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Abstract—In this paper, we introduce a model of a distributed
storage system that is locally recoverable from any single server
failure. Unlike the usual local recovery model of codes for dis-
tributed storage, this model accounts for the fact that each server
or storage node in a network is connectible to only some, and not
all other, nodes. This may happen for reasons such as physical
separation, inhomogeneity in storage platforms etc. We estimate
the storage capacity of both undirected and directed networks
under this model and propose some constructive schemes. From
a coding theory point of view, we show that this model is
approximately dual of the well-studied index coding problem.

Further in this paper, we extend the above model to handle
multiple server failures. Among other results, we provide an
upper bound on the minimum pairwise distance of a set of words
that can be stored in a graph with the local repair guarantee.
The well-known impossibility bounds on the distance of locally
recoverable codes follow from our result.

I. INTRODUCTION

Recently, the local repair property of error-correcting codes
is the center of a lot of research activities. In a distributed
storage system, a single server failure is the most common
error-event, and in the case of a failure the aim is to reconstruct
the content of the failed server from as few other servers as
possible (or by downloading minimal amount of data from
other servers). The study of such regenerative storage systems
was initiated in [16] and then followed up in several recent
works. In [22], a particularly neat characterization of the local
repair property is provided. It is assumed that, each symbol
of an encoded message is stored at a different node in the
storage-network (since the symbol alphabet is unconstrained,
a symbol could represent a packet or block of bits of arbitrary
size). Accordingly, [22] investigates code-families that allow
any single coordinate of a codeword to be recovered from at
most a constant number of other coordinates of the codeword,
i.e., from a number of coordinates that does not grow with the
length of the code.

The work of [22] is then further generalized to several direc-
tions and a number of impossibility results and constructions
of locally repairable codes were presented in [[10], [24], [34],
[42]-[44] among others. The central result of this body of
works is that for any code of length n, dimension k and
minimum distance d,

k
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where 1 is such that any single coordinate can be recovered
from at most r other coordinates [22].
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However, the topology of the network of distributed storage
system is missing from the above definition of local repairabil-
ity. Namely, all servers are treated equally irrespective of their
physical positions, proximities, and connections. Here, in this
paper, we take a step to include the network topology into
consideration. We study the case when the architecture of the
storage system is fixed and the network of storage is given
by a graph. In our model, the servers are represented by the
vertices of a graph, and two servers are connected by an edge
if it is easier to establish up-or-down link between them, for
reasons such as physical locations of the servers, architecture
of the distributed system or homogeneity of softwares, etc.
It is reasonable to assume that the storage-graph is directed,
because there may be varying difficulties in establishing an
up or down link between two servers. Under this model, we
impose the local recovery or repair condition in the following
way: the content of any failed server must be reconstructible
from the neighboring servers on the storage graph.

Assuming the above model, the main quantity of interest is
the amount of information that can be stored in the graph. We
call this quantity the storage capacity of the graph. Finding
this capacity exactly, as well as to construct explicit schemes
that achieve this capacity, are both computationally hard
problems for an arbitrary graph. However, we show that good
approximation schemes are possible — and for some special
classes of graphs we can even compute this capacity exactly
with constructive schemes. In particular, for any undirected
graph, the storage capacity is sandwiched between the maxi-
mum matching and the minimum vertex cover, two quantities
within a factor of two of each other. Similar statement, albeit
concerning different properties, is possible for directed graphs.

It turns out that, our model is closely related to the popular
index coding problem on a side information graph. In the
index coding problem, a set of users are assigned bijectively
to a set of variable that they want to know. However, instead
of knowing the assigned variable, each knows a subset of
other variables. This scenario can be depicted by a so-called
side-information graph where each vertex represents a user
and there is an edge between users A and B, if A knows
the variable assigned to B. Given this graph, how much
information should a broadcaster has to transmit, such that
each vertex can deduce its assigned variable?

The above problem of index coding was introduced in [5]]
(it has a predecessor in [|6]), and since then is a subject of
extensive research. It was shown in [19] that any network
coding problem can be reduced to an index coding problem,
and the index coding capacity is among the computationally
hardest problems of all network coding [7]], [27]. A prominent
work in the index coding literature is [1]], that studies the
broadcast rate for index coding. It turns out that an auxiliary



quantity (called y) used in [1f] is exactly the storage capacityﬂ
that we introduce and study in this paper (attachment of y to
any quantity of practical use was absent in [1[]). Recently K.
Shanmugam [39] pointed out to the author that this quantity
has also been studied as graph entmp in [37] by Rliis.

Using the results of [1] it is possible to show a connection
between the broadcast rate of index coding and the storage-
capacity when the side-information graph and the storage
graph are the same. Indeed, we show that there exists a duality
between a storage code and an index code on the same graph.
This observation, which also connects the complementary
index coding rate of [11] with the storage capacity, is further
explored in this paper.

The local repairability property on a graphical model of
storage can be extended to several directions. One may ask
for protection against catastrophic failures, and therefore also
impose a minimum distance condition on codes, which is
a common fixture of the local recovery literature. In this
scenario, we obtain a general bound that include previous
results such as eq. as special cases. Moreover such bounds
can also be made dependent on the size of the alphabet (size
of storage node).

Furthermore, instead of a single node local repairability,
multiple failures can also be considered. Such multiple failures
and the corresponding cooperative local recovery model in
distributed storage was recently introduced in [35]]. In this
paper we generalize this model on graphs.

The storage coding problem of our model is a very fun-
damental network coding problem, and one of our main
observation is that reasonable approximation schemes are
possible for storage coding. While the index coding rate is
very hard to approximate (see, [27]) it is possible to have
good approximation constructively for storage capacity with
linear (explained in Section ) codes. This should be put into
contrast with results, such as [[7, Thm. 1.2], which show that a
rather large gap must exist between vector linear and nonlinear
index coding (or general network coding) rates.

Apart from the approximation guarantee, there are other
evidences to the fact that index coding and our storage coding
are two very different problems by nature. For example, for
two disconnected graphs, the total storage capacity is the
sum of the capacities of the individual graphs. But the index
coding length for the union of two disconnected graphs may be
smaller than the sum of individual code lengths of the graphs
(see, Thm. 1.1-1.4 and the accompanying discussions in []1]).

In a parallel independent work [40], one of our initial
results, namely, the duality between storage and index codes
(see Prop. [1)) is proved for vector linear codes. The authors
of [40] further use that observation to give an upper bound
on the optimal linear sum rate of the multiple unicast network
coding problem. In this paper we have a completely different
focus.

