
1

Optimal Achievable Rates for

Interference Networks with Random Codes
Bernd Bandemer, Abbas El Gamal, and Young-Han Kim

Abstract

The optimal rate region for interference networks is characterized when encoding is restricted to random code

ensembles with superposition coding and time sharing. A simple simultaneous nonunique decoding rule, under

which each receiver decodes for the intended message as well as the interfering messages, is shown to achieve this

optimal rate region regardless of the relative strengths of signal, interference, and noise. This result implies that the

Han–Kobayashi bound, the best known inner bound on the capacity region of the two-user-pair interference channel,

cannot be improved merely by using the optimal maximum likelihood decoder.

Index Terms

network information theory, interference network, superposition coding,

maximum likelihood decoding, simultaneous decoding, Han–Kobayashi bound.

I. INTRODUCTION

Consider a communication scenario in which multiple senders communicate independent messages to multiple

receivers over a network with interference. What is the set of simultaneously achievable rate tuples for reliable

communication? What coding scheme achieves this capacity region? Answering these questions involves joint

optimization of the encoding and decoding functions, which has remained elusive even for the case of two

sender–receiver pairs.

With a complete theory in terra incognita, in this paper we take a simpler modular approach to these questions.

Instead of searching for the optimal encoding functions, suppose rather that the encoding functions are restricted to

realizations of a given random code ensemble of a certain structure. What is the set of simultaneously achievable

rate tuples so that the probability of decoding error, when averaged over the random code ensemble, can be made

arbitrarily small? To be specific, we focus on random code ensembles with superposition coding and time sharing of

independent and identically distributed (i.i.d.) codewords. This class of random code ensembles includes those used

in the celebrated Han–Kobayashi coding scheme [13].
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We characterize the set R∗ of rate tuples achievable by the random code ensemble for an interference network

as the intersection of rate regions for its component multiple access channels in which each receiver recovers its

intended messages as well as appropriately chosen unintended messages. More specifically, the rate region R∗ for

the interference network with senders [1 :K] = {1, 2, . . . ,K}, each communicating an independent message, and

receivers [1 :L], each required to recover a subset D1, . . . ,DL ⊆ [1 :K] of messages, is

R∗ =
⋂

l∈[1:L]

⋃
S⊇Dl

RMAC(S, l). (1)

Here RMAC(S, l) denotes the set of rate tuples achievable by the random code ensemble for the multiple access

channel with senders S and receiver l when the codewords from the other senders [1 :K] \ S are treated as random

noise.

A direct approach to proving this result would be to analyze the average performance of the optimal decoding

rule for each realization of the random code ensemble that minimizes the probability of decoding error, namely,

maximum likelihood decoding (MLD). This analysis, however, is unnecessarily cumbersome. We instead take an

indirect yet conducive approach that is common in information theory. First, we show that any rate tuple inside R∗

is achieved by using the typicality-based simultaneous nonunique decoding (SND) rule [7], [10], [18], in which each

receiver attempts to recover the codewords from its intended senders and (potentially nonuniquely) the codewords

from interfering senders. Second, we show that if the average probability of error of MLD for the random code

ensemble is asymptotically zero, then its rate tuple must lie in R∗. The key to proving the second step is to show that

after a maximal set of messages has been recovered, the remaining signal at each receiver is distributed essentially

independently and identically. The two-step approach taken here is reminiscent of the random coding proof for the

capacity of the point-to-point channel [21], wherein a suboptimal (in the sense of the probability of error) decoding

rule based on the notion of joint typicality can achieve the same rate as MLD when used for random code ensembles.

Our result has several implications.

• It shows that incorporating the structure of interference into decoding, when properly done as in MLD and SND,

always achieves higher or equal rates compared to treating interference as random noise; thus, the traditional

wisdom of distinguishing between decoding for the interference at high signal-to-noise ratio and ignoring the

interference at low signal-to-noise ratio does not provide any improvement on achievable rates.

• It shows that the Han–Kobayashi inner bound [13], [7], [10, Theorem 6.4], which was established using the

random code ensemble and a typicality-based simultaneous decoding rule, cannot be improved by using a more

powerful decoding rule such as MLD.

• It generalizes the result by Motahari and Khandani [17], and Baccelli, El Gamal, and Tse [2] on the optimal

rate region for K-user-pair Gaussian interference channels with point-to-point Gaussian random code ensembles

to arbitrary (not necessarily Gaussian) random code ensembles with time sharing and superposition coding.

• It shows that the Cover–van der Meulen inner bound with no common auxiliary random variable on the capacity

region of the two-receiver broadcast channel [9], [23], [10, Eq. (8.8)] (and thus Marton’s inner bound [16], [10,

Theorem 8.3]) can be improved by using SND to include the superposition coding inner bound [8], [4], [10,
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Theorem 5.1].

• It shows that the interference decoding rate region for the three-user-pair deterministic interference channel

in [3] is the optimal rate region achievable by point-to-point random code ensembles and time sharing.

We illustrate the main result and its implications via the following two simple examples.

A. Interference Channels with Two User Pairs

Consider the two-user-pair discrete memoryless interference channel (2-DM-IC) p(y1, y2|x1, x2) with input

alphabets X1 and X2 and output alphabets Y1 and Y2, depicted in Figure 1. Here sender j = 1, 2 wishes to

communicate a message to its respective receiver via n transmissions over the shared interference channel. Each

message Mj , j = 1, 2, is separately encoded into a codeword Xn
j = (Xj1, Xj2, . . . , Xjn) and transmitted over the

channel. Upon receiving the sequence Y nj , receiver j = 1, 2 finds an estimate M̂ j of the message Mj .

M1 → Xn
1 Y n1 → M̂1

p(y1, y2 |x1, x2)
M2 → Xn

2 Y n2 → M̂2

Figure 1. Two-user-pair discrete memoryless interference channel.

We now consider the standard random coding analysis for inner bounds on the set of achievable rate pairs (the

capacity region) of the 2-DM-IC. Given a product input pmf p(x1) p(x2), suppose that the codewords xnj (mj),

mj ∈ [1 : 2nRj ] = {1, 2, . . . , 2nRj}, for j = 1, 2 are generated randomly, each drawn according to
∏n
i=1 pXj

(xji).

We recall the rate regions achieved by employing the following simple suboptimal decoding rules, described for

receiver 1 (cf. [10, Sec. 6.2]).

• Treating interference as noise (IAN). Receiver 1 finds the unique message m̂1 such that (xn1 (m̂1), y
n
1 ) is jointly

typical. (See the end of this section for the definition of joint typicality.) It can be shown that the average

probability of decoding error for receiver 1 tends to zero as n→∞ if

R1 < I(X1;Y1). (2)

The corresponding rate region (IAN region) is depicted in Figure 2(a).

• Simultaneous decoding (SD). Receiver 1 finds the unique message pair (m̂1, m̂2) such that (xn1 (m̂1), x
n
2 (m̂2), y

n
1 )

is jointly typical. The average probability of decoding error for receiver 1 tends to zero as n→∞ if

R1 < I(X1;Y1 |X2), (3a)

R2 < I(X2;Y1 |X1), (3b)

R1 +R2 < I(X1, X2;Y1). (3c)

The corresponding rate region (SD region) is depicted in Figure 2(b).
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Now, consider simultaneous nonunique decoding (SND) in which receiver 1 finds the unique m̂1 such that

(xn1 (m̂1), x
n
2 (m2), y

n
1 ) is jointly typical for some m2. Clearly, any rate pair in the SD rate region (3) is achievable via

SND. Less obviously, any rate pair in the IAN region (2) is also achievable via SND as we show in the achievability

proof of Theorem 1 in Section II. Hence, SND can achieve any rate pair in the union of the IAN and SD regions, that

is, the rate region R1 as depicted in Figure 2(c). Similarly, the average probability of decoding error for receiver 2

using SND tends to zero as n→∞ if the rate pair (R1, R2) is in R2, which is defined analogously by exchanging

the roles of the two users (see Figure 2(d)). Combining the decoding requirements for both receivers yields the rate

region R1 ∩R2.

This rate region R1 ∩R2 turns out to be optimal for the given random code ensemble. As shown in the converse

proof of Theorem 1, if the probability of error for MLD averaged over the random code ensemble tends to zero as

n→∞, then the rate pair (R1, R2) must reside inside the closure of R1 ∩R2. Thus, SND achieves the same rate

region as MLD (for random code ensembles of the given structure).

