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Asynchronous Transmission over Single-User

State-Dependent Channels

Michal Yemini∗, Anelia Somekh-Baruch∗ and Amir Leshem∗

Abstract

Several channels with asynchronous side information are introduced. We first consider single-user

state-dependent channels with asynchronous side information at the transmitter. It is assumed that the

state information sequence is a possibly delayed version of the state sequence, and that the encoder

and the decoder are aware of the fact that the state information might be delayed. It is additionally

assumed that an upper bound on the delay is known to both encoder and decoder, but other than

that, they are ignorant of the actual delay. We consider both the causal and the noncausal cases and

present achievable rates for these channels, and the corresponding coding schemes. We find the capacity

of the asynchronous Gel’fand-Pinsker channel with feedback. Finally, we consider a memoryless state

dependent channel with asynchronous side information at both the transmitter and receiver, and establish

a single-letter expression for its capacity.

Index Terms

Asynchronism, binning, causal side information, channel capacity, channel coding, cognitive radio,

Gel’fand-Pinsker channel, non-causal side information, strategy letters.

I. INTRODUCTION

State dependent channels with side information known at the encoder were first introduced by

Shannon. In [2], Shannon established a single-letter expression for the capacity of state dependent
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channels with side information known causally at the encoder and unknown to the decoder.

Subsequently, Kusnetsov and Tsybakov [3] introduced channels with i.i.d. side information which

is known non-causally at the encoder and Gel’fand and Pinsker derived the formula for the

capacity of these channels using random binning encoding methods [4].

The introduction of state dependent channels with side information at the transmitter was orig-

inally aimed at analyzing coding techniques for computer memory with defect whose locations

are known to the encoder only [5]. With the development of communication systems and the

Internet, other relevant applications have emerged. Amongst them are cognitive radio [6], [7],

watermarking [8], multiple-input multiple-output broadcast channels [9], multiple-access chan-

nels with channel side information [10], etc. The common underlying assumption in the analysis

of these channels, is that the side information signal is synchronized with the signal produced

by the encoder. However, in practical situations this assumption does not necessarily hold and

the side information signal may be a delayed version of the channel states sequence. When

the assumption of the synchronization does not hold, the known results of the aforementioned

channels are not necessarily valid, new models that encompass the unknown delay of the state

sequence at the transmitter need to be addressed.

Other models that may suffer from asynchronism are multi-user channels, in which users are

assumed to be synchronized with one another. The discrete memoryless multiple access channel

(MAC) with independent sources was the first channel from this family that was considered in

an asynchronous setup [11]–[13]. It was shown by Cover et. al. [11] that if the delay is finite or

grows sufficiently slowly relatively to the block length, then the asynchronism does not change

the capacity region. However, Hui and Humblet [12] showed that the capacity region may be

reduced if the delay is of the same order of the block length, since time sharing cannot be used.

In this paper, we address the question of whether an asynchronous side information is useful

when the delay is bounded. By lower bounding the achievable rates using time sharing between

all possible delays, we prove that the asynchronous side information can still be of value in the

asynchronous Gel’fand-Pinsker channel [1]. We improve the lower bound for the asynchronous

Gel’fand-Pinsker channel by studying two of its counterparts: the multicast channel [14], and the

compound channel [15], [16], and by taking into account the specific characteristics of our setup.

In addition, we observe that if feedback is present, the capacity of the asynchronous Gel’fand-

Pinsker channel is equal to the capacity of the synchronous Gel’fand-Pinsker channel. We

DRAFT



3

additionally consider state dependent channels with state information available asynchronously

and causally at the transmitter. Contrary to the non-causal and asynchronous state information,

in the causal setup there are cases in which the side information does not improve the reliably

transmitted rates. We distinguish between two cases of possible delay values: If the maximal

delay is positive, i.e., the encoder may observe at each time instant a past actual state, then the

side information can be ignored without loss of optimality. Otherwise, a scheme which is based

on the limited lookahead scheme of [17] is presented. We additionally consider asynchronous

channels with noncausal state information at both transmitter and receiver, whose causal and

non-causal counterparts were analyzed in [18]–[22]. We note that the results of this paper were

partially presented in [1].

In recent years a new technology coined as “Cognitive Radio” [7], [23], [24] has emerged. The

term ”cognitive radio networks” encompasses several models and definitions, however, generally

speaking, the common assumption for these networks is the existence of cognitive users that can

sense their surroundings and are able to change their configurations accordingly. The presence

of such users in a network can drastically improve spectrum utilization and even help the non-

cognitive users. In some models of cognitive radio networks, the cognitive users possess a

knowledge of the codewords that licensed users transmit. Consequently, the Gel’fand-Pinsker

channel, channels with side information at the transmitter and receiver, and the cognitive MAC

are among the building blocks of cognitive radio networks [6], [7]. The capacities of some of

these synchronous channel models are known. Nevertheless, practical communication systems

are not always synchronized. Examples for practical setups in which asynchronism in state

information may arise:

• Multicast communication systems, in which the same message is to be transmitted to several

destinations where the state sequence suffers different delays.

• A communication system with no feedback, in which a cognitive transmitter obtains infor-

mation about the interfering signal but does not know the time offset by which it is received

since the delay towards the receiver is unknown.

• A MAC with no feedback in which a cognitive user knows in advance the message which

the other user (the non-cognitive user) is about to send, however, the two users may not be

fully synchronized for example due to clock synchronization limitation or unknown delay

in the channel.
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• Cellular networks in which a helping interferer helps the base-stations to conceal their

messages. In this setup, which is depicted in Fig. 1, several base-stations serve mobile

users in the network while information leaks to the passive eavesdroppers. The helping

interferer is linked to the base-stations by optical fiber channels and periodically informs

them of the interfering signals it is about to transmit. Alternatively, the helping interferer

and the base-stations can agree on a list of signals which the interferer will transmit in a

particular order. It is also assumed that the base-stations can acquire information on the

locations of users. However, synchronization issues between the helping interferer and the

base-stations, the mobility of users, and unprecise users’ location at the base-stations can

cause the interfering signal and a base-station’s transmitted signal to be out of sync. A

partial list of relevant papers for the synchronous setup is [25]–[29] where one can treat

the side information in some of these papers as the interferer’s signal.

Fig. 1. A cellular network with a helping interferer (HI), base-stations (BS), mobile users (MU) and eavesdroppers (E).

• Cellular networks in which coordinated multipoint (CoMP) techniques are used (see for

example [30], [31]). There are several CoMP methods for the downlink which involve dif-

ferent schemes for cooperation and coordination of base-stations. Base stations cooperation

may also occur in the uplink, for example several base-stations can jointly decode received

signals. As discussed in [31], there can be synchronization issues in these cooperative
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schemes. A detailed example of an asynchronous CoMP is discussed in [32].

We note that the results of this paper were extended to multiuser setups in [33], [34].

The rest of this paper is organized as follows. In Section II we present channel models which

are analyzed and define several notations that are used throughout this paper. Subsequently, in

Section III we discuss the asynchronous Gel’fand-Pinsker channel and state lower bounds on its

capacity. Section IV is devoted to channels with asynchronous causal state information at the

transmitter. We then present in Section V the capacity of channels with asynchronous channel

state information at both the transmitter and receiver. Finally, Section VI contains concluding

remarks.

II. CHANNEL MODELS AND DEFINITIONS

We use the following notations and definitions: A vector (a1, . . . , an) is denoted by an, whereas

the vector (ai, . . . , aj) is denoted by aji . If an is a sequence of vectors, then the notation ai,j

is used to address the j entry of the vector ai. The probability law of a random variable X is

denoted by PX while P(X ) denotes the set of distributions on the alphabet X . The set of all

n vectors xn that are ε-strongly typical [35, p. 326] with respect to PX ∈ P(X ) is denoted by

T nε (X). Additionally, we denote by T nε (X|yn) the set of all n vectors xn that are ε-strongly

jointly typical with the vector yn with respect to a probability mass function (p.m.f.) PX,Y .

