, under

this coupling, G(n, pn) is a spanning subgraph of G(n, p̃n).

3A graph property is called monotone increasing if it holds under the addition of edges in a graph.
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Next, we provide a coupling argument that shows that if K̃n ≥ Kn, then

H(n;Kn) ⊆ H(n; K̃n) (51)

Recall that H(n; K̃n) is constructed as follows: assign each node exactly K̃n arcs towards K̃n

distinct vertices that are selected uniformly at random, and then ignore the orientation of the arcs.
An equivalent way of generating H(n; K̃n) is as follows. In the first round, for each node assign Kn

arcs towards Kn vertices that are selected uniformly at random, and then ignore the orientation
of the arcs. At this point, we have constructed an instantiation of H(n;Kn). Next, to each node
assign K̃n −Kn additional arcs towards K̃n −Kn distinct nodes which are randomly selected from
among all nodes that were not picked in the first round. Namely, for each node this second round
of selection will be made uniformly at random among the set of n − 1 −Kn nodes that were not
picked in the previous round. Finally, by ignoring the orientation of the arcs assigned in the second
round, we obtain H(n; K̃n). It is now plain that we have (51) whenever K̃n ≥ Kn.

The desired result (49) follows immediately from (50) and (51) by independence.

We can now establish (24) and reduce the proof of Theorem 3.1 to admissible scalings. Suppose
that Theorem 3.1 is proved under the additional condition that the scaling (K, p) : N0 → N0× [0, 1]
is admissible; i.e., that the associated deviation sequence γn defined through (8) satisfies γn =
±o(log n). This result is stated below as Proposition 5.6 for convenience.

Assume that Proposition 5.6 holds and pick any scaling (K, p) : N0 → N0 × [0, 1] such that
limn→∞(n − 2Kn) = ∞, lim supn→∞ pn < 1. If the deviation sequence γn defined through (8)
satisfies limn→∞ γn = ∞, then we know from Proposition 5.3 that there exists an admissible scaling
(K̃, p̃) : N0 → N0 × [0, 1] that satisfies (31), limn→∞(n − 2K̃n) = ∞, lim supn→∞ p̃n < 1, and still
the deviation function γ̃ : N0 → R defined through (32) satisfying limn→∞ γ̃n = ∞. Then, we get

lim
n→∞

P

[

Min node degree of H ∩G(n; K̃n, p̃n) is no less than k
]

= 1

from Proposition 5.6, and the desired result

lim
n→∞

P [Min node degree of H ∩G(n;Kn, pn) is no less than k] = 1

follows from (47) since (31) holds.
In a similar manner, pick any scaling (K, p) : N0 → N0× [0, 1] such that limn→∞(n−2Kn) = ∞,

lim supn→∞ pn < 1. If the deviation sequence γn defined through (8) satisfies limn→∞ γn = −∞,
then we know from Proposition 5.4 that there exists an admissible scaling (K̃, p̃) : N0 → N0 × [0, 1]
that satisfies (36), limn→∞(n − 2K̃n) = ∞, lim supn→∞ p̃n < 1, and still the deviation function
γ̃ : N0 → R defined through (32) satisfying limn→∞ γ̃n = −∞. Then, we get

lim
n→∞

P

[

Min node degree of H ∩G(n; K̃n, p̃n) is no less than k
]

= 0

from Proposition 5.6, and the desired result

lim
n→∞

P [Min node degree of H ∩G(n;Kn, pn) is no less than k] = 0

follows from (46) since (36) holds.
The rest of the paper will be devoted to establishing the next result; i.e., Theorem 3.1 under

admissible scalings.
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Proposition 5.6 Consider an admissible scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n −
2Kn) = ∞ and lim supn→∞ pn < 1. With the sequence γ : N0 → R defined through (8), we have

lim
n→∞

P

[

Min node degree of

H ∩G(n; θn) is no less than k

]

=











0 if lim
n→∞

γn = −∞

1 if lim
n→∞

γn = +∞.
(52)

5.2 Useful consequences of the scaling condition (8)

We collect in this section some useful consequences of the scaling condition (8) that follow under
the assumptions of admissibility and lim supn→∞ pn < 1.

Lemma 5.7 Consider an admissible scaling (K, p) : N0 → N0× [0, 1] such that lim supn→∞ pn < 1.
Namely, the sequence γ : N0 → R defined through (8) satisfies γn = ±o(log n). Then, we have

pnKn = Θ(log n) (53)

and thus
Kn = Ω(log n). (54)

Proof. Under the admissibility condition γn = ±o(log n), it is clear that (8) implies

pnKn

(

1 −
log(1 − pn)

pn
−

Kn

n− 1

)

= Θ(log n). (55)

Next, observe that if lim supn→∞ pn < 1, then

1 ≤ −
log(1 − pn)

pn
≤ M

for some finite scalar M . Thus, it is immediate that

1 ≤

(

1 −
log(1 − pn)

pn
−

Kn

n− 1

)

≤ M + 1 (56)

since −1 ≤ − Kn

n−1 ≤ 0. The desired result (53) is now immediate from (55) and (56). Since pn ≤ 1
for all n, (54) follows clearly from (53).

6 A proof of Theorem 3.1

As the discussion in Section 5.1 shows, the proof of Theorem 3.1 will be completed if we establish
Proposition 5.6. In this section, we outline the proof of Proposition 5.6 and then complete the proof
in several subsequent sections. The main idea behind the proof is to apply the method of first and
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second moments [8, p. 55] to the variable Xℓ(n; θ) that counts the number of nodes in H ∩G(n; θ)
with degree ℓ, for each ℓ = 0, 1 . . . , n− 1. Namely, with di denoting the degree of node i, i.e.,

di =
∑

j∈{1,...,n}/{i}

1 [i ∼ j] ,

and Di,ℓ standing for the event that node i has degree ℓ (i.e., Di,ℓ := [di = ℓ]), we set

Xℓ(n; θ) =

n
∑

i=1

1 [Di,ℓ] . (57)

Note that the dependence of the event Di,ℓ (and, of the variable di) to the parameters n and θ is
suppressed here for notational convenience. The graph H∩G(n; θ) will have minimum node degree
no less than k if Xℓ(n; θ) = 0 for each ℓ = 0, 1, . . . , k − 1. Similarly, the minimum node degree will
be less than k if for at least one of ℓ = 0, 1, . . . , k − 1, we have Xℓ(n; θ) > 0.

