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A Class of Two-Weight and Three-Weight Codes
and Their Applications in Secret Sharing

Kelan Ding and Cunsheng Ding

Abstract

In this paper, a class of two-weight and three-weight lineades over Gfp) is constructed, and their
application in secret sharing is investigated. Some of theat codes obtained are optimal in the sense that
they meet certain bounds on linear codes. These codes halieatipns also in authentication codes, association
schemes, and strongly regular graphs, in addition to thmali@ations in consumer electronics, communication and
data storage systems.
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I. INTRODUCTION

Throughout this paper, gt be an odd prime and let= p™ for some positive integem. An [n, k, d]
code( over GH p) is ak-dimensional subspace of G&)" with minimum (Hamming) distancd. Let A;
denote the number of codewords with Hamming weighta code( of lengthn. Theweight enumerator
of C is defined by - Ajz+ AyZ% + --- + AnZ". The weight distribution(1,A;,...,Ay) is an important
research topic in coding theory, as it contains crucial im@tion as to estimate the error correcting
capability and the probability of error detection and cotian with respect to some algorithms. A code
C is said to be d@-weight code if the number of nonzef in the sequencéAs, Ay, --- ,Ay) is equal tot.

LetD={d;, dp, ..., dn} C GK(q). Let Tr denote the trace function from G onto GK p) throughout
this paper. We define a linear code of lengtver GH p) by

Co = {(Tr(xdy), Tr(xdp),. .., Tr(xdh)) : x € GF(qQ)}, 1)

and callD the defining setof this code(p.

This construction is generic in the sense that many claskésmawn codes could be produced by
selecting the defining sdd C GF(q). This construction technique was employed [inl [15] and [18] f
obtaining linear codes with a few weights.

The objective of this paper is to construct a class of lineales over GFp) with two and three nonzero
weights using this generic construction method, and inyat their application in secret sharing. Some
of the linear codes obtained in this paper are optimal in #ress that they meet some bounds on linear
codes. The linear codes with a few weights presented in Hpgmphave applications also in authentication
codes [1V], association schemeés [5], and strongly regukgshg [5], in addition to their applications in
consumer electronics, communication and data storageragst
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I[I. THE LINEAR CODES WITH TWO AND THREE WEIGHTS

We only describe the codes and introduce their parametéinssisection. The proofs of their parameters
will be given in SectiorTlI.
In this paper, the defining s& of the code(p of (@) is given by

D = {xe GF(q)* : Tr(x?) = 0}. (2)

Theorem 1. Let m> 1 be odd, and let D be defined il (2). Then the Gstof (1) is a[p™ ! —1,m| code
over GF(p) with the weight distribution in Tablé |, where,A= 0 for all other weights w not listed in the
table.

TABLE |
THE WEIGHT DISTRIBUTION OF THE CODES OlfrHEOREMlIl
Weight w Multiplicity Ay
0 1
(p-1) (p"2-pT) | Bt (p"14p™)
(p—1)p™? prt-1
(p-1 (P 2+p™) [ % (P 1-p"7)

Example 1. Let (p,m) = (3,5). Then the code’p has parameterd80,5,48 and weight enumerator
1+ 902*8 + 80224 4 722,

Theorem 2. Let m> 2 be even, and let D be defined [0 (2). Then the codeover GF(p) of (@) has
parameters

2m
2

" (-1) 2 (p-1)p™ 1 m|
and the weight distribution in Tablelll, whergyA= 0 for all other weights w not listed in the table.

TABLE I
THE WEIGHT DISTRIBUTION OF THE CODES OF HEOREMI[Z|

Weight w Multiplicity Ay
0 1

(p-2)p"2 2 p1o (- %”( p
(p-1) (pm2- ()22 ) [ (p-n (P e ()7

Example 2. Let (p,m) = (5,4). Then the codep has parameters104 4,80 and weight enumerator
14520280 4+ 1042'9°. The best linear code of length04 and dimensiord over GF(5) has minimum
weight 81

It is observed that the weights in the codg have a common divisop— 1. This indicates that the
code (p may be punctured into a shorter one whose weight distributam be easily derived from that
of the original code(p. This is indeed true and can be done as follows.

