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Abstract

Separable codes were defined by Cheng and Miao in 2011, moti-
vated by applications to the identification of pirates in a multimedia
setting. Combinatorially, t-separable codes lie somewhere between t-
frameproof and (t − 1)-frameproof codes: all t-frameproof codes are
t-separable, and all t-separable codes are (t − 1)-frameproof. Results
for frameproof codes show that (when q is large) there are q-ary t-
separable codes of length n with approximately q⌈n/t⌉ codewords, and
that no q-ary t-separable codes of length n can have more than ap-
proximately q⌈n/(t−1)⌉ codewords.

The paper provides improved probabilistic existence results for t-
separable codes when t ≥ 3. More precisely, for all t ≥ 3 and all
n ≥ 3, there exists a constant κ (depending only on t and n) such
that there exists a q-ary t-separable code of length n with at least
κqn/(t−1) codewords for all sufficiently large integers q. This shows, in
particular, that the upper bound (derived from the bound on (t− 1)-
frameproof codes) on the number of codewords in a t-separable code
is realistic.

The results above are more surprising after examining the situation
when t = 2. Results due to Gao and Ge show that a q-ary 2-separable
code of length n can contain at most 3

2q
2⌈n/3⌉ − 1

2q
⌈n/3⌉ codewords,
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and that codes with at least κq2n/3 codewords exist. Thus optimal
2-separable codes behave neither like 2-frameproof nor 1-frameproof
codes.

The paper also observes that the bound of Gao and Ge can be
strengthened to show that the number of codewords of a q-ary 2-
separable code of length n is at most

q
⌈2n/3⌉ + 1

2q
⌊n/3⌋(q⌊n/3⌋ − 1).

Key words: Separable codes, probabilistic constructions, multime-
dia watermarking

1 Introduction

Let F be a finite set of size q, where q ≥ 2. Let n be an integer, where n ≥ 2.
For a subset X ⊆ F n of words over F of length n, and for k ∈ {1, 2, . . . , n},
we define X(k) to be the set of kth components of words in X , and we define
the set desc(X) of descendants of X by

desc(X) = X(1)×X(2)× · · · ×X(n).

For example, if X = {0000, 0111, 0012} then X(1) = {0}, X(2) = X(3) =
{0, 1}, X(4) = {0, 1, 2} and desc(X) is the following set of words:

{0000, 0100, 0010, 0110, 0001, 0101, 0011, 0111, 0002, 0102, 0012, 0112}.

Note that X ⊆ desc(X).
The notion of a descendant set arose in connection with watermarked mul-

timedia content. In these applications, each user is given a copy of the data
watermarked in a different way: these watermarks correspond to a q-ary word
of length n. The watermarks corresponding to users are chosen to lie in some
carefully constructed code C. An adversary receives t copies with different
watermarkings (from t compromised users), the watermarks corresponding
to a set X of t codewords. The adversary then attempts to construct a new
copy of the data. In certain well-motivated models, an adversary can cre-
ate data with any watermark taken from desc(X). Various security models
and applications have been considered; different classes of codes are defined,
depending on the goals of the adversary. See Blackburn [2] for a survey of
early results in the area; see, for example, Blackburn, Etzion, Stinson and
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Zaverucha [3] for more recent work on generalisations. As an example of the
combinatorial objects that have been considered in this context, t-frameproof
codes arose from a paper of Boneh and Shaw [4] that addresses the problem
of preventing an adversary from framing an innocent user:

Definition 1. Let t be a positive integer. A code C ⊆ F n is t-frameproof if
for all X ⊆ C with |X| ≤ t, we have desc(X) ∩ C = X .

If users’ watermarks are taken from a t-frameproof code C, an adver-
sary who obtains copies of the data from t users is unable to construct a
watermarked copy of that data that would have been given to another user.

More recently, models have been considered for an ‘averaging attack’
adversary; see Trappe, Wu, Wang and Liu [13]. Here desc(X), rather than
an element of desc(X), may be extracted from the data produced by the
adversary. Cheng and Miao [8] introduced separable codes in the context of
this model:

Definition 2. A code C ⊆ F n is a t-separable code if for all distinctX,X ′ ⊆ C
with |X| ≤ t and |X ′| ≤ t, we have desc(X) 6= desc(X ′).