Let δ(n; θ) denote the minimum node degree in H ∩ G(n; θ). The method of first and second
moments [8, p. 55] will be used here in the forms

P [Xℓ > 0] ≤ E [Xℓ] (58)

and
E [Xℓ]

2

E
[

X2
ℓ

] ≤ P [Xℓ > 0] , (59)

respectively, which are valid for any positive-valued random variable Xℓ.
It is clear that collection of random variables 1 [D1,ℓ] , . . . ,1 [Dn,ℓ] are exchangeable and thus

we have
E [Xℓ(n; θ)] = nP [Dx,ℓ] (60)

and

E

[

(Xℓ(n; θ))2
]

= nP [Dx,ℓ] + n(n− 1)P [Dx,ℓ ∩Dy,ℓ]

by the binary nature of the rvs involved; here x and y are used to denote generic node ids. It then
follows that

E

[

(Xℓ(n; θ))2
]

E [Xℓ(n; θ)]2
=

1

nP [Dx,ℓ]
+

n− 1

n
·
P [Dx,ℓ ∩Dy,ℓ]

(P [Dx,ℓ])
2 . (61)

From (58) and (60) it is plain that the one-law limn→∞ P [δ(n; θn) ≥ k] = 1 will be established
if we show that

lim
n→∞

nP [Dx,ℓ] = 0, ℓ = 0, 1, . . . , k − 1 (62)

From (59) and (61) we see that the zero-law limn→∞ P [δ(n; θn) ≥ k] = 0 holds if

lim
n→∞

nP [Dx,k−1] = ∞ (63)

and

lim sup
n→∞

P [Dx,k−1 ∩Dy,k−1]

(P [Dx,k−1])
2 ≤ 1. (64)

The proof of Proposition 5.6 passes through the next two technical propositions which establish
(62), (63) and (64) under the appropriate conditions on the scaling θ : N0 → N0 × (0, 1).
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Proposition 6.1 Consider an admissible scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n −
Kn) = ∞ and lim supn→∞ pn < 1. Define the sequence γℓ : N0 → R through

pnKn

(

1 −
log(1 − pn)

pn
−

Kn

n− 1

)

= log n + ℓ log log n + γℓ,n, (65)

for each ℓ = 0, 1, . . ., and for each n = 1, 2, . . .. Then, we have

lim
n→∞

nP [Dx,ℓ] =











0 if lim
n→∞

γℓ,n = +∞

∞ if lim
n→∞

γℓ,n = −∞.
(66)

A proof Proposition 6.1 is given in Section 7.

Proposition 6.2 Consider an admissible scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n −
2Kn) = ∞ and lim supn→∞ pn < 1. Then, we have

P [Dx,ℓ ∩Dy,ℓ] ≤ (1 + o(1)) (P [Dx,ℓ])
2 (67)

for each ℓ = 0, 1, . . ..

A proof Proposition 6.2 can be found in Section 8.
The proof of Proposition 5.6 can now be completed. Pick an admissible scaling (K, p) : N0 →

N0 × [0, 1] such that limn→∞(n − 2Kn) = ∞ and lim supn→∞ pn < 1. Assume that the sequence
γ : N0 → R defined through (8) satisfies limn→∞ γn = +∞. Comparing (8) with (65), this ensures
that

lim
n→∞

γℓ,n = +∞, ℓ = 0, 1, . . . , k − 1

as we note that γℓ,n is monotone decreasing in ℓ and that limn→∞ γn = +∞ is equivalent to
limn→∞ γk−1,n = +∞. It is clear that (62) follows by using Proposition 6.1 for each ℓ = 0, 1, . . . , k−1
and the one-law limn→∞ P [δ(n; θn) ≥ k] = 1 is immediate from (58) and (60).

Next, assume that the sequence γ : N0 → R defined through (8) satisfies limn→∞ γn = −∞.
This is equivalent to limn→∞ γk−1,n = −∞, and we get (63) from Proposition 6.1 with ℓ = k − 1.
Also, (64) follows from Proposition 6.2, and the zero-law limn→∞ P [δ(n; θn) ≥ k] = 0 is now estab-
lished via (59) and (61).

7 A proof of Proposition 6.1

7.1 Outline

For simplicity, we first consider the case when the parameters K and P are fixed; i.e., not scaled
with n. The degree dx of an arbitrary node x in H ∩G(n; θ) can be written as the sum of two
independent variables:

dx =
∑

j: j∈Γn,x(K)

1 [x ∼ j] +
∑

j: j 6∈Γn,x(K) and x∈Γn,j(K)

1 [x ∼ j]
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where Γn,x(K) and Γn,j(K) are as defined previously in (1); i.e., they represent the set of K nodes
that are selected uniformly at random by nodes x and j, respectively, in the pairing mechanism
of the random pairwise scheme. Notice that x will not have an edge with j in H ∩G(n; θ) unless
at least one of the events j ∈ Γn,x(K) and x ∈ Γn,j(K) takes place. Also, if either j ∈ Γn,x(K)
or x ∈ Γn,j(K), the edge x ∼ j will exist in H ∩G(n; θ) if and only if the communication channel
between them is on; i.e., they are B−adjacent. Noting that communication channels are on with
probability p independently from each other, we have

dx =st Bin (K, p) + Bin

(

n−K − 1,
pK

n− 1

)

(68)

where Bin(n, p) defines a standard Binomial distribution with n trials and success probability p.
This follows easily from the facts that

|j : j ∈ Γn,x(K)| = K

and

|j : j 6∈ Γn,x(K) and x ∈ Γn,j(K)| =st Bin

(

n−K − 1,
K

n− 1

)

,

where the last relation follows from

P [x ∈ Γn,j(K)] =

(

n−2
K−1

)

(

n−1
K

) =
K

n− 1
, j ∈ {1, . . . , n}, j 6= x. (69)

The following result is the key in establishing Proposition 6.1 and will follow directly from the
expression (68).

Proposition 7.1 Consider an admissible scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n −
Kn) = ∞ and lim supn→∞ pn < 1. For each ℓ = 0, 1, . . ., we have

P [Dx,ℓ] = (1 + o(1)) ·
(pnKn)ℓ

ℓ!
· (1 − pn)Kn ·

(

1 −
pnKn

n− 1

)n−Kn−1

·

(

1 −
Kn

n− 1
+

1

1 − pn

)ℓ

(70)

The proof of Proposition 7.1 is given in Section 7.2.
We are now in a position to finish the proof of Proposition 6.1. Consider an admissible scaling

(K, p) : N0 → N0 × [0, 1] such that limn→∞(n − Kn) = ∞ and lim supn→∞ pn < 1. We consider
each term in (70) in turn. Since Kn ≤ n− 1 and lim supn→∞ pn < 1, we have

(

1 −
Kn

n− 1
+

1

1 − pn

)ℓ

= Θ(1). (71)

Also, in view of (53), we have

(pnKn)ℓ = Θ
(

(log n)ℓ
)

, ℓ = 0, 1, . . . (72)

Next, we make use of the following decomposition,

log(1 − x) = −x− Ψ(x), 0 ≤ x < 1 (73)
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with

Ψ(x) =

∫ x

0

t

1 − t
dt (74)

L’Hospitals rule yields limx↓0
Ψ(x)
x2 = 1

2 . Applying this decomposition, we get

(

1 −
pnKn

n− 1

)n−Kn−1

= exp

{

−
pnKn

n− 1
(n−Kn − 1) − (n−Kn − 1)Ψ

(

pnKn

n− 1

)}

Since pnKn = Θ(log n) in view of Lemma 5.7, we have limn→∞
pnKn

n−1 = 0 and limn→∞

(

Ψ( pnKn
n−1 )

p2nK2
n

(n−1)2

)

=

1
2 . This gives

(n−Kn − 1)Ψ

(

pnKn

n− 1

)

= (n−Kn − 1)
p2nK

2
n

(n − 1)2





Ψ
(

pnKn

n−1

)

p2nK
2
n

(n−1)2



 = O

(

(log n)2

n− 1

)

= o(1).

