
Robust Subspace Clustering via Thresholding

Reinhard Heckel and Helmut Bölcskei

Dept. of IT & EE, ETH Zurich, Switzerland

July 2013; last revised August 2015

Abstract

The problem of clustering noisy and incompletely observed high-dimensional data points
into a union of low-dimensional subspaces and a set of outliers is considered. The number of
subspaces, their dimensions, and their orientations are assumed unknown. We propose a simple
low-complexity subspace clustering algorithm, which applies spectral clustering to an adjacency
matrix obtained by thresholding the correlations between data points. In other words, the
adjacency matrix is constructed from the nearest neighbors of each data point in spherical
distance. A statistical performance analysis shows that the algorithm exhibits robustness to
additive noise and succeeds even when the subspaces intersect. Specifically, our results reveal
an explicit tradeoff between the affinity of the subspaces and the tolerable noise level. We
furthermore prove that the algorithm succeeds even when the data points are incompletely
observed with the number of missing entries allowed to be (up to a log-factor) linear in the
ambient dimension. We also propose a simple scheme that provably detects outliers, and we
present numerical results on real and synthetic data.

1 Introduction

One of the major challenges in modern data analysis is to extract relevant information from large
high-dimensional data sets. The relevant features are often of limited complexity, or, more specif-
ically, have low-dimensional structure. For example, images of faces are high-dimensional as the
number of pixels is typically large, whereas the set of images of a given face under varying illu-
mination conditions approximately lies in a 9-dimensional linear subspace [3]. This and similar
insights for other types of data have motivated research on finding low-dimensional structure in
high-dimensional data. A prevalent low-dimensional structure is that of data points lying in a
union of low-dimensional subspaces. The problem of finding the assignments of the data points
to these (unknown) subspaces is referred to as subspace clustering [4] or hybrid linear modeling
[5]. An example application of subspace clustering is the following. Given a set of images of faces
under varying illumination conditions, cluster the images such that each of the resulting clusters
corresponds to a single person [6]. Other application areas include unsupervised learning, image
representation and segmentation [7], computer vision, specifically motion segmentation [8, 9], and
disease detection [10]; we refer to [4] for a more complete list.

Often the data available is corrupted by noise and contains outliers. The general subspace
clustering problem we consider takes this into account and can be formalized as follows. Suppose

Parts of this paper were presented at the 2013 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) [1] and at the 2013 IEEE International Symposium on Information Theory (ISIT) [2].

1

ar
X

iv
:1

30
7.

48
91

v4
 [

st
at

.M
L

]
 2

1
A

ug
 2

01
5

we are given a set of N data points in Rm, denoted by X , and assume that

X = X1 ∪ ... ∪ XL ∪ O.

Here, O denotes a set of outliers and the n` := |X`| points in X` are given by

x
(`)
j = y

(`)
j + e

(`)
j , j = 1, ..., n` (1)

where y
(`)
j ∈ S` with S` a d`-dimensional linear subspace of Rm and e

(`)
j ∈ Rm is noise. The

association of the points in X with the X` and O, the number of subspaces L, their dimensions
d`, and their orientations are all unknown. We want to cluster the data points in X , i.e., find
their assignments to the sets X1, ...,XL,O. Once these assignments have been identified, it is
straightforward to extract approximations (recall that we have access to noisy data only) of the
subspaces S` through principal component analysis (PCA).

Numerous approaches to subspace clustering have been proposed in the literature, including
algebraic, statistical, and spectral clustering methods; we refer to [4] for an excellent survey. Spec-
tral clustering methods (see [11] for an introduction) have found particularly widespread use thanks
to their excellent performance properties and efficient implementations. At the heart of spectral
clustering lies the construction of an adjacency matrix A ∈ RN×N , where the (i, j)th entry of A
measures the similarity between the data points xi,xj ∈ X . A typical measure of similarity is, e.g.,
e−dist(xi,xj), where dist(·, ·) is some distance measure [4]. The association of the points in X to the
subspaces S` is then estimated by applying spectral clustering to A.

As noted in [12] there are only a few subspace clustering algorithms that are computationally
tractable and known to succeed provably under non-restrictive conditions such as, e.g., intersecting
subspaces. A notable exception is the sparse subspace clustering (SSC) algorithm proposed by
Elhamifar and Vidal [13, 14], which applies spectral clustering to an adjacency matrix A obtained by
sparsely representing each data point in terms of all the other data points through `1-minimization.
SSC provably succeeds (in a sense to be made precise later) in the noiseless case under very general
conditions, as shown by Soltanolkotabi and Candès in [15] via an elegant (geometric function)
analysis. Most importantly, the results in [15] reveal that SSC succeeds even when the subspaces
S` intersect (the linear subspaces S` and Sk are said to intersect if S` ∩ Sk 6= {0}).

Analytical performance results for subspace clustering of noisy data are even more scarce. Vidal
noted in [4] that “the development of theoretically sound algorithms [...] in the presence of noise and
outliers is a very important open challenge.” A significant step towards addressing this challenge
was reported recently in [12]. Specifically, the robust SSC (RSSC) algorithm in [12] replaces the
`1-minimization step in SSC by an `1-penalized least squares, i.e., Lasso, step and provably succeeds
under Gaussian noise and under very general conditions on the orientations of the subspaces S`.
To construct the adjacency matrix A, SSC for the noiseless and RSSC for the noisy case require
the solution of N `1-minimization and N Lasso instances, respectively, each in N variables; this
poses significant computational challenges for large data sets.

Contributions: We present a simple and computationally efficient subspace clustering algorithm,
which applies spectral clustering to an adjacency matrix A obtained by thresholding correlations
between the data points in X . In other words, A is constructed from the nearest neighbors of each
data point in spherical distance. The resulting algorithm is termed thresholding-based subspace
clustering (TSC).

For our analytical results, we consider a semi-random data model with deterministic subspaces
and the data points sampled at random from these subspaces. Specifically, we sample uniformly

2

at random from the intersection of the unit sphere and the corresponding subspace. The gist of
the results we obtain is that TSC succeeds provably—even when the data is corrupted by additive
Gaussian noise or incompletely observed—provided that the subspaces are sufficiently distinct and
X contains sufficiently many points from each subspace. The measure of success we use in the
noisy case and for incomplete observations is an intermediate performance measure as it does not
address the clustering error, i.e., the fraction of misclassified points, directly. Rather, it guarantees
that in the graph G with adjacency matrix A, for each `, the nodes corresponding to the points
in X` are connected to other nodes corresponding to points in X` only. The same performance
measure was used in [15, 12, 16, 17] for SSC, RSSC, LRR (low-rank representation), and SSC-
orthogonal matching pursuit (SSC-OMP). In the noiseless case, we obtain significantly stronger
results which come in terms of conditions guaranteeing that the clustering error is zero. This
is accomplished by analyzing the connectivity properties of the random nearest neighbor graph
induced by the statistical data model we employ. The corresponding results (Theorems 1 and
2) apply, however, to a smaller range of parameters d`, n` when compared to ensuring no false
connections only (Corollary 1).

Our results for noisy data reflect the intuition that the more distinct the orientations of the
subspaces, the more noise TSC tolerates. What is more, we find that TSC can succeed even under
massive noise, provided that the subspaces are sufficiently low-dimensional. In practical applications
the data points to be clustered are often incompletely observed, due to, e.g., scratches on images.
Assuming that the orientation of the subspaces and the points on the subspaces are random, we
prove that TSC can succeed even when the number of (arbitrary) missing entries in each data
vector is (up to a log-factor) linear in the ambient dimension. Finally, we propose a simple scheme
for outlier detection and we report corresponding analytical performance guarantees. Numerical
results on synthetic data, on handwritten digits taken from the MNIST data base [18], and on
images of faces taken from the extended Yale Face Database B [19, 20] complement our analytical
results.

Relation to previous work: Lauer and Schnorr [21] apply spectral clustering to an adjacency
matrix constructed from correlations between data points, albeit, without thresholding. More
importantly, no analytical performance results are available for the algorithm in [21]. The local
subspace affinity algorithm [22] and the spectral local best-fit flats (SLBF) algorithm [5] are based
on spectral clustering applied to an adjacency matrix that is built from the nearest neighbors of each
data point in Euclidean distance. Liu et al. [16] consider spectral clustering applied to an adjacency
matrix obtained from a low-rank representation (LRR) of the data points through nuclear norm
minimization. The performance analysis conducted in [16, specifically Theorem 3.1] shows that
LRR succeeds provided that the subspaces S` are independent (the linear subspaces S` are said to
be independent if the dimension of their (set) sum is equal to the sum of their dimensions), which
implies that the subspaces must not intersect. Moreover, the nuclear norm minimization required
by LRR results in significant computational complexity. The analytical conditions guaranteeing
success of SSC, and RSSC for the noisy case, reported in [15] and [12], respectively, are very similar
to those found for TSC in this paper. TSC is, however, computationally much less demanding than
SSC/RSSC. These complexity savings may come at the cost of clustering performance. Experiments
on real and synthetic data, many of which are reported in Section 8, show that while there are
situations where TSC outperforms SSC, SSC outperforming TSC is more common. Dyer et al. [17]
propose to substitute the `1-minimization step in SSC by an orthogonal matching pursuit (OMP)
step, and derive performance guarantees for the resulting SSC-OMP algorithm.

Lerman and Zhang [23] consider the problem of recovering multiple subspaces from data drawn

3

from a distribution on the union of these subspaces and pose recovery as a non-convex optimization
problem. No computationally tractable algorithm to solve this recovery problem [24] seems to be
available, though.

The problem of fitting a single low-dimensional subspace to a data set consisting of a modest
number of noisy inliers and a large number of outliers was considered in [24], along with a convex
programming algorithm with analytical performance guarantees. Chen and Lerman [25, 26] propose
subspace clustering algorithms based on spectral clustering, termed Spectral Curvature Clustering
(SCC) and Theoretical SCC (TSCC), along with a strategy for outlier detection, and provide
corresponding probabilistic performance analyses.

Outline of the paper: The remainder of this paper is organized as follows. In Section 2, we in-
troduce the TSC algorithm. Sections 3 and 4 contain analytical performance results for the noiseless
and the noisy case, respectively. In Section 5, we analyze the impact of incompletely observed data
points on the performance of TSC. Section 6 describes an outlier detection scheme and contains
corresponding performance results. In Section 7, we compare our analytical performance results for
TSC to analytical performance results for SSC/RSSC and further subspace clustering algorithms.
Section 8 contains numerical results on synthetic and on real data, including a comparison of TSC
to SSC/RSSC.

We discuss the various settings (noiseless, noisy, incomplete observations, and outliers) in an
isolated fashion to keep the exposition accessible. All proofs are relegated to appendices.

Notation: We use lowercase boldface letters to denote (column) vectors, e.g., x, and uppercase
boldface letters to designate matrices, e.g., A. The superscript T stands for transposition. For the
vector x, xq denotes its qth entry. For the matrix A, Aij designates the entry in its ith row and jth

column, A† := (ATA)
−1

AT is its pseudo-inverse, ‖A‖2→2 := max‖v‖2=1 ‖Av‖2 its spectral norm,

and ‖A‖F := (
∑

i,j |Aij |2)1/2 its Frobenius norm. Im denotes the m×m identity matrix. log(·) is
the natural logarithm, and x ∧ y stands for the minimum of x and y. L(·) denotes the Lebesgue
measure. For the set T , |T | designates its cardinality and T is its complement. The set {1, ..., N}
is denoted by [N]. We write N (µ,Σ) for a Gaussian random vector with mean µ and covariance
matrix Σ. The unit sphere in Rm is Sm−1 := {x ∈ Rm : ‖x‖2 = 1}. 1{A}(·) denotes the indicator
function of the set A. For notational convenience, we use the shorthand maxk 6=` for maxk∈[L] : k 6=`
and maxk,` : k 6=` for maxk,`∈[L] : k 6=`. Similarly, maxk 6=`,j is shorthand for maxk∈[L] : k 6=`,j∈[nk]. We let
nmin = min`∈[L] n`, nmax = max`∈[L] n`, and dmax = max`∈[L] d`. For random variables X,Y , we
write X ∼ Y to indicate that X and Y have the same distribution. We say that a subgraph H of a
graph G is connected if any two nodes in H can be joined by a path that has all intermediate nodes
lying in H. The subgraph H of G is called a connected component of G if H is connected and if
there are no connections between nodes in H and the remaining nodes in G [11]. The k-nearest
neighbor graph of a set of points {a1, ...,an} with respect to the metric s is the undirected graph
with vertex set {a1, ...,an} and edges between ai and aj if either ai is among the k nearest neighbors
of aj or aj is among the k nearest neighbors of ai, in both cases with respect to the metric s.

2 The TSC algorithm

The formulation of the thresholding-based subspace clustering (TSC) algorithm provided below
assumes that outliers have already been removed from the data set X , e.g., through the outlier
detection scheme described in Section 6, and that the data points in X are normalized. The latter

4

assumption is relevant for Steps 1 and 2 below and is not restrictive as the data points can be
normalized prior to clustering.

TSC algorithm. Given a set of data points X , an estimate of the number of subspaces L̂ (esti-
mation of L from X is discussed in Section 2.3), and the parameter q (the choice of q is discussed
below), perform the following steps:

Step 1: For every xj ∈ X , identify the set Tj ⊂ [N]\{j} (recall that N = |X |) of cardinality q
defined through

|〈xj ,xi〉| ≥ |〈xj ,xp〉| , for all i ∈ Tj and all p /∈ Tj .

Step 2: Let zj ∈ RN be the vector with ith entry exp(−2 arccos(|〈xj ,xi〉|)) if i ∈ Tj, and 0 if
i /∈ Tj.

Step 3: Construct the adjacency matrix A according to A = Z + ZT , where Z = [z1 · · · zN].
Step 4: Apply normalized spectral clustering [11, 27] to (A, L̂).

Since arccos(z) is decreasing in z for z ∈ [0, 1], the set Tj is the set of q nearest neighbors of
xj with respect to the metric1 s̃(xi,xj) :=arccos(|〈xi,xj〉|). TSC is therefore built on the premise,
explained in Sections 2.1 and 2.2, that the vectors close to xj in terms of the distance s̃ also lie
in the subspace xj lies in. This can be formalized in terms of the q-nearest neighbor graph with
respect to the distance s̃, i.e., the graph G with adjacency matrix A, simply referred to as “the
graph G” in the remainder of the paper. If each connected component in the graph G corresponds
to exactly one of the sets X`, and if L̂ = L, then (normalized) spectral clustering yields correct
segmentation of the data (i.e., it delivers the oracle segmentation X = X1 ∪ ... ∪ XL of X) [11,
Prop. 4; Sec. 7] and the clustering error will be zero. Even when the connected components of G
do not correspond to the X` exactly, but the weights in the adjacency matrix A corresponding to
pairs of points that belong to different subspaces are small enough, TSC may still cluster the data
correctly. The numerical results in Section 8 demonstrate that the spectral clustering step can cope
with such imperfections.

In the noiseless case we will be able to establish conditions that ensure zero clustering error.
In the noisy case we will work with an intermediate, albeit sensible, performance measure, also
employed to assess the performance of the clustering algorithms considered in [17, 16, 15, 12]. This
performance measure is formalized through the following property:

No false connections property. G has no false connections if, for all ` ∈ [L], the nodes in G
corresponding to X` are connected to other nodes corresponding to X` only.

Ensuring the absence of false connections, does, however, not guarantee that the connected
components in G correspond to the X`, as the points in a given set X` may split up into two or
more distinct clusters. TSC (with input parameter q) counters this problem by imposing that each
node is connected to at least q other nodes and choosing q not too small relative to the n`. Taking
q too large, however, increases the chances of points from different sets X` being clustered together,
thereby violating the no false connections property. Our analytical performance results for the
noiseless case ensure correct segmentation of X by guaranteeing that G has no false connections
and the subgraphs corresponding to the X` are connected, provided that q is sufficiently large
relative to the values log n` and sufficiently small relative to the n`. The specific choice of q within
this range will be seen to be irrelevant in terms of the analytical performance guarantees we obtain,
but it does have an impact on the actual performance of TSC in practice.

1s̃ is not a distance metric in the strict sense as s̃(x,−x) = 0, but −x 6= x for x 6= 0. It satisfies, however, the
defining properties of a pseudo-distance metric [28].