Note that Ttax?) = 0 for all a€ GF(p) if Tr(x?) = 0. Hence, the seb of () can be expressed as

D = (GF(p)*)D = {ab: ac GF(p)* andb € D}, (3)

whered; /d; ¢ GF(p)* for every pair of distinct element} andd; in D. Then the code€yy is a punctured
version of (p whose parameters are given in the following two corollaries

Corollary 3. Let m> 1 be odd, and leD be defined in[{3). Then the s€ of (@) is a[(p™t—-1)/(p—
1),m| code overGF(p) with the weight distribution in Tablell, whereyA= 0 for all other weights w
not listed in the table.



TABLE 11l
THE WEIGHT DISTRIBUTION OF THE CODES OFCOROLLARY[3

Weightw Multiplicity Ay
0 1
pm-2_p" P%l<pm 1 p%t
pm—z pmfl —1
pr24+p | B2 (priopt)

Example 3. Let (p,m) = (3,5). Then the code’y has parameterd40,5,24] and weight enumerator
1+ 90724 + 80727 + 722°°. This code is optimal in the sense that any ternary code oftted0 and
dimension5 cannot have minimum distan@® or more [20].

Corollary 4. Let m> 2 be even, and leb be defined in[{3). Then the codg over GF(p) of () has
parameters

m-2

m—1
P () 5 m

p—1
and the weight distribution in TablelV, wherg, A= 0 for all other weights w not listed in the table.

TABLE IV
THE WEIGHT DISTRIBUTION OF THE CODES OFCOROLLARY/[4]

Weight w Multiplicity Ay

Example 4. Let (p,m) = (5,4). Then the code’y has parameter$26,4,20 and weight enumerator
1+52072°+ 1047%°. This code is optimal due to the Griesmer bound.

[1l. THE PROOFS OF THE MAIN RESULTS

Our task of this section is to prove Theorelms 1 Bhd 2, whileoloies[3 and ¥ follow directly from
Theorem$ 11 anfl] 2, respectively.

A. Some auxiliary results

To prove Theoremkl] 1 arid 2, we need the help of a number of lertiraasire described and proved
in the sequel. We start with group characters and Gauss sums.

An additive characterof GF(q) is a nonzero functiory from GHq) to the set of nonzero complex
numbers such thagt(x+y) = x(X)x(y) for any pair(x,y) € GF(q)?. For eachb € GF(q), the function

Xo(c) = ep ™

defines an additive character of &ff, whereep = e2W~1/P Whenb=0, xo(c) = 1 for all cc GF(q), and
is called thetrivial additive characterof GF(q). The charactex; in (4) is called thecanonical additive
characterof GF(q). It is known that every additive character of @ffF can be written agp(x) = x1(bX)
[24, Theorem 5.7].

Since the multiplicative group GE)* is cyclic, all the characters of the multiplicative group @F
are given by

for all c € GF(q) (4)

l-|J] (uk) = eZT[\/f_ljk/(qfl), k= 07 17 R b 27



where 0< j <g—2 anda is a generator of Gf€)*. Thesey; are calledmultiplicative charactersof
GF(q), and form a group of ordeg— 1 with identity elementjlo. The charactefyq_1),> is called the
quadratic characterof GF(q), and is denoted by in this paper. We extend this quadratic character by

letting n(0) = 0.
The Gauss sun®(n,x1) over GKq) is defined by

G(n,x1) = Z ne = > nExc) (5)

ceGHq ceGF(q)

and the Gauss sui@(n,x1) over GHp) is defined by
GMX)= 3 NOXO= 3 A©Xo). (6)

ceGH(p)* ceGH(p)

wheren andy; are the quadratic and canonical additive characters d¢pGFespectively.
The following lemma is proved iri [24, Theorem 5.15].