A. Results and organization
The paper is organized in the following way.

! Actually, logy is the storage capacity that we introduce here.

2In literature, the term “graph entropy” usually refers to a different quantity
[26].

o Model of a repairable distributed storage: In Section
we introduce formally the model of a recoverable
distributed storage system and the notion of an optimal
storage code given a graph. This section also introduces
the quantities of our interest, namely the capacity of
storage.

e Relation to index coding: In Section we explore
the relation of an optimal storage code to the optimal
index code. We provide an algorithmic proof of a duality
relation between the index code and distributed storage
code. Our proof is based on a covering argument of
the Hamming space, and rely on the fact that for any
given subset of the Hamming space there exist several
translations of the set, that have very small overlaps with
the original subset.

e Bounds and algorithms: In Section [[V-Al we provide
constructive schemes that achieves a storage-rate within
half of what is maximum possible for any undirected
graph (the scheme is optimum for bipartite graphs). Some
other existential results are also proved in this section.
Next, we extend the approximation schemes towards
directed graphs in Section It turns out to be a
harder problem for directed graphs and we provide a
scheme with a logarithmically (with graph size) growing
approximation factor.

e Bounds on minimum distance and other multiple failure
models: In the last section, Section E, we generalize
the notions of local recovery on graphs to include the
minimum distance criterion and cooperative local re-
covery. In both of these cases, we provide fundamental
converse bounds and outline some constructive schemes.
In particular, the well-known impossibility results on the
minimum distance of a locally repairable codes, such as
eq. or the ones presented in [10], simply follow from

Thm. [14] and Prop.

II. RECOVERABLE DISTRIBUTED STORAGE SYSTEMS

In this section, we introduce the basic notion of a single-
failure recoverable storage system. Consider a network of
distributed storage, for example, one of Fig. [I] where several
servers (vertices) are connected via network links (edges). As
mentioned in the introduction, the property of two servers
connected by an edge is based on the ease of establishing
a link between the serverﬂ If the data of any one server is
lost, we want to recover it from the nearby servers, i.e., the
ones with whom it is easy to establish links. This notion is
formalized below. It is also possible (and sensible, perhaps)
to model this as a directed graph (especially when uplink and
downlink constructions have varying difficulties). In the rest of
the paper the definitions, claims and arguments hold for both
directed and undirected graphs, unless otherwise specified.

Suppose, the graph G(V, E) represents the network of stor-
age. For any v € V, define N(v) = {u € V: (v,u) € E}
to be the neighborhood of v. Each element of V represents a
server, and in the case of a server failure (say, v € V is the

30ne might consider a nonnegative weight on each edge, which would be
a natural generalization



Fig. 1. Example of a distributed storage graph

failed server) one must be able to reconstruct its content from
its neighborhood N(v).

Given this constraint what is the maximum amount of infor-
mation one can store in the system? Without loss of generality,
assume V = {1,2,...,n} and the variables X7,X3,..., Xy
respectively denote the content of the vertices, where, X; €
Fqyi = 1,...,m. Also for any I C V, let X; € Fjjl be the
projection of (X1,Xz,...,Xn)T on to the coordinates of I.

Definition 1: A recoverable distributed storage system
(RDSS) code € C Fg with storage recovery graph
G(VE),V = {1,2,...,n}, is a set of vectors in Fy to-
gether with a set of deterministic recovery functions, f; :
]FLN(I)' — g for i = 1,...,n such that for any codeword
(X1,X2y..., X)) T € Fg,

Xi:fi(XN(i))) iZ],...,TL. (2)
The decoding functions depend on G. The log-size of the code,
log, |G|, is called the dimension of G, or dim(C). Given a
graph G the maximum possible dimension of an RDSS code
is denoted by CAP(G).
Note that, in this paper, CAP4(G) is expressed in q-ary units.
To convert it to bits we need to multiply with log, q.

As an example, if G is a complete graph then CAP(G) =
n — 1. This is possible because in n — 1 vertices we can store
arbitrary values, and in the last vertex we can store the sum
(modulo q) of the stored values.

As another example, consider the graph of Fig. [I] again.
Here, V = {1,2,3,4,5}. The recovery sets of each vertex (or
storage nodes) are given by:

N(1) =1{2,3,4,5}, N(2) ={1,3},N(3) ={1, 2,4},

Suppose, the contents of the nodes 1,2,...,5 are
X1,X2,y..., X5 respectively, where, X; € Fg,i = 1,...,5.
Moreover, X] = f] (Xz,X3,X4,X5),X2 = fz(X],Xg,),Xg, =
f3(X1, X2, Xa), Xq4 = f4(X1,X3,X5), X5 = f5(X1, Xa).

Assume, the functions f;,1 =1,...,5, in this example are
linear. That is, for ay; € Fg, 1 <1,j <5,
Xy = 012X + 013X3 + 014 X4 + o15X5
X2 = 021X7 + x23X3
X3 = 031 X7 + 032X5 + 0034 Xy
Xy = 41 X7 + x43X3 + x45X5
X5 = 51 X7 + 054 X4.

This implies, (X1, X3,...,Xs5) must belong to the null-space
(over Fy) of

1 -2 —®&13 —0&14 —X15

—X21 1 —X23 0 0

D= —37 —032 1 —34 0
—0t41 0 —oaus3 1 —0l45

—X51 0 0 —X54 1

The dimension of the null-space of D is n minus the rank of
D. At this point the following definition is useful.

Suppose, A = (ayj) be an n x n matrix over Fg. It is said
that A fits G(V,E) over Fq if aj; # 0 for all i and ay; = 0
whenever (i,j) ¢ E and i #j.

Definition 2: The minrank [23] of a graph G(V, E) over F
is defined to be,

minrankq (G) = min{rankp, (A) : A fits G}. 3)

Notice, in the example above, D fits the graph G. Hence,
it is evident that the dimension of the RDSS code is n —
minrankq (G) (see, Defn. . From the above discussion, we
have,

CAP4(G) > n — minrankq (G), 4)

and, n —minrank4 (G) is the maximum possible dimension of
an RDSS code when the recovery functions are all linear.

Linear RDSS codes are not optimal all the time. This is
shown in the following example.

Example 1: This example is present in [1], and the dis-
tributed storage graph, a pentagon, is shown in Fig. 2] For
this graph, a maximum-sized binary RDSS code consists of the
codewords {00000, 01100,00011,11011,11101}. The recovery
functions are given by,

X =Xa AXs, Xa = X7V X3, X3 = Xa A Xy,
X4 = X3 AXs, X5 = X7V Xq.