5

2.1 Measuring similarity via s̃

To see that s̃(xi,xj) = arccos(|〈xi,xj〉|) leads to a sensible similarity measure for subspace clus-
tering, consider the noiseless case, suppose that the subspaces S` are orthogonal to each other,
and take q ≤ min`(|X`| − d`). Then, G has no false connections thanks to 〈xp,xj〉 = 0 for all
xp ∈ X`,xj ∈ Xk, ` 6= k, while for each `, there are at least |X`| − d` inner products 〈xp,xj〉
with xp,xj ∈ X` that are non-zero, as no more than d` points in a d`-dimensional subspace can be
orthogonal to each other. The analytical results in the following sections show that G can actually
satisfy the no false connections property under much more general conditions, in particular even
when the subspaces intersect. What lies beneath these results is the fact that for the statistical data
model used throughout the paper, the magnitude of the inner product between the data points from
the same subspace is typically larger than that between data points from different subspaces. This
is also true in many practical problems, as e.g., the numerical results on clustering handwritten
digits in Section 8.2 show. A different rationale for s̃ leading to a suitable similarity measure for
subspace clustering is based on sparse signal representation theory, and is given next.

2.2 Least-squares TSC

A natural substitute for Step 2 in the TSC algorithm is to construct zj from the best linear
approximation of xj in terms of the points indexed by Tj . Specifically, let XTj be the matrix whose
columns are the vectors in X indexed by Tj , and substitute Step 2 by:

Step 2-LS: Set the entries of zj ∈ RN indexed by Tj to the absolute values of X†Tjxj and all
other entries of zj to zero.

The TSC algorithm with Step 2 replaced by Step 2-LS will henceforth be referred to as least
squares (LS)-TSC.

The LS-variant of the TSC algorithm allows us to elicit a relationship between TSC, SSC, and
SSC-OMP, with the common element being given by the insight that all three algorithms build
their adjacency matrix based on sparse signal representation theory. To see this, we first note that
each data point in a d`-dimensional subspace S` can be represented as a linear combination of
at most d` other data points in S`. A possible approach to measuring similarity, put forward in
[13, 14], finds a sparse representation of each data point xj ∈ X` in terms of all other data points
X1 ∪ ...∪XL\{xj}, and uses the absolute values of the corresponding representation coefficients to
quantify the similarity between xj and all other data points. The hope is that the non-zeros in this
representation correspond to points in X` \ {xj}, see Figure 1 for an illustration. SSC, SSC-OMP,
and LS-TSC implement this idea by finding a sparse linear representation of xj in terms of points
in X \ {xj} via `1-minimization, OMP, and Steps 1 and 2-LS above, respectively. Note that Steps
1 and 2-LS above yield a sparse (if q is small) linear representation of xj in terms of q points in
X \ {xj}.

The formal relationship between Steps 2 and 2-LS is brought out by noting that the non-zero
entries of zj in Step 2 are given by element-wise application of exp(−2 arccos(| · |)) to the vector
XT
Tjxj whereas the nonzero entries of zj in Step 2-LS are obtained by element-wise application of

| · | to the entries of a weighted version of XT
Tjxj , namely X†Tjxj = (XT

TjXTj)
−1

XT
Tjxj .

As our analytical performance results depend on connectivity properties of the graph G only,
and not on the weights assigned to the edges of G (i.e., the values of the non-zero entries of A), it
follows immediately that the corresponding statements hold true verbatim for LS-TSC. Owing to
the spectral clustering Step 4, the values of the non-zero entries of A do, however, make a difference
in terms of practical performance. Corresponding numerical results will be provided in Section 8.

6

Figure 1: Each data point in a d`-dimensional subspace S` can be represented as a linear combi-
nation of at most d` other points from S`.

2.3 Estimation of the number of subspaces

The number of zero eigenvalues of the normalized Laplacian of the graph G is equal to the number
of connected components of G [29]. It is therefore sensible to estimate the number of subspaces
L as the multiplicity of the eigenvalue 0 of the normalized Laplacian of G. In practice, however,
weights in the adjacency matrix A corresponding to pairs xi,xj that belong to different subspaces
might be non-zero, but possibly small, in which case the number of connected components in G may
be smaller than L. This will result in eigenvalues that are not exactly equal to zero, but possibly
small. A robust estimator for L taking this into account is the so-called eigengap heuristic [11]:
L̂ = arg maxi∈[N−1](λi+1 − λi), where λ1 ≤ λ2 ≤ ... ≤ λN are the eigenvalues of the normalized
Laplacian of G.

We note that while satisfying the no false connections property does not say anything about
the quality of the estimate L̂, establishing that the connected components in G correspond to the
X`, as done below in the noiseless case, automatically guarantees that L̂ = L.

3 Performance results for the noiseless case

We first consider noiseless data sets (i.e., x
(`)
j = y

(`)
j in (1)) that have no outliers. In order to elicit

the impact of the relative orientations of the subspaces S` on the performance of TSC, we take
the S` to be deterministic and choose the points within the S` randomly. Specifically, we represent

the data points in S` by x
(`)
j = U(`)a

(`)
j where U(`) ∈ Rm×d` is an orthonormal basis for the d`-

dimensional subspace S` and the a
(`)
j ∈ Rd` are i.i.d. uniformly distributed on Sd`−1 (throughout

the paper, whenever we say that the a
(`)
j or the e

(`)
j are i.i.d., we actually mean i.i.d. across j and

`). Therefore, the data points x
(`)
j = U(`)a

(`)
j are distributed uniformly on {x ∈ S` : ‖x‖2 = 1},

which ensures that the points are spread out on the subspaces, and avoids degenerate situations
where data points lie in preferred directions. For example, suppose that the points on say, a two-
dimensional subspace S1, are skewed towards two (distinct) directions. Then, there are two sensible
segmentations. One is to assign the points corresponding to each direction to separate clusters, the
other to assign all points to one cluster.

Our results will be expressed in terms of two different notions of affinity between subspaces,
namely

aff∞(Sk, S`) :=
∥∥∥U(k)TU(`)

∥∥∥
2→2

7

and

aff(Sk, S`) :=
1√

dk ∧ d`

∥∥∥U(k)TU(`)
∥∥∥
F
.

The relation between the affinity notions aff∞(·) and aff(·) is brought out by expressing them in
terms of the principal angles between Sk and S` according to

aff∞(Sk, S`) = cos(θ1) (2)

and

aff(Sk, S`) =

√
cos2(θ1) + ...+ cos2(θdk∧d`)√

dk ∧ d`
(3)

where θ1, ..., θdk∧d` with 0 ≤ θ1 ≤ ... ≤ θdk∧d` ≤ π/2 denotes the principal angles between Sk and
S`, defined as follows.

Definition 1. The principal angles θ1, ..., θdk∧d` between the subspaces Sk and S` are defined re-
cursively according to

cos(θj) = 〈vj ,uj〉 , where (vj ,uj) = arg max 〈v,u〉

with the maximization carried out over all v ∈ Sk : ‖v‖2 = 1, u ∈ S` : ‖u‖2 = 1, subject to
〈v,vi〉 = 0 and 〈u,ui〉 = 0 for all i = 1, ..., j − 1 (for j = 1, this constraint is void).

Note that 0 ≤ aff(Sk, S`) ≤ aff∞(Sk, S`) ≤ 1. If Sk and S` intersect in p dimensions, i.e., if
Sk ∩ S` is p-dimensional, then cos(θ1) = ... = cos(θp) = 1 [30]. Hence, if Sk and S` intersect in
p ≥ 1 dimensions, we have aff∞(Sk, S`) = 1 and aff(Sk, S`) ≥

√
p/(dk ∧ d`). We finally note that

the affinity notion [15, Definition 2.6] and [12, Definition 1.2], relevant to the analysis of SSC and
RSSC, is equal to aff(·, ·).

We are now ready to state our first main result.

Theorem 1. Suppose that X`, ` ∈ [L], is obtained by choosing n` points i.i.d. uniformly from
{x ∈ S` : ‖x‖2 = 1}, independently across `, and let X = X1 ∪ ... ∪ XL. Pick ρ ∈ [0, 1) and suppose
that n` ≥ n0, for all ` ∈ [L], where n0 is a constant that depends on dmax and ρ only. Pick γ > 1
and suppose that q ∈ [c2γ log nmax, n

ρ
min] with c2 = 6(12π)dmax−1. If

max
k,` : k 6=`

aff∞(Sk, S`) < 1 (4)

then TSC delivers the correct segmentation of X with probability at least 1 −
∑L

`=1

(
n`e
−c1(n`−1)

+ 2n`
−γ+1

)
, where c1 is a numerical constant.

Theorem 1 states that TSC delivers the correct segmentation of X with high probability if the
subspaces do not intersect (recall that aff∞(Sk, S`) = 1 if and only if Sk and S` intersect in at
least one dimension) and if X contains sufficiently many points from each subspace (n` ≥ n0, for
all ` ∈ [L]). Intuitively we expect that clustering becomes easier when the n` increase. To see
that Theorem 1 confirms this intuition, set n` = n, for all ` ∈ [L], and note that the probability of
correct segmentation in Theorem 1 increases in n.

Theorem 1 furthermore shows that TSC delivers the correct segmentation of X asymptotically
in the number of points in X from each subspace, n`, even when the n` scale differently (in a sense
made precise below), and/or the number of subspaces, L, grows faster than one or more of the

8

n`. To see this, fix the d`, and let n` = nκ` , L = nκ for numerical constants κ` and κ (possibly
κ > κ`, in which case L grows faster than n`), and let n→∞. Choose γ such that (γ− 1)κmin > κ
where κmin := min` κ`. With κmax = max` κ`, for q ∈ [c2γκmax log n, nκminρ] with c2 and γ from
Theorem 1 (the interval is guaranteed to be nonempty for n sufficiently large as c2 does not depend
on n) it then follows that TSC yields correct segmentation with probability at least

1−
L∑
`=1

(
nκ`e−c1(nκ`−1) + 2n−(γ−1)κ`

)
≥ 1−

(
nκmin+κe−c1(nκmin−1) + 2n−(γ−1)κmin+κ

)
which tends to 1 as n→∞.

The proof of Theorem 1 is based on the realization that the graph G is a random graph owing to
the random data model. Specifically, the proof is effected by showing that the connected components
in G correspond to the X` with probability satisfying the probability estimate in Theorem 1. As
for the choice of q in Theorem 1, the upper bound on q is used to establish that G has no false
connections, i.e., each xj ∈ X` is connected to points in X` only, for all `. An upper bound on q is
also necessary as obviously q > nmin results in G necessarily having false connections. The lower
bound on q is needed to ensure that, in addition, the subgraphs G(X`) corresponding to the X`
are connected, and hence the G(X`) form connected components. In fact, the lower bound on q
(as a function of nmax) is order-wise necessary for the G(X`) to be connected. Specifically, there
exists a constant c that does not depend on n`, such that for q = c log n`, G(X`) is not connected
with probability 1 as n` → ∞ (not shown here). The exponential dependency of the constant
c2 = 6(12π)dmax−1 on dmax requires that the n` be exponential in the d` as this is necessary for
the interval [c2γ log nmax, n

ρ
min] of admissible values for q to be non-empty. While this restricts the

range of parameters d`, n`, Theorem 1 applies to, the statement in Theorem 1 is strongest possible
as it guarantees that the clustering error is zero as opposed to ensuring no false connections only.
Zero clustering error ensures that every point in the data set is clustered correctly. We finally note
that the exponential dependency of c2 on dmax appears to be an artifact of our proof technique, as
indicated by numerical results (not shown here). In fact, these numerical results suggest that c2

may even be a decreasing function of dmax.
Theorem 1 does not apply to subspaces that intersect as aff∞(Sk, S`)=1 in this case. We can,

however, find a statement analogous to Theorem 1, but in terms of aff(Sk, S`), which applies to
intersecting subspaces.

Theorem 2. Suppose that X`, ` ∈ [L], is obtained by choosing n` points i.i.d. uniformly from
{x ∈ S` : ‖x‖2 = 1}, independently across `, and let X = X1 ∪ ... ∪ XL. Suppose furthermore that
q ∈ [c1 log nmax, nmin/6] with c1 = 18(12π)dmax−1. If

max
k,` : k 6=`

aff(Sk, S`) ≤
1

15 logN
(5)

then TSC delivers the correct segmentation of X with probability at least 1−10/N−
∑L

`=1(n`e
−c(n`−1)+

2n−2
`), where c > 0 is a numerical constant.

The interpretation of Theorem 2 is analogous to that of Theorem 1 with the important difference
that the right hand side (RHS) of (5), as opposed to the RHS of (4), decreases, albeit very slowly,
in the n` as N =

∑
` n`. At first sight this is counterintuitive as we expect that clustering becomes

easier when the number of points in each subspace increases. However, our statement guarantees

9

that every point in the data set is clustered correctly, even though the subspaces are allowed to
intersect (cf. (5)). As the total number of points, N , increases, we would expect that the probability
that at least one point is close to an intersection of two subspaces, and therefore misclustered,
increases. Ensuring that the success probability increases in the n`, therefore leads to the affinity
condition (5) becoming stricter as N increases.

Again, the exponential dependency of the constant c1 = 18(12π)dmax−1 on dmax requires that
the n` be exponential in the d`. If one is content with satisfying the (weaker) no false connections
property only, this dependency on dmax vanishes by virtue of a lower bound on q not being needed.
Specifically, this leads to the following result.

Corollary 1. Suppose that X`, ` ∈ [L], is obtained by choosing n` points i.i.d. uniformly from
{x ∈ S` : ‖x‖2 = 1}, independently across `, and let X = X1 ∪ ... ∪ XL. Suppose furthermore that
q ≤ nmin/6. If

max
k,` : k 6=`

aff(Sk, S`) ≤
1

15 logN

then G has no false connections with probability at least 1− 10
N −

∑
`∈[L] n`e

−c(n`−1), where c > 0 is
a numerical constant.

Note that Corollary 1 does not require any relation between the n` and the d`, in particular the
n` can be linear in the d`. At first sight this might seem surprising as nearest neighbor algorithms
often suffer from the curse of dimensionality [31], manifested by the neighborhood of a point in a
high-dimensional space no longer being local [31], e.g., the vast majority of points chosen i.i.d. on a
high-dimensional unit sphere are essentially orthogonal to each other. Although TSC is a nearest
neighbor algorithm, it relies only on the premise that the vectors close to a given data point xj
also lie in the subspace xj lies in. This premise only requires the affinities between the subspaces
S` to be sufficiently small, does not rely on a certain relation between the n` and the d`, and
does not break down when the subspaces are high-dimensional. To see all this, we next provide a
back-of-the-envelope argument establishing the no false connections property under a (dimension-
independent) condition on the affinity of the subspaces. The proofs of the no false connections
property in Theorems 1–4 and Corollary 1 are essentially formal versions of the argument below.

For ease of exposition, we set d` = d, n` = |X`| = n, for all `, and we take the a
(`)
i in

x
(`)
i = U(`)a

(`)
i to be i.i.d. N (0, (1/d)Id) (recall that U(`) is an orthonormal basis for S`). As the

corresponding direction vectors x
(`)
i /
∥∥x(`)

i

∥∥
2

are distributed uniformly on {x ∈ S` : ‖x‖2 = 1} and∥∥x(`)
i

∥∥2

2
=
∥∥a(`)

i

∥∥2

2
concentrates around its expectation E

[∥∥a(`)
i

∥∥2

2

]
= 1, this model is conceptually

equivalent to the a
(`)
i being i.i.d. on the unit sphere, as assumed in the formal statements throughout

the paper. The program of the back-of-the-envelope calculation below is as follows. We use the
fact that the absolute value of the inner product between data points from within a given subspace
concentrates around c/

√
d, whereas the absolute value of the inner product between data points

from different subspaces, Sk and S`, concentrates around a value ≤ aff∞(Sk, S`)c/
√
d. Thus, even

when the subspace dimension d is large, the maximum inner product between data points from a
given subspace will still be larger than the largest inner product between data points from different
subspaces, provided that the affinity is sufficiently small. More formally, the no false connections
property holds if for xi ∈ X`, the corresponding set Ti from Step 2 of the TSC algorithm corresponds
to points in X` only, for all xi, and for all `. The set Ti contains indices corresponding to points

in X` only if the qth largest value in the set
{∣∣〈x(`)

j ,x
(`)
i

〉∣∣, j 6= i
}

exceeds the largest value in the

set
{∣∣〈x(k)

j ,x
(`)
i

〉∣∣, j, k 6= `
}

. Conditioned on a
(`)
i , the random variable

〈
x

(`)
j ,x

(`)
i

〉
=
〈
a

(`)
j ,a

(`)
i

〉
is

10

zero-mean Gaussian with variance
∥∥a(`)

i

∥∥2

2
/d. A standard result from order statistics [32] shows

that, with high probability, the qth largest value in the set
{∣∣〈x(`)

j ,x
(`)
i

〉∣∣, j 6= i
}

is no larger than

c1

√
log(n/q)

∥∥a(`)
i

∥∥
2√

d
. (6)

Next, consider data points x
(k)
j ,x

(`)
i from different subspaces (i.e., k 6= `), and note that∣∣〈x(k)

j ,x
(`)
i

〉∣∣ =
∣∣〈U(k)a

(k)
j ,U(`)a

(`)
i

〉∣∣
≤
∣∣〈a(k)

j ,a
(`)
i

〉∣∣∥∥∥U(k)TU(`)
∥∥∥

2

=
∣∣〈a(k)

j ,a
(`)
i

〉∣∣aff∞(Sk, S`).