R1

R2

I(X1;Y1)

(a)

45◦

R1

R2

I(X1;Y1 |X2)I(X1;Y1)

I(X2;Y1|X1)

(b)

45◦

R1

R2

R1

I(X1;Y1 |X2)I(X1;Y1)

I(X2;Y1|X1)

(c)

45◦

R1

R2

R2

I(X2;Y2 |X1)

I(X2;Y2)

I(X1;Y2|X2)

(d)

Figure 2. Achievable rate regions for the 2-DM-IC: (a) treating interference as noise, (b) using simultaneous decoding, (c) using

simultaneous nonunique decoding (R1); note that R1 is the union of the regions in (a) and (b); and (d) using simultaneous

nonunique decoding at receiver 2 (R2).

B. Broadcast Channels with Two Receivers

In the previous example, the random code ensemble for each sender had the structure of random code ensembles

for point-to-point communication channels [21]. To illustrate our result for superposition coding, consider the
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two-receiver discrete memoryless broadcast channel (2-DM-BC) p(y1, y2|x) with input alphabet X and output

alphabets Y1 and Y2. Here the sender wishes to communicate two independent messages to their respective receivers

via n transmissions over the broadcast channel. Each message pair (M1,M2) is encoded into a codeword Xn

and transmitted over the channel. Upon receiving the sequence Y nj , receiver j = 1, 2 finds an estimate M̂ j of the

message Mj .

We consider a special case of the classical coding scheme by Cover [9] and van der Meulen [23], illustrated

in Figure 3. Given a product pmf p(u1) p(u2) and a function x(u1, u2), suppose that the codewords xn(m1,m2),

(m1,m2) ∈ [1 : 2nR1 ]× [1 : 2nR2 ], are given as xi(m1,m2) = x(u1i(m1), u2i(m2)), i ∈ [1 : n], where the sequences

unj (mj), mj ∈ [1 : 2nRj ], for j = 1, 2 are generated randomly, each drawn according to
∏n
i=1 pUj

(uji). Thus, the

transmitted codeword is a “superposition” of two codewords un1 (m1) and un2 (m2), which is literally the case when

x(u1, u2) is additive.

M1 → Un1
Y n1 → M̂1

M2 → Un2
Y n2 → M̂2

Xn

p(y1, y2 |x)

Figure 3. Broadcast channel with Cover–van der Meulen coding.

Alternatively, this superposition coding scheme can be viewed as first transforming the underlying the broadcast

channel into a two-user-pair interference channel

p(y1, y2 |u1, u2) = p(y1, y2 |x(u1, u2))

and then applying the random coding scheme for two-user-pair interference channel discussed in Subsection I-A.

Hence, the random coding analysis thereof can be readily applied. For example, suppose that each receiver decodes

for its intended codeword while treating the other codeword as noise (cf. (2)). Then it can be shown that the average

probability of decoding error tends to zero as n→∞ if

R1 < I(U1;Y1), (4a)

R2 < I(U2;Y2). (4b)

Taking the union over all pmfs p(u1) p(u2) and functions x(u1, u2), we obtain the Cover–van der Meulen inner

bound (with no common auxiliary random variable) on the capacity region [10, Eq. (8.8)].

On the other hand, consider the superposition coding inner bound on the capacity region [8], [4], [10, Theorem 5.1],
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which is the set of rate pairs such that

R1 < I(U1;Y1 |U2) = I(X;Y1 |U2), (5a)

R2 < I(U2;Y2), (5b)

R1 +R2 < I(U1, U2;Y1) = I(X;Y1) (5c)

for some pmf p(u1) p(u2) and function x(u1, u2). This inner bound corresponds to having receiver 1 decode for

both messages while receiver 2 treats the other codeword as noise. It can be shown [12] that this bound is not in

general contained in the Cover–van der Meulen inner bound and neither vice versa. (This statement remains true

even if the Cover–van der Meulen inner bound is replaced with Marton’s inner bound without a common auxiliary

random variable [16], [10, Theorem 8.3]).

The distinction between the superposition coding inner bound and the Cover–van der Meulen inner bound is,

however, a mere side effect from the use of suboptimal decoding rules. Suppose now that both receivers use SND.

As in Subsection I-A, the average probability of decoding error tends to zero as n→∞ if (R1, R2) ∈ R1 ∩R2,

where R1 consists of rate pairs such that

R1 < I(U1;Y1)

or

R1 < I(U1;Y1 |U2),

R1 +R2 < I(U1, U2;Y1),

and R2 is similarly defined by exchanging the subscripts 1 and 2. The union of R1 ∩R2 over all pmfs p(u1) p(u2)

and functions x(u1, u2) yields an inner bound on the capacity region. It is not hard to see that this region includes

both inner bounds (4) and (5). Furthermore, this region is the optimal rate region achieved by using MLD (see

Section III).

The rest of the paper is organized as follows. For simplicity of presentation, in Section II we formally define the

problem for the two-user-pair interference channel and establish our main result for the random code ensemble with

time sharing and no superposition coding. In Section III, we extend our result to a multiple-sender multiple-receiver

discrete memoryless interference network in which each sender has a single message and wishes to communicate it

to a subset of the receivers. This extension includes superposition coding with an arbitrary number of layers. In

Section IV, we specialize the result to the Han–Kobayashi coding scheme for the two-user-pair interference channel.

Most technical proofs are deferred to the Appendices.

Throughout we closely follow the notation in [10]. In particular, for X ∼ p(x) and ε ∈ (0, 1), we define the set

of ε-typical n-sequences xn (or the typical set in short) [20] as

T (n)
ε (X) =

{
xn : |#{i : xi = x}/n− p(x)| ≤ εp(x) for all x ∈ X

}
.
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For a tuple of random variables (X1, . . . , Xk), the joint typical set T (n)
ε (X1, . . . , Xk) is defined as the typical set

T (n)
ε ((X1, . . . , Xk)) for a single random variable (X1, . . . , Xk). The joint typical set T (n)

ε (XS) for a subtuple

XS = (Xk : k ∈ S) is defined similarly for each S ⊆ [1 : k]. We use δ(ε) > 0 to denote a generic function of

ε > 0 that tends to zero as ε→ 0. Similarly, we use εn ≥ 0 to denote a generic function of n that tends to zero as

n→∞.

II. DM-IC WITH TWO USER PAIRS

Consider the two-user-pair discrete memoryless interference channel (2-DM-IC) p(y1, y2 |x1, x2) introduced in

Subsection I-A (see Figure 1). A (2nR1 , 2nR2 , n) code Cn for the 2-DM-IC consists of

• two message sets [1 : 2nR1 ] and [1 : 2nR2 ],

• two encoders, where encoder 1 assigns a codeword xn1 (m1) to each message m1 ∈ [1 : 2nR1 ] and encoder 2

assigns a codeword xn2 (m2) to each message m2 ∈ [1 : 2nR2 ], and

• two decoders, where decoder 1 assigns an estimate m̂1 or an error message e to each received sequence yn1

and decoder 2 assigns an estimate m̂2 or an error message e to each received sequence yn2 .

We assume that the message pair (M1,M2) is uniformly distributed over [1 : 2nR1 ] × [1 : 2nR2 ]. The average

probability of error for the code Cn is defined as

P (n)
e (Cn) = P

{
(M̂1, M̂2) 6= (M1,M2)

}
.

A rate pair (R1, R2) is said to be achievable for the 2-DM-IC if there exists a sequence of (2nR1 , 2nR2 , n) codes

Cn such that limn→∞ P
(n)
e (Cn) = 0. The capacity region C of the 2-DM-IC is the closure of the set of achievable

rate pairs (R1, R2).

We now limit our attention to a randomly generated code ensemble with a special structure. Let p = p(q, x1, x2) =

p(q) p(x1|q) p(x2|q) be a given pmf on Q× X1 × X2, where Q is a finite alphabet. Suppose that the codewords

Xn
1 (m1), m1 ∈ [1 : 2nR1 ], and Xn

2 (m2), m2 ∈ [1 : 2nR2 ], that constitute the codebook, are generated randomly as

follows:

• Let Qn ∼
∏n
i=1 pQ(qi).

• Let Xn
1 (m1) ∼

∏n
i=1 pX1|Q(x1i|qi), m1 ∈ [1 : 2nR1 ], conditionally independent given Qn.

• Let Xn
2 (m2) ∼

∏n
i=1 pX2|Q(x2i|qi), m2 ∈ [1 : 2nR2 ], conditionally independent given Qn.

Each instance {(xn1 (m1), x
n
2 (m2)) : (m1,m2) ∈ [1 : 2nR1 ]× [1 : 2nR2 ]} of such generated codebooks, along with

the corresponding optimal decoders, constitutes a (2nR1 , 2nR2 , n) code. We refer to the random code ensemble

generated in this manner as the (2nR1 , 2nR2 , n; p) random code ensemble.