Cheng and Miao [8] pointed out that there is a close relationship between
t-separable codes and frameproof codes:

Theorem 1. [8, Lemmas 4.5 and 4.6] Let t be an integer, t ≥ 2. Any
t-frameproof code is a t-separable code. Any t-separable code is a (t − 1)-
frameproof code.

Proof. Suppose C is not a t-separable code. Let X and X ′ be distinct subsets
of C such that |X| ≤ t, |X ′| ≤ t and desc(X) = desc(X ′). By interchanging
X and X ′ if necessary, we may assume that X ′ 6⊆ X . Clearly X ⊆ desc(X)
and X ′ ⊆ desc(X ′) = desc(X), and so X ∪ X ′ ⊆ desc(X) ∩ C. The set X
shows that C is not t-frameproof: desc(X) contains a non-empty set X ′ \X
of codewords not in X. So the first statement of the theorem follows.

Suppose C is a code that is not (t−1)-frameproof. So there exists X ⊆ C
and c ∈ C \X with |X| ≤ t−1 and c ∈ desc(X). Define X ′ = X∪{c}. Then
the sets X and X ′ show that C is not t-separable, since desc(X) = desc(X ′).
So the theorem follows.

Cheng and Miao also relate t-separable codes to matrices arising in combi-
natorial group testing, and apply these codes to generalisations of the struc-
tures used by Trappe et al. in their multimedia application.
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Several other papers have considered t-separable codes. Cheng, Ji and
Miao [7] provide a detailed analysis of 2-separable codes of lengths 2 and 3,
finding optimal codes in many cases. Cheng, Fu, Jiang, Lo and Miao [5]
improve the length 2 results using graph theory and packings derived from
projective planes. Gao and Ge [9] provide probabilistic constructions of,
and upper bounds for the number of codewords in, 2-separable codes (which
we discuss further below). Finally, various related codes have been studied:
secure separable codes [10] and multimedia IPP codes [6, 11].

Consider a q-ary t-separable code C of length n containing as large a
number of codewords as possible. Bounds [1] on frameproof codes, and The-
orem 1 above, imply that there exists a constant κ, depending only on n and
t, such that

κq⌈n/t⌉ ≤ |C| ≤ (t− 1)q⌈n/(t−1)⌉ (1)

for all sufficiently large q. If the true optimal value of |C| is close to the
lower bound, we can think of t-separable codes as being close to t-frameproof
codes; if the optimal value of |C| is close to the upper bound, we can think
of t-separable codes as being close to (t − 1)-frameproof codes. This paper
asks: Which (if any) of these two situations occur?

The answer to this question in the case t = 2 follows from the results of
Gao and Ge [9]. Firstly they give a probabilistic argument (reproduced in
Section 3 below) which shows that there are at least κq2n/3 codewords in a
2-separable code for all sufficiently large q, for some constant κ. Secondly,
they combine a bound on 2-separable codes of length 2 due to Cheng, Ji and
Miao [7] with an observation that 2-separable codes can naturally be used
to construct shorter 2-separable codes over a larger alphabet, to prove the
following upper bound. Let C be a q-ary 2-separable code of length n. Then

|C| ≤ 3
2
q2⌈n/3⌉ − 1

2
q⌈n/3⌉.

So the answer to our question when t = 2 is ‘Neither situation occurs’, as an
optimal 2-separable code has about q2n/3 codewords for large q.

In fact, the upper bound of Gao and Ge can be tightened to improve
the exponent in the leading term (when 3 does not divide n). We show
(Theorem 3 below) that a 2-separable code C satisfies

|C| ≤ q⌈(2/3)n⌉ +
1

2
q⌊(1/3)n⌋(q⌊(1/3)n⌋ − 1) ≤ (3/2)q⌈(2/3)n⌉.