Here CAP,(G) = log, 5 bits. If all the recovery functions
are linear, we could not have an RDSS code with so many
codewords. Indeed, since minrank of this graph over F, is
3, we could have had only 2°~3 = 4 codewords with linear
recovery functions.

Literatures of distributed storage often considers vector
codes and vector linear codes. In our case, in a vector code,
instead of a symbol, a vector is stored in each of the vertices.
In the context of general nonlinear codes, vector codes do not
bring any further technical novelty and can just be thought of
as codes over a larger alphabet. The capacity of storage can
only increase when we consider codes over larger alphabet.



Definition 3: Define the vector capacity of a graph G(V, E)
to be,

CAP(G) = lim CAP»» (G). (5)

p—oo
Recall that CAP4(G) is measured in g-ary units above. The
limit of (5) exists and is equal to sup, CAP,»(G). This
follows from the superadditivity,

(P14+pP2)CAPp1+v, (G) > p1CAP,r: (G) +p2CAP,»: (G),

and Fekete’s lemma.

A vector linear RDSS code, on the other hand, is quite
different from simple linear codes. Each server stores a vector
of p symbols, say. Now in the event of a node failure, each of
the p lost symbols must be recoverable by a linear function
of all the symbols stored in the neighboring vertices. In
other words, if g-ary symbols are stored in the vertices, then
the recovery functions are over Fy, and not over Fgr (for
nonlinear recovery, this does not make any difference).

The Shannon capacity [41] of a graph is a well-known
quantity and it is known to be upper bounded by minrank [23]].
Any concrete reasoning relating Shannon capacity to CAP is
of interest, but has not been pursued in this paper. It is to be
noted that for the pentagon of Fig. [2] the Shannon capacity is
/5 while CAP,(G) = log, 5.

ITII. RELATION WITH INDEX CODING

We start this section with the definition of an index coding
problem. The main objective of this section is to establish and
explore the relation of the index coding rate and CAP(G),
given a graph G.

In the index coding problem, a possibly directed side
information graph G(V,E) is given. Each vertex v € V
represents a receiver that is interested in knowing a uniform
random variable Y,, € F. The receiver at v knows the values
of the variables Y, u € N(v). How much information should
a broadcaster transmit, such that every receiver knows the
value of its desired random variable? Let us give the formal
definition from [J5]], adapted for g-ary alphabet here.

Definition 4: An index code C for Fg with side information
graph G(V,E),V ={1,2,...,n}, is a set of codewords in ]Fg
together with:

1) An encoding function f mapping inputs in F to code-

words, and

2) A set of deterministic decoding functions gi,...,gn
such that gi(f(Yh...,Yn),YN(i)) = Y; for every
i=1,...,n.

The encoding and decoding functions depend on G. The
integer { is called the length of C, or len(€). Given a graph
G the minimum possible length of an index code is denoted
by INDEX,(G).

It is not very difficult to deduce the connection between the
length of an index code to the minrank of the graph — and it
was shown in [5] that,

INDEX(G) < minrankq(G). (6)

The above inequality can be strict in many cases [1f], [29].
However, minrankq(G) is the minimum length of an index

code on G when the encoding function, and the decoding
functions are all linear. The following proposition is also
immediate.

Proposition 1: The null-space of a linear index code for G
is a linear RDSS code for the same graph G.

Proof: All the vectors that are mapped to zero by the
encoding function of an index code form an RDSS code,
as any symbol stored at a vertex can be recovered by the
corresponding index coding decoding function for that vertex.
On the other hand the cosets of an RDSS code partition the
space and the set of cosets is isomorphic to the null-space
of the RDSS code. Hence an index code can be formed that
encodes a vector to the coset it belongs to. [ ]

Note that, it is not true that CAPP4(G) = n—INDEX4(G),
although Eq. (6) and Eq. @) suggest a similar relation. This is
shown in the graph of Example (1| There, the minimum length
of an index code for this graph is 3, i.e., INDEX,(G) = 3,
and this is achieved by the following linear mappings. The
broadcaster transmit Y; = X3 + X3,Y2 = X4 + X5 and Y3 =
X1 4+ X2 + X3 + X4 + Xs5. The decoding functions are, X =
Yi+Yo+Y35:Xo =Y+ X35 X3 = Y1+ X0 Xy = Y24+ X5; X5 =
Ys + Xy.

Although in general CAP4(G) # n — INDEX(G), these
two quantities are not too far from each other. In particular,
for large enough alphabet, the left and right hand sides can be
arbitrarily close. This is reflected in Thm. [2] below.

A. Implication of the results of [|I|]

At this point we cast a result of [[1] in our context. In
[1], the problem of index coding was considered and to
characterize the optimal size of an index code, the notion
of a confusion graph was introduced. Two input strings,
x = (x1,..y%n),Y = (Y1,...,yn) € Fy are called
confusable if there exists some i € {1,...,m}, such that
Xi # Yi, but x5 = yj, for all j € N(i). In the confusion graph
of G, the total number of vertices are q™, and each vertex
represents a different g-ary-string of length n. There exists an
edge between two vertices if and only if the corresponding
two strings are confusable with respect to the graph G. The
maximum size of an independent set of the confusion graph
is denoted by y(G).

The confusion graph and y(G) in [1] were used as auxilaries
to characterize the the rate of index coding; they were not
used to model any practical problem. From our definition
of RDSS codes (see Def. [T}, it is evident that this notion
of confusable strings fits perfectly to the situation of local
recovery of a distributed storage system. Namely, y(G), in
our problem becomes the largest possible size of an RDSS
code for a system with storage-graph given by G.

We restate one of the main theorems of [1f] using the
terminology we have introduced so far.

Theorem 2: Given a graph G(V,E), we must have,

n—CAP4(G) < INDEX4(G) < n— CAP(G)
+ log, (min{nln q,1+ CAP4(G) In q}). @)

This result is purely graph-theoretic, the way it was presented
in [[1]. In particular, the size of maximum independent set of



the confusion graph, y(G) can be identified as the size of the
RDSS code, and its relation to the chromatic number of the
confusion graph, which represents the size of the index code,
was found. Namely the proof was dependent on the following
two crucial steps.

1) The chromatic number of the graph can only be so much
away from the fractional chromatic number (see, [1] for
detailed definition).

