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Abstract

In this paper, we study the capacity regions of two-way diamond channels. We show that for a linear

deterministic model the capacity of the diamond channel in each direction can be simultaneously achieved for all

values of channel parameters, where the forward and backward channel parameters are not necessarily the same.

We divide the achievability scheme into three cases, depending on the forward and backward channel parameters.

For the first case, we use a reverse amplify-and-forward strategy in the relays. For the second case, we use four

relay strategies based on the reverse amplify-and-forward with some modifications in terms of replacement and

repetition of some stream levels. For the third case, we use two relay strategies based on performing two rounds of

repetitions in a relay. The proposed schemes for deterministic channels are used to find the capacity regions within

constant gaps for two special cases of the Gaussian two-way diamond channel. First, for the general Gaussian

two-way relay channel with a simple coding scheme the smallest gap is achieved compared to the prior works.

Then, a special symmetric Gaussian two-way diamond model is considered and the capacity region is achieved

within four bits.

Index terms: Two-way diamond channel, reverse amplify-and-forward, cut-set bound, linear determin-

istic channel, Gaussian channel, two-way relay channel, rate region with constant gap.
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I. INTRODUCTION

Two-way communication between two nodes was first studied by Shannon [1]. There have been

many attempts recently to demonstrate two-way communications experimentally [2–8]. The two-way

relay channel where two nodes communicate to each other in the presence of a single relay, has been

widely studied [9–26]. In this paper, we will consider the two-way diamond channel, where two nodes

communicate to each other in the presence of two relays.

Some achievable rate regions for the two-way relay channel are based on strategies like decode-and-

forward, compress-and-forward, and amplify-and-forward [23–29]. The capacity region of the two-way

half-duplex relay channel, where the relay decodes the message is characterized in [30]. Network coding

type techniques have been proposed [31–33] in order to improve the transmission rate. While inferior to

traditional routing at low signal-to-noise-ratios (SNR), it was shown that network coding achieves twice

the rate of routing at high SNR [34]. The authors of [14] considered the half-duplex two-way relay channel

with unit channel gains, and found that a combination of a decode-and-forward strategy using lattice codes

and a joint decoding strategy is asymptotically optimal at high SNR. The authors of [23, 35] studied the

capacity of the full-duplex two-way relay channel with two users and one relay, and found that a rate

within three bits for each user to the capacity can be simultaneously achieved by both users. The result

was further extended in [13, 36], where lattice codes were used to bring the gap down from three bits to

one bit for some special case of channel gains.

The diamond channel was first introduced in [37], and consists of one transmitter, two relays and

a receiver. In this paper, we study the capacity of the full-duplex two-way diamond channel. In [38],

several techniques, i.e., amplify-and-forward, hybrid decode-amplify-and-forward with linear combination,

hybrid decode-amplify-and-forward with multiplexed coding, decode-and-forward, and partial decode-and-

forward, have been considered for achievability in a Gaussian diamond reciprocal channel with half-duplex

nodes, and it is shown that these techniques achieve DoF of at most 1, 0.25, 0.25, 0.25, and 0.75,

respectively. The two-way half-duplex K-relay channel has been studied using the amplify-and-forward

strategy at the relays [39–42].

The design of relay beamformers based on minimizing the transmit power subject to the received signal-

to-noise ratio constraints was considered in [42]. Furthermore, achievability schemes using time-sharing

are investigated in [43] for a symmetric reciprocal diamond channel with half-duplex nodes and the inner

and outer bounds are compared using simulations. However, we show that the achievability scheme in
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[43] has an unbounded gap from the capacity. We note that, to the best of our knowledge, none of the

prior works gave a capacity achieving strategy for a two-way diamond channel.

In this paper, we consider a linear deterministic model which was proposed in [44], and has been shown

to lead to approximate capacity results for Gaussian channels in [23, 45–51]. We study the capacity region

of a two-way linear deterministic diamond channel where the forward and the backward channel gains are

not necessarily the same. We find that the capacity in each direction can be simultaneously achieved. Thus,

each user can transmit at a rate which is not affected by the fact that the relays receive the superposition

of the signals.

In order to achieve the capacity in each direction separately, we develop new transmission strategies

by the transmitters and the relays. The strategies proposed for the one-way diamond channel in [44] do

not directly work for two-way channels. The reason is that they are dependent on the channel parameters

in the forward direction; but for two-way channels we need a strategy that is optimal for both directions.

For the special case when the diamond channel reduces to a two-way relay channel (channel gains to

and from one of the relays are zeros), our proposed strategy reduces to a reverse amplify-and-forward

strategy, where the relay reverses the order of the received signals to form the transmitted signal. The

proposed strategy in this case is different from the one in [23] for two-way relay channels, since the relay

strategy in [23] depends on the channel parameters, while ours simply reverses the order of the input. On

the other hand, the transmission strategy at the source nodes in our approach is dependent on the channel

parameters unlike that in [23]. Thus, the proposed strategy in this paper makes the relay strategy simpler

by compensating in the transmission strategy at the source nodes. This proposed simple relay strategy

leads to a novel strategy for Gaussian channels. Thus, we extend the achievability scheme to Gaussian

channels, and obtain a simpler approach to achieving capacity for a two-way relay channel compared with

that in [13, 36].

For a general two-way diamond channel, we give different strategies based on the parameters of both

the forward and backward channels. Depending on the forward and backward channel gains we consider

four cases; these cases are further subdivided. Two special cases are Cases 3.1.2 and 4.1.2. Our first main

result is that if neither the forward, nor the backward channel is of one of these two cases, then the

proposed reverse amplify-and-forward strategy at the relays is optimal.

We next consider the case that exactly one of the forward and backward channels is of Case 3.1.2 or

4.1.2. Without loss of generality, we assume that the forward channel is of one of the two mentioned cases.
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For each of these two cases, we give four new strategies at the relay which involve various modifications

to the reverse amplify-and-forward strategy, such as repeating some of the streams on multiple levels or

changing the order of transmission at some levels at one of the relays. Furthermore, the transmission

strategy for the forward direction is rather straightforward by simply sending capacity number of bits at

the lowest levels. We show that all these modified strategies achieve the capacity in the forward direction.

The choice of the strategies then depends on the parameters in the backward direction. We show that for

each case of the backward channel, at least one of the four proposed strategies achieves the capacity for

the backward direction. Finally, the case when both the forward and backward channels are of Case 3.1.2

or 4.1.2 is considered. Here, a modified form of the relay strategies proposed above is used to achieve

the capacity in both directions.

As an extension to the Gaussian model, first we consider the general Gaussian two-way relay channel

and show that the proposed achievability scheme leads to a smaller gap to the cut-set outer bound compared

to the previous works [23]. Noting that the treatment for linear deterministic model involves many cases,

extending all of the cases of deterministic channel to the Gaussian channel model is challenging. Thus,

we consider a special case where the forward and backward channels are Gaussian versions of Case 1 in

the linear deterministic model. We take the symmetric case where channel gains from the nodes to each

relay are equal and also channel gains from each relay to the nodes are equal. For this special case, under

certain conditions, we obtain the achievable rate of each direction that is within four bits of the capacity.

The achievability scheme employs lattice codes, and is the first leading to an approximate capacity result

for two-way diamond channels.

The remainder of this paper is organized as follows. Section II introduces the model for a two-way

linear deterministic diamond channel and presents the main capacity result that shows the capacity in

each direction can be achieved. Sections III, IV and V present the proofs for various cases of the channel

parameters. Sections VI introduces the model for a two-way Gaussian diamond channel and describes our

results on the capacity regions. The results include achieving the capacity of each direction within one

bit for a two-way relay channel (if the upper-bound for two directions are equal) and otherwise achieving

within one bit for the direction with the lower upper-bound and within two bits for the other direction.

The results also include achieving the capacity of each direction within four bits for a special case of

two-way diamond channel. Section VII concludes the paper. The detailed proofs of various results in

Sections III, IV and V are given in Appendices A, B and C, respectively.
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II. CAPACITY REGION OF DETERMINISTIC TWO-WAY DIAMOND CHANNEL

A. Deterministic Two-Way Diamond Channel Model

The linear deterministic channel model was proposed in [44] to focus on signal interactions instead

of the additive noise, and to obtain insights for the Gaussian channel. As shown in Figure 1, a two-way

diamond channel consists of two nodes (denoted by A and B) who wish to communicate to each other

through two relays (denoted by R1 and R2). We use non-negative integers nAk, nBk, nkA, and nkB, to

represent the channel gains from node A to Rk, node B to Rk, Rk to node A, and Rk to node B,

respectively, for k ∈ {1, 2}. In this paper, the links in the direction from A to B are said to be in the

forward direction and those from B to A are in the backward direction.

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 1. A deterministic two-way diamond channel.

Let us define qAR , maxk{nAk}, qRB , maxk{nkB}, qBR , maxk{nBk}, qRA , maxk{nkA}, qIk ,

max{nAk, nBk}, and qOk , max{nkA, nkB} for k ∈ {1, 2}. Furthermore, denote the channel input at

transmitter u, for u ∈ {A,B}, at time i as Xu,i = [XquR
u,i , · · · , X2

u,i, X
1
u,i]

T ∈ F2
quR , such that X1

u,i and

XquR
u,i represent the least and the most significant bits of the transmitted signal, respectively. Also, we
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define XR
uk,i = [XquR

u,i , · · · , X
quR−nuk+2
u,i , XquR−nuk+1

u,i , 0,...,0︸ ︷︷ ︸
qIk−nuk

]T , for k ∈ {1, 2}. At each time i, the received

signal at Rk is given by

Yk,i = D
qIk−nAk

qIk
XR
Ak,i +D

qIk−nBk

qIk
XR
Bk,i mod 2, (1)

where DqIk
is a qIk × qIk shift matrix as Eq. (9) in [44]. Also if we have Yk,i = [Y

qIk
k,i , · · · , Y 2

k,i, Y
1
k,i]

T , define

Vk,i = [0, · · · , 0, Y min(qIk,q
O
k )

k,i , · · · , Y 2
k,i, Y

1
k,i]

T , for k ∈ {1, 2}, where the first (qOk − qIk)+ elements of Vk,i are

zero.

Furthermore, define Tk,i , fk,i(Vk,1, ..., Vk,i−1) where fk,i :
(
RqOk

)i−1

→ RqOk is a function at Rk

which converts Vk,1, ..., Vk,i−1 to the output signal at time i. We represent Tk,i’s elements as Tk,i =[
T 1
k,i, T

2
k,i, · · · , T

qOk
k,i

]T
. Also, we define T ′ku,i = [T 1

k,i, T
2
k,i, · · · , T

nku
k,i , 0,...,0︸ ︷︷ ︸

qRu−nku

]T for u ∈ {A,B}. At each

time i, the received signal at the receivers u ∈ {A,B} is given by

Yu,i =
2∑

k=1

DqRu−nku
qRu

T ′ku,i mod 2. (2)

Source u picks a message Wu that it wishes to communicate to ū (u, ū ∈ {A,B}, u 6= ū), and transmits

signal at each time i which is a function of Wu and Y i−1
u = {Yu,i−1, Yu,i−2, ..., Yu,1}. Each destination ū

uses a decoder, which is a mapping gū : Rm × |Wū|→ {1, ..., |Wu|} from the m received signals and the

message at the receiver to the source message indices (|Wu| is the number of messages of node u that

can be chosen). We say that the rate pair (RA , log|WA|
m

, RB , log|WB |
m

) is achievable if the probability of

error in decoding both messages by their corresponding destinations can be made arbitrarily close to 0 as

m→∞. The capacity region is the convex hull of all the achievable rate pairs (RA, RB).

B. Capacity of Two-Way Linear Deterministic Diamond Channel

In this subsection, we state the main result that the cut-set bound for the diamond channel in each

direction can be simultaneously achieved, thus giving the capacity region for the two-way linear deter-

ministic diamond channel. It can be seen from Figure 1 that max{nA1, nA2} and max{n1B, n2B} are

cut-set bounds on the transmissions from A and to B, respectively. Moreover, nA1 + n2B and nA2 + n1B

are cut-set bounds on the sum of the two paths for the transmission from A to B. The same observation

can be made for the other direction.
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Theorem 1. For the two-way linear deterministic diamond channel, the capacity region is given as follows:

RA ≤ CAB , min{max{nA1, nA2},max{n1B, n2B}, nA1 + n2B, nA2 + n1B}, (3)

RB ≤ CBA , min{max{nB1, nB2},max{n1A, n2A}, nB1 + n2A, nB2 + n1A}. (4)

We note that the outer-bound is the cut-set bound, and thus the proof is straightforward. We will prove

the achievability of the rate pair (CAB, CBA).

We consider four main cases and several subcases depending on the forward channel parameters as

follows.

Case 1: CAB = nA2 + n1B.

Case 2: CAB = nA1 + n2B.

Case 3: CAB = max{nA1, nA2}. We call it Type 1, if max{nA1, nA2} = nA1, and Type 2 otherwise.

For Type i, where i, j ∈ {1, 2}, i 6= j, we have:

Case 3.1: niB < CAB. We divide it into two sub-cases:

Case 3.1.1: njB ≥ nAj + niB.

Case 3.1.2: njB < nAj + niB.

Case 3.2: niB ≥ CAB.

Case 4: CAB = max{n1B, n2B} We call it Type 1, if max{n1B, n2B} = n1B, and Type 2 otherwise.

For Type i, where i, j ∈ {1, 2}, i 6= j, we have:

Case 4.1: nAi < CAB. We divide it into two sub-cases:

Case 4.1.1: nAj ≥ njB + nAi.

Case 4.1.2: nAj < njB + nAi.

Case 4.2: nAi ≥ CAB.

Similarly we divide the backward channel into four main cases and several subcases where the case

definition is obtained by interchanging A and B in the forward direction cases. For instance, Case 1 in

the backward direction is CBA = nB2 + n1A.

We divide the proof into three parts, depending on the cases in which forward and backward channel

gain parameters lie. The first part is when neither the forward channel nor the backward channel is of Case

3.1.2 or 4.1.2 (Section III). The second part is when exactly one of the forward and backward channels

is of Case 3.1.2 or 4.1.2 (Section IV). And finally the third part is when both the forward and backward

channels are of Case 3.1.2 or 4.1.2 (Section V).
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III. NEITHER THE FORWARD CHANNEL NOR BACKWARD CHANNEL IS OF CASE 3.1.2 OR 4.1.2

In this scenario, we use a reverse amplify-and-forward strategy in the relays to achieve the rate pair

(CAB, CBA). Assume a particular relay (say Ri) gets nAi levels from node A and nBi levels from node

B and transmits qOi levels, as shown in Figure 2 for nAi = 3, nBi = 6, and qOi = 7. It receives

YA1 = [anAi
, ..., a1]T from node A and YB1 = [bnBi

, ..., b1]T from node B. Then it sends out the following

signal to nodes A and B

XRi
=


a1

...

amin(nAi, q
O
i )

0(qOi −nAi)+


+


b1

...

bmin(nBi, q
O
i )

0(qOi −nBi)+


mod 2. (5)

We call this relay strategy as “Relay Strategy 0” (also called reverse amplify-and-forward). We will keep

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Reverse amplify-and-forward as a two-way relay function.

the strategy at the relays the same, and for different cases use different strategies for transmission at nodes

A and B. Since we need to show that the rate pair (CAB, CBA) is achievable, it is enough to show that

there is a transmission strategy for node A such that with the above relay strategy, node B is able to

decode the data in a one-way diamond channel because any interference by node B on the received signal
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can be canceled by node B which knows the interfering signal (Showing it for one direction is enough

since the same arguments hold for the other). Thus, we only consider one-way diamond channel for this

case. We further consider the case when nA1, nA2, n1B, n2B > 0 since otherwise the diamond channel

reduces to a relay channel or no connection between the nodes A and B, and in both cases it is easy to

see that node A sending CAB bits on the lowest levels achieves this rate in the forward direction.