Further, 1{A} denotes the indicator function, i.e., 1{A} equals 1 if the statement A holds and 0

otherwise.

In addition, D is a set of integers, and D = |D| denotes its cardinality. Further, let P be a

conditional p.m.f. from X to Y . For xD ∈ XD denote by {Pd(y|xD1 )} a set of conditional p.m.f.’s

from XD to Y , that depend on the value of d, where d ∈ D. We use the notation T nd,ε(X, Y )

to make the underlying p.m.f. Pd(xD1 , y) explicit where d ∈ D. Similarly, we use the notation

T np,ε(X) to make the underlying p.m.f. p explicit.

We next describe the channel models of the aforementioned channels.

A. The Asynchronous Gel’fand-Pinsker Channel

The asynchronous Gel’fand-Pinsker channel (AGP channel), which is depicted in Fig. 2, is a

discrete memoryless stationary and state-dependent channel. It is defined by the channel transition

probabilities {P (y|x, s)}, the channel input alphabet X , the channel output alphabet Y , the
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state symbol alphabet S, and the state sequence distribution, which is assumed to be i.i.d.

PS . The transmitter observes non-causally a possibly delayed version of the states sequence

(S1, . . . , Sn). In other words, before the beginning of transmission, the transmitter observes a

sequence (A1, . . . , An) of state symbols according to:

(A1, . . . , An) =

(Z1, . . . , Zd, S1, S2, . . . , Sn−d) , if d ≥ 0

(S1−d, . . . , Sn, Z1, . . . , Z−d) , if d < 0
(1)

where d ∈ D, and Z1, Z2, . . . , Zd are i.i.d. with Zi ∼ PS independent of (S1, . . . , Sn). Since An

is a possibly delayed version of the sequence Sn, it follows that A = S and An ∈ Sn.

M Encoder

PS(·)

d

An

DMC
Xi

Si

Decoder
Yi

M̂

Sn

Fig. 2. Asynchronous Gel’fand-Pinsker channel.

Let xn ∈ X and sn ∈ Sn be the codeword and the state-sequence, respectively, and let yn ∈ Yn

be the output of the channel. The conditional distribution of Y n given (Xn, Sn) is given by

P (yn|xn, sn) =
n∏
i=1

PY |X,S(yi|xi, si). (2)

Let M = {1, 2, . . . , 2nR}, and assume that the massage M is a random variable uniformly

distributed over the setM. A (2nR, n)-code for the AGP channel consists of an encoding function

fn :M×Sn → X n (3)

and a decoding function

gn : Yn →M. (4)
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Define the average probability of error for d ∈ D as

P̄e,d =
1

2nR

2nR∑
m=1

∑
(sn,an)∈Sn×Sn,
yn:gn(yn)6=m

Pd(s
n, an)P (yn|fn(m, an), sn) , (5)

where

Pd(s
n, an) =


P (sn)P (ann+d+1) · 1{sn1−d=an+d

1 }, if d < 0

P (sn) · 1{sn=an}, if d = 0

P (sn)P (ad1) · 1{sn−d
1 =and+1}, if d > 0

(6)

P (sn) =
∏n

i=1 PS(si) and P (an) =
∏n

i=1 PS(ai).

A (2nR, n)-code for the AGP channel is said to be a (2nR, n, ε)-code if P̄e,d ≤ ε for all d ∈ D.

A rate R is said to be achievable for the AGP channel, if there exists a sequence of
(
2nR, n, εn

)
-

codes with εn → 0 as n→∞.

The capacity of the AGP channel, CAGP , is the supremum of all achievable rates.

B. The Causal Case

We next introduce a state dependent channel with asynchronous causal1 state information

(ACSI) at the transmitter. We refer to this channel as the ACSI channel.

The definitions for the ACSI channel are similar to those of the AGP channel, with the

following modifications:

In this setup, before transmitting Xi, the encoder observes A1, . . . , Ai which are defined in

(1) (rather than A1, . . . , An).

As before, it is assumed that the messages are equiprobable over M. A (2nR, n)-code for the

ACSI channel consists of the encoding functions {fi}, i = 1, . . . , n where

fi :M×S i → X (7)

and a decoding function

gn : Yn →M. (8)

1We refer to this setup as the causal case, but in fact, if d < 0, the cognitive user has a lookahead of d future symbols.
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The average probability of error is given by,

P̄e,d =
1

2nR

2nR∑
m=1

∑
(sn,an)∈Sn×Sn,
yn:gn(yn) 6=m

Pd(s
n, an)

n∏
i=1

P
(
yi|fi(m, ai), si

)
, (9)

where Pd(sn, an) is defined in (6).

The definitions of the achievable rate and the capacity are similar to those of the AGP channel.

C. Asynchronous Channels with States Available Non-Causally Both at the Transmitter and

Receiver

An asynchronous channel with channel states non-causally known at both the transmitter

and receiver (see Fig. 3) is a stationary discrete memoryless state-dependent channel, defined

by {P (y|s, x)},X ,Y ,S, and PS as before. Both the transmitter and the receiver observe non-

causally the sequence (S1, . . . , Sn), and in addition the link between the state source and the

channel may suffer a delay d where d ∈ D.

M Encoder

PS(·)

d

Si

PY |X,S
Xi

Si−d

Decoder
Yi

M̂

SnSn Sn

Fig. 3. Asynchronous Channels with States Non-causally Available both at the Transmitter and the Receiver.

Let the random message M be defined as before, i.e., distributed equiprobably over M. A

(2nR, n)-code for the asynchronous channel with channel states non-causally known both at the

transmitter and receiver, consists of an encoding function

fn :M×Sn → X n (10)

and a decoding function

gn : Yn × Sn →M. (11)
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Define the average probability of error for d ∈ D as

P̄e,d =
1

2nR

2nR∑
m=1

∑
sn∈Sn,

yn:gn(yn,sn)6=m

P (sn)Pd (yn|fn(m, sn), sn) , (12)

P (sn) =
∏n

i=1 PS(si) and

Pd(y
n|xn, sn) =

n∏
i=1

P (yi|xi, si−d), (13)

where for all i ∈ {1, . . . , n} such that i− d /∈ {1, . . . , n}, si−d are arbitrary.

A (2nR, n)-code is said to be a (2nR, n, ε)-code if P̄e,d ≤ ε for all d ∈ D. A rate R is said to

be achievable for the asynchronous channel with channel states non-causally known both at the

transmitter and receiver, if there exists a sequence of
(
2nR, n, εn

)
-codes with εn → 0 as n→∞.

The capacity of the asynchronous channel with channel states non-causally known both at the

transmitter and receiver, CACSITR, is the supremum of all achievable rates.

D. The Set of Possible Delays

For simplicity of the presentation, throughout this paper, we assume that the set of possible de-

lays in the aforementioned channels is D = {−dmin,−dmin+1, . . . , dmax}, where 0 ≤ dmin, dmax,

it follows that D = dmax + dmin + 1. Additionally, throughout this paper we assume that all

transmitters and receivers know a-priori the (finite) values dmin and dmax. We note that the results

which are derived in this paper can be easily generalized to arbitrary finite sets of delays, and

hold in the general case in which the delay is randomly distributed over a finite set.