When t ≥ 3, we will show that the answer to our question is ‘t-separable
codes are close to being (t − 1)-frameproof codes’. This follows from the
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upper bound (1) from (t − 1)-frameproof codes, combined with Theorem 5
below, which says that there exist q-ary t-separable codes of length n with
at least κqn/(t−1) codewords for all sufficiently large q, where κ is a constant
depending only on n and t. Just like Gao and Ge’s argument when t = 2,
Theorem 5 is probabilistic, using random choice with expurgation. However,
the naive generalisation of Gao and Ge’s argument will not give a good
enough bound: some care is needed when defining the set of ‘bad’ events
that should be excluded.

We comment that Gao and Ge [9, Corollary 4.8] also provide a proba-
bilistic existence result for t-separable codes for t ≥ 3. Indeed, they show
that a q-ary t-separable code of length n with M codewords exists for some
value of n satisfying

n ≤
qt

(q − 1)t

(

1 + ln

(

M

1, t

))

.

However, this result is much weaker than Theorem 5 below for many pa-
rameter sets. For example, when n and t are fixed and q → ∞, the result
of Gao and Ge only guarantees the existence of a code with approximately
e(n−κ)/(t+1) codewords for some constant κ.

The structure of the remainder of the paper is as follows. In Section 2,
after briefly providing (Theorem 2) a proof of the upper bound (1) on the
number of codewords in a t-separable code, we state and prove our improve-
ment (Theorem 3) of Gao and Ge’s upper bound for t = 2. In Section 3 we
provide a recap of Gao and Ge’s probabilistic existence result (Theorem 4) for
2-separable codes. We include the full proof of this result for completeness,
to establish notation, and to provide an introduction to the more compli-
cated proof in the general case. This general case (Theorem 5) is contained
in Section 4.

2 Upper bounds

Theorem 2 below is due to Cheng, Ji and Miao [7, Lemma 3.7 and The-
orem 3.8]; their proof uses a bound of Blackburn [1, Theorem 1] on the
maximum cardinality of a (t− 1)-frameproof code. We include a proof here
for completeness. For simplicity, we use a slightly weaker bound on the max-
imum cardinality of frameproof codes due to Staddon, Stinson and Wei [12].
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Theorem 2. Let q, n and t be positive integers such that q ≥ 2, n ≥ 2
and t ≥ 2. Let C be a q-ary t-separable code of length n. Then |C| ≤
(t− 1)q⌈n/(t−1)⌉.

Proof. By Theorem 1, C is a (t− 1)-frameproof code.
For a subset L ⊆ {1, 2, . . . , n} of components, let UL be the set of all

codewords that are uniquely determined by their components in L. (So if
c ∈ UL no other codeword agrees with c on all positions in L.) Clearly,
|UL| ≤ q|L|.

Let L1, L2, . . . , Lt−1 be a partition of {1, 2, . . . , n} into t − 1 subsets of
size at most ⌈n/(t − 1)⌉. We claim that C =

⋃t−1
i=1 ULi

. Clearly this claim is
enough to prove the theorem, for then

|C| ≤
t−1
∑

i=1

|ULi
| ≤

t−1
∑

i=1

q⌈n/(t−1)⌉ = (t− 1)q⌈n/(t−1)⌉.

Suppose for a contradiction that there exists c ∈ C \
⋃t−1

i=1 ULi
. Then

for each i ∈ {1, 2, . . . , t − 1} there exists xi ∈ C \ {c} that agrees with c

on all components in Li. So, setting X = {x1,x2, . . . ,xt−1} we see that
c ∈ desc(X). Since c ∈ C \ X , this contradicts the fact that C is (t − 1)-
frameproof. So the claim, and therefore the theorem, follows.

When t = 2 the bound of Theorem 2 is vacuous. However, Gao and Ge [9]
obtained a non-trivial bound in this case. We tighten their bound as follows.

Theorem 3. Let q and n be integers such that q ≥ 2 and n ≥ 2. If C is a
q-ary 2-separable code of length n, then

|C| ≤ q⌈(2/3)n⌉ +
1

2
q⌊(1/3)n⌋(q⌊(1/3)n⌋ − 1) ≤ (3/2)q⌈(2/3)n⌉.