Appendix A proves that there is a transmission strategy for each of the cases (except for Case 3.1.2 or

4.1.2) such that the above relay strategy achieves the capacity for one-way diamond channel.

Example 1. Consider the case (nA1, nA2, n1B, n2B, nB1, nB2, n1A, n2A) = (6, 2, 3, 7, 6, 3, 4, 8). With these

parameters, the forward channel is of Case 1, and the backward channel is of Case 3.1.1 Type 1. We use

the transmission strategies corresponding to these cases given in Appendix A, and shown in Figure 3 that

the desired messages can be decoded by both nodes A and B.

 

 
 
 

 
 

 

 
 
 
 

 

 

 
 
 

 

 

 
 

 

  

 

(a) Transmission to relays.

  

  

 

 
 

  
 

  
 

 
 
 

 

 

 
 
 

 
 
 

 
 

 

(b) Reception from relays.

Fig. 3. Example for (nA1, nA2, n1B , n2B , nB1, nB2, n1A, n2A) = (6, 2, 3, 7, 6, 3, 4, 8).

IV. EXACTLY ONE OF THE FORWARD AND BACKWARD CHANNELS IS OF CASE 3.1.2 OR 4.1.2

We assume that the forward channel is of Case 3.1.2 or 4.1.2 without loss of generality. The other case

where the backward channel is of Case 3.1.2 or 4.1.2 can be proven symmetrically. Since we need to show

that the rate pair (CAB, CBA) is achievable, we will describe a few relay strategies for which the same

transmission strategy is used at node A such that node B is able to decode the corresponding message.

Furthermore, we will show that at least one of these strategies is optimal for the backward channel for each

case of the backward channel parameters. As before we consider the case when nA1, nA2, n1B, n2B > 0.
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In the remainder of this section, we assume that the forward channel is of Case 3.1.2. The case that the

forward channel is of Case 4.1.2 is treated in Appendix B.

When the forward channel is of Case 3.1.2, node A uses the same transmission strategy as Case 3.1.1

in Appendix A, i.e., it transmits [aCAB
, ..., a1]T . Also, the transmission strategy for node B depends on

the channel gains in the backward direction of the channel, and is the same as that used in Appendix A

for each set of parameters.

For the relay strategy, we will choose one of the four strategies explained in the following depending

on the backward channel parameters. We will prove that all of these strategies are optimal for the forward

channel for any set of parameters.

The parameters associated with each relay strategy proposed here are only based on the forward channel

gains, and we will show that at least one of the proposed strategies is optimal for each choice of the

backward channel parameters. Note that using Relay Strategy 0 in both relays, node B cannot necessarily

decode the message if the forward channel is of Case 3.1.2 or 4.1.2, when the above transmission strategy

is used by node A. An example is illustrated in Figure 4 when the forward channel is of Case 3.1.2 and

the parameters are nA1 = 4, nA2 = 3, n1B = 3 and n2B = 5.

Remark 1. All relay strategies in this subsection and in Appendix B, are defined with respect to the

forward channel parameters (and in favor of the forward channel direction1) because we assumed that

the forward channel is either of Case 3.1.2 or 4.1.2 and the backward channel is not of these cases. We

note that Relay Strategy 0 is symmetric and is not dependent on the channel gains in any direction. In

Section V, we will generalize some of these strategies to be based on the parameters of both the forward

and backward channels.

A. Relay Strategy 1:

If the forward channel is of Case 3.1.2 Type i, then Relay Strategy 0 is used at Ri, and Relay Strategy

1 is used at Rī, where i, ī ∈ {1, 2}, i 6= ī. Here, we define Relay Strategy 1 at R2 (forward channel

of Case 3.1.2 Type 1), while that for R1 can be obtained by interchanging roles of relays R1 and R2

(interchanging 1 and 2 and forward channel of Case 3.1.2 Type 2). As shown in Figure 5, if R2 receives

a block of n2B bits, first it will reverse them as in Relay Strategy 0 and then changes the order of the

1In the sense that the strategies are designed so that the forward communication achieves the capacity.
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Fig. 4. An example that Relay Strategy 0 does not work.

first n1B − (nA1 − nA2) streams2 with the next nA1 − n1B streams.

Node A transmits [aCAB
, ..., a1]T . The received signals can be seen in Figure 6. We use (Ri, Bj) to

denote block number j from Ri. Bits that are not delivered to node B from R1 using Relay Strategy

0, (an1B+1, ..., anA1
), are all sent at the highest levels from R2 to node B and thus are decoded with no

interference (block (R2, B1)). The remaining bits can be decoded by starting from the lowest level of

reception in B (an1B
in block (R1, B4)) and removing the effect of the decoded bits and going up.

Example 2. Consider the case (nA1, nA2, n1B, n2B, nB1, nB2, n1A, n2A) = (6, 4, 5, 7, 6, 5, 1, 7). With these

parameters, the forward channel is of Case 3.1.2 Type 1, and the backward channel is of Case 3.1.1

Type 1. For the backward channel, we use the transmission strategy corresponding to Case 3.1.1 given

in Appendix A (transmit [bCBA
, · · · , b1]T ) and for the forward channel, we transmit [aCAB

, ..., a1]T , as

explained at the beginning of this section. Also, R1 uses Relay Strategy 0, and R2 uses Relay Strategy 1.

Figure 7 illustrates that the desired messages can be decoded by both nodes A and B.

2In the following relay strategies, we divide the streams into multiple sub-streams. The number of streams in each sub-stream is a
non-negative number when the forward channel is of Case 3.1.2 Type 1.
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Fig. 5. Relay Strategy 1 at R2.
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Fig. 6. Received signals by using Relay Strategy 1 when the forward channel is of Case 3.1.2 Type 1.
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(a) Transmission to relays.

  

 
 

 

 
 
 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

(b) Reception from relays.

Fig. 7. Example for (nA1, nA2, n1B , n2B , nB1, nB2, n1A, n2A) = (6, 4, 5, 7, 6, 5, 1, 7) using Relay Strategy 1.

B. Relay Strategy 2:

If the forward channel is of Case 3.1.2 Type i, then Relay Strategy 0 is used at Ri, and Relay Strategy 2

is used at Rī, where i, ī ∈ {1, 2}, i 6= ī. Here, we define Relay Strategy 2 at R2 (forward channel of Case

3.1.2 Type 1), while that for R1 can be obtained by interchanging roles of R1 and R2 (interchanging 1 and

2 and forward channel of Case 3.1.2 Type 2). It is similar to Relay Strategy 0 with the only difference that

R2 repeats a part of the top nA2 streams after reverse-amplify-and-forward, as explained below in nine

separate scenarios, based on the parameters of the forward channel. We note that the repetition of streams

is based on the received signal at the relay. However, we describe below only the forward direction to

show that the messages can be decoded.

As shown in Figure 8, we define the partition of the four-dimensional space (nA1, nA2, n1B, n2B) into

nine parts that lead to different received signal structures in node B, as shown in Figures 9-17, respectively.

Specifically, {u1, u2} = {n2B+(nA1−nA2) ≤ nA2+n1B, nA2+n1B < n2B+(nA1−nA2)}, {v1, v2, v3, v4} =

{n1B ≤ (nA1−nA2) + (n2B−n1B), n1B− (nA1−nA2) ≤ (nA1−nA2) + (n2B−n1B) < n1B, nA2− (n2B−

n1B) ≤ (nA1−nA2)+(n2B−n1B) < n1B−(nA1−nA2), (nA1−nA2)+(n2B−n1B) < nA2−(n2B−n1B)},

{w1, w2} = {n1B − (nA1 − nA2) ≤ n2B − n1B, n1B − (nA1 − nA2) > n2B − n1B}, {r1, r2} = {2(2(n1B −

n2B + nA2)− nA1) + n2B − nA1 ≤ 2nA2− nA1 + n1B − n2B, 2(2(n1B − n2B + nA2)− nA1) + n2B − nA1 >

2nA2−nA1 +n1B−n2B} and {s1, s2, s4} = {nA1−nA2 ≥ n1B− 2(nA1−nA2 +n2B−n1B), n2B−nA2 ≥

n1B − 2(nA1 − nA2 + n2B − n1B) > nA1 − nA2, n1B − 2(nA1 − nA2 + n2B − n1B) > n2B − nA2}.

1) (u1, v1): Figure 9 depicts the received signal at node B (ignoring the effect of transmitted signal
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Fig. 8. Dividing the 4-dimensional space consisting of (nA1, nA2, n1B , n2B) into nine subspaces.

from B) assuming that both relays use Relay Strategy 0. The repetitions will be described below

to show that messages can be decoded with the proposed strategies.

R2 repeats the streams in block (R2, B2) on block (R2, B4). Using this strategy, block (R2, B1)

will be decoded from the top levels of the received signal from R2 since there is no interference

from the other relay. Then, subtract the corresponding signals (blocks (R1, B3) and (R1, B4)).

Furthermore, block (R2, B4) can be decoded from repetitions because their interference is already

decoded. Then, subtract the corresponding signals (block (R2, B2)). Consequently, block (R1, B2)

are decoded because their interference (block (R2, B2)) was decoded earlier. Finally, block (R2, B3)

can be decoded because all its interference signals have been decoded.

2) (u1, v2): As shown in Figure 10, R2 repeats block (R2, B3) on block (R2, B5). The decoding order
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Fig. 9. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v1).
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Fig. 10. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v2).
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is

decode & subtract (R2, B1)→ subtract (R1, B4)&(R1, B5)→ decode & subtract (R1, B6)→

decode & subtract (R2, B5)→ subtract (R2, B3)→ decode & subtract (R1, B3)→

subtract (R2, B2)→ decode & subtract (R1, B2).

3) (u1, v3): As shown in Figure 11, this case does not need repetition. The decoding order is
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Fig. 11. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v3).

decode & subtract (R2, B1)→ subtract (R1, B3)&(R1, B4)&(R1, B5)→

decode & subtract (R2, B3)&(R2, B4)→ decode & subtract (R1, B6)→ subtract (R2, B2)→

decode & subtract (R1, B2).

4) (u1, v4, r1): As shown in Figure 12, R2 repeats block (R2, B2) on block (R2, B8). The decoding
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Fig. 12. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v4, r1).

order is

decode & subtract (R2, B1)→ subtract (R1, B4)&(R1, B5)→

decode & subtract (R2, B4)&(R2, B5)→ decode & subtract (R1, B8)→

decode & subtract (R2, B8)→ subtract (R2, B2)&(R1, B7)→ decode & subtract (R2, B6)→

decode & subtract (R1, B7)→ subtract (R2, B3)→ decode & subtract (R1, B2)&(R1, B3).

5) (u1, v4, r2, s1): As shown in Figure 13, R2 repeats block (R2, B3) on block (R2, B8). The decoding

order is

decode & subtract (R2, B1)→ subtract (R1, B4)→ decode & subtract (R2, B4)→

decode & subtract (R1, B7)&(R1, B8)→ decode & subtract (R1, B9)→ subtract (R2, B5)→

decode & subtract (R2, B8)→ subtract (R2, B3)&(R1, B6)→ decode & subtract (R1, B5)→

subtract (R2, B2)→ decode & subtract (R2, B6)&(R2, B7).

6) (u1, v4, r2, s2): As shown in Figure 14, this case does not need repetition. The decoding order is
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Fig. 13. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v4, r2, s1).
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Fig. 14. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v4, r2, s2).
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decode & subtract (R2, B1)→ subtract (R1, B3)→

decode & subtract (R2, B3)&(R1, B7)&(R1, B8)→ subtract (R1, B5)&(R1, B6)&(R2, B4)→

decode & subtract (R2, B5)&(R2, B6)→ decode & subtract (R1, B7)→ subtract (R2, B2)→

decode & subtract (R1, B2).

7) (u1, v4, r2, s3): As shown in Figure 15, R2 repeats block (R2, B4) on block (R2, B8). The decoding
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Fig. 15. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v4, r2, s3).

order is

decode & subtract (R2, B1)→ subtract (R1, B3)→ decode & subtract (R2, B3)→

subtract (R1, B5)&(R1, B6)→ decode & subtract (R2, B5)&(R2, B6)→

decode & subtract (R2, B8)→ subtract (R1, B7)&(R1, B8)&(R2, B4)→

decode & subtract (R2, B7)→ decode & subtract (R1, B4)→ subtract (R2, B2)→

decode & subtract (R1, B2).

8) (u2, w1): As shown in Figure 16, R2 repeats block (R2, B2) on block (R2, B4). The decoding order
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Fig. 16. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u2, w1).

is

decode & subtract (R2, B1)→ subtract (R1, B4)→ decode & subtract (R2, B4)→

subtract (R1, B2)→ decode & subtract (R1, B2)→ decode & subtract (R1, B3).

9) (u2, w2): As shown in Figure 17, R2 repeats block (R2, B3) on block (R2, B5). The decoding order

is

decode & subtract (R2, B1)→ subtract (R1, B5)→ decode & subtract (R2, B5)→

subtract (R2, B3)→ decode & subtract (R1, B3)→ decode & subtract (R1, B6)→

subtract (R2, B2)→ decode & subtract (R1, B2)→ decode & subtract (R1, B4).

Remark 2. In all cases above, we can see that for every V streams that we want to repeat, there are

V + (n2B − nA1) empty spots available, which makes it flexible to place the V streams.

Example 3. Consider the case (nA1, nA2, n1B, n2B, nB1, nB2, n1A, n2A) = (6, 4, 5, 7, 6, 3, 6, 4). With these

parameters, the forward channel is of Case 3.1.2 Type 1, and the backward channel is of Case 1. We
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Fig. 17. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u2, w2).

use the transmission strategy for node B for Case 1 given in Appendix A for the backward channel

and transmit [aCAB
, ..., a1]T for the forward channel. Also, R1 uses Relay Strategy 0, and R2 uses Relay

Strategy 2. The desired messages can be decoded by both nodes A and B, as illustrated in Figure 18.

 

 
 
 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

  

  

 

 

 

(a) Transmission to relays.

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 

 
 

 

 

(b) Reception from relays.

Fig. 18. Example for (nA1, nA2, n1B , n2B , nB1, nB2, n1A, n2A) = (6, 4, 5, 7, 6, 3, 6, 4) using Relay Strategy 2.

Remark 3. For (u1, v3) and (u1, v4, r2, s2) Relay Strategy 2 is equivalent to Relay Strategy 0. An example
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is depicted in Figure 19 where (nA1, nA2, n1B, n2B) = (10, 8, 7, 10) (Case 3.1.2 Type 1, (u1, v3)).

 

 

 

 

  

 

 

  

 

 

 

  

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 19. An example of the Case 3.1.2 that can be decoded by using Relay Strategy 0 at both relays.

C. Relay Strategy 3:

If the forward channel is of Case 3.1.2 Type i, then Relay Strategy 0 is used at Ri, and Relay Strategy

3 is used at Rī, where i, ī ∈ {1, 2}, i 6= ī. Here, we define Relay Strategy 3 at R2 (forward channel

of Case 3.1.2 Type 1), while that for R1 can be obtained by interchanging roles of relays R1 and R2

(interchanging 1 and 2 and forward channel of Case 3.1.2 Type 2). As shown in Figure 20, if R2 receives

a block of n2B bits, first it will reverse them as in Relay Strategy 0 and then changes the order of the

nA2− (n2B − n1B) streams right after the first n2B − n1B streams, with the following n2B − nA2 streams.