Lemma 5. With the symbols and notation above, we have

Gnxy) = ()™ V1T Mg
and (o
G X = V=17 VP
We will need the following lemmé&_[24, Theorem 5.33].

Lemma 6. Let x be a nontrivial additive character dBF(q) with g odd, and let fx) = a;x*+a;x+ag €
GHF(q)[x] with a # 0. Then

X(f(c)) = X(a0 —a2(4az) H)n(az)G(n,X).
ceGHaq)

The conclusion of the following lemma is straightforwardr Eompleteness, we provide a proof below.
Lemma 7. If m > 2 is even, them(y) = 1 for each ye GF(p)*. If m is odd, them(y) = n(y) for each
y € GF(p).

Proof: Let o be a generator of Gg)*. Notice that everyy € GF(p)* can be expressed as Ll’
where 0< j < p—2. We have

q;l mod 2= m mod 2

p—1
Hence, every elementc GF(p)* is a square in Gff) whenm s an even positive integer, andy) = n(y)
for eachy € GF(p) whenm is odd. This completes the proof. [

Below we prove a few more auxiliary results before proving thain results of this paper.
Lemma 8. We have the following equality:
e{,Tr(XZ) _ { 0 . i.f m odd,
veipy x&rq) (—)™L(—1)*)*F (p—1),/q if m even.
Proof: By Lemmal6, we have



Using Lemmd.l7, we obtain
S ={ 21 fmeven
yeGH(p)*
The desired conclusion then follows. [ |
The next lemma will be employed later.

Lemma 9. For each ac GF(p), let
Na = |{x € GF(q) : Tr(x) = a}|.

Then
pm-1 if m odd and a=0,
pm1— (—1)(% 8 (p—1)p™> if m even and a=0,
MY ofa)(—0) % (—1) A p™ if modd and a0,
pm1y (—1)(%2 )P p"? if m even and & 0.
Proof: It follows from Lemmal® that
o=+ sy g

P xeGH(q) yeGH(p)

_ pml_'_% Z s%a Z SEV(YXZ)
yeGH(p)* xeGH(q)

1
= PTGy 3 el

yeGH(p)*
_ { pr ; (N, X1) Tyearp-N(Y) if a=0
pmt +3N(@)G(N,X1) Yzecrp-EpN(2)  if a#0
pmt if m odd anda= 0,
P+ 22G(n, x1) if m even anda=0,
- p™ 1+ r](pa G(n,x1)G(n,x1) if modd anda+ 0,
P G(r] X1) if m even anda# 0,

where the first equality follows from the fact thg{.crp) X1(y2) = 0 for everyze GF(p)*. The desired
conclusion then follows from Lemmnid 5. [ |
The following result will play an important role in provinge main results of this paper.
Lemma 10. Let be GF(q)*. Then
Tr(yx*+bzy
€p
yeGH(p)* zeGH(p)* xe GH(q)

0 if m odd andTr(b?) =
)(—1)%Z (D (p—1)p™  if m odd andTr(b?) #
2 if m even andTr(b?) =
(p—1)p? if m even andrr(b?) 7é

0,
0,



Proof: It follows from Lemmag b anf]7 that

Tr(y>x2+bzx
€p

yeGHK(p)* zeGH(p)* xe GH(q)

2
= G(n,X1) & 22) n(y)

X1 (
yeCRp)* z=CRp) 4y

1
= Gn.x1) > X1(—b222y1)ﬂ<4—)
y16F(p) e GFp)* &
= Gnxy) > > Xl(—bzzzyl)r]((Zyl)z)
y1GF(p)* 2GR p)* Y1
= G(n,x1) Y X (-bZy)n(y)
yeGH(p)* zeGF(p)*
_2Tr(p?
- e 3 o " (y)

