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A Class of Two-Weight and Three-Weight Codes
and Their Applications in Secret Sharing

Kelan Ding and Cunsheng Ding

Abstract

In this paper, a class of two-weight and three-weight linearcodes over GF(p) is constructed, and their
application in secret sharing is investigated. Some of the linear codes obtained are optimal in the sense that
they meet certain bounds on linear codes. These codes have applications also in authentication codes, association
schemes, and strongly regular graphs, in addition to their applications in consumer electronics, communication and
data storage systems.

Index Terms

Association schemes, authentication codes, linear codes,secret sharing schemes, strongly regular graphs.

I. INTRODUCTION

Throughout this paper, letp be an odd prime and letq= pm for some positive integerm. An [n, k, d]
codeC over GF(p) is a k-dimensional subspace of GF(p)n with minimum (Hamming) distanced. Let Ai
denote the number of codewords with Hamming weighti in a codeC of lengthn. Theweight enumerator
of C is defined by 1+A1z+A2z2+ · · ·+Anzn. The weight distribution(1,A1, . . . ,An) is an important
research topic in coding theory, as it contains crucial information as to estimate the error correcting
capability and the probability of error detection and correction with respect to some algorithms. A code
C is said to be at-weight code if the number of nonzeroAi in the sequence(A1,A2, · · · ,An) is equal tot.

Let D = {d1, d2, . . . , dn} ⊆ GF(q). Let Tr denote the trace function from GF(q) onto GF(p) throughout
this paper. We define a linear code of lengthn over GF(p) by

CD = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x∈ GF(q)}, (1)

and callD the defining setof this codeCD.
This construction is generic in the sense that many classes of known codes could be produced by

selecting the defining setD ⊆ GF(q). This construction technique was employed in [15] and [16] for
obtaining linear codes with a few weights.

The objective of this paper is to construct a class of linear codes over GF(p) with two and three nonzero
weights using this generic construction method, and investigate their application in secret sharing. Some
of the linear codes obtained in this paper are optimal in the sense that they meet some bounds on linear
codes. The linear codes with a few weights presented in this paper have applications also in authentication
codes [17], association schemes [5], and strongly regular graphs [5], in addition to their applications in
consumer electronics, communication and data storage systems.
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II. THE LINEAR CODES WITH TWO AND THREE WEIGHTS

We only describe the codes and introduce their parameters inthis section. The proofs of their parameters
will be given in Section III.

In this paper, the defining setD of the codeCD of (1) is given by

D = {x∈ GF(q)∗ : Tr(x2) = 0}. (2)

Theorem 1. Let m> 1 be odd, and let D be defined in (2). Then the setCD of (1) is a [pm−1−1,m] code
over GF(p) with the weight distribution in Table I, where Aw = 0 for all other weights w not listed in the
table.

TABLE I
THE WEIGHT DISTRIBUTION OF THE CODES OFTHEOREM 1

Weight w Multiplicity Aw

0 1

(p−1)
(

pm−2− p
m−3

2

)

p−1
2

(

pm−1+ p
m−1

2

)

(p−1)pm−2 pm−1−1

(p−1)
(

pm−2+ p
m−3

2

)

p−1
2

(

pm−1− p
m−1

2

)

Example 1. Let (p,m) = (3,5). Then the codeCD has parameters[80,5,48] and weight enumerator
1+90z48+80z54+72z60.

Theorem 2. Let m≥ 2 be even, and let D be defined in (2). Then the codeCD over GF(p) of (1) has
parameters

[

pm−1− (−1)(
p−1

2 )2 m
2 (p−1)p

m−2
2 −1,m

]

and the weight distribution in Table II, where Aw = 0 for all other weights w not listed in the table.