As before,
〈
a

(k)
j ,a

(`)
i

〉
is Gaussian with variance

∥∥a(`)
i

∥∥2

2
/d. Again, it follows that the largest value

in the set
{∣∣〈x(k)

j ,x
(`)
i

〉∣∣, j, k 6= `
}

is smaller than

c2

√
log((L− 1)n)

∥∥a(`)
i

∥∥
2√

d
aff∞(Sk, S`) (7)

with high probability. We can hence expect TSC to succeed (with high probability) if (7) is smaller
than (6) which leads to

aff∞(Sk, S`) ≤
c1

√
log(n/q)

c2

√
log((L− 1)n)

.

The RHS of this condition does not depend on the dimension of the subspaces, d, which explains why
TSC does not suffer from the curse of dimensionality. Note that while aff∞(Sk, S`) does depend on
d through the subspaces Sk and S`, it can easily be small for large d (e.g., for orthogonal subspaces
Sk, S` of dimension d in Rm,m = 2d, aff∞(Sk, S`) = 0, or consider Lemma 4 in Appendix D for a
more interesting example, which shows that for L subspaces with random orientations aff∞(Sk, S`),
for all pairs Sk, S`, k 6= `, is close to zero with high probability provided that m ≥ O(d+ logL)).

4 Impact of noise

In many practical applications the data points to be clustered are corrupted by measurement noise,
typically modeled as additive Gaussian noise. It is therefore of interest to analyze the performance
of TSC applied to noisy data.

Theorem 3. Suppose that X`, ` ∈ [L], is obtained by choosing n` points corresponding to S` at

random according to x
(`)
j = y

(`)
j + e

(`)
j , j ∈ [n`], where the y

(`)
j are chosen i.i.d. uniformly from

{y ∈ S` : ‖y‖2 = 1}, independently across `, and the e
(`)
j are i.i.d. N (0, (σ2/m)Im), independent of

the y
(`)
j . Let X = X1 ∪ ... ∪ XL and suppose that q ≤ nmin/6. If

max
k,` : k 6=`

aff(Sk, S`) +
σ(1 + σ)√

logN

√
dmax√
m
≤ 1

15 logN
(8)

with m ≥ 6 logN , then G has no false connections with probability at least 1− 10
N −

∑
`∈[L] n`e

−c(n`−1),
where c > 0 is a numerical constant.

11

First, note that, unlike in the noiseless case, the data points x
(`)
j in Theorem 3 do not have

unit norm. However, since e
(`)
j concentrates around its mean, the norms ‖x(`)

j ‖2 are close to each
other with high probability. TSC also applies to points that are unnormalized, with the only
difference that exp(−2 arccos(|〈xj ,xi〉|)) in Step 2 has to be replaced by exp(−2 arccos(|〈xj ,xi〉|
/(‖xj‖2‖xi‖2))). Second, note that Theorem 3, unlike the results in the noiseless case in Theorems 1
and 2 only ensures the absence of false connections inG and hence does not guarantee zero clustering
error. Theorem 3 states that TSC succeeds (in the sense of G having no false connections) with
high probability if X contains sufficiently many points from each subspace (see the probability
estimate in Theorem 3) and if the additive noise variance and the affinities between the subspaces
are sufficiently small.

Condition (8) nicely reflects the intuition that the more distinct the orientations of the subspaces
the more noise TSC tolerates. What is more, Condition (8) reveals that TSC can succeed even

under massive noise, i.e., even if σ2 = E
[∥∥e(`)

j

∥∥2

2

]
>
∥∥∥y(`)

j

∥∥∥2

2
= 1, provided that the dimensions of

the subspaces are sufficiently small relative to the ambient dimension.
The intuition behind the factor σ(1 + σ)

√
dmax/m in (8), made rigorous in the proof of Theo-

rem 3, is as follows. Assume, for simplicity, that d` = d, for all `, and consider the most favorable
situation of subspaces that are orthogonal to each other, i.e., aff(Sk, S`) = 0, for all pairs (k, `) with
k 6= `. Recall that TSC relies on the inner products between points within a given subspace to
typically be larger than the inner products between points in distinct subspaces. First, note that
〈xj ,xi〉 = 〈yj ,yi〉+ 〈ej , ei〉+ 〈yj , ei〉+ 〈ej ,yi〉. Then, under the statistical data model of Theorem

3, we have
(
E
[
|〈yj ,yi〉|2

])1/2
= 1√

d
if yj ,yi ∈ S` and 〈yj ,yi〉 = 0 if yj ∈ Sk and yi ∈ S`, with

k 6= `. If the terms 〈ej , ei〉, 〈yj , ei〉, and 〈ej ,yi〉 are all small relative to 1√
d
, we have a margin on

the order of 1√
d

to distinguish pairs of points from within a given subspace from pairs of points

from different subspaces. Indeed, 〈yj , ei〉 and 〈ej ,yi〉 are small relative to 1√
d

if σ√
m

is small relative

to 1√
d

(cf. (49)), while σ2
√
m

being small relative to 1√
d

ensures that 〈ej , ei〉 is small relative to 1√
d

(cf. (53)). These two conditions are obviously satisfied when σ(1 + σ)
√
d/m is small.

5 Incomplete data

In practical applications the data points to be clustered are often incompletely observed, think
of, e.g., images that exhibit scratches or have missing parts. It is therefore of significant interest
to understand the impact of incomplete observations on the performance of TSC. Corresponding
results for deterministic subspaces will necessarily depend on the specific orientations of the sub-
spaces and will hence take on a form which makes it difficult to draw insightful conclusions. To
make the problem analytically more tractable, we assume both the orientations of the subspaces as
well as the data points in the subspaces to be random. Specifically, we will take the basis matrices
U(`) of the subspaces S` to be i.i.d. Gaussian random matrices, which ensures that each U(`) is
approximately orthonormal with high probability (rather than the U(`) being strictly orthonormal
as in the previous sections). For simplicity of exposition, throughout this section, we take the
subspaces S` to have equal dimension d and let the number of points in each of the subspaces be
n. We furthermore set the values of the unobserved entries in each data vector to zero and keep
working in the original m-dimensional ambient space. As the TSC algorithm depends on inner
products between the data points only this ensures that the missing observations will result in zero
contributions.

12

Theorem 4. Suppose that X` is obtained by choosing n points corresponding to S` according to

x
(`)
j = U(`)a

(`)
j , j ∈ [n], where the a

(`)
j are i.i.d. uniform on Sd−1, and set X = X1 ∪ ... ∪ XL. Let

the entries of the U(`) ∈ Rm×d be i.i.d. N (0, 1/m). Pick ρ ∈ [0, 1) and suppose that n ≥ n0, where
n0 is a constant that depends on d and ρ only. Suppose furthermore that q ≤ nρ, and assume that
in each xj ∈ X up to s arbitrary entries (possibly different for different xj) are unobserved, i.e.,
set to 0. If

m ≥ 3c4d+ s
(
c4 log

(me
2s

)
+ c3

)
+ c4 logL (9)

then G has no false connections with probability at least 1−Lne−c1(n−1), where c1, c2, c3, c4 > 0 are
numerical constants. If s = 0, (9) reduces to m ≥ 3c4d+ c4 logL.

Theorem 4 shows that the number of missing entries in the data vectors is allowed to be (up
to a log-factor) linear in the ambient dimension. We can furthermore conclude that TSC succeeds
(in the sense of G having no false connections) with high probability even when the dimensions of
the subspaces are linear in the ambient dimension. This should, however, be taken with a grain
of salt as the fully random subspace model ensures that the subspaces are approximately pairwise
orthogonal with high probability, and hence the affinities between the subspaces are close to zero.

6 Outlier detection

We discuss the noiseless and the noisy case separately as the corresponding outlier models differ
slightly. Moreover, the proof for the noiseless case is very simple and insightful and thus warrants
individual presentation.

6.1 Noise-free case

Outliers are data points that do not lie in one of the low-dimensional subspaces S` and do not exhibit
low-dimensional structure. Here, this is conceptualized by assuming random outliers distributed
uniformly on Sd−1, the unit sphere of Rm. As before, the inliers are assumed to be distributed
uniformly on S` ∩ Sd`−1. The outlier detection criterion we employ is based on the following
observation. The maximum inner product between an outlier and any other point (be it outlier or
inlier) in X is, with high probability, smaller than c

√
logN/

√
m, as made rigorous in the proof of

Theorem 5 below. We therefore classify xj as an outlier if

max
i∈[N]\{j}

|〈xi,xj〉| < c
√

logN/
√
m. (10)

The maximum inner product between any point xj ∈ X` and the points in X` \ {xj} is unlikely
to be smaller than 1/

√
dmax, as formalized in the proof of Theorem 5. Hence, an inlier is unlikely

to be misclassified as an outlier if c
√

logN/
√
m ≤ 1/

√
dmax, i.e., if dmax/m is sufficiently small

relative to 1/
√

logN . The following result formalizes this insight.

Theorem 5. Suppose that the set of outliers, O, is obtained by choosing N0 outliers i.i.d. uni-
formly on Sm−1, and that X`, ` ∈ [L], is obtained by choosing n` points i.i.d. uniformly from
{x ∈ S` : ‖x‖2 = 1}, independently across `. Set X = X1 ∪ ... ∪ XL ∪ O and declare xj ∈ X to be
an outlier if (10) holds with c =

√
6. Then, with N = N0 +

∑
` n`, all outliers are detected with

probability at least 1− 2N0/N
2. Furthermore, provided that

dmax

m
≤ 1

6 logN
(11)

13

no inlier in S` is misclassified as an outlier with probability at least

1− n`e−
1
2

log(π2)(n`−1). (12)

Theorem 5 states that under Condition (11) and provided that the set X contains sufficiently
many points from each subspace (cf. (12)), outlier detection succeeds with high probability, i.e.,
every outlier is detected and no inlier is misclassified as an outlier. Note that this result does not
make any assumptions on the orientations of the subspaces S`.

Since (11) can be rewritten as N0 ≤ e
m

6dmax −
∑

` n`, it follows that outlier detection succeeds
even if the number of outliers is exponential in m/dmax.

Finally, note that the outlier detection rule (10) is very natural as it simply classifies those
points as outliers whose (spherical) distance to all other points, and hence also to their individual
nearest neighbors, is large. The scheme provably works as the nearest neighbor of each inlier is
typically much closer than the nearest neighbor of each outlier. The idea of performing outlier
detection based on nearest neighbor distance properties appeared previously e.g. in [33] (not in
the context of subspace clustering though), where outliers are detected based on the connectivity
properties of mutual2 nearest neighbor graphs.

6.2 Noisy case

We next consider outlier detection under additive noise on the data points. To keep the analysis sim-
ple, we change the outlier model slightly. Specifically, we assume the outliers to be N (0, (1/m)Im)
distributed. Conceptually, this outlier model is equivalent to the one used in Section 6.1, as the
directions of the outliers in the present model, i.e., xi/‖xi‖2, are uniformly distributed on Sm−1,
and ‖xi‖2 concentrates around 1. We furthermore normalize the (noisy) data points such that
the norm of the inliers also concentrates around 1. This guarantees that outlier detection is not
trivially accomplished by exploiting differences in the norms between inliers and outliers.

Theorem 6. Suppose that the set of outliers, O, is obtained by choosing N0 outliers i.i.d.
N (0, (1/m)Im), and that X`, ` ∈ [L], is obtained by choosing n` points corresponding to S` ac-

cording to x
(`)
j = 1√

1+σ2

(
y

(`)
j + e

(`)
j

)
, j ∈ [n`], where the y

(`)
j are chosen i.i.d. uniformly from

{y ∈ S` : ‖y‖2 = 1}, independently across `, and the e
(`)
j are i.i.d. N (0, (σ2/m)Im). Let X =

X1 ∪ ... ∪ XL ∪ O and declare xj ∈ X to be an outlier if (10) holds with c = 2.3
√

6. Then, with
N = N0 +

∑
l n`, assuming m ≥ 6 logN , all outliers are detected with probability at least 1− 3N0

N2 .
Furthermore, provided that

dmax

m
≤ c1

(1 + σ2)2 logN
(13)

where c1 is a numerical constant, no inlier belonging to S` is misclassified as an outlier with
probability at least

1− n`e−
1
2

log(π2)(n`−1) − n2
`

7

N3
. (14)

Theorem 6 shows that outlier detection can succeed even under massive noise provided that
dmax/m is sufficiently small.

2In a mutual k-nearest neighbor graph, the points xi and xj are connected if xi is among the k-nearest neighbors
of xj and xj is among the k-nearest neighbors of xi.

14

7 Comparison with SSC/RSSC and other algorithms

As mentioned in the introduction, there are only a few subspace clustering algorithms that are both
computationally tractable and succeed provably under non-restrictive conditions. Notable excep-
tions are the SSC algorithm [13, 14], and for the noisy case the RSSC algorithm [12] (an algorithm
analogous to the RSSC algorithm was also studied in [14]). Since our analytical performance results
are in the spirit of those for SSC and RSSC in [15, 12]—in particular we use the same statistical
data model—we next compare our findings to those in [15, 12]. Analytical performance guarantees
for SSC in the fully deterministic case can be found in [14].

While SSC and RSSC employ a “global” criterion for building the adjacency matrix A by
sparsely representing each data point in terms of all the other data points through `1-minimization
or Lasso, TSC is based on a “local” criterion, namely the comparison of inner products of pairs of
data points. This makes TSC computationally much less demanding than SSC and RSSC, while,
perhaps surprisingly, essentially sharing the analytical performance guarantees of SSC and RSSC.
The complexity savings may, however, come at the cost of actual performance. Specifically, while
there are situations where TSC outperforms SSC, SSC outperforming TSC is more common, as
will be seen in the numerical results in Section 8.

Concerning analytical performance guarantees, for SSC in the noiseless case, a result along the
lines of Theorem 2 was reported in [15, Theorem 2.8], with the corresponding clustering condition
in [15, Theorem 2.8] being identical (up to constants and log-factors) to our condition (5). However,
the statement in [15, Theorem 2.8] is weaker than that in Theorem 2 as it does not pertain to the
clustering error directly, but rather ensures no false connections only. To prove that the clustering
error is zero, we additionally establish that the subgraphs corresponding to the X` are connected.
As already mentioned, this requires a lower bound on q, which entails that the n` be exponential
in the d`. While this restricts the range of parameters d`, n` Theorems 1 and 2 apply to, the
corresponding statements are strongest possible as they guarantee that the clustering error is zero
as opposed to ensuring no false connections only. Again, as mentioned before, this exponential
dependency appears to be an artifact of the proof technique we employ.