Proof. Suppose C is a code over the alphabet F , where |F | = q.
Define r = ⌈(2/3)n⌉ and define s = ⌊(1/3)n⌋. Note that r + s = n.
For a word x ∈ F n, define π(x) ∈ F r to be the prefix of x of length r,

and define σ(x) ∈ F s to be the suffix of x of length s.
For a ∈ F r, define Ta ⊆ F s to be the set of suffices of words in C beginning

with a. So
Ta = {σ(x) | x ∈ C ∩ π−1(a)}.
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Write ta = |Ta|. Clearly

|C| =
∑

a∈F r

ta

since C is a disjoint union of the codewords contributing to each of the sets Ta.
We claim that for any distinct a, a′ ∈ F r we have |Ta ∩ Ta

′ | < 2. To
show this, we assume for a contradiction that there exist distinct b,b′ ∈
Ta ∩ Ta

′. Then the words ab, ab′, a′b and a′b′ all lie in C. But then the
sets X = {ab, a′b′} and X ′ = {ab′, a′b} have the same set of descendants,
contradicting the fact that C is 2-separable. So our claim follows.

Each set Ta contains
(

ta
2

)

subsets of F s of size 2. The claim above shows
that no two subsets Ta and Ta

′ can contain the same subset of size 2. Since
F s contains

(

qs

2

)

subsets of size 2,
∑

a∈F r

1
2
ta(ta − 1) ≤ 1

2
qs(qs − 1).

The maximum sum of non-negative integer variables ua such that
∑

a∈F r

1
2
ua(ua − 1) ≤ 1

2
qs(qs − 1)

is achieved when ua = 2 for exactly 1
2
qs(qs − 1) values of a, and ua = 1 for

the remaining values. Hence

|C| =
∑

a∈F r

ta ≤
∑

a∈F r

ua

≤ 2
(

1
2
qs(qs − 1)

)

+
(

qr − 1
2
qs(qs − 1)

)

= qr + 1
2
qs(qs − 1)

and so the theorem follows.

3 A lower bound for 2-separable codes

This section is an exposition of a lower bound for the cardinality of a 2-
separable code due to Gao and Ge [9].

Theorem 4. Let q and n be integers such that q ≥ 2 and n ≥ 2. Then there
exists a q-ary 2-separable code of length n with M codewords, where

M = max
N∈N

{

N −

⌊(

N

2

)

q−n + 3

(

N

4

)

2nq−2n

⌋}

.
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In particular, for each value of n there exists a constant κ (depending only
on n) with the following property: For all sufficiently large integers q, there
exists q-ary 2-separable code of length n with at least κq(2/3)n codewords.

Proof. The theorem follows by a straightforward application of the technique
of random choice with expurgation. The details are as follows. Let N be an
integer to be chosen later. Choose words c1, c2, . . . , cN ∈ F n uniformly and
independently at random.

For i, j ∈ {1, 2, . . . , N} with i < j, let Ei,j be the event that ci = cj . So
each event Ei,j occurs with probability q−n. Let Ri,j be the indicator random
variable taking the value 1 when Ei,j occurs, otherwise taking the value 0.
The expected value of Ri,j is q

−n.
For distinct i, j, i′, j′ ∈ {1, 2, . . . , n} with i < j, with i < i′ and with

i′ < j′, set X = {ci, cj} and X ′ = {ci′, cj′}. Let Fi,j,i′,j′ be the event
that desc(X) = desc(X ′). This happens only if X(k) = X ′(k) for all k ∈
{1, 2, . . . , n}. Now, X(k) = X ′(k) with probability at most 2/q2: once the
values of the kth components of ci′ and cj′ are chosen, the kth component
of ci must agree with one of the kth components of ci′ and cj′ (this event
occurs with probability at most 2/q), and then there is a unique value that
kth component of cj must take so thatX(k) = X ′(k) (and the kth component
of cj takes this value with probability 1/q). So Fi,j,i′,j′ occurs with probability
at most (2/q2)n. Let Si,j,i′,j′ be the indicator random variable taking the value
1 when Fi,j,i′,j′ occurs, otherwise taking the value 0. The expected value of
Si,j,i′,j′ is at most 2nq−2n. Note that there are 3

