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RELIABILITY OF ERASURE CODED STORAGE
SYSTEMS: A COMBINATORIAL-GEOMETRIC
APPROACH
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Abstract—We consider the probability of data loss, or equiv-
alently, the reliability function for an erasure coded distributed
data storage system under worst case conditions. Data loss in an
erasure coded system depends on probability distributions for the
disk repair duration and the disk failure duration. In previous
works, the data loss probability of such systems has been studied
under the assumption of exponentially distributed disk failure
and disk repair durations, using well-known analytic methods
from the theory of Markov processes. These methods lead to an
estimate of the integral of the reliability function.

Here, we address the problem of directly calculating the data
loss probability for general repair and failure duration distri-
butions. A closed limiting form is developed for the probability
of data loss and it is shown that the probability of the event
that a repair duration exceeds a failure duration is sufficient for
characterizing the data loss probability.

For the case of constant repair duration, we develop an
expression for the conditional data loss probability given the
number of failures experienced by a each node in a given time
window. We do so by developing a geometric approach that relies
on the computation of volumes of a family of polytopes that are
related to the code. An exact calculation is provided and an
upper bound on the data loss probability is obtained by posing
the problem as a set avoidance problem. Theoretical calculations
are compared to simulation results.

I. INTRODUCTION

Distributed data storage systems are growing in popularity,
driven by demand and enabled by the availability of broadband
networks, and declining costs of storage devices. Erasure cod-
ing represents a practical method for building highly reliable
storage systems using low cost, less reliable storage drives.
In an erasure coded storage system, a block of &k information
symbols from some finite set is encoded into a block of n
coded symbols by an (n,k) erasure code and the n code
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symbols are placed on separate disks. When a disk fails, it
is repaired, i.e. redundant information in the code is used
to recompute the erased symbol which is then placed on a
replacement disk. Repair is essential for the reliability of the
overall system. Data loss occurs or the system fails when the
total number of failed disks at any time exceeds the erasure
correcting capability of the code. If disks are repaired swiftly,
the number of failed disks can be kept small on average,
reducing the probability of data loss.

An important metric is the reliability function R(t), defined
to be the probability that data is not lost in the time window
[0,t]. In previous works [ll, [[7], it is assumed that the repair
and failure durations are exponentially distributed random vari-
ables and the mean time to data loss (MTTDL) is determined
by analyzing a state transition diagram, where the system state
at a given time is defined as the number of working disks at that
time, see e.g. [14], I, [7]. The reliability function R(t) is then
estimated by the formula exp(—t/MTTDL). Exponentially
distributed and independent failure durations are critical for
this analysis to proceed. Several disk failure and disk repair
modeling and measurement studies have been reported in the
literature, e.g. [16], [13]], [9], [18]. It is concluded that real
world storage devices do not exhibit exponentially distributed
lifetimes and that the Weibull distribution with appropriately
chosen parameters is a more appropriate model for failure and
repair durations. Simulation is a valuable tool for evaluating
reliability of disk storage systems, see e.g. [11] which also
includes a comprehensive review of previous modeling studies.
In a recent contribution [17], it is shown that the reliability
analysis based on the above exponential model is robust to
changes in the disk failure time distribution. It is worth noting
that [17]] also points out that the analysis of MTTDL is not
robust to changes in the repair duration distribution.

The main contributions of this work are summarized below.

1) We derive a formula for the data loss probability P(D;)

for small G and large ¢, for general independent and
identically distributed (iid) failure and repair distribu-
tions, (T6)), restated here for convenience

P(Dy) (n—1)! t
G/ B ~ k- EY)’
where random variable Y represents a failure duration,
G is the probability that ¥ < Z, where Z is a
random repair duration and an (n,k) MDS erasure

code is used. This is obtained by conditioning on a
specific sequence of binary events, to be described later.
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Our derivation shows that for general distributions, the
data loss probability is characterized in terms of the
probability that the failure duration is smaller than the
repair duration, and supports the fact (already known
in the literature) that failure and repair rates are insuf-
ficient characterizations for determining the data loss
probability. Our contribution is to show that the above
mentioned probability is sufficient for characterizing the
limiting data loss probability.

2) For constant repair duration, by conditioning on the
number of failure events on each node, we arrive at
another expression for the data loss probability, as
well as a lower bound i.e. we derive an expression
for P,,(D;), the data loss probability conditioned on
m = (my,ma,...,my), where m; is the number of
failures for disk ¢ in time window [0, ¢]. Specifically,
we prove that P, (D;) has the following asymptotic
behavior as 7 = typ /t — 0:

P (D
lim 7"1( kt)
T—=0 TN

=(n—k+1)! Z
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This analysis holds for exponential failure distributions
and provides a finer analysis of the system, not ad-
dressed by previous Markov chain approaches. It also
has some implications to non-homogeneous Poisson
processes.

3) By viewing the data loss probability calculation for
constant repair duration as a problem of set avoidance
by the Cartesian product of random sets, we derive an
upper bound on the data loss probability,

Pn(Dy) < 1— <1 - V‘)tlnR> )

where R C [0,¢]™ is a suitably defined error region
associated with the code. The simplicity of the upper
bound and the fact that its asymptotic behavior is
comparable to the closed forms in some regimes makes
it useful in practice. Methods for sharpening this bound
remain as an open question.

4) We explore the connection between the erasure code
and a family of polytopes that determine the error
region. This connection is, in our opinion, interesting
in its own right, even though it comes from an error
probability calculation. Our contribution here is to de-
velop a systematic approach for calculating the volume
of a set of ordered points with constrained differences
between successive elements. This method underlies the
calculations for constant repair duration in this paper.

The paper is organized as follows. Sec. [[I|contains a problem
statement and states the assumptions that underlie our analysis.
The data loss probability for general distributions is derived in
Sec. For constant repair durations, we explore the com-
binatorial and geometric aspects of the problem of evaluating

the data loss probability in Sec. Sec. |V| presents a method
for upper bounding the data loss probability for constant repair
duration by viewing the problem as a set avoidance problem.
Volume calculations that underlie both the direct calculation
as well as the set avoidance upper bound are presented in
Sec. [VIl Numerical and simulation results that explore some
of the implications of the theory developed are presented in
Sec. The paper is summarized and suggestions for future
research are presented in Sec. Some mathematical details
and a proofs are contained in the appendix.

II. ASSUMPTIONS, PROBLEM STATEMENT AND AN
EXAMPLE

Code symbols from an MDS (n, k) erasure code are written
to n diskq'| We assume that disk failures occur independently
and that the disk failure process is modeled by an independent
increment process with known probability distribution.

When a disk fails, data is downloaded from other disks and
used to repair the lost symbols on the failed disk. We refer
to these disks as helper disks, and to the set of helper disks
as the helper set. The probability distribution of the repair
duration, Z, is known, and repair durations are assumed to
be independent and identically distributed. Since the codes are
MDS, we consider that data is available as long as at least
k disks are working (alternatively, if there was no instant of
time at which less than k disks were working). Thus a data
loss event occurs in the interval [0,¢) if the number of failed
disks exceeds (n — k) the erasure correcting capability of the
code.

Characterization of a data loss event is subtle and depends
on the system architecture, as well as on characteristics of the
erasure code. An example is shown in Fig. [T|for constant repair
duration %, . Disk 1 has failed and the helper set consists of
disks 3 and 4. However, prior to disk 1 being restored, disk 2
fails. With a traditional MDS code, replacement symbols for
disk 2 would be computed and the repair of disk 2 would begin
without interrupting the repair of disk 1. On the other hand, in
systems that perform functional repair [8]], it is possible that
the symbols for disk 1 would need to be recomputed as well,
which implies that the repair process for disk 1 would need to
be restarted. As a consequence, this sequence of failures and
repairs results in a data loss event.

In our analysis we consider a disk to be repaired if and
only if that disk repairs successfully, or a subsequently
failed disk repairs successfully before the total number of
failed disks exceeds the erasure correcting capability of
the code.