Thus, we conclude that

(

1 −
pnKn

n− 1

)n−Kn−1

= exp

{

−pnKn

(

1 −
Kn

n− 1

)

+ o(1)

}

(75)

Finally, we report (71), (72), and (75) into (70) to get

nP [Dx,ℓ] = Θ

(

exp

{

log n + ℓ log log n− pnKn

(

1 −
log(1 − pn)

pn
−

Kn

n− 1

)})

(76)

We now invoke the scaling condition (65) as in the statement of Proposition 6.1 to get

nP [Dx,ℓ] = Θ
(

e−γℓ,n
)

= e−γℓ,n+Θ(1)

The desired result (66) is now immediate.

7.2 A proof of Proposition 7.1

Recall that P [Dx,ℓ] = P [dx = ℓ]. Given that the binomial distributions are independent in (68), we
get

P [Dx,ℓ] =

ℓ
∑

i=0

(

n−K − 1

i

)(

pK

n− 1

)i(

1 −
pK

n− 1

)n−K−1−i

·

(

K

ℓ− i

)

pℓ−i(1 − p)K−ℓ+i

= pℓ(1 − p)K
(

1 −
pK

n− 1

)n−K−1 ℓ
∑

i=0

(

n−K − 1

i

)(

K

n− 1

)i

·

(

K

ℓ− i

)

(1 − p)i−ℓ

·

(

1 −
pK

n− 1

)−i

(77)
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by an easy conditioning argument.
Now, pick an admissible scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n −Kn) = ∞ and

lim supn→∞ pn < 1. We will invoke this scaling into (77). First, we introduce a simple asymptotic
equivalency that will prove useful throughout: For any sequence an such that limn→∞ an = ∞ and
any fixed scalar i = 0, 1, . . ., we have

(

an
i

)

=
an!

(an − i)! i!
=

ain
i!

·
i−1
∏

j=1

(

1 −
j

an

)

=
ain
i!

(1 + o(1)). (78)

Under the enforced assumptions, we have Kn = Ω(n) from Lemma 5.7 so that limn→∞Kn = ∞.
Also, by assumption we have limn→∞(n − Kn) = ∞. Thus, we can use (78) in both of the
combinatorial terms appearing in (77). Finally, under the enforced assumptions, we have pnKn =
Θ(log n) from Lemma 5.7, so that

(

1 −
pnKn

n− 1

)−i

= 1 + o(1), i = 0, 1, . . . , ℓ. (79)

Reporting (78) and (79) together with the admissible scaling under consideration into (77), we
get

P [Dx,ℓ] (80)

= (1 + o(1))pℓn(1 − pn)K
(

1 −
pnKn

n− 1

)n−Kn−1 ℓ
∑

i=0

(n−Kn − 1)i

i!

(

Kn

n− 1

)i Kℓ−i
n

(ℓ− i)!
(1 − pn)i−ℓ

= (1 + o(1))
(pnKn)ℓ

ℓ!
(1 − pn)K

(

1 −
pnKn

n− 1

)n−Kn−1 ℓ
∑

i=0

(

ℓ

i

)(

n−Kn − 1

n− 1

)i

(1 − pn)i−ℓ

= (1 + o(1))
(pnKn)ℓ

ℓ!
(1 − pn)K

(

1 −
pnKn

n− 1

)n−Kn−1(

1 −
Kn

n− 1
+

1

1 − pn

)ℓ

(81)

upon using Binomial Theorem in the last step. This completes the proof of Proposition 7.1.

8 A proof of Proposition 6.2

We start by obtaining an expression for P [Dx,ℓ ∩Dy,ℓ]. Qualitatively, this is the probability of two
distinct nodes having degree ℓ in H ∩G(n; θ). This probability clearly depends on whether or not
there is an edge between x and y in H ∩G(n; θ), which is tightly related to whether or not x ∼K y;
i.e., whether there is an edge between x and y in he individual K-out graph H(n;K). To that end,
we use Γx instead of Γn,x(K) for any node x to suppress the notation, and find it useful to write

P [Dx,ℓ ∩Dy,ℓ] = P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x /∈ Γy , y /∈ Γx

]

· P [x /∈ Γy ∩ y /∈ Γx]

+ 2 · P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x ∈ Γy , y /∈ Γx

]

· P [x ∈ Γy ∩ y /∈ Γx]

+ P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x ∈ Γy , y ∈ Γx

]

· P [x ∈ Γy ∩ y ∈ Γx] (82)
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upon noting that by symmetry

P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x ∈ Γy , y /∈ Γx

]

= P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x /∈ Γy , y ∈ Γx

]

.

Now, pick an admissible scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n− 2Kn) = ∞ and
lim supn→∞ pn < 1. Note that for any node pair x and y, we have Kn ≤ |Γx ∪ Γy| ≤ 2Kn. Thus,
conditioning on the event |Γx ∪ Γy| = 2Kn −m, the terms in (82) can be written as follows

P [Dx,ℓ ∩ Dy,ℓ | x /∈ Γy, y /∈ Γx] =

Kn
∑

m=0

P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x /∈ Γy, y /∈ Γx, |Γx ∪ Γy| = 2Kn −m

]

· P [|Γx ∪ Γy| = 2Kn −m | x /∈ Γy , y /∈ Γx] (83)

P [Dx,ℓ ∩ Dy,ℓ | x ∈ Γy, y /∈ Γx] =
Kn
∑

m=0

P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x ∈ Γy, y /∈ Γx, |Γx ∪ Γy| = 2Kn −m

]

· P [|Γx ∪ Γy| = 2Kn −m | x ∈ Γy , y /∈ Γx] (84)

P [Dx,ℓ ∩ Dy,ℓ | x ∈ Γy, y ∈ Γx] =

Kn
∑

m=0

P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x ∈ Γy, y ∈ Γx, |Γx ∪ Γy| = 2Kn −m

]