2) The confusion graph is vertex transitive. This implies
that the maximum size of an independent set is equal
to the number of vertices divided by the fractional
chromatic number.

A proof of the first fact above can be found in [28[. In
what follows, we give a simple coding theoretic proof of
Thm. [2| where the technique is same as [1]; but it bypasses
the graph-theoretic notations. However, our proof will expose
some further nuances in the relation of index coding and
RDSS codes (see, Sec. and Lemma. [7). Because of the
derandomization of Lemma. [/} we can get rid of a look-up
table to decode the index code that is ‘dual’ of a given RDSS
code.

B. The proof of the duality

We prove Theorem [2] with the help of following two
lemmas. The first of them is immediate and can be proved
by a simple averaging argument.

Lemma 3: If there exists an index code C of length ¢ for
a side information graph G on n vertices, then there exists
an RDSS code of dimension at least n — £ for the distributed
storage graph G.

Proof: Suppose, the encoding and decoding functions of
the index code € are f : Fyy — F( and g; : Fq N 5 Fgi=
1,...,n. There must exists some x € Fg such that [{y € Fy :
fly) =x}| > q" " Let, Dy = {y € Fy : f(y) = x} be the
RDSS with recovery functions,

fi({X5,) € N(UD = gix,{Xj,j € N(i)}).

|
The second lemma might be of more interest as it is a bit less
obvious.

Lemma 4: 1f there exists an RDSS code € of dimension k for
a distributed storage graph G on n vertices, then there exists
an index code of length n —k + log, min{nlngq, 1+ kInq}
for the side information graph G.

Combining these two lemmas we get the proof of Theorem 2]
immediately.

To prove Lemmad], we need the help of two other lemmas.
First of all notice that, translation of any RDSS code is an
RDSS code.

Lemma 5: Suppose, € C IF’q1 is an RDSS code. Then
any known translation of € is also an RDSS code of same
dimension. That is, for any a € Fg, C+a={y+a:y € C}
is an RDSS code of dimension log, |C.

Proof: Let, (X1,...,Xn) € C. Also assume, a =
(ar,...,an), and X{ = Xi + a;. We know that, there exist
recovery functions such that, X; = fi({Xj : j € N(i)}). Now,

Xl/ =Xi+a = fi({Xj GeNDY+a = f{({X]/ 3 e N{L
|
The proof of Lemma [] crucially use the existence of a
covering of the entire ]Fg, by translations of an RDSS code.
Indeed, we have the following result.
Lemma 6: Suppose, € € Fg is an RDSS code for a graph
G. There exists m vectors xj € Fg,j =1,...,m, such that

1‘11 (C+xy) = FE

where "
m= % min{nlnq, 1+ In|C[}.
Proof: Suppose, xi,1 = 1,...,m are randomly and

independently chosen from K. Now, the expected number
of points in the space not covered by any of the translations
is at most g™ (1 —|€|/q™)™ < q™e ™'I€I/a" < 1, when we
set m’ = q“’knlnq < m in the above expression (see [2,
Prop. 3.12]).

If, instead we set m’ = % In|C| then the expected number
of points, that do not belong to any of the m’ translations is at
most % To cover all these remaining points we need at most
lﬂ(% other translations. Hence, there must exists a covering such
that % In|C| + % = lﬂe—n‘(ln |Gl + 1) < m translations suffice.

|
Using Lemmas [5] and [6] we now prove Lemma [
Proof of Lemma [} Lemmas [5] and [6] show that there
exist, C1,...,Cm, € C Fg,i =1,...,m, all of which are
RDSS codes of dimension k such that

U, € =F, @®)

where m = q™ *min{nlIngq,1 + klnq}. Indeed, C; can set
to be equal to € +x; , which is an RDSS code by Lemma [3}

Now, any y € Fy must belong to at least one of the
Cis. Suppose, y = (Y1,...,Yn) € Fg and y € C;. Then,
the encoding function of the desired index code D is simply

given by, f(y) = 1i. If the recovery functions of C; are
f},j =1,...,n, then, the decoding functions of D are given
by:

gj (i, {(YL: 1 e N()}) = fj({Yi: L e N(G)D.

Clearly the length of the index code is loggm =n —k +
logq(min{nln q,1+klnq}). [ |
The most crucial step in the proof of Thm. 2]is Lemma [6]
that show existence of a desired set of points in Fy: we need to
show the existence of a covering of the entire F, by transla-
tions of an RDSS code. Next we show that stronger statements
in lieu of Lemma [f] is possible: the translations themselves
form a linear subspace. This leads to a derandomization and
ease of decoding of the index code in each of the receivers.

C. Refinements of Lemma [0 and decoding of index code

In this section, we show that the m points whose existence
is guaranteed by Lemma [6] can be made to satisfy some extra
properties. In particular, when q = 2, any randomly chosen
linear subspace of dimension log, m suffices for our purpose
with high probability.



" \

5

* \ .

Fig. 2. A distributed storage graph (the pentagon) that shows CAP(G) #
n — INDEX(G).

Definition 5: Given a set of vectors X1,...,Xx¢ from Fg,
define the binary span of the set to be {ZL] aixq
((11,...,(1@) 6{0»1}(}-

Lemma 7: Suppose, C C IF:]L is an RDSS code for

a graph G. There exists a set of { = log, % +
log, (min{nlInq,In(elC|)}) = log, % + Of(logn) vectors,
whose binary span D C g is such that

Uxen (€ +x) =TFy. )

To prove this lemma we construct a greedy algorithm that
chooses about log, m vectors recursively instead of m random
vectors of Lemma [6] The proof is deferred to the appendix.
The greedy covering argument that we employ in the proof was
used to show the existence of good linear covering codes in
[15] (see, also, [13], [21]}, [32]]). We can use Lemma [7] instead
of Lemma [6] to complete the proof of Lemma §] Lemma
gives some algorithmic advantage in decoding an index code
that we explain next.

Suppose C is an RDSS code with known recovery functions.
Let D be the set of vectors promised in Lemma [6] such that
Uxen (€ +x) = Fg. Consider next the corresponding index
code constructed in the proof of Lemma} Given any y € [y
as input, the encoding of this index code finds a z € D such
that y € €+ z. A bijection Y : D — F}} that maps z to a
q-ary vector of length 1 = log, |D| completes the encoding
of the index coding (here 1 is the length of the index code).
In short, the encoding of the index code maps y to P (z) for
an z:y € D+ z. Now for decoding of this index code, one
first needs to map back any given encoded vector u € IE‘}J to
x’ =P~ '(u) € D, and then use the recovery functions of
the RDSS code € +x’. The recovery functions of RDSS code
C +x’ is known, as they are known for the RDSS code C.