Definition 1 (Random coding optimal rate region). Given a pmf p = p(q) p(x1|q) p(x2|q), the optimal rate region

R∗(p) achievable by the p-distributed random code ensemble is the closure of the set of rate pairs (R1, R2) such

that the sequence of (2nR1 , 2nR2 , n; p) random code ensembles Cn satisfies

lim
n→∞

ECn [P
(n)
e (Cn)] = 0,
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where the expectation is with respect to the random code ensemble Cn.

To characterize the random coding optimal rate region, we define R1(p) to be the set of rate pairs (R1, R2) such

that

R1 ≤ I(X1;Y1 |Q) (6a)

or

R2 ≤ I(X2;Y1 |X1, Q), (6b)

R1 +R2 ≤ I(X1, X2;Y1 |Q). (6c)

Similarly, define R2(p) by making the index substitution 1↔ 2. We are now ready to state the main result of the

section.

Theorem 1. Given a pmf p = p(q) p(x1|q) p(x2|q), the optimal rate region of the DM-IC p(y1, y2|x1, x2) achievable

by the p-distributed random code ensemble is

R∗(p) = R1(p) ∩R2(p).

Before we prove the theorem, we point out a few important properties of the random coding optimal rate region.

Remark 1 (MAC form). Let R1,IAN(p) be the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y1 |Q),

that is, the achievable rate (region) for the point-to-point channel p(y1|x1) by treating the interfering signal X2 as

noise. Let R1,SD(p) be the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y1 |X2, Q),

R2 ≤ I(X2;Y1 |X1, Q),

R1 +R2 ≤ I(X1, X2;Y1 |Q),

that is, the achievable rate region for the multiple access channel p(y1|x1, x2) by decoding for both messages M1

and M2 simultaneously. Then, we can express R1(p) as

R1(p) = R1,IAN(p) ∪R1,SD(p),

which is referred to as the MAC form of R1(p), since it is the union of the achievable rate regions of 1-sender and

2-sender multiple access channels. The region R2(p) can be expressed similarly as the union of the interference-as-

noise region R2,IAN(p) and the simultaneous-decoding region R2,SD(p). Hence the optimal rate region R∗(p) can

be expressed as

R∗(p) =
(
R1,IAN(p) ∩R2,IAN(p)

)
∪
(
R1,IAN(p) ∩R2,SD(p)

)
∪
(
R1,SD(p) ∩R2,IAN(p)

)
∪
(
R1,SD(p) ∩R2,SD(p)

)
, (7)
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which is achieved by taking the union over all possible combinations of treating interference as noise and simultaneous

decoding at the two receivers.

Remark 2 (Min form). The region R1(p) in (6) can be equivalently characterized as the set of rate pairs (R1, R2)

such that

R1 ≤ I(X1;Y1 |X2, Q), (8a)

R1 +min{R2, I(X2;Y1 |X1, Q)} ≤ I(X1, X2;Y1 |Q). (8b)

The minimum term in (8b) can be interpreted as the effective rate of the interfering signal X2 at the receiver Y1,

which is a monotone increasing function of R2 and saturates at the maximum possible rate for distinguishing X2

codewords; see [3]. When R2 is small, all X2 codewords are distinguishable and the effective rate equals the actual

code rate. In comparison, when R2 is large, the codewords are not distinguishable and the effective rate equals

I(X2;Y1 |X1, Q), which is the maximum achievable rate for the channel from X2 to Y1.

Remark 3 (Nonconvexity). The random coding optimal rate region R∗(p) is not convex in general. This is exemplified

by the deterministic 2-DM-IC in Figure 4.

X1
[0 : 3]

X2

Y1

Y2
[0 : 3]

[0 : 6]

[0 : 2]

{0, 1}

0
1
2

0

3 1

0
1
2

0

3 1

{0, 1}

(a) Channel block diagram.

R1

R2

R1(p)

1

1

2

2.66

2

R2(p)

0

1.50

R∗(p)

(b) Regions R1(p), R2(p), and R∗(p) for

Q = ∅ and X1, X2 ∼ Unif[0 : 3].

Figure 4. An example for nonconvex R∗(p).

A direct approach to proving Theorem 1 would be to analyze the performance of maximum likelihood decoding:

m̂1 = argmax
m1

1

2nR2

∑
m2

n∏
i=1

pY1|X1,X2
(y1i |x1i(m1), x2i(m2)),

m̂2 = argmax
m2

1

2nR1

∑
m1

n∏
i=1

pY2|X1,X2
(y2i |x1i(m1), x2i(m2))

for the p-distributed random code. Instead of performing this analysis, which is quite complicated (if possible),

we establish the achievability of R∗(p) by the suboptimal simultaneous nonunique decoding rule, which uses the

notion of joint typicality. We then show that if the average probability of error of the (2nR1 , 2nR2 , n; p) random

code ensemble tends to zero as n→∞, then the rate pair (R1, R2) must lie in R∗(p).
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A. Proof of Achievability

Each receiver uses simultaneous nonunique decoding. Receiver 1 declares that m̂1 is sent if it is the unique

message among [1 : 2nR1 ] such that(
qn, xn1 (m̂1), x

n
2 (m2), y

n
1

)
∈ T (n)

ε for some m2 ∈ [1 : 2nR2 ].

If there is no such message or more than one, it declares an error. Similarly, receiver 2 finds the unique message

m̂2 ∈ [1 : 2nR2 ] such that (
qn, xn1 (m1), x

n
2 (m̂2), y

n
2

)
∈ T (n)

ε for some m1 ∈ [1 : 2nR1 ].

To analyze the probability of decoding error averaged over the random codebook ensemble, assume without loss of

generality that (M1,M2) = (1, 1) is sent. Receiver 1 makes an error only if one or both of the following events

occur:

E1 =
{
(Qn, Xn

1 (1), X
n
2 (1), Y

n
1 ) /∈ T (n)

ε

}
,

E2 =
{
(Qn, Xn

1 (m1), X
n
2 (m2), Y

n
1 ) ∈ T (n)

ε for some m1 6= 1 and some m2

}
.

By the law of large numbers, P(E1) tends to zero as n→∞.

We bound P(E2) in two ways, which leads to the MAC form of R1(p) in Remark 1. First, since the joint

typicality of the quadruple (Qn, Xn
1 (m1), X

n
2 (m2), Y

n
1 ) for each m2 implies the joint typicality of the triple

(Qn, Xn
1 (m1), Y

n
1 ), we have

E2 ⊆
{
(Qn, Xn

1 (m1), Y
n
1 ) ∈ T (n)

ε for some m1 6= 1
}
= E ′2.

Then, by the packing lemma in [10, Section 3.2], P(E ′2) tends to zero as n→∞ if

R1 < I(X1;Y1 |Q)− δ(ε). (9)

The second way to bound P(E2) is to partition E2 into the two events

E21 =
{
(Qn, Xn

1 (m1), X
n
2 (1), Y

n
1 ) ∈ T (n)

ε for some m1 6= 1
}
,

E22 =
{
(Qn, Xn

1 (m1), X
n
2 (m2), Y

n
1 ) ∈ T (n)

ε for some m1 6= 1, m2 6= 1
}
.

Again by the packing lemma, P(E21) and P(E22) tend to zero as n→∞ if

R1 < I(X1;Y1 |X2, Q)− δ(ε), (10a)

R1 +R2 < I(X1, X2;Y1 |Q)− δ(ε). (10b)

Thus we have shown that the average probability of decoding error at receiver 1 tends to zero as n→∞ if at least one

of (9) and (10) holds. Similarly, we can show that the average probability of decoding error at receiver 2 tends to zero

as n→∞ if R2 < I(X2;Y2 |Q)− δ(ε), or R2 < I(X2;Y2 |X1, Q)− δ(ε) and R1+R2 < I(X1, X2;Y2 |Q)− δ(ε).

Since ε > 0 is arbitrary and δ(ε)→ 0 as ε→ 0, this completes the proof of achievability for any rate pair (R1, R2)

in the interior of R1(p) ∩R2(p).
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Remark 4 (Comparison to maximum likelihood decoding). It is instructive to consider the following progression of

decoding rules for receiver 1.

1) Maximum likelihood decoding:

m̂1 = argmax
m1

p(yn1 |m1)

= argmax
m1

1

2nR2

∑
m2

p(yn1 |m1,m2) (11)

= argmax
m1

1

2nR2

∑
m2

n∏
i=1

pY1|X1,X2
(y1i |x1i(m1), x2i(m2)),

which is the optimal decoding rule.

2) Simultaneous maximum likelihood decoding:

m̂1 = argmax
m1

max
m2

p(yn1 |m1,m2),

which is equivalent to performing optimal decoding of the message pair (M1,M2) and then taking the first

coordinate. Note the maximum over m2 instead of the average as in (11).