TABLE II
THE WEIGHT DISTRIBUTION OF THE CODES OFTHEOREM 2

Weight w Multiplicity Aw
0 1

(p−1)pm−2 pm−1− (−1)(
p−1

2 )2 m
2 (p−1)p

m−2
2 −1

(p−1)
(

pm−2− (−1)(
p−1

2 )2 m
2 p

m−2
2

)

(p−1)
(

pm−1+(−1)(
p−1

2 )2 m
2 p

m−2
2

)

Example 2. Let (p,m) = (5,4). Then the codeCD has parameters[104,4,80] and weight enumerator
1+ 520z80+ 104z100. The best linear code of length104 and dimension4 over GF(5) has minimum
weight81.

It is observed that the weights in the codeCD have a common divisorp−1. This indicates that the
codeCD may be punctured into a shorter one whose weight distribution can be easily derived from that
of the original codeCD. This is indeed true and can be done as follows.

Note that Tr(ax2) = 0 for all a∈ GF(p) if Tr(x2) = 0. Hence, the setD of (2) can be expressed as

D = (GF(p)∗)D̄ = {ab : a∈ GF(p)∗ andb∈ D̄}, (3)

wheredi/d j 6∈ GF(p)∗ for every pair of distinct elementsdi andd j in D̄. Then the codeCD̄ is a punctured
version ofCD whose parameters are given in the following two corollaries.

Corollary 3. Let m> 1 be odd, and letD̄ be defined in (3). Then the setCD̄ of (1) is a [(pm−1−1)/(p−
1),m] code overGF(p) with the weight distribution in Table III, where Aw = 0 for all other weights w
not listed in the table.



3

TABLE III
THE WEIGHT DISTRIBUTION OF THE CODES OFCOROLLARY 3

Weight w Multiplicity Aw
0 1

pm−2− p
m−3

2
p−1

2

(

pm−1+ p
m−1

2

)

pm−2 pm−1−1

pm−2+ p
m−3

2
p−1

2

(

pm−1− p
m−1

2

)

Example 3. Let (p,m) = (3,5). Then the codeCD̄ has parameters[40,5,24] and weight enumerator
1+ 90z24+ 80z27+ 72z30. This code is optimal in the sense that any ternary code of length 40 and
dimension5 cannot have minimum distance25 or more [20].

Corollary 4. Let m≥ 2 be even, and let̄D be defined in (3). Then the codeCD̄ over GF(p) of (1) has
parameters

[

pm−1−1
p−1

− (−1)(
p−1

2 )2 m
2 p

m−2
2 ,m

]

and the weight distribution in Table IV, where Aw = 0 for all other weights w not listed in the table.

TABLE IV
THE WEIGHT DISTRIBUTION OF THE CODES OFCOROLLARY 4

Weight w Multiplicity Aw

0 1

pm−2 pm−1− (−1)(
p−1

2 )2 m
2 (p−1)p

m−2
2 −1

pm−2− (−1)(
p−1

2 )2 m
2 p

m−2
2 (p−1)

(

pm−1+(−1)(
p−1

2 )2 m
2 p

m−2
2

)

Example 4. Let (p,m) = (5,4). Then the codeCD̄ has parameters[26,4,20] and weight enumerator
1+520z20+104z25. This code is optimal due to the Griesmer bound.

III. T HE PROOFS OF THE MAIN RESULTS

Our task of this section is to prove Theorems 1 and 2, while Corollaries 3 and 4 follow directly from
Theorems 1 and 2, respectively.

A. Some auxiliary results

To prove Theorems 1 and 2, we need the help of a number of lemmasthat are described and proved
in the sequel. We start with group characters and Gauss sums.

An additive characterof GF(q) is a nonzero functionχ from GF(q) to the set of nonzero complex
numbers such thatχ(x+y) = χ(x)χ(y) for any pair(x,y) ∈ GF(q)2. For eachb∈ GF(q), the function

χb(c) = εTr(bc)
p for all c∈ GF(q) (4)

defines an additive character of GF(q), whereεp= e2π
√
−1/p. Whenb= 0, χ0(c)= 1 for all c∈GF(q), and

is called thetrivial additive characterof GF(q). The characterχ1 in (4) is called thecanonical additive
characterof GF(q). It is known that every additive character of GF(q) can be written asχb(x) = χ1(bx)
[24, Theorem 5.7].