E. Known Delay at the Receiver

In all of the above channel models, i.e., the AGP, ACSI and the asynchronous channel with

channel states non-causally known at both the transmitter and receiver, we assume that the

decoder does not know the actual delay in the channel before decoding the message. However,

since the set of delays D is finite, by sending predefined training sequences in the first o(n) bits,

the decoder can deduce the delay with probability of error that vanishes as n tends to infinity.

Therefore, we can assume hereafter that the decoder knows the delay d prior to the decoding

stage. We will however include transmission of the training sequence in our coding schemes.
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III. THE AGP CHANNEL

In this section we derive lower bounds for the capacity of the AGP channel, when the alphabets

X ,S,Y , and the delay set, D are finite. In addition, we state the capacity of the AGP channel

with feedback for finite delays.

A. An Achievable Rate for the AGP Channel

The single-letter formula for the capacity of the synchronous Gel’fand-Pinsker (GP) channel

PY |X,S is given by [4]

CGP = max
PU,X|S

[I(U ;Y )− I(U ;S)] (14)

where U − (S,X)− Y is a Markov chain, and |U| ≤ |X | · |S|.
We next present an achievable rate for the AGP channel. In Section III-B we prove that this

lower bound is tight for the binary symmetric AGP channel with crossover probability of 0.5

and D = {0, 1}.
Theorem 1: The rate

R = max
pU,X|A

[
1

D
· Ip1(U ;Y ) +

D − 1

D
· Ip2(U ;Y )− I(U ;A)

]
(15)

where,

p1(u, y) =
∑
a,x

PS(a)PU,X|A(u, x|a)PY |X,S(y|x, a)

p2(u, y) =
∑
s,a,x

PA(a)PU,X|A(u, x|a)PS(s)PY |X,S(y|x, s)

pU,A(u, a) =
∑
x

PA(a)PU,X|A(u, x|a)

PA(a) = PS(a) ∀a ∈ S (16)

is achievable for the AGP channel with channel conditional distribution PY |X,S and a set of

delays D.

Note that the rate in (15) converges to the channel capacity with no side information, as D, the

size of the set of all possible delays, tends to infinity. In addition, if dmin = dmax = 0, that is,

there is no actual delay in the channel, the channel degenerates to the Gelf’and-Pinsker channel,

as the formula (15) indicates.
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The coding scheme that is used in the proof employs binning and ”segment time sharing”.

In segment time sharing, the codeword is partitioned to several segments. In each segment the

encoder chooses a different encoding function (similarly to the ordinary time sharing). To decode

the message, the decoder which knows the identity of the segments jointly decodes the segments.

That is, unlike the ordinary time sharing, the decoder in segment time sharing jointly decodes all

the segments: The main idea of the proof is that the encoder uses the GP coding scheme for each

possible delay by dividing the codeword into equal length segments. In each of these segments

the encoder assumes a different delay (out of the set D). The decoder knows for each segment

the assumed delay which was decided by the encoder. Additionally, as mentioned before, we can

assume that the decoder knows the actual delay of the side information (for example by sending

a training sequence). Knowing this delay the decoder looks for a codeword such that each of

its segments is typical with its corresponding output according to the p.m.f which is induced by

the channel transition probability and the assumed delay of the segment in the encoding stage.

In the AGP setup segment time sharing yields better results than ordinary time sharing since the

redundancy in one segment can help in decoding another segment. For the detailed proof see

Appendix A.

B. An Example - The Binary Symmetric AGP Channel

Consider the binary symmetric AGP (BS-AGP) channel defined by the input-output relation,

Yi = Xi ⊕ Si (17)

where Si ∼ Bernoulli
(

1
2

)
, and with d ∈ {0, 1}.

In the ordinary synchronous GP setup, a capacity achieving scheme is to construct a codebook

containing all the possible binary vectors un ∈ {0, 1}n. To transmit the vector un, the transmitter

sends xi = ui⊕si. Consequently, the received ith symbol is yi = ui, and the resulting achievable

rate is thus that of the clean channel yi = ui, i.e., 1 bit per channel use. In the asynchronous case,

consider the following coding scheme which is a special case of the general scheme presented

in Section III-A. A codebook containing 2
n
2
−1 binary codewords un with binary Bernoulli

(
1
2

)
symbols is drawn. Recall that A1, . . . , An is the (possibly delayed) observed state sequence and
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let

xi =


ui ⊕ ai, i ∈

{
1, . . . , n

2

}
ui ⊕ ai+1, i ∈

{
n
2

+ 1, . . . , n− 1
}

ui, for i = n

. (18)

Let PUY be the product p.m.f., i.e. PU,Y (u, y) = PU(u)PY (y). The decoder looks for a sequence

un such that

u
n
2
1 = y

n
2
1 and

(
un−1

n
2

+1, y
n−1
n
2

+1

)
∈ T

n
2
−1

PUY ,ε
(U, Y ) (19)

if d = 0, or such that

un−1
n
2

+1 = yn−1
n
2

+1 and
(
u

n
2
1 , y

n
2
1

)
∈ T

n
2
PUY ,ε

(U, Y ). (20)

if d = 1. In the case of no delay, d = 0, this results in,

yi = xi ⊕ si =


ui, i ∈

{
1, . . . , n

2

}
ui ⊕ si+1 ⊕ si, i ∈

{
n
2

+ 1, . . . , n
}

ui ⊕ si, i = n

. (21)

In the case where d = 1, this results similarly in

yi = xi ⊕ si =


ui, i ∈

{
1, . . . , n

2

}
ui ⊕ si−1 ⊕ si, i ∈

{
n
2

+ 1, . . . , n
}

ui ⊕ si, i = n

. (22)

Define the random variables Ki = Si−1⊕Si where Ki ∼ Bernoulli
(

1
2

)
, and the random variables

Li = Si+1 ⊕ Si where Li ∼ Bernoulli
(

1
2

)
. Clearly, this scheme can guarantee reliable decoding

of the message for all rates lower than

Rl(0.5) =
1

2
I(U ;U ⊕ L) +

1

2
I(U ;U)− I(U ;A)

=
1

2
I(U ;U) +

1

2
I(U ;U ⊕K)− I(U ;A)

=
1

2
· 1 +

1

2
· 0− 0 =

1

2
. (23)

In the general case, i.e. the BS-AGP channel with crossover probability p, a similar coding

scheme assures reliable decoding of the message for all rates lower than

Rl(p) =
1

2
+

1

2
[1− h2 (2p(1− p))] , (24)
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where h2(x) = −x log2(x)− (1− x) log2(1− x).

In Fig. 4, we compare the lower bound Rl(p) to the capacity of the binary symmetric

Gel’fand-Pinker channel and to the capacity of the binary symmetric channel (BSC) with no

side information at the encoder nor the decoder, all channels have crossover probability p.

Fig. 4. Comparison of the achievable rates for the BS-AGP channel with crossover probability p and D = {0, 1}, the capacity

with no side information, and the capacity of the synchronous Gel’fand-Pinsker channel.

An important question is whether the rate Rl(p) is the capacity of the BS-AGP channel with

crossover probability of p and whether the answer depends on the crossover probability p?

To answer these questions we rely on a relevant setup which is considered in [14]. The state

dependent binary multicast channel that is studied in [14] is composed of the input sequence Xn,

the channel states sequence {Sn(1), S
n
(2)} and the output sequences. The state dependent binary

multicast channel is defined by the following input-outputs relations,

Y n
(k) = Xn ⊕ Sn(k), k ∈ {1, 2} (25)

where Sn(1), S
n
(2), X

n, Y n
(1), Y

n
(2) ∈ {0, 1}n, and ⊕ is a symbol-by-symbol modulo-2 operation.