3) Typicality score decoding:

m̂1 = argmin
m1

min
m2

ε?(yn1 ,m1,m2),

where ε?(yn1 ,m1,m2) is defined as the smallest ε such that

(qn, xn1 (m1), x
n
2 (m2), y

n
1 ) ∈ T (n)

ε .

Here the notion of joint typicality plays the role of likelihood in previous decoding rules and ε? captures the

penalty for being atypical.

4) Simultaneous nonunique decoding: Find the unique m̂1 such that

(qn, xn1 (m̂1), x
n
2 (m2), y

n
1 ) ∈ T (n)

ε for some m2.

This is equivalent to performing typicality score decoding with predetermined threshold ε for ε?(yn1 ,m1,m2);

thus first forming a list of all (m1,m2) for which ε?(yn1 ,m1,m2) ≤ ε, and then taking the first coordinate of

the members of the list (if it is unique).

Starting from the optimal maximum likelihood decoding rule, each subsequent rule modifies its predecessor by

“relaxing” one step. Nonetheless, these relaxation steps do not result in any significant loss in performance, as is

evident in the rate-optimality of the simultaneous nonunique decoding rule.

Remark 5. As observed in [5] (see also (7) in Remark 1 above), each rate point in R∗(p) can alternatively be

achieved by having each receiver specifically decode for either the desired message alone or both the desired and

interfering messages.
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B. Proof of the Converse

Fix a pmf p = p(q) p(x1|q) p(x2|q) and let (R1, R2) be a rate pair achievable by the p-distributed random code en-

semble. We prove that this implies that (R1, R2) ∈ R1(p)∩R2(p) as claimed. Here, we show the details for the inclu-

sion (R1, R2) ∈ R1(p); the proof for (R1, R2) ∈ R2(p) follows similarly. With slight abuse of notation, let Cn denote

the random codebook (and the time sharing sequence), namely (Qn, Xn
1 (1), . . . , X

n
1 (2

nR1), Xn
2 (1), . . . , X

n
2 (2

nR2)).

First consider a fixed codebook Cn = c. By Fano’s inequality,

H(M1 |Y n1 , Cn = c) ≤ 1 + nR1P
(n)
e (c).

Taking the expectation over the random codebook Cn, it follows that

H(M1 |Y n1 , Cn) ≤ 1 + nR1 ECn [P
(n)
e (Cn)] ≤ nεn, (12)

where εn → 0 as n→∞ since ECn [P
(n)
e (Cn)]→ 0.

We prove the conditions in the min form (8). To see that the first inequality is true, note that

n(R1 − εn) = H(M1 | Cn)− nεn
(a)
≤ I(M1;Y

n
1 | Cn)

≤ I(Xn
1 ;Y

n
1 | Cn)

≤ I(Xn
1 ;Y

n
1 , X

n
2 | Cn)

= I(Xn
1 ;Y

n
1 |Xn

2 , Cn)

= H(Y n1 |Xn
2 , Cn)−H(Y n1 |Xn

1 , X
n
2 , Cn)

(b)
≤ H(Y n1 |Xn

2 , Q
n)−H(Y n1 |Xn

1 , X
n
2 , Q

n)

(c)
= nI(X1;Y1 |X2, Q),

where (a) follows by (the averaged version of) Fano’s inequality in (12), (b) follows by omitting some conditioning

and using the memoryless property of the channel, and (c) follows since the tuple (Qi, X1i, X2i, Yi) is i.i.d. for

all i. Note that unlike conventional converse proofs where nothing can be assumed about the codebook structure,

here we can take advantage of the properties of a given codebook generation procedure.

To prove the second inequality in (8), we need the following lemma, which is proved in Appendix A.

Lemma 1.

lim
n→∞

1

n
H(Y n1 |Xn

1 , Cn) = H(Y1 |X1, X2, Q) + min{R2, I(X2;Y1 |X1, Q)}.

The lemma states that depending on R2, (1/n)H(Y n1 |Xn
1 , Cn) either tends to H(Y1 |X1, Q), that is, the remaining

received sequence after recovering the desired codeword looks like i.i.d. noise, or to R2 +H(Y1 |X1, X2, Q), that

is, the receiver can distinguish the interfering codeword from the noise.
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Equipped with this lemma, we have

n(R1 − εn)
(a)
≤ I(Xn

1 ;Y
n
1 | Cn)

= H(Y n1 | Cn)−H(Y n1 |Xn
1 , Cn)

≤ H(Y n1 |Qn)−H(Y n1 |Xn
1 , Cn)

(b)
≤ nH(Y1 |Q)− nH(Y1 |X1, X2, Q)−min{nR2, nI(X2;Y1 |X1, Q)}+ nεn

= nI(X1, X2;Y1 |Q) + min{nR2, nI(X2;Y1 |X1, Q)}+ nεn.

Here, (a) follows by Fano’s inequality and (b) follows by Lemma 1 with some εn that tends to zero as n→∞.

The conditions for R2(p) can be proved similarly. This completes the proof of the converse.

III. DM-IN WITH K SENDERS AND L RECEIVERS

We generalize the previous result to the K-sender, L-receiver discrete memoryless interference network ((K,L)-

DM-IN) with input alphabets X1, . . . ,XK , output alphabets Y1, . . . ,YL, and pmfs p(y1, . . . , yL |x1, . . . , xK). In

this network, each sender k ∈ [1 : K] communicates an independent message Mk at rate Rk and each receiver

l ∈ [1 :L] wishes to recover the messages sent by a subset Dl ⊆ [1 :K] of senders (also referred to as a demand

set). The channel is depicted in Figure 5.

M1 → Xn
1 Y n1 → {M̂k1, k ∈ D1}

M2 → Xn
2

MK → Xn
K Y nL → {M̂kL, k ∈ DL}

p(yL |xK) Y n2 → {M̂k2, k ∈ D2}

Figure 5. Discrete memoryless interference network with K senders and L receivers.

More formally, a (2nR1 , . . . , 2nRK , n) code Cn for the (K,L)-DM-IN consists of

• K message sets [1 : 2nR1 ], . . . , [1 : 2nRK ],

• K encoders, where encoder k ∈ [1 :K] assigns a codeword xnk (mk) to each message mk ∈ [1 : 2nRk ],

• L decoders, where decoder l ∈ [1 :L] assigns estimates m̂kl, k ∈ Dl, or an error message e to each received

sequence ynl .

We assume that the message tuple (M1, . . . ,MK) is uniformly distributed over [1 : 2nR1 ]× · · · × [1 : 2nRK ]. The

average probability of error for the code Cn is defined as

P (n)
e (Cn) = P

{
M̂kl 6=Mk for some l ∈ [1 :L], k ∈ Dl

}
.

A rate tuple (R1, . . . , RK) is said to be achievable for the DM-IN if there exists a sequence of (2nR1 , . . . , 2nRK , n)

codes Cn such that limn→∞ P
(n)
e (Cn) = 0. The capacity region C of the (K,L)-DM-IN is the closure of the set of

achievable rate tuples (R1, . . . , RK).
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As in Section II, we limit our attention to a randomly generated code ensemble with a special structure. Let

p = p(q) p(x1|q) · · · p(xK |q) be a given pmf on Q× X1 × · · · × XK , where Q is a finite alphabet. Suppose that

codewords Xn
k (mk), mk ∈ [1 : 2nRk ], k ∈ [1 :K], are generated randomly as follows.

• Let Qn ∼
∏n
i=1 pQ(qi).

• For each k ∈ [1 :K] and mk ∈ [1 : 2nRk ], let Xn
k (mk) ∼

∏n
i=1 pXk|Q(xki|qi), conditionally independent given

Qn.

Each instance of codebooks generated in this manner, along with the corresponding optimal decoders, constitutes

a (2nR1 , . . . , 2nRK , n) code. We refer to the random code ensemble thus generated as the (2nR1 , . . . , 2nRK , n; p)

random code ensemble.

Definition 2 (Random coding optimal rate region). Given a pmf p = p(q) p(x1|q) · · · p(xK |q), the optimal rate region

R∗(p) achievable by the p-distributed random code ensemble is the closure of the set of rate tuples (R1, . . . , RK)

such that the sequence of the (2nR1 , . . . , 2nRK , n; p) random code ensembles Cn satisfies

lim
n→∞

ECn [P
(n)
e (Cn)] = 0,

where the expectation is with respect to the random code ensemble Cn.