Since the multiplicative group GF(q)∗ is cyclic, all the characters of the multiplicative group GF(q)∗

are given by
ψ j(αk) = e2π

√
−1 jk/(q−1), k= 0,1, · · · ,q−2,
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where 0≤ j ≤ q−2 and α is a generator of GF(q)∗. Theseψ j are calledmultiplicative charactersof
GF(q), and form a group of orderq−1 with identity elementψ0. The characterψ(q−1)/2 is called the
quadratic characterof GF(q), and is denoted byη in this paper. We extend this quadratic character by
letting η(0) = 0.

The Gauss sumG(η,χ1) over GF(q) is defined by

G(η,χ1) = ∑
c∈GF(q)∗

η(c)χ1(c) = ∑
c∈GF(q)

η(c)χ1(c) (5)

and the Gauss sumG(η̄, χ̄1) over GF(p) is defined by

G(η̄, χ̄1) = ∑
c∈GF(p)∗

η̄(c)χ̄1(c) = ∑
c∈GF(p)

η̄(c)χ̄1(c), (6)

whereη̄ and χ̄1 are the quadratic and canonical additive characters of GF(p), respectively.
The following lemma is proved in [24, Theorem 5.15].

Lemma 5. With the symbols and notation above, we have

G(η,χ1) = (−1)m−1
√
−1

( p−1
2 )2m√

q

and

G(η̄, χ̄1) =
√
−1

( p−1
2 )2√

p.

We will need the following lemma [24, Theorem 5.33].

Lemma 6. Let χ be a nontrivial additive character ofGF(q) with q odd, and let f(x) = a2x2+a1x+a0 ∈
GF(q)[x] with a2 6= 0. Then

∑
c∈GF(q)

χ( f (c)) = χ(a0−a2
1(4a2)

−1)η(a2)G(η,χ).

The conclusion of the following lemma is straightforward. For completeness, we provide a proof below.

Lemma 7. If m≥ 2 is even, thenη(y) = 1 for each y∈ GF(p)∗. If m is odd, thenη(y) = η̄(y) for each
y∈ GF(p).

Proof: Let α be a generator of GF(q)∗. Notice that everyy ∈ GF(p)∗ can be expressed asα
q−1
p−1 j ,

where 0≤ j ≤ p−2. We have

q−1
p−1

mod 2= m mod 2.

Hence, every elementy∈GF(p)∗ is a square in GF(q) whenm is an even positive integer, andη(y) = η̄(y)
for eachy∈ GF(p) whenm is odd. This completes the proof.

Below we prove a few more auxiliary results before proving the main results of this paper.

Lemma 8. We have the following equality:

∑
y∈GF(p)∗

∑
x∈GF(q)

εyTr(x2)
p =

{

0 if m odd,

(−1)m−1(−1)(
p−1

2 )2 m
2 (p−1)

√
q if m even.

Proof: By Lemma 6, we have

∑
y∈GF(p)∗

∑
x∈GF(q)

εyTr(x2)
p = G(η,χ1) ∑

y∈GF(p)∗
η(y).
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Using Lemma 7, we obtain

∑
y∈GF(p)∗

η(y) =
{

0 if m odd,
p−1 if m even.

The desired conclusion then follows.
The next lemma will be employed later.

Lemma 9. For each a∈ GF(p), let

na = |{x∈ GF(q) : Tr(x2) = a}|.
Then

na =



















pm−1 if m odd and a= 0,

pm−1− (−1)(
p−1

2 )2 m
2 (p−1)p

m−2
2 if m even and a= 0,

pm−1− η̄(a)(−1)
p−1

2 (−1)(
p−1

2 )2(m+1
2 )p

m−1
2 if m odd and a6= 0,

pm−1+(−1)(
p−1

2 )2 m
2 p

m−2
2 if m even and a6= 0.