· P [|Γx ∪ Γy| = 2Kn −m | x ∈ Γy , y ∈ Γx] (85)

Proof of Proposition 6.2 passes through finding appropriate upper bounds for each of the terms
(83), (84), and (85). These bounds are provided in the next three results, which are subsequently
established in Sections 9, 10, and 11. For ease of notation, we define

P1(n, θn;m, ℓ) := P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x /∈ Γy , y /∈ Γx , |Γx ∪ Γy| = 2Kn −m

]

P2(n, θn;m, ℓ) := P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x ∈ Γy , y /∈ Γx , |Γx ∪ Γy| = 2Kn −m

]

P3(n, θn;m, ℓ) := P

[

Dx,ℓ ∩ Dy,ℓ

∣

∣

∣

∣

x ∈ Γy , y ∈ Γx , |Γx ∪ Γy| = 2Kn −m

]

Proposition 8.1 Consider an admissible scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n −
2Kn) = ∞ and lim supn→∞ pn < 1. Given ℓ = 0, 1, . . ., we have

P1(n, θn;m, ℓ) ≤ (1 + o(1))P [Dx,ℓ]
2 (86)

for each m = 0, 1, . . . ,Kn.

A proof of proposition 8.1 is given in Section 9.

Proposition 8.2 Consider an admissible scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n −
2Kn) = ∞ and lim supn→∞ pn < 1. Given ℓ = 0, 1, . . ., we have

P2(n, θn;m, ℓ) ≤ (1 + o(1))P [Dx,ℓ]
2 (87)

for each m = 0, 1, . . . ,Kn.
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A proof of proposition 8.2 is given in Section 10.

Proposition 8.3 Consider an admissible scaling (K, p) : N0 → N0 × [0, 1] such that limn→∞(n −
2Kn) = ∞ and lim supn→∞ pn < 1. Given ℓ = 0, 1, . . ., we have

P3(n, θn;m, ℓ) ≤ (1 + o(1))(1 − pn)−1
P [Dx,ℓ]

2 (88)

for each m = 0, 1, . . . ,Kn.

A proof of proposition 8.3 is given in Section 11.
We can now complete the proof of Proposition 6.2. Reporting (86), (87), and (88) for each

m = 0, 1, . . . ,Kn into (83), (84), and (85), respectively, we get

P [Dx,ℓ ∩ Dy,ℓ | x /∈ Γy , y /∈ Γx] ≤ (1 + o(1))P [Dx,ℓ]
2 (89)

P [Dx,ℓ ∩ Dy,ℓ | x ∈ Γy , y /∈ Γx] ≤ (1 + o(1))P [Dx,ℓ]
2 (90)

P [Dx,ℓ ∩ Dy,ℓ | x ∈ Γy , y ∈ Γx] ≤ (1 + o(1))(1 − pn)−1
P [Dx,ℓ]

2 (91)

Now we use (89), (90), (91) to bound P [Dx,ℓ ∩Dy,ℓ] via (82). It is clear that the desired result (67)
will follow if we show that

P [x /∈ Γy ∩ y /∈ Γx] + 2 · P [x ∈ Γy ∩ y /∈ Γx] + (1 − pn)−1
P [x ∈ Γy ∩ y ∈ Γx] = 1 + o(1) (92)

under the enforced assumptions. Recalling (69) and independence of Γx and Γy, we get by a direct
computation that

P [x /∈ Γy ∩ y /∈ Γx] + 2 · P [x ∈ Γy ∩ y /∈ Γx] + (1 − pn)−1
P [x ∈ Γy ∩ y ∈ Γx]

=

(

1 −
Kn

n− 1

)2

+ 2
Kn

n− 1

(

1 −
Kn

n− 1

)

+ (1 − pn)−1

(

Kn

n− 1

)2

= 1 +
K2

n

(n− 1)2

(

1

1 − pn
− 1

)

= 1 +
K2

n pn
(n− 1)2 (1 − pn)

(93)

Note that we have Kn ≤ n− 1 and pnKn = Θ(log n) by the admissibility of the scaling; just recall
(7) and (53). We also have lim supn→∞ pn < 1 by assumption. Combining we get

K2
n pn

(n− 1)2 (1 − pn)
≤

Kn pn
(n− 1)

·
1

1 − pn
= o(1)

and (92) follows from (93). The desired result (67) is established and the proof of Proposition 6.2
is now complete.
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Figure 3: Depicting the condition (x /∈ Γy , y /∈ Γx , |Γx ∪ Γy| = 2Kn −m) for the calculation of
P1(n, θn;m, ℓ). Dashed lines emanating from a node x stand for the set of nodes in Γx.

9 A proof of Proposition 8.1

We will seek an exact expression for P1(n, θn;m, ℓ) first, and then apply judicious bounding ar-
guments to get the desired result (86). First, observe that under the condition (x /∈ Γy , y /∈
Γx , |Γx ∪ Γy| = 2Kn −m), nodes x and y do not have an edge in between (i.e., the event (x ∼ y)c

takes place) and all of their ℓ neighbors have to be among the n−2 nodes in V/{x, y}. Furthermore,
it is clear that

|Γx ∩ Γy| = m, |Γx/Γy| = Kn −m, and |Γy/Γx| = Kn −m (94)

This situation is depicted in Figure 3. When calculating the probability P [Dx,ℓ ∩ Dy,ℓ] under
this condition, we first consider the possible neighbors of nodes x and y in the set Γx ∪ Γy. Let
dx(Γx ∪ Γy) denote the number of neighbors of x in H ∩G(n; θn) restricted to node set Γx ∪ Γy.
More precisely, we set

dx(Γx ∪ Γy) =
∑

z: z∈(Γx∪Γy)

1 [x ∼ z]

We define dy(Γx ∪ Γy) similarly. Similar to (68), it is easy to check that

dx(Γx ∪ Γy) = dx(Γx) + dx(Γy/Γx)

with dx(Γx) and dx(Γy/Γx) independent, and

dx(Γx) =st Bin(Kn, pn) and dx(Γy/Γx) =st Bin

(

Kn −m,
pnKn

n− 1

)

Similar arguments hold for the corresponding quantities for node y. In particular, we have

dx(Γx ∪ Γy) =st dy(Γx ∪ Γy) =st Bin(Kn, pn) + Bin

(

Kn −m,
pnKn

n− 1

)