_ G(Nn,X1) ZZEGF (p)* 2.yeGF(p)* N (ZBQ o if Tr(bz) =0

G X1) S2cGr(py Syecrpr € N(=ZTr(B2)y)n(=Tr(b?)) if Tr(b?) #0
{ G0, x2)(P— 1) ycaror ) i Tr(b?) =0

G(n, XN (=Tr(b%)(P—1) Tycarp-€pN(Y) if Tr(b?) #0

0 - if modd and T¢b?) =0,

_ ) G(.x1)G(M.xyn(~Tr(b*))(p—1) if modd and T(b?) #0,
G(n,x1)(p—1)? if meven and Tib?) =
~G(n,x1)(p—1) if meven and Tib?) # 0.

The desired conclusions then follow from Lemnias 5 @nd 7.

The last auxiliary result we need is the following.
Lemma 11. For any be GF(q)* and any ac GF(p), let
N(b) = |{x € GF(q) : Tr(x?) = 0 and Tr(bx) = 0}|.

Then

pm—2 if m odd andTr(b?) =
2 m
N(b) P2 —n(Tr(b?))(— 1)(p71) (mTl)(p—:L)st if m odd andTr(b?) # 0,
= b -

p™2_ (—1)(%2) E(p_1)p™%’ if m even andrr(b?) =0,
pm—2 if m even andrr(b?) # 0.

N(b) _ p,z ( 83F/)Tr(x2)>< z SETr(bX)>
xeGF(q) \yeGF(p) zcGH(p)

_ p_2 8Tr(bz>9+p—2 z z S'gr(yxz)
zeGF(p)* xeGF(q) yeGH(p)* xeGHa)
p_2 Z s'gr(yx2+bzx) _i_pm—Z.

_|_



Note that Trth
Spr( Z)Q — O

zeGH(p)* xeGF(q)
The desired conclusions then follow from Lemnhas 8 &nd 10. ]

B. The proof of Theorenis 1 afd 2
It follows from Lemma® that the length of the code(p is given by

p™1_1 if modd,
m-2

P— D f— _1: - m .
"I {pm_l_l_(—l)(pTl)27(p—1)p_ if m even.

For eachb € GF(q)*, define

Cp = (Tr(bdy), Tr(bdy), ..., Tr(bd,)), (7)

whereds,dy, .. .,d, are the elements dd. The Hamming weight wty) of ¢y, is np— N(b), whereng and
N(b) were defined before.
Whenm is odd, it follows from Lemmag]9 arld 111 that

(p—1)pm2 if Tr(b?) =0,
— — = — —-1\2 m— .
Wi(Co) =no—N(b) = _ 1) (pm‘2+r](Tr(b2))(—1)(pzl) (mﬁp—s) if Tr (b2) 0.
The desired conclusions of Theoréin 1 then follow from Lenifren@ the fact that wty,) > 0 for each

be GFq)*.
Whenm is even, it follows from Lemmals] 9 and]11 that

(p—1) pm-2 if Tr(b2) =0,
wt(cp) = no — N(b) = { (p—1) (me_ (_1)(%1)2”% pmzz) if Tr(b?) £ 0.

The desired conclusions of Theoréin 2 then follow from Lenifren@ the fact that wty,) > 0 for each
be GFq)*.

IV. A GENERALIZATION OF THE CONSTRUCTION

Let f be a function from a finite abelian grodp, +) to a finite abelian groupB,+). A robust measure
of nonlinearity of f is defined by

P — max maX|{x€ A:f(x+a)—f(x)= b}|.
0+acA beB |A|

The smaller the value d?;, the higher the corresponding nonlinearity fof

It is easily seen thalP; > % [7]. A function f : A— B hasperfect nonlinearityif P; = %. A perfect
nonlinear function from a #inite abelian group to a finite aelgroup of the same or(Jer is called a
planar functionin finite geometry. Planar functions were introduced by Dewdki and Ostrom in 1968
for the construction of affine plands J12]. We refer to Caaetl Ding [7] for a survey of highly nonlinear
functions, Coulter and Matthews [10] and Ding and Yuan [1X®] ihformation about planar functions.