In the noisy case for RSSC a result analogous to our Theorem 3 was reported in [12, Theo-
rem 3.1], with the corresponding clustering condition in [12, Theorem 3.1] being identical (again
up to constants and log-factors) to our condition (8) with σ(1 + σ) in (8) replaced by σ. We note,
however, that [12] requires σ to be bounded in the sense of σ ≤ c, for some constant c, an assump-
tion not needed in our case. If we take σ to satisfy σ ≤ c, the factor σ(1+σ) in Condition (8) above
can be replaced by σ(1 + c) and we would get a clustering condition that is equivalent (again up to
constants and log-factors) to that in [12]. A result concerning clustering of incompletely observed
data paralleling our Theorem 4 does not seem to be available for SSC. The outlier detection scheme
proposed in [15] in the context of SSC is based on the premise that outliers can not be represented
sparsely in terms of the other data points. This scheme succeeds (i.e., every outlier is detected and

no inlier is misclassified as an outlier) with probability at least 1−N0e
−c n

logN −
∑L

`=1 n`e
−
√
d`
√
n`−1

under the condition N0 ≤ min{ec
√
m/m,mmin` (n`/d`)

cm/d`} −
∑L

`=1 n`, while our outlier detec-

tion scheme succeeds under Condition (9), i.e., N0 ≤ e
m

6dmax −
∑L

`=1 n`, with probability at least

1− 2N0
N2 −

∑L
`=1 n`e

− 1
2

log(π2)(n`−1). For both algorithms the number of outliers can be exponential
in m/dmax, the success probability increases in the n`, and the n` can be linear in the d`.

In terms of input parameters, RSSC in [12] chooses the Lasso regularization parameter λ in a
data-driven fashion, which makes the algorithm essentially parameterless. TSC in contrast has q
as an input parameter. A variation of TSC with a data-driven choice of q was proposed in [34] and
shown to lead to performance guarantees that are essentially equivalent to those reported in this

15

paper.
A comparison of the analytical performance results for RSSC (in particular [12, Theorem 3.1])

to those for a number of representative subspace clustering algorithms such as generalized PCA
(GPCA) [35], K-flats [36], and LRR [16], can be found in [12, Section 5]. This comparison also
features computational complexity and robustness aspects. As the main analytical performance
results for TSC are structurally equivalent to those for SSC and RSSC the conclusions drawn in
the comparison in [12, Section 5] essentially carry over to TSC.

8 Numerical results

We use the following performance metrics.

• The clustering error (CE) measures the fraction of misclassified points and is defined as
follows. Denote the estimate of the number of subspaces by L̂. Let c ∈ [L]N and ĉ ∈ [L̂]N be
the original and estimated assignments of the points in X to the individual subspaces. The
CE is then defined as

CE(ĉ, c) = min
π

(
1− 1

N

N∑
i=1

1{π(ĉi)=ci}

)
where the minimum is taken over all assignments π : [L] → [L̂] (for L̂ = L, π is simply
a permutation). Note that π appears naturally in the definition of the CE as the specific
cluster indices are irrelevant to the CE. The problem of finding the optimal assignment π can
be cast as finding the maximal matching of a weighted bipartite graph, which can be solved
efficiently via the Hungarian algorithm [37].

• The error in estimating the number of subspaces L is denoted as EL and takes the value 0 if
the estimate L̂ is correct, 1 if L < L̂, and −1 if L > L̂. We employ a signed error measure so
as to be able to discriminate between under- and overestimation. In principle, EL averaged
over problem instances, may therefore equal zero, while L̂ 6= L for each individual problem
instance. However, as it turns out (in the numerical results below), for a given choice of
problem parameters, we get that either L < L̂ or L > L̂ almost consistently.

• The feature detection error (FDE) (for a given adjacency matrix A) is defined as

FDE(A) = 1− 1

N

N∑
i=1

‖bxi‖2
‖bi‖2

where bi is the ith column of the N ×N adjacency matrix A and bxi is the vector containing
the entries of bi corresponding to the set X` the data point xi lives in. The FDE measures to
which extent points from different subspaces are connected in the graph G (with adjacency
matrix A), and equals zero if G has no false connections.

Throughout this section, we set q = max(3, dn/20e) if the correct L is provided to TSC, and
q = 2 max(3, dn/20e) if L is estimated according to the eigengap heuristic. Matlab code to reproduce
the results in this section is available at http://www.nari.ee.ethz.ch/commth/research/.

8.1 Synthetic data

Throughout Section 8.1, unless explicitly stated otherwise, we take n` = n and d` = d, for all `, and
generate the d-dimensional subspaces S` by drawing i.i.d. orthonormal basis matrices U(`) ∈ Rm×d
uniformly at random from the set of all orthonormal matrices in Rm×d.

16

0 5 10

0

0.1

0.2

0.3

FDE

0 5 10

0

0.2

0.4

0.6

CE

0 5 10

0

0.2

0.4

0.6

0.8

EL

Figure 2: Clustering error metrics as a function of the dimension of the intersection, t, for clustering
points taken from two 10-dimensional subspaces of R200.

8.1.1 Intersection of subspaces

We next demonstrate that, as predicted by Theorem 2, TSC can succeed even when the subspaces
S` intersect. In order to facilitate comparison to SSC, we perform the same experiment as in [15,
Sec. 5.1.2]. Specifically, we set m = 200, d = 10, and generate two subspaces, S1 and S2, at random
through their defining bases U(1) and U(2) obtained as follows. We choose, uniformly at random,
from the set of all sets of 2d− t orthonormal vectors in Rm, a set of 2d− t orthonormal vectors, and
identify the columns of U(1) and U(2) with the first and last d of these vectors, respectively. This
ensures that the intersection of S1 and S2 is at least of dimension t. Next, we generate n = 20d data

points in each of the two subspaces according to x
(`)
i = U(`)a

(`)
i , with the a

(`)
i drawn i.i.d. uniformly

on Sd−1. For each t = 0, ..., d the CE, EL, and FDE are obtained by averaging over 100 problem
instances. From the results, shown in Figure 2, we can conclude that, as long as the dimension of
the intersection of the subspaces is not too large, TSC does, indeed, yield a CE close to zero. The
same experiment was performed for SSC in [15, Sec. 5.1.2] and delivered slightly better results.

8.1.2 Influence of d, n, and incomplete data

The goal of the next experiment is to elicit the impact of d, n, and the number of missing entries in
the data points on clustering performance, and to furthermore demonstrate that TSC can succeed
even when G has false connections. We generate L = 10 subspaces of R50, and vary their dimension
d and the number n of points taken from each subspace. The individual data points are chosen
according to the statistical model Theorem 2 is based on. For each pair (d, n), the FDE, CE, and
EL are obtained by averaging over 20 problem instances. The results, depicted in Figure 3, show,
as indicated in Section 2, that TSC can, indeed, succeed even when G has false connections (i.e.,
when the FDE is non-zero).

Next, we generate L = 6 subspaces of R50 by choosing their defining bases U(`) as follows.
We first draw U ∈ Rm×d/3 (we restrict d to integer multiples of 3) uniformly from the set of all
orthonormal matrices in Rm×d/3. Then, we choose Ũ(`) ∈ Rm×2d/3, ` ∈ [L], independently across `
and independently of U, uniformly at random from the set of all orthonormal matrices in Rm×2d/3

that are orthogonal to U, and set U(`) = [Ũ(`) U] ∈ Rm×d. This ensures that the subspaces S`
with basis matrices U(`) intersect in at least d/3 dimensions and hence aff(Sk, S`) ≥ 1/

√
3 for all

k, ` ∈ [L], k 6= `. The data points are chosen according to the statistical model Theorem 2 is based
on. For each data point xi, we set the entries of xi with indices in Di to zero, where the sets Di
are chosen independently and uniformly at random from the set {D ⊆ [m] : |D| = s}. The results,

17

0 50 100 150

10

20

FDE

0

0.2

0.4

0 50 100 150

CE

0
0.2
0.4
0.6

0 50 100 150

EL

−0.5

0

Figure 3: Clustering error metrics as a function of the dimension, d, of the subspaces on the
vertical and the number of points taken from each subspace, n, on the horizontal axis, for L = 10
subspaces of R50.

5
10
15
20

s = 0 s = 5 s = 10

0 50 100 150

5
10
15
20

s = 15

0 50 100 150

s = 20

0.2
0.4
0.6

Figure 4: Clustering error as a function of the dimension, d, of the subspaces on the vertical and
the number of points taken from each subspace, n, on the horizontal axis for s missing entries in
the data vectors. The results are for L = 6 subspaces S` of R50, with aff(Sk, S`) ≥ 1/

√
3 for all

k, ` ∈ [L], k 6= `.

summarized in Figure 4, show that TSC can succeed even when a large fraction of the entries in
each data vector is missing.

8.1.3 Additive noise

We generate L = 10 subspaces of R50 and vary their dimension d and the number of points n taken
from each subspace. The data points are subjected to additive noise before clustering. Specifically,
we use the statistical data model Theorem 3 is based on. The results, depicted in Figure 5, show
that TSC can succeed even when the noise variance is large.

In Section 4, we found that TSC can succeed even under massive noise (i.e., if σ2 > 1), provided
that d/m is sufficiently small. To demonstrate this effect numerically, we generate L = 5 subspaces
in R400, each of dimension d = 5 (hence d/m = 1/80), and we choose the data points again
according to the statistical model Theorem 3 is based on. We vary the number of points in each
subspace, n, and the noise variance σ2. The corresponding results, depicted in Figure 6, confirm
the analytical predictions of Theorem 3.

8.1.4 Detection of outliers

In order to facilitate comparison with the outlier detection scheme proposed for SSC in [15], we
perform our experiment with exactly the same parameters as used in [15, Sec. 5.2]. Specifically,
we set d = 5, vary m ∈ {50, 100, 200}, and generate L = 2m/d subspaces at random. We choose
n inliers per subspace and a total of N0 = Ln outliers according to the statistical model Theorem
5 is based on. The number of outliers is hence equal to the total number of inliers. We measure

18

10

20

σ2 = 0 σ2 = 0.1 σ2 = 0.2 σ2 = 0.3

0 50 100 150

10

20

σ2 = 0.4

0 50 100 150

σ2 = 0.5

0 50 100 150

σ2 = 0.6

0 50 100 150

σ2 = 0.7

0
0.2
0.4
0.6
0.8

Figure 5: Clustering error for data points taken from L = 10 subspaces of R50 corrupted by
additive Gaussian noise, as a function of the dimension, d, of the subspaces on the vertical and the
number of points taken from each subspace, n, on the horizontal axis for different noise variances
σ2.

50 100
0

2

4

FDE

0

0.2

0.4

50 100

CE

0
0.2
0.4
0.6
0.8

50 100

EL

−0.5

0

0.5

Figure 6: Clustering error metrics for points taken from L = 5 subspaces of R400, each of which
is 5-dimensional, corrupted by additive Gaussian noise, as a function of the noise variance, σ2, on
the vertical and the number of points taken from each subspace, n, on the horizontal axis.

19

0 20 40 60 80 100

0

10

20

index of singular value
si

n
g
u

la
r

va
lu

e

Figure 7: Singular values of the matrices with columns corresponding to the vectorized images of
a given digit from the MNIST data base.

performance in terms of the misclassification error, defined as the number of misclassified points
(i.e., outliers misclassified as inliers and inliers misclassified as outliers) divided by the total number
of points in X . We find a misclassification error of {0.017, 1.510−4, 2.510−5} for m = {50, 100, 200},
respectively. The performance reported for SSC in [15] is similar.

8.2 Clustering handwritten digits

We next apply TSC to the problem of clustering handwritten digits. Specifically, we work with the
MNIST test data set [18] that contains 10,000 centered 28× 28 pixel images of handwritten digits.
The assumption underlying the idea of posing this problem as a subspace clustering problem is that
the vectorized images of the different handwritten versions of a single digit lie approximately in a
low-dimensional subspace [38]. To validate this assumption, we compute the singular values of the
matrices X` with columns corresponding to the vectorized images of the `th digit, ` = 0, 1, ..., 9,
and sort them in descending order. The results, plotted in Figure 7, show that the singular values of
the matrices X`, indeed, decay to zero rapidly (m = 784). As mentioned in Section 2, TSC is built
on the premise that the vectors close to xj in terms of the distance s̃(xi,xj) = arccos(|〈xi,xj〉|) also
lie in the subspace xj lies in. As our analytical results in Sections 3 and 4 show, this premise is met
(with high probability) for the statistical data model used throughout the paper. To see whether
the premise is also met in practice, we compute exp(−s̃(xi,xj)) for all pairs xj ,xi of vectorized
images of the digits {1, 3, 7} from the MNIST data set. In other words, we compute the adjacency
matrix for q = N . The results, depicted in Figure 8, show that, indeed, exp(−s̃(xi,xj)) for xi,xj
coming from the same digit is typically larger than for xi,xj coming from different digits.

We compare the performance of TSC, LS-TSC, and SSC/RSSC. For SSC, we use the imple-
mentation from [14]. The empirical mean and variance of the CE are computed by averaging over
100 of the following problem instances. We choose the digits {2, 4, 8} and for each digit we choose
n images uniformly at random from the set of all images of that digit. The results, summarized in
Figure 9, show that SSC performs better than both TSC and LS-TSC when the data set contains
few (n . 80) images of each digit, TSC and LS-TSC outperform SSC when the data set contains
many (n & 80) images of each digit. Note that the FDE for TSC is significantly smaller than that
for SSC, even in the regime n . 80 where SSC performs better. This is a result of q being small,
which yields a sparse adjacency matrix for TSC, and therefore increases the chance of the nonzero
entries, indeed, corresponding to points within the same subspace.

20

1

3

7

1,3

3,7

1,7

Figure 8: Matrix with entries Aij = exp(− arccos(|〈xj ,xi〉|)) for all pairs xj ,xi of vectorized
images of the digits {1, 3, 7} from the MNIST data base.

0 100 200 300 400

0

0.1

0.2

0.3

number of points of each digit n

C
E

SSC
TSC

LS-TSC

0 100 200 300 400

5 · 10−2

0.1

0.15

number of points of each digit n

F
D

E

Figure 9: Empirical mean and standard deviation of the CE and FDE for handwritten digits from
the MNIST data base.

21

L 2 3 5 8 10

CE, TSC, orig. dat. 12.42% 19.85% 29.17% 36.84% 39.84%
FDE, TSC, orig. dat. 0.0248 0.0419 0.0648 0.0863 0.0971
CE, TSC, whitening 8.06% 9% 10.14% 12.58% 17.86%
FDE, TSC, whitening 0.0154 0.0245 0.0384 0.0525 0.0591
CE, LSA 32.8% 52.29% 58.02% 59.19% 60.42%
CE, SCC 16.62% 38.16% 58.90% 66.11% 73.02%
CE, LRR 9.52% 19.52% 34.16% 41.19% 38.85%
CE, LatLRR 2.54% 4.21% 6.9% 14.34% 22.92%
CE, LRSC 5.32% 8.47% 12.24% 23.72% 30.36%
CE, SSC 1.86% 3.1% 4.31% 5.85% 10.94%

Table 1: CE and FDE for clustering faces for TSC. The CEs for LSA, SCC, LRR, LatLRR, LRSC,
and SSC are taken from [14, Table 5].

8.3 Clustering faces

We finally apply TSC to the problem of clustering images of faces taken under varying illumination
conditions. The motivation for applying TSC to this problem stems from the insight that the
vectorized images of a given face taken under varying illumination conditions lie approximately in
a 9-dimensional linear subspace [3]. Each 9-dimensional subspace S` would then contain the images
corresponding to a given person.

We work with the extended Yale Face Database B [19, 20], which contains 192 × 168 pixel
images of 38 persons, each taken under 64 different illumination conditions. To be able to compare
our results to those reported in [14] for SSC, SCC, Local Subspace Affinity (LSA) [22], Low-Rank
Subspace Clustering (LRSC) [39], and LatLRR [40], we apply TSC to exactly the same data sets as
used in [14, Sec. 7.2]. The averages of the CE and the FDE we obtain for L = 2, 3, 5, 8, 10 subjects
are reported in Table 1, along with the values from [14, Table 5]. Comparing these results to
[14, Table 5] shows that TSC performs better than LSA and SCC, but worse than LRR, LatLRR,
LRSC, and SSC, with the latter exhibiting the best performance in the group LSC, SCC, LRR,
LatLRR, LRSC, TSC, SSC.

As pointed out in [5, Section 3.3] the subspaces corresponding to different persons are extremely
close to each other, which renders the corresponding clustering problem hard. Discrimination
between the clusters (and hence persons) can be improved through preprocessing of the data set
as described in [5, Section 3.3]. Specifically, the preprocessed data set X̃ is obtained by removing
the first two principal components of X, where X is the matrix whose columns are the data
points in X , and taking the points in X̃ as the columns of the resulting matrix. We applied TSC
with preprocessing to the same data sets as used in [14]. Comparing the corresponding results,
summarized in the first four rows in Table 1, to the results reported in [14, Table 5], and reproduced
in our Table 1, for completeness, we can see that TSC with preprocessing performs better than
LSA, SCC, and LRR applied to the raw data, but worse than LatLRR for L = 2, 3, 5, LRSC for
L = 2, 3, and SSC for all L considered, in all cases applied to the raw data. We note that TSC
with preprocessing remains computationally less demanding than the other algorithms without
preprocessing.