It is known [14], that for two correlated sequences Sn(1), S
n
(2) which are not necessarily i.i.d.

processes, the capacity of the binary multicast channel is,

C = 1− 1

2
lim
n→∞

1

n
H(Sn(1) ⊕ Sn(2)). (26)
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The BS-AGP channel can be identified with the binary multicast channel that appears in

[14], where Si and Si−1 play the roles of S1,i and S2,i, respectively. Note that the process

{(Si, Si−1)}, i = 1, . . . , n is not an i.i.d. process.

Now, knowing the capacity of the channel, we can conclude that the capacity of the BS-AGP

channel with crossover probability 1
2

is a special case of (26). This is true since the process

{Si⊕Si−1}, i = 1, 2, . . . is i.i.d. when p = 1
2
. However, if p /∈ {0, 0.5, 1}, then Sn1 ⊕Sn−1

0 is not

a memoryless or constant sequence. Therefore,

C = 1− 1

2
lim
n→∞

1

n
H(Sn1 ⊕ Sn−1

0 )

> 1− 1

2
lim
n→∞

1

n

n∑
i=1

H(Si ⊕ Si−1)

= 1− 1

2
H(S1 ⊕ S2) = 1− 1

2
h2(p(1− p)) , Rl(p). (27)

That is, Rl(p) is not the capacity of the BS-AGP channel when p /∈ {0, 0.5, 1}. Another insight

from equation (26) is that in some channels there is a gain in using multi-letters coding. This

insight will be used later in our generalized scheme.

An additional issue concerns the usefulness of the side information for the BS-AGP. For sim-

plicity we consider the BS-AGP channel with crossover probability 0.5 with different cardinality

of the delay set D. As mentioned before for p = 1
2
, the sequence {(Si⊕Si−d)}, i = 1, . . . , n is

i.i.d. with p.m.f. Bernoulli
(

1
2

)
for each d ∈ D. By generalizing the coding scheme in Eq. (18)

for the set of delays of cardinality D and by Theorem 1, all rates which are not greater than 1
D

bits/channel use are achievable. Fig. 5 depicts the lower bound on the capacity of the BS-AGP

channel with crossover probability 0.5 with respect to the number of possible delays D.
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Fig. 5. A lower bound on the capacity of the BS-AGP channel with crossover probability 1
2

as function of the size of the set

of all possible delays.

C. An Improved Lower bound for the AGP Channel

For dmin, dmax < ∞ we can identify the AGP channel with a multicast channel with D =

dmax + dmin + 1 users, in which all the users share the same channel transition probabilities, but

differ in the fact that the state of channel k ∈ {1, . . . , D} at time i is Si−dmin+k−1.
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M Encoder

PS(·)

PY |X,S
Xn

Si−dmin

Decoder 1
Y n
1

M̂

Sn

Si−dmin+1

PY |X,S Decoder 2
Y n
2

M̂

···
Si+dmax

PY |X,S
Decoder

D

Y n
D

M̂

Fig. 6. Multicast channel interpretation.

In addition, similarly to [15], [16], the channel in Fig. 6 has a compound channel rep-

resentation depicted in Fig. 7 where P (y|x, v, k) = PY |X,S(y|x, vk), k ∈ {1, . . . , D}, and

Vi = (Si−dmin
, . . . , Si+dmax) is the vector of all possible channel states at time i.

M Encoder

PS(·)

PY |X,V,k
Xi

Vi = (Si−dmin , . . . , Si+dmax)

Decoder
Yi

M̂

Sn

Fig. 7. Compound channel interpretation.

We note that the D−tuples: V n
1 = (Si−dmin

, . . . , Si+dmax)ni=1 are statistically dependent, addi-
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tionally

PVi(v) = PV (v) ,
D∏
`=1

PS(v`), (28)

where v = (v1, . . . , vD).

We next present improved achievable rates for the AGP channel. The coding schemes that

achieve these rates are extensions of Theorems 2.4 and 2.6 in [15] and of Theorem 1 in [16].

For the sake of clarity, we first present an achievable rate for the case d ∈ {0, 1}.
Theorem 2: Let PY |X,S be the channel conditional distribution of an AGP channel with a set

of delay D = {0, 1}. The rate,

R = max
PT ,PW,U1,U2,X|V,T

min {I(W,U1;Y1|T )− I(W,U1;V |T ),

I(W,U2;Y2|T )− I(W,U2;V |T ),

1

2
[I(W,U1;Y1|T )− I(W,U1;V |T )

+I(W,U2;Y2|T )− I(W,U2;V |T )− I(U1;U2|W,V, T )] } (29)

is achievable where V = (V1, V2) and PV (v1, v2) = PS(v1)PS(v2), and

PT,V,W,U1,U2,X,Yk = PTPV PW,U1,U2,X|V,TPY=Yk|X,S=Vk , k ∈ {1, 2}. (30)

This result can be generalized for any 0 ≤ dmin, dmax <∞.

Theorem 3: Let PY |X,S be the channel conditional distribution of an AGP channel with a set

of delay D = {−dmin, . . . , dmax}. Denote D1 = {1, . . . , D} where D = dmin + dmax + 1. The

rate,

R = max
PT ,PW,U1,...,UD,X|V,T

min
L⊆D1

{
1

‖L‖

[∑
l∈L

I(W,Ul;Yl|T )− ‖L‖ · I(W ;V |T )

+H({U`|` ∈ L}|W,V, T )−
∑
l∈L

H(Ul|W,T )

]}
(31)

is achievable for the AGP channel, where PV is given in (28), and

PT,V,W,U1,...,UD,X,Yk = PTPV PW,U1,...,UD,X|V,TPY=Yk|X,S=Vk , ∀k ∈ D1. (32)

For the simplicity of the presentation we prove only Theorem 2, the proof appears in Appendix

B. The proof of Theorem 3 consists of similar steps and therefore is omitted.
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In addition, in light of the BS-AGP channel example, a coding scheme which involves multi-

letter coding can achieve higher rates. Therefore, we include multi-letter coding in the coding

scheme of Theorem 3. This yields the following result.

Theorem 4: Let PY |X,S be the channel conditional distribution of an AGP channel with a set

of delays D = {−dmin, . . . , dmax}. Denote D1 = {1, . . . , D} where D = dmin + dmax + 1. The

rate,

R = lim
n→∞

sup
PT ,PWn,Un

1 ,...,Un
D

,Xn|V n,T

min
L⊆D1

{
1

n
· 1

‖L‖

[∑
l∈L

I(W n, Un
l ;Y n

l |T )− ‖L‖ · I(W n;V n|T )

+H({Un
` |` ∈ L}|W n, V n, T )−

∑
l∈L

H(Un
l |W n, T )

]}
(33)

is achievable for the AGP channel, where P n
V =

∏n
i=1 P (vi|vi−1),

P (v1) =
D∏
j=1

PS(v1,j), (34)

P (vi|vi−1) = 1{(vi,1,...,vi,D−1)=(vi−1,2,...,vi−1,D)}PS(vi,D), 2 ≤ i ≤ n, (35)

and vi,j denotes the j-th entry in of the vector vi. Additionally,

PT,V n,Wn,Un
1 ,...,U

n
D,X

n,Y n
k

= PTPV nPWn,Un
1 ,...,U

n
D,X

n|V n,T

n∏
i=1

PY=Yk,i|X=Xi,S=Vk,i , ∀k ∈ D1. (36)

Finally, we remark that similar results hold for stationary Markov state-source, with the

exception that equations (28) and (34)-(35) are replaced with the probability law of the Markov

source. Furthermore, this is also true for stationary and ergodic state-source, where equations

(28) and (34)-(35) are changed according to the state-source distribution.