Some known planar functions from Gfj to GHq) are the following([7], [10]:

° f(X) — X2.

o f(X)= xp:“, wherem/gcdm,k) is odd (Dembowski and Ostrorh [12]).

o f(X)= x5, wherep = 3, k is odd, and gc@n k) =1 (Coulter and Matthews [10]).



o fu(x) =x0—ux® —u?x?, wherep =3 andm s odd (Coulter and Matthews [110] for the case- —1,
Ding and Yuan|[[1P] for the general case).

Note that planar functions over Gp™) exist for any pair(p,m) with p being an odd prime number.

The construction of the linear cod& of this paper can be generalized as follows. fdbte a planar
function from GKq) to GHq) such that

« f(x)= f(—x) for all xe GF(q); and

« f(ax) =a"f(x) for all ac GF(p) andx € GF(q), whereh is some constant.
Then the set

Dt :={xe GF(q)": Tr(f(x)) = 0} C GF(q)

defines a linear codep, over GRp). The code(p, may have the same parameters as the agslef
this paper. Magma confirms that this is true for all the foassks of planar functions listed above. But
it is open whethe’p, and (p have the same parameters and weight distribution for anyaplunction
f satisfying the three conditions above. It would be nice i$ thpen problem can be settled.

We remark that this construction of linear codes with plaiuguctions here is different from the one
in [8], as the lengths and dimensions of the codes in the twistcoctions are different.

V. APPLICATIONS OF THE LINEAR CODES IN SECRET SHARING SCHEMES

In this section, we describe and analyse the secret sharhses from some of the codes presented
in this paper.

A. Secret sharing schemes

A secret sharing scheme consists of

« a dealer, and a group = {P1,P,,---,P;} of ¢ participants;
a secret spacs;

¢ share spacesi, So, -+, S,

« a share computing procedure; and

« a secret recovering procedure.

The dealer will choose a secrstfrom the secret spacg, and will employ the sharing computing
procedure to compute a share of the sesrfdr each participan®, and then give the share ®. The
share computed foP, belongs to the share spage When a subset of the participants comes together
with their shares, they may be able to recover the sexfeam their shares with the secret recovering
procedure. The secrsetand the sharing computing function are known only to theetealhile the secret
recovering procedure is known to all the participants.

By anaccess setve mean a group of participants who can determine the seormettheir shares. The
access structuref a secret sharing scheme is defined to be the set of all aseessAminimal access
setis a group of participants who can recover the secret withr 8@res, but any of its proper subgroups
cannot do so. A secret sharing scheme is said to haventdr®tone access structuné any superset of
any access set is also an access set. In a secret sharingeselitbnthe monotone access structure, the
access structure is totally characterized by its minimakas sets by definition. In this section, we deal
with secret sharing schemes only with the monotone accasstste.

Secret sharing schemes have applications in banking systeyptographic protocols, electronic voting
systems, and the control of nuclear weapons. In 1979, ShamcirBlakley documented the first secret
sharing schemes in the literature [4], [27].



B. The covering problem of linear codes

In order to describe the secret sharing scheme of a lineag, amd need to introduce the covering
problem of linear codes.
The supportof a vectorc = (cop,...,ch_1) € GF(p)" is defined as

{0<i<n-1:¢ #0}.

We say that a vectax covers a vectoy if the support ofx contains that oy as a proper subset.

A minimal codewordf a linear codeC is a nonzero codeword that does not cover any other nonzero
codeword ofC. The covering problenof a linear code is to determine all the minimal codewordg of
This is a very hard problem in general, but can be solved fdairetypes of linear codes.

C. A construction of secret sharing schemes from linear sode

Any linear code over Gfp) can be employed to construct secret sharing schemes [1][2&]} [28].
Given a linear cod& over GK p) with parametersn, k,d] and generator matri® = [go,d1, . - ., On—1], We
used® andH = [hg,hy,...,h,_1] to denote the minimum distance and the generator matrixsodtl
codeC™.