Node A transmits [aCAB
, ..., a1]T . The received signals can be seen in Figure 21. The block (R2, B1)

will be decoded from the top levels of the received signal from R2 without any interference from R1.

We then subtract the corresponding signals in blocks (R1, B3) and (R1, B4). Also, bits that were not

delivered to node B from R2 using Relay Strategy 0, (a1, ..., anA1−nA2
), are decoded from block (R1, B2)
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Fig. 20. Relay Strategy 3 at R2.

without any interference. The remaining bits can be decoded by starting from the highest remaining level

(a(nA1−nA2)+(n2B−n1B)+1 in block (R2, B4)) and removing the effect of the decoded bits.

Example 4. Consider the case (nA1, nA2, n1B, n2B, nB1, nB2, n1A, n2A) = (6, 4, 6, 5, 5, 7, 6, 7). With these

parameters, the forward channel is of Case 3.1.2 Type 1, and the backward channel is of Case 3.2 Type 1.

We use the transmission strategy for the backward channel corresponding to this case given in Appendix

A (transmit [bCBA
, · · · , b1]T ) and transmit [aCAB

, ..., a1]T for the forward channel. Also, R1 uses Relay

Strategy 0, and R2 uses Relay Strategy 3. Figure 22 illustrates that the desired messages can be decoded

by both nodes A and B.

D. Relay Strategy 4:

If the forward channel is of Case 3.1.2 Type i, then Relay Strategy 0 is used at Rī, where i, ī ∈

{1, 2}, i 6= ī, and Relay Strategy 4 is used at Ri. Here, we define Relay Strategy 4 at R1 (forward

channel of Case 3.1.2 Type 1), while that for R2 can be obtained by interchanging roles of R1 and R2

(interchanging 1 and 2 and forward channel of Case 3.1.2 Type 2). As shown in Figure 23, if R1 receives

a block of n1B bits, first it will reverse them as in Relay Strategy 0 and then changes the order of the

first nA1 − nA2 streams with the next n1B − (nA1 − nA2) streams.

Node A transmits [aCAB
, ..., a1]T . The received signals can be seen in Figure 24. Bits that are not

delivered to node B from R2 using Relay Strategy 0 in the block (R1, B4) are decoded without any
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Fig. 21. Received signals by using Relay Strategy 3 when the forward channel is of Case 3.1.2 Type 1.

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 

 

  

 

 

 

 

(a) Transmission to relays.

  

  

 
 
 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 
 

 

 
 

(b) Reception from relays.

Fig. 22. Example for (nA1, nA2, n1B , n2B , nB1, nB2, n1A, n2A) = (6, 4, 6, 5, 5, 7, 6, 7) using Relay Strategy 3.
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Fig. 23. Relay Strategy 4 at R1.

interference. The remaining bits can be decoded by starting from the highest level (anA1−nA2+1 in block

(R2, B1)) and removing the effect of the decoded bits.

Example 5. Consider the case (nA1, nA2, n1B, n2B, nB1, nB2, n1A, n2A) = (6, 4, 6, 5, 5, 7, 6, 7). With these

parameters, the forward channel is of Case 3.1.2 Type 1, and the backward channel is of Case 4.2 Type 1.

We use the transmission strategy for the backward channel corresponding to this case given in Appendix

A and transmit [aCAB
, ..., a1]T for the forward channel. Also, R2 uses Relay Strategy 0, and R1 uses Relay

Strategy 4. Figure 25 illustrates that the desired messages can be decoded by both nodes A and B.

E. Achieving the Optimum Rate

Now we explain how the above mentioned strategies achieve the optimal rate for any set of parameters

on the backward channel.

1. Backward channel is of Case 1:

• Forward channel is of Case 3.1.2 Type 1: If nA2 > nB2, we use Relay Strategy 2 at R2 and Relay

Strategy 0 at R1. Otherwise use Relay Strategy 1 at R2 and Relay Strategy 0 at R1. Figure 26 shows

the backward channel when the forward channel is of Case 3.1.2 Type 1. If nA2 > nB2, R2 repeats

from the streams that are already decoded from the highest levels received in A, ((bn1A+1, ..., bn1A+nB2
)

in green in Figure 26) on the lower levels, and otherwise it just changes the order of some of the

equations at the highest levels received in A, ((bn1A+1, ..., bn1A+nB2
) in green in Figure 26), which
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Fig. 24. Received signals by using Relay Strategy 4 when the forward channel is of Case 3.1.2 Type 1.

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 

 

  

 

 

 

 

 

(a) Transmission to relays.

  

  

 
 
 
 

 
 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 
 

 

(b) Reception from relays.

Fig. 25. Example for (nA1, nA2, n1B , n2B , nB1, nB2, n1A, n2A) = (6, 4, 5, 7, 7, 2, 6, 4) using Relay Strategy 4.
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does not affect the decoding.

• Forward channel is of Case 3.1.2 Type 2: If nA1 > n1A, we use Relay Strategy 2 at R1 and Relay

Strategy 0 at R2. Otherwise use Relay Strategy 1 at R1 and Relay Strategy 0 at R2. If nA1 > n1A,

R1 repeats from the streams (b1, ..., bn1A
) received below the noise level in A, and otherwise it just

changes the order of some of the equations (b1, ..., bn1A
).
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Fig. 26. Backward channel (Case 1) when forward channel is of Case 3.1.2 Type 1.

2. Backward channel is of Case 2:

• Forward channel is of Case 3.1.2 Type 1: If nA2 > n2A, we use Relay Strategy 1 at R2 and Relay

Strategy 0 at R1. Otherwise use Relay Strategy 2 at R2 and Relay Strategy 0 at R1. If nA2 > n2A,

R2 repeats from the streams (b1, ..., bn2A
) received below the noise level in A, and otherwise it just

changes the order of some of the equations (b1, ..., bn2A
).

• Forward channel is of Case 3.1.2 Type 2: If nA1 > nB1, we use Relay Strategy 2 at R1 and Relay

Strategy 0 at R2. Otherwise use Relay Strategy 1 at R1 and Relay Strategy 0 at R2. If nA1 >

nB1, R1 repeats from the streams that are already decoded from the highest levels received in A,

(bn2A+1, ..., bn2A+nB1
), on the lower levels, and otherwise it just changes the order of some of the
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equations at the highest levels received in A, (bn2A+1, ..., bn2A+nB1
).

3. Backward channel is of Case 3.1.1: We assume that the backward channel is Type 1. For Type 2 the

argument is similar.

• Forward channel is of Case 3.1.2 Type 1: If nA2 > nB2, we use Relay Strategy 2 at R2 and Relay

Strategy 0 at R1. Otherwise use Relay Strategy 1 at R2 and Relay Strategy 0 at R1. If nA2 >

nB2, R2 repeats from the streams that are already decoded from the highest levels received in A,

(bnB1−nB2+1, ..., bnB1
), on the lower levels, and otherwise it just changes the order of some of the

equations at the highest levels received in A, (bnB1−nB2+1, ..., bnB1
).

• Forward channel is of Case 3.1.2 Type 2: If nA1 > nB1, we use Relay Strategy 2 at R1 and Relay

Strategy 0 at R2. Otherwise use Relay Strategy 1 at R1 and Relay Strategy 0 at R2. If nA1 > nB1,

R1 repeats from the streams (b1, ..., bn1A
) received below the noise level in A, and otherwise it just

changes the order of some of the equations (b1, ..., bn1A
).

4. Backward channel is of Case 4.1.1: We assume that the backward channel is Type 1. For Type 2 the

argument is similar.

• Forward channel is of Case 3.1.2 Type 1: If nA2 > n2A, we use Relay Strategy 2 at R2 and Relay

Strategy 0 at R1. Otherwise use Relay Strategy 1 at R2 and Relay Strategy 0 at R1. If nA2 > n2A,

R2 repeats from the streams (b1, ..., bn2A
) received below the noise level in A, and otherwise it just

changes the order of some of the equations (b1, ..., bn2A
).

• Forward channel is of Case 3.1.2 Type 2: If nA1 > n1A − n2A, we use Relay Strategy 2 at R1

and Relay Strategy 0 at R2. Otherwise use Relay Strategy 1 at R1 and Relay Strategy 0 at R2. If

nA1 > n1A − n2A, R1 repeats from the streams that are already decoded from the highest levels

received in A, (bn2A+1, ..., bn1A
), on the lower levels, and otherwise it just changes the order of some

of the equations at the highest levels received in A, (bn2A+1, ..., bn1A
).

5. Backward channel is of Case 3.2: We assume that the backward channel is Type 1. For Type 2 the

argument is similar.

• Forward channel is of Case 3.1.2 Type 1: We use Relay Strategy 1 at R2 and Relay Strategy 0 at R1

or Relay Strategy 2 at R2 and Relay Strategy 0 at R1 or Relay Strategy 3 at R2 and Relay Strategy

0 at R1.

• Forward channel is of Case 3.1.2 Type 2: We use Relay Strategy 4 at R2 and Relay Strategy 0 at

R1.
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6. Backward channel is of Case 4.2: We assume that the backward channel is Type 1. For Type 2 the

argument is similar.

• Forward channel is of Case 3.1.2 Type 1: We use Relay Strategy 1 at R2 and Relay Strategy 0 at R1

or Relay Strategy 2 at R2 and Relay Strategy 0 at R1 or Relay Strategy 3 at R2 and Relay Strategy

0 at R1.

• Forward channel is of Case 3.1.2 Type 2: We use Relay Strategy 4 at R2 and Relay Strategy 0 at

R1.

For the case that forward channel is of Case 4.1.2, the proof is given in Appendix B. An essential

difference compared to Case 3.1.2 includes the freedom in transmission strategy (there are more trans-

mission streams at A than the capacity) and no freedom at the receiver side (number of the reception

streams at B is equal to the capacity) for the forward channel.

V. BOTH THE FORWARD AND BACKWARD CHANNELS ARE EITHER OF CASE 3.1.2 OR 4.1.2

In Section IV and Appendix B, we used Relay Strategy 2 or Relay Strategy 6 as one of the achievability

strategies when the forward channel is of Case 3.1.2 or 4.1.2, respectively. In this section, we will show

that using a modified combination of these strategies achieve the optimal capacity region when both the

forward and backward channels are either of Case 3.1.2 or 4.1.2.

We will define Relay Strategy (mi, ni) at Ri for i ∈ {1, 2}, mi, ni ∈ {0, 2, 6}. If the forward channel is

of Case 3.1.2, at R1, we use m1 = 0 when the forward channel is Type 1 and m1 = 2 otherwise. At R2,

we use m2 = 2 when the forward channel is Type 1 and m2 = 0 otherwise. If the forward channel is of

Case 4.1.2, at R1, we use m1 = 6 when the forward channel is Type 1 and m1 = 0 otherwise. At R2, we

use m2 = 0 when the forward channel is Type 1 and m2 = 6 otherwise. The value of ni is determined

the same way based on the backward channel parameters.

Relay Strategy (mi, 0) at Ri uses Relay Strategy mi at Ri based on the forward channel parameters,

and Relay Strategy (0, ni) at Ri uses Relay Strategy ni based on the backward channel parameters. For

the remaining strategies (mi, ni) ∈ {(2, 2), (2, 6), (6, 2), (6, 6)} at Ri, we use the combination of the

repetitions suggested by Relay Strategies mi based on the forward channel parameters, and ni based on

the backward channel parameters. If these two repetitions happen at the same level, we sum these modulo

2. However, there are some modifications to account for repetitions adding to zero modulo 2, or multiple

repetitions due to different strategies at the relays. The modifications are described as follows.
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1) If the repetitions happen in the same relay, i.e., m1 = n1 = 0 or m2 = n2 = 0: In case the repetition

of a particular signal by both the forward and backward strategies is suggested at the same level,

we send the repeated signal. If different repeated signals are suggested at a particular level, we send

the sum of these two signals modulo two.

2) If the repetitions happen in different relays, i.e., m1 = n2 = 0 or m2 = n1 = 0:

a) In case that the repetitions of some streams from two relays are from the same level and are

repeated on the same level at node B (ignoring the backward signal component) Ri skips

repetitions at the corresponding levels if the forward channel is of Case 4.1.2 Type i and Rī

skips repetitions at the corresponding levels if the forward channel is of Case 3.1.2 Type i.

b) In case that the repetitions of some streams from two relays are from the same level and

are repeated on the same level at node A (ignoring the forward signal component) Ri skips

repetitions at the corresponding levels if the backward channel is of Case 4.1.2 Type i and Rī

skips repetitions at the corresponding levels if the backward channel is of Case 3.1.2 Type i.

We use the same transmission strategy as in Section IV for channel of both Cases 3.1.2 and 4.1.2. When

the forward channel is of Case 3.1.2, node A transmits [aCAB
, ..., a1]T for the forward channel and when the

forward channel is of Case 4.1.2, node A transmits [ 0,...,0︸ ︷︷ ︸
nA1−(n1B−n2B)

, an1B
, ..., an2B+1, 0,...,0︸ ︷︷ ︸

nA2−(nA1+n2B)

, an2B
, ..., a1]T

for the forward channel. Also, similarly, when the backward channel is of Case 3.1.2, node B transmits

[bCBA
, ..., b1]T for the backward channel and when the backward channel is of Case 4.1.2, node B transmits

[ 0,...,0︸ ︷︷ ︸
nB1−(n1A−n2A)

, bn1A
, ..., bn2A+1, 0,...,0︸ ︷︷ ︸

nB2−(nB1+n2A)

, bn2A
, ..., b1]T for the backward channel.

For Case 3.1.2 Type 1, all the messages can be decoded with the same order of decoding similar to the

one in Relay Strategy 2 in Section IV based on the partitioning of the parameter space into nine parts as

shown in Figure 8. Also for Case 4.1.2 Type 2, all the messages can be decoded with the same order of

decoding similar to the one in Relay Strategy 6 in Appendix B based on the partitioning of the parameter

space into seven parts as shown in Figure 37. Type 2 cases can be explained similarly. The complete

proof can be seen in Appendix C.

Example 6. Consider the case (nA1, nA2, n1B, n2B, nB1, nB2, n1A, n2A) = (6, 4, 5, 7, 6, 8, 7, 5). With these

parameters, the forward channel is of Case 3.1.2 Type 1, and the backward channel is of Case 4.1.2

Type 1. A transmits [aCAB
, ..., a1]T and B transmits [ 0,...,0︸ ︷︷ ︸

max {nB1,nB2}−CBA

, bCBA
, ..., b1]T . Relay R2 uses Relay

Strategy (2,0) and R1 uses Relay Strategy (0,6). See in Figure 27 that the messages can be decoded by
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both nodes A and B.

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 

 

  

 

 

 

 

 
 

 
 
 

(a) Transmission to relays.

 
 

 
 

 
 
 
 

 
 
 

 
 

 
 

 
 

 

 
 

 
 

 

 

 
 

 

 
 

(b) Reception from relays.

Fig. 27. Example for (nA1, nA2, n1B , n2B , nB1, nB2, n1A, n2A) = (6, 4, 5, 7, 6, 8, 7, 5). The red part in the transmission from R1 is due
to the repeat strategy for backward channel (b1) and the red part in the transmission from R2 is due to the repeat strategy for forward
channel (a2).

VI. GAUSSIAN DIAMOND CHANNELS

In this section we first present the Gaussian diamond channel model. Then, we present our results on

the capacity of the two-way Gaussian relay channel and a special case of the two-way Gaussian diamond

channel.