IIT. ANALYSIS FOR GENERAL FAILURE AND REPAIR
TIME DISTRIBUTIONS

We make the following assumption about our failure pro-
cess. The ith inter-failure duration (hereafter referred to as the

ITo be precise, in the modern terminology it is said that the information is
stored in a node. Throughout the paper we use the looser term disk instead,
in analogy to classical storage systems.
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Figure 1: Sequence of disk failures (shaded dots) that causes
a data loss for a (4,2) coded system and helper set of size
2. Here the helper set for disk 1 is {3,4}. When disk 2 fails,
even though the helper set remains unchanged, the symbols
for disk 1 must be recomputed (for functional repair). Since
disk 3 fails prior to the repair being completed, a data loss
event has occurred.
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Figure 2: Illustration of setup for failure times and repair
durations.

failure duration) for the system is denoted Y;. The process
{Y;, i=1,2,...,} is an i.i.d. process with known probability
density function (pdf) fy(-), cumulative distributive function
(CDF) Fy(:), where fy(y) =0 for y < 0. Let Xo = 0 and
Xi = Xi,1 +Y;, = 1,27.... Here Xi, 1= ].,2,...7 is the
instant at which the ith disk failure in the system occurs. Note
that X is not regarded as a failure instant. Let the random
variable N; count the number of failures in time interval [0, t),
ie. Xn, < tand Xn,11 > t. For an (n, k) MDS code an error
cannot occur in [0,¢) if Ny <n —k+ 1.

Our failure process associates with each X;, a disk label
drawn independently and uniformly from the set {1,2,...,n},
where n is the block length of the (n, k) MDS erasure code
being used. The amount of time taken to repair a disk after the
ith failure instant X; is denoted Z;,1. The process {Z;, i =
2,3,...} is assumed to be i.i.d with pdf fz(-) and CDF F(-).
We also define the indicator random variable B; = 1, and
B, =1ifY, < Z;, B, = 0, otherwise, for i = 2,3,....
We will use the notation B;,; = (B;,Bit1,...,B;). Our
calculation is based on runs of ones (’1-runs’) in Bs.,. Let
U, = (Uy,U,,...,Ug) denote the vector of runs of I’s in
Bj.s11 for s > 1, where R denotes the number of 1-runs in
Bs.s. Thus, for the sequence by.1; = 10001111011, us = ¢
and r =0, for s =1,2,3, us = (1) and r = 1, for s = 4 and

us = (4,2), r = 2, for s = 10.
The probability of data loss is given by

P(Dy)

= Y D P(DiN,=s,U,=u)P(N; = s,U, =u).
s=n—k+1 u

“4)

In @), the term P(Dy|N; = s,U, = u), is the conditional
probability of the event that in one of the 1-runs of a failure
vector By.s11 with 1-run vector u, the number of distinct disk
failures exceeds (n — k). The probability that exactly [ distinct
disks fail during a run of length u, denoted IL,(u + 1,1), is

given by
1 n u+1
nutl <l> Z <a1,a2,...,al)’

a1>0,a2>0,...,a;>0
(5)

and I, (u + 1,1) = 0 for [ > w + 1. In terms of II, (u,) we
obtain

I, (u+1,1) =

r n—k

P(Dt|Nt:S,USZU):l_HZHn(UJ+17Z)7 (6)

j=1i=1

where r is the number of 1-runs in the sequence of failures.
Note that

3 ( “ ) = 1S5 (u, 1),
ai, az,...,a

a1>0,a2>0,...,a;>0

where Sa(u,!) is the Stirling number of the second kind.
The second term in @), P(N, = s,U, = u) is given by

PN, =s,Us=u)=P(N,=s|Us=u)P{U; =u)
= P(N, = s|U, =u)N(s,u)(1 — G)*" @ gw) (7)

where w(u) = >.._ u;, N(s,u) is the number of bi-
nary sequences bs.sy1 (of length s) with a 1-run vector u,
G = [)"F,(2)fz(z)dz is the probability that Z; > Y;
and P(Us = u) denotes the probability of selecting a vector
Bj.s 1 with 1-run vector u.

We thus obtain the following expression for the data loss
probability,

P(Dy) =

- i > P(Dy|N; = 5,U, =u)

s=n—k+1 u
XN(s,u)(1—G)**@WGv® pr(N, = s|U, = u)

o] r n—k
DN R | DR (TR )
s=n—k+1 u j=11i=1
XN(s,u)(1 - G)*"*@Gv@ pr(N, = s|U, = u).

®)



1) A Lower Bound: A lower bound is obtained by writing

Z ZP(Dt|Nt = S,Bzzs+1 = b)
s=n—k+1 b
XP(Nt = S,B2;5+1 = b)

P(Dy) =

€)
and restricting the sum in (9) to b € B where
B = {].n—}’cos—(n—k)7Oln—}’cos—1—(n—k)7
] ,Os—l—(n—k)ln—ko}. (10)

Observe that the cardinality |B| = s — (n — k). Also
P(Dtht = S,B2;5+1 = b) = Hn<n — k + 17n — k/’ + 1)
for b € B and

(n—1)!

Thus we obtain

P(Dy)
(n—1)!
Z nnk Z ZPNt—SBQSJrl—b)
s=n— k:+1 beB
- 1)
= n("’]’; Z ZP Nt—S‘BQ s+1 —b)
" : s=n—k+1beB
XP(B2 s+1 = b)
= n"’]i—l Z ZPNt—S‘BQSJrl—b)
n s=n—k+1beB
X(l _ G)s—(n k) Gn k
G Fn—1) & .
= — 7 (1-@G)s=(=h)
n' k(k a 1)' s:'r;chl
ZP(Nt = S|B2;3+1 = b)
beB
@ G Fn-1)! & ~(n—k)
@ NPT 1— s—(n
= (k —1)! s:;—:kﬂ( @

X (s — (n— k))P(Ny = 5|Ba.sq = 177k~ (n=k)

®) ank(n — 1)' — o s—(n—k)
S S:;H(l G)

x(s — (n — k))P(N; = 5|Bg., = 1"7%0%) (1)

where in (a) we have used the facts (i) |B] = s — (n — k),
and (ii) P(N; = s|Ba.sy1 = b) is a constant for b € B.
Observe that in (b) the conditioning event is that the infinitely
long sequence Bs., = 17=k000... =: 1™ *0*. Henceforth, we
denote Bs.. by B.

2) Limiting Behavior as G — 0,t — oo.: The lower bound
in (TI) is tight in the limit as G — 0 since it accounts for all
terms except ones that are o(G™~*). Thus

lim P([D;) (k-1)!
G=0 (G/n)(n=k) (n — 1)!
s=n—k+1

= Y PN, ziB=1""0). (12)
i=n—k+1

In order to estimate @I), we follow the approach taken in [[10],
Ch. 3. Define indicator random variable I;, ¢ = 1,2,...

;=L i=lor(i>1and YIY <),
0, otherwise.

Note that the events {I,, = 1} and {N; > n— 1} are identical.
Now consider

E(Y1+ Y2+ ...+ Yy 41|B=1""%0%)
= E()_YiL|B=1"""%0")

i=1

n—k+1
= EMiL)+E( Y YiliB=1"""%0")
=2
+E( Y YiL|B=1""0%)
i=n—k+2
n—k
W E(Y)+E(Y|Y <2)Y P(N, 2 i|B = 1"*0%)
i=1
A
E(Y[Y >2Z) > P(N;>ilB=1""%0"),
i=n—k+1

13)

where in (a) we have used the independence of Y; and I;. The
left hand side in (T3) is larger than ¢ by the mean residual time
A := E(Xn,+1 — t|B). Thus
> P(N;ziB=1"""0") =
i=n—k+1

t+A—-A
EYY = 2)
(14)

Upon assuming that E(Y?2|Y > Z) is finite it follows that
E(A|B) is finite. Thus for large ¢

— > n—knx -
Am 5 Z PNy 2B =1"707) = sy (19)
i=n—k+1
Since E(Y|Y > Z) — E(Y) as G — 0 we obtain
: PDy)/t —(n-1)! 1
oA G m ~ G miEry | 9
tGn—k—0




Equation leads to an interesting and useful qualitative
conclusion about worst case repair duration distributions for
the probability of data loss. If G is sufficiently small, the
approximation P(D;) = EZ 3,’ 1) (G/n)("=*) becomes
sharp. If, in addition, we assume that Fy( ) is convex (which
holds for practical failure distributions such as exponential and
a subset of Weibull distributions), by Jensen’s inequality we
have G = P(Y < Z) < P(Y < E[Z]), and thus

P(D) £ EZ = B: By P <

This means that in the limiting regime, the highest probability
of data loss over a large class of failure distributions is when
the time of repair is constant.