D. The AGP Channel with Feedback

In this section we consider the AGP channel with feedback. In this setup, in addition to the

non-causal knowledge of An, at each time instant i the encoder observes Y i−1. We assume that

dmax, dmin < ∞ and, as before, the delay is fixed throughout the transmission of a codeword.

Unlike the case of the AGP channel, in this case the encoder can recover the actual delay of the

side information by sending a training sequence. We next prove that the capacity of the AGP

channel with feedback is equal to the capacity of the GP channel.
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Theorem 5: The capacity of the AGP channel with feedback is given by

CGP = max
PU,X|S

[I(U ;Y )− I(U ;S)] . (37)

Proof: It is known [36] that the capacity of the GP channel with feedback is equal to CGP

- the capacity of the channel without feedback. To achieve CGP , the encoder first transmits a

training sequence of length T (n) such that limn→∞ T (n) =∞ and T (n) = o(n), designated to

inform the transmitter of the delay via feedback. Once the delay is recovered by the encoder,

an ordinary GP coding scheme can be applied in the remaining n− T (n) channel uses.

IV. AN ACHIEVABLE RATE FOR THE ACSI CHANNEL

In this section we address the case of causal state information at the transmitter, i.e., the ACSI

channel model, as previously defined Section II-B. We next show that, unlike the AGP channel

model, if the set D includes positive delays, the encoder can ignore the side information with no

loss of optimality in terms of achievable rates. We next formalize and prove the above statement.

Theorem 6: If dmax > 0, then the capacity of the ACSI channel is given by

C = max
PX

I(X;Y ), (38)

where PY |X(y|x) =
∑

s PS(s)PY |X,S(y|x, s).

Proof: This is a direct consequence of the fact the ACSI channel setup with dmax > 0

is inferior capacity-wise to the synchronous setup of strictly causal side information, i.e., at

time instant i, the encoder observes (s1, . . . , si−1) for which it was shown in [37] that the side

information can be ignored without loss of optimality.

We note that if dmax = 0, then the synchronous counterpart of this setup for d < 0 is that

of a limited lookahead analyzed in [17, Section VI, Theorem 8] which results in a multi-letter

expression for the capacity. The encoding scheme we use for the case dmax = 0 is similar to

that of the AGP channel described in Section III-A, in the sense that the transmitter splits the

timeline {1, . . . , n} into D = dmin+1 segments. In each of the segments, the coding scheme that

corresponds to the appropriate lookahead d [17] is applied (and in the segment corresponding

to d = 0 Shannon’s causal scheme [2] is applied). The resulting achievable rate does not have

a single-letter expression and is omitted for the sake of brevity.
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V. ASYNCHRONOUS CHANNELS WITH STATES NON-CAUSALLY AVAILABLE TO THE

TRANSMITTER AND THE RECEIVER

In this section, we derive the capacity formula of asynchronous channels with states non-

causally available both at the transmitter and the receiver (see Fig. 3 and Section II-C). We

note that since the decoder knows the side information (and can deduce the actual delay), both

the encoder and the decoder rely on the side information sequence in their enccoding/decoding

strategies. This is the fundamental difference from the AGP channel model, in which the decoder

can only rely on the statistics of the state-sequence if the coding scheme does not include sending

the side information to the decoder. Finally, we show that a coding scheme that considers all

possible side information symbols for all possible delays is capacity achieving.

Theorem 7: Let D be a set of possible delays and D = |D|. The capacity of the asynchronous

channel with states non-causally available at the transmitter and the receiver and a channel

conditional distribution PY |X,S is

CACSITR = max
P (x|v)

min
d∈D

Id(X;Y |V ) (39)

where V ∈ SD is a random variable distributed according to PV (v) =
∏D

i=1 PS(vi), and

Pd(x, y|v) = P (x|v)P (y|x, vdmax−d+1)

Pd(y|v) =
∑
x∈X

Pd(x, y|v) (40)

where vdmax−d+1 is the (dmax − d+ 1)th entry in the vector v. Additionally,

Id(X;Y |V ) =
∑

x∈X ,y∈Y,v∈V

P (v)Pd(x, y|v) log

(
Pd(x, y|v)

P (x|v)Pd(y|v)

)
. (41)

The achievability coding scheme consists of a ”strategy letters” coding scheme [20]. It is imple-

mented by using the sequence V n as the state-sequence which the strategy maps. The detailed

proof which consists of the achievability part and the converse part is included in Appendix

C. Further, we note that a naive rate-splitting coding scheme which uses the sequence V n as

a time-sharing sequence may lead to suboptimal results since each sub-message is separately

reconstructed under all possible delays. This degradation follows from the independence between

sub-messages in rate-splitting coding scheme which prohibits us from using redundancy in one

sub-message to help us decoding another sub-message.
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We remark that in contrast to the synchronous models, in which causal and non-causal

knowledge of the state-sequence at both the encoder and decoder yield the same channel capacity,

in the asynchronous setup the capacities of these models do not necessarily coincide.

In addition, one can consider a different setup in which the delay d symbolizes the presence of

a jitter. The jitter is modeled by a delay that randomly changes every sub-block of a sufficiently

large size that allows the decoder to find the delay in the sub-block with an error probability that

decays with the block length. It can be shown that in this setup, if the delays are i.i.d. random

variables distributed over the set D, the minimization over the delay d in (39) can be replaced

with an expectation over the delay d.

Finally, the result generalizes straightforwardly to state dependent compound channels with

state information at the transmitter and receiver. Specifically, let Θ be a finite set of channels

from X × S to Y , and let Pθ(y|x, s) denote the transition probability of channel θ, as before

X,S, Y denote the channel input, channel state, and channel output, respectively.

Corollary 1: The capacity of the state dependent compound channel is given by

C = max
P (x|s)

min
θ∈Θ

Iθ(X;Y |S) (42)

where

Pθ(x, y|s) = P (x|s)Pθ(y|x, s).

VI. CONCLUSION

In this paper we presented several asynchronous channel models that include side information

at the transmitter and/or receiver. We derived an achievable rate for the AGP channel using

an encoding scheme which combines binning and time sharing. We then generalized this lower

bound by representing the AGP channel as a compound channel. Further, we proved that although

the side information is known asynchronously, it is still of value and can be exploited. We

further discussed the ACSI channel in which the side information is available asynchronously

and causally at the transmitter. We proved that if the delay can take positive values then the

side information does not increase the capacity of the ACSI channel. Finally, we established a

single-letter expression for the capacity of asynchronous channels with side information at both

the transmitter and receiver.
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APPENDIX A

In this section, we present the coding scheme of Theorem 1 (AGP channel) and analyze the

resulting average probability of error. We present the proof for the case d ∈ {0, 1}, i.e., dmax = 1,

dmin = 0, which can be easily generalized for any finite dmin, dmax, and for simplicity, we assume

that the alphabets are finite.

Codebook Generation: Fix PU |A and PX|U,A, and let PU(u) =
∑

a∈S PU |A(u|a)PS(a). For

each message m ∈
{

1, . . . , 2nR
}

generate a subcodebook (a bin) consisting of 2nJ codewords

of length n, un(m, k), k ∈ {1, . . . , 2nJ} according to
∏n

i=1 PU(ui). We denote the subcodebook

of message m by C(m), that is, C(m) = {un(m, k)}2nJ

k=1.

Encoding: Upon observing the sequence of states an (which is a possibly delayed version of

sn), to send message m choose un ∈ C(m) whose first n
2

symbols are jointly typical with a
n
2
1 and

whose subsequent n
2
− 1 symbols are jointly typical with ann

2
+2. The encoder then generates x

n
2
1

i.i.d. given (u
n
2
1 , a

n
2
1 ), that is, according to

∏n
2
i=1 PX|U,A(xi|ui, ai). The next n

2
−1 symbols, xn−1

n
2

+1,

are generated i.i.d. given (unn/2+1, a
n
n/2+1), that is, according to

∏n−1
i=n

2
+1 PX|U,A(xi|ui, ai+1). The

last symbol xn is chosen arbitrarily.