A. System Model

A two-way Gaussian diamond channel consists of two nodes A and B who wish to communicate to

each other through two relays R1 and R2. We assume there is no direct link between A and B and

between R1 and R2. The channels are assumed time-invariant and known to all nodes, the channel gains

from node i to the Rj is denoted by hij and the channel gain from the Rj to node i to is denoted by hji

for i ∈ {A,B} and j ∈ {1, 2}. The received signals at the relays are given by:

Y1(t) = hA1XA(t) + hB1XB(t) + Z1(t), (6)

Y2(t) = hA2XA(t) + hB2XB(t) + Z2(t), (7)
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where XA(t), XB(t) ∈ C are the transmitted signals from nodes A and B, respectively. Z1(t), Z2(t) ∼

CN(0, 1) are i.i.d. Gaussian noise at the relays. The received signals at the nodes are given by:

YA(t) = hA1X1(t) + hA2X2(t) + ZA(t), (8)

YB(t) = hB2X2(t) + hB1X1(t) + ZB(t). (9)

where Xj(t) ∈ C, j ∈ {1, 2} is the transmitted signal from Rj . ZA(t), ZB(t) ∼ CN(0, 1) are i.i.d.

Gaussian noise at nodes A and B, respectively. We have the following power constraints:

E
(
|Xi(t)|2

)
≤ 1, (10)

for i ∈ {A,B, 1, 2}. Let RA and RB be the data rates of nodes A and B, respectively. In a period consisting

of N channel symbols, node A wants to send one of the 2NRA codewords to node B, and node B wants to

send one of the 2NRB codewords to node A. A (2NRA , 2NRB , N ) code for the two-way Gaussian diamond

channel consists of two message sets MA = {1, 2, ..., 2NRA} and MB = {1, 2, ..., 2NRB}, two encoding

functions at each time t as

fit : (Mi, Y
t−1
i )→ CN , i ∈ A,B, (11)

two relay functions at each time t as

φjt : CN → CN , j ∈ 1, 2, (12)

and two decoding functions

gA : CN ×MA →MB, gB : CN ×MB →MA. (13)

For i = A,B, node i transmits the codeword fi(mi), where mi is the message to be transmitted. For

j = 1, 2, relay j applies the function φj to its received signal and transmits the resulting signal. Let the

received signals at the nodes A and B be Y N
A and Y N

B , respectively, where the superscript N denotes

a sequence of length N . We note that the decoding function gi uses the message from node i as input

as well. We say that a decoding error occurs if gA(Y N
A ,mA) 6= mB or gB(Y N

B ,mB) 6= mA. The average

probability of error is PN
e = 1

|MA||MB |
×
∑

(mA,mB)∈MA×MB
Pr{gA(Y N

A ,mA) 6= mB, or gB(Y N
B ,mB) 6=

mA|(mA,mB) is sent}.
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A rate pair (RA, RB) is said to be achievable if there exists a sequence of (2NRA , 2NRB , N ) codes,

satisfying the power constraints in (10) with PN
e → 0 as N →∞. The capacity region is the convex hull

of all achievable rate pairs (RA, RB). The two-way Gaussian diamond channel is characterized by the set

of channel parameters (hA1, hA2, h1B, h2B, hB1, hB2, h1A, h2A).

B. Results for Two-Way Gaussian Relay Channel

In a diamond channel, if channel gains to and from one relay are zero, we have a two-way relay

channel. There are several works on two-way Gaussian relay channels. In [27, 52], a deterministic approach

was used to achieve the information theoretic cut-set bound [53] within 3 bits for each user. Later, in

[13], the achievable rate region is within 1 bit from the capacity region for each user for the special

case that the channels from the relay to the nodes are the same. The achievability scheme in [13] is

composed of nested lattice codes for the uplink and structured binning for the downlink. Their codes

utilize two different shaping lattices for source nodes based on a three-stage lattice partition chain to

satisfy their different transmit power constraints. Here we propose a simpler achievability scheme for

a general two-way Gaussian relay channel compared to [13, 27]. Define hAB , min{|hA1|, |h1B|} and

hBA , min{|hB1|, |h1A|}. By symmetry we can assume |hBA|≤ |hAB|. WA and WB are the messages of

nodes A and B, respectively, that they want to convey to the other node. We divide the message from A

to B to two parts, as WA = (WA1,WA2).

Theorem 2. For the two-way Gaussian relay channel with the parameters of (hA1, hB1, h1A, h1B), the

capacity region is outer-bounded by the following region

RAB ≤ min{log(1 + |hA1|2), log(1 + |h1B|2)} = log(1 + hAB
2),

RBA ≤ min{log(1 + |hB1|2), log(1 + |h1A|2)} = log(1 + hBA
2). (14)

Furthermore, if hAB = hBA, this region is achievable within 1 bit for each user and otherwise assuming

hAB < hBA, then this region is achievable within 1 bit for the A→ B direction and within 2 bits for the

B → A direction.

Proof: The above outer-bound results from the cut-set bound. In order to encode WA1 and WB, we
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use the common lattice code Λ = Λf ∩ νc3. Let sA be the lattice codeword to which WA1 is mapped and

sB be the lattice codeword to which WB is mapped, and define XL = sA + sB. We use the signal X(2)
A

to encode WA2 which is Gaussian with unit power.

Once the encoding process is performed, the signal transmitted by A is formed as XA =
√
α1cA +

√
1− α1X

(2)
A where 0 ≤ α1 ≤ 1 and cA = [sA−dA] mod Λc with unit power, and dA is a random dither

uniformly distributed over νc, and shared between both transceivers and both relays. Also, transceiver B

sends the signal |hBA|
|hB1|

cB where cB = [sB− dB] mod Λc, and dB is a random dither uniformly distributed

over νc, and shared between both transceivers and both relays. We also choose α1 = |hBA|2

|hA1|2
so that cA and

cB arrive at the relay with the same power and add together as a lattice code. Messages from sA and sB

are being sent with rate Ru and messages from X
(2)
A is being sent with rate Rv. So, RAB = Ru +Rv and

RBA = Ru.

The relay receives YR = |hBA|(cA + cB) +
√(
|hA1|2 − |hBA|2

)
X

(2)
A + ZR. The signal X(2)

A (which is

Gaussian) can be decoded by treating the rest (cA and cB) as noise provided that:

Rv ≤ log

1 +

(
1− |hBA|2

|hA1|2

)
|hA1|2

1 + 2|hBA|2

 . (15)

Recall that XL = [sA+ sB mod Λc] = [cA+ cB + (dA+dB) mod Λc] ∈ Λ. So it can be decoded from

the received signal after subtracting the signal X(2)
A , provided that

Ru ≤ log
(
|hBA|2

)
. (16)

Then, we use a structured binning for the transmission from the relay to nodes A and B. We generate

2nRu length-n sequences with each element i.i.d. according to CN(0, 1). These sequences form a codebook

ΛR. We assume one-to-one correspondence between each t ∈ ΛA and a codeword XR ∈ ΛR. To make this

correspondence explicit, we use the notation XR(t). After the relay decodes X̂L, it transmits XR(X̂L) at

the next block to nodes A and B. X̂L is uniform over ΛA, and, thus, XR(X̂L) is also uniformly chosen

from ΛR. Then, relay sends out
√
α2XR +

√
1− α2X

(2)
A , 0 ≤ α2 ≤ 1.

3We use a nested lattice code [54] which is generated using a quantization lattice for shaping and a channel coding lattice. We have
T -dimensional nested lattices Λc ⊆ Λf , where Λc is a quantization lattice with σ2(Λc) = 1 and G(Λc) ≈ 1/2πe, and Λf is a good channel
coding lattice. We construct a codebook Λ = Λf ∩ νc, where νc is the Voronoi cell of the lattice Λc. We will use the following properties
of lattice codes [47]:

1) Codebook Λ is a closed set with respect to summation under the “mod Λc” operation, i.e., if x1, x2 ∈ Λ are two codewords, then
(x1 + x2) mod Λc ∈ Λ is also a codeword.

2) Lattice code Λ can be used to reliably transmit up to rate R = log(SNR) over a Gaussian channel modeled by Y =
√
SNRX + Z

with E[Z2] = 1, while a more sophisticated scheme can achieve rate R = log(1 + SNR).
For more detail refer to [55–57].
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Node B can decode XL taking X(2)
A as noise (while we send them both as Gaussian signals this time)

if:

Ru ≤ log

(
1 +

α2|h1B|2

1 + (1− α2)|h1B|2

)
. (17)

Then, B can decode X(2)
A after decoding XL if:

Rv ≤ log
(
1 + (1− α2)|h1B|2

)
. (18)

Also, A can decode XL taking X(2)
A as noise if:

Ru ≤ log

(
1 +

α2|h1A|2

1 + (1− α2)|h1A|2

)
. (19)

Now, we show that we can achieve the capacity within 1 bit for B → A direction and within 2 bits for

A→ B direction, by showing Ropt
u ≥ log(1 + |hBA|2)− 1 and Ropt

u +Ropt
v ≥ log(1 + |hAB|2)− 2. In other

words, it is enough to show that Ropt
u ≥ log(1+|hBA|2)−1 and Ropt

v ≥ log(1+|hAB|2)−log(1+|hBA|2)−1.

We also assume that all the links have |hij|≥ 1 otherwise we take it as zero and that direction does not

send. We only need to prove that the above equations satisfy the claimed gap. For all the equations in

(15)-(19), we need to show that the RHS for those ones with Ru, is ≥ log(1 + |hBA|2)− 1 and RHS for

those ones with Rv, is ≥ log(1 + |hAB|2)− log(1 + |hBA|2)− 1. Thus, we need to show the following.

RHS of (15): log

1 +

(
1− |hBA|2

|hA1|2

)
|hA1|2

1 + 2|hBA|2

 ≥ log(1 + |hAB|2)− log(1 + |hBA|2)− 1, (20)

RHS of (16): log
(
|hBA|2

)
≥ log(1 + |hBA|2)− 1, (21)

RHS of (17): log

(
1 +

α2|h1B|2

1 + (1− α2)|h1B|2

)
≥ log(1 + |hBA|2)− 1, (22)

RHS of (18): log
(
1 + (1− α2)|h1B|2

)
≥ log(1 + |hAB|2)− log(1 + |hBA|2)− 1. (23)

RHS of (19): log

(
1 +

α2|h1A|2

1 + (1− α2)|h1A|2

)
≥ log(1 + |hBA|2)− 1, (24)
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where Eqs. (20) and (21) trivially hold. (22), (24) and (23) are, respectively, equivalent to:

α2 ≥
(1 + |h1B|2)(−1 + |hBA|2)

(|h1B|2)(1 + |hBA|2)
, (25)

α2 ≥
(1 + |h1A|2)(−1 + |hBA|2)

(|h1A|2)(1 + |hBA|2)
, (26)

α2 ≤
2(1 + |h1B|2)(1 + |hBA|2)− (1 + |hAB|2)

2(|h1B|2)(1 + |hBA|2)
. (27)

If we name h1 = min{|h1A|, |h1B|}, and f(x) = (1+x2)(−1+|hBA|2)

(x2)(1+|hBA|2)
, we can see that 1 ≥ f(h1) ≥

f(|h1A|), f(|h1A|). So, α2 = f(h1) satisfies (25) and (26). Also, α2 = f(h1) satisfies (27). This completes

the proof of the Theorem.

Corollary 1. For a Gaussian diamond relay channel the following sum-rate is achievable by using only

the strongest path in each direction

RAB+RBA = max
i∈{1,2}

{min{log(1+|hAi|2), log(1+|hiB|2)}}+ max
j∈{1,2}

{min{log(1+|hBj|2), log(1+|hjA|2)}}−3

(28)

Proof: It follows from Theorem 2.

Remark 4. We used a strategy similar to Relay Strategy 0 which was introduced for the deterministic

channel in Section III. The transmitter of the direction with higher rate divides its power for two signals.

It sends a signal that combined with the signal received from the other transmitter forms a lattice code

at the relay, and the rest of the power is allocated to the other signal. Then the relay performs a reverse

amplify and sends the lattice code on a higher power which will be decoded by both receivers and the

other signal on a lower power which will be decoded only by one of the receivers.

C. Results for Two-Way Gaussian Diamond Model

In this subsection, we will give an achievability scheme for a symmetric case of two-way Gaussian

diamond channel with parameters (hA1, hA2, h1B, h2B) = (hB1, hB2, h1A, h2A) = (a, b, c, d) (Figure 28)

that satisfy log(1 + |a|2) ≥ log(1 + |c|2) + log(1 + |b|2) and log(1 + |d|2) ≥ log(1 + |c|2) + log(1 + |b|2),

which achieves the capacity region within a constant number of bits in each direction as in the following

theorem.

Theorem 3. For the two-way symmetric Gaussian diamond channel in Figure 28 that satisfy log(1+|a|2) ≥
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Fig. 28. The investigated reciprocal two-way Gaussian diamond channel.

log(1 + |c|2) + log(1 + |b|2) and log(1 + |d|2) ≥ log(1 + |c|2) + log(1 + |b|2), the capacity region is outer-

bounded by the following region

RAB, RBA ≤ min{log(1 + |a|2 + |b|2), log(1 + |c|2 + |d|2),

log(1 + |c|2) + log(1 + |b|2), log(1 + |d|2) + log(1 + |a|2)}

= log(1 + |c|2) + log(1 + |b|2). (29)

Further, this region is achievable within 4 bits in each direction.

Proof: The above outer-bound results from the cut-set bound. Take WA and WB as the messages of

the nodes A and B, respectively, that they want to convey to the other node. We divide the messages WA

and WB into two parts, as WA = (WA1,WA2) and WB = (WB1,WB2).

In order to encode WAi and WBi, where i ∈ {1, 2}, we use the common lattice code Λi defined in the

last subsection. Let sAi
be the lattice codeword to which WAi is mapped and sBi

be the lattice codeword

to which WBi is mapped, and define XLi
= sAi

+ sBi
.
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Once the encoding process is performed, the signal transmitted by u is formed as Xu =
√
α2cu1 +

√
1− α2cu2 where 0 ≤ α2 ≤ 1 and cui = [sui − dui ] mod Λc, and dui is a random dither uniformly

distributed over νc, and shared between all the terminals in the network for u ∈ {A,B}. We also set

α2 = |b|√
1+|hA2|2

which is equivalent to |b| = α2√
1−α2

. The rate of sA1 and sB1 is being shown by Ru and

the rate of sA2 and sB2 is being shown by Rv. So, RAB = RBA = Ru +Rv. We can decode both sA1 and

sA2 in B and sB1 and sB2 in A with the following strategy.

Recall that XLi
= [sAi

+ sBi
mod Λc] = [cAi

+ cBi
+ (dAi

+ dBi
) mod Λc] ∈ Λi. R1 can decode XL1

and XL2 by successive interference cancellation if (30)-(31) holds.

Ru ≤ log

(
α2|a|2

2(1− α2)|a|2 + 1

)
, (30)

Rv ≤ log
(
(1− α2)|a|2

)
, (31)

Also, R2 decodes XL1 considering XL2 as noise, as long as (32) holds.

Ru ≤ log

(
α2|b|2

(1− α2)|b|2 + 1

)
, (32)

Then, we use a structured binning for the transmission from the relays to the nodes A and B. We generate

2nRi n-sequences with each element i.i.d. according to CN(0, 1), for i ∈ {u, v}. These sequences form a

codebook Λi
R. We assume one-to-one correspondence between each t ∈ ΛAi

and a codeword XRj
∈ Λi

R.