In the secret sharing scheme based®rthe secret space and the share spaces all afp)G&nd the
participants are denoted I, P, --- ,P,_1. To compute shares for all the participants, The dealer st®o
randomly a vectou = (Up,...,Un_k-1) Such thats= uhg, which is the inner product of the two vectors.
The dealer then treats as an information vector and computes the correspondingveod

t = (to,t1,...,th—1) = UH.

He then gived; to party P, as his/her share for each> 1.
The secret recovering procedure is the following. Note thatuhg = s. A set of sharest;,. ti,,... .t}
determines the secrstiff hg is a linear combination offi,, ..., h;,,. Suppose that

m
ho = Zthij.
=1

Then the secres is recovered by computing

m
S= Z thij'
=1
Equivalently, we look for codewords of the codeC with the shape
(1,0,...,0,¢,,0,...,0,c,,0,...,0)

Hence, the minimal access sets of the secret sharing schasee lonC' correspond to the minimal
codewords inC having 1 as their leftmost component. The other nonzero copts correspond to the
participants in the minimal access set. For exampl€l,i2,0,0,2) is a codeword ofC, then{Py,Ps} is
a minimal access set. To obtain the access structure of thetsharing scheme based ¢r, we need
to determine all minimal codewords af.

Note that the access structure of the secret sharing schaseel lonC+ is independent of the choice
of the generator matrikl of C-. We therefore say that the secret sharing scheme is bas¢d anthout
mentioning the matrixd. We would remind the reader that a linear code gives a paieofes sharing
schemes. One is based ghand the other is based aft*. Below we consider only the latter due to
symmetry.

The access structure of the secret sharing scheme basedir@aadode is very complex in general,
but can be determined in certain special cases. The folgpwirorem is proved i [18]|_[30].
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Theorem 12. Let C be ann,k,d] code overGF(p), and let G= [go,01,-- ,On—1] be its generator matrix.
Let d- denote the minimum distance of its dual cade. If each nonzero codeword @ is minimal,
then in the secret sharing scheme basedn the total number of participants is-n1, and there are
altogether 1 minimal access sets.
« When d =2, the access structure is as follows.
If g; is a multiple ofgg, 1 <i < n—1, then participant Pmust be in every minimal access set.
If gi is not a multiple ofgg, 1 <i < n—1, then participant Pmust be in(p—1)p*2 out of g !
minimal access sets.
« When d > 3, for any fixedl <t < min{k—1,d* — 2} every group of t participants is involved in
(p—1)'p D out of g1 minimal access sets.

When the conditions of Theorem]12 are satisfied, the secetnghscheme based on the dual code
C* is interesting. In the case thdt- = 2, some participants must be in every minimal access sedls, an
thus are dictators. Such a secret sharing scheme may bee@duicertain applications. In the case that
d+ > 3, each participant plays the same role as he/she is invalveiee same number of minimal access
sets. Such a secret sharing scheme is said tteb®cratic and may be needed in some other application
scenarios.

A question now is how to construct a linear code whose nonzedewords all are minimal. The
following lemma provides a guideline in this directian [£3].

Lemma 13. Every nonzero codeword of a linear codeover GF(p) is minimal, provided that
Wi -1
Wmin _ P~ 1
Wmax p

where Whax and wyin denote the maximum and minimum nonzero weights, irespectively.

Y

D. The secret sharing schemes from the codes of this paper

In this subsection, we consider the secret sharing scheas=ion the dual code3; and C§ of the
codes(p and (y presented in this paper.
For the code( of Theoren{ll and the cod&; of Corollary[3, we have

Wmin pmZ—p

Wmax p™24p

>|O_1
p

m—3
2
m—3
2

if m>5.