(

N
4

)

choices for the quadruple

(i, j, i′, j′). To see this, first note that there are
(

N
4

)

choices for the subset
L = {i, j, i′, j′}. Once L is fixed, i is determined as the smallest element of L.
There are then 3 choices for j ∈ L \ {i}. Finally, i′ and j′ are determined as
(respectively) the smallest and largest elements from L \ {i, j}.

Let Z =
∑

i,j Ri,j +
∑

i,j,i′,j′ Si,j,i′,j′. So Z is a random variable which
counts the number of the events Ei,j and Fi,j,i′,j′ that occur. By linearity of
expectation, the expected value of Z is at most

∑

i,j

q−n +
∑

i,j,i′,j′

2nq−2n =

(

N

2

)

q−n + 3

(

N

4

)

2nq−2n.

In particular, there is a choice of words ci such that at most b of the events
Ei,j and Fi,j,i′,j′ occur where

b =

⌊(

N

2

)

q−n + 3

(

N

4

)

2nq−2n

⌋

.
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We fix such a choice of words.
We form a set I ⊆ {1, 2, . . . , N} by adding i to I whenever Ei,j or Fi,j,i′,j′

occurs. So |I| ≤ b. We define C = {ci | i ∈ {1, 2, . . . , n} \ I}. By our
construction of I and by definition of the event Ei,j, all the codewords in C
are distinct (we have removed one of each pair {ci, cj} with ci = cj). Thus
|C| ≥ N − b.

We claim that C is a 2-separable code. Let X,X ′ ⊆ C be distinct non-
empty subsets of codewords with |X| ≤ 2 and |X ′| ≤ 2. If |X| = |X ′| = 2,
then desc(X) 6= desc(X ′), since by our construction of I and the definition
of the events Fi,j,i′,j′ we have removed one of the four codewords involved
when we constructed C from {c1, c2, . . . , cN}. So, without loss of generality,
we may assume |X ′| = 1, which implies that |desc(X ′) = 1. But then
desc(X) = desc(X ′) implies that X = X ′ in this situation, contradicting the
fact that X and X ′ are distinct. So C is 2-separable. Thus the first statement
of the theorem follows.

To prove the last statement of the theorem, we fix n and choose N =
⌊2−(1/3)nq(2/3)n⌋. We observe that

|C| = N −

⌊(

N

2

)

q−n + 3

(

N

4

)

2nq−2n

⌋

≥ N −N2q−n − 3
24
N42nq−2n

≥ (2−(1/3)n − 2−(2/3)nq−(1/3)n − 3
24
2−(1/3)n − o(1))q(2/3)n

> 1
2
2−(1/3)nq(2/3)n

when q is sufficiently large. So the final statement of the theorem follows with
κ = 1

2
2−(1/3)n. We remark that we have not tried to optimise the constant κ

here: see Gao and Ge [9] for a tight value.

4 A lower bound for t-separable codes when

t ≥ 3

Theorem 5. Let n and t be fixed integers such that n ≥ 2 and t ≥ 3. There
exists a positive constant κ, depending only on n and t, so that there is a
q-ary t-separable code of length n with at least κqn/(t−1) codewords for all
sufficiently large integers q.

The proof of Theorem 5 will use random choice with expurgation, just as
in the proof of Theorem 4 above. However, we have to work harder to provide
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a good enough bound on the number of randomly chosen words we need to
remove to form our code C: the straightforward approach of Theorem 4 is no
longer sufficient. Here is a brief summary of the method that is used.