,

and clearly dx(Γx ∪ Γy) and dy(Γx ∪ Γy) are independent.
Next, we have to consider the possible neighbors of x and y among the n− (2Kn−m+2) nodes

in V/({x, y} ∪ Γx ∪ Γy). This time, dx(V/({x, y} ∪ Γx ∪ Γy)) and dy(V/({x, y} ∪ Γx ∪ Γy)) are not
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independent from each other. In fact, they are negatively associated in the sense of Joag-Dev and
Proschan [9]. The reader is referred to [21, Section IX] for a formal proof of this claim, but it is a
consequence of the fact that the set Γz for any node z is a random sample (without replacement)
of size K from V/{z}. This fact will be exploited here in the following way. Note that each node
z in V/({x, y} ∪ Γx ∪ Γy) will satisfy one of the following independently from any other node in
V/({x, y} ∪ Γx ∪ Γy):

i) (z ∼ x) ∩ (z ∼ y), with probability P [(z ∼ x) ∩ (z ∼ y)] ≤ (P [(z ∼ x)])2

ii) (z ∼ x)c ∩ (z ∼ y) with probability P [(z ∼ x)c ∩ (z ∼ y)] ≤ P [(z ∼ y)]

iii) (z ∼ x) ∩ (z ∼ y)c, with probability P [(z ∼ x) ∩ (z ∼ y)c] ≤ P [(z ∼ x)]

iv) (z ∼ x)c ∩ (z ∼ y)c with probability P [(z ∼ x)c ∩ (z ∼ y)c] ≤ (P [(z ∼ x)c])2

The bound in item (i) follows from the negative association of the events (z ∼ x) and (z ∼ y),
which also implies the negative association of (z ∼ x)c and (z ∼ y)c leading to the bound in item
(iv). The bounds in items (ii) and (iii) hold trivially.

Combining these arguments, we now get

P1(n; θn;m, ℓ)

=

ℓ
∑

i,j=0

(

Kn

i

)(

Kn

j

)

pi+j
n (1 − pn)2Kn−i−j

ℓ−i,ℓ−j
∑

i1,j1=0

(

Kn −m

i1

)(

Kn −m

j1

)

·

(

pnKn

n− 1

)i1+j1

(

1 −
pnKn

n− 1

)2Kn−2m−i1−j1 ℓ−max (i+i1,j+j1)
∑

u=0

(

n− 2Kn + m− 2

u

)

(P [(z ∼ x) ∩ (z ∼ y)])u

·

(

n− 2Kn + m− 2 − u

ℓ− i− i1 − u

)

(P [(z ∼ x) ∩ (z ∼ y)c])ℓ−u−i−i1 ·

(

n− 2Kn + m− 2 − ℓ + i + i1
ℓ− j − j1 − u

)

· (P [(z ∼ x)c ∩ (z ∼ y)])ℓ−u−j−j1 (P [(z ∼ x)c ∩ (z ∼ y)c])n−2Kn+m−2−2ℓ+i+i1+j+j1+u (95)

≤
ℓ
∑

i,j=0

(

Kn

i

)(

Kn

j

)

pi+j
n (1 − pn)2Kn−i−j

ℓ−i,ℓ−j
∑

i1,j1=0

(

Kn −m

i1

)(

Kn −m

j1

)

·

(

pnKn

n− 1

)i1+j1

·

(

1 −
pnKn

n− 1

)2Kn−2m−i1−j1 ℓ−max (i+i1,j+j1)
∑

u=0

(

n− 2Kn + m− 2

u

)(

pnKn

n− 1

)2u

·

(

n− 2Kn + m− 2 − u

ℓ− i− i1 − u

)(

pnKn

n− 1

)2ℓ−2u−i−i1−j−j1

·

(

n− 2Kn + m− 2 − ℓ + i + i1
ℓ− j − j1 − u

)(

1 −
pnKn

n− 1

)2(n−2Kn+m−2−2ℓ+i+i1+j+j1+u)

(96)

with z denoting an arbitrary node in V/({x, y}∪Γx ∪Γy). In (95), we used a series of conditioning
arguments with the following notation: dx(Γx) = i, dy(Γy) = j, dx(Γy/Γx) = i1, dy(Γx/Γy) = j1,
and u denoting the number of nodes in V/({x, y} ∪ Γx ∪ Γy) that are connected to both x and y;
i.e., u = |{z ∈ V/({x, y} ∪Γx ∪Γy) : (z ∼ x) ∩ (z ∼ y)}|. Also, (96) follows easily from the bounds
introduced in items (i)-(iv) above and from the fact that

P [(z ∼ x) | z 6∈ Γx] = P [(x ∈ Γz) ∩ (Bxz(pn) = 1)] =
Kn

n− 1
pn.
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We now simplify this bound further. We first apply available cancelations and then use (78)
for
(Kn

i

)

and
(Kn

j

)

since Kn = Ω(log n) under the enforced assumptions; just recall (54). Finally,
multiplying and dividing by ℓ!, we get the following simplified version.

P1(n, θn;m, ℓ) (97)

≤ (1 + o(1))(pnKn)2ℓ(1 − pn)2Kn

(

1 −
pnKn

n− 1

)2(n−Kn−1)( 1

ℓ!

)2

·
ℓ
∑

i,j=0

(

Ki
nK

j
n(ℓ!)2

i!j!

)

pi+j
n (1 − pn)−i−j(pnKn)−i−j

(

1

n− 1

)2ℓ−i−j ℓ−i,ℓ−j
∑

i1,j1=0

(

Kn −m

i1

)

·

(

Kn −m

j1

)

·

ℓ−max (i+i1,j+j1)
∑

u=0

(

n− 2Kn + m− 2

u

)(

1 −
pnKn

n− 1

)−2−4ℓ+2i+2j+2u+i1+j1

·

(

n− 2Kn + m− 2 − u

ℓ− i− i1 − u

)(

n− 2Kn + m− 2 − ℓ + i + i1
ℓ− j − j1 − u

)

(98)

Note that ℓ, u, i, j, i1, j1 are all bounded constants. Thus, in view of (53), we clearly have

(

1 −
pnKn

n− 1

)−2−4ℓ+2i+2j+2u+i1+j1

= 1 + o(1) (99)

Using this, and recalling (70), we see that Proposition 8.1 will be established if we show that

ℓ
∑

i,j=0

(

(ℓ!)2

i!j!

)(

1

n− 1

)2ℓ−i−j

(1 − pn)−i−j
ℓ−i,ℓ−j
∑

i1,j1=0

(

Kn −m

i1

)(

Kn −m

j1

)

(100)

·

ℓ−max (i+i1,j+j1)
∑

u=0

(

n− 2Kn + m− 2

u

)(

n− 2Kn + m− 2 − u

ℓ− i− i1 − u

)(

n− 2Kn + m− 2 − ℓ + i + i1
ℓ− j − j1 − u

)

≤ (1 + o(1))

(

1 −
Kn

n− 1
+

1

1 − pn

)2ℓ

(101)

for each m = 0, 1, . . . ,Kn.
Under the enforced assumption that limn→∞(n− 2Kn) = ∞, we have for any pair of constants

c1, c2 that
(

n− 2Kn + m± c1
c2

)

≤
(n− 2Kn + m± c1)

c2

c2!
=

(n− 2Kn + m)c2

c2!