To make this correspondence explicit, we use the notation XRj
(t) for the Rj .

After R1 decodes X̂L1 and X̂L2 , and R2 decodes X̂L1 , for i, j ∈ {1, 2}, i 6= j, Rj transmits XRj
(X̂Li

)

at the next block to nodes A and B. X̂Li
is uniform over ΛAi

, and, thus, XRj
(X̂Li

) is also uniformly

chosen from Λi
R. Then, Rj sends out XRj

.

The node B decodes XL1 with low probability of error as long as (33) holds by considering XL2 as

noise. Then it decodes XL2 with low probability of error as long as (34) holds.

Ru ≤ log

(
1 +
|d|2

|c|2

)
, (33)

Rv ≤ log
(
1 + |c|2

)
. (34)

Now, we show all the bounds (30)-(34) satisfy the four bit gap to the outer bounds as in the statement



39

of the theorem.

RHS of (30): log

(
α2|a|2

2(1− α2)|a|2 + 1

)

≥ log

(
α2|a|2

3(1− α2)|a|2

)

= log

(
α2|a|2

(1− α2)|a|2

)
− log 3

= log
(
|b|2
)
− log 3

≥ log
(
1 + |b|2

)
− 1− log 3. (35)

RHS of (31): log
(
(1− α2)|a|2

)
≥ log

(
1

1 + |b|2
|a|2
)

= log
(
|a|2
)
− log

(
1 + |b|2

)
≥ log

(
1 + |a|2

)
− log

(
1 + |b|2

)
− 1

≥ log
(
1 + |c|2

)
− 1. (36)

RHS of (32): log

(
α2|b|2

(1− α2)|b|2 + 1

)

≥ log

(
α2|b|2

2

)
= log

(
α2|b|2

)
− 1

= log

(
|b|4

|b|2 + 1

)
− 1

= 2 log
(
|b|2
)
− log

(
|b|2 + 1

)
− 1

≥ log
(
|b|2 + 1

)
− 3. (37)

RHS of (33): log

(
1 +
|d|2

|c|2

)
≥ log

(
1 + |d|2

)
− log

(
|c|2
)

≥ log
(
1 + |c|2

)
+ log

(
1 + |b|2

)
− log

(
|c|2
)

≥ log
(
1 + |b|2

)
. (38)

This shows that RAB can be achieved within 4 bits of the outer bound for the forward channel by

symmetry. It can be also seen that we can achieve RBA within 4 bits of the outer bound for the backward

channel.
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Remark 5. Due to the fact that this model corresponds to a special case of Case 1 (for both directions)

we used a strategy similar to Relay Strategy 0, by using reverse amplify-and-forward.

Remark 6. The authors of [43] considered a reciprocal two-way diamond channel, and gave an achievable

rate region. For the case of hi = |hAi| = |hiA| = |hBi| = |hiB|, for i ∈ {1, 2}, with two relay nodes, the

achievable sum-rate in [43] is given by RAB + RBA = log(1
2

+ h2
1) + log(1

2
+ h2

2) which is not within a

finite gap from the upper bound 2 log(1 + h2
1 + h2

2). However, our achievable region in Corollary 1 with

one relay node can achieve within 5 bits of the cut-set upper bound

2 log(1 + max{h2
1, h

2
2})− 3 = 2 log(2 + 2 max{h2

1, h
2
2})− 5 ≥ 2 log(1 + h2

1 + h2
2)− 5. (39)

For the case of |hA2| = |h2A| = |hB2| = |h2B| = 50 and |hA1| = |h1A| = |hB1| = |h1B| = 5000, we can

see a comparison of our achievable sum-rate in Corollary 1 and the achievable sum-rate RAB + RBA =

log(1
2

+ h2
1) + log(1

2
+ h2

2) given in [43], in Figure 29.
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Fig. 29. An comparison of our results and [43] for |hA2| = |h2A| = |hB2| = |h2B | = 50 and |hA1| = |h1A| = |hB1| = |h1B | = 5000.

Remark 7. For general two-way Gaussian diamond channels, an achievability scheme idea is inspired

from the deterministic channel results. Each set of streams in deterministic scheme that is being trans-

mitted together with similar interfering properties can be considered as a group. For example, for

(nA1, nA2, n1B, n2B, nB1, nB2, n1A, n2A) = (n, q, p,m, n, q, p,m) where m,n ≥ p, q we can make A2 =

[ap, ..., a1]T , A1 = [ap+q, ..., ap+1]T , B2 = [bp, ..., b1]T and B1 = [bp+q, ..., bp+1]T each one as a group.

R1 receives [AT1 + BT
1 , A

T
2 + BT

2 ]T and R2 receives [AT1 + BT
1 ]T . In deterministic model, we simply

send them in the reverse direction but in Gaussian model it is necessary to decode the sums of the
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groups of received signals as lattice codes in the descending order. One difference of the deterministic

model as compared to the Gaussian model is that we may need to set a distance between the groups of

streams but there is not such a thing in the Gaussian model. There are some complexities due to which

the general Gaussian model seems intractable. The main one is that in Gaussian case, each equivalent

group of streams correspondent from deterministic model, is translated into a unique message and there

is a power allocation for each one that should be optimized based on the the resulting bounds. For

any set of channel parameters (hA1, hA2, h1B, h2B, hB1, hB2, h1A, h2A), we can use the corresponding

achievability scheme in deterministic channel with parameters (nA1, nA2, n1B, n2B, nB1, nB2, n1A, n2A) by

a corresponding relationship from (log(1+ |hA1|2), log(1+ |hA2|2), log(1+ |h1B|2), log(1+ |h2B|2), log(1+

|hB1|2), log(1 + |hB2|2), log(1 + |h1A|2), log(1 + |h2A|2)) and decode the sum of each d received signals

as a d-dimensional nested lattice code [54] (instead of simply adding them), which at most causes one

bit of decrease in the rate of each of the messages included in the lattice codes.

Exploring the gap for the general two-way Gaussian diamond channel is a case by case analysis, and

we leave that as an important next step.

VII. CONCLUSIONS

In this paper, we studied the capacity of the bidirectional (or two-way) diamond channel with two

nodes and two relays. We used the deterministic approach to capture the essence of the problem and to

determine capacity-achieving transmission and relay strategies. Depending on the forward and backward

channel gains, we used either a reverse amplify-and-forward or a particular modified strategy involving

repetitions, and reversing order of some streams at the relays. The proposed scheme is used to find the

capacity region within a constant gap in two special cases of the Gaussian diamond channel. First, for the

general two-way Gaussian relay channel a smaller gap is achieved compared to the prior works. Then,

a special symmetric case of the Gaussian diamond model is considered and capacity region is achieved

within 4 bits.
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APPENDIX A

TRANSMISSION STRATEGIES WHEN DIAMOND CHANNEL IS NEITHER CASE 3.1.2 NOR 4.1.2

We consider the transmission strategy for different cases as follows.

Case 1: CAB = nA2 +n1B: Since we have CAB = nA2 +n1B, (3) shows that nA1, n2B ≥ CAB. We send

the data from A as [aCAB
, ..., an1B+1, 0,...,0︸ ︷︷ ︸

nA1−(nA2+n1B)

, an1B
, ..., a1]T . Node B can decode all CAB streams as

illustrated in Figure 30.
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Fig. 30. Achievability scheme for Case 1 by using Relay Strategy 0.

Case 2: CAB = nA1 + n2B: We send the data from A as [aCAB
, ..., an2B+1, 0, ..., 0, an2B

, ..., a1]T with

nA2 − (nA1 + n2B) zeros in it. The proof is similar to Case 1, obtained by interchanging R1 and R2 and

is thus omitted.

Case 3: CAB = max{nA1, nA2}: We assume that the channel is of Type 1. For Type 2 the proof is

similar. We have CAB = max{nA1, nA2} = nA1.

Case 3.1.1: n1B < CAB, n2B ≥ nA2 + n1B: Since CAB = max{nA1, nA2} = nA1 and n1B < CAB, (3)

shows that n2B ≥ CAB. Since A can transmit CAB bits that can be heard by at least one relay, it transmits
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these bits, and Figure 31 illustrates that node B can decode the data.
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Fig. 31. Achievability scheme for Case 3.1.1 by using Relay Strategy 0.

Case 3.2: n1B ≥ CAB: As in Subcase 3.1.1, A can only send CAB streams, and Figure 32 illustrates

that node B is able to decode the data. For decoding, if anA1−nA2+1 received from R2 is below all levels

of the other relay received at node B, i.e., below anA1
from R1, we decode the streams from R1 without

interference. Otherwise, while a stream, av, is the one being added from R1 to anA1−nA2+1 received from

R2, if v > nA1 − nA2 + 1 we decode the streams starting from the highest level a1 and then subtract

them from the signal before decoding the next lower stream, and if v < nA1 − nA2 + 1 we decode the

streams starting from the lowest level, anA1
, and then subtract them from the signal before decoding the

next upper stream.

Case 4: CAB = max{n1B, n2B}; We assume that the channel is of Type 1. For Type 2 the proof is

similar. We have CAB = max{n1B, n2B} = n1B.

Case 4.1.1: nA1 < CAB, nA2 ≥ n2B+nA1: Since CAB = max{n1B, n2B} and nA1 < CAB, (3) shows that

nA2 ≥ CAB. Node A transmits CAB streams as follows. It sends nothing on the highest nA1− (n1B−n2B)

levels, an1B
,...,an2B+1 on the next levels, again nothing on the next nA2−(nA1 +n2B) levels and an2B

,...,a1
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Fig. 32. Achievability scheme for Case 3.2 by using Relay Strategy 0.

on the next levels. B can decode all CAB bits as illustrated in Figure 33. All the required streams reach

R2 since the number of levels is n1B + nA2 − nA1 − n2B which is less than or equal to the number of

the received stream levels, nA2. Also [an1B
, ..., an2B+1]T are the lowest levels at R1 because there are

nA1− (n1B−n2B) zeros above them and they together are the highest nA1 levels of the transmission from

A.

Case 4.2: nA1 ≥ CAB: In this case, node A transmits CAB bits on the lowest levels, and Figure 34

illustrates that node B can decode the data. For decoding, while a stream, av, is the one being added

from R1 to amin{n1B ,nA1−nA2}+1 received from R2, if v > min{n1B, nA1−nA2}+ 1 we decode the streams

starting from the highest level a1 and then subtract them from the signal before decoding the next lower

stream, and if v < min{n1B, nA1 − nA2} + 1 we decode the streams starting from the lowest level an1B

and then subtract them from the signal before decoding the next upper stream.
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Fig. 33. Achievability scheme for Case 4.1.1 by using Relay Strategy 0.

APPENDIX B

FORWARD CHANNEL IS OF CASE 4.1.2

In this scenario, node A uses the same transmission strategy as Case 4.1.1 Section III and Appendix A,

i.e., it transmits [ 0,...,0︸ ︷︷ ︸
nA1−(n1B−n2B)

, an1B
, ..., an2B+1, 0,...,0︸ ︷︷ ︸

nA2−(nA1+n2B)

, an2B
, ..., a1]T for the forward channel. Also,

node B uses the same strategy as in the corresponding case in Appendix A. For the relay strategy, we

will choose one of the four strategies below depending on the channel parameters and prove that all of

these strategies are optimal for each set of parameters for the forward channel and then we will explain

that at least one of these strategies is optimal for each set of parameters for the backward channel.

A. Relay Strategy 5:

If the forward channel is of Case 4.1.2 Type i, then Relay Strategy 0 is used at Rī, where i, ī ∈

{1, 2}, i 6= ī, and Relay Strategy 5 is used at Ri. Here, we define Relay Strategy 5 at R1 (forward

channel of Case 4.1.2 Type 1), while that for R2 can be obtained by interchanging roles of R1 and R2

(interchanging 1 and 2 and forward channel of Case 4.1.2 Type 2). As shown in Figure 35, if R1 receives
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Fig. 34. Achievability scheme for Case 4.2 by using Relay Strategy 0.

a block of n1B bits, first it will reverse them as in Relay Strategy 0 and then change the order of the first

n2B + nA1 − nA2 streams with the next n1B − n2B streams.

Node A transmits [ 0,...,0︸ ︷︷ ︸
nA2−n1B

, an1B
, ..., a1]T . The received signals can be seen in Figure 36. The bits that

were not delivered to node B from R2 (an2B+1, ..., an1B
), are all sent in block (R1, B1) to B and thus are

decoded with no interference. The remaining bits can be decoded by starting from the lowest level (an2B

in block (R2, B4)) and removing the effect of the decoded bits.

B. Relay Strategy 6:

If the forward channel is of Case 4.1.2 Type i, then Relay Strategy 0 is used at Rī, where i, ī ∈

{1, 2}, i 6= ī, and Relay Strategy 6 is used at Ri. Here, we define Relay Strategy 6 at R1 (forward channel

of Case 4.1.2 Type 1), while that for R2 can be obtained by interchanging roles of relays R1 and R2

(interchanging 1 and 2 and forward channel of Case 4.1.2 Type 2). Relays work similar to Relay Strategy

0 with the only difference that R1 repeats a part of the top n1B−nA2 +nA1 streams later too, as explained

below in seven scenarios, based on the parameters of the forward channel.
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Fig. 35. Relay Strategy 5 at R1.
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Fig. 36. Received signals by using Relay Strategy 5 when the forward channel is of Case 4.1.2 Type 1.
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Fig. 37. Dividing the 4-dimensional space consisting of (nA1, nA2, n1B , n2B) into seven subspaces.

As shown in Figure 37, we define the partition of the four-dimensional space (nA1, nA2, n1B, n2B)

into seven parts that lead to different received signal structures in node B, shown in Figures 38-44,

respectively. Specifically, {u1, u2} = {nA2−nA1 ≤ 2(nA1 +n2B−nA2), nA2−nA1 > 2(nA1 +n2B−nA2)},

{v1, v2} = {n1B > nA1− nA2 + 2n2B, n1B ≤ nA1− nA2 + 2n2B}, {w1, w2} = {n2B + nA1− nA2 ≤ n1B −

n2B, n2B +nA1−nA2 > n1B−n2B}, {r1, r2} = {n1B ≥ 2(nA1 +n2B−nA2), n1B < 2(nA1 +n2B−nA2)},

{s1, s2} = {nA2−nA1 +n1B−n2B ≤ nA1−nA2 +2n2B−n1B, nA2−nA1 +n1B−n2B > nA1−nA2 +2n2B−

n1B} and {q1, q2} = {2(n2B + nA1 − nA2)− n1B ≥ nA2 − nA1, 2(n2B + nA1 − nA2)− n1B < nA2 − nA1}.

1) (u1, v1): Figure 38 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0. R1 repeats block (R1, B3) on block

(R1, B5). The decoding order is

decode & subtract (R1, B1)&(R1, B1)→ subtract (R2, B4)&(R2, B5)→

decode & subtract (R1, B5)→ subtract (R1, B3)→ decode & subtract (R2, B3)→

decode & subtract (R1, B4).

2) (u1, v2, r1): As shown in Figure 39, R1 repeats block (R1, B3) on block (R1, B5). The decoding
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Fig. 38. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v1).
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Fig. 39. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v2, r1).



50

order is

decode & subtract (R1, B1)→ subtract (R2, B4)&(R2, B5)→ decode & subtract (R1, B5)→

subtract (R1, B3)→ decode & subtract (R2, B6)→ subtract (R1, B2)→

decode & subtract (R2, B2)&(R2, B3)→ decode & subtract (R1, B4).