As before, we choose words c1, c2, . . . , cN ∈ F n uniformly and inde-
pendently at random. We want to identify (and ultimately remove ele-
ments from) subsets X,X ′ ⊆ {c1, c2, . . . , cN} such that |X ′| ≤ |X| ≤ t
and desc(X) = desc(X ′). We fix positive integers r, s and s′ and restrict
ourselves to the cases when |X ∩X ′| = r, |X \X ′| = s and |X ′ \X| = s′. For
most choices of r, s and s′ (choices such that (r, s, s′) lies in a certain set J
defined below) the approach of Theorem 4 will work: we define a collection
of appropriate events FA,B,B′ , where A,B,B′ ⊆ {1, 2, . . . , N} are disjoint
subsets of indices of sizes r, s and s′ respectively. However, we cannot do
this when r = t − 1 and s = s′ = 1: the probability of the events FA,B,B′ is
too large and will affect the leading term. So we need to work harder to deal
with this case. Let j and j′ be defined by X \X ′ = {cj} and X ′ \X = {cj′}.
It turns out that the probability that desc(X) = desc(X ′) is dominated by
situations when cj and cj′ agree in many positions. So, rather than have
events Ej,j′ corresponding to equality of cj and cj′ as in Theorem 4, we de-
fine Ej,j′ to be the event that cj and cj′ agree in many positions. We then
define events GA,j,j′ that require desc(X) = desc(X ′) and also require that
Ej,j′ does not occur. The remainder of the proof proceeds as in Theorem 4,
although various calculations become a little more complicated.

Proof of Theorem 5. Let q be a fixed positive integer, and let F be a set
of cardinality q. Let N be an integer to be chosen later. Choose words
c1, c2, . . . , cN ∈ F n uniformly and independently at random.

For any i, j ∈ {1, 2, . . . , N} with i < j, let Ei,j be the event that ci and
cj agree in n/(t − 1) or more components. There are less than 2n ways of
choosing a set K of n/(t− 1) or more components; the probability that the
codewords ci and cj agree on the components in K is at most q−n/(t−1). So
the event Ei,j occurs with probability at most 2nq−n/(t−1). Let Ri,j be the
indicator random variable for Ei,j. The expected value of Ri,j is at most
2nq−n/(t−1).

Let A, B and B′ be disjoint subsets of {1, 2, . . . , N} such that |B′| ≤ |B|.
Define the event FA,B,B′ as follows. Let X = {ci | i ∈ A ∪ B} and let
X ′ = {ci | i ∈ A ∪ B′}. Then FA,B,B′ is the event that desc(X) = desc(X ′).
Since we have

desc({ci : i ∈ B}) ⊆ desc(X) ⊆ desc(X ′)

10



when our event occurs, we see that for i ∈ B the kth component of ci must
agree with the kth component of one of the elements ofX ′. So the probability
of the event FA,B,B′ is bounded above by ((|A|+ |B′|)/q)|B|n. Let SA,B,B′ be
the indicator random variable corresponding to FA,B,B′. Then the expected
value of SA,B,B′ is at most (|A|+ |B|)|B|nq−|B|n.

Define J to be the set of triples (r, s, s′) of integers such that:

0 ≤ r ≤ t− 1,

1 ≤ s ≤ t− r,

0 ≤ s′ ≤ s,

2 ≤ r + s, and

(r, s, s′) 6= (t− 1, 1, 1).

We will only be interested in the events FA,B,B′ where (|A|, |B|, |B′|) ∈ J .
We now define events associated with the element (t − 1, 1, 1) we have

removed from J . Let A, {j} and {j′} be disjoint subsets of {1, 2, . . . , N} of
cardinalities t − 1, 1 and 1 respectively. Define the event GA,j,j′ as follows.
Let X = {ci | i ∈ A ∪ {j}} and let X ′ = {ci | i ∈ A ∪ {j′}}. Then
GA,j,j′ is the event that cj and cj′ agree in less than n/(t − 1) components
and desc(X) = desc(X ′). There are less than 2n ways of choosing a set K
of components of size less than n/(t − 1), and GA,j,j′ is the union of the
sub-events where cj and cj′ agree exactly in the components in K. Define

Y = {ci | i ∈ A}.