22

Acknowledgments

We would like to thank Eirikur Agustsson for helpful discussions, in particular a result he obtained
inspired our proof of Lemma 2. Moreover, we would like to thank Mahdi Soltanolkotabi for helpful
and inspiring discussions.

A Proof of Theorem 1

The X` in Theorem 1 are obtained by choosing n` points uniformly from {x ∈ S` : ‖x‖2 = 1}. As

mentioned previously, this is equivalent to choosing the points according to x
(`)
j = U(`)a

(`)
j , j ∈ [n`],

where the a
(`)
j are i.i.d. uniform on Sd`−1, and U(`) ∈ Rm×d` is an orthonormal basis for the subspace

S`.
The proof is effected by showing that the connected components in the (random) graph G with

adjacency matrix A (constructed by the TSC algorithm) correspond to the X` with high probability.
As mentioned previously, normalized spectral clustering will identify these components perfectly
[11, Prop. 4] and hence yield correct segmentation of X .

We prove that the connected components in G correspond to the X` by showing that G has no
false connections and the subgraphs G(X`) corresponding to the X` are connected, for all `. To
this end, we define the events NFC := {G has no false connections} and C := {G(X`) is connected,
for all `} and upper-bound the probability P

[
C and NFC

]
. This will be accomplished by exploiting

the fact that conditioned on NFC, owing to 〈xi,xj〉 = 〈ai,aj〉, for xi,xj ∈ X` (by orthonormality of
the U(`)), G(X`) is the q-nearest neighbor graph of X` with respect to the distance arccos(|〈ai,aj〉|).
An analysis of the connectivity properties of G(X`) will then yield an upper bound on P

[
C|NFC

]
which together with an upper bound on P

[
NFC

]
delivers the final result according to

P
[
C and NFC

]
= P

[
C or NFC

]
= P

[
NFC

]
+ P

[
C and NFC

]
≤ P

[
NFC

]
+ P

[
C|NFC

]
. (15)

We proceed by establishing the upper bounds on the terms in the RHS of (15).
We will use Lemma 1 below, proven in Appendix A.1, to upper-bound P

[
NFC

]
. The lemma is

also a key ingredient of the proof of Theorem 4 pertaining to incomplete data, and is hence stated
in a form general enough to cover that case as well.

Lemma 1. Suppose that X` is obtained by choosing n` points in S` according to x
(`)
j = U(`)a

(`)
j , j ∈

[n`], where the a
(`)
j are i.i.d. uniform on Sd`−1, U(`) ∈ Rm×d` (not necessarily orthonormal), and

let X = X1 ∪ ... ∪ XL. Assume that in each xj ∈ X up to s arbitrary entries (possibly different for
different xj) are unobserved, i.e., set to 0. Pick ρ ∈ [0, 1) and suppose that n` ≥ n0, for all ` ∈ [L],
where n0 is a constant that depends on dmax and ρ only. Suppose that q ≤ nρmin and

maxk,` : k 6=`,D : |D|≤2s

∥∥U(k)
D

T
U(`)

∥∥
2→2

min`,D : |D|≤2s,‖a‖2=1

∥∥U(`)
D
T
U(`)a

∥∥
2

< 1 (16)

where U
(`)
D ∈ Rm×d` is the matrix obtained from U(`) by setting the rows with indices in D to zero.

Then, G has no false connections with probability at least 1−
∑L

`=1 n`e
−c1(n`−1), where c1 > 0 is a

numerical constant.

23

It follows from Lemma 1 with s = 0 that

P
[
NFC

]
≤

L∑
`=1

n`e
−c1(n`−1). (17)

To see this note that for s = 0 (16) reduces to (4). Specifically, for s = 0, U
(`)
D = U(`) and since

the U(`) are orthonormal we have U
(`)
D
T
U(`) = U(`)TU(`) = Id` . The denominator in (16) there-

fore equals 1, and the numerator reduces to maxk,` : k 6=`
∥∥U(k)TU(`)

∥∥
2→2

= maxk,` : k 6=` aff∞(Sk, S`)
which establishes the equivalence of (16) and (4).

It remains to upper-bound P
[
C|NFC

]
. By a union bound argument, we get

P
[
C|NFC

]
≤

L∑
`=1

P[G(X`) is not connected |NFC] . (18)

As mentioned above, conditioned on NFC, G(X`) is the q-nearest neighbor graph of X` with
pseudo-distance metric arccos(|〈ai,aj〉|) (recall that, conditioned on NFC, we have 〈xi,xj〉 =
〈ai,aj〉 for xi,xj ∈ X`). It is this insight that allows us to find upper bounds on the terms
P[G(X`) is not connected |NFC] as formalized in Lemma 2 below, which is proven in Appendix
A.2.

Lemma 2. Let a1, ...,an ∈ Rd be drawn i.i.d. uniformly on Sd−1, d > 1, and let G̃ be the correspond-
ing k̃-nearest neighbor graph with respect to the pseudo-distance metric s̃(ai,aj) = arccos(|〈ai,aj〉|).
Then, with k̃ ≥ γ 6(12π)d−1 log n, for every γ > 1, we have

P
[
G̃ is connected

]
≥ 1− 2

nγ−1γ log n
.

Using Lemma 2 we can then conclude that P[G(X`) is not connected |NFC] ≤ 2n`
−γ+1 (using

γ log n` ≥ log n` ≥ log n0 ≥ 1) provided that q ≥ γ 6(12π)d`−1 log n`, which is satisfied by the
assumption q ∈ [6(12π)dmax−1γ log nmax, n

ρ
min]. Inserting into (18) yields

P
[
C|NFC

]
≤

L∑
`=1

2n`
−γ+1. (19)

Finally, combining the upper bounds (17) and (19) in (15), we get

P
[
C and NFC

]
≤

L∑
`=1

(
n`e
−c1(n`−1) + 2n`

−γ+1
)

as desired.

A.1 Proof of Lemma 1

We need to show that G has no false connections, i.e., for each x
(`)
i ∈ X`, the associated set Ti

corresponds to points in X` only, for all `. This is accomplished by proving that for x
(`)
i ∈ X`, we

have

z
(`)
(n`−q) > max

k 6=`,j
z

(k)
j . (20)

24

Here, z
(k)
j :=

∣∣〈x(k)
j ,x

(`)
i

〉∣∣ and z
(`)
(1) ≤ z

(`)
(2) ≤ ... ≤ z

(`)
(n`−1) are the order statistics of {z(`)

j }j∈[n`]\{i}.

Note that, for simplicity of exposition, the notation z
(k)
j does not reflect dependence on x

(`)
i . Next,

we upper-bound the probability of (20) being violated. A union bound over all N vectors x
(`)
i , ` ∈

[L], i ∈ [n`], then yields the final result. We first note that for k 6= `, by the Cauchy-Schwarz
inequality,

z
(k)
j =

∣∣∣〈x
(k)
j ,x

(`)
i

〉∣∣∣ =
∣∣∣〈U

(k)
D a

(k)
j ,U

(`)
E a

(`)
i

〉∣∣∣
=

∣∣∣∣〈a
(k)
j ,U

(k)
D

T
U

(`)
E a

(`)
i

〉∣∣∣∣ ≤ ∥∥∥a(k)
j

∥∥∥
2

∥∥∥∥U(k)
D

T
U

(`)
E a

(`)
i

∥∥∥∥
2

≤
∥∥∥∥U(k)
D

T
U

(`)
E

∥∥∥∥
2→2

∥∥∥a(k)
j

∥∥∥
2

∥∥∥a(`)
i

∥∥∥
2

≤ max
k,` : k 6=`,D : |D|≤2s

∥∥∥∥U(k)
D

T
U(`)

∥∥∥∥
2→2

where the sets D, E ⊂ [m] contain the indices of the unobserved entries (set to zero) in x
(k)
j and

x
(`)
i , respectively, and U

(`)
D ,U

(`)
E ∈ Rm×d` are the matrices obtained from U(`) ∈ Rm×d` by setting

the rows with indices in D and E , respectively, to zero. Since the distribution of a
(`)
j is rotationally

invariant, we get, for a fixed a
(`)
i with unit norm, that

z
(`)
j =

∣∣∣∣〈a
(`)
j ,U

(`)
D
T
U

(`)
E a

(`)
i

〉∣∣∣∣
=

∣∣∣∣∣∣∣∣
〈

a
(`)
j ,

U
(`)
D
T
U

(`)
E a

(`)
i∥∥∥∥U(`)

D
T
U

(`)
E a

(`)
i

∥∥∥∥
2

〉∣∣∣∣∣∣∣∣
∥∥∥∥U(`)
D
T
U

(`)
E a

(`)
i

∥∥∥∥
2

∼
∣∣∣〈a

(`)
j ,a

(`)
i

〉∣∣∣ ∥∥∥∥U(`)
D
T
U

(`)
E a

(`)
i

∥∥∥∥
2

≥ min
`,D : |D|≤2s,‖a‖2=1

∥∥∥∥U(`)
D
T
U(`)a

∥∥∥∥
2

∣∣∣〈a
(`)
j ,a

(`)
i

〉∣∣∣︸ ︷︷ ︸
z̃
(`)
j :=

.

This allows us to conclude that, for all z ∈ R,

P
[
z

(`)
j ≤ z

]
≤ P

[
min

`,D : |D|≤2s,‖a‖2=1

∥∥∥∥U(`)
D
T
U(`)a

∥∥∥∥
2

z̃
(`)
j ≤ z

]
and hence the probability of (20) being violated can be upper-bounded according to

P

[
z

(`)
(n`−q) ≤ max

k 6=`,j
z

(k)
j

]
≤ P

[
z̃

(`)
(n`−q) ≤ 1− η

]
(21)

25

which, owing to (16), holds for an η > 0. Next, observe that

P
[
z̃

(`)
(n`−q) ≤ 1− η

]
= P

[
there exists a set I ⊂ [n`] \ {i}

with |I| = n` − q such that z̃
(`)
j ≤ 1− η for all j ∈ I

]
≤
(
n` − 1

n` − q

)
max

I : |I|=n`−q
P
[
z̃

(`)
j ≤ 1− η, for all j ∈ I

]
(22)

≤
(
e
n` − 1

q − 1

)q−1

pn`−q (23)

with p = P
[
z̃

(`)
j ≤ 1− η

]
(recall that the z̃

(`)
j are i.i.d.), where we used a union bound to get (22)

and
(
n

n−k
)

=
(
n
k

)
≤
(
en
k

)k
[41] for (23). Since (23) is increasing in q, and q ≤ nρmin ≤ nρ` , by

assumption, setting % = n`−1
nρ`−1

, we obtain

P
[
z̃

(`)
(n`−q) ≤ 1− η

]
≤ (e%)

n`−1

% p
(n`−1)

(
1− 1

%

)

=
(

(e%)
1
% p

1− 1
%

)n`−1

≤ e−(n`−1)c1

where the last inequality holds for a constant c1 > 0, provided that (e%)
1
% p

1− 1
% < 1, i.e., if (e%)

− 1
%−1 >

p = P
[
z̃

(`)
j ≤ 1− η

]
. This inequality can be satisfied for every given p < 1 by taking % sufficiently

large. Since the pdf of z̃
(`)
j =

∣∣∣〈a
(`)
j ,a

(`)
i

〉∣∣∣ is given by f(z) = 2√
π

Γ(d`/2)
Γ((d`−1)/2)(1− z2)

d`−3

2 1{|z|≤1} and

η > 0, we, indeed, have p < 1. As % = n`−1
nρ`−1

is increasing in n` and n` ≥ n0, by assumption, % can,

indeed, be made sufficiently large provided that n0 is large enough.

A.2 Proof of Lemma 2

Our proof is inspired by ideas from [42, 33, 43] dealing with the connectivity of nearest neighbor
graphs for points chosen randomly in the plane. Here, we study the connectivity of nearest neighbor
graphs G̃ for points chosen randomly on the unit sphere Sd−1. The main idea of our proof is as
follows. We first partition the unit sphere into M regions R1, ..., RM of equal area and small
diameter. Then we show that, for every given point ai, all points in the regions neighboring the
region that contains ai are among the k̃ nearest neighbors of ai. Next, we show that all regions
Rm contain at least one point, which combined with the fact that R1, ..., RM is the partitioning of
a contiguous area, implies that G̃ is connected, as desired.

We start by introducing the spherical distance metric s for points x,y ∈ Sd−1 as

s(x,y) := arccos(〈x,y〉)

and defining the spherical cap around p ∈ Sd−1 of spherical radius θ ∈ [0, π/2] as

C(p, θ) := {x ∈ Sd−1 : s(x,p) ≤ θ}.

The distance metrics s and s̃ are related according to

s̃(x,y) = arccos(|〈x,y〉|)
= min(arccos(〈x,y〉), arccos(−〈x,y〉))
= min(s(x,y), s(−x,y)). (24)

26

In the following, whenever we refer to the points in a region Q, we actually mean the points in
{a1, ...,an} that lie in Q, i.e., {a1, ...,an} ∩ Q. We denote by #(Q) the number of points in Q,
and by N(C(ai, θ)) the number of points in C(ai, θ), excluding ai, i.e., N(C(ai, θ)) := |C(ai, θ) ∩
{a1, ...ai−1,ai+1, ...,an}|. Note that the points contained in C(ai, θ) \ {ai} are the N(C(ai, θ))
nearest neighbors of ai with respect to (w.r.t.) the distance s. Later in the proof we will need the
following relation between the nearest neighbors of a point ai w.r.t. the distance s and the nearest
neighbors of ai w.r.t. the distance s̃: The points contained in (C(ai, θ) \ {ai})∪ (C(−ai, θ) \ {−ai})
are the N(C(ai, θ)) + N(C(−ai, θ)) nearest neighbors of ai w.r.t. the distance s̃. To see this,
first note that by (24) every point aj in C(ai, θ) ∪ C(−ai, θ) satisfies s̃(ai,aj) ≤ θ. Since θ ≤
π/2 the caps C(ai, θ) and C(−ai, θ) are non-overlapping so that the total number of points in
(C(ai, θ) \ {ai}) ∪ (C(−ai, θ) \ {−ai}) is given by N(C(ai, θ)) +N(C(−ai, θ)).

We proceed to partitioning the unit sphere Sd−1 into M non-overlapping regions of equal area
and small diameter. Such a partitioning was described in [44, 45] and has found applications, e.g.,
in theoretical computer science [46].

Lemma 3 (extracted from the proof of Lemma 6.2 in [45]). For each d > 1, there exists a partition-
ing FS(d,M) = {R1, ..., RM} of the unit sphere Sd−1 into M non-overlapping regions R1, ..., RM of
equal area, with the spherical diameter of each Rm satisfying sup{s(x,y) : x,y ∈ Rm} ≤ θ?. Here,

θ? := 8Θ(L(Sd−1)/M) (25)

where Θ(·) is the inverse function of L(C(p, θ)) w.r.t. θ (recall that L(·) denotes the Lebesgue
measure, and note that L(C(p, θ)) is independent of p ∈ Sd−1).

Let FS(d,M) = {R1, ..., RM} be a partition of the unit sphere according to Lemma 3. Connec-
tivity of G̃ will now be established by showing that each point ai ∈ Rm is connected to all points
that lie in neighboring regions of Rm, and in addition, all regions contain at least one point. To
this end, define the events A := {#(Rm) > 0, for all m ∈ [M]} and Bm := {#(C(cm, 3θ

?)) ≤ k}
where C(cm, 3θ

?) is the spherical cap around an arbitrary, but fixed point cm ∈ Rm, with θ? given
by (25), and k := k̃/2. We assume for expositional simplicity that k̃ is even (the proof applies with
minor changes to general k by setting k := bk̃/2c). The proof is then effected by showing that i) on
A ∩

(
∩Mm=1Bm

)
, G̃ is connected and ii) upper-bounding the probability that A ∩

(
∩Mm=1Bm

)
does

not hold.
By Lemma 3, the spherical cap C(ai, 2θ

?) around a given ai ∈ Rm contains all neighboring
regions of Rm, and, since C(ai, 2θ

?) ⊂ C(cm, 3θ
?) (see Figure 10 for an illustration), on Bm we

have N(C(ai, 2θ
?)) ≤ k, for all ai ∈ Rm. All points in C(ai, 2θ

?)\{ai} are hence among the k nearest
neighbors of ai w.r.t. the distance s. W.l.o.g., suppose that −ai ∈ Rm′ . By (24), on Bm ∩ Bm′ all
points in (C(ai, θ)\{ai})∪ (C(−ai, θ)\{−ai}) are therefore among the k̃ = 2k nearest neighbors of
ai w.r.t. the distance s̃ (see the paragraph below (24)). On A, each Rm contains at least one point;
thus on A∩Bm∩Bm′ , each neighboring region of Rm and Rm′ contains at least one of the k̃ nearest

neighbors of ai w.r.t. the distance s̃. Therefore, on A ∩
(
∩Mm,m′=1Bm ∩Bm′

)
= A ∩

(
∩Mm=1Bm

)
,

each point ai ∈ Rm is connected with all points in the neighboring regions of Rm and each region
contains at least one point. As this holds for all points a1, ...,an, G̃ is connected.