Proof: It follows from Lemma 6 that

na =
1
p ∑

x∈GF(q)
∑

y∈GF(p)

εy(Tr(x2)−a)
p

= pm−1+
1
p ∑

y∈GF(p)∗
εya

p ∑
x∈GF(q)

εTr(yx2)
p

= pm−1+
1
p

G(η,χ1) ∑
y∈GF(p)∗

εya
p η(y)

=

{

pm−1+ 1
pG(η,χ1)∑y∈GF(p)∗ η(y) if a= 0

pm−1+ 1
pη(a)G(η,χ1)∑z∈GF(p)∗ εz

pη(z) if a 6= 0

=



















pm−1 if m odd anda= 0,
pm−1+ p−1

p G(η,χ1) if m even anda= 0,

pm−1+
η̄(a)

p G(η,χ1)G(η̄, χ̄1) if m odd anda 6= 0,

pm−1− 1
pG(η,χ1) if m even anda 6= 0,

where the first equality follows from the fact that∑y∈GF(p) χ̄1(yz) = 0 for everyz∈ GF(p)∗. The desired
conclusion then follows from Lemma 5.

The following result will play an important role in proving the main results of this paper.

Lemma 10. Let b∈ GF(q)∗. Then

∑
y∈GF(p)∗

∑
z∈GF(p)∗

∑
x∈GF(q)

εTr(yx2+bzx)
p

=



















0 if m odd andTr(b2) = 0,

−η̄(Tr(b2))(−1)(
p−1

2 )2(m+1
2 )(p−1)p

m+1
2 if m odd andTr(b2) 6= 0,

−(−1)(
p−1

2 )2 m
2 (p−1)2p

m
2 if m even andTr(b2) = 0,

(−1)(
p−1

2 )2 m
2 (p−1)p

m
2 if m even andTr(b2) 6= 0.
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Proof: It follows from Lemmas 6 and 7 that

∑
y∈GF(p)∗

∑
z∈GF(p)∗

∑
x∈GF(q)

εTr(yx2+bzx)
p

= G(η,χ1) ∑
y∈GF(p)∗

∑
z∈GF(p)∗

χ1

(

−b2z2

4y

)

η(y)

= G(η,χ1) ∑
y1∈GF(p)∗

∑
z∈GF(p)∗

χ1
(

−b2z2y1
)

η
(

1
4y1

)

= G(η,χ1) ∑
y1∈GF(p)∗

∑
z∈GF(p)∗

χ1
(

−b2z2y1
)

η
(

y1

(2y1)2

)

= G(η,χ1) ∑
y∈GF(p)∗

∑
z∈GF(p)∗

χ1
(

−b2z2y
)

η(y)

= G(η,χ1) ∑
y∈GF(p)∗

∑
z∈GF(p)∗

ε−z2Tr(b2)y
p η(y)

=

{

G(η,χ1)∑z∈GF(p)∗ ∑y∈GF(p)∗ η(y) if Tr(b2) = 0

G(η,χ1)∑z∈GF(p)∗ ∑y∈GF(p)∗ ε−z2Tr(b2)y
p η(−z2Tr(b2)y)η(−Tr(b2)) if Tr(b2) 6= 0

=

{

G(η,χ1)(p−1)∑y∈GF(p)∗ η(y) if Tr(b2) = 0
G(η,χ1)η(−Tr(b2))(p−1)∑y∈GF(p)∗ εy

pη(y) if Tr(b2) 6= 0

=















0 if m odd and Tr(b2) = 0,
G(η,χ1)G(η̄, χ̄1)η(−Tr(b2))(p−1) if m odd and Tr(b2) 6= 0,
G(η,χ1)(p−1)2 if m even and Tr(b2) = 0,
−G(η,χ1)(p−1) if m even and Tr(b2) 6= 0.

The desired conclusions then follow from Lemmas 5 and 7.
The last auxiliary result we need is the following.