We have X(k) is the union of Y (k) and the kth component of cj. Similarly,
X ′(k) is the union of Y (k) and the kth component of cj′. The condition
desc(X) = desc(X ′) is equivalent to the condition that X(k) = X ′(k) for all
components k. So on the components k /∈ K where cj and cj′ differ, the kth
components of cj and cj′ must both lie in Y (k); this happens with probability
at most ((t−1)/q)2. When k ∈ K, the codewords cj and cj′ agree in their kth
components, and this happens with probability 1/q. When q is sufficiently
large, ((t−1)/q)2 < 1/q, and so the probability of the event GA,j,j′ is at most

2n(((t− 1)/q)2)n−n/(t−1)q−n/(t−1) < (2t)2nq−(2−1/(t−1))n.

The above expression is an upper bound on the expectation of the indicator
random variable TA,j,j′ corresponding to GA,j,j′.
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Define R = {(i, j) : 1 ≤ i < j ≤ N}, so |R| ≤ N2. For integers
(r, s, s′) ∈ J , define Sr,s,s′ to be the set of triples (A,B,B′) of disjoint subsets
of {1, 2 . . . , N} with |A| = r, |B| = s and |B′| = s′, so |Sr,s,s′| ≤ N r+s+s′.
Finally define T to be the set of all triples (A, j, j′) where A, {j} and {j′}
are disjoint subsets of {1, 2, . . . , N} and |A| = t−1. We see that |T | ≤ N t+1.

We are interested in excluding the events Ei,j where (i, j) ∈ R, the events
FA,B,B′ where (A,B,B′) ∈ Sr,s,s′ with (r, s, s′) ∈ J , and the events GA,j,j′

where (A, j, j′) ∈ T . So we define a random variable Z by

Z =
∑

{i,j}∈R

Ri,j +
∑

(r,s,s′)∈J

∑

(A,B,B′)∈Sr,s,s′

SA,B,B′ +
∑

(A,j,j′)∈T

TA,j,j′.

We have computed upper bounds on the expectation of the indicator variables
in this expression, and on the number of terms in each sum. From these
bounds, and from linearity of expectation, we can deduce that Z has expected
value at most b, where we define

b1 = N22nq−(1/(t−1))n,

b2 =
∑

(r,s,s′)∈J

N r+s+s′(r + s)snq−sn,

b3 = N t+1(2t)2nq−(2−1/(t−1))n, and

b = b1 + b2 + b3. (2)

We now proceed as in Theorem 4. There is a choice of the values ci
such that at most b of the events occur. Fix this choice. Define a subset
I ⊆ {1, 2, . . . , N} by adding i for each event Ei,j that occurs, adding a single
element i ∈ A∪B ∪B′ for each event FA,B,B′ that occurs and adding a single
element i ∈ A∪ {j} ∪ {j′} for each event GA,j,j′ that occurs. We then define
C = {ci | i ∈ {1, 2, . . . , N} \ I}.

If cj = cj′ for some j 6= j′ then the event Ej,j′ holds, so one of j and j′

lies in I, thus cj or c
′
j was removed when C was formed. So all the codewords

in C are distinct. In particular, |C| ≥ N − b.
We now show that C is a t-separable code. Suppose for a contradiction

that there are distinct non-empty subsets X,X ′ ⊆ C with |X| ≤ t, |X ′| ≤ t
and desc(X) = desc(X ′). Without loss of generality, we may assume that
|X ′| ≤ |X|. Define Y = X ∩X ′. Let r = |Y |, s = |X \ Y | and s′ = |X ′ \ Y |.
If |X| = 1 then |X ′| = 1 and we have a contradiction since all codewords
are distinct. So we may assume that |X| = r + s ≥ 2. We now see that
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(r, s, s′) ∈ J ∪ {(t − 1, 1, 1)}. If (r, s, s′) ∈ J , then the event FA,B,B′ occurs,
where A, B and B′ are the indices of the codewords in Y , X \ Y and X ′ \ Y
respectively. But then at least one element of A∪B ∪B′ lies in I, and so we
have a contradiction in this case. Suppose now that (r, s, s′) = (t − 1, 1, 1).
Then X = Y ∪ {cj} and X ′ = Y ∪ {cj′} for distinct j, j′ ∈ {1, 2, . . . , N}.
Without loss of generality, we may assume that j < j′. If cj and cj′ agree
in n/(t − 1) or more components, then the event Ej,j′ occurs and so j ∈ I.
Thus cj 6∈ C, and we have a contradiction. Now suppose that cj and cj′ agree
in less than n/(t − 1) components. Then the event GA,j,j′ occurs, where A
is the set of indices corresponding to Y . But at least one of the indices
A ∪ {j} ∪ {j′} lies in I, which gives us a contradiction in this final case.
Hence C is a t-separable code, as required.