Note that the setup discussed in Section II as well as the broadcast channel example in Subsection I-B correspond to

the special case of K = L = 2 and demand sets D1 = {1} and D2 = {2}. More generally, the p-distributed random

code ensemble for the (K,L)-DM-IN captures superposition coding with an arbitrary number of layers. Suppose

that there are K senders, some of which need to communicate multiple messages (see Figure 6(a)). In superposition

coding, each message at a sender is encoded into a codeword Unk′ and the sender combines (superimposes) all such

codewords. By merging the combining functions at the sender with the physical channel p(yL|xK), we obtain a

(K ′, L)-DM-IN p(yL|uK′
) with “virtual” inputs Uk′ , k′ ∈ [1 :K ′], as illustrated in Figure 6(b).

(M1,M2,M3)→ Xn
1 Y n1

M4 → Xn
2

(MK′−1,MK′)→ Xn
K Y nL

p(yL |xK) Y n2

(a) Multiple messages per sender via superposition coding.

p(yL |xK)

M1 → Un1
M2 → Un2

MK′−1 → UnK′−1
MK′ → UnK′

Xn
1

Xn
K

Xn
2M4 → Un4

M3 → Un3

Y n1

Y nL

Y n2

(b) Equivalent channel with a single message per sender.

Figure 6. The class of (K,L)-DM-INs includes superposition coding with an arbitrary number of layers.
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Define the rate region R1(p) as

R1(p) =
⋃

S⊆[1:K],
D1⊆S

RMAC(S)(p), (13)

where RMAC(S)(p) is the achievable rate region for the multiple access channel from the set of senders S to

receiver 1, i.e., the set of rate tuples (R1, . . . , RK) such that

RT =
∑
j∈T

Rj ≤ I(XT ;Y1 |XS\T , Q) for all T ⊆ S.

Note that the set RMAC(S)(p) corresponds to the rate region achievable by decoding for the messages from the

senders S , which contains all desired messages and possibly some interfering messages. Also note that RMAC(S)(p)

contains upper bounds only on the rates Rk, k ∈ S , of the active senders S in the MAC. The signals from the inactive

senders in Sc are treated as noise and the corresponding rates Rk for k ∈ Sc are unconstrained. Consequently,

R1(p) is unbounded in the coordinates Rk for k ∈ [1 :K] \ D1.

The region R1(p) in (13) can equivalently be written as the set of rate tuples (R1, . . . , RK) such that for all

U ⊆ [1 :K] \ D1 and for all D with ∅ ⊂ D ⊆ D1,

RD + min
U ′⊆U

{
RU ′ + I(XU\U ′ ;Y1 |XD, XU ′ , X[1:K]\D\U , Q)

}
≤ I(XD, XU ;Y1 |X[1:K]\D\U , Q). (14)

As in the case of the 2-DM-IC, each argument of each term in the minimum represents a different mode of signal

saturation. The equivalence between the MAC form (13) and the min form (14) can be proved by identifying the

largest set of decodable interfering messages as in [17]. For completeness, we provide a proof in Appendix B.

Remark 6. The MAC and min forms of R1(p) are duals to each other in the following sense. The condition for

(R1, . . . , RK) ∈ R1(p) in the MAC form (13) can be expressed as

∃S ⊆ [1 :K], D1 ⊆ S :

∀T ⊆ S :

RT ≤ I(XT ;Y1 |XS\T , Q). (15)

The conditions in the min form (14) can be rewritten1 as

∀V ⊆ [1 :K], V ∩ D1 6= ∅ :

∃V ′ ⊆ V, V ′ ∩ D1 = V ∩ D1 :

RV′ ≤ I(XV′ ;Y1 |X[1:K]\V , Q). (16)

Both conditions involve a set of messages from the senders S (or V) and its subset T (or V ′), and impose a mutual

1To see this, first note that the minimum terms on the left hand side of (14) represent a set of conditions of which at least one has to be true,

then use the identity

I(XD, XU ;Y1 |X[1:K]\D\U , Q)− I(XU\U′ ;Y1 |XD, XU′ , X[1:K]\D\U , Q) = I(XD, XU′ ;Y1 |X[1:K]\D\U , Q),

and finally, let V = U ∪ D and V ′ = U ′ ∪ D.
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information upper bound on the sum rate over the subset. The key difference is the order of the quantifiers ∀ and ∃.

Analogous to R1(p), define the regions R2(p), . . . ,RL(p) for receivers 2, . . . , L by making appropriate index

substitutions. We are now ready to state the main result for the (K,L)-DM-IN.

Theorem 2. Given a pmf p = p(q) p(x1|q) · · · p(xK |q), the optimal rate region of the (K,L)-DM-IN p(yL|xK)

with demand sets D1, . . . ,DL achievable by the p-distributed random code ensemble is

R∗(p) =
⋂

l∈[1:L]

Rl(p).

Note that, as for its 2-DM-IC counterpart, this region is not convex in general.

Example 1. Consider the K-user-pair Gaussian interference network

Yl =

K∑
k=1

gklXk + Zl, l ∈ [1 :K],

where Zl ∼ N(0, 1) and gkl are channel gains from sender k to receiver l. Assume the Gaussian random code

ensemble with Xk ∼ N(0, 1), k ∈ [1 :K]. The optimal rate region achievable by this random code ensemble was

established in [17] and [2], and can be recovered from Theorem 2 by letting K = L, Dk = {k} for k ∈ [1 :K], and

applying the discretization procedure in [10, Section 3.4]. Theorem 2 generalizes this result in several directions,

since (a) it applies to non-Gaussian networks, (b) it applies to non-Gaussian random code ensembles (which is crucial

to analyze the performance under a fixed constellation), and (c) it includes coded time sharing and superposition

coding.

Example 2. Consider the deterministic interference channel with three sender–receiver pairs (3-DIC) [3], where

Y1 = f1(g11(X1), h1(g21(X2), g31(X3)),

Y2 = f2(g22(X2), h2(g32(X3), g12(X1)),

Y3 = f3(g33(X3), h3(g13(X1), g23(X2))

for some loss functions gkl and combining functions hk and fk, k, l ∈ {1, 2, 3}. The combining functions are

supposed to be injective in each argument. This setting is of interest since it contains as special cases the El Gamal–

Costa two-user-pair interference channel [11], for which the Han–Kobayashi coding scheme achieves the capacity

region, and the Avestimehr–Diggavi–Tse q-ary expansion deterministic (QED) interference channel [1], which

approximates Gaussian interference networks in the high-power regime. The 3-DIC is an instance of a (K,L)-DM-IN

with L = K = 3 and Dk = {k} for k ∈ [1 :K]. The interference decoding inner bound on the 3-DIC capacity region

in [3] coincides with the region in Theorem 2 in its min form. Beyond the results in [3], Theorem 2 establishes

that the interference decoding inner bound is in fact optimal given the codebook structure. Note that for the 3-DIC

channel, we can identify each minimum term with a specific signal in the channel block diagram for which the term

counts the number of distinguishable sequences.
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Proof of Theorem 2: We focus only on receiver 1 for which Mk, k ∈ D1, are the desired messages and Mk,

k ∈ Dc
1 = [1 :K] \ D1, are interfering messages. Achievability is proved using simultaneous nonunique decoding.

Receiver 1 declares that m̂D1 is sent if it is the unique message tuple such that(
qn, xnD1

(m̂D1
), xnDc

1
(mDc

1
), yn1

)
∈ T (n)

ε for some mDc
1
,

where xnD1
(m̂D1

) is the tuple of xnk (m̂k), k ∈ D1, and similarly, xnDc
1
(mDc

1
) is the tuple of xnk (mk), k ∈ Dc

1. The

analysis follows similar steps as in Subsection II-A.

To prove the converse, fix a pmf p and let (R1, . . . , RK) be a rate tuple that is achievable by the p-distributed

random code ensemble. We need the following generalization of Lemma 1, which is proved in Appendix C.

Lemma 2. If D1 ⊆ S ⊆ [1 :K], then

lim
n→∞

1

n
H(Y n1 |Xn

S , Cn) = H(Y1 |X[1:K], Q) + min
U⊆Sc

(RU + I(X(S∪U)c ;Y1 |XS∪U , Q)).

We now establish (14) as follows. Fix a subset of desired message indices, D ⊆ D1, and a subset of interfering

message indices, U ⊆ Dc
1. Then

n(RD − εn)
(a)
≤ I(Xn

D;Y
n
1 | Cn)

≤ I(Xn
D;Y

n
1 , X

n
(D∪U)c | Cn)

≤ I(Xn
D;Y

n
1 |Xn

(D∪U)c , Cn)

= H(Y n1 |Xn
(D∪U)c , Cn)−H(Y n1 |Xn

Uc , Cn)
(b)
≤ nH(Y1 |X(D∪U)c , Q)− nH(Y1 |X[1:K], Q)− n·min

U ′⊆U
(RU ′ + I(X(Uc∪U ′)c ;Y1 |XUc∪U ′ , Q)) + nεn

= nI(XD∪U ;Y
n
1 |X(D∪U)c , Q)− n·min

U ′⊆U
(RU ′ + I(XU\U ′ ;Y1 |X(U\U ′)c , Q)) + nεn,

where (a) follows by Fano’s inequality and (b) follows by Lemma 2. This completes the proof of the converse.