(

1 ±
c1

n− 2Kn + m

)c2

= (1 + o(1))
(n − 2Kn + m)c2

c2!
(102)

In view of this, we get

ℓ−max (i+i1,j+j1)
∑

u=0

(

n− 2Kn + m− 2

u

)(

n− 2Kn + m− 2 − u

ℓ− i− i1 − u

)(

n− 2Kn + m− 2 − ℓ + i + i1
ℓ− j − j1 − u

)

≤ (1 + o(1))

ℓ−max (i+i1,j+j1)
∑

u=0

(n− 2Kn + m)2ℓ−i−i1−j−j1−u

u!(ℓ− i− i1 − u)!(ℓ− j − j1 − u)!
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= (1 + o(1))(n − 2Kn + m)2ℓ−i−i1−j−j1

ℓ−max (i+i1,j+j1)
∑

u=0

(n− 2Kn + m)−u

u!(ℓ− i− i1 − u)!(ℓ− j − j1 − u)!

= (1 + o(1))(n − 2Kn + m)2ℓ−i−i1−j−j1 ·
1

(ℓ− i− i1)!(ℓ− j − j1)!
(103)

upon noting that

ℓ−max (i+i1,j+j1)
∑

u=0

(n− 2Kn + m)−u

u!(ℓ− i− i1 − u)!(ℓ− j − j1 − u)!

=
1

(ℓ− i− i1)!(ℓ− j − j1)!
+

ℓ−max (i+i1,j+j1)
∑

u=1

(n− 2Kn + m)−u

u!(ℓ− i− i1 − u)!(ℓ− j − j1 − u)!

=
1

(ℓ− i− i1)!(ℓ− j − j1)!
+ o(1)

=
1

(ℓ− i− i1)!(ℓ− j − j1)!
(1 + o(1))

in view of limn→∞(n− 2Kn + m) = ∞ for all m = 0, 1, . . . ,Kn.
We now report (103) into (100) and note that

ℓ−i,ℓ−j
∑

i1,j1=0

(

Kn −m

i1

)(

Kn −m

j1

)

(n− 2Kn + m)2ℓ−i−i1−j−j1 ·
1

(ℓ− i− i1)!(ℓ− j − j1)!

≤

ℓ−i,ℓ−j
∑

i1,j1=0

(Kn −m)i1+j1

i1! j1!

(n− 2Kn + m)2ℓ−i−j−i1−j1

(ℓ− i− i1)!(ℓ− j − j1)!

=
1

(ℓ− i)! (ℓ− j)!
·

ℓ−i,ℓ−j
∑

i1,j1=0

(

ℓ− i

i1

)(

ℓ− j

j1

)

(Kn −m)i1+j1 (n− 2Kn + m)2ℓ−i−j−i1−j1

=
1

(ℓ− i)! (ℓ− j)!
·

(

ℓ−i
∑

i1=0

(

ℓ− i

i1

)

(Kn −m)i1 (n− 2Kn + m)ℓ−i−i1

)

·





ℓ−j
∑

j1=0

(

ℓ− j

j1

)

(Kn −m)j1 (n− 2Kn + m)ℓ−j−j1





=
1

(ℓ− i)! (ℓ− j)!
· (n−Kn)2ℓ−i−j (104)

upon using Binomial Theorem in the last step. Using (103) together with (104) in (100), we get

ℓ
∑

i,j=0

(

(ℓ!)2

i!j!

)(

1

n− 1

)2ℓ−i−j

(1 − pn)−i−j
ℓ−i,ℓ−j
∑

i1,j1=0

(

Kn −m

i1

)(

Kn −m

j1

)

(105)

·

ℓ−max (i+i1,j+j1)
∑

u=0

(

n− 2Kn + m− 2

u

)(

n− 2Kn + m− 2 − u

ℓ− i− i1 − u

)(

n− 2Kn + m− 2 − ℓ + i + i1
ℓ− j − j1 − u

)
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≤ (1 + o(1))

ℓ
∑

i,j=0

(

(ℓ!)2

i!j!

)(

1

n− 1

)2ℓ−i−j

(1 − pn)−i−j 1

(ℓ− i)! (ℓ− j)!
· (n−Kn)2ℓ−i−j

= (1 + o(1))

(

ℓ
∑

i=0

(

ℓ

i

)

(

(1 − pn)−1
)i
(

n−Kn

n− 1

)ℓ−i
)2

= (1 + o(1))

(

1 −
Kn − 1

n− 1
+

1

1 − pn

)2ℓ

= (1 + o(1))

(

1 −
Kn

n− 1
+

1

1 − pn
+ o(1)

)2ℓ

= (1 + o(1))

(

1 −
Kn

n− 1
+

1

1 − pn

)2ℓ

,

where in the last step we used the fact that

(

1 −
Kn

n− 1
+

1

1 − pn

)

≥ 1 (106)

in view of (7). Thus, we get the desired result (101) for each m = 0, 1, . . . ,Kn and the proof of
Proposition 8.1 is now completed.

10 A proof of Proposition 8.2

We first condition on the event (x ∼B y) and write P2(n, θn;m, ℓ) as

P2(n, θn;m, ℓ) = pn · P21(n, θn;m, ℓ) + (1 − pn) · P22(n, θn;m, ℓ) (107)

with P21(n, θn;m, ℓ) and P22(n, θn;m, ℓ) defined through

P21(n, θn;m, ℓ) = P [Dx,ℓ ∩Dy,ℓ | x ∈ Γy , y /∈ Γx , |Γx ∪ Γy| = 2Kn −m , Bxy(pn) = 1]

P22(n, θn;m, ℓ) = P [Dx,ℓ ∩Dy,ℓ | x ∈ Γy , y /∈ Γx , |Γx ∪ Γy| = 2Kn −m , Bxy(pn) = 0]

Recall that Bxy(pn) is defined in Section 2.3 and controls whether the wireless channel between
nodes x and y is on (Bxy(pn) = 1), or off (Bxy(pn) = 0). Thus, (107) follows upon noting that
Bxy(pn) is independent from Γx and Γy.

We will consider each of the terms P21(n, θn;m, ℓ) and P22(n, θn;m, ℓ) separately. We start by
showing that

P21(n, θn;m, ℓ) = o
(

P [Dx,ℓ]
2
)

, ℓ = 1, 2, . . . (108)

for each m = 0, 1, . . . ,Kn under the enforced assumptions. First, note that under the condition
(x ∈ Γy , y /∈ Γx , |Γx ∪Γy| = 2Kn −m , Bxy(pn) = 1), nodes x and y do have an edge in between
(in the intersection graph H ∩ G(n; θn)), and they just need to have ℓ − 1 additional neighbors
among the n− 2 nodes in V/{x, y}. Furthermore, it is clear that

|Γx ∩ Γy| = m, |Γx/(Γy ∪ {x, y})| = Kn −m, and |Γy/(Γx ∪ {x, y})| = Kn −m− 1 (109)

31



Figure 4: Depicting the condition (x ∈ Γy , y /∈ Γx , |Γx ∪ Γy| = 2Kn − m , Bxy = 1) for the
calculation of P21(n, θn;m, ℓ). Dashed lines emanating from a node x stand for the set of nodes in
Γx and a dashed line between x and y is made bold if Bxy = 1.