Finally, we need to show that N can always be chosen so that |C| ≥
κqn/(t−1) for all sufficiently large q. We set N = ⌊ǫqn/(t−1)⌋, where ǫ is a
sufficiently small positive constant depending only on n and t. We will always
take ǫ < 1. Note that |C| = N − b = ǫqn/(t−1) − b−O(1). We will now show
that when N = ⌊ǫqn/(t−1)⌋,

b ≤ ǫ2κ′qn/(t−1) (3)

for some constant κ′ which depends only on n and t. Proving this inequality
establishes the theorem. For if we choose ǫ < 1/κ′ we see that ǫ − ǫ2κ′ is
positive and so

|C| ≥ N − b ≥ (ǫ− ǫ2κ′)qn/(t−1) −O(1) ≥ κqn/(t−1)

for all sufficiently large q, where κ is any positive constant less than ǫ− ǫ2κ′.
Recall that b = b1 + b2 + b3. We establish (3) by bounding each of b1, b2

and b3 in turn. First,

b1 = N22nq−n/(t−1) ≤ ǫ22nqn/(t−1) = ǫ2a1q
n/(t−1)

where a1 depends only on n.
We now turn to providing a bound for b2. The constant b2 is defined as

a sum over (r, s, s′) ∈ J . We begin by bounding a term in this sum.
Suppose that (r, s, s′) ∈ J . We have that r + s ≤ t and 1 ≤ s. Moreover,

r + s+ s′ ≥ 2 and so

N r+s+s′(r + s)snq−sn ≤ ǫ2(r + s)snq(r+s+s′−(t−1)s)n/(t−1)

≤ ǫ2ttnq(r+s′−(t−2)s)n/(t−1).
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We claim that r+ s′ − (t− 2)s ≤ 1 for all (r, s, s′) ∈ J . For if s ≥ 2, then

r + s′ − (t− 2)s ≤ r + s− 2(t− 2) ≤ t− 2(t− 2) = −t + 4 ≤ 1,

since t ≥ 3. If s = 1 and r < t− 1, then

r + s′ − (t− 2)s ≤ (t− 2) + s− (t− 2) = 1.

Finally, if s = 1 and r = t− 1, then s′ = 0 and so

r + s′ − (t− 2)s = t− 1− (t− 2) = 1.

So our claim follows, and

N r+s+s′(r + s)snq−sn ≤ ǫ2ttnqn/(t−1)

whenever (r, s, s′) ∈ J . Since |J | ≤ (t+ 1)3, we find that

b2 =
∑

(r,s,s′)∈J

N r+s+s′(r + s)snq−sn ≤ ǫ2(t + 1)3ttnqn/(t−1) = ǫ2a2q
n/(t−1),

where a2 is a constant depending only on n and t.
Finally, we provide a bound for b3. We can see that

b3 = N t+1(2t)2nq−(2−1/(t−1))n ≤ ǫ2(2t)2nq((t+1)−2(t−1)+1)(n/(t−1)) .

Now (t+ 1)− 2(t− 1) + 1 = 4− t ≤ 1 since t ≥ 3. Hence

b3 ≤ ǫ2a3q
n/(t−1)

for some constant a3 depending only on n and t.
The bounds above combine with (2) to show that (3) holds, where κ′ =

a1 + a2 + a3. So the theorem follows.
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