Lemma 11. For any b∈ GF(q)∗ and any a∈ GF(p), let

N(b) = |{x∈ GF(q) : Tr(x2) = 0 and Tr(bx) = 0}|.
Then

N(b) =



















pm−2 if m odd andTr(b2) = 0,

pm−2− η̄(Tr(b2))(−1)(
p−1

2 )
2
(m+1

2 )(p−1)p
m−3

2 if m odd andTr(b2) 6= 0,

pm−2− (−1)(
p−1

2 )
2 m

2 (p−1)p
m−2

2 if m even andTr(b2) = 0,
pm−2 if m even andTr(b2) 6= 0.

Proof: By definition, we have

N(b) = p−2 ∑
x∈GF(q)

(

∑
y∈GF(p)

εyTr(x2)
p

)(

∑
z∈GF(p)

εzTr(bx)
p

)

= p−2 ∑
z∈GF(p)∗

∑
x∈GF(q)

εTr(bzx)
p + p−2 ∑

y∈GF(p)∗
∑

x∈GF(q)

εTr(yx2)
p +

p−2 ∑
y∈GF(p)∗

∑
z∈GF(p)∗

∑
x∈GF(q)

εTr(yx2+bzx)
p + pm−2.
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Note that
∑

z∈GF(p)∗
∑

x∈GF(q)

εTr(bzx)
p = 0.

The desired conclusions then follow from Lemmas 8 and 10.

B. The proof of Theorems 1 and 2

It follows from Lemma 9 that the lengthn of the codeCD is given by

n= |D|= n0−1=

{

pm−1−1 if m odd,

pm−1−1− (−1)(
p−1

2 )2 m
2 (p−1)p

m−2
2 if m even.

For eachb∈ GF(q)∗, define

cb = (Tr(bd1), Tr(bd2), . . . , Tr(bdn)), (7)

whered1,d2, . . . ,dn are the elements ofD. The Hamming weight wt(cb) of cb is n0−N(b), wheren0 and
N(b) were defined before.

Whenm is odd, it follows from Lemmas 9 and 11 that

wt(cb) = n0−N(b) =







(p−1)pm−2 if Tr(b2) = 0,

(p−1)

(

pm−2+ η̄(Tr(b2))(−1)(
p−1

2 )
2
(m+1

2 )p
m−3

2

)

if Tr(b2) 6= 0.

The desired conclusions of Theorem 1 then follow from Lemma 9and the fact that wt(cb)> 0 for each
b∈ GF(q)∗.

Whenm is even, it follows from Lemmas 9 and 11 that

wt(cb) = n0−N(b) =







(p−1)pm−2 if Tr(b2) = 0,

(p−1)

(

pm−2− (−1)(
p−1

2 )
2 m

2 p
m−2

2

)

if Tr(b2) 6= 0.

The desired conclusions of Theorem 2 then follow from Lemma 9and the fact that wt(cb)> 0 for each
b∈ GF(q)∗.

IV. A GENERALIZATION OF THE CONSTRUCTION

Let f be a function from a finite abelian group(A,+) to a finite abelian group(B,+). A robust measure
of nonlinearity of f is defined by

Pf = max
06=a∈A

max
b∈B

|{x∈ A : f (x+a)− f (x) = b}|
|A| .

The smaller the value ofPf , the higher the corresponding nonlinearity off .
It is easily seen thatPf ≥ 1

|B| [7]. A function f : A→ B hasperfect nonlinearityif Pf =
1
|B| . A perfect

nonlinear function from a finite abelian group to a finite abelian group of the same order is called a
planar functionin finite geometry. Planar functions were introduced by Dembowski and Ostrom in 1968
for the construction of affine planes [12]. We refer to Carletand Ding [7] for a survey of highly nonlinear
functions, Coulter and Matthews [10] and Ding and Yuan [19] for information about planar functions.

Some known planar functions from GF(q) to GF(q) are the following [7], [10]:
• f (x) = x2.
• f (x) = xpk+1, wherem/gcd(m,k) is odd (Dembowski and Ostrom [12]).

• f (x) = x
3k+1

2 , wherep= 3, k is odd, and gcd(m,k) = 1 (Coulter and Matthews [10]).
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• fu(x) = x10−ux6−u2x2, wherep= 3 andm is odd (Coulter and Matthews [10] for the caseu=−1,
Ding and Yuan [19] for the general case).