27

2θ?
a1

2θ?

a2

cm 3θ?

Figure 10: Rm (gray region) along with the spherical caps C(a1, 2θ
?), C(a2, θ

?), and C(cm, 3θ
?).

It remains to upper-bound the probability of A ∩
(
∩Mm=1Bm

)
. We first note that

P
[
A ∩

(
∩Mm=1Bm

)]
= P

[
Ā ∪

(
M⋃
m=1

B̄m

)]

≤ P
[
Ā
]

+
M∑
m=1

P
[
B̄m
]

and start by upper-bounding P
[
Ā
]
. Set

M =
n

γ log n
(26)

where γ > 1 is the constant in the statement of Lemma 2. Observe that

P
[
Ā
]

= P
[
∪Mm=1{#(Rm) = 0}

]
≤

M∑
m=1

P[#(Rm) = 0]

=

M∑
m=1

(
1− 1

M

)n
(27)

≤Me−n/M =
n

γ log n
e−γ logn =

n1−γ

γ log n
(28)

where in (27) we used the fact that the n points are chosen i.i.d. and the probability of a given
point ending up in Rm is 1/M .

We next upper-bound P
[
B̄m
]
. To this end set k = 3np. We establish later that this choice of

k satisfies k̃ = 2k ≤ γc2 log n, for a constant c2 depending on d only. Since the k′-nearest neighbor
graph of {a1, ...,an} with k′ ≥ k̃ is connected if the k̃-nearest neighbor graph G̃ is connected, this
will yield the desired result.

28

First note that #(C(cm, 3θ
?)) is binomially distributed with parameters (n, p), where p :=

L(C(cm, 3θ
?))/L(Sd−1). By a tail bound on the binomial distribution [47, Thm. 1] we obtain, with

t = 2np, that

P
[
B̄m
]

= P[#(C(cm, 3θ
?)) > np+ t]

≤ e−
t2

2(np+t/3) = e−
6
5
np ≤ e−np. (29)

Since Rm ⊂ C(cm, 3θ
?), we have

p =
L(C(cm, 3θ

?))

L(Sd−1)
≥ L(Rm)

L(Sd−1)
=

1

M
=
γ log n

n
.

By a union bound we thus get

P

[
M⋃
m=1

B̄m

]
≤Me−np ≤Me−n/M =

n1−γ

γ log n
. (30)

Combining (28) and (30) yields P
[
Ā ∪

(⋃M
m=1 B̄m

)]
≤ 2

nγ−1γ logn
.

It remains to show that there exists a constant c2 (depending on d only) such that k̃ = 2k ≤
γ c2 log n. This is accomplished by upper-bounding L(C(cm, 3θ

?)) and using this upper bound to
establish that k = 3np = 3nL(C(cm, 3θ

?))/L(Sd−1) ≤ γ c2
2 log n. To this end, we first upper-bound

θ? in (25) and then use this bound to upper-bound L(C(cm, 3θ
?)). By [45, Eq. 5.9], we have

θ? = 8Θ(L(Sd−1)/M) ≤ 8 arcsin

((
L(Sd−1)

L(Sd−2)

d− 1

M

) 1
d−1

)

≤ 4π

(
L(Sd−1)

L(Sd−2)

d− 1

M

) 1
d−1

(31)

where we used arcsin(x) ≤ π
2x, for 0 ≤ x ≤ 1. We next establish that the argument of arcsin in

(31) is, indeed, smaller than 1. Using L(Sd−1) = 2πd/2

Γ(d/2) (e.g., [45, p. 1]) and
Γ(d−1

2
)

Γ(d
2

)
≤
√

2
√
d

d−1 (e.g.,

[48, Eq. 8.1]), we obtain

L(Sd−1)

L(Sd−2)

d− 1

M
=
√
π

Γ(d−1
2)

Γ(d2)

d− 1

M
≤
√

2π

√
d

M
=
√

2πd
γ log n

n
≤ 6(12π)d−1γ log n

n
≤ 1

where we used
√

2πd ≤ 6(12π)d−1 for d ≥ 1, and the last inequality holds by the assumption
n ≥ k̃ ≥ γ 6(12π)d−1 log n.

Application of [45, Eq. 5.2] and subsequently of (31) yields

L(C(cm, 3θ
?)) ≤ L(Sd−2)

d− 1
(3θ?)d−1 ≤ L(Sd−2)

d− 1
(12π)d−1L(Sd−1)

L(Sd−2)

d− 1

M
= (12π)d−1L(Sd−1)

M
.

We thus have

k = 3np = 3n
L(C(cm, 3θ

∗))

L(Sd−1)
≤ 3 · (12π)d−1 γ log n

and hence k ≤ γ c22 log n with c2 = 6(12π)d−1, as desired.

29

B Proof of Theorem 2 and Corollary 1

Analogously to Theorem 1, the proof of Theorem 2 is established by upper-bounding the probability
P
[
C and NFC

]
according to

P
[
C and NFC

]
≤ P

[
NFC

]
+ P

[
C|NFC

]
(32)

where NFC = {G has no false connections} and C = {G(X`) is connected, for all `}, as in the proof
of Theorem 1. We start by upper-bounding P

[
NFC

]
. Since q ≤ nmin/6 and (8) for σ = 0 reduces

to (5) it follows from Theorem 3 (the assumption m ≥ 6 logN , i.e.,
√

6 logN/
√
m = β/

√
m ≤ 1

relevant for Step 1 in the proof of Theorem 3 is not needed owing to σ = 0) that

P
[
NFC

]
≤ 10

N
+
∑
`∈[L]

n`e
−c(n`−1) (33)

where c > 0 is a numerical constant.
We next upper-bound P

[
C|NFC

]
. In Appendix A we established that (cf. (19) with γ = 3)

P
[
C|NFC

]
≤
∑
`∈[L]

2n`
−2 (34)

provided that q ≥ 3·6(12π)d`−1 log n`, for all `, which is satisfied by the assumption q ∈ [c1 log nmax,
nmin/6] with c1 = 18(12π)dmax−1. Using (33) and (34) in (32) finally yields

P
[
C and NFC

]
≤ 10/N +

L∑
`=1

(
n`e
−c(n`−1) + 2n`

−2
)

as desired.
Corollary 1 follows directly from (33).

C Proof of Theorem 3

As in the proof of Lemma 1, we show that G has no false connections by establishing that for each

x
(`)
i ∈ X` the associated set Ti corresponds to points in X` only. Again, this is accomplished by

showing that

z
(`)
(n`−q) > max

k 6=`,j
z

(k)
j (35)

where z
(k)
j =

∣∣〈x(k)
j ,x

(`)
i

〉∣∣. Next, we upper-bound the probability of (35) being violated. A union

bound over all N vectors x
(`)
i , i ∈ [n`], ` ∈ [L], will, as before, yield the final result. We start by

setting

z̃
(k)
j :=

∣∣∣〈a
(k)
j ,U(k)TU(`)a

(`)
i

〉∣∣∣ (36)

and noting that

z
(k)
j =

∣∣∣〈a
(k)
j ,U(k)TU(`)a

(`)
i

〉
+ e

(k)
j

∣∣∣ (37)

30

with

e
(k)
j :=

〈
e

(k)
j , e

(`)
i

〉
+
〈
e

(k)
j ,U(`)a

(`)
i

〉
+
〈
U(k)a

(k)
j , e

(`)
i

〉
. (38)

Now recall that z
(`)
(1) ≤ z

(`)
(2) ≤ ... ≤ z

(`)
(n`−1) are the order statistics of {z(`)

j }j∈[n`]\{i}. It follows that

z̃
(`)
(n`−q) −max

j 6=i
|e(`)
j | ≤ z

(`)
(n`−q)

and hence the probability of (35) being violated can be upper-bounded according to

P

[
z

(`)
(n`−q) ≤ max

k 6=`,j
z

(k)
j

]
≤ P

[
z̃

(`)
(n`−q)−max

j 6=i

∣∣e(`)
j

∣∣ ≤ max
k 6=`,j

z̃
(k)
j + max

k 6=`,j

∣∣e(k)
j

∣∣]
≤ P

[
z̃

(`)
(n`−q) ≤

ν√
d`

]
+P

[
α+ 2ε ≤ max

j 6=i

∣∣e(`)
j

∣∣+max
k 6=`,j

z̃
(k)
j +max

k 6=`,j

∣∣e(k)
j

∣∣] (39)

≤ P

[
z̃

(`)
(n`−q) ≤

ν√
d`

]
+ P

[
max
k 6=`,j

z̃
(k)
j ≥ α

]
+ P

[
max
j 6=i

∣∣e(`)
j

∣∣ ≥ ε]+ P

[
max
k 6=`,j

∣∣e(k)
j

∣∣ ≥ ε]︸ ︷︷ ︸
≤
∑

(j,k)6=(i,`) P
[∣∣e(k)j

∣∣≥ ε]
(40)

where α, ε, and ν are chosen later. In (39) and (40) we used that for random variables X and Y ,
possibly dependent, and constants φ and ϕ satisfying φ ≥ ϕ, we have

P[X ≤ Y] ≤ P[{X ≤ φ} ∪ {ϕ ≤ Y }]
≤ P[X ≤ φ] + P[ϕ ≤ Y] . (41)

Specifically, in (39) we used (41) with φ = ν√
d`

and ϕ = α + 2ε, which leads to the assumption

α+2ε ≤ ν√
d`

, resolved below. We next upper-bound the individual terms in (40) to get the following

results proven at the end of this appendix:

Step 1: Setting ε = 2σ(1+σ)√
m

β, we have for all β with 1√
2π
≤ β ≤

√
m that

P
[∣∣∣e(k)

j

∣∣∣ ≥ ε] ≤ 7e−
β2

2 . (42)

Step 2: Setting

α =
β(1 + β)√

d`
max
k 6=`

1√
dk

∥∥∥U(k)TU(`)
∥∥∥
F

(43)

we have for all β ≥ 0 that

P

[
max
k 6=`,j

z̃
(k)
j ≥ α

]
≤

∑
k∈[L]\{`}

(1 + 2nk)e
−β

2

2 ≤ 3Ne−
β2

2 . (44)

31

Step 3: For ν = 2/3 and n` ≥ 6q, there is a constant c = c(ν) > 1/20 such that

P

[
z̃

(`)
(n`−q) ≤

ν√
d`

]
≤ e−c(n`−1). (45)

Before presenting the detailed arguments leading to (42), (44), and (45), we show how the proof
is completed. Setting β =

√
6 logN and using (42), (44) (note that β ≤

√
m is satisfied since, by

assumption, m ≥ 6 logN), and (45) in (40) yields

P

[
z

(`)
(n`−q) ≤ max

k 6=`,j
z

(k)
j

]
≤ e−c(n`−1) + 3Ne−

β2

2 + 7Ne−
β2

2

=
10

N2
+ e−c(n`−1). (46)

Taking the union bound over all vectors x
(`)
i , i ∈ [n`], ` ∈ [L], yields the desired lower bound on G

having no false connections.
Recall that for (39) we imposed the condition α+ 2ε ≤ ν√

d`
. With our choices for ε, α, and ν in

Steps 1, 2, and 3, respectively, this condition becomes

β(1 + β) max
k 6=`

1√
dk

∥∥∥U(k)TU(`)
∥∥∥
F

+ 4σ(1 + σ)

√
d`√
m
β ≤ 2

3
. (47)

Next, note that (1 + β) ≤ 4
√

logN as a consequence of N ≥ 6 (N =
∑L

`=1 n`, and n` ≥ 6q ≥ 6, for
all `), by assumption. Therefore, (47) is implied by

max
k 6=`

1√
dk

∥∥∥U(k)TU(`)
∥∥∥
F

+
σ(1 + σ)√

logN

√
d`√
m
≤ 2

3 · 4
√

6 logN

which, in turn, is implied by (8). This concludes the proof.
It remains to prove the bounds (42), (44), and (45).

Step 1, proof of (42): By an argument of the form (41), we get

P
[∣∣∣e(k)

j

∣∣∣ ≥ ε] ≤ P

[∣∣∣〈e
(k)
j , e

(`)
i

〉∣∣∣ ≥ 2σ2

√
m
β

]
+ P

[∣∣∣〈e
(k)
j ,U(`)a

(`)
i

〉∣∣∣ ≥ σ√
m

]
+ P

[∣∣∣〈U(k)a
(k)
j , e

(`)
i

〉∣∣∣ ≥ σ√
m

]
. (48)

We next upper-bound the probabilities in (48). Conditional on a
(k)
j , with

∥∥∥U(k)a
(k)
j

∥∥∥
2

= 1, we have〈
U(k)a

(k)
j , e

(`)
i

〉
∼ N (0, σ2/m). Using Lemma 6 in Appendix G, for β ≥ 1√

2π
, we hence get

P

[∣∣∣〈U(k)a
(k)
j , e

(`)
i

〉∣∣∣ ≥ σ√
m
β

]
≤ 2e−

β2

2 . (49)

Next, we upper-bound the first term on the RHS of (48). Conditional on e
(`)
i , we have

〈
e

(k)
j , e

(`)
i

〉
∼

N
(
0, σ

2

m

∥∥e(`)
i

∥∥2

2

)
. Lemma 6 yields, for β ≥ 1√

2π
, that

P

[∣∣∣〈e
(k)
j , e

(`)
i

〉∣∣∣ ≥ β σ√
m

∥∥∥e(`)
i

∥∥∥
2

]
≤ 2e−

β2

2 . (50)

32

Since β =
√

6 logN ≤
√
m, by assumption, we get

P
[∥∥∥e(`)

i

∥∥∥
2
≥ 2σ

]
≤ P

[∥∥∥e(`)
i

∥∥∥
2
≥
(

1 +
β√
m

)
σ

]
≤ e−

β2

2 (51)

where the second inequality follows from (90). Next, note that for random variables X,Y , possibly
dependent, and a constant φ, we have

P[X ≥ φ] = P[{X ≥ Y ≥ φ} ∪ {X ≥ φ ≥ Y } ∪ {Y ≥ X ≥ φ}]
≤ P[{X ≥ Y } ∪ {Y ≥ φ}]
≤ P[X ≥ Y] + P[Y ≥ φ] . (52)

Combining (50) and (51) via (52) yields

P
[∣∣∣〈e

(k)
j , e

(`)
i

〉∣∣∣︸ ︷︷ ︸
X

≥ 2σ2

√
m
β︸ ︷︷ ︸

φ

]
≤ P

[∣∣∣〈e
(k)
j , e

(`)
i

〉∣∣∣ ≥ β σ√
m

∥∥∥e(`)
i

∥∥∥
2︸ ︷︷ ︸

Y

]
+ P

[∥∥∥e(`)
i

∥∥∥
2
≥ 2σ

]
≤ 3e−

β2

2 .

(53)

Finally, using (49) and (53) in (48) gives the desired result (42).