Decoding: If d = 0, find ` such that there exists un ∈ C(`) that satisfies(
u

n
2
1 , y

n
2
1

)
∈ T

n
2
p1,ε(U, Y )

and
(
un−1

n
2

+1, y
n−1
n
2

+1

)
∈ T

n
2
−1

p2,ε (U, Y ). (43)

If d = 1, find ` such that there exists un ∈ C(`) that satisfies(
un−1

n
2

+1, y
n−1
n
2

+1

)
∈ T

n
2
−1

p1,ε (U, Y )

and
(
u

n
2
1 , y

n
2
1

)
∈ T

n
2
p2,ε(U, Y ) (44)

where, p1(u, y), p2(u, y) are as in (16).

If such an ` does not exist, or if there is more than one such `, an error is declared.

The analysis of the average probability of error: Assume without loss of generality that

message 1 is sent. An error occurs if one or more of the following events take place:
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1) There is no un ∈ C(1) such that(
u

n
2
1 , a

n
2
1

)
∈ T

n
2
ε (U,A)

and
(
un−1

n
2

+1, a
n
n
2

+2

)
∈ T

n
2
−1

ε (U,A). (45)

We denote this event by E1.

2) Denote the vector un ∈ C(1) that satisfies (45) by ũn. Consider the event(
ũ

n
2
1 , y

n
2
1

)
/∈ T

n
2
p1,ε(U, Y )

or
(
ũn−1

n
2

+1, y
n−1
n
2

+1

)
/∈ T

n
2
−1

p2,ε (U, Y ) (46)

given that d = 0. Additionally, consider the event(
ũn−1

n
2

+1, y
n−1
n
2

+1

)
/∈ T

n
2
−1

p1,ε (U, Y )

or
(
ũ

n
2
1 , y

n
2
1

)
/∈ T

n
2
p2,ε(U, Y ) (47)

given that d = 1.

We denote events (46) and (47) by E2,1 and E2,2, respectively, and their union by E2.

3) Given that d = 0 there exists m′ 6= 1 and un ∈ C(m′) such that(
u

n
2
1 , y

n
2
1

)
∈ T

n
2
p1,ε(U, Y )

and
(
un−1

n
2

+1, y
n−1
n
2

+1

)
∈ T

n
2
−1

p2,ε (U, Y ). (48)

Alternatively, if d = 1 there exists m′ 6= 1 and un ∈ C(m′) such that(
un−1

n
2

+1, y
n−1
n
2

+1

)
∈ T

n
2
−1

p1,ε (U, Y )

and
(
u

n
2
1 , y

n
2
1

)
∈ T

n
2
p2,ε(U, Y ). (49)

We denote this event by E3.

The error event is the union of Ei, i = 1, 2, 3, thus by the union bound,

Pr(E) = Pr(E1 ∪ E2 ∪ E3) ≤ Pr(E1) + Pr(E2) + P (E3). (50)

By the covering lemma [38, p. 62], if J > I(U ;A) then Pr(E1)→ 0 as n→∞.

By definition of Pr(E2), it follows that

Pr(E2) = Pr(E2,1 ∪ E2,2) = 1{d=0} · Pr(E2,1) + 1{d=1} · Pr(E2,2). (51)
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Now, assume without loss of generality that d = 1, from the conditional typicality lemma [38,

p. 27] Pr(E2) → 0 as n → ∞. Similarly, if d = 1, then Pr(E2,2) → 0 as n → ∞. Therefore,

Pr(E2)→ 0 as n→∞.

It remains to bound Pr(E3). Let B1 be the set{
(un, yn) :

(
u

n
2
1 , y

n
2
1

)
∈ T

n
2
p1,ε(U, Y )

and
(
un−1

n
2

+1, y
n−1
n
2

+1

)
∈ T

n
2
−1

p2,ε (U, Y )
}
, (52)

and let B2 be the set{
(un, yn) :

(
u

n
2
1 , y

n
2
1

)
∈ T

n
2
p2,ε(U, Y )

and
(
un−1

n
2

+1, y
n−1
n
2

+1

)
∈ T

n
2
−1

p1,ε (U, Y )
}
. (53)

In addition, define p1(y) =
∑

u p1(u, y), and p2(y) =
∑

u p2(u, y), where p1(u, y), p2(u, y) are

as in (16). Suppose that Un is generated i.i.d. according to PU(u), additionally, suppose that

y
n
2
1 ∈ T

n
2
ε,p1(Y ) and yn−1

n
2

+1 ∈ T
n
2
−1

ε,p2 (Y ), then

Pr{(Un, yn) ∈ B1} ≤
∑

un:(un,yn)∈B1

P (un)

≤
∑

un:(un,yn)∈B1

P (un−1)

(a)

≤
∑

un:(un,yn)∈B1

2−(n−1)[H(U)−δ(ε)]

(b)

≤ 2
n
2
Hp1 (U |Y )+(n

2
−1)Hp2 (U |Y )+(n−1)δ′(ε)2−(n−1)[H(U)−δ(ε)]

≤ 2−[(n
2
−1)Ip1 (U ;Y )+(n

2
−1)Ip2 (U ;Y )−(n−1)δ′′(ε)] (54)

where (a) follows since Un is generated i.i.d., and (b) follows from the definition of B1, the

fact that u
n
2
1 and unn

2
+1 are statistically independent, and from Theorem 1.3 in [39]. In addition,

δ(ε), δ′(ε), δ′′(ε) are functions of ε which vanish as ε tends to 0.

Similarly, if y
n
2
1 ∈ T

n
2
ε,p2(Y ) and yn−1

n
2

+1 ∈ T
n
2
−1

ε,p1 (Y ), and Un is generated i.i.d. according to

PU(u), then

Pr ((Un, yn) ∈ B2) ≤ 2−[(n
2
−1)Ip1 (U ;Y )+(n

2
−1)Ip2 (U ;Y )−(n−1)δ′′(ε)]. (55)
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Now, let uni,j be the jth codeword in C(i), using (54) and (55), we get

Pr(E3) ≤ 1{d=0} ·
2nR∑
i=2

2nJ∑
j=1

P
(
(uni,j, y

n) ∈ B1

)
+ 1{d=1} ·

2nR∑
i=2

2nJ∑
j=1

P
(
(uni,j, y

n) ∈ B2

)
≤ 1{d=0} ·

2nR∑
i=2

2nJ∑
j=1

P
(
(uni,j, y

n) ∈ B1

)
+ 1{d=1} ·

2nR∑
i=2

2nJ∑
j=1

P
(
(uni,j, y

n) ∈ B2

)
≤ 2n(R+J)2−[(n

2
−1)Ip1 (U ;Y )+·(n

2
−1)Ip2 (U ;Y )−(n−1)δ′′(ε)−1]. (56)

Hence, as R + J < 1
2
Ip1(U ;Y ) + 1

2
Ip2(U ;Y ) and J > I(U ;A) Pr(E)→ 0 as n→∞.

APPENDIX B

In this section, we present the coding scheme of the AGP channel which corresponds to

Theorem 2 and analyze the probability of error of this coding scheme.

For the sake of clarity, we present the proof for the case dmin = 0, dmax = 1, i.e., we prove

that the rate in (29) is achievable in this case. We note that both the encoder and the decoder

know the time sharing sequence tn ∈ T nε (T ). Additionally, as mentioned before, we can assume

that the decoder knows the actual delay d in the channel. Finally, we ignore the end effects in

our notations, since the first/last symbols do not affect the asymptotic performance in terms of

the achievable reliable rates.