Note that planar functions over GF(pm) exist for any pair(p,m) with p being an odd prime number.
The construction of the linear codeCD of this paper can be generalized as follows. Letf be a planar

function from GF(q) to GF(q) such that
• f (0) = 0;
• f (x) = f (−x) for all x∈ GF(q); and
• f (ax) = ah f (x) for all a∈ GF(p) andx∈ GF(q), whereh is some constant.

Then the set
D f := {x∈ GF(q)∗ : Tr( f (x)) = 0} ⊂ GF(q)

defines a linear codeCD f over GF(p). The codeCD f may have the same parameters as the codeCD of
this paper. Magma confirms that this is true for all the four classes of planar functions listed above. But
it is open whetherCD f andCD have the same parameters and weight distribution for any planar function
f satisfying the three conditions above. It would be nice if this open problem can be settled.

We remark that this construction of linear codes with planarfunctions here is different from the one
in [8], as the lengths and dimensions of the codes in the two constructions are different.

V. APPLICATIONS OF THE LINEAR CODES IN SECRET SHARING SCHEMES

In this section, we describe and analyse the secret sharing schemes from some of the codes presented
in this paper.

A. Secret sharing schemes

A secret sharing scheme consists of
• a dealer, and a groupP = {P1,P2, · · · ,Pℓ} of ℓ participants;
• a secret spaceS ;
• ℓ share spacesS1, S2, · · · , Sℓ;
• a share computing procedure; and
• a secret recovering procedure.
The dealer will choose a secrets from the secret spaceS , and will employ the sharing computing

procedure to compute a share of the secrets for each participantPi, and then give the share toPi . The
share computed forPi belongs to the share spaceSi. When a subset of the participants comes together
with their shares, they may be able to recover the secrets from their shares with the secret recovering
procedure. The secrets and the sharing computing function are known only to the dealer, while the secret
recovering procedure is known to all the participants.

By an access setwe mean a group of participants who can determine the secret from their shares. The
access structureof a secret sharing scheme is defined to be the set of all accesssets. Aminimal access
set is a group of participants who can recover the secret with their shares, but any of its proper subgroups
cannot do so. A secret sharing scheme is said to have themonotone access structure, if any superset of
any access set is also an access set. In a secret sharing scheme with the monotone access structure, the
access structure is totally characterized by its minimal access sets by definition. In this section, we deal
with secret sharing schemes only with the monotone access structure.

Secret sharing schemes have applications in banking systems, cryptographic protocols, electronic voting
systems, and the control of nuclear weapons. In 1979, Shamirand Blakley documented the first secret
sharing schemes in the literature [4], [27].
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B. The covering problem of linear codes

In order to describe the secret sharing scheme of a linear code, we need to introduce the covering
problem of linear codes.

The supportof a vectorc = (c0, . . . ,cn−1) ∈ GF(p)n is defined as

{0≤ i ≤ n−1 : ci 6= 0}.
We say that a vectorx covers a vectory if the support ofx contains that ofy as a proper subset.

A minimal codewordof a linear codeC is a nonzero codeword that does not cover any other nonzero
codeword ofC . The covering problemof a linear code is to determine all the minimal codewords ofC .
This is a very hard problem in general, but can be solved for certain types of linear codes.

C. A construction of secret sharing schemes from linear codes

Any linear code over GF(p) can be employed to construct secret sharing schemes [1], [8], [25], [28].
Given a linear codeC over GF(p) with parameters[n,k,d] and generator matrixG= [g0,g1, . . . ,gn−1], we
used⊥ and H = [h0,h1, . . . ,hn−1] to denote the minimum distance and the generator matrix of its dual
codeC⊥.

In the secret sharing scheme based onC , the secret space and the share spaces all are GF(p), and the
participants are denoted byP1,P2, · · · ,Pn−1. To compute shares for all the participants, The dealer chooses
randomly a vectoru = (u0, . . . ,un−k−1) such thats= uh0, which is the inner product of the two vectors.
The dealer then treatsu as an information vector and computes the corresponding codeword

t = (t0, t1, . . . , tn−1) = uH.