E[Z])/n)" M. (7)

IV. PROBABILITY OF DATA LOSS CONDITIONED ON THE
NUMBER OF FAILURES FOR CONSTANT REPAIR DURATION

We now turn our attention to the probability of data loss
conditioned on the number of failures of each disk. The
calculations hereafter consider the special yet important case of
exponentially distributed failure durations and constant repair
duration. We give the reader a glimpse of the main results
for the case of a (2,1) erasure correcting code. Analyses
for general (n,k) codes are presented in the subsequent
subsection.

1) code

Suppose that we have one symbol of information stored
in two disks. Let m; and ms denote the number of fail-
ures of disks 1 and 2, respectively. Let Xi1,..., X1, and
Xo1,...,Xom, be their random failure instants. By analyz-
ing the failure timeline of both disks, we see that an error
event occurs if and only if, for some failure instant X;; of
disk 1 and X,; of disk 2, we have |Xi; — Xoj| < trep .
Alternatively, there is no data loss if the random vector
X =(X1,.., X1my, Xo1, ..., Xom,) lies in the region:

R ={z:0 <,z <t |21

A. Motivating Example: (2,

—x2j| > trep ,VZ,j}

The probability that X & R¢ an be calculated exactly,
as outlined next. Consider the permutation 7 on the set
{1,2,...,s}, s = m1+maq, which sorts X in ascending order.
A corresponding failure pattern f is obtained by applying
to the vector (1™12™2). Given a permutation 7, a transition
(i,7 + 1) is defined as a pair of consecutive positions of
the failure pattern for which f; # f;11, i.e. a transition
identifies consecutive failure instants that correspond to distinct
disks. Let £(7) denote the number of transitions for a given
permutation 7.

Proposition 1. The probability of data loss Pp,(D:) of a
(2,1)-code given m = (mq,mg), m; the number of failures
for disk 1, is given by

Prn(Dy) = — Jtwep /1) Pr(§(m) = j), (18)

where s = my + mo.

Proof:
m(Df) = Y Pm(Dflm)Pr(m)
= Z Z 'm (Df |70) Pr(m)
Jom E(m)=j
DS ST (1 jta /1) Pr()

Jow g(m)=j
> (1= jtey /) Pr(E(m) = ). (19)
J
In (a) we have used the fact that P, (D{|w) = vol RS, where
R ={(z1,22,...,25) : 0< a1 <ay< ... <zs <,
Tmt1 — Tm > trep for every transition (m,m + 1)},
(20

and the fact that vol RS = (1 — jitwep /t)®, when {(7) = j as
will be shown in Sec [V1]. [ |

The following corollary provides the asymptotic behavior
when tp /¢ is small.

P (D
Corollary 1. lim M
trep /60 rep /T

Proof: We have
Pm(Dy)
m ——F =
trep /=0 Trep /T

= 2m1m2.

s—1 s

. H_l 7( re /t) PT‘( ( ):.7)
- Y (1)
=Y jPrim =)

The summation in the last term—the average number of tran-
sitions in a permutation—is shown to be equal to 2mima/s
in Thm. 2] in Sec. [ |

B. The Reliability of (n,k) MDS Codes: Direct Approach

To state the probability of data loss of an (n, k) code we
need some initial definitions. Let X1, ..., Xj;,, be the random
failure instants of disk ¢ and let

X = (Xlla"'7X1m17X217"'7X2m27"'7Xn17" '7X'nmn)~
@1
Denote the total number of disk failures in [0,¢] by s :=
>, m;. Given a sample x drawn from the distribution of
X, we define the failure pattern f as the vector obtained
by applying the permutation which sorts & in ascending
order to (1™12™2 .. .n™n) (the ties are broken arbitrarily
and associated to events with zero probability). Note that the
number of possible orderings of «, s!, is the number of possible
failure patterns f times m;!...m,!. For example, the failure
pattern for Fig. [1] would be (1,2,3,4,1,2,1).
Let b > a > 1 be integers. We denote by [a, b]y the integer
interval {i € N: a <14 < b}, define its length to be b — a,

and make the following definitions:



Definition 1. Cluster [a,b]n: An interval [a,b]n such that
{f(i),a <i < b} contains exactly n — k + 1 distinct entries.
The length of a cluster is the length of the interval [a, b]x.

Definition 2. Tight Cluster: A cluster that does not contain
a cluster of shorter length.

Note that a transition (in the sense of Section [IV-A) corre-
sponds to a tight cluster for a (2, 1) code, which by definition
is of length 2.

Definition 3. Minimal Cluster: A cluster of length n — k.

A minimal cluster is tight, but not every tight cluster is
minimal. Furthermore, a cluster [a,b]y is tight if and only
if f(a) and f(b) are distinct, and {f(7) a < i < b} has
exactly n — k — 1 distinct entries which are distinct from f(a)
and f(b).

Example 1. Consider the failure pattern (1,2,3,4,1,1,2,1)
for a (4,2) code. In this case, [1,3]n,[2, 4]N, [3,5]n, [3,6]n,
[4,7]n and [4,8]n are clusters. All but [3,6]n and [4,8]y are
tight clusters, while [1,3|n,[2,4]n, and [3,5]n are minimal
clusters.

Tight clusters correspond to critical sucessive failures that
may cause data loss.

Definition 4. Ler b = (by,...,b),l < s — 1, be a bi-
nary vector. The restriction of b fo an interval [u,v]y is
b([u, v]n) = (buy - -+, by—1)-

Definition 5. Region associated with b

0<r <...<xs <t
i1 — T <trp if =1 5.
Tig1 — X > teep if by =0

Ry = {(Jcl,...,xs):

Remark 1. Often some of the successive differences are un-
constrained. For example, if xo—x1 > trep , and x5 —14 < trep
and s = 6, then b should be written as 0 x x1x, where * in
position i indicates that no constraint is imposed between ;1
and x;. As we will see later, as far as volume calculations
are concerned nothing is lost by considering b to be 01, i.e.
omitting the *’s and writing b as 0'19 where i is the number
of > constraints and j is the number of < constraints.

Definition 6. Fundamental Simplex S: {x : 0 < 21 < 25 <
<z <th

Definition 7. Volume Polynomial. Given a subregion S of the
fundamental simplex S, we define volume polynomial v(p) =
(s!/trep Jvol S, where p = t/trep - If S = Ry, then we will use
the notation vy (p). As will be seen later, the volume polynomial
depends on b through the number of constraints. Thus if b
contains 1 zeros and j ones, corresponding to i+ j constraints,
we will write v;;(p) interchangeably with vg(p).

C. Characterization of data loss event

When there are no consecutive repeated elements in f, we
consider that data loss occurs if there is an ordered sequence
of failures z;,...,%;4n—k4+1 from n — k 4 1 different disks
such that ;11 —2; < trp, forall j =4,...i+n—k+1. When

there is at least one repeated number in the failure pattern (for
example f = (1,1,2,2,4,4,3)) we assume that there is a data
loss event if there exists an ordered sequence (z;,...,Tit;)
from more than n — k + 1 disks such that x;41 — z; < trp .

We have two equivalent characterizations of an error event,
given a failure pattern f:

(i) A binary vector b is a no-error vector if the restriction
of b to every tight cluster of f has weight at most (I—1),
where [ is the length of that tight cluster.

(ii) The vector b is an error vector if its restriction to at
least one tight cluster of length [ has weight [.