IV. APPLICATION TO THE HAN–KOBAYASHI CODING SCHEME

We revisit the two-user-pair DM-IC in Figure 1. The best known inner bound on the capacity region is achieved

by the Han–Kobayashi coding scheme [13]. In this scheme, the message M1 is split into common and private

messages M12 and M11 at rates R12 and R11, respectively, such that R1 = R12 + R11. Similarly M2 is split

into common and private messages M21 and M22 at rates R21 and R22 such that R2 = R22 + R21. More

specifically, the scheme uses random codebook generation and coded time sharing as follows. Fix a pmf p =

p(q) p(u11|q) p(u12|q) p(u21|q) p(u22|q) p(x1|u11, u12, q) p(x2|u21, u22, q), where the latter two conditional pmfs

represent deterministic mappings x1(u11, u12) and x2(u21, u22). Randomly generate a coded time sharing sequence

qn ∼
∏n
i=1 pQ(qi). For each k, k′ ∈ {1, 2} and mkk′ ∈ [1 : 2nRkk′ ], randomly and conditionally independently

generate a sequence unkk′(mkk′) according to
∏n
i=1 pUkk′ |Q(ukk′i|qi). To communicate message pair (m11,m12),

sender 1 transmits x1i = x1(u11i, u12i) for i ∈ [1 : n], and analogously for sender 2. Receiver k = 1, 2 recovers its

intended message Mk and the common message from the other sender (although it is not required to). While this
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decoding scheme helps reduce the effect of interference, it results in additional constraints on the rates for common

messages. The Han–Kobayashi coding scheme is illustrated in Figure 7.

M11 → Un11
Y n1 → M̂11, M̂12, M̂21

M12 → Un12

Y n2 → M̂21, M̂22, M̂12

M21 → Un21

M22 → Un22

Xn
1

Xn
2

p(y2 |x2)

Figure 7. Han–Kobayashi coding scheme.

Let RHK,1(p) be defined as the set of rate tuples (R11, R12, R21, R22) such that

R11 ≤ I(U11;Y1 |U12, U21, Q), (17a)

R12 ≤ I(U12;Y1 |U11, U21, Q), (17b)

R21 ≤ I(U21;Y1 |U11, U12, Q), (17c)

R11 +R12 ≤ I(U11, U12;Y1 |U21, Q), (17d)

R11 +R21 ≤ I(U11, U21;Y1 |U12, Q), (17e)

R12 +R21 ≤ I(U12, U21;Y1 |U11, Q), (17f)

R11 +R12 +R21 ≤ I(U11, U12, U21;Y1 |Q). (17g)

Similarly, define RHK,2(p) by making the sender/receiver index substitutions 1↔ 2 in the definition of RHK,1(p).

As shown by Han and Kobayashi [13], the coding scheme achieves any rate pair (R1, R2) that is in the interior of

RHK = Proj4→2

(⋃
p

RHK,1(p) ∩RHK,2(p)

)
, (18)

where Proj4→2 is the projection that maps the 4-dimensional (convex) set of rate tuples (R11, R12, R21, R22) into

a 2-dimensional rate region of rate pairs (R1, R2) = (R11 +R12, R21 +R22).

We are interested in finding the rate region that is achievable by the Han–Kobayashi encoding functions in

conjunction with the optimal decoding functions. To this end, note that by combining the channel and the deterministic

mappings as indicated by the dashed box in Figure 7, the channel (U11, U12, U21, U22)→ (Y1, Y2) is a (4, 2)-DM-IN.

After removing the artificial requirement for each decoder to recover the interfering sender’s common message, the

message demands are D1 = {11, 12} and D2 = {21, 22}. Moreover, the Han–Kobayashi encoding scheme is in fact

the p-distributed random code ensemble applied to this network, as defined in Section III.

Definition 3. The optimal rate region Ropt achievable by the Han–Kobayashi random code ensemble is defined as

Ropt = Proj4→2

(⋃
p

R∗(p)

)
,
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where the union is over pmfs of the form p = p(q) p(u11|q) p(u12|q) p(u21|q) p(u22|q) p(x1|u11, u12) p(x2|u21, u22)

with the latter two factors representing deterministic mappings x1(u11, u12) and x2(u21, u22), and R∗(p) is the

optimal rate region achievable by the p(q) p(u11|q) p(u12|q) p(u21|q) p(u22|q)-distributed random code ensemble for

the (4, 2)-DM-IN p(y1, y2|u11, u12, u21, u22) = pY1,Y2|X1,X2
(y1, y2|x1(u11, u12), x2(u21, u22)) (cf. Definition 2).

Then Theorem 2 implies the following.

Corollary 1. Ropt = RHK.

The corollary states that the Han–Kobayashi inner bound is optimal when encoding is restricted to randomly

generated codebooks, superposition coding, and coded time sharing. It cannot be enlarged by replacing the decoders

used in the proof of (17) with optimal decoders.

Proof of Corollary 1: Applying Theorem 2 to the definition of Ropt yields

Ropt = Proj4→2

(⋃
p

R1(p) ∩R2(p)

)
,

where R1(p) is the set of rate tuples (R11, R12, R21, R22) such that

RT1 ≤ I(UT1 ;Y1 |US1\T1 , Q) for all T1 ⊆ S1 (19)

for some S1 with {11, 12} ⊆ S1 ⊆ {11, 12, 21, 22}. Likewise, R2(p) is the set of rate tuples that satisfy

RT2 ≤ I(UT2 ;Y2 |US2\T2 , Q) for all T2 ⊆ S2 (20)

for some S2 with {21, 22} ⊆ S2 ⊆ {11, 12, 21, 22}. Here, S1 and S2 contain the indices of the messages recovered

by receivers 1 and 2, respectively.

In order to compare Ropt to RHK, recall (17) and (18) and the compact description of RHK in [7] as the set of

all rate pairs (R1, R2) such that

R1 ≤ I(U11, U12;Y1 |U21, Q), (21a)

R2 ≤ I(U21, U22;Y2 |U12, Q), (21b)

R1 +R2 ≤ I(U11, U12, U21;Y1 |Q) + I(U22;Y2 |U12, U21, Q), (21c)

R1 +R2 ≤ I(U12, U21, U22;Y2 |Q) + I(U11;Y1 |U12, U21, Q), (21d)

R1 +R2 ≤ I(U11, U21;Y1 |U12, Q) + I(U12, U22;Y2 |U21, Q), (21e)

2R1 +R2 ≤ I(U11, U12, U21;Y1 |Q) + I(U11;Y1 |U12, U21, Q) + I(U12, U22;Y2 |U21, Q), (21f)

R1 + 2R2 ≤ I(U12, U21, U22;Y2 |Q) + I(U22;Y2 |U12, U21, Q) + I(U11, U21;Y1 |U12, Q) (21g)

for some pmf of the form p = p(q) p(u11|q) p(u12|q) p(u21|q) p(u22|q) p(x1|u11, u12) p(x2|u21, u22), where the

latter two factors represent deterministic mappings x1(u11, u12) and x2(u21, u22).
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It is easy to see that RHK ⊆ Ropt. Choosing S1 = {11, 12, 21} in (19), the resulting conditions coincide with the

ones in (17), and the constituent sets satisfy the condition RHK,1(p) ⊆ R1(p). Likewise, choosing S2 = {12, 21, 22}

in (20), RHK,2(p) ⊆ R2(p), and the desired inclusion follows.

To show that Ropt ⊆ RHK, note that conditions (19) and (20) must hold for some S1 ⊇ {11, 12} and S2 ⊇ {21, 22}.

For each of the 16 possible choices of S1 and S2, the resulting rate region is (directly or indirectly) included in

RHK as follows (see Figure 8).

S1
S2

{11, 12}

{11, 12, 21}

{11, 12, 22}

{11, 12, 21, 22}

{2
1
,2
2
}

{2
1
,2
2
,1
2
}

{2
1
,2
2
,1
1
}

{2
1
,2
2
,1
1
,1
2
}

RHK

Figure 8. Different cases of S1 and S2 for the region Ropt and the inclusion of the corresponding regions in RHK. An arrow

from A to B means that the region achieved by case A is included in the region achieved by case B.

• If S1 = {11, 12, 21} and S2 = {21, 22, 12}, we obtain precisely RHK (depicted as a dashed box in the figure).