3) (u1, v2, r2, s1, q1): As shown in Figure 40, R1 repeats block (R1, B4) on block (R1, B8). The decoding
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Fig. 40. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v2, r2, s1, q1).

order is

decode & subtract (R1, B1)→ subtract (R2, B3)→ decode & subtract (R1, B3)→

subtract (R2, B5)&(R2, B6)→ decode & subtract (R1, B5)&(R1, B6)→

decode & subtract (R1, B8)→ subtract (R2, B7)&(R2, B8)→ decode & subtract (R1, B7)→

subtract (R1, B4)→ decode & subtract (R2, B4)→ subtract (R1, B2)→

decode & subtract (R2, B2).

4) (u1, v2, r2, s1, q2): As shown in Figure 41, R1 repeats block (R1, B3) on block (R1, B8). The decoding
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Fig. 41. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v2, r2, s1, q2).

order is

decode & subtract (R1, B1)→ subtract (R2, B4)→ decode & subtract (R1, B4)→

subtract (R2, B7)&(R2, B8)→ decode & subtract (R1, B7)&(R1, B8)→

subtract (R1, B3)&(R2, B6)→ decode & subtract (R2, B9)→ subtract (R1, B5)→

decode & subtract (R2, B5)→ subtract (R1, B2)→ decode & subtract (R2, B2)&(R2, B3)→

decode & subtract (R1, B6).

5) (u1, v2, r2, s2): As shown in Figure 42, R1 repeats block (R1, B2) on block (R1, B8). The decoding

order is

decode & subtract (R1, B1)→ subtract (R2, B4)&(R2, B5)→

decode & subtract (R1, B4)&(R1, B5)→ subtract (R2, B8)→ decode & subtract (R1, B8)→

subtract (R1, B2)&(R2, B6)→ decode & subtract (R2, B7)→ subtract (R1, B3)→

decode & subtract (R2, B2)&(R2, B3)&(R1, B6).
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Fig. 42. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u1, v2, r2, s2).

6) (u2, w1): As shown in Figure 43, R1 repeats block (R1, B2) on block (R1, B4). The decoding order

is

decode & subtract (R1, B1)→ subtract (R2, B4)→ decode & subtract (R1, B4)→

subtract (R1, B2)→ decode & subtract (R2, B2)→ decode & subtract (R2, B3).

7) (u2, w2): As shown in Figure 44, R1 repeats block (R1, B3) on block (R1, B5). The decoding order

is

decode & subtract (R1, B1)→ subtract (R2, B5)→ decode & subtract (R1, B5)→

subtract (R1, B3)→ decode & subtract (R2, B6)→ subtract (R1, B2)→

decode & subtract (R2, B2)&(R2, B3)&(R2, B4).

C. Relay Strategy 7:

If the forward channel is of Case 4.1.2 Type i, then Relay Strategy 0 is used at Rī, where i, ī ∈

{1, 2}, i 6= ī, and Relay Strategy 7 is used at Ri. Here, we define Relay Strategy 7 at R1 (forward channel
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Fig. 43. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u2, w1).
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Fig. 44. The received signals at node B (ignoring the effect of transmitted signal from B) assuming that both relays use Relay Strategy 0
for channel parameters of case (u2, w2).
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of Case 4.1.2 Type 1), while that for Relay R2 can be obtained by interchanging roles of R1 and the

R1 (interchanging 1 and 2 and forward channel of Case 4.1.2 Type 2). As shown in Figure 45, if R1

receives a block of n1B, first it will reverse them as in Relay Strategy 0 and then changes the order of the

n2B − nA2 + nA1 streams right after the first n1B − n2B streams, with the following nA2 − nA1 streams.
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Fig. 45. Relay Strategy 7 at R1.

Node A transmits [ 0,...,0︸ ︷︷ ︸
nA2−n1B

, an1B
, ..., a1]T . The received signals can be seen in Figure 46. The bits that

are not delivered to node B from R1 (a1, ..., anA2−nA1
), are delivered from R2 to node B (block (R2, B2))

with no interference. The remaining bits can be decoded by starting from the highest level (anA2−nA1+1

in block (R1, B1)) and removing the effect of the decoded bits.

D. Relay Strategy 8:

If the forward channel is of Case 4.1.2 Type i, then Relay Strategy 0 is used at Ri, and Relay Strategy

8 is used at Rī, where i, ī ∈ {1, 2}, i 6= ī. Here, we define Relay Strategy 8 at R2 (forward channel

of Case 4.1.2 Type 1), while that for R1 can be obtained by interchanging roles of relays R1 and R2

(interchanging 1 and 2 and forward channel of Case 4.1.2 Type 2). As shown in Figure 47, if R2 receives

a block of n2B streams, first of all it will reverse them as in Relay Strategy 0 and then changes the order

of the first nA2 − nA1 streams with the next n2B − (nA2 − nA1) streams.

Node A transmits [ 0,...,0︸ ︷︷ ︸
nA2−n1B

, an1B
, ..., a1]T . The received signals can be seen in Figure 48. The bits that

are not delivered to node B from R1 (a1, ..., anA2−nA1
), are all sent on the lowest levels from R2 to node
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Fig. 46. Received signals by using Relay Strategy 7 when the forward channel is of Case 4.1.2 Type 1.
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Fig. 47. Relay Strategy 8 at R2.
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B (in block (R1, B1)) and thus are decoded with no interference. The remaining bits can be decoded by

starting from the highest level (anA2−nA1+1) and removing the effect of the decoded bits.
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Fig. 48. Received signals by using Relay Strategy 8 when the forward channel is of Case 4.1.2 Type 1.

E. Achieving the Optimum Rate

Now we explain how the above mentioned strategies achieve the optimum rate. Take the case that the

forward channel is of Case 4.1.2 and backward channel is neither of Case 3.1.2 nor of Case 4.1.2. If the

forward channel is neither of Case 3.1.2 nor of Case 4.1.2 and the backward channel is of Case 4.1.2

everything is similar except exchanging all A and B’s together. The first one (which we consider here)

includes the following situations:

1. Backward channel is of Case 1:

• Forward channel is of Case 4.1.2 Type 1: If n1B + nA1− nA2 > n1A, we use Relay Strategy 6 at R1

and Relay Strategy 0 at R2. Otherwise use Relay Strategy 5 at R1 and Relay Strategy 0 at R2. If

n1B + nA1 − nA2 > n1A, R1 repeats from the streams (b1, ..., bn1A
) received below the noise level in

A, and otherwise some of the equations (b1, ..., bn1A
) are relocated.
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• Forward channel is of Case 4.1.2 Type 2: If n2B + nA2 − nA1 > nB2, we use Relay Strategy 6 at

R2 and Relay Strategy 0 at R1. Otherwise use Relay Strategy 5 at R2 and Relay Strategy 0 at R1.

If n2B + nA2 − nA1 > nB2, R2 repeats from the streams that are already decoded from the highest

levels received in A, (bn1A+1, ..., bn1A+nB2
), on the lower levels, and otherwise some of the equations

at the highest levels received in A, (bn1A+1, ..., bn1A+nB2
) are relocated.

2. Backward channel is of Case 2:

• Forward channel is of Case 4.1.2 Type 1: If n1B + nA1 − nA2 > nB1, we use Relay Strategy 6 at

R1 and Relay Strategy 0 at R2. Otherwise use Relay Strategy 5 at R1 and Relay Strategy 0 at R2.

If n1B + nA1 − nA2 > nB1, R1 repeats from the streams that are already decoded from the highest

levels received in A, (bn2A+1, ..., bn2A+nB1
), on the lower levels, and otherwise we only exchange the

place of some of the equations at the highest levels received in A, (bn2A+1, ..., bn2A+nB1
).

• Forward channel is of Case 4.1.2 Type 2: If n2B + nA2 − nA1 > n2A, we use Relay Strategy 6 at

R2 and Relay Strategy 0 at R1. Otherwise use Relay Strategy 5 at R2 and Relay Strategy 0 at R1.

If n2B + nA2− nA1 > n2A, R2 repeats from the streams (b1, ..., bn2A
) received below the noise levels

in A, and otherwise some of the equations (b1, ..., bn2A
) are relocated.

3. Backward channel is of Case 3.1.1: We assume that the backward channel is Type 1. For Type 2 the

proof is similar.

• Forward channel is of Case 4.1.2 Type 1: If n1B + nA1 − nA2 > nB1, we use Relay Strategy 6 at

R1 and Relay Strategy 0 at R2. Otherwise use Relay Strategy 5 at R1 and Relay Strategy 0 at R2.

If n1B + nA1 − nA2 > nB1, R1 repeats from the streams (b1, ..., bn1A
) received below the noise level

in A, and otherwise some of the equations (b1, ..., bn1A
) are relocated.

• Forward channel is of Case 4.1.2 Type 2: If n2B + nA2 − nA1 > nB2, we use Relay Strategy 6 at

R2 and Relay Strategy 0 at R1. Otherwise use Relay Strategy 5 at R2 and Relay Strategy 0 at R1.

If n2B + nA2 − nA1 > nB2, R2 repeats from the streams that are already decoded from the highest

levels received in A, (bnB1−nB2+1, ..., bnB1
), on the lower levels, and otherwise some of the equations

at the highest levels received in A, (bnB1−nB2+1, ..., bnB1
) are relocated.

4. Backward channel is Case 4.1.1: We assume that the backward channel is Type 1. For Type 2 the

proof is similar.

• Forward channel is of Case 4.1.2 Type 1: If n1B + nA1 − nA2 > n1B − n2B, we use Relay Strategy

6 at R1 and Relay Strategy 0 at R2. Otherwise use Relay Strategy 5 at R1 and Relay Strategy 0 at
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R2. If n1B + nA1 − nA2 > n1B − n2B, R1 repeats from the streams that are already decoded from

the highest levels received in A, (bn2A+1, ..., bn1A
), on the lower levels, and otherwise some of the

equations at the highest levels received in A, (bn2A+1, ..., bn1A
) are relocated.

• Forward channel is of Case 4.1.2 Type 2: If n1B + nA1 − nA2 > n1B, we use Relay Strategy 6 at

R2 and Relay Strategy 0 at R1. Otherwise use Relay Strategy 5 at R2 and Relay Strategy 0 at R1.

If n1B + nA1 − nA2 > n1B, R2 repeats from the streams (b1, ..., bn2A
) received below the noise level

in A, and otherwise some of the equations (b1, ..., bn2A
) are relocated.

5. Backward channel is of Case 3.2: We assume that the backward channel is Type 1. For Type 2 the

proof is similar.

• Forward channel is of Case 4.1.2 Type 1: We use Relay Strategy 5 at R1 and Relay Strategy 0 at R2

or Relay Strategy 6 at R1 and Relay Strategy 0 at R2 or Relay Strategy 7 at R1 and Relay Strategy

0 at R2.

• Forward channel is of Case 4.1.2 Type 2: We use Relay Strategy 8 at R1 and Relay Strategy 0 at

R2.

6. Backward channel is of Case 4.2: We assume that the backward channel is Type 1. For Type 2 the

proof is similar.

• Forward channel is of Case 4.1.2 Type 1: We use Relay Strategy 5 at R1 and Relay Strategy 0 at R2

or Relay Strategy 6 at R1 and Relay Strategy 0 at R2 or Relay Strategy 7 at R1 and Relay Strategy

0 at R2.

• Forward channel is of Case 4.1.2 Type 2: We use Relay Strategy 8 at R1 and Relay Strategy 0 at

R2.

APPENDIX C

BOTH THE FORWARD AND BACKWARD CHANNELS ARE EITHER OF CASE 3.1.2 OR 4.1.2

A. Forward channel is of Case 3.1.2

Having described the relay and transmission strategies which are symmetric in both the forward and

backward channels, we will show that the message can be decoded in the forward direction. The other

side holds by symmetry. We first assume that the forward channel is of Case 3.1.2 Type 1. For Type 2,

the proof is similar and is thus omitted. Then we have CAB = max{nA1, nA2} = nA1. We consider the

partitioning shown in Figure 8 and show that the messages can be decoded when the backward channel
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is either of Cases 3.1.2 or 4.1.2. It can be seen that all of the streams can be decoded with the same order

as in Relay Strategy 2 in Section IV.

1. (u1, v1): Figure 9 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0.

First, consider the case when the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m1 = n2 = 0. In this case, R2 repeats in favor of the forward channel (uses Relay

Strategy (2, 0)) and R1 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA1−nA2+1, ..., an1B
by R1 in favor of the backward channel does not affect the achievability

of the forward channel because these signals are decoded from block (R2, B1). Also, repeating the

a1, ..., anA1−nA2
by R1 within the top nA1 − nA2 streams (i.e., on block (R1, B2)) does not affect the

decoding since the signals can be decoded from top and their effect can be cancelled. Repeating any of

these signals on the next 2nA2 − nA1 + n1B − n2B lower levels by R1 (i.e., on block (R1, B3)) does not

affect the decoding because we can decode those upper nA1−nA2 levels (i.e., on block (R1, B2)) first and

cancel the effect of the repeated signals. If a1, ..., anA1−nA2
is repeated by R1 on the next lower n2B−nA2

levels (i.e., on block (R1, B4)), in case that the repetitions of some streams from two relays are from the

same level and are repeated on the same level, R2 does not repeat for those levels as was explained in

the definition of the strategies, so there is no problem in decoding the forward channel. If any of them is

repeated in any lower level by R1 (i.e. below block 4 in Figure 9), these are out of range and does not

have effect on decoding the forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels both happen in R2,

i.e., (m1, n1) = (0, 0). In this case, R2 repeats in favor of both directions ((m2, n2) ∈ {(2, 2), (2, 6)}) and

R1 uses Relay Strategy (0, 0), i.e., Relay Strategy 0. Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
in favor

of the backward channel does not affect the achievability of the forward channel because these signals

are decoded from the top levels of the received signal from the same relay (i.e., on block (R2, B1)).

Also, repeating the signals anA1−nA2+n2B−n1B+1, ..., a2nA1−2nA2+n2B−n1B
within the next top nA1 − nA2

streams (i.e., on block (R2, B2)) does not affect the decoding since the signals can be decoded from

top and their effect can be cancelled. Repeating any of them on the next 2nA2 − nA1 + n1B − n2B

lower levels (i.e., on block (R2, B3)) does not affect the decoding because node B can decode the

upper nA1 − nA2 levels (i.e., on block (R2, B2)) first and cancel the effect of the repeated signals. If

anA1−nA2+n2B−n1B+1, ..., a2nA1−2nA2+n2B−n1B
is repeated on the next lower n2B −nA2 levels (i.e., on block
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(R2, B4)), it does not affect the decoding because as it was explained in the definition of the strategies, in

case that the repetitions of some streams from two relays are from the same levels and are supposed to be

repeated on the same level, R2 does not repeat for those levels and repeats those streams only one time.

If any of a2nA1−2nA2+n2B−n1B+1, ..., anA1
is repeated on the next lower n2B − nA2 levels (i.e., on block

(R2, B4)), it does not affect the decoding since the signals can be decoded from top and their effect can

be cancelled. If any of them is repeated in any lower level by R2 (i.e. below block 4 in Figure 9), it is

out of range and does not have effect on decoding of forward channel.

2. (u1, v2): Figure 10 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m1, n2 = 0. In this case, R2 repeats in favor of the forward channel (uses Relay

Strategy (2, 0)) and R1 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
by R1 in favor of the backward direction communication

does not affect the achievability of the forward channel because these signals have been decoded from the

top levels of the received signal from the other relay (R2) where there is no interference from R1. Also,

repeating the a1, ..., anA1−nA2
by R1 within the top nA1−nA2 streams (i.e., on blocks 2 and 3 in Figure 10)

does not affect the decoding since the signals can be decoded from top and their effect can be cancelled.