He then givesti to partyPi as his/her share for eachi ≥ 1.
The secret recovering procedure is the following. Note thatt0 = uh0 = s. A set of shares{ti1, ti2, . . . , tim}

determines the secrets iff h0 is a linear combination ofhi1, . . . ,him. Suppose that

h0 =
m

∑
j=1

x jhi j .

Then the secrets is recovered by computing

s=
m

∑
j=1

x j ti j .

Equivalently, we look for codewordsc of the codeC with the shape

(1,0, . . . ,0,ci1,0, . . . ,0,cim,0, . . . ,0)

Hence, the minimal access sets of the secret sharing scheme based onC⊥ correspond to the minimal
codewords inC having 1 as their leftmost component. The other nonzero components correspond to the
participants in the minimal access set. For example, if(1,2,0,0,2) is a codeword ofC , then{P1,P4} is
a minimal access set. To obtain the access structure of the secret sharing scheme based onC⊥, we need
to determine all minimal codewords ofC .

Note that the access structure of the secret sharing scheme based onC⊥ is independent of the choice
of the generator matrixH of C⊥. We therefore say that the secret sharing scheme is based onC⊥ without
mentioning the matrixH. We would remind the reader that a linear code gives a pair of secret sharing
schemes. One is based onC and the other is based onC⊥. Below we consider only the latter due to
symmetry.

The access structure of the secret sharing scheme based on a linear code is very complex in general,
but can be determined in certain special cases. The following theorem is proved in [18], [30].
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Theorem 12. Let C be an[n,k,d] code overGF(p), and let G= [g0,g1, · · · ,gn−1] be its generator matrix.
Let d⊥ denote the minimum distance of its dual codeC⊥. If each nonzero codeword ofC is minimal,
then in the secret sharing scheme based onC⊥, the total number of participants is n−1, and there are
altogether pk−1 minimal access sets.

• When d⊥ = 2, the access structure is as follows.
If gi is a multiple ofg0, 1≤ i ≤ n−1, then participant Pi must be in every minimal access set.
If gi is not a multiple ofg0, 1≤ i ≤ n−1, then participant Pi must be in(p−1)pk−2 out of pk−1

minimal access sets.
• When d⊥ ≥ 3, for any fixed1≤ t ≤ min{k−1,d⊥−2} every group of t participants is involved in
(p−1)t pk−(t+1) out of pk−1 minimal access sets.

When the conditions of Theorem 12 are satisfied, the secret sharing scheme based on the dual code
C⊥ is interesting. In the case thatd⊥ = 2, some participants must be in every minimal access sets, and
thus are dictators. Such a secret sharing scheme may be required in certain applications. In the case that
d⊥ ≥ 3, each participant plays the same role as he/she is involvedin the same number of minimal access
sets. Such a secret sharing scheme is said to bedemocratic, and may be needed in some other application
scenarios.

A question now is how to construct a linear code whose nonzerocodewords all are minimal. The
following lemma provides a guideline in this direction [2],[3].

Lemma 13. Every nonzero codeword of a linear codeC over GF(p) is minimal, provided that

wmin

wmax
>

p−1
p

,

where wmax and wmin denote the maximum and minimum nonzero weights inC , respectively.

D. The secret sharing schemes from the codes of this paper

In this subsection, we consider the secret sharing schemes based on the dual codesC⊥
D andC⊥

D̄ of the
codesCD andCD̄ presented in this paper.

For the codeCD of Theorem 1 and the codeCD̄ of Corollary 3, we have

wmin

wmax
=

pm−2− p
m−3

2

pm−2+ p
m−3

2

>
p−1

p

if m≥ 5.
Let m≡ 0 (mod 4) or m≡ 0 (mod 2) and p ≡ 1 (mod 4). Then for the codeCD of Theorem 2 and

the codeCD̄ of Corollary 4, we have

wmin

wmax
=

pm−2− p
m−2

2

pm−2 >
p−1

p

if m≥ 4.
Let m≡ 2 (mod 4) and p ≡ 1 (mod 4). Then for the codeCD of Theorem 2 and the codeCD̄ of

Corollary 4, we have

wmin

wmax
=

pm−2

pm−2+ p
m−2

2

>
p−1

p

if m≥ 6.
It then follows from Lemma 13 that all the nonzero codewords of CD and CD̄ are minimal if m≥ 6.