Let us call By the set of all error vectors b for a given failure
pattern f.

Example 2. Consider a (4,2) MDS code with m = (2,2,1,1)
and suppose the failure pattern is 121234. Then By consists
of the error vectors * x 110, = x 011 and * x 111. Following
our convention of dropping the x’s and writing b as 0°17 we
write By = {2(0'12),0°13}.

From simple observations, one can find the following ex-
pression for Py, (D;).

Theorem 1. The probability of data loss satisfies
1

5—5) Z Z vb(p)- (22)

P (ml,mg,...,ms

P (Dy) =

Proof: Let X be the random vector associated to the
ordered failure times. Let P(f) be the probability that X has
pattern f.

Di) = Zf:Pm(Dtlf)P(f)
B <m1,.j9,7mn> 1zf:Pm(Dt|f)
- (ml,..s.,mn)_ YD Pu(X eRe)

f beBy

—
=

() ml'mz

= Tt Z Z vol Ry,

f beBy

where (a) is due to the characterization of a data loss event,
given f, and (b) follows from the fact that the set of ordered
vectors X has volume ¢°/s!. |

Thus, to give explicit forms for P,,(D;), we need two
elements

(i) Computations of the volume of the error regions Ry,

or equivalently, computation of the volume polynomial
v (p)-

(ii) Enumeration of the set of error vectors By.

The volume computation is addressed in Sec. We address

the problem of enumerating the error vectors in this section and

use Thm. [8] Sec. [VI] in order obtain the asymptotic behavior

of P, (D) as trep /t — 0.



Thm. [8] Sec. [V]] gives a formula for computing v (p). In
particular, it shows that if b is some permutation of 0’17, i.e.
w(b) = j, then

vij(p) = 70" + O(p* ), (23)

s!
(s =J)!
where s is the number of failures in [0, ¢]. This means that the
dominant terms in Py, (D;) are when w(b) = n — k. In this
case

s!

2 s—(n—k) 19) s—(n—k+1) 24
Gk’ +0(p ). (24)
Note also that dominant terms correspond to minimal failure
clusters (i.e., of length (n — k)). This characterization suffices
to prove the asymptotic behavior of P,,(D;) as tp /t — 0.
Let j¢ . be the number of minimal failure clusters in f. We
have

Ui,n—k(/’) =

jfn k

P (Dy) +

B s! (n—k)
(s—(n—k) Z

+ O(pf(nfk%»l))

m1 mz, ’rnﬂ)

(25)
Thus
. _ s! jf n—k
lim Py, (D,)p" % = =
Jim P, (s—(n— k)l ; (o)
(26)
As will be shown later in Corollary 2]
A= Z ]+ =
f (ml,mg,“.,mn)
(n—k+1l(s—(n—k))!
— ol Z mi, . ..mi,,L7k+1,
(1?1«---d«‘ilnflk+1)
@7
which leads to
lim P, (Dy)p" % =
p—r00
(28)

(n—k+1)! >

(i1 sl 1)
distinct

My, My .. min_kﬂ.

Remark 2. The contribution to P, (D;) from data loss events
related to non-minimal clusters is negligible in the limit
tep /T — 0.

Remark 3. A result with very similar flavor was proved in
[U7, Ch. 6], in spite of the difference between the models.
The approximations in [\I7, Sec. 6.3.2] show that the dominant
term in the mean time to data loss is due to a “direct path”
of failures from n — k + 1 different disks. This is completely
analogous to the fact that the dominant term in P, (Dy) is
due to minimal clusters (i.e., to the probability associated to
a succession of failures from exactly n — k + 1 disks).

D. Upper Bounding the Error Term

By enumerating all failure patterns, we calculate P,,(D;)
explicitly. However, combinatorial upper bounds for the error
terms may be useful. We derive an asymptotically optimal
bound in this subsection.

Given a failure pattern f, there is an error if the restriction
of the vector b to at least one tight cluster of length [ has
weight [ (see characterization (ii) at the start of Sec. [[V-C).

Let Iy,..., I, be the tight clusters of f (I; = [a;,b;]n). Let
l; be the length of the j-th tight cluster.
P (Dy|f) = P (b(I1) = 1" or b(I1) = 1" or ...b(I,) = 1")
P P
1
l
<D P () =15) = 3 ol Ry,
Jj=1 j=1
= jf,lVOI Rlz,
l=n—k
(29)

where we define jz; to be the number of tight clusters of
length [ in f. From the above inequality:

mi!...my! G
Ml al S S ol Ry

f l=n—k
! -
:7m1"t's'm"' Z ij,zvol Ry
l=n—k f
S
= — I R
LS vl Ry Zm/( m)

lnk

=A;
(30)

But A; is the average number of tight clusters of length . Also
note that [ = n — k is the dominant term. Hence this upper
bound collapses with exact calculation for vanishing time of
repair.

The following theorem gives a closed form expression for
Aj.

Theorem 2. Let T,,_y11 be the set of all (n — k + 1)-tuples
of distinct numbers (i1,...,%p—g+1), 1 <i; <n.

Ay (sl)<lj1)l><

n—k—1
sz
§ E Mgy MGy _eyn H

(150 tn— k1) E€ETn k41 zgjif_l =

€29}

Proof: Given a failure pattern f,letY;, j=1,...,5s—1,
be indicator random variables which are 1 if [,/ 4+ {]y is a
tight cluster and 0 otherwise. We would like to calculate A; =
E[Y1+...4Y,_] = (s—1)E[Y1]. But E[Y7] is the probability



that [1,1 + 1]y is a tight cluster of f. We use Definition
(and the corresponding lemma) to calculate this probability.
Pick a random pattern (F1, ..., Fi;1) (there are () ways of
doing so). A tight cluster is formed by choosing two different
numbers for endpoints F; and Fj4; (say ¢; and %,_x+1), and
then choosing (n — k — 1) other numbers (i, . . ., i,,—x) to fill
the remaining (I — 1) positions. If [ > n — k, some of the
numbers will appear more than once in fs,..., f;. Suppose
that 4; appears g; times (there are (’Z'%j) ways in which this
happens). Since ¢; and 2,41 appezir only once, the total
choices for the pattern are the product between mim,, k41
and the choices for is,...,%,_;. Summing over all possible
q; gives us the final answer. u

Corollary 2. A, _j is given by Equation

We now estimate the probability of data loss (or equiva-
lently, the reliability) of an erasure coded storage system with
Poisson failures.

Theorem 3. For Poisson distributed failures with rate param-
eter \ and constant repair time tp
P (Dt) o n!

im kL
tep =0 i h (k= 1)!

(32)

Proof: Let M; ~ Poisson(At) be the random variable
associated to the number of failures until time ¢.
P(D P.,.(D
lim 2\ ,‘;) = lim ZL,j)P(Mzm)
trep —0 trrég trep =0 £ trfé;

(a) . Pn(Dy) _
# 3 P M —m

) (n—k+1)!
i(ntni—k)z Z

m (i1, iy — k1)
distinct

miy -..my,_, ., P(M =m)

(n—k+1)!
= Z E[M;]...E[M;, ,.|]
(i1t —pg1)
distinct
_ _k M) )\n—k-i-lt.
(n +1) <n —k+ 1)

Interchanging the limit and summation in (a) is justified
by bounded convergence (since Pp,(Dy)/tiy® is naturally

uniformly bounded). Step (b) follows from the asymptotics
derived in (26). |

E. Possible Generalizations

The machinery developed in this section has some impli-
cations to the reliability of other failure point processes. In a
fairly general setup, suppose that the failure mechanism is such
that the joint probability density between the random failure
instants of disks 1 to n (cf Eq. @, conditioned on the number
of failures, is given by g(x). If g(x) is bounded for all x, we
have the following qualitative result:

Theorem 4. As t.., — 0, the probability of data loss Pp,(Dy)

of an erasure coded system cannot decay slower t; k.