This situation is depicted in Figure 4.
Now, using arguments similar to those that lead to (95), we get

P21(n; θn;m, ℓ)

=

ℓ−1
∑

i,j=0

(

Kn

i

)(

Kn − 1

j

)

pi+j
n (1 − pn)2Kn−i−j−1

ℓ−1−i,ℓ−1−j
∑

i1,j1=0

(

Kn −m− 1

i1

)(

Kn −m

j1

)

·

(

pnKn

n− 1

)i1+j1 (

1 −
pnKn

n− 1

)2Kn−2m−i1−j1−1 ℓ−1−max (i+i1,j+j1)
∑

u=0

(

n− 2Kn + m− 1

u

)

· (P [(z ∼ x) ∩ (z ∼ y)])u
(

n− 2Kn + m− 1 − u

ℓ− 1 − i− i1 − u

)

(P [(z ∼ x) ∩ (z ∼ y)c])ℓ−1−u−i−i1

·

(

n− 2Kn + m− ℓ + i + i1
ℓ− 1 − j − j1 − u

)

· (P [(z ∼ x)c ∩ (z ∼ y)])ℓ−1−u−j−j1

· (P [(z ∼ x)c ∩ (z ∼ y)c])n−2Kn+m+1−2ℓ+i+i1+j+j1+u (110)

with z denoting an arbitrary node in V/({x, y} ∪ Γx ∪ Γy). In (110), the following notation is
used in the conditioning arguments: dx(Γx) = i, dy(Γy/{x}) = j, dx(Γy/(Γx ∪ {x, y})) = i1,
dy(Γx/(Γy ∪ {x, y})) = j1, and u denotes the number of nodes in V/({x, y} ∪ Γx ∪ Γy) that are
connected to both x and y; i.e., u = |{z ∈ V/({x, y} ∪ Γx ∪ Γy) : (z ∼ x) ∩ (z ∼ y)}|.

By direct comparison of (110) and (95), we find that

P21(n; θn;m, ℓ) ≤ (1 + o(1))(1 − pn)−1

(

1 −
pnKn

n− 1

)−1

P1(n; θn;m, ℓ− 1) (111)

as we note
(

Kn − 1

j

)

≤

(

Kn

j

)

and

(

Kn −m− 1

i1

)

≤

(

Kn −m

i1

)

and use the asymptotic equivalencies
(

n− 2Kn + m− 1

u

)

= (1 + o(1))

(

n− 2Kn + m− 2

u

)
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(

n− 2Kn + m− 1 − u

ℓ− 1 − i− i1 − u

)

= (1 + o(1))

(

n− 2Kn + m− 2 − u

(ℓ− 1) − i− i1 − u

)

(

n− 2Kn + m− ℓ + i + i1
ℓ− 1 − j − j1 − u

)

= (1 + o(1))

(

n− 2Kn + m− 2 − (ℓ− 1) + i + i1
(ℓ− 1) − j − j1 − u

)

that are immediate from the following arguments: Pick any positive constants c1 and c2, and recall
that limn→∞ n − 2Kn = ∞ under the enforced assumptions. Then, for any m = 0, 1, . . . ,Kn, we
have

(n−2Kn+m±c1
c2

)

(n−2Kn+m
c2

) =
(n− 2Kn + m± c1)!

(n− 2Kn + m± c1 − c2)!
·

(n − 2Kn + m− c2)!

(n − 2Kn + m)!

=
(n− 2Kn + m± c1) · · · (n− 2Kn + m± c1 − c2 + 1)

(n− 2Kn + m) · · · (n− 2Kn + m− c2 + 1)

=

c2−1
∏

i=0

(

1 ±
c1

n− 2Kn + m− i

)

= (1 ± o(1))c2

= 1 + o(1). (112)

We now report (79) and Proposition 8.1 into (111), and get

P21(n; θn;m, ℓ) ≤ (1 + o(1))(1 − pn)−1
P [Dx,ℓ−1]

2 , ℓ = 1, 2, . . . . (113)

Using the tight bound obtained for P [Dx,ℓ] in Proposition 7.1, this then yields

P21(n; θn;m, ℓ) ≤ (1 + o(1))P [Dx,ℓ]
2 (1 − pn)−1

(

pnKn

ℓ

(

1 −
Kn

n− 1
+

1

1 − pn

))−2

(114)

The claim (108) is now immediate as we note that (1 − pn)−1 = O(1) under the assumption
that lim supn→∞ pn < 1 and

lim
n→∞

(

pnKn

ℓ

(

1 −
Kn

n− 1
+

1

1 − pn

))

= ∞

since pnKn = Ω(log n) from (53) and we have
(

1 − Kn

n−1 + 1
1−pn

)

≥ 1 from (106).

We now consider the second term P22(n, θn;m, ℓ) in (107). In view of (108), it is clear that
Proposition 8.2 will be established if we show that

P22(n, θn;m, ℓ) ≤ (1 + o(1))(1 − pn)−1
P [Dx,ℓ]

2 , ℓ = 0, 1, . . . (115)

for each m = 0, 1, . . . ,Kn under the enforced assumptions. We proceed as before and note that
under the condition (x ∈ Γy , y /∈ Γx , |Γx ∪ Γy| = 2Kn −m , Bxy(pn) = 0), nodes x and y do not
have an edge in between, and both need to have ℓ neighbors among the n − 2 nodes in V/{x, y}.
Otherwise, everything is just the same with the case of computing P21(n, θn;m, ℓ) including the set
sizes given in (109). Therefore, we have

P22(n, θn;m, ℓ) = P21(n, θn;m, ℓ + 1), ℓ = 0, 1, . . . (116)
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for each m = 0, 1, . . . ,Kn. Now, we use (111) in (116) to get

P22(n, θn;m, ℓ) ≤ (1 + o(1))(1 − pn)−1

(

1 −
pnKn

n− 1

)−1

P1(n; θn;m, ℓ)

≤ (1 + o(1))(1 − pn)−1
P [Dx,ℓ]

2 ,

where in the last step we used (79) and Proposition 8.1. This establishes (115), and the proof of
Proposition 8.2 is now complete in view of (108) and (107).