Hence, the secret sharing schemes based on the dual codesC⊥
D and C⊥

D̄ have the nice access structures
described in Theorem 12.
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As an example, we describe the access structure of the secretsharing scheme based on the dual code
C⊥

D̄ of the codeCD̄ of Corollary 3 as follows.

Corollary 14. Let m≥ 5. In the secret sharing scheme based on the dual codeC⊥
D̄ of the codeCD̄ of

Corollary 3, the total number of participants is pm−2, and the total number of minimal access sets is
pm−1. Every participant is a member of exactly(p−1)pm−2 minimal access sets.

Proof: As proved above, every nonzero codeword ofCD̄ is minimal asm≥ 5. It can be easily proved
that d⊥ ≥ 3. The desired conclusions then follow from Theorem 12.

As an example of Corollary 14, we have the following.

Example 5. Let m= 5 and p= 5. In the secret sharing scheme based on the dual codeC⊥
D̄ of the code

CD̄ of Corollary 3, the total number of participants is125, and the total number of minimal access sets
is 625. Every participant is a member of exactly500 minimal access sets.

In the secret sharing scheme of Example 5, the secret space isGF(5), which is too small. However, it
can still be employed for sharing a secret of any size. This isdone as follows. One can have GF(5h) as
the extended secret space, whereh could be as large as one wants (e.g.,h= 60). Then any secret can be
encoded as a sequence

s= s1s2 . . .sh

using an encoding scheme, where eachsi ∈ GF(5). Then the secrets can be shared by the 125 participants
symbol by symbol with the secret sharing scheme of Example 5.Hence, the share for each participant
will be a sequence of elements of GF(5) with lengthh. When a group of participants come together with
their shares, the elementssi in the secrets will be recovered one by one using the corresponding elements
in their shares.

Finally, we mention that the secret sharing scheme based on the dual codeC⊥
D̄ of the codeCD̄ of

Corollary 4 has a similar access structure as the one described in Corollary 14. For the linear codes of
Theorems 1 and 2, their dual codes have minimum distance 2. Hence, the secret sharing scheme based on
the dual codeC⊥

D̄ of the codeCD̄ in Theorems 1 and 2 have dictators in the whole group of participants.
Their access structure is given in the first case of Theorem 12.

VI. CONCLUDING REMARKS

Calderbank and Kantor surveyed two-weight codes in [6]. There is a recent survey on three-weight
cyclic codes [14]. Some interesting two-weight and three-weight codes were presented in [5], [11], [9],
[21], [22], [23], [26], [29], and [31]. The length of the two-weight and three-weight codes in the literature
usually dividespm−1, while that of the codes presented in this paper does not have this property. We
did not find the parameters of the two-weight and three-weight codes of this paper in the literature.

The two-weight codesCD of this paper give automatically strongly regular graphs having new parameters
with the connection described in [6], and the three-weight codesCD of this paper may yield association
schemes having new parameters with the framework introduced in [5]. The linear codes of this paper can
be employed to construct authentication codes having new parameters via the framework in [13], [17].
For this application, we need to know not only the weight distribution of the linear codes, but also the
distribution of each element of GF(p) in each codeword of the linear code. This is called thecomplete
weight distributionof a code. Another advantage of the linear codes in this paperis that their complete
weight distribution can be settled with the help of Gaussiansums. In the literature the complete weight
distribution of only a few classes of linear codes is known.

Compared with other two-weight and three-weight codes, theconstruction method of the codes in this
paper is very simple and is defined by the simple function Tr(x2). This makes the analysis of the linear
codes much easier.
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