Step 2, proof of (44): We first upper-bound the probability of maxj z̃
(k)
j , for a given k, to

exceed a constant, which then yields, via a union bound over k, an upper bound on the probability

of maxk 6=`,j z̃
(k)
j exceeding a constant. For convenience, we set B := U(k)TU(`) so that z̃

(k)
j =∣∣〈a(k)

j ,Ba
(`)
i

〉∣∣. We start by noting [15, Proof of Lem. 7.5] that

P

[∥∥∥Ba
(`)
i

∥∥∥
2
≥
‖B‖F√
d`

+ κ

]
≤ e
−d` κ2

2‖B‖22→2 . (54)

Setting κ = β‖B‖F /
√
d` in (54) yields

P

[∥∥∥Ba
(`)
i

∥∥∥
2
≥ 1 + β√

d`
‖B‖F

]
≤ e
−β

2

2

‖B‖2F
‖B‖22→2 ≤ e−

β2

2 . (55)

By Proposition 1 in Appendix G, we have

P

[∣∣∣〈a
(k)
j ,Ba

(`)
i

〉∣∣∣ > β√
dk

∥∥∥Ba
(`)
i

∥∥∥
2

]
≤ 2e−

β2

2 . (56)

Now, using (52) with X = maxj z̃
(k)
j , φ = β√

dk

1+β√
d`
‖B‖F , and Y = β√

dk

∥∥∥Ba
(`)
i

∥∥∥
2
, we get

P

[
max
j
z̃

(k)
j ≥ β√

dk

1 + β√
d`
‖B‖F

]
≤ P

[
max
j

∣∣∣〈a
(k)
j ,Ba

(`)
i

〉∣∣∣ ≥ β√
dk

∥∥∥Ba
(`)
i

∥∥∥
2

]
+ P

[∥∥∥Ba
(`)
i

∥∥∥
2
≥ 1 + β√

d`
‖B‖F

]
≤
∑
j∈[nk]

P

[∣∣∣〈a
(k)
j ,Ba

(`)
i

〉∣∣∣ ≥ β√
dk

∥∥∥Ba
(`)
i

∥∥∥
2

]

+ P

[∥∥∥Ba
(`)
i

∥∥∥
2
≥ 1 + β√

d`
‖B‖F

]
(57)

≤ (1 + 2nk)e
−β

2

2 (58)

33

where a union bound is used to obtain (57), and (58) follows from (55) and (56). Taking the union
bound over k ∈ [L]\{`} concludes the proof of (44).

Step 3, proof of (45): We first note that the pdf of z̃
(`)
j =

〈
a

(`)
j ,a

(`)
i

〉
is given by f(z) =

1√
π

Γ(d`/2)
Γ((d`−1)/2)(1− z2)

d`−3

2 1{|z|≤1}. Hence, we get

P

[
z̃

(`)
j ≤

ν√
d`

]
≤ 2√

π

Γ(d`/2)

Γ((d` − 1)/2)

∫ ν√
d`

0
(1− z2)

d`−3

2 1{z≤1}dz

≤ 2√
π

Γ(d`/2)

Γ((d` − 1)/2)

ν√
d`
≤
√

2

π
ν︸ ︷︷ ︸

pν :=

(59)

where the last inequality follows from [48, Eq. 8.1]. Next, observe that,

P

[
z̃

(`)
(n`−q) ≤

ν√
d`

]
= P

[
there exists a set I ⊂ [n`]\{i} with

|I| = n` − q such that z̃
(`)
j ≤

ν√
d`

for all j ∈ I
]

≤
(
n` − 1

n` − q

)
max

I : |I|=n`−q
P

[
z̃

(`)
j ≤

ν√
d`
, for all j ∈ I

]
(60)

≤
(
e
n` − 1

q − 1

)q−1(
P

[
z̃

(`)
j ≤

ν√
d`

])n`−q
(61)

≤
(
e
n` − 1

q − 1

)q−1

pn`−qν = (e%)
n`−1

% p
(n`−1)

(
1− 1

%

)
ν (62)

= exp

(
− (n` − 1)

(
log

(
1

pν

)(
1− 1

%

)
− 1

%
log(e%)

)
︸ ︷︷ ︸

c(%,ν):=

)
(63)

where we used a union bound to get (60),
(
n

n−k
)

=
(
n
k

)
≤
(
en
k

)k
[41] and the fact that the z̃

(`)
j are

i.i.d. for (61), and (59) yields (62); we also set % := n`−1
q−1 for notational convenience. Here, c(%, ν)

satisfies c(%, ν) > 1/20 for ν = 2/3 and % ≥ 6, as desired. Note that % = n`−1
q−1 ≥

n`
q ≥ 6, where

both inequalities follow from n` ≥ 6q, for all `, which holds by assumption.

D Proof of Theorem 4

Theorem 4 follows from Lemma 1 by establishing that the clustering condition (16) is satisfied
for i.i.d. Gaussian random matrices U(`) ∈ Rm×d with high probability. This is accomplished via
the following lemma, which shows that certain submatrices of Gaussian matrices U(`) ∈ Rm×d are
approximately pairwise orthogonal, as long as m is sufficiently large relative to d.

Lemma 4. Let the entries of the U(`) ∈ Rm×d, ` ∈ [L], be i.i.d. N (0, 1/m), and let U
(`)
D ∈ Rm×d be

the matrix obtained from U(`) ∈ Rm×d by setting the rows with indices in D ⊆ [m] to zero. Then,
we have for δ ∈ (0, 1) with probability at least 1− 4e−c

′m, where c′ is a numerical constant, that

min
`,D : |D|≤2s, ‖a‖2=1

∥∥∥∥U(`)
D
T
U(`)a

∥∥∥∥
2

≥ (1− δ)m− 2s

m
(64)

34

and

max
k,` : k 6=`,D : |D|≤2s

∥∥∥∥U(k)
D

T
U(`)

∥∥∥∥
2→2

≤ δ (65)

provided that

m ≥ c2

δ2

(
3d+ logL+ s log

(me
2s

))
+ c3s (66)

where c2, c3 > 0 are numerical constants.

Before proving Lemma 4, we show how the proof of Theorem 4 can be completed. Set δ =
c1
2
c3−2
c3

, where c3 is the constant in (9) and c1 is a constant satisfying c1 < 1. With this choice of δ,

(9) (with c4 = c2/δ
2 = c2 (2c3/(c1(c3 − 2)))2) implies (66) and hence, by Lemma 4, with probability

≥ 1− 4e−c
′m, we have

maxk,` : k 6=`,D : |D|≤2s

∥∥U(k)
D

T
U(`)

∥∥
2→2

minl,D : |D|≤2s,‖a‖2=1

∥∥U(`)
D
T
U(`)a

∥∥
2

≤ δ

(1− δ)m−2s
m

≤ 2δ
m

m− 2s
≤ 2δ

c3

c3 − 2
= c1 < 1 (67)

where we used δ ≤ 1
2 (c1 < 1, by assumption, implies δ = c1

2
c3−2
c3
≤ 1

2), and m
m−2s ≤

c3
c3−2 as a

consequence of m ≥ c3s (from (9)) and c3 > 2 (c3 can be chosen freely as long as c3 > 0). We
therefore established that (16) holds with probability ≥ 1 − 4e−c

′m, and application of Lemma 1
concludes the proof.

Proof of Lemma 4. The proof relies on the following result from [48], which builds on a covering
argument and the concentration inequality the Johnson-Lindenstrauss Lemma [49] is based on.

Lemma 5 ([48, Eq. 9.12 with ρ = 2
e3−1

]). Let U be a p × s random matrix satisfying, for some
c̃ > 0, for every x ∈ Rs, and for every t ∈ (0, 1),

P
[∣∣∣‖Ux‖22 − ‖x‖

2
2

∣∣∣ ≥ t‖x‖22] ≤ 2e−c̃t
2p. (68)

Then, we have

P
[∥∥UTU− Is

∥∥
2→2
≥ δ
]
≤ 2e−0.6c̃δ2p+3s. (69)

We note that (68) is satisfied, inter alia, for random matrices with i.i.d. N (0, 1/p) entries.
We show below that (65) and (64) hold individually with probability ≥ 1− 2e−c

′m. By a union
bound, (65) and (64) thus hold simultaneously with probability ≥ 1− 4e−c

′m, as desired. We start

with (65). First, note that since the rows of U
(k)
D indexed by D have all entries equal to zero by

definition, we have U
(k)
D

T
U(`) = VT

i Vj , where Vi ∈ Rp×d and Vj ∈ Rp×d, with p = m−|D|, denote

the restrictions of U(k) and U(`), respectively, to the rows indexed by [m]\D. Set Ṽi =
√
m/pVi,

let U = [Ṽi Ṽj] ∈ Rp×2d, and note that the entries of U are i.i.d. N (0, 1/p). Using m ≥ p, we have∥∥VT
i Vj

∥∥
2→2
≤ m

p

∥∥VT
i Vj

∥∥
2→2

=
∥∥∥ṼT

i Ṽj

∥∥∥
2→2
≤
∥∥UTU− I2d

∥∥
2→2

35

where the last inequality follows from the fact that ṼT
i Ṽj is a principal submatrix of UTU − I2d

[50, Cor. 8.1.20]. Therefore, we get

P
[∥∥VT

i Vj

∥∥
2→2
≥ δ
]
≤ P

[∥∥UTU− I2d

∥∥
2→2
≥ δ
]

≤ 2e−c0δ
2p+6d (70)

≤ 2e−c0δ
2(m−2s)+6d (71)

where c0 = 0.6c̃ (c̃ is the constant in Lemma 5), (70) follows from Lemma 5, and (71) is a conse-
quence of p ≥ m − 2s. Taking the union bound over all pairs (i, j), i.e., over all pairs (k, `) with

k, ` ∈ [L] and for each of those pairs (k, `) over all D ⊆ [m] with |D| = 2s, i.e., over
(
m
2s

)
≤
(
me
2s

)2s
sets, we obtain

P

[
max
i 6=j

∥∥Vi
TVj

∥∥
2→2
≥ δ
]
≤ L2

(me
2s

)2s
2e−c0δ

2(m−2s)+6d (72)

= 2e−c0δ
2(m−2s)+6d+2 logL+2s log(me2s)

= 2e
−c0δ2

[
m−2s− 2

c0δ
2 (3d+logL+s log(me2s))

]

≤ 2e
−c0δ2

[
m−2s− 2

c0c2
(m−c3s)

]
(73)

= 2e
−c0δ2

[(
1− 2

c0c2

)
m+2s

(
c3
c0c2
−1
)]

≤ 2e−c
′m (74)

where we used (66) for (73), and (74) holds with c′ = c0δ
2
(

1− 2
c0c2

)
provided that c3 ≥ c0c2,

which, in turn, is guaranteed by choosing c3 sufficiently large (recall that c3 can be chosen freely).

Note that c′ = c0δ
2
(

1− 2
c0c2

)
> 0 provided that c0c2 > 2, which holds if c2 is chosen sufficiently

large. This concludes the proof of (65) holding with probability ≥ 1− 2e−c
′m.

It remains to show that (64) holds with probability ≥ 1 − 2e−c
′m. Applying Lemma 5 to Ṽi

(recall that the entries of Vi are i.i.d. N (0, 1/p)), we get

P
[∥∥∥ṼT

i Ṽi − Id

∥∥∥
2→2
≥ δ
]
≤ 2e−c0δ

2p+3d.

Next, taking the union bound over all L subspaces and over all D ⊆ [m] with |D| ≤ 2s, yields

P

[
max
i

∥∥∥ṼT
i Ṽi − Id

∥∥∥
2→2
≥ δ
]
≤ L

(me
2s

)2s
2e−c0δ

2p+3d (75)

≤ 2e−c
′m (76)

where we used the fact that the RHS of (75) is smaller than the RHS of (72) (recall that p ≥ m−2s)
and therefore (76) follows from (74). Next, note that for every a ∈ Rd, we have

‖a‖22 −
∥∥∥Ṽia

∥∥∥2

2
=
〈

(Id − ṼT
i Ṽi)a,a

〉
≤
∥∥∥(Id − ṼT

i Ṽi)a
∥∥∥

2
‖a‖2 ≤

∥∥∥ṼT
i Ṽi − Id

∥∥∥
2→2
‖a‖22.

It follows that

1−
∥∥∥ṼT

i Ṽi − Id

∥∥∥
2→2
≤ min
‖a‖2=1

∥∥∥Ṽia
∥∥∥2

2
= min
‖a‖2=1

∥∥∥ṼT
i Ṽia

∥∥∥
2

36

and therefore (recall that Ṽi =
√
m/pVi)

min
i, ‖a‖2=1

∥∥VT
i Via

∥∥
2

=
p

m
min

i,‖a‖2=1

∥∥∥ṼT
i Ṽia

∥∥∥
2

≥ p

m

(
1−max

i

∥∥∥ṼT
i Ṽi − Id

∥∥∥
2→2

)
. (77)

From (77), and p ≥ m− 2s, we get

P

[
min

i,‖a‖2=1

∥∥VT
i Via

∥∥
2
≤ (1−δ)m−2s

m

]
≤ P

[
min

i,‖a‖2=1

∥∥VT
i Via

∥∥
2
≤ (1−δ) p

m

]
≤ P

[
max
i

∥∥∥ṼT
i Ṽi − Id

∥∥∥
2→2
≥ δ
]
≤ 2e−c

′m

where the last inequality follows by application of (76).

E Proof of Theorem 5

The proof consists of two parts, corresponding to the two statements in Theorem 5. First, we
bound the probability of the outlier detection scheme failing to detect one or more outliers, and
then we bound the probability of one or more of the inliers being misclassified as an outlier.

We start by bounding the probability of the outlier detection scheme failing to detect a given
outlier. A union bound over all N0 outliers will then yield a bound on the probability of the outlier
detection scheme failing to detect one or more outliers. Let xj be an outlier. The probability of
(10) with c =

√
6 being violated for xj , and therefore xj being misclassified as an inlier, can be

upper-bounded as

P

[
max

i∈[N]\{j}
|〈xi,xj〉| >

√
6 logN√
m

]
≤

∑
i∈[N]\{j}

P

[
|〈xi,xj〉| >

√
6 logN√
m

‖xi‖2
]

≤ 2Ne−3 logN =
2

N2
(78)

where we used a union bound and ‖xi‖2 = 1 in the first inequality and Proposition 1 in Appendix
G in the second. Taking the union bound over all N0 outliers we have thus established that the
probability of our scheme failing to detect one or more outliers is at most 2N0/N

2.
Next, we bound the probability of the outlier detection scheme misclassifying a given inlier

xj ∈ X` as an outlier. A union bound over all n` inliers in X` will then complete the proof. For an
inlier xj ∈ X`, we have

max
i∈[N]\{j}

|〈xi,xj〉| ≥ max
i∈[n`]\{j}

∣∣∣〈x
(`)
i ,x

(`)
j

〉∣∣∣ = max
i∈[n`]\{j}

∣∣∣〈a
(`)
i ,a

(`)
j

〉∣∣∣ .
Using (11), i.e.,

√
6 logN/

√
m ≤ 1/

√
dmax ≤ 1/

√
d`, the probability of (10) holding can then be

37

upper-bounded as

P

[
max

i∈[N]\{j}
|〈xi,xj〉| ≤

√
6 logN√
m

]
≤ P

[
max

i∈[n`]\{j}

∣∣∣〈a
(`)
i ,a

(`)
j

〉∣∣∣ ≤ 1√
d`

]
=

∏
i∈[n`]\{j}

P

[∣∣∣〈a
(`)
i ,a

(`)
j

〉∣∣∣ ≤ 1√
d`

]

≤
∏

i∈[n`]\{j}

√
2

π
= e−

1
2

log(π2)(n`−1) (79)

where (79) follows from (59) with ν = 1. Taking the union bound over all inliers in X` yields the

desired upper bound n`e
− 1

2
log(π2)(n`−1) on the outlier detection scheme misclassifying one or more

of the inliers in X` as an outlier.

F Proof of Theorem 6

The basic structure of the proof is the same as that of the proof of Theorem 5. The individual
steps are, however, a bit more technical, owing to the additive noise term.