• If S1 = {11, 12, 21, 22}, both receivers decode for the messages with indices {21, 22}. This is equivalent to let-

ting U ′21 = (U21, U22), U ′22 = ∅, and S ′1 = {11, 12, 21}. A symmetric argument holds if S2 = {21, 22, 11, 12}.

• If S1 = {11, 12, 22}, then S1 can be replaced by {11, 12, 21} by exchanging the roles of U21 and U22. The

exchange will not affect receiver 2, since the two auxiliary random variables play symmetric roles there. A

symmetric argument holds if S2 = {21, 22, 11}.

• If S1 = {11, 12} and S2 = {21, 22}, we apply Fourier–Motzkin elimination and arrive at

R1 ≤ I(X1;Y1 |Q),

R2 ≤ I(X2;Y2 |Q).

This region is a subset of the one in (21) when the latter is specialized to U12 = U21 = ∅, U11 = X1, and

U22 = X2.

• If S1 = {11, 12} and S2 = {21, 22, 12}, Fourier–Motzkin elimination leads to

R1 ≤ I(X1;Y1 |Q),

R1 ≤ I(X1;Y1 |U12, Q) + I(U12;Y2 |X2, Q),

R2 ≤ I(X2;Y2 |U12, Q),

R1 +R2 ≤ I(X1;Y1 |U12, Q) + I(U12, X2;Y2 |Q).
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Again, this region is a subset of the one in (21), namely when the latter is specialized to U21 = ∅ and U22 = X2.

A symmetric argument holds if S1 = {11, 12, 21} and S2 = {21, 22}.

This concludes the proof of Corollary 1.

V. CONCLUDING REMARKS

Taking a modular approach to the problem of finding the capacity region of the interference network, we have

studied the performance of random code ensembles. This result provides a simple characterization of the rate region

achievable by the optimal maximum likelihood decoding rule and invites more refined studies on the performance of

random coding for interference networks, such as the error exponent analysis (cf. [14], [19]) and Verdú’s finite-block

performance bounds [24].

The optimal rate region can be achieved by simultaneous nonunique decoding, which can be useful in other coding

schemes such as Marton coding for broadcast channels [16] and noisy network coding for relay networks [15].

Although its performance can be achieved also by an appropriate combination of simultaneous decoding (SD) of

strong interference and treating weak interference as noise (IAN) [2], [5], [17], simultaneous nonunique decoding

provides a conceptual unification of SD and IAN, recovering all possible combinations of the two schemes at each

receiver. Indeed, as with “the one ring to rule them all” [22], simultaneous nonunique decoding is the one rule that

includes them all.
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APPENDIX A

PROOF OF LEMMA 1

Clearly, the right hand side of the equality is an upper bound to the left hand side, since

H(Y n1 |Xn
1 , Cn) ≤ nH(Y1 |X1, Q),

and

H(Y n1 |Xn
1 , Cn) ≤ H(Y n1 ,M2 |Xn

1 , Cn)

= nR2 +H(Y n1 |Xn
1 , X

n
2 , Cn)

≤ nR2 + nH(Y1 |X1, X2, Q),

where we have used the codebook structure and the fact that the channel is memoryless.
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To see that the right hand side is also a valid lower bound, note that

H(Y n1 |Xn
1 , Cn) = H(Y n1 |Xn

1 , Cn,M2)︸ ︷︷ ︸
=nH(Y1|X1,X2)

=nH(Y1|X1,X2,Q)

+H(M2)︸ ︷︷ ︸
=nR2

−H(M2 |Xn
1 , Cn, Y n1 ).

Next, we find an upper bound on H(M2 |Xn
1 , Cn, Y n1 ) by showing that given Xn

1 , Cn, and Y n1 , a relatively short

list L ⊆ [1 : 2nR2 ] can be constructed that contains M2 with high probability (the idea is similar to the proof of

Lemma 22.1 in [10]). Without loss of generality, assume M2 = 1. Fix an ε > 0 and define the random set

L = {m2 : (Qn, Xn
1 , X

n
2 (m2), Y

n
1 ) ∈ T (n)

ε }.

To analyze the cardinality |L|, note that, for each m2 6= 1,

P{(Qn, Xn
1 , X

n
2 (m2), Y

n
1 ) ∈ T (n)

ε } =
∑

qn,xn
1 ,x

n
2

P{Qn = qn, Xn
1 = xn1 , X

n
2 (m2) = xn2} P{(xn1 , xn2 , Y n1 ) ∈ T (n)

ε }

(a)
≤

∑
qn,xn

1 ,x
n
2

P{Qn = qn, Xn
1 = xn1 , X

n
2 (m2) = xn2} 2−n(I(X2;Y1|X1,Q)−δ(ε))

= 2−n(I(X2;Y1|X1,Q)−δ(ε)),

where (a) follows by the joint typicality lemma. Thus, the cardinality |L| satisfies |L| ≤ 1 + B, where B is a

binomial random variable with 2nR2 −1 trials and success probability at most 2−n(I(X2;Y1|X1,Q)−δ(ε)). The expected

cardinality is therefore bounded as

E(|L|) ≤ 1 + 2n(R2−I(X2;Y1|X1,Q)+δ(ε)). (22)

Note that the true M2 is contained in the list with high probability, i.e., 1 ∈ L, by the weak law of large numbers,

P{(Qn, Xn
1 , X

n
2 (1), Y

n
1 ) ∈ T (n)

ε } → 1 as n→∞.

Define the indicator random variable E = I(1 ∈ L), which therefore satisfies P{E = 0} → 0 as n→∞. Hence

H(M2 |Xn
1 , Cn, Y n1 ) = H(M2 |Xn

1 , Cn, Y n1 , E) + I(M2;E |Xn
1 , Cn, Y n1 )

≤ H(M2 |Xn
1 , Cn, Y n1 , E) + 1

= 1 + P{E = 0} ·H(M2 |Xn
1 , Cn, Y n1 , E = 0)

+ P{E = 1} ·H(M2 |Xn
1 , Cn, Y n1 , E = 1)

≤ 1 + nR2 P{E = 0}+H(M2 |Xn
1 , Cn, Y n1 , E = 1).

For the last term, we argue that if M2 is included in L, then its conditional entropy cannot exceed log(|L|):

H(M2 |Xn
1 , Cn, Y n1 , E = 1)

(a)
= H(M2 |Xn

1 , Cn, Y n1 , E = 1,L, |L|)

≤ H(M2 |E = 1,L, |L|)

=

2nR2∑
l=0

P{|L| = l} ·H(M2 |E = 1,L, |L| = l)
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≤
2nR2∑
l=0

P{|L| = l} · log(l)

= E(log(|L|))
(b)
≤ log(E(|L|))
(c)
≤ 1 + max{0, n(R2 − I(X2;Y1 |X1, Q) + δ(ε))},

where (a) follows since the list L and its cardinality |L| are functions only of Xn
1 , Cn, and Y n1 , (b) follows by

Jensen’s inequality, and (c) follows from (22) and the soft-max interpretation of the log-sum-exp function [6, p. 72].

Substituting back, we have

H(M2 |Xn
1 , Cn, Y n1 ) ≤ 2 + nR2 P{E = 0}+max{0, n(R2 − I(X2;Y1 |X1, Q) + δ(ε))},

and

1

n
H(Y n1 |Xn

1 , Cn) ≥ H(Y1 |X1, X2, Q) +R2 −
2

n
−R2 P{E = 0} −max{0, R2 − I(X2;Y1 |X1, Q) + δ(ε)}

≥ H(Y1 |X1, X2, Q) + min{R2, I(X2;Y1 |X1, Q)− δ(ε)} − 2

n
−R2 P{E = 0}.

Taking the limit as n→∞, and noting that we are free to choose ε such that δ(ε) becomes arbitrarily small, the

desired result follows.

APPENDIX B

EQUIVALENCE BETWEEN THE MIN AND MAC FORMS

Fix a distribution p = p(q) p(x1|q) · · · p(xK |q) and a rate tuple (R1, . . . , RK). We show that the conditions (15)

and (16) are equivalent.

Proof that (15) implies (16): We are given a set S with D1 ⊆ S ⊆ [1 :K]. Fix an arbitrary V with nonempty

intersection V ∩ D1. Now consider V ′ = T = S ∩ V . Note V ′ ∩ D1 = V ∩ D1 as required. Then,

RV′ = RT
(a)
≤ I(XT ;Y1 |XS\T , Q)

(b)
≤ I(XT ;Y1 |XS\V , X[1:K]\S\V , Q)

= I(XV′ ;Y1 |X[1:K]\V , Q),

where (a) follows from (15), and (b) follows from the structure of p.

Proof that (16) implies (15): Denote a set S ⊆ [1 :K] as decodable if

∀T ⊆ S : RT ≤ I(XT ;Y1 |XS\T , Q).