4We assume 1 to be an integer, which not necessarily is the case. The
argument remains the same when 1 is not an integer, except for the fact that
we have to deal with ceiling and floor functions.

In the above decoding of index code, we must maintain
a look-up table of size exponential in n, that stores the
bijective map ' between F, to D. This map tells us
recovery function of which RDSS code to use (among all the
translations). However, using Lemma [7| this constraint can be
removed. og.. DI

Assume g : Fg ¢ " — Y is an arbitrary polynomial time
bijective mapping that produces a binary sequence from a g-
ary sequence. There are many such mappings that can be
trivially constructed. Using Lemma [/ D is the binary span
of { = log, |D| vectors {d1, ..., d¢} such that Uyecp (C+x) =
[F§. Then the decoding of the obtained index code can be

1 Dl . .
performed from u € F;gq‘ | in two steps. First, suppose
g(u) = (ar,...,ae). Next, we compute x' = Zf:1 a;d;.

For the decoding of the index code, we now use the recovery
functions of C+x’. The map from u to x’ defines " in this
case. Hence, we no longer need to maintain a look-up table,
and the required RDSS code, that we need to decode, can be
found in polynomial time.

Remark 1: Note that, a random subset of IF;‘, generated
as the binary span of log, m random and uniformly chosen
vectors from F', satisfies Eq. (©) with high probability. This
can be proved along the line of [§]], [[14]] where it was shown
almost all linear codes are good covering codes.

Given an RDSS code, our derandomization benefits only the
decoding of the obtained index code, and not the encoding. But
also notice that, encoding is performed by the broadcaster in
one place, while decoding is performed in every receiver (that
is likely to have less computational power compared to the
broadcaster).

IV. ALGORITHMIC RESULTS AND CONSTRUCTIONS OF
RDSS CODES

In this section we provide some constructions of RDSS
codes, both for directed and undirected graphs. First, note
that, existential results similar to Gilbert-Varshamov bound for
codes can be provided for RDSS codes.

Theorem 8: For the graph G(V ={1,...,n} E), define,

Qq(G) = {x € FY : 3i with x; # 0,x; = 0%j € N(i)}.

Then,
CAP4(G) > n —log, (IQq(G)] +1).

Proof: Recall that, any RDSS code can be found as an
independent set of the confusion graph. The confusion graph
is regular with degree exactly equal to |Q4(G)|. Indeed, if for
X,y € Fg,y =x+v for some v € Qq(G), then x and y both
cannot be part of an RDSS code without violating the repair
condition. Now, using Turdn’s Theorem, there must exist an
RDSS code of size

qn

IQq(G)I+1

|
|Qq(G)| can be bounded from above in a number of ways if
some properties of the graph is known. We give an example
next.



Example 2 (Degree distribution): Using a simple union
bound for counting, we get the following:

n
Qq(G) < q™(q—1) > 8iq 1,
i=1
where §; is the number of vertices with degree i. This shows
that, the capacity of G is at least,

n
CAP4(G) > —log,l(q—1) ) 8iq~ 1],

i=1
For a large class of networks such as the internet, world-wide-
web and social networks, the empirical degree distributions &;
have been estimated (most of the times it follows a power-
law decay). Using these, the achievable storage-capacity of
the networks can be approximated.
For general graphs, the union bound can be quite loose and it
might be difficult to compute |Q4(G)|. However, it is possible
to construct codes and compute CAP4(G) via deterministic
algorithms using more sophisticated ways than above. We
consider the cases of undirected and directed graphs separately
as different algorithms are needed in these scenarios. For
impossibility results, however, the technique is same: we show
that there exists a large enough subset of vertices that cannot
store any information on top of what the rest of the vertices
already store.

A. Undirected graph

In this section, we show that for an undirected graph G,
an RDSS code can be constructed in polynomial time that
achieves a rate within half of what is optimal for G. In
particular, if G is bipartite, then the optimal code achieving a
rate equal to CAP4(G) can be constructed. Hence, for undi-
rected graph it is relatively easy to compute or approximate
CAP4(G).

To achieve the above goal, start with the following lemma
first. Recall that, a vertex cover of a graph G(V, E) is a subset
U C V such that V(u,v) € E either u € U or v € U or both.

Lemma 9: For any undirected graph G(V, E), and any q > 2,

CAP4(G) < VC(G), (10)

where VC(G) is the size of the minimum vertex cover of G.
Proof: Suppose, A C V is an independent set in G. Any
vertex v € A has N(v) € V\ A. Hence, CAP4(G) < n—|A].
Notice, V' \ A is a vertex cover of G. When A is the largest
independent set, we have, CAP,(G) < VC(G). [ ]
1) Construction of code: A matching in a graph G(V, E) is
a set of edges such that no two edges share a common vertex.
The size of the largest possible matching of the graph G is
denoted by M(G) below. Polynomial time algorithms to find
the maximum matching is well-known [18§]].

To store information in the graph, first we find a maximum
matching F C E. Then for any (u,v) € F,u,v € V, we store
the same variable in both u and v. In this way we will be
able to store M(G) amount of information. Whenever one
vertex fails we can go to only one other vertex to retrieve the
information. Hence, M(G) < CAP4(G).

Surprisingly, this simple constructive scheme is optimum
for bipartite graphs, within a factor 2 of optimum storage for
arbitrary graphs and is very unlikely to get improved upon via
any other constructive scheme.

First of all, we need the following well-known lemma [45]].

Lemma 10: For any graph G,

M(G) < VC(G) < 2M(G).

The proof is straight-forward. To cover all the edges one must
include at least one vertex from the edges of any matching.
On the other hand, if both the endpoints of the edges of a
maximal matching is deleted, no two other vertices can be
connected (from the maximality of the matching).

Now using Lemmas [0] [T0} and the discussion above, we
have,

M(G) < CAP4(G) < VC(G) < 2M(G). (11)

Hence, for any graph G, we can store via a constructive proce-
dure M(G) > %(CAIE”q (G) amount of information. Indeed, for
a 2-approximation, we do not even need to find the maximum
matching; a maximal matching, that can be found by a simple
greedy algorithm, is sufficient.

It is unlikely that anything strictly better than the matching-
code above can be found for an arbitrary graph G in
polynomial-time, because that would imply a better-than-2-
approximation for the minimum vertex cover. Khot and Regev
[25] have shown that if the unique game conjecture is true then
such algorithm is not possible. Inapproximability of minimum
vertex cover under milder assumptions appear in the famous
paper of Dinur and Safra [[17].