Now, since the decoder can find the delay d, and the encoder does not know the delay, we

must be able to decode the message for both delays d = 0, 1 simultaneously. Therefore, we can

represent the AGP channel as a multicast channel as appears in Fig. 6. Let channel 1 be the

channel with d = 0 and channel 2 be the channel where the state is delayed that is d = 1, and

let yn1 and yn2 be the outputs of channels 1 and 2 respectively.

Denote the statistically dependent D−tuples: V n
1 = (Si−dmin

, . . . , Si+dmax)ni=1, where

PV (v) =
D∏
i=1

PS(vi). (57)

Codebook Generation: Set PT and PW,U1,U2,X|T,V , where V = SD.

• Generate a sequence tn according to
∏n

i=1 PT (ti).

• For each message m ∈ {1, . . . , 2nR}, generate 2nT0 codewords, {wn(m, l0)}2nT0

l0=1, according

to
∏n

i=1 PW |T (wi|ti).
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• For each sequence wn(m, l0), generate 2nT1 codewords, {un1 (m, l0, l1)}2nT1

l1=1, according to∏n
i=1 PU1|W,T (u1,i|wi, ti).

• For each sequence wn(m, l0), generate 2nT2 codewords, {un2 (m, l0, l2)}2nT2

l2=1, according to∏n
i=1 PU2|W,T (u2,i|wi, ti).

Encoding: Let an be the possibly delayed state sequence, generate the sequence vn from the

sequence an in the following manner

vi = (ai−dmin
, . . . , ai+dmax) = (ai, ai+1) (58)

where the last equality is follows since dmin = 0 and dmax = 1, an+1 is chosen arbitrarily.

To send message m,

• Find l0 ∈ {1, . . . , 2nT0} such that

(wn(m, l0), vn, tn) ∈ T nε (W,V, T ). (59)

• Next, find l1 ∈ {1, . . . , 2nT1} and l2 ∈ {1, . . . , 2nT2} such that

(wn(m, l0), un1 (m, l0, l1), un2 (m, l0, l2), vn, tn) ∈ T nε (W,U1, U2, V, T ). (60)

• Generate Xn according to,
n∏
i=1

PX|W,U1,U2,V,T (xi|wi(m, l0), u1,i(m, l0, l1), u2,i(m, l0, l2), vi, ti) , (61)

and transmit Xn.

Decoding: To decode the message,

• Decoder 1: look for m̂1 ∈ {1, . . . , 2nR}, l̂0 ∈ {1, . . . , 2nT0} and l̂1 ∈ {1, . . . , 2nT1} such

that, (
wn(m̂1, l̂0), un1 (m̂1, l̂0, l̂1), yn1 , t

n
)
∈ T nε (W,U1, Y1, T ). (62)

If there is only one such m̂1, it is the decoded message, otherwise an error is declared.

• Decoder 2: look for m̂2 ∈ {1, . . . , 2nR}, l̂0 ∈ {1, . . . , 2nT0} and l̂2 ∈ {1, . . . , 2nT2} such

that, (
wn(m̂2, l̂0), un2 (m̂2, l̂0, l̂2), yn2 , t

n
)
∈ T nε (W,U2, Y2, T ). (63)

If there is only one such m̂2, it is the decoded message, otherwise an error is declared.
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The analysis of the average probability of error: Suppose without loss of generality that

the message m = 1 was sent. An error is made if one of the following events occurs,

1) The sequence tn is not in T nε (T ), we denote this event by Et.
2) The sequence vn is not in T nε (V ), we denote this event by Ev.
3) There is no l0 ∈ {1, . . . , 2nT0} such that,

(wn(1, l0), vn, tn) ∈ T nε (W,V, T ). (64)

We denote this event by Ee,1.

4) There are no l1 ∈ {1, . . . , 2nT1} and l2 ∈ {1, . . . , 2nT2} such that,

(wn(1, l0), un1 (1, l0, l1), un2 (1, l0, l2), vn, tn) ∈ T nε (W,U1, U2, V, T ). (65)

We denote this event by Ee,2.

5) The indices l0, l1 were chosen, but

(wn(1, l0), un1 (1, l0, l1), yn1 , t
n) /∈ T nε (W,U1, Y1, T ). (66)

We denote this event by Ed1,1.

6) There exists m′ 6= 1,

(wn(m′, l′0), un1 (m′, l′0, l
′
1), yn1 , t

n) ∈ T nε (W,U1, Y1, T ). (67)

for some l′0 ∈ {1, . . . , 2nT0} and l′1 ∈ {1, . . . , 2nT1}. We denote this event by Ed1,2.

7) The indices l0, l2 were chosen, but

(wn(1, l0), un2 (1, l0, l1), yn2 , t
n) /∈ T nε (W,U2, Y2, T ). (68)

We denote this event by Ed2,1.

8) There exists m′ 6= 1 such that,

(wn(m′, l′0), un2 (m′, l′0, l
′
1), yn2 , t

n) ∈ T nε (W,U2, Y2, T ). (69)

for some l′0 ∈ {1, . . . , 2nT0} and l′2 ∈ {1, . . . , 2nT2}. We denote this event by Ed2,2.

Let,

Etv = Et ∪ Ev

Ee = Ee,1 ∪ Ee,2

Ed1 = Ed1,1 ∪ Ed1,2

Ed2 = Ed2,1 ∪ Ed2,2. (70)
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There average error probability is further bounded by,

Pr(E) ≤ Pr(Et ∪ Ev ∪ Ee ∪ Ed1 ∪ Ed2)

≤ Pr(Et) + Pr(Ev) + Pr(Ectv ∩ Ee,1)

+ Pr(Ectv ∩ Ece,1 ∩ Ee,2) + Pr(Ectv ∩ Ece ∩ Ed1,1)

+ Pr(Ed1,2) + Pr(Ectv ∩ Ece ∩ Ed2,1) + Pr(Ed2,2). (71)

By the LLN, Pr(Et) → 0 as n → ∞. In addition, from the stationarity and ergodicity of vn

we infer that Pr(Ev)→ 0 as n→∞.

By the covering lemma2 [38, p. 62], Pr(Ectv ∩ Ee,1)→ 0 as n→ 0, if

T0 ≥ I(W ;V |T ). (72)

An immediate extension of [16, Appendix A], yields that if

T1 > I(U1;V |W,T )

T2 > I(U2;V |W,T )

T1 + T2 > I(U1;V |W,T ) + I(U2;V |W,T ) + I(U1;U2|V,W, T ) (73)

then Pr(Ectv ∩ Ece,1 ∩ Ee,2)→ 0 as n→∞.

Next, an immediate extension of the Markov Lemma [35, Lemma 15.8.1], gives that Pr(Ectv ∩
Ece ∩ Ed1,1)→ 0 and Pr(Ectv ∩ Ece ∩ Ed2,1)→ 0 as n→∞.

Finally, by [39, Theorem 7.1], if

R + T0 + T1 ≤ I(W,U1;Y1|T )

R + T0 + T2 ≤ I(W,U2;Y2|T ) (74)

then Pr(Ed1,2)→ 0 and Pr(Ed2,2)→ 0 as n→∞.

Performing Fourier-Motzkin Elimination on (72)-(74) yields the rate (29).

2Note that this lemma does not demand V n to be statistically independent, the only assumption is that V n is a typical

sequence with respect to PV . This is also true for the other lemmas and Theorems which we use in this proof.
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APPENDIX C

In this section, we present the coding scheme of Theorem 7 and analyze the respective

probability of error. The converse part of Theorem 7 is presented as well.