11 A proof of Proposition 8.3

We start as in the proof of Proposition 8.2 and condition on the event (x ∼B y) to get

P3(n, θn;m, ℓ) = pnP31(n, θn;m, ℓ) + (1 − pn)P32(n, θn;m, ℓ) (117)

where

P31(n, θn;m, ℓ) = P [Dx,ℓ ∩Dy,ℓ | x ∈ Γy , y ∈ Γx , |Γx ∪ Γy| = 2Kn −m , Bxy(pn) = 1]

P32(n, θn;m, ℓ) = P [Dx,ℓ ∩Dy,ℓ | x ∈ Γy , y ∈ Γx , |Γx ∪ Γy| = 2Kn −m , Bxy(pn) = 0]

In what follows, we will compute P31(n, θn;m, ℓ) and P32(n, θn;m, ℓ) in turn. We will start by
showing that

P31(n, θn;m, ℓ) = o
(

P [Dx,ℓ]
2
)

, ℓ = 1, 2, . . . (118)

for each m = 0, 1, . . . ,Kn under the enforced assumptions. To do so, we note that the condition
(x ∈ Γy , y ∈ Γx , |Γx ∪ Γy| = 2Kn −m , Bxy(pn) = 1) amounts to having

|Γx ∩ Γy| = m, |Γx/(Γy ∪ {x, y})| = Kn −m− 1, and |Γy/(Γx ∪ {x, y})| = Kn −m− 1 (119)

Also under this condition, nodes x and y do have an edge in between, and they just need to have
ℓ− 1 additional neighbors among the n− 2 nodes in V/{x, y}. These facts are depicted in Figure
5.

Now, using arguments similar to those that lead to (95) and (110), we get

P31(n; θn;m, ℓ)

=

ℓ−1
∑

i,j=0

(

Kn − 1

i

)(

Kn − 1

j

)

pi+j
n (1 − pn)2Kn−i−j−2

ℓ−1−i,ℓ−1−j
∑

i1,j1=0

(

Kn −m− 1

i1

)(

Kn −m− 1

j1

)

·

(

pnKn

n− 1

)i1+j1 (

1 −
pnKn

n− 1

)2Kn−2m−i1−j1−2 ℓ−1−max (i+i1,j+j1)
∑

u=0

(

n− 2Kn + m

u

)

· (P [(z ∼ x) ∩ (z ∼ y)])u
(

n− 2Kn + m− u

ℓ− 1 − i− i1 − u

)

(P [(z ∼ x) ∩ (z ∼ y)c])ℓ−1−u−i−i1

·

(

n− 2Kn + m− ℓ + 1 + i + i1
ℓ− 1 − j − j1 − u

)

· (P [(z ∼ x)c ∩ (z ∼ y)])ℓ−1−u−j−j1

· (P [(z ∼ x)c ∩ (z ∼ y)c])n−2Kn+m+2−2ℓ+i+i1+j+j1+u (120)
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Figure 5: Depicting the condition (x ∈ Γy , y ∈ Γx , |Γx∪Γy| = 2Kn−m , Bxy = 1) for calculating
P31(n, θn;m, ℓ). Dashed lines emanating from a node x stand for the set of nodes in Γx and a dashed
line between x and y is made bold if Bxy = 1.

with z denoting an arbitrary node in V/({x, y} ∪ Γx ∪ Γy). The notation used in the condition-
ing arguments of (120) are as follows: dx(Γx) = i, dy(Γy/{x}) = j, dx(Γy/(Γx ∪ {x, y})) = i1,
dy(Γx/(Γy ∪ {x, y})) = j1, and u denotes the number of nodes in V/({x, y} ∪ Γx ∪ Γy) that are
connected to both x and y; i.e., u = |{z ∈ V/({x, y} ∪ Γx ∪ Γy) : (z ∼ x) ∩ (z ∼ y)}|.

By direct comparison of (120) and (110), we find that

P31(n; θn;m, ℓ) ≤ (1 + o(1))(1 − pn)−1

(

1 −
pnKn

n− 1

)−1

P21(n; θn;m, ℓ) (121)

upon noting that

(

Kn − 1

i

)

≤

(

Kn

i

)

and

(

Kn −m− 1

j1

)

≤

(

Kn −m

j1

)

and using the bounds

(

n− 2Kn + m

u

)

= (1 + o(1))

(

n− 2Kn + m− 1

u

)

(

n− 2Kn + m− u

ℓ− 1 − i− i1 − u

)

= (1 + o(1))

(

n− 2Kn + m− 1 − u

ℓ− 1 − i− i1 − u

)

(

n− 2Kn + m− ℓ + 1 + i + i1
ℓ− 1 − j − j1 − u

)

= (1 + o(1))

(

n− 2Kn + m− ℓ + i + i1
ℓ− 1 − j − j1 − u

)

that are immediate from (112). The claimed result (118) follows immediately by reporting (108)
into (121) and noting that

(1 − pn)−1

(

1 −
pnKn

n− 1

)−1

= O(1) (122)

under the enforced assumptions; just recall that lim supn→∞ pn < 1 and use (79).
In view of (118) and (117), Proposition 8.3 will be established if we show that

P32(n, θn;m, ℓ) ≤ (1 + o(1))(1 − pn)−2
P [Dx,ℓ]

2 , ℓ = 0, 1, . . . (123)
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for each m = 0, 1, . . . ,Kn. In calculation of P32(n, θn;m, ℓ), we need to consider the condition
(x ∈ Γy , y ∈ Γx , |Γx ∪ Γy| = 2Kn −m , Bxy(pn) = 0), where nodes x and y do not have an edge
in between, and both need to have ℓ neighbors among the n− 2 nodes in V/{x, y}. This is the only
difference between the probabilities P31(n, θn;m, ℓ) and P32(n, θn;m, ℓ). Except this difference, all
statistical equivalencies and relations are the same including the set sizes given in (119). Therefore,
it is immediate that

P32(n, θn;m, ℓ) = P31(n, θn;m, ℓ + 1), ℓ = 0, 1, . . . (124)

for each m = 0, 1, . . . ,Kn. We now use (121) in (124) to get

P32(n, θn;m, ℓ) ≤ (1 + o(1))(1 − pn)−1

(

1 −
pnKn

n− 1

)−1

P21(n; θn;m, ℓ + 1)

≤ (1 + o(1))(1 − pn)−2 · P [Dx,ℓ]
2 ,

where in the last step we used the previously obtained bound (113) together with (79). This es-
tablishes (123), and the proof of Proposition 8.3 is now complete in view of (118) and (117).
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[24] J. Zhao, O. Yağan, and V. Gligor. k-connectivity in secure wireless sensor networks with
physical link constraints - the on/off channel model. Arxiv, June 2012. Submitted to IEEE
Transactions on Information Theory. Available online at arXiv:1206.1531 [cs.IT].
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