Repeating any of them on the next 2nA2−nA1 +n1B−n2B lower levels by R1 (i.e., on block 3 in Figure

10) does not affect the decoding because we can decode those upper nA1 − nA2 levels (a1, ..., anA1−nA2
)

first and cancel the effect of the repeated signals. If a1, ..., anA1−nA2
is repeated by R1 on the next lower

2(n2B − n1B − nA2) + nA1 levels (i.e., on block 5 in Figure 10), in case that the repetitions of some

streams from two relays are from the same level and are repeated on the same level, i.e., they create an

equation as higher levels, R2 does not repeat for those levels as was explained in the definition of the

strategies, so there is no problem in decoding of forward direction channel. Also if any of a1, ..., anA1−nA2

is repeated by R1 on the next 2n1B − n2B + nA2 − nA1 levels (i.e., on block 6 in Figure 10), it does not

affect the decoding since the signals can be decoded from top and their effect can be cancelled. Also,

if anA1−nA2+n2B−n1B+1, ..., an1B
is repeated by R1 in the same level range that they are located (i.e., on

block 6 in Figure 10), it does not affect the decoding since the signals can be decoded from top and their

effect can be cancelled. If any of them is repeated in any lower level by R1, it is out of range and does

not have effect on decoding of forward channel.
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Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R2), i.e., (m1, n1) = (0, 0). In this case, R2 repeats in favor of both directions ((m2,m2) ∈

{(2, 2), (2, 6)}) and R1 uses Relay Strategy (0, 0). Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
in favor

of the backward channel does not affect the achievability of the forward channel because these signals

have been decoded from the top levels of the received signal from the same relay (i.e., on block 1 in

Figure 10). Also, repeating the signals anA1−nA2+n2B−n1B+1, ..., an1B
does not affect the decoding because

these signals are decoded from the last 2n1B − n2B + nA2 − nA1 levels from the other relay, R1 (i.e.,

on block 6 in Figure 10). Also, repeating the an1B+1, ..., a2nA1−2nA2+n2B−n1B
in the same level range

that they are located (i.e., on block 3 in Figure 10) does not affect the decoding since the signals can

be decoded from top and their effect can be cancelled. Repeating any of an1B+1, ..., a2nA1−2nA2+n2B−n1B

on the next 2nA2 − nA1 + n1B − n2B lower levels (i.e., on block 4 in Figure 10) does not affect the

decoding because node B decodes the upper nA1 − nA2 levels (an1B+1, ..., a2nA1−2nA2+n2B−n1B
) first and

cancel the effect of the repeated signals. Repeating any of an1B+1, ..., a2nA1−2nA2+n2B−n1B
on the next

lower 2(n2B − n1B − nA2) + nA1 levels (i.e., on block 5 in Figure 10), it does not affect the decoding

because as it was explained in the definition of the strategies, in case that the repetitions of some streams

from two relays are from the same levels and are supposed to be repeated on the same level, the repeating

relay (R2) does not repeat for those levels and repeats those streams only one time. Also, repeating any

of the a2(nA1−nA2)+n2B−n1B+1, ..., anA1
in the same level range that they are located (i.e., on block 4 in

Figure 10), does not affect the decoding since the signals can be decoded from top and their effect can be

cancelled. Repeating any of a2(nA1−nA2)+n2B−n1B+1, ..., anA1
on the next lower 2(n2B − n1B − nA2) + nA1

levels (i.e., on block 5 in Figure 10), does not affect the decoding because they are already decoded. If

any of them is repeated in any lower level by R2, it is out of range and does not have effect on decoding

of forward channel.

3. (u1, v3): Figure 11 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m1, n2 = 0. In this case, R2 repeats in favor of the forward channel (uses Relay

Strategy (2, 0)) and R1 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
by R1 in favor of the backward direction communication

does not affect the achievability of the forward channel because these signals have been decoded from the
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top levels of the received signal from the other relay (R2) where there is no interference from R1. Also,

repeating the a1, ..., anA1−nA2
by R1 within the top nA1−nA2 streams (i.e., on block 2 in Figure 11) does not

affect the decoding since the signals can be decoded from top and their effect can be cancelled. Repeating

any of them on the next 2nA2 − nA1 + n1B − n2B lower levels by R1 (i.e., on blocks 3 and 4 in Figure

11) does not affect the decoding because we can decode those upper nA1 − nA2 levels (a1, ..., anA1−nA2
)

first and cancel the effect of the repeated signals. If a1, ..., anA1−nA2
is repeated by R1 on the next lower

2(n2B − n1B − nA2) + nA1 levels (i.e., on block 5 in Figure 11), R2 does not repeat for those levels as

was explained in the definition of the strategies, so there is no problem in decoding of forward direction

channel. Also if any of a1, ..., anA1−nA2
is repeated by R1 on the next lower 2n1B − n2B + nA2 − nA1

levels (i.e., on block 6 in Figure 11), it does not affect the decoding since the signals can be decoded

from top and their effect can be cancelled. Also if anA1−nA2+n2B−n1B+1, ..., an1B
is repeated by R1 in the

same level range that they are located (i.e., on block 5 in Figure 11), it does not affect the decoding since

the signals can be decoded from top and their effect can be cancelled. If any of them is repeated in any

lower level by R1, it is out of range and does not have effect on decoding of forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R2), i.e., (m1, n1) = (0, 0). In this case, R2 repeats in favor of both directions ((m2,m2) ∈

{(2, 2), (2, 6)}) and R1 uses Relay Strategy (0, 0). Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
in favor of

the backward channel does not affect the achievability of the forward channel because these signals have

been decoded from the top levels of the received signal from the same relay (i.e., on block 1 in Figure

11). Also, repeating the signals anA1−nA2+n2B−n1B+1, ..., an1B
does not affect the decoding because these

signals are decoded from the last 2n1B − n2B + nA2 − nA1 levels from the other relay, R1 (i.e., on block

6 in Figure 11). Also, repeating the an1B+1, ..., anA1
in the same level range that they are located (i.e., on

block 4 in Figure 11), does not affect the decoding since the signals can be decoded from top and their

effect can be cancelled. Repeating any of an1B+1, ..., anA1
on the next nA1 − 2(nA2 + n1B − n2B) lower

levels (i.e., on block 5 and 6 in Figure 11) does not affect the decoding, since R2 does not repeat in favor

of the forward direction for those levels with these parameters as was explained in the definition of the

strategies, so there is no problem in decoding of forward direction channel. If any of them is repeated in

any lower level by R2, it is out of range and does not have effect on decoding of forward channel.

4. (u1, v4, r1): Figure 12 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0.
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First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m1, n2 = 0. In this case, R2 repeats in favor of the forward channel (uses Relay

Strategy (2, 0)) and R1 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
by R1 in favor of the backward direction communication

does not affect the achievability of the forward channel because these signals have been decoded from

the top levels of the received signal from the other relay (R2) where there is no interference from R1.

Also, repeating the a1, ..., anA1−nA2
by R1 within the top nA1 − nA2 streams (i.e., on blocks 2 and 3

in Figure 12) does not affect the decoding since the signals can be decoded from top and their effect

can be cancelled. Repeating any of them on the next n2B − n1B lower levels by R1 (i.e., on blocks 4

and 5 in Figure 12) does not affect the decoding because we can decode those upper nA1 − nA2 levels

(a1, ..., anA1−nA2
) first and cancel the effect of the repeated signals. If a1, ..., anA1−nA2

is repeated by R1 on

the next lower 2(n1B−n2B+nA2)−nA1 levels (i.e., on block 6 in Figure 12), does not affect the decoding

because node B decodes these levels at the end. If a1, ..., anA1−nA2
is repeated on the next n2B − nA2

levels (i.e., on blocks 7 and 8 in Figure 12), in case that the repetitions of some streams from two

relays are from the same level and are repeated on the same level, i.e., they create an equation as higher

levels, R2 does not repeat for those levels as was explained in the definition of the strategies, so there

is no problem in decoding of forward direction channel. Also if anA1−nA2+n2B−n1B+1, ..., anA2−n2B+n1B

is repeated by R1 in the same level range that they are located (i.e., on block 6 in Figure 12), it does

not affect the decoding since the signals can be decoded from top and their effect can be cancelled. If

anA1−nA2+n2B−n1B+1, ..., anA2−n2B+n1B
is repeated on the next n2B − nA2 levels (i.e., on blocks 7 and 8 in

Figure 12), in case that the repetitions of some streams from two relays are from the same level and are

repeated on the same level, i.e., they create an equation as higher levels, R2 does not repeat for those

levels as was explained in the definition of the strategies, so there is no problem in decoding of forward

direction channel. Also if anA1−nA2+n2B−n1B+1, ..., an1B
is repeated by R1 in the same level range that they

are located, it does not affect the decoding since the signals can be decoded from top and their effect can

be cancelled. If any of them is repeated in any lower level by R1, it is out of range and does not have

effect on decoding of forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R2), i.e., (m1, n1) = (0, 0). In this case, R2 repeats in favor of both directions ((m2,m2) ∈

{(2, 2), (2, 6)}) and R1 uses Relay Strategy (0, 0). Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
in favor
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of the backward channel does not affect the achievability of the forward channel because these signals

have been decoded from the top levels of the received signal from the same relay (i.e., on block 1 in

Figure 12). Also, repeating the anA1−nA2+n2B−n1B+1, ..., anA2−n2B+n1B
does not affect the decoding because

these signals are decoded from the repetitions by R2 (i.e., on block 8 in Figure 12). Also, repeating the

anA2−n2B+n1B+1, ..., a2nA1−2nA2+n2B−n1B
does not affect the decoding because these signals are decoded

from the low levels from the other relay without interference, (R1) (i.e., on block 3 in Figure 12). Also,

repeating the a2nA1−2nA2+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B) in the same level range that they are located

(i.e., on blocks 4 and 5 in Figure 12), does not affect the decoding since their interference is already

decoded from highest block and the signals can be decoded from top and their effect can be cancelled.

Repeating any of a2nA1−2nA2+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B) on the next 2(nA2 − n2B + n1B) − nA1

lower levels (i.e., on block 6 in Figure 12) does not affect the decoding because B decodes the upper

n2B−n1B levels (a2nA1−2nA2+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B)) first and cancel the effect of the repeated

signals. Repeating any of a2nA1−2nA2+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B) on the next n2B−nA2 levels (i.e.,

on blocks 7 and 8 in Figure 12), does not affect the decoding because as it was explained in the definition

of the strategies, in case that the repetitions of some streams from two relays are from the same levels and

are supposed to be repeated on the same level, the repeating relay (R2) does not repeat for those levels

and repeats those streams only one time. Also, repeating any of the a2(nA1−nA2+n2B−n1B)+1, ..., anA1
does

not affect the decoding since the signals can be decoded from top and their effect can be cancelled. If

any of them is repeated in any lower level by R2, it is out of range and does not have effect on decoding

of forward channel.

5. (u1, v4, r2, s1): Figure 13 depicts the received signal at node B (ignoring the effect of transmitted

signal from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m1, n2 = 0. In this case, R2 repeats in favor of the forward channel (uses Relay

Strategy (2, 0)) and R1 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
by R1 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels of

the received signal from the other relay (R2) where there is no interference from R1. Also, repeating the

a1, ..., anA1−nA2
by R1 within the top nA1 − nA2 streams (i.e., on blocks 2 and 3 in Figure 13) does not

affect the decoding since the signals can be decoded from top and their effect can be cancelled. Repeating
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any of them on the next n2B − n1B lower levels by R1 (i.e., on block 4 in Figure 13) does not affect the

decoding because we can decode those upper nA1−nA2 levels (a1, ..., anA1−nA2
) first and cancel the effect

of the repeated signals. If a1, ..., anA1−nA2
is repeated by R1 on the next lower 2(nA2−nA1−n2B) + 3n1B

levels (i.e., on block 5 in Figure 13) does not affect the decoding because node B decodes them from

the last 2(nA2 − nA1 − n2B) + 3n1B levels from R1 (i.e., on block 9 in Figure 13). If a1, ..., anA1−nA2
is

repeated on the next lower nA1 − n1B levels (i.e., on blocks 6 and 7 in Figure 13), it does not affect the

decoding because node B decodes these levels at the end. Also if a1, ..., anA1−nA2
is repeated on the next

lower n2B − nA2 levels, in case that the repetitions of some streams from two relays are from the same

level and are repeated on the same level, i.e., they create an equation as higher levels, R2 does not repeat

for those levels as was explained in the definition of the strategies, so there is no problem in decoding of

forward direction channel. Also if anA1−nA2+n2B−n1B+1, ..., an1B
is repeated by R1 in the same level range

that they are located, it does not affect the decoding since the signals can be decoded from top and their

effect can be cancelled. If any of them is repeated in any lower level by R1, it is out of range and does

not have effect on decoding of forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R2), i.e., (m1, n1) = (0, 0). In this case, R2 repeats in favor of both directions ((m2,m2) ∈

{(2, 2), (2, 6)}) and R1 the Relay Strategy (0, 0). Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
in favor

of the backward channel does not affect the achievability of the forward channel because they have

been decoded from the top levels of the received signal from the same relay (i.e., on block 1 in Figure

13). Also, repeating the a2(nA1−nA2+n2B−n1B)+1, ..., an1B
does not affect the decoding because they are

decoded from the last 3n1B + 2(nA2 − nA1 − n2B) levels from the other relay (R1). Also, repeating the

anA1−nA2+n2B−n1B+1, ..., anA2−nA1+2n1B−n2B
does not affect the decoding because these signals are decoded

from lower levels (block 5 in Figure 13). Also, repeating the anA2−nA1+2n1B−n2B+1, ..., a2(nA1−nA2)+n2B−n1B

does not affect the decoding because these signals are decoded from the repetitions by R2 (i.e., on block

8 in Figure 13). Repeating any of a2n1B−n2B+nA2−nA1+1, ..., a2nA1−2nA2+n2B−n1B
on the low levels (i.e., on

block 8 in Figure 13), does not affect the decoding because as it was explained in the definition of the

strategies, in case that the repetitions of some streams from two relays are from the same levels and

are supposed to be repeated on the same level, the repeating relay (R2) does not repeat for those levels

and repeats those streams only one time. If a2(nA1−nA2)+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B) is repeated

within the range that they are located (i.e., on block 4 in Figure 13), it does not affect the decoding
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since the signals can be decoded from highest level of it and their effect can be cancelled. Also if

a2(nA1−nA2)+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B) is repeated within the lower levels, it does not affect the

decoding since they are decoded first from upper block. If an1B+1, ..., anA1
is repeated within the range

that they are located (i.e., on blocks 6 and 7 in Figure 13), it does not affect the decoding since the signals

can be decoded from highest level of it and their effect can be cancelled. Also if If an1B+1, ..., anA1
is

repeated within the lower levels, it does not affect the decoding since they are decoded first from upper

block. If any of them is repeated in any lower level by R2, it is out of range and does not have effect on

decoding of forward channel.