Proof: The characterization of a data loss event in Sec
does not depend on the statistics of the system. The
calculations in Theorem [I] can be thus carried out replacing
P(X € Rp) by

9(x)de,
Ro

(33)

where G(a) is the pdf of the order statistics obtained by sorting
@ in ascending order. Since we assumed that g(z) is bounded,
so is §(), and hence the above integral can be upper bounded
by a constant times vol Rp. The result now follows from the
asymptotic analysis of vol Ry, provided by Eq. (26). [ |

Notice that this result does not assume independence on the
failure time or invariance under time.

Example 3 (Non-Homogeneous Poisson Processes). This type
of process can model situations such as aging effects and
reliability growth. Let \(x) be a function of time (referred
to as the rate function). For this process, the probability that
there are m failures of one disk in the interval [a,a + h] is
given by:

(Ala,a+ h))™exp[-A(a+ h,a)]
m!

P(Mi(a,a+ h) = m) = :
(34)

where A(a,a+h) := faa+h A(zx)dx. Define the normalized rate
function as (@)
< A

Az) = . 35

@ = 50 65)

It is not hard to see that the failure times of a disk are
independently, identically distributed with pdf A\(x) (see, for
example, [12] p. 64], adapted to the non-homogeneous case).
This way, the joint pdf of the ordered failure times, conditioned
on the number of failures is m is given by.

) = SN (2) . A (),

(36)

We can bound

g(@h .
Now let C(t) = max,e(oA(T).
P(X € Rp) by s!C(t)*vol Ry, and thus

Pp(Dy) < s1C(H)°Y 0> (vol Ry) (Pm(f)).  (37)
f bef

A special case of this process are the “Power-Law Processes”,

where M) = AzP, X\ > 0. In this case, C(t) = (8 +1)7.

V. SET AVOIDANCE PROBABILITIES FOR CARTESIAN
PRODUCTS OF RANDOM SETS

The closed form calculations performed in the previous
sections are particularly useful to characterizing the asymptotic
behavior of the system. The objective of this section is to
provide a simple upper bound based on Jensen’s inequality.
The proofs of the theorems, as well as an upper bound based
on the inclusion-exclusion principle, along with a geometric
characterization of situations when these bounds are tight,
can be found in Appendix |Bf and in [6]. The set avoidance
lower bound is used to derive a lower bound on the reliability
function in Sec. some examples are presented in Sec. [V-C|
and general results for (n,k) MDS codes are presented in
Sec.



A. Lower Bounds

Given sets S, S5, R C S1 X S and 1 € S; we define the
shadow of a section of R as R1(x1) = {z2 € S : (x1,22) €
R}. In the following, the operator x has precedence over set
operations such (1) and .

Lemma 1. Let X = {X1,Xs,...,Xpm,} and Y =
{",Ys,...,Y,,,}, where the X;’s are i.i.d on a set S and
the Y;’s are i.i.d on a set So. Let X, Y be generic random
variables distributed as X; and Y;, resp. Let R C §; X So.
Then

P(xxyR=0)> (PUX} x ¥R = (2)))"“ (38)

and equality holds iff P(X € \J;*, R(y;)) is a constant for
(ylv Y2, .. 7ym2) with pOSitive pmf

Corollary 3.
P (2{ x YR = (2)) > P((X,Y) & R)™™2.  (39)

B. Application of Set Avoidance Calculations to the Data Loss
Probability Calculation

We first apply the bounds developed in the previous section
to derive a lower bound on the reliability function R(t).
The bound is given in terms of the volume of the error
region associated with a given code. A systematic method for
calculating the volume of the error region is then presented
along with an overview of some of the theoretical results
related to the calculation of an error polynomial associated
with the code. Proofs are presented in the next session and in
the appendix.

For the avoidance upper bound, we need a different defini-
tion of a data loss event. Let f be a failure pattern. We consider
that data loss occurs if there is an ordered sequence of failures
Tiy. . Tign—k+1 from n — k 4 1 different disks such that
Tjp1 — Tj < tep, forall j =4,...94+n —k+ 1, even when
the failure pattern has repeated consecutive elements. From
Remark [2] this characterization is asymptotically the same as
the one in [V-0

Let R be the region

R = {(z1,22,...,2n) € [0,t]" : |zi, — 2ip| < trep,

|17,'2 - xzs‘ < trel)v R |xin—k+1 - "1:7'/71—k‘ < trel)

ER) Z.n—k'+1}- (40)

Note that R C [0, t]™ contains the error regions of a code when
there is precisely one failure of each disk (s = mi+...+m,, =
n and m; = 1). Suppose that in the interval [0,¢], disk 4
fails m; > 0 times. Let m = (my, ma, ..., my). The failure
instants of the i-th disk are denoted by X; = {X;1,..., Xim, }»
where the X;; are independently and uniformly drawn on the
time interval [0,¢]. A data loss event occurs if and only if
Xy X Xo x ... x Xy(\R # 0, where R is error region
for the code as defined in (40). Let X;, i = 1,2,...,n be
i.i.d. random variables, uniformly distributed on [0, ¢] and let

for some 1,19, ..

X = (Xy,Xs,...,X,,). The following proposition follows
immediately from Cor. [3]

Theorem 5. The probability that there is no data loss in the
interval [0,t], given m;, the number of failures for disk i in
[0,t], m; >0, 1=1,2,...,n satisfies

1 mi...Mp
P (D) > P (X € RE)™ M2 — (1 = VotR) .

(41)

Proof: The quantity on the left is P(X; x X3 X ... X

X, MR = 0)|M = m). Thus the inequality in @I) follows

directly from Cor. 3| The equality in follows from the fact

that X;’s are uniform random variables iid over [0, ¢]. [ |

We proceed to calculate the volume of R for a few example
codes, and then state a general result.

C. Graphical Representation of Constraints, Some Example
Error Regions

In order to help calculate the volume of the error re-
gion R defined in we consider a binary vector b =
(b1,b2,...,b;),1l < n—1 and to define Ry € [0,¢]" as the
region

1 <...<z,
Ry = (xl,...,mn) S [O,t]n: Tit1 — X Strep ifb; =1 .

Tiy1 — T3 > trep if b; =0

Note that except for the dimension of the binary vector this
definition coincides with Def.

The vector b is conveniently visualized as a graph G with
n vertices such that there is an edge between 7 and i + 1 iff
b; = 1. The region R can be decomposed into a disjoint union
of regions Ry, the union being over all edges b that are error
vectors.

In cases where there are no constraints between successive
failure instants, the dimension of the vector is reduced and the
corresponding graph has fewer nodes. As an example consider
an ordered vector of failure instants @ = (z1, z2, x5, x4) With
the constraints X3 — 1 > tep , T3 — 2 < trp . This constraint
is represented by the vector b = 01, and is shown as a graph
with three vertices.

A systematic method for calculating the volume of R4 and
hence of R is presented in Sec. [VI] Here we show by example,
the error vectors that correspond to specific codes.

Example 4. (n,n-1)-single parity code. In general, if k = n—1,
any simultaneous two disk failures (within an interval of length
trep) Will cause data loss. Therefore

R={(z1,...,2,) € [0,t]" : Fi # j s.t. |x; —
RE = {(a1, .

zj| <tpp},and
&) €10,8]" 1 |y — x| >ty forall i,5}.

Fig.[3)is an illustration of region R in three dimensions (n =
3,k = 2), The fact that the above region is a simplex is proved
in Appendix A, Lemma |3| It is also proved that

vol RS = (t— (n — 1)twp)".



Figure 3: Illustration of the error region R¢ and no-error
region R¢ for the (3,2) code. Also shown is a single simplex,
corresponding to one of the orderings of (z1,xs,x3). The
error region is the ‘star-shaped’ region that is unshaded. The
error region is the disjoint union of the polytopes Rp. The
corresponding error graphs are Gy, with error vectors 10, 01
and 11.

Also shown in Fig.[3|is a graphical representation for the error
and non-error vectors.

Remark 4. For the analysis above,
t> (n— 1)ty

For general codes the no-error regions are not elementary
simplices as in a (n,n — 1)-code. However, a systematic
method for calculating the volume of an error region is
presented in Sec.