Then the following proposition holds, which is proved below.

Proposition 1. If S1 and S2 are decodable sets, then S1 ∪ S2 is a decodable set.
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To determine which messages are decodable, consider the optimization problem of maximizing |S| over decodable

sets S . From Proposition 1, a unique maximizer S? must exist, which is a superset of all decodable sets. Consider its

complement S?. The intuitive reason for the messages indexed by S? being undecodable is that the corresponding

rates are too large. This notion is made precise in the following proposition, which is analogous to a property for

the Gaussian case given in [2, Fact 1] and for which a proof is provided below.

Proposition 2. For all sets U with ∅ ⊂ U ⊆ S?, the rates satisfy

RU > I(XU ;Y1 |XS? , Q). (23)

Assuming (15) is not true, there must be some desired message index that is not decodable, i.e., D1 * S?, or

equivalently, S? ∩ D1 6= ∅. Then we can choose V = S? in (16), yielding

∃V ′ ⊆ S?,V ′ ∩ D1 = S? ∩ D1 : RV′ ≤ I(XV′ ;Y1 |XS? , Q),

which contradicts (23). This proves that (16) implies (15).

Proof of Proposition 1: Since S1 and S2 are decodable, we have

RT ≤ I(XT ;Y1 |XS1\T , Q) for all T ⊆ S1,

RT ′ ≤ I(XT ′ ;Y1 |XS2\T ′ , Q) for all T ′ ⊆ S2.

and we need to show

RT ′′ ≤ I(XT ′′ ;Y1 |X(S1∪S2)\T ′′ , Q) for all T ′′ ⊆ S1 ∪ S2.

Fix a subset T ′′ ⊆ S1 ∪ S2 and partition it as T ′′ = T ′′1 ∪ T ′′2 where T ′′1 ⊆ S1, T ′′2 ⊆ S2, T ′′1 ∩ T ′′2 = ∅, and

T ′′2 ∩ S1 = ∅ (see Figure 9).

S1 S2
T ′′

T ′′1 T ′′2

Figure 9. Partitioning the set T ′′ ⊆ S1 ∪ S2.

Then

RT ′′ = RT ′′
1
+RT ′′

2

≤ I(XT ′′
1
;Y1 |XS1\T ′′

1
, Q) + I(XT ′′

2
;Y1 |XS2\T ′′

2
, Q)

≤ I(XT ′′
1
;Y1 |X(S1∪S2)\T ′′ , Q) + I(XT ′′

2
;Y1 |X(S1∪S2)\T ′′ , XT ′′

1
, Q)

= I(XT ′′
1
, XT ′′

2
;Y1 |X(S1∪S2)\T ′′ , Q),
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which concludes the proof.

Proof of Proposition 2: Assume first that the proposition was not true. Then there must be a minimal U with

∅ ⊂ U ⊆ S? such that

RU ≤ I(XU ;Y1 |XS? , Q), (24)

RU\T > I(XU\T ;Y1 |XS? , Q) for all T with ∅ ⊂ T ⊂ U .

Now,

RT = RU −RU\T ≤ I(XU ;Y1 |XS? , Q)− I(XU\T ;Y1 |XS? , Q)

= I(XT ;Y1 |XS? , XU\T , Q) for all T satisfying ∅ ⊂ T ⊂ U .

Recalling (24), the last statement continues to hold for T = U . Thus,

RT ≤ I(XT ;Y1 |XS? , XU\T , Q) for all T ⊆ U . (25)

We are going to show that S? ∪ U is decodable, which contradicts the definition of S? as the maximum decodable

set since U is non-empty and does not intersect S?. To this end, consider an arbitrary T ′ ⊆ S? ∪ U and partition it

as T ′ = T ′1 ∪ T ′2 with T ′1 ∩ T ′2 = ∅, T ′1 ⊆ S?, and T ′2 ⊆ U (see Figure 10).

S? U
T ′

T ′1 T ′2

Figure 10. Partitioning the set T ′ ⊆ S? ∪ U .

Then

RT ′ = RT ′
1
+RT ′

2

(a)
≤ I(XT ′

1
;Y1 |XS?\T ′

1
, Q) + I(XT ′

2
;Y1 |XS? , XU\T ′

2
, Q)

(b)
≤ I(XT ′

1
;Y1 |XS?\T ′

1
, XU\T ′

2
, Q) + I(XT ′

2
;Y1 |XS?\T ′

1
, XU\T ′

2
, XT ′

1
, Q)

= I(XT ′
1
, XT ′

2
;Y1 |X(S?∪U)\(T ′

1∪T ′
2 )
, Q),

where (a) follows from S? being decodable and (25), and in (b), we have augmented the first mutual information

expression and rewritten the second one. This concludes the proof by contradiction.
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APPENDIX C

PROOF OF LEMMA 2

The proof proceeds along similar lines as the proof of Lemma 1. First, we show that the right hand side is a

valid upper bound to the left hand side. For any U ⊆ Sc,

H(Y n1 |Xn
S , Cn) ≤ H(Y n1 ,MU |Xn

S , Cn)

= nRU +H(Y n1 |Xn
S , X

n
U , Cn)

≤ nRU + nH(Y1 |XS , XU , Q)

= nRU + nH(Y1 |X[1:K], Q) + I(X(S∪U)c ;Y1 |XS∪U , Q),

where we have used the codebook structure.

To see that the right hand side is a valid lower bound to the left hand side, note

H(Y n1 |Xn
S , Cn) = nH(Y1 |X[1:K], Q) + nRSc −H(MSc |Xn

S , Y
n
1 , Cn).

Without loss of generality, assume Mk = 1, for k ∈ Sc. Fix an ε > 0 and define the random set

L = {mSc : (Qn, Xn
i |i∈D1 , X

n
i (mi)|i∈Dc

1
, Y n1 ) ∈ T (n)

ε with mk = 1 for all k ∈ Dc
1 ∩ S}.

To analyze the cardinality |L|, fix a mSc and consider the probability of mSc ∈ L. If mk 6= 1 for all k ∈ Sc, and

mk = 1 otherwise, then the joint typicality lemma implies

P{(Qn, Xn
i |i∈D1

, Xn
i (mi)|i∈Dc

1
, Y n1 ) ∈ T (n)

ε } ≤ 2−n(I(XSc ;Y1|XS ,Q)−δ(ε)),

and there are at most 2nRSc such mSc . More generally, fix a subset U ⊆ Sc. If mk 6= 1 for k ∈ Sc \U , and mk = 1

otherwise, then

P{(Qn, Xn
i |i∈D1 , X

n
i (mi)|i∈Dc

1
, Y n1 ) ∈ T (n)

ε } ≤ 2−n(I(XSc\U ;Y1|XS ,XU ,Q)−δ(ε)),

and there are at most 2nRSc\U such mSc . Thus,

E(|L|) ≤
∑
U⊆Sc

2n(RSc\U−I(XSc\U ;Y1|XS ,XU ,Q)+δ(ε)). (26)

Define the indicator random variable E = I((1, 1, . . . , 1) ∈ L), which satisfies P{E = 0} → 0 as n→∞ by the

weak law of large numbers. Now

H(MSc |Xn
S , Y

n
1 , Cn) ≤ 1 + nRSc P{E = 0}+H(MSc |Xn

S , Y
n
1 , Cn, E = 1).

For the last term, we argue

H(MSc |Xn
S , Y

n
1 , Cn, E = 1) ≤ log(E(|L|))

(26)
≤ log

∑
U⊆Sc

2n(RSc\U−I(XSc\U ;Y1|XS ,XU ,Q)+δ(ε))


≤ max
U⊆Sc

(
n(RSc\U − I(XSc\U ;Y1 |XS , XU , Q) + δ(ε))

)
+ |Sc|.
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Substituting back,

H(MSc |Xn
S , Y

n
1 , Cn) ≤ 1 + |Sc|+ nRSc P{E = 0}+ max

U⊆Sc

(
n(RSc\U − I(XSc\U ;Y1 |XS , XU , Q) + δ(ε))

)
,

and finally,

1

n
H(Y n1 |Xn

S , Cn) ≥ H(Y1 |X[1:K], Q) +RSc − 1 + |Sc|
n

−RSc P{E = 0}

− max
U⊆Sc

(
RSc\U − I(XSc\U ;Y1 |XS , XU , Q) + δ(ε)

)
= H(Y1 |X[1:K], Q)− 1 + |Sc|

n
−RSc P{E = 0}

+ min
U⊆Sc

(
RU + I(XSc\U ;Y1 |XS , XU , Q) + δ(ε)

)
.

Taking the limits n→∞ and ε→ 0 concludes the proof.
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