Letm=0 (mod 4 or m=0 (mod 2 andp=1 (mod 4. Then for the codep of Theorem 2 and
the code(y of Corollary[4, we have

N

m

Wmin pm—2 pz > p—1

Wmax pm-2 p

if m>4.
Let m=2 (mod 4 and p=1 (mod 4. Then for the code(p of Theorem2 and the codéy of
Corollary[4, we have
Wmin _ pm-2 S p—-1
2

Wmax pm24p 2z p

if m>6.

It then follows from Lemmad_13 that all the nonzero codeworfls’® and (5 are minimal ifm> 6.
Hence, the secret sharing schemes based on the dual cgdasd (5 have the nice access structures
described in TheorefmL2.
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As an example, we describe the access structure of the staehg scheme based on the dual code
C§ of the code(y of Corollary[3 as follows.

Corollary 14. Let m> 5. In the secret sharing scheme based on the dual (@Jeof the code(y of
Corollary [3, the total number of participants is™p?, and the total number of minimal access sets is
p™1. Every participant is a member of exactlp— 1)p™ 2 minimal access sets.

Proof: As proved above, every nonzero codeword’gfis minimal asm> 5. It can be easily proved
thatd® > 3. The desired conclusions then follow from Theoferh 12. [
As an example of Corollary_14, we have the following.

Example 5. Let m=5 and p=>5. In the secret sharing scheme based on the dual Qi#ie)f the code
(5 of Corollary[3, the total number of participants i25 and the total number of minimal access sets
is 625 Every participant is a member of exacBP0 minimal access sets.

In the secret sharing scheme of Exanigle 5, the secret sp&ig(%g, which is too small. However, it
can still be employed for sharing a secret of any size. Thigoise as follows. One can have GF) as
the extended secret space, whireould be as large as one wants (elg= 60). Then any secret can be
encoded as a sequence

S=819...$

using an encoding scheme, where egechGF(5). Then the secret can be shared by the 125 participants

symbol by symbol with the secret sharing scheme of Exampldence, the share for each participant

will be a sequence of elements of & with lengthh. When a group of participants come together with

their shares, the elemergsin the secret will be recovered one by one using the corresponding elesnent
in their shares.

Finally, we mention that the secret sharing scheme basedh®mual codeC§ of the code(y of
Corollary[4 has a similar access structure as the one desciibCorollaryl I4. For the linear codes of
Theorem$ 1 and| 2, their dual codes have minimum distancer&d;i¢he secret sharing scheme based on
the dual cod€£‘§ of the code(y in Theorem$ 1l andl2 have dictators in the whole group of ppatits.
Their access structure is given in the first case of Thedrém 12

VI. CONCLUDING REMARKS

Calderbank and Kantor surveyed two-weight codes In [6].r&he a recent survey on three-weight
cyclic codes([[14]. Some interesting two-weight and thresght codes were presented in [5], [11]] [9],
[21], [22], [23], |26], [29], and [[31]. The length of the twweight and three-weight codes in the literature
usually dividesp™ — 1, while that of the codes presented in this paper does nat thas property. We
did not find the parameters of the two-weight and three-wetgldes of this paper in the literature.

The two-weight codegp of this paper give automatically strongly regular graphai@anew parameters
with the connection described inl[6], and the three-weigittes (p of this paper may yield association
schemes having new parameters with the framework intratlircgs]. The linear codes of this paper can
be employed to construct authentication codes having neanpzters via the framework in [13], [17].
For this application, we need to know not only the weightriisttion of the linear codes, but also the
distribution of each element of Gp) in each codeword of the linear code. This is called ¢henplete
weight distributionof a code. Another advantage of the linear codes in this papirat their complete
weight distribution can be settled with the help of Gaussams. In the literature the complete weight
distribution of only a few classes of linear codes is known.

Compared with other two-weight and three-weight codes ctivestruction method of the codes in this
paper is very simple and is defined by the simple functiofx®Jr This makes the analysis of the linear
codes much easier.
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