Example 5. (4,2)-Code:
The error graphs of a (4,2) code are represented in Fig.
For t > 3ty , the volume of the error region is given by

we require that

_ 242 3 4
vol R = 24£%t7,, — T2t5 t + 64t,,.

Details of the volume calculation are presented in Sec.

D. Set Avoidance Bounds for (n,k) MDS codes

For an (n, k) MDS code, let a;(n, k) denote the number of
error graphs labeled by error vectors b with Hamming weight
7. We define the error polynomial as:

n—1
elp)= Y ajnk)vn1;. (42)
j=n—k

Q@ Q@ [©) Q@
Gy G

e——=@ [©) e—0—=0 Q@
Go1o Goyy

@ e——=0 Q@ @ e—0—0
Gom G

@ Q@ e——=0 @ @ @ @
Gio1

e—=@ e——=@

Figure 4: No-error graphs (green, left) and the error vectors
(red, I'lght) for the (4,2) code. Gooo, G1007 G010, G001 and
G101 represent the no-error region RS and Gi1p, Go11 and
G111 represent the error region, R, .

Let 3;(n, k) be the number of no-error graphs of weight j for
an (n, k) code,

n—1

5j(”7k>=( i )—Oéj(n,k),

where the term (') is the total number of binary strings

of length n — 1 and Hamming weight j. Analyzing the labels
bi...byp—1, it follows that §;(n,k) is the number of binary
strings of length n—1 and weight j that has no runs of (n—k)
or more 1s. This number and its relation with generalizations
of the Pascal Triangle was thoroughly studied in [2], [3]. It
follows immediately that «;(n, k) =0, for j =0,1,...,(n—
k—1).

Combining two results from Thm. 3.3] and [3, Eq. 3],
we have §;(n,n—k) = Cp_r(n—j,j), where C,(l, s) is the
coefficient of z° in the expansion of the polynomial generating
function (1 +z + ...+ 2™~ 1)L, This leads to the following

Lemma 2. The number of no-error graphs of Hamming weight
j of an (n,k)-code is given by

Bj(n, k) = C:Infk(n - 3,7) : |
()0

where a = min{n — j, |j/(n — k)| }.
We are now in position to prove:

Theorem 6. The error polynomial for an (n,k) MDS code
satisfies

e(p) = (kﬁll)!p’“ +O0(p" ). (44)



Proof: When expressed as a polynomial in p, the volume
polynomial is given by

= stps.
3=0

From Remark [7] which follows Thm. 8] by = 0 for s =
k +1,...n, ie. each volume polynomial in Eq. (@2) has
degree at most k. In fact, the only polynomial that has
degree k is vk_1,n—k(p). Also from Remarkl 7| the coefficient
of p* in vp_1,n—k(p) is Kk!(}), whereas from Lemma [2|
ap—r(n,k) = k. Thus, the highest degree term of e(p) is
an—i(n, k)k! (7)) p* = n!/(k — 1)!p*, from where the theorem
follows. ]

Corollary 4. The volume of R for an (n,k)-code satisfies

vol R (k tl’{ép k + Z astst::ép S; (45)

where ag, s =0,...,k — 1, are constants.

Remark 5. When t., /t is small (tep /t — 0),

n!
T et (46)

vol R ~
(

E. Averaging the Set Avoidance Bound for Poisson Failures
the Multiplicative Gap

We now evaluate the bound for Poisson failures with rate A
i.e. inter failure durations that are iid exponential with mean
1/\. We also evaluate the multiplicative gap between the set
avoidance upper bound and the asymptotic result (32).

Theorem 7. Let R; be the error region of a (j,j — (n—k))-
code, j > n —k+ 1. The probability of data loss of an (n, k)
coded is bounded by

3 () (4R). @

j=n—k+1

P(D;) <

Proof: Let w(t) denote the random variable associated to
the weight, i.e. the number of disks that failed at least once
within [0, ¢]. We have:

n

PD)= Y

j=n—k+1
and the RHS of the above equation can be bounded by using
lower-dimensional versions of Thm.

Atyj

vol &)*”‘”“” )

POt =) = (1- 2% (48)

The proof now follows by bounding (@8) using the fact that
(1 —2)" > 1 — ra for any real numbers r, z such that r > 1
and 0 <z < 1. [ |

(7)1 ey poyut) = ),

Corollary 5. Let P (D;) be the upper bound in @S8). The
multiplicative gap between P (D;) and P(D;) satisfies

_ P"(Dy)
lim ———=
trep —0 P(Dt)
In particular, when k = 1 the bound is asymptotically tight.

and (@6), the ratio
)/ trep is well approximated by

= 3 (e (G=timg=m) o

= (e + At)F ! (49)

Proof: From Equation
p(u)(

j=n—k+1
nl
_ A k+1t
(F— 1)
n
k= 1\ xtng) (\pyi—(n—ktD)
X | Z <n_j>e (At)
j=n—k+1

and the approximation is tight as ¢, — 0. Using Theorem [3] I
and after some algebraic manipulation, we conclude 9). ®

VI. VOLUME CALCULATIONS FOR ORDERED SETS WITH
CONSTRAINED DIFFERENCES

Both of the approaches presented for estimating the data loss
probability, the direct approach of Sec. and the bounds
based on set avoidance presented in Sec. [V| ultimately rely on
the methods for volume calculation presented in this section.
The calculations presented here are for an ordered s-tuple,
where s is a dummy variable, no longer necessarily associated
with the number of disks failures in the interval [0, ¢]. In order
to apply the results to SecllV-B| s will indeed represent the
total number of failures that occur in the interval [0, ¢], whereas
in order to apply the results to Sec. [V] s will be replaced
by n, the number of disks in the system. The results in this
generalizes the formulas in [5]] for any (n, k) and provides the
exact behavior of such formulas.

The volume of the error region can be determined by
splitting it into disjoint simplices. Since, by definition, the
region R is symmetric with respect to different orderings of
the failures, we have vol R = slvol (RNS). We can thus
restrict our analyses to ordered vectors z; < z3... < x,.
The volume of the regions restricted to the ordered simplex is
now presented.

We first observe that vol Ry only depends on the weight
(number of nonzero entries) of b (see Lemma [3| and the
remarks that follow in the Appendix). Thus it suffices to study
graphs of the form G:15, where j is the weight of the vector b.
We will work with volume polynomials v;;(p), a scaled version
of the volume of the region Ryi1;, where for convenience we
repeat that p = t/t,, and v;;(p) associated with Rgiys is
given by v”( ) = slvol Ggiyi /17,

We prove in Appendix [A] that R is a simplex with volume
(t — iteep )®/s!, provided t > ity . Alternatively, vio = (p —
1)®. For instance vgo(p) = p° is the volume polynomial of
the region with no constraints on the differences x;4; — «
Since the union of a region such that z;;1 — x; < tp and
another one such that ;1 —x; > tp gives a region with no



constraints on x;y; — z;, we have the following “difference”
identity:
3,5 (p) = vij—1(p) — Vit1,5(p).

Summarizing, the following rules provide a systematic
method for calculating the volume polynomials associated with
any node in the supergraph.

o (Shift) vit1,5(p) = vij(p—1),5=0,1,2,...,

e (First Difference) V5,5 (p) = Ui)jfl(p) — Vi41,j (p),
e (Initial Condition) vy = p°.

PN
eo o ofb\o—of@\

.... ...—.@ ..—.—.@ .—.—.—.

Figure 5: Supergraph representation of the set of graphs GgiyJ
for the (4,2) code. A vertex with label ij represents the graph
Gi1s (depicted on the left of each node of the supergraph).
Note that the number of constraints increases from zero at the
top layer of the supergraph to three at the bottom layer of the
supergraph.

The graphs Gyi1; are conveniently organized into a super-
graph, as illustrated in Fig. [} in order to facilitate computation
of the volume polynomials. In this graph, each node is associ-
ated with a volume polynomial. For example, the top or root
node in Fig is associated with the volume polynomial vgg(p)
and the polynomial associated with the graph Gg11 is v1a.

We revisit the (4,2) MDS code and compute the volume of
the error region.