We start by bounding the probability of the outlier detection scheme failing to detect a given
outlier. A union bound over all N0 outliers will, as before, yield the desired result. Let xj be an
outlier and set β =

√
6 logN . The probability that (10) with c = 2.3

√
6 is violated for xj can be

upper-bounded as

P

[
max

i∈[N]\{j}
|〈xi,xj〉| >

2.3β√
m

]
≤

∑
i∈[N]\{j}

P

[
|〈xi,xj〉| >

2.3β√
m

]

≤
∑

i∈[N]\{j}

(
P

[
|〈xi,xj〉| ≥

β√
m
‖xi‖2

]
+ P[‖xi‖2 ≥ 2.3]

)
(80)

where we applied (52) with X = |〈xi,xj〉|, Y = β√
m
‖xi‖2, and φ = 2.3β√

m
to get (80). We next bound

the first term in the sum in (80). Since xj ∼ N (0, (1/m)Im), we have that, conditioned on xi,
〈xj ,xi〉 ∼ N (0, ‖xi‖22/m). Hence, with β =

√
6 logN , it follows from (89) that

P

[
|〈xi,xj〉| ≥

β√
m
‖xi‖2

]
≤ 2e−

β2

2 =
2

N3
. (81)

We next bound the second term in the sum in (80) and treat the cases where xi is an inlier and
where it is an outlier separately. First, suppose that xi is an inlier. Since 1+2σ√

1+σ2
≤ 2.3 for σ ≥ 0,

we have

P[‖xi‖2 ≥ 2.3] ≤ P

[
1√

1 + σ2

∥∥∥U(`)a
(`)
i + e

(`)
i

∥∥∥
2
≥ 1 + 2σ√

1 + σ2

]
≤ P

[∥∥∥U(`)a
(`)
i

∥∥∥
2

+
∥∥∥e(`)

i

∥∥∥
2
≥ 1 + 2σ

]
(82)

= P
[∥∥∥e(`)

i

∥∥∥
2
≥ 2σ

]
≤ 1

N3
(83)

38

where (82) follows from the triangle inequality, and for (83) we applied (51) with β =
√

6 logN and
used that β ≤

√
m, by assumption.

Next, suppose that xi is an outlier. Applying (51) with σ = 1 (again using that β ≤
√
m, by

assumption), we have

P[‖xi‖2 ≥ 2.3] ≤ 1

N3
. (84)

Finally, combining (81), (83) (for xi an inlier), and (84) (for xi an outlier) in (80) yields

P

[
max

i∈[N]\{j}
|〈xi,xj〉| >

2.3
√

6 logN√
m

]
≤

∑
i∈[N]\{j}

(
2

N3
+

1

N3

)
≤ 3

N2
.

Taking the union bound over all N0 outliers yields the desired result.
Next, we bound the probability of our outlier detection scheme misclassifying a given inlier as

an outlier. Consider the inlier xj ∈ X`. Then, we have

max
i∈[N]\{j}

|〈xi,xj〉| ≥ max
i∈[n`]\{j}

∣∣∣〈x
(`)
i ,x

(`)
j

〉∣∣∣
≥ max

i∈[n`]\{j}

1

1 + σ2

∣∣∣〈a
(`)
i ,a

(`)
j

〉
+ e

(`)
i

∣∣∣
≥ max

i∈[n`]\{j}

1

1 + σ2
(z̃

(`)
i − |e

(`)
i |)

where we used the reverse triangle inequality, and z̃
(`)
i and e

(`)
i were defined in (36) and (38),

respectively. Thus, for ε ≥ 0, under the assumption

1

1 + σ2

(
1√
d`
− ε
)
≥ 2.3

√
6 logN√
m

(85)

resolved below, we have

P

[
max

i∈[N]\{j}
|〈xi,xj〉| ≤

2.3
√

6 logN√
m

]
≤ P

[
max

i∈[n`]\{j}

1

1 + σ2
(z̃

(`)
i − |e

(`)
i |) ≤

1

1 + σ2

(
1√
d`
− ε
)]

≤ P

[
max

i∈[n`]\{j}
z̃

(`)
i − max

i∈[n`]\{j}
|e(`)
i | ≤

1√
d`
− ε
]

≤ P

[
max

i∈[n`]\{j}
z̃

(`)
i ≤

1√
d`

]
+ P

[
ε ≤ max

i∈[n`]\{j}
|e(`)
i |
]

(86)

where (86) follows from (41) with X = maxi∈[n`]\{j} z̃
(`)
i −

1√
d`

, Y = maxi∈[n`]\{j} |e
(`)
i | − ε, and

φ = ϕ = 0. Next, note that (59) with ν = 1 yields

P

[
max

i∈[n`]\{j}
z̃

(`)
i ≤

1√
d`

]
=

∏
i∈[n`]\{j}

P

[
z̃

(`)
i ≤

1√
d`

]
≤

∏
i∈[n`]\{j}

√
2

π
= e−

1
2

log(π2)(n`−1). (87)

Application of (87) and (42) with ε = 2σ(1+σ)√
m

√
6 logN (using that β ≤

√
m, as verified below) to

(86) yields

P

[
max

i∈[N]\{j}
|〈xi,xj〉| ≤

2.3
√

6 logN√
m

]
≤ e−

1
2

log(π2)(n`−1) + n`
7

N3
. (88)

39

We next show that choosing c1 sufficiently small, specifically c1 ≤ 1/6, guarantees that β ≤
√
m.

To this end simply note that (13) implies

1

m
≤ dmax

m
≤ c1

(1 + σ2)2 logN
≤ c1

logN

and take c1 ≤ 1/6.
Taking a union bound over all inliers in X` shows that the probability of the outlier detection

scheme misclassifying one or more of the inliers in X` as an outlier is at most

n`

(
e−

1
2

log(π2)(n`−1) + n`
7

N3

)
.

Finally, we resolve (85) by showing that it is implied, for all ` ∈ [L], by (13). Rewriting (85)
yields

1

1 + σ2

1√
6 logN

≥
√
d`√
m

(
2.3 +

2σ(1 + σ)

1 + σ2

)
.

Since σ(1+σ)
1+σ2 ≤ 1.3 for σ ≥ 0, (85) is implied by

1

1 + σ2

1√
6 logN

≥
√
dmax√
m

4.9

which equals (13) with c1 = 1
(4.9)2·6 .

G Supplementary results

For convenience, in the following, we summarize tail bounds from the literature that are frequently
used throughout this paper. We start with a well-known tail bound on Gaussian random variables.

Lemma 6 ([51, Prop. 19.4.2]). Let x ∼ N (0, 1). For β ≥ 1√
2π

, we have

P[x ≥ β] ≤ e−
β2

2 . (89)

Theorem 7 ([52, Eq. 1.6]). Let f be Lipschitz on Rm with Lipschitz constant L ∈ R, i.e., |f(b1)−
f(b2)| ≤ L‖b1 − b2‖2, for all b1,b2 ∈ Rm, and let x ∼ N (0, Im). Then, for β > 0, we have

P[f(x) ≥ E[f(x)] + β] ≤ e−
β2

2L2 .

Let x ∼ N (0, Im). Applying the concentration inequality in Theorem 7 to f(x) = ‖x‖2 which
has Lipschitz constant L = 1, and using Jensen’s inequality to get (E[‖x‖2])2 ≤ E

[
‖x‖22

]
= m, we

obtain

P
[
‖x‖2 ≥

√
m+ β

]
≤ e−

β2

2 . (90)

Proposition 1 (E.g., [53, Ex. 5.25]). Let a be uniformly distributed on Sm−1 and fix b ∈ Rm.
Then, for β ≥ 0, we have

P

[
|〈a,b〉| > β√

m
‖b‖2

]
≤ 2e−

β2

2 .

40

References

[1] R. Heckel and H. Bölcskei, “Subspace clustering via thresholding and spectral clustering,” in
Proc. of IEEE Int. Conf. Acoust. Speech Sig. Proc., 2013, pp. 3263–3267.

[2] ——, “Noisy subspace clustering via thresholding,” in Proc. of IEEE Int. Symp. on Inf. Theory,
2013, pp. 1382–1386.

[3] R. Basri and D. Jacobs, “Lambertian reflectance and linear subspaces,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 25, no. 2, pp. 218–233, 2003.

[4] R. Vidal, “Subspace clustering,” IEEE Signal Process. Mag., vol. 28, no. 2, pp. 52–68, 2011.

[5] T. Zhang, A. Szlam, Y. Wang, and G. Lerman, “Hybrid linear modeling via local best-fit
flats,” Int. J. Comput. Vision, vol. 100, pp. 217–240, 2012.

[6] J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman, “Clustering appearances of objects under
varying illumination conditions,” in Proc. of IEEE Conf. Comput. Vision Pattern Recogn.,
vol. 1, 2003, pp. 11–18.

[7] W. Hong, J. Wright, K. Huang, and Y. Ma, “Multiscale hybrid linear models for lossy image
representation,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3655–3671, 2006.

[8] R. Vidal and R. Hartley, “Motion segmentation with missing data using PowerFactorization
and GPCA,” in Proc. of IEEE Conf. Comput. Vision Pattern Recogn., vol. 2, 2004, pp. 310–
316.

[9] S. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentation via robust subspace separation
in the presence of outlying, incomplete, or corrupted trajectories,” in Proc. of IEEE Conf.
Comput. Vision Pattern Recogn., 2008, pp. 1–8.

[10] H. Kriegel, P. Kröger, and A. Zimek, “Clustering high-dimensional data: A survey on subspace
clustering, pattern-based clustering, and correlation clustering,” ACM Trans. Knowl. Discov.
Data, vol. 3, no. 1, pp. 1–58, 2009.

[11] U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17, no. 4, pp. 395–416,
2007.

[12] M. Soltanolkotabi, E. Elhamifar, and E. J. Candès, “Robust subspace clustering,” Ann. Stat.,
vol. 42, no. 2, pp. 669–699, 2014.

[13] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in Proc. of IEEE Conf. Comput.
Vision Pattern Recogn., 2009, pp. 2790–2797.

[14] ——, “Sparse subspace clustering: Algorithm, theory, and applications,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 35, no. 11, pp. 2765–2781, 2013.

[15] M. Soltanolkotabi and E. J. Candès, “A geometric analysis of subspace clustering with out-
liers,” Ann. Stat., vol. 40, no. 4, pp. 2195–2238, 2012.

[16] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank representation,” in
Proc. of 27th Int. Conf. on Mach. Learn., 2010, pp. 663–670.

41

[17] E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk, “Greedy feature selection for sub-
space clustering,” Journal of Mach. Learn. Research, vol. 14, pp. 2487–2517, 2013.

[18] Y. LeCun and C. Cortes, “The MNIST database,” 2013, http://ya nn.lecun.com/exdb/mnist/.

[19] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: Illumination
cone models for face recognition under variable lighting and pose,” IEEE Trans. Pattern Anal.
Mach. Intelligence, vol. 23, no. 6, pp. 643–660, 2001.

[20] K. C. Lee, J. Ho, and D. J. Kriegman, “Acquiring linear subspaces for face recognition under
variable lighting,” IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 27, no. 5, pp. 684–698,
2005.

[21] F. Lauer and C. Schnorr, “Spectral clustering of linear subspaces for motion segmentation,”
in Proc. of 12th IEEE Int. Conf. on Computer Vision, 2009, pp. 678–685.

[22] J. Yan and M. Pollefeys, “A general framework for motion segmentation: Independent, articu-
lated, rigid, non-rigid, degenerate and non-degenerate,” in European Conf. Computer Vision,
2006, pp. 94–106.

[23] G. Lerman and T. Zhang, “Robust recovery of multiple subspaces by geometric `p minimiza-
tion,” Ann. Statist., vol. 39, no. 5, pp. 2686–2715, 2011.

[24] G. Lerman, M. McCoy, J. A. Tropp, and T. Zhang, “Robust computation of linear models by
convex relaxation,” Found. Comput. Math., vol. 15, no. 2, pp. 363–410, 2015.

[25] G. Chen and G. Lerman, “Spectral curvature clustering (SCC),” Int. J. of Comput. Vision,
vol. 81, no. 3, pp. 317–330, Mar. 2009.

[26] ——, “Foundations of a multi-way spectral clustering framework for hybrid linear modeling,”
Found. of Comput. Math., vol. 9, no. 5, pp. 517–558, Oct. 2009.

[27] A. Ng, I. M. Jordan, and W. Yair, “On spectral clustering: Analysis and an algorithm,” in
Adv. Neural Inf. Process Syst., 2001, pp. 849–856.

[28] J. L. R. Kelley, General Topology. Springer, Berlin, Heidelberg, 1975.

[29] D. Spielman, “Spectral graph theory,” 2012, lecture notes. [Online]. Available: http:
//www.cs.yale.edu/homes/spielman/561/

[30] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press, 1996.

[31] T. J. Hastie, R. J. Tibshirani, and J. J. H. Friedman, The elements of statistical learning.
Springer, 2009.

[32] H. A. David and H. N. Nagaraja, Order Statistics. John Wiley & Sons, 2004.

[33] M. Brito, E. Chavez, A. Quiroz, and J. Yukich, “Connectivity of the mutual k-nearest-neighbor
graph in clustering and outlier detection,” Stat. Probabil. Lett., vol. 35, no. 1, pp. 33–42, 1997.

[34] R. Heckel, E. Agustsson, and H. Bölcskei, “Neighborhood selection for thresholding based
subspace clustering,” in Proc. of IEEE Int. Conf. Acoust. Speech Sig. Proc., 2014, pp. 6761–
6765.

42

http://www.cs.yale.edu/homes/spielman/561/
http://www.cs.yale.edu/homes/spielman/561/

[35] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component analysis (GPCA),” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 27, no. 12, pp. 1945–1959, 2005.

[36] P. Tseng, “Nearest q-flat to m points,” J. Optim. Theory Appl., vol. 105, no. 1, pp. 249–252,
2000.

[37] A. Topchy, M. Law, A. Jain, and A. Fred, “Analysis of consensus partition in cluster ensemble,”
in Proc. of Fourth IEEE International Conf. on Data Mining, 2004, pp. 225–232.

[38] T. Hastie and P. Y. Simard, “Metrics and models for handwritten character recognition,” Stat.
Sci., vol. 13, no. 1, pp. 54–65, 1998.

[39] P. Favaro, R. Vidal, and A. Ravichandran, “A closed form solution to robust subspace es-
timation and clustering,” in IEEE Conf. on Computer Vision Pattern Recogn., 2011, pp.
1801–1807.

[40] G. Liu and S. Yan, “Latent low-rank representation for subspace segmentation and feature
extraction,” in Proc. of IEEE Int. Conf. on Computer Vision, 2011, pp. 1615–1622.

[41] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT
Press, 2001.

[42] P. Balister, B. Bollobás, A. Sarkar, and M. Walters, “Connectivity of random k-nearest-
neighbour graphs,” Adv. in Appl. Probab., vol. 37, no. 1, pp. 1–24, Mar. 2005.

[43] F. Xue and P. R. Kumar, “The number of neighbors needed for connectivity of wireless net-
works,” Wirel. Netw., vol. 10, no. 2, pp. 169–181, Mar. 2004.

[44] P. Leopardi, “A partition of the unit sphere into regions of equal area and small diameter,”
Electron. Trans. Numer. Anal., vol. 25, pp. 309–327, 2006.

[45] ——, “Diameter bounds for equal area partitions of the unit sphere,” Electron. Trans. Numer.
Anal., 2009.

[46] U. Feige and G. Schechtman, “On the optimality of the random hyperplane rounding technique
for MAX CUT,” Random Struct. & Algor., vol. 20, no. 3, pp. 403–440, 2002.

[47] S. Janson, “On concentration of probability,” in Contemporary Combinatorics. Springer,
Berlin, Heidelberg, 2002.

[48] S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing. Springer,
Berlin, Heidelberg, 2013.

[49] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings into a Hilbert space,”
Contemp. Math., no. 26, pp. 189–206, 1984.

[50] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press, 1986.

[51] A. Lapidoth, A foundation in digital communication. Cambridge University Press, 2009.

[52] M. Ledoux and M. Talagrand, Probability in Banach spaces: Isoperimetry and processes.
Springer, Berlin, Heidelberg, 1991.

[53] R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices,” in Com-
pressed sensing: Theory and applications. Cambridge University Press, 2012, pp. 210–268.

43

	1 Introduction
	2 The TSC algorithm
	2.1 Measuring similarity via
	2.2 Least-squares TSC
	2.3 Estimation of the number of subspaces

	3 Performance results for the noiseless case
	4 Impact of noise
	5 Incomplete data
	6 Outlier detection
	6.1 Noise-free case
	6.2 Noisy case

	7 Comparison with SSC/RSSC and other algorithms
	8 Numerical results
	8.1 Synthetic data
	8.1.1 Intersection of subspaces
	8.1.2 Influence of d, n, and incomplete data
	8.1.3 Additive noise
	8.1.4 Detection of outliers

	8.2 Clustering handwritten digits
	8.3 Clustering faces

	A Proof of Theorem ??
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??

	B Proof of Theorem ?? and Corollary ??
	C Proof of Theorem ??
	D Proof of Theorem ??
	E Proof of Theorem ??
	F Proof of Theorem ??
	G Supplementary results