However for some particular classes of graphs we can do
much better. Specifically if the graph G is bipartite then
Konig’s theorem asserts M(G) = VC(G). Hence for a
bipartite graph G, CAP4(G) = M(G) and an RDSS code
can be designed in polynomial time.

Other special graphs, such as planar graphs [3[], [4], that
have better approximation algorithms for minimum vertex
cover, might also allow us to approximate CAP4(G) better.
We left that exercise as future work.

B. Directed graphs

Next we attempt to extend the above techniques to construct
RDSS codes for directed graphs. The following proposition is
a simple result that proves to be an useful converse bound.

Proposition 11: For any graph G(V,E), and any q > 2,

CAP,(G) < FVS(G), (12)

where FVS(G) is the minimum number of vertices to be
removed to make G acyclic (also called the minimum feedback
vertex set.

Note that, results of [5] or [11] imply that for any directed
graph G, INDEX(G) is at least the size of the maximum
acyclic induced subgraph of G. From this, and from Thm. |2}
we can deduce that CAP4(G) < FVS(G) + O(logn). The
above proposition is stronger in the sense that we get rid of
the log term.



Proof of Prop. [[1} Suppose, U C V is such that the
subgraph induced by U is acyclic. We first claim that, the
dimension of any RDSS code in G must be at most |V \ U|.
Let us prove this claim with a simple reasoning that appear
in [43]. Suppose u € U is such that all edges in E that are
outgoing from u has the other end in V \ U. As the induced
subgraph from U is acyclic, there will always exist such vertex.
Hence, whatever we store in u, must be a function of what
are stored in vertices of V \ U. Now, consider the subgraph
induced by U\{u}. As this subgraph is also acyclic, there must
exist a vertex whose content is a function of the the contents
of vertices of V' \ U. Proceeding as this, we deduce that, no
more than [V \ U| amount of information can be stored in the
graph G.

Now consider the maximum induced acyclic subgraph of G.
If the vertex set of such subgraph is U, then |[V\U| = FVS(G).
Hence, CAP4(G) < FVS(G). [ ]

It is not possible to construct a code by a matching, as in the
case of undirected graph. In the undirected graph we could do
that because, if (u,v) € E, then just by replicating the symbol
of u in v we can guarantee recovery for both u and v. In
the case of directed graph, such recovery is possible, if we
have a directed cycle: up — uy — -+ — Ug_1 — up, where
u; € Vand (Wi, U(i+1) mode) € E forall 0 <1< £. We can
just store one symbol in uy, and then replicate this symbol
over all vertices of the cycle. Whenever one node fails we can
go to the next node in the cycle to recover what we lost.

Two cycles in the graph G(V,E) will be called vertex-
disjoint if they do not have a common vertex.

Suppose, P is a set of vertex-disjoint cycles of the graph G.
Then it is possible to store |P| symbols in the graph. Hence

CAP,4(G) > VD(G), (13)

where VD(G) is the maximum number of vertex-disjoint
cycles in the graph G.

At this point it would be helpful to establish a relation
between VD(G) and FVS(G). Such relation appear in the work
of Erdos and Pésa [20]. Namely, for any undirected graph,
it was shown that FVS(G) < VD(G)log VD(G). There are
two bottlenecks of using this result for our purpose. First,
this only holds for undirected graphs. Second, computing the
optimal vertex-disjoint cycle packing is a computationally hard
problem even for undirected graphs.

There are a number of efforts towards generalizing the Erdos
and Pésa theorem for directed graphs culminating in [36]
that shows that for directed graph there exists an increasing
function h : Z — 7Z such that,

FVS(G) < h(VD(G)).

However, the function h implied in [36] can be super-
exponential. Hence, for our purpose it is not of much interest.

In what follows, we show that a fractional vertex-disjoint
cover also lead to an RDSS code. Albeit the code is vector-
linear as opposed to the scalar codes we have been considering
so far. We need the following fractional vertex-disjoint packing
result of Seymour [38]]. Suppose, P is the set of all directed
cycles of G(V,E). Suppose, ¢ : P — Q assigns a rational
number to every directed cycle. Let V(C), C € P denote the

vertices of the cycle C. We impose a condition that ¢ must
satisfy,
$(C) <1,

CveVv(Q)

for all v € G. Under this condition we maximize the value
of ) -cp ®(C) over all functions ¢. Suppose this value is K.
Then [38] asserts,

FVS(G) < 4K1n4KInlog, 4K.

We will now show a construction of RDSS codes using
Seymour’s result.

Theorem 12: Suppose in each vertex of the directed graph
G(V,E) it is possible to store a vector of length p, i.e., from
[y, for a large enough integer p. Then, for any q > 2, it
is possible to store constructively pK g-ary symbols in the
graph, such that content of any vertex can be recovered from
its neighbors, and

4K1n4KlInlog, 4K > FVS(G) > CAP4(G).

Remark 2: We can use the method of [[11], where the
complementary index coding problem, i.e., maximization of
n — INDEX(G) is studied, to prove this theorem. Perhaps
their result cannot be used as a blackbox as that would lead
to an extra additive error term of O(log CAP4(G)), due to
the gap between n —INDEX,(G) and CAP4(G). By a direct
analysis, we can avoid this error term. However, the analysis
of [11]] is more complicated than the proof below. To find a
vertex-disjoint packing in polynomial time the authors of [|11]]
first constructs a so-called vertex-split graph and converts the
vertex disjoint packing in to a edge-disjoint packing problem
and then converts it back. It also uses crucially a result of [|33]]
to find a fractional edge-disjoint packing. Below we follow a
much simpler path.

Proof of Thm. [I2} Suppose, P is the set of all directed
cycles of G(V,E), and ¢ : P — Q is a function such that

D > coevie) ®(C) <1, forallveG.
2) CAP4(G) < 4KIn4Klnlog,4K, where K =

2 cep ®(C).

We know such function ¢ exists from [38] and Prop. @
Without loss of generality, we can assume ¢(C) = % for
al CeP, n:P— Z, U{0}, and p is a positive integer.