Example 6 ((4,2)-Code). The error vectors of a (4,2) code
are represented in Fig. 4| Summing the volume polynomial cor-
responding to all error vectors and considering all orderings
of the vector (1, ...,x,) we obtain

2v12(p) + vo3(p) @ Voo — V10 — V20 + V30

pt=(p-1"=(p—2"+(p-3)*
24p% — 72p + 64, (50)

1
T Vol R, =
rep

where in (a) we applied the first difference rule and (b) is
a combination of the shift rule and the initial condition. This
gives us, for t > 3t;

Tep ’

vol R = 24¢%t2 — 72t3 ¢ + 64t*

rep rep rep*

In the following two examples, we calculate ), B, vp(p)
in (22), related to the direct calculation of the data loss
probability.

Example 7. Suppose m = (1,1,1,1) and a (4,2) MDS code
is used. Consider the failure pattern f = 1234. Then By =
{2(0112),0°13} and s = 4. From this we can write down the
volume polynomial as 2v12(p) + vos(p). Upon simplification
we obtain voo(p) — vio(p) —v20(p) +v30(p) = p* = (p—1)* —
(p—2)*+ (p—3)* = 24p> — T2p + 64.

Remark 6. Observe that the volume polynomials for Ex. [6]
and Ex. [l are identical.

Another example related to the direct calculation.

Example 8. Suppose m = (2,2,1,1) and a (4,2) MDS code
is used. Consider the failure pattern f = 121234. Then By =
{2(0112),0°13} and s = 6. From this we can write down the
volume polynomial as 2v12(p) + vos(p). Upon simplification

we obtain voo(p) — vio(p) —v20(p) +v30(p) = p° — (p—1)° —
(p—2)%+ (p—3)% = 60p* — 360p3 + 960p> — 1260p + 664.

The following lemma uses the aforementioned rules to
provide closed form expressions for v;;(p).

Theorem 8. The volume polynomial vij(p) = > app"
satisfies the following properties

(i)

vij (p) =§(—1)H (Z) (p—i—j+0° D
(it)
ap = <i)j!(_1)sr+j (;ijo (S;T>im5(s —-r— m,j)) ,

(52)
where S(I,m) is a Stirling number of the second kind (see,
e.g., [4]).

Proof: Given a function f(x) : R — R, define the
shift operator S(f(x)) := f(z — 1) and the first difference
operator A(f(x)) := f(z) — f(z — 1). Then (i) follows from
the observation that v;;(p) = S*AJ(p®). Write S = (1 — A)
in order to express the operator in terms of powers of A. This
gives

vij(p) = (Z(—l)” C) AZ‘*j‘l) (). (53)

=0

To prove (ii), expand the last term in (51) and interchange the
order of summation, so that

n 7 .
U s 5 — 11 .7 . s —
sl = 3 o2 ) e ()
m=0 =0

(54
The result follows directly by further expanding the last term
in the above equation and from an identity for Stirling numbers
of the second kind (e.g. Prop. 5.3.5, [4]). [ |

Remark 7. deg(vij(p)) = s — j and as—; = j!(3).



n k t Kf For 1/\ 1/p P(D,) P(D;) (Simulation)  Standard Deviation
4 2 10 15 2.0 0.1 0.001 3.343x 10~ © 3.429 x 10°° 4.07 x 1077
4 2 10 075 20 0.1 0.001 0.0044 0.0044 5.38 x 10™4
4 2 10 075 075 0.1 0.001 0.0035 0.0036 1.94 x 1074
4 2 10 075 075 0.1 1076 1.185 x 10~7 1.221 x 1077 1.22 x 1078
8 5 10 075 125 0001 107% 8.9289 x 1077 8.8383 x 107° 1.2397 x 107°
8 5 10 20 20 001 0.001 3.981 x 107° 4.012 x 107° 1.548 x 10~
8 5 10 05 2.0 0.01 1076 1.013 x 10~4 1.008 x 10~4 2.766 x 107°

Table I: Validation of Eqn. (16) through simulation. ¢ is the observation time window, (k s, 1/)) and (k,, 1/u) are the (shape,mean)
values for the Weibull distributed failure and repair durations, resp.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.90 0.95 1.00 1.05 1.10 1.15 1.20
Kf

Figure 6: G = P(Y < Z) for Weibull distributed failures and
repairs for (1/X\,1/p) = (0.25,107%) (left), and (1/X,1/p) =
(461386, 12) (right). The horizontal line is the value of G for
exponentially distributed repair and failure distributions.

VII. NUMERICAL AND SIMULATION RESULTS

The data loss probability expression (1) for general dis-
tributions was validated through simulation for the family of
Weibull distributions, with pdf given by

f(z) = ad (3)571 6*(90/04)”’ (55)

«

where & is the shape parameter and « is the scale parameter.
Its mean is given by oI'(1 + 1/k), where T' is the Gamma
function. The exponential distribution is a special case of this
family, for k = 1 and a = 1/\. A few results are tabulated
in Table I The agreement between theory and simulation is

seen to be close. The simulator used here generates a sequence
of failure and repair durations according to the specified
distribution, calculates runs of the event ¥ < Z and for
each run generates disk labels drawn uniformly and iid on
{1,2,...,n}. The standard deviation of the estimates reported
in Table [l was varied by changing the number of independent
experiments.

The probability G = P(Y < Z) (defined immediately
following (7)) that a failure will occur prior to the completion
of a repair is sensitive to the shape of the distribution. This is
illustrated, in Fig. |§[, for the family of Weibull distributions,
In the plots below, it is assumed that failures are Weibull
distributed with mean failure duration set to 1/\ = 461386 and
mean repair duration t,, = 1/ set to 12.0, values that were
obtained by Elerath and Pecht in an experimental study of disk
failures [9]]. For a fixed value of k.., the shape parameter for the
Weibull repair duration distribution with mean ¢ , the shape
parameter ~; of the failure duration is varied, and the scale
parameter is adjusted to keep the mean constant at 1/A. As
k¢ varies the value of G is seen to change significantly. This
plot also shows the value of G for exponentially distributed
failure and repair durations. The value of G is seen to be less
sensitive to the shape parameter of the repair distribution.

0,\ T T ]
—e— Exponential
S -2 |
[a W)
iy
_0.10 0.12 0.14 0.16 018 0.20 0.22 0.24
1/
Figure 7: Probability of data loss for time window of dura-
tion ¢ = 1, when (failures, repairs) are both Weibull with

(kr, kr) = (0.5,2.0) and when (failures, repairs) are exponen-
tially distributed. In all cases the mean repair duration is 1074,
The scale parameters of the Weibull distributions are adjusted
to keep the mean failure duration 1/\ and mean repair duration
constant.



In Fig. [7| the performance of a (4,2) code is compared for
Weibull and exponential distributions for fixed mean repair and
failure durations. As already observed, the value of G is seen to
depend on the shape parameter, and the impact on the data loss
probability is magnified by redundancy (n—k) of the code. The
predicted gap in reliability is verified by the simulation. The
impact on the reliability of the system especially for a powerful
code can be quite dramatic—an order of magnitude difference
in G becomes ten orders of magnitude for a code with 10
check symbols. It is also clear that the mean time between
failures for individual disks is not a sufficient determinant of
overall system reliability.

-1.5
-2.0f
A -25
a
A
e _3.0f
— —e— Avoidance Upper Bound
—=— Constant Repair Time
¥35 L
—— Exponential Distribution
Weibull Distribution

-4.0

0.10 0.15 0.20 0.25 0.30 0.35 0.40
A

Figure 8: Simulation results for exponential, constant and
Weibull distributions, for (n,k) = (4,2). Here ¢t = 1, the
mean repair time is set to 0.1, and the mean time to failure is
assumed to be exponential with parameter A between 0.1 and
0.4. For the Weibull distribution, £ = 0.5 and 5 = txp /2 (s0
its mean is Zpp ).