Proof of the Achievability Part of Theorem 7: As before, the decoder can deduce d from

yn with arbitrarily low probability of error, so we assume that d is known at the decoder.

Suppose that |S| <∞. Let vi = (si−dmax , . . . , si+dmin
), where si−d are arbitrary for all i ∈ {1,

. . . , n} such that i − d /∈ {1, . . . , n}. Additionally, denote V = SD where D = |D|. Note that

since both the encoder and decoder know the sequence sn and the set of possible delays, each

can build the sequence vn.

Codebook Generation: Fix a conditional p.m.f. P (x|v). Further, order the symbols of the

alphabet V in some manner and let N : V → {1, . . . , |V|} be the chosen ordering function. For

each m ∈M denote by b(m) a matrix of dimensions |V|×n which is generated in the following

manner. Let b(m, i) be the i-th column of b(m), and let b(m, i,N(v)) be the N(v)-th entry in

the column vector b(m, i). Each b(m) is generated according an i.i.d. distribution, that is,

PB(b) =
n∏
i=1

P (bi), (75)

where bi is the i-th column of the matrix b. Denote by bi,N(v) the N(v)-th entry of the column

vector bi. Each of the column vectors bi is generated according to

P (bi) =
∏
v∈V

P (bi,N(v)) (76)

where

P (bi,N(v)) = PX|V (bi,N(v)|v). (77)

Encoding: To send m ∈M, in each time instant i, the transmitter sends xi = b(m, i,N(vi)).

Decoding: Let xi(m, vn) = b(m, i,N(vi)) and let xn(m, vn) = (xi(m, v
n))ni=1. Upon receiving

yn the decoder looks for m̂ ∈M such that

(xn(m, vn), yn) ∈ T nd,ε(X, Y |vn) (78)

where Pd(x, y|v) is defined in (40).
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Analysis of Probability of Error: Suppose the message m = 1 was sent. An error is made

if one of the following events occurs:

E1 = {vn /∈ T nε (V )}

E2 = {xn(1, vn) /∈ T nε (X|V = v)}

E3 = {(xn(1, vn), yn) /∈ T nd,ε(X, Y |vn)}

E4 =

 ∃m̃ 6= 1 s.t.

(xn(m̃, vn), yn) ∈ T nd,ε(X, Y |vn)

 . (79)

Therefore, the average probability of error Pr(E) satisfies

Pr(E) = Pr(E1 ∪ E2 ∪ E3 ∪ E4) ≤ Pr(E1) + Pr(Ec1 ∩ E2) + Pr(Ec1 ∩ Ec2 ∩ E3) + Pr(E4). (80)

By the ergodicity and stationarity of vn, Pr(E1) → 0 as n → ∞. By the conditional typicality

lemma [38, p. 27], Pr(Ec1 ∩ E2)→ 0 and Pr(Ec1 ∩ Ec2 ∩ E3)→ 0 as n→∞.

We next prove that the sequence yn is memoryless given the sequence vn and the delay d

(which is assumed to be known at the decoder).

Pd(y
n|vn) =

∑
xn∈Xn

Pd(y
n, xn|vn)

=
∑
xn∈Xn

Pd(y
n|xn, vn)P (xn|vn)

=
∑
xn∈Xn

n∏
i=1

Pd(yi|xi, vi)p(xi|vi)

=
n∏
i=1

∑
xi∈X

Pd(yi|xi, vi)p(xi|vi)

=
n∏
i=1

Pd(yi|vi). (81)

Now, by the packing lemma3 [38, p. 46] Pr(E4)→ 0 as n→∞ if

R < Id(X;Y |V ). (82)

3Note that this lemma does not demand V n to be statistically independent, the only assumption is that V n is a typical

sequence with respect to PV .
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Additionally, since the delay is chosen in an arbitrary manner, (82) must hold for every delay

d ∈ D.

To conclude, since ε is arbitrarily small, we have shown that a rate arbitrarily close to

R = max
P (x|v)

min
d∈D

Id(X;Y |V ). (83)

is achievable.

Proof of the Converse Part of Theorem 7: Let Vi = (Si−dmax , . . . , Si+dmin
) and Vi,j =

Si−dmax+j−1. Additionally let,

Pd(m, v
n, xn, yn) = P (m)P (vn)P (xn|vn,m)Pd(y

n|xn, vn), (84)

where

P (m) = 2−nR, (85)

P (vn) = P (v1) ·
n∏
i=2

P (vi|vi−1) =
D∏
i=1

PS(v1,i) ·
n∏
i=2

PS(vi,D), (86)

Pd(y
n|xn, vn) =

n∏
i=1

P (yi|xi, vi,dmax−d+1). (87)

We denote information theoretic functionals of Pd(m, vn, xn, yn) by the subscript d, e.g., Hd(M |Y n,

V n).

For every sequence of (2nR, n)-codes with probability of error P (n)
e that vanishes as n→∞

for every d ∈ D, we obtain from Fano’s Inequality

nR = H(M) = H(M |V n)

= H(M |V n)−Hd(M |Y n, V n) +Hd(M |Y n, V n)

≤ Id(M ;Y n|V n) + nδn (88)

where δn → 0 as n→∞.
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We next bound the term Id(M ;Y n|V n).

Id(M ;Y n|V n) =
n∑
i=1

Id(M ;Yi|Y i−1, V n)

=
n∑
i=1

Hd(Yi|Y i−1, V n)−
n∑
i=1

Hd(Yi|M,Y i−1, V n)

(a)

≤
n∑
i=1

Hd(Yi|Vi)−
n∑
i=1

Hd(Yi|M,Y i−1, V n)

(b)

≤
n∑
i=1

Hd(Yi|Vi)−
n∑
i=1

Hd(Yi|M,Xi, Y
i−1, V n)

(c)
=

n∑
i=1

Hd(Yi|Vi)−
n∑
i=1

Hd(Yi|Xi, Vi)

=
n∑
i=1

Id(Xi;Yi|Vi) (89)

where (a) and (b) follow since conditioning reduces entropy, and (c) follows since (M,Y i−1,

V i−1, V n
i+1)− (Xi, Vi, d)− Yi is a Markov chain for any given d and all i. This is true since the

channel is memoryless, the decoder can know the delay in the channel, and the state at time i,

si−d, is included in the vector vi, more specifically, si−d = vi,dmax−d+1.

Let T be a time sharing random variable which is distributed uniformly over {1, . . . , n} and

independent of V n, Xn and Y n, and let X = XT , V = VT and Y = YT . Then,

R ≤ 1

n

n∑
i=1

Id(Xi;Yi|Vi) + δn

= Id(X;Y |V, T ) + δn

= Hd(Y |V, T )−Hd(Y |X, V, T ) + δn

(a)
= Hd(Y |V, T )−Hd(Y |X, V ) + δn

(b)

≤ Hd(Y |V )−Hd(Y |X, V ) + δn

= Id(X;Y |V ) + δn

(90)

where (a) follows since Pd(y|x, v, t) = Pd(y|x, v) = P (y|x, vdmax−d+1) due to the stationary

nature of the channel, and (b) follows since conditioning reduces entropy.
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Now, by taking the limit as n→∞ we have that,

R ≤ Id(X;Y |V ). (91)

The inequality (91) holds for every d ∈ D. Additionally, the encoder does not know the delay

d in advance, therefore X cannot depend on the delay d. Consequently,

R ≤ min
d∈D

Id(X;Y |V ) ≤ max
P (x|v)

min
d∈D

Id(X;Y |V ) (92)

and this concludes the proof of Theorem 7.
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