Suppose we want to store a vector X € FEK. In each vertex
we store a vector of length at most p, i.e., content of each
vertex belong to FY. These vectors are decided in the following
way. We partition the coordinates of x, that is [1,2,...,pK], in
to |P| parts. Each cycle C € P is assigned n(C) coordinates to
it. We can do such partition, because ) ., n(C) = pK. For
any C € P, the n(C) coordinates assigned to C are stored in
v for all v € V(C). Hence the length of the vector need to be
stored in v € V is ZCZV&V(C) n(C) < p which is consistent
with our assumption.

Now if the content of any vertex v is needed to be restored,
we can use the contents of the neighboring vertices. If v &
V/(C), then the n(C) symbols stored in v can be restored from
the copy stored in the vertex u where (v,u) is an edge in C.
This holds true for all C € P such that v € V(C).



The function ¢ can be found by solving a linear program:
maximize } - p $(C), subject to } .,y (c) ¢(C) <1, for
all v € G. The number of variables in the linear program
is equal to the number of cycles in the graph G. The dual
problem is given by means of finding a function P : V — Q
that minimizes ) ., P (v) such that Zvev(c] P(v) > 1 for
every directed cycle C. Although the number of constraints
in this dual linear program can be exponentially large, there
exists a separation oracle that can differentiate between a
feasible solution and an infeasible one. For example, given any
VP :V — Q, one can just calculate the shortest weight cycle,
mincep ) ey (c) Vs in polynomial time and check whether
that is greater than 1 or not. If such separation oracle exists,
then the dual linear program can be solved in polynomial time
[45) p. 102]- and at the same time a primal optimal solution
can also be found (by using say, ellipsoid method).

Hence, it is possible to explicitly construct the above-
mentioned vector RDSS code. ]

Subsequently, we consider multiple node failures in our
storage model.

V. MULTIPLE FAILURES

In this section, we describe two possible generalizations of
the quantity CAP4(G) that are consistent with the distributed
storage literature and take care of the situation when more
than one server-nodes simultaneously fail.

A. Collaborative Local Repair on Graphs

The notion of cooperative local repair was introduced as
a generalization of the definition of local recovery in [35].
In this definition, instead of one server failure, provisions for
multiple server failures are kept. Next we extend this notion
to distributed storage on graphs.

Given a graph G(V ={1,...,n}, E), we use each vertex to
store a -ary symbol. A code € C Iy is called cooperative t-
RDSS code if for any set of connected vertices U C V, [U]| < t,
there exist deterministic functions f,i € U such that for any
codeword (Xi,...,Xn) € €, Xi = fH(Xy,cunnu) for all
i € U. This means that if any set of t or less connected
vertices fail, then one should be able to recover them from
the neighbors of that set.

Note that, it is necessary in the definition to consider all sets
of size less than t as well, because the local recovery of any
set U, |U| =t does not imply that all proper subsets of U are
locally recoverable (i.e., not all neighbors of U are neighbors
of a given vertex in U).

The reason it is sufficient to consider connected sets for the
definition is that two disconnected sets of vertices of total size
t are locally recoverable as any set less than size t is.

We below consider as example only the special case of t = 2
for undirected graphs. In this case, apart from being a usual
RDSS code, the code must also be able to deal with the case
when both vertices of an edge fail. Hence the construction
based on matching of Sec. will not work. Instead, for
our first result, we will need the following definition.

A k-path in a graph is a set of vertices vi,Vz,..., Vi such
that (vi,vis1) is an edge in the graph forall 1 <i<k—1. A

subset S of vertices, such that for any k-path {vi,va,..., v}
of the graph at least one of vis must belong to S, is called a
k-path vertex cover [9].

Proposition 13: Suppose, given an undirected graph
G(V,E),[V| =n, S C V is the smallest 3-path vertex cover.
Then the dimension of any cooperative 2-RDSS code is at
most |S|.

Proof: Assume, W C V is such that every vertex in the
the induced subgraph of W has degree 1 or 0. Such sets are
called dissociation set and the size of smallest dissociation
set is called the dissociation number [47)). From the definition
of cooperative 2-RDSS codes, content of any vertex of W
can be reconstructed from vertices outside of W. Then the
dimension of any cooperative 2-RDSS code is at most n—|W]|.
On the other hand, V \ W is such that for any u,v,w € V:
(u,v), (v,w) € E, at least one of u,v or wisin V\W. =&

In other words, the dimension of any cooperative 2-RDSS
code is at most n minus the dissociation number. It is possible
to find all vertex-disjoint 3-paths in a graph G in polynomial
time [46]]. Note that the smallest 3-path vertex cover must
contain at least one vertex from any 3-path. This allows us
to construct a cooperative 2-RDSS code that has dimension
at least one-third of what is optimal possible. Indeed, we just
repeat the same variable in all three vertices of a 3-path.

To generalize the above procedure beyond 2 erasures be-
comes cumbersome and also leads to substantial loss in the
dimension of RDSS codes. Instead, in the following, we
consider the usual scenario where a provision of recovery from
catastrophic failures is included via minimum distance of the
code.

B. Considerations for Minimum distance

Inclusion of the minimum distance as a necessary parameter
in a locally repairable code is the norm in distributed storage
[22]. In this subsection, on the RDSS codes, we further impose
the constraint of minimum distance between the codewords.
Given a graph G(V,E) an RDSS code with distance d is an
RDSS code € C IE“qV‘ such that for any x,y € €, the Hamming
distance between them, dy(x,y) > d.

By abusing notations slightly, for any graph G(V,E) and
any U C V, define N(U) to be the set of all vertices in V\ U
that has at least one (incoming) edge from U. We have the
following proposition.

Theorem 14: For any graph G(V,E), suppose there exists
an RDSS code with distance d and dimension k. Then,

d<|V|—-k+1— max (U,

UeI(G):IN(U)|<k—1

(14)

where for an undirected graph J(G) is the set of all inde-
pendent sets of G and for directed graphs J(G) is the set of
vertex-sets of all induced acyclic subgraphs of G.

When no local recovery property is required, the graph G can
be thought as a complete graph. In that case, the above bound
reduces to the well-known Singleton bound of coding theory.
When no distance property is required (i.e., d = 1), the bound
reduces to

k<|V|— max [uy.
ued(G):N(U)I<k—1

5)



We claim that this implies Equations (T0) or (I2) (for the cases
of undirected and directed graphs respectively). Let us show
this for the case of undirected graphs as the case of directed
graph is analogous. Assume that (T5) is satisfied but k >
VC(G). However this means that for the largest independent
set U* C V, IN(U*)| < |[V\ U* = VC(G) < k. Hence,
from (13), we have k < [V| — |U*| = VC(G), which is a
contradiction. Hence, k < VC(G).