In Fig. [§|we show that constant repair duration represents the
worst case among the distributions considered. The simulation
was carried out for a (4,2)-code, for fixed mean repair time
(trep = 0.1), and exponential failure times with mean 1 /. For
the Weibull distribution, the shape parameter was chosen to be
equal to 0.5 and the scale parameter ¢, /2, so that the mean
equals ¢, . Simulations were based on 107 samples for each
value of A, using the algorithm of [[15] for the failure process.

Also in Fig for the constant-repair-duration case, we
compared the simulation results and the upper bound, and a
good agreement between both in cases where At is close to
unity. It is to be noted that this is the case in many practical
situations. We stress the fact that in this case we have a frue
upper bound on the reliability, whereas other methods proposed
in the literature only provide estimates. We also caution the
reader that the gap between the upper bound and the simulation
results can be large when the product At is large, as we have
observed earlier in our discussion about the multiplicative gap.

For exponential failure and repair duration distributions it
is shown in [14], based on the results in [7]] (see also [17,
Eq. 6.69]), that the average time until a data loss event for an

10PDy)
&

log
|
N

— Limiting form (Equation (11)) -

_6L — Chen's Estimate

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
A

Figure 9: Comparison between the limiting form for the
exponential distribution and Chen’s estimate with mean repair
time 1/ =te, =0.1,t=1and (n,k) = (4,2).

(n, k) MDS erasure code is given by

1 (k—1)!

MTTDL, =
Ak LR )

(56)

From this we get the approximation P(D;) = 1 — R(t) =
1 — e t/MTTDL: A first order approximation of P(D;) is

. n!

P(Dy) ~ AR (57)

(k1)
A comparison of (I6) for exponential failure and repair dis-
tributions and is provided in Fig [0} While there is close
agreement in the limit, a deviation is observed for moderately
large probabilities.

VIIL

We have addressed the problem of directly evaluating the
probability of data loss in an erasure coded distributed data
storage system. A formula is derived for general iid failure
and repair duration distributions using combinatorial methods.
For the case where the repair duration is constant, we develop
a combinatorial-geometric approach that enables us to directly
calculate and bound the data loss probability, in contrast to
widely used methods that estimate the integral of the reliability
function. Further, our analysis is more refined, in the sense that
we are able to derive expressions for the data loss probability
conditioned on the number of failures in a given time window.

Our analytic results for general distributions indicate that G,
the probability that a failure duration is smaller than a repair
duration, is sufficient for characterizing the data loss probabil-
ity for highly reliable systems. In particular, distributions with
the same mean failure and repair durations are seen to exhibit
a wide range of values for G and hence data loss probability.
This provides motivation for studying, in addition to erasure
coding strategies, the impact of networking technologies, and
network design, as well as the impact of physical component
design (mechanical components in disk drives) with G as a
figure of merit.

SUMMARY, CONCLUSIONS AND FUTURE WORK



Finally, we mention that the set avoidance bound misses
some of the subtle correlations between n-tuples of failure
times. Analytic methods for taking these correlations into
account should help to improve this bound. We leave this to
future work.
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APPENDIX A
COMBINATORIAL PRELIMINARIES

A. Properties of the Error Polytope (Sec.

We now provide formal justification of the general rules for
calculating the volume polynomial v;;(p).We start with some
observations on the error region and error graphs.

Lemma 3. Let jo,...,Jj; be integers such that 0 = jo < j1 <

J2 < ... < J; < s. Consider the region
_ . 0<r <... <z, <t
R—{(«/L’17-..>$s). J,‘jl_;,_l—,leZtrep,l:L...,Z
(58)
We have vol R = (t — ityp )°/s!.

Proof: Consider the translation ¢(x) = = — wu, where
u = (u1,us,...,us) defined as
U = ltrep ,if o =g + 17---7jl+1~

Let y = ¢(x). The translated region ¢(R) is given by:

oR) = { (o)
Eliminating redundant inequalities we obtain

¢(R):{(ylv Sys <t— rep}

This last set of inequalities corresponds to a well-known
regular simplex whose volume is (¢ — ity )®/s!, concluding
the proof. ]

In particular, Lemma [3] shows that the volume of a polytope
Ry defined by an vector b, depends only on its weight.

0<y1+u <
Yjp+1— Y5, =20, I=1,...,4

Ys) 1 0<yp <o <

Lemma 4. Let 1 < i < s — 1. The volume polynomial
associated with the ith node along the left boundary of the
super-graph is given by:

vio(p) = (p —0)*. (59)

Proof: Recall that, by definition, v;o(p) = slvol G /.,
where p = t/trep . Thus the statement is equivalent to
vol Goi = (t — ityep )®/s!, Wthh in turn, is a special case
ofLemmalfor]lfllfl [ ]

.§%+%§t}

APPENDIX B
SET AVOIDANCE BOUNDS

Proof of Lemma [I}

where in (a) we have used Jensen’s inequality. The condition
for equality follows directly from the condition for equality in
Jensen’s inequality.
O

In general we do not expect the condition for equality to
hold, except in the case where one of the random sets has a
single element.

For the next upper bound, we use the following generalized
version of the union bound: if Aq, As,...A,, are m events,
then the probability of U[*; A; is lower bounded by

P(GAZ->>§;P ZZP iNA;).  (60)

1= Jj=i+1 i=1

In what follows we denote the event {(X,Y)e€ R} by
e(X,Y).

Theorem 9. Let Qi(z) = P(e(z,Y)) and Qa2(y) =
P(e(X,y)). The set avoidance probability is upper bounded
by

P (X X ymR: @) < 1 —mlmgp(€(X,Y))+

+2 (”;1> (";2) P(e(X,Y))%+

o (") BI04 (1) ElQa(r
Proof: First note that

P(XxyﬂR:Q) -

m2 Mmi

P(UU-ew

j=1li=1

(61)
From Eq. (60), the RHS of (6I) can be lower bounded
1—mymaP (e(X,Y)) + > P (e(X:,Y;) Ne(Xir,Yj0))

where the summation is over all mlm"’) distinct choices of
cross terms (X;,Y;) Ne(Xy,Y; ). Now, for the probability

of the cross terms, we have three cases. If ¢ # ¢/ and j #



j' then, due to independence, P (¢(X;,Y;) Ne(Xy,Y;)) =
P (£(X,Y))?. On the other hand, if i = i’ (and j # j') let
f(.l?l) = P(&(X“}/J) n €(Xi,}/j)|Xi = J,‘Z) = Q1($i)2. Then:

P (e(X;,Y;) Ne(Xy, ) = E[f(X)] = E[Q1(X)?].

The case j = j' is analogous. Counting the number of

occurrences of the three cases leads us to the theorem. [ |
If X and Y are uniformly distributed over a set S =

S1 = &8,, the functions (1,2 have a natural geometric

interpretation, as can be seen in the next example.

Example 9. Let R = {(z,y) € [0,1]? : |z — y| < trep } be the
error region of a (2, 1)-code, and consider X and'Y uniformly
distributed over [0,t]. Then P(e(X,Y)) = (2twep t — 2, ) /1°.
The function Q1(x) corresponds to the probability that Y
belongs to the shadow of Ri(x) on the y-axis, which, in
this case, is the length of R1(xz). One can easily see that
Qi(z) < 2typ, thus E[Q(X 2] < 4t . By symmetry,

rep *
E[QQ (X)Q] < 4tr2ep :
TR ERSE——\ N
t—1

Figure 10: Region R and the shadow of R1(z) on the y-axis

Assume that Xq,..., Xy, and Y1,...,Y,, are iid with the
same distribution as X and Y. Applying Corollary 3] we have

¢
P (X x VR = (z)) > (It /™™ > 1=2mymy 2,

On the other hand, Thm. [ together with E[Q1(X)?] =
E[Q2(Y)?] < 4t2 , provides us an upper bound of the type

rep

t
P(XxYR=10) <1-2mm; =
2m1m2 (m1m2 — 1) t2
t2
From this, we can estimate the gap between upper and lower
bounds, and obtain the same asymptotic result as in Cor. [I}

A more general upper bound can be found in [[6]. However
the upper bound is not optimal, in the sense that it does not
collapse with the lower bound for small ., .
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