Finally, when the graph is regular with degree v, the bound
of (T4) becomes (I)), as an independent set (or acyclic induced
subgraph) U’ of size kT]J = L‘ — 1 is guaranteed to
exist via Turdn’s theorem. Indeed, Turan’s theorem guarantees
existence of an independent set of size rl% Hence k <
V- = o o2 > |5
This guarantees existence of the independent set U’. Note that,
N(U’) < k—1 as the graph has degree .

Proof of Thm. [[4} The proof follows a generalization
of the proof of Eq. E] from [10], [43]]. Below we provide the
proof for undirected graphs which extends straightforwardly
to directed graphs.

Let Ce Fy,n= |[V| be an RDSS code with distance d and
dimension k for the graph G. For any I C V, let C; denote
the restriction of codewords of C to the vertices of I.

Suppose, U C V is the largest independent set such that
IN(U)| < k—1. Let R be the k—1 sized subset that is formed
by the union of N(U) and any arbitrary k—1—|N(U)| vertices.
Hence,

We therefore have,

ICucrl < q*71,

which imply d must be at most n—|UUR|. On the other hand
[UUR| = |U| + k — 1. This proves the theorem. [ ]

The bound of can be made to be dependent on per
node storage, or the alphabet size q. Indeed, we can have the
following proposition.

Proposition 15: For any gq-ary RDSS code on G(V, E) with
distance d and dimension Xk,

k< min IN(W)|+log, Aq(IVI — [UUN(W), ), (16)

uel(G)
where, Aq(n,d) is the maximum size of a g-ary error-
correcting code of length n and distance d, and J(G) is defined
in Thm. [14]
Proof: As before, let C € Fg,n = |V| be an RDSS code

with distance d and dimension k for the graph G. We have,
for any U € J(G),

Cuunu) < q‘N(u)‘-

Hence, there must exist an X € Fg‘lUN(u)l, such that D £

Hy € C: yuunw) = > g~ N(WI_ Since, D is a code
with length [V| —|U U N(U)| and minimum distance d, we
must have,

k—IN(U)| <logq Aq(IVI—[UUN(U, d).

|

A very elegant construction of locally repairable codes ap-

peared in [43]] that achieves the bound of (T)). That construction

can also be used for RDSS codes with distance. We outline it
below.

For construction of index codes, the clique partition method
is a well-known heuristic [[12]]. This method can be easily
adopted for construction of RDSS codes. Given a graph
G(V,E) the set of vertices are partitioned into minimum
number of subsets, such that the subgraph induces by any
subset is a complete subgraph (or in to minimum number of
cliques). If the size of any one clique is t, then it is possible to
store t— 1 symbols in the vertices of the clique, with recovery
guarantee from neighbors in case of single failure. In this
way it is possible to construct an RDSS code with dimension
n —CL(G), where CL(G) is the minimum number of cliques
that partition V. The construction of Sec. via matching is
a special case of clique-partition. However, as a downside, the
problem of minimum clique-partition is NP-complete (while
there exists polynomial-time algorithms for matching).

On the other hand, if a clique-partition of a graph is given,
then it is possible to construct an RDSS code with distance
d for that graph. Suppose, V = V7 U --- UV, such that the
induced subgraphs on Vi, V,,...,V; are all cliques. Suppose
Tmin > 2 18 the size of the smallest clique in the partition. By
[43]], it is possible to construct a locally repairable code with
locality T = Ty, — 1 and length n. Such code is a RDSS code
with distance d for G.

This construction will be good if the sizes of the cliques
in the partition Vi,V>,...,V, do not vary. If there is large
discrepancy among the sizes then it is still be possible to use
the methods of [43]. In particular, a method of constructing
locally repairable code with disjoint repair groups of different
sizes have been proposed in [43, Thm. 5.3], that can be adapted
straight-forwardly for this scenario.
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APPENDIX
A. Proof of Lemma [7]
We prove following general statement below which will
imply Lemma [7]
Proposition 16: For every subset 7 C Fy, there exists a set
D € Fg that is binary span of log, (q™|F|~! min{nInq, 1 +
In|F|}) vectors and

Uxej)(gj‘i‘x) = F:]l

The proof is contingent on the following result from classical
coding theory.
Lemma 17 (Bassalygo-Elias): Suppose, €,B C Fy. Then,

> l€+x)nB|=e|Bl.

xng

a7

Proof:
Y le+x)nBl=[xy):x€Fj,y € B,y € C+x}|
xelFy
=[x, y):x €eFg,y € B,x ey —C}|
=H{xy):yeBxecy—Cj
=|Blly — €[ = [ClB],

where y—C={y—a:aeChL ]
Now, for any set F C F¢, define
F
Q(EF)E]LJ. (18)

In words, Q(J) denote the proportion of [Fg that is not covered
by F. The following property is a result of Lemma
Lemma 18: For every subset & C F,

g™ ) QEFUF+x) =Q(F)
XEFE

Proof: We have,
[FU(F+x)| =2|F]—1F N (F+x).

19)

Therefore,
QEFUF+x)=1=21FIg "+ I1FN(F+x)lqg~ ™,
and hence,

I ) QIFUEF+xX)=1-2q "

xng



+q Y IFN(F+x)

XEFY
=1-2F1q " +q "I
=(1—1Fg™™)?,

where in the second line we have used Lemma ]

Now we are ready to proof Prop.
Proof of Prop. [I6f From Lemma for every subset
FC Fg, there exists x € IF’C} such that

QI U (T +x)) < QI
For the set F = F), recursively define, for i =1, 2,...
Fi=Fia U (Fir +zi1),
where z; € IFE“ is such that,
QFiU(Fi+2)) <Q(F)* 1=0,1,...
Clearly,

Q(F0) < Q(Fo)* = (1 - q’“lfﬂ)Zt < e—a "FI2Y

At this point we can just use the argument of the proof of
Lemma E], with 2t playing the role of m’ therein.

?o 3‘-1
)
adtlill
~—
(— e .
SE, N- AN
3 7,

Fig. 3. The recursive construction of the sets F7, 3, F3 of Prop.

On the other hand F; contains F and its 2t — 1 trans-
lations (see, Figure E] for an illustration). Hence, there

. - q"ning q"(1+n|F])
exists m = G i

0,%1,X2,...,Xm—1 € Fg, such that

min

} vectors Xo =

o (F+x) =Fp.

These m vectors form the binary span of the t vectors we
have chosen via the greedy procedure. [ |
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