6. (u1, v4, r2, s2): Figure 14 depicts the received signal at node B (ignoring the effect of transmitted

signal from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m1, n2 = 0. In this case, R2 repeats in favor of the forward channel (uses Relay

Strategy (2, 0)) and R1 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
by R1 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels of

the received signal from the other relay (R2) where there is no interference from R1 (i.e., on block 1 in

Figure 14). Also, repeating the a1, ..., anA1−nA2
by R1 within the top nA1 − nA2 streams (i.e., on block 2

in Figure 14) does not affect the decoding since the signals can be decoded from top and their effect can

be cancelled. Repeating any of them on the next n2B−n1B lower levels by R1 (i.e., on block 3 in Figure

14) does not affect the decoding because we can decode those upper nA1 − nA2 levels (a1, ..., anA1−nA2
)

first and cancel the effect of the repeated signals. If a1, ..., anA1−nA2
is repeated by R1 on the next lower

2(nA2 − nA1 − n2B) + 3n1B levels (i.e., on blocks 4 and 5 in Figure 14) does not affect the decoding

because node B decodes them from the last 2(nA2−nA1−n2B)+3n1B levels from R1 (i.e., on block 8 in

Figure 14). If a1, ..., anA1−nA2
is repeated on the next lower nA1−n1B levels (i.e., on block 6 in Figure 14),

it does not affect the decoding because node B decodes these levels at the end. Also if a1, ..., anA1−nA2

is repeated on the next n2B − nA2 lower levels, R2 does not repeat for those levels as was explained in

the definition of the strategies, so there is no problem in decoding of forward direction channel. Also if

anA1−nA2+n2B−n1B+1, ..., an1B
is repeated by R1 in the same level range that they are located, it does not

affect the decoding since the signals can be decoded from top and their effect can be cancelled. If any

of them is repeated in any lower level by R1, it is out of range and does not have effect on decoding of
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forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R2), i.e., (m1, n1) = (0, 0). In this case, R2 repeats in favor of both directions ((m2,m2) ∈

{(2, 2), (2, 6)}) and R1 uses Relay Strategy (0, 0). Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
in fa-

vor of the backward channel does not affect the achievability of the forward channel because they

have been decoded from the top levels of the received signal from the same relay (i.e., on block 1

in Figure 14). Also, repeating the a2(nA1−nA2+n2B−n1B)+1, ..., an1B
does not affect the decoding because

they are decoded from the last 3n1B + 2(nA2 − nA1 − n2B) levels from the other relay (R1) (i.e., on

block 8 in Figure 14). Also, repeating the anA1−nA2+n2B−n1B+1, ..., a2(nA1−nA2)+n2B−n1B
does not affect

the decoding because these signals are decoded from lower levels (block 4 in Figure 14). Repeating

any of an2B−n1B+nA1−nA2+1, ..., a2nA1−2nA2+n2B−n1B
on the low levels (i.e., on blocks 7 and 8 in Figure

13), does not affect the decoding because as it was explained in the definition of the strategies, the

repeating relay (R2) does not repeat in favor of the forward channel for these set of parameters. If

a2(nA1−nA2)+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B) is repeated within the range that they are located (i.e., on

block 3 in Figure 14), it does not affect the decoding since the signals can be decoded from highest level

of it and their effect can be cancelled. Also if a2(nA1−nA2)+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B) is repeated

within the lower levels, it does not affect the decoding since they are decoded first from upper block. If

an1B+1, ..., anA1
is repeated within the range that they are located (i.e., on block 6 in Figure 14), it does

not affect the decoding since the signals can be decoded from highest level of it and their effect can be

cancelled. Also if If an1B+1, ..., anA1
is repeated within the lower levels, it does not affect the decoding

since they are decoded first from upper block. If any of them is repeated in any lower level by R2, it is

out of range and does not have effect on decoding of forward channel.

7. (u1, v4, r2, s3): Figure 15 depicts the received signal at node B (ignoring the effect of transmitted

signal from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m1, n2 = 0. In this case, R2 repeats in favor of the forward channel (uses Relay

Strategy (2, 0)) and R1 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
by R1 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels of

the received signal from the other relay (R2) where there is no interference from R1 (i.e., on block 1 in
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Figure 15). Also, repeating the a1, ..., anA1−nA2
by R1 within the top nA1 − nA2 streams (i.e., on block 2

in Figure 15) does not affect the decoding since the signals can be decoded from top and their effect can

be cancelled. Repeating any of them on the next n2B−n1B lower levels by R1 (i.e., on block 3 in Figure

15) does not affect the decoding because we can decode those upper nA1 − nA2 levels (a1, ..., anA1−nA2
)

first and cancel the effect of the repeated signals. If a1, ..., anA1−nA2
is repeated by R1 on the next lower

2(nA2 − nA1 − n2B) + 3n1B levels (i.e., on blocks 4 and 5 in Figure 15) does not affect the decoding

because node B decodes them from the last 2(nA2−nA1−n2B)+3n1B levels from R1. If a1, ..., anA1−nA2

is repeated on the next lower nA1−n1B levels (i.e., on blocks 6 and 7 in Figure 15), it does not affect the

decoding because node B decodes these levels at the end. Also if a1, ..., anA1−nA2
is repeated on the next

lower n2B−nA2 levels (i.e., on block 8 in Figure 15), in case that the repetitions of some streams from two

relays are from the same level and are repeated on the same level, i.e., they create an equation as higher

levels, R2 does not do the repeating for those levels as was explained in the definition of the strategies,

so there is no problem in decoding of forward direction channel. Also if anA1−nA2+n2B−n1B+1, ..., an1B
is

repeated by R1 in the same level range that they are located, it does not affect the decoding since the

signals can be decoded from top and their effect can be cancelled. If any of them is repeated in any lower

level by R1, it is out of range and does not have effect on decoding of forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R2), i.e., (m1, n1) = (0, 0). In this case, R2 repeats in favor of both directions ((m2,m2) ∈

{(2, 2), (2, 6)}) and R1 uses Relay Strategy (0, 0). Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
in favor

of the backward channel does not affect the achievability of the forward channel because they have

been decoded from the top levels of the received signal from the same relay (i.e., on block 1 in Figure

15). Also, repeating the a2(nA1−nA2+n2B−n1B)+1, ..., an1B
does not affect the decoding because they are

decoded from the last 3n1B + 2(nA2 − nA1 − n2B) levels from the other relay (R1). Repeating any of

a2(n2B−n1B+nA1−nA2)+1, ..., a3(nA1−nA2)+2(n2B−n1B) on the lowest levels (i.e., on block 8 in Figure 15), does

not affect the decoding because as it was explained in the definition of the strategies, in case that the

repetitions of some streams from two relays are from the same levels and are supposed to be repeated

on the same level, the repeating relay (R2) does not do the repeating for those levels and repeats those

streams only one time. Also, repeating the anA1−nA2+n2B−n1B+1, ..., a2(nA1−nA2)+n2B−n1B
does not affect

the decoding because these signals are decoded from lower levels (i.e. the block 4 in Figure 15). If

a2(nA1−nA2)+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B) is repeated within the range that they are located (i.e., on
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block 3 in Figure 15), it does not affect the decoding since the signals can be decoded from highest level

of it and their effect can be cancelled. Also if a2(nA1−nA2)+n2B−n1B+1, ..., a2(nA1−nA2+n2B−n1B) is repeated

within the lower levels, it does not affect the decoding since they are decoded first from upper block. If

an1B+1, ..., anA1
is repeated within the range that they are located (i.e., on blocks 6 and 7 in Figure 15), it

does not affect the decoding since the signals can be decoded from highest level of it and their effect can

be cancelled. Also if If an1B+1, ..., anA1
is repeated within the lower levels, it does not affect the decoding

since they are decoded first from upper block. If any of them is repeated in any lower level by R2, it is

out of range and does not have effect on decoding of forward channel.

8. (u2, w1): Figure 16 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m1, n2 = 0. In this case, R2 repeats in favor of the forward channel (uses Relay

Strategy (2, 0)) and R1 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA1−nA2+1, ..., an1B
by R1 in favor of the backward direction communication does not affect the

achievability of the forward channel because they have been decoded from the top levels of the received

signal from the other relay (R2) where there is no interference from R1 (i.e., on block 1 in Figure 16).

Also, repeating the a1, ..., anA2−(n2B−n1B) by R1 within the top nA2− n2B + n1B streams (i.e., on block 2

in Figure 16) does not affect the decoding since the signals can be decoded from top and their effect can

be cancelled. Repeating any of them on the next nA1 − 2nA2 + n2B − n1B lower levels by R1 (i.e., on

block 3 in Figure 16) does not affect the decoding because we can decode those upper nA2− (n2B−n1B)

levels (a1, ..., anA2−(n2B−n1B)) first and cancel the effect of the repeated signals. If a1, ..., anA2−(n2B−n1B)

is repeated by R1 on the next lower n1B − nA1 + nA2 levels (i.e., on block 3 in Figure 16), in case

that the repetitions of some streams from two relays are from the same level and are repeated on the

same level, i.e., they create an equation as higher levels, R2 does not do the repeating for those levels as

was explained in the definition of the strategies, so there is no problem in decoding of forward direction

channel. If anA2−n2B+n1B+1, ..., anA1−nA2
is repeated within the range that they are located (i.e., on block

3 in Figure 16), it does not affect the decoding since the signals can be decoded from highest level of it

and their effect can be cancelled. Also if anA2−n2B+n1B+1, ..., anA1−nA2
is repeated within the next lower

n1B − nA1 + nA2 levels, it does not affect the decoding since they are decoded first from upper block. If

any of them is repeated in any lower level by R1, it is out of range and does not have effect on decoding
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of forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R2), i.e., (m1, n1) = (0, 0). In this case, R2 repeats in favor of both directions ((m2,m2) ∈

{(2, 2), (2, 6)}) and R1 uses Relay Strategy (0, 0). Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
in favor

of the backward channel does not affect the achievability of the forward channel because these sig-

nals have been decoded from the top levels of the received signal from the same relay (R2). Also,

repeating the anA1−nA2+n2B−n1B+1, ..., anA1
in the same level range that they are located (i.e., on block

2 in Figure 16) does not affect the decoding since the signals can be decoded from top and their

effect can be cancelled. Repeating any of them on the next lower nA1 − 2nA2 + n2B − n1B levels

(i.e., on block 3 in Figure 16) does not affect the decoding because node B decodes those upper

nA2− (n2B−n1B) levels (anA1−nA2+n2B−n1B+1, ..., anA1
) first and cancel the effect of the repeated signals.

If anA1−nA2+n2B−n1B+1, ..., anA1
is repeated on the next n1B + nA2− nA1 levels (i.e., on block 4 in Figure

16), it does not affect the decoding because as it was explained in the definition of the strategies, in case

that the repetitions of some streams from two relays are from the same levels and are supposed to be

repeated on the same level, the repeating relay (R2) does not do the repeating for those levels and repeats

those streams only one time. If any of them is repeated in any lower level by R2, it is out of range and

does not have effect on decoding of forward channel.

9. (u2, w2): Figure 17 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m1, n2 = 0. In this case, R2 repeats in favor of the forward channel (uses Relay

Strategy (2, 0)) and R1 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
by R1 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels

of the received signal from the other relay (R2) where there is no interference from R1. Also, repeating

the a1, ..., anA2−(n2B−n1B) by R1 within the top nA2 − n2B + n1B streams (i.e., on block 2 in Figure 17)

does not affect the decoding since the signals can be decoded from top and their effect can be cancelled.

Repeating any of them on the next lower nA1 − 2nA2 + n2B − n1B levels by R1 (i.e., on blocks 3 and

4 in Figure 17) does not affect the decoding because node B decodes those upper nA2 − (n2B − n1B)

levels (a1, ..., anA2−(n2B−n1B)) first and cancel the effect of the repeated signals. If a1, ..., anA2−(n2B−n1B)
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is repeated by R1 on the next lower n2B − n1B levels (i.e., on block 5 in Figure 17), in case that the

repetitions of some streams from two relays are from the same level and are repeated on the same level,

i.e., they create an equation as higher levels, R2 does not do the repeating for those levels as was explained

in the definition of the strategies, so there is no problem in decoding of forward direction channel. If

anA2−n2B+n1B+1, ..., anA1−nA2
is repeated within the range that they are located (i.e., on block 4 in Figure

17), it does not affect the decoding since the signals can be decoded from highest level of it and their effect

can be cancelled. Also if anA2−n2B+n1B+1, ..., anA1−nA2
is repeated within the next lower n1B − nA1 + nA2

levels, it does not affect the decoding since they are decoded first from upper block. If any of them is

repeated in any lower level by R1, it is out of range and does not have effect on decoding of forward

channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R2), i.e., (m1, n1) = (0, 0). In this case, R2 repeats in favor of both directions ((m2,m2) ∈

{(2, 2), (2, 6)}) and R1 uses Relay Strategy (0, 0). Repeating anA1−nA2+1, ..., anA1−nA2+n2B−n1B
in favor

of the backward channel does not affect the achievability of the forward channel because these signals

have been decoded from the top levels of the received signal from the same relay. Also, repeating the

anA1−nA2+n2B−n1B+1, ..., anA1
in the same level range that they are located does not affect the decoding

since the signals can be decoded from top and their effect can be cancelled. Repeating any of them on

the next nA1− 2nA2 +n2B−n1B lower levels (i.e., on block 4 in Figure 17), does not affect the decoding

because B decodes those upper nA2 − (n2B − n1B) levels (anA1−nA2+n2B−n1B+1, ..., anA1
) first and cancel

the effect of the repeated signals. If anA1−nA2+n2B−n1B+1, ..., anA1
is repeated on the next n1B +nA2−nA1

lower levels (i.e., on block 5 in Figure 17), it does not affect the decoding because as it was explained

in the definition of the strategies, in case that the repetitions of some streams from two relays are from

the same levels and are supposed to be repeated on the same level, the repeating relay (R2) does not do

the repeating for those levels and repeats those streams only one time. If any of them is repeated in any

lower level by R2, it is out of range and does not have effect on decoding of forward channel.

B. Forward channel is of Case 4.1.2

Now let assume that the forward channel is of Case 4.1.2 Type 1. For Type 2 proof is similar and thus

is omitted. Then we have CAB = max{n1B, n2B} = nB1. We consider the partition shown in Figure 37

and show that the message can be decoded when the backward channel is in any of Cases 3.1.2 or 4.1.2.
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It can be seen that all the streams can be decoded with the same order as in Relay Strategy 6 in Appendix

B.

1. (u1, v1): Figure 38 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m2, n1 = 0. In this case, R1 repeats in favor of the forward channel (uses Relay

Strategy (6, 0)) and R2 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
by R2 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels of

the received signal from the other relay (R1) where there is no interference from R2. Also, repeating the

a1, ..., anA2−nA1
by R2 within the top nA2−nA1 streams (i.e., on block 3 in Figure 38) does not affect the

decoding since the signals can be decoded from top and their effect can be cancelled. Repeating any of

them on the next n2B − 2(nA2 − nA1) lower levels by R2 (i.e., on block 4 in Figure 38) does not affect

the decoding because we can decode those upper nA2 − nA1 levels (a1, ..., anA2−nA1
) first and cancel the

effect of the repeated signals. If a1, ..., anA2−nA1
is repeated by R2 on the next lower levels (i.e., on block

5 in Figure 38), in case that the repetitions of some streams from two relays are from the same level and

are repeated on the same level, i.e., they create an equation as higher levels, R1 does not do the repeating

for those levels as was explained in the definition of the strategies, so there is no problem in decoding

of forward direction channel. If any of them is repeated in any lower level by R2, it is out of range and

does not have effect on decoding of forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R1), i.e., (m2, n2) = (0, 0). In this case, R1 repeats in favor of both directions ((m1,m1) ∈

{(6, 2), (6, 6)}) and R2 uses Relay Strategy (0, 0). Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
in favor of

the backward channel does not affect the achievability of the forward channel because these signals

have been decoded from the top levels of the received signal from the same relay. Also, repeating

the an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) in the same level range that they are located (i.e., on

block 3 in Figure 38) does not affect the decoding since the signals can be decoded from top and

their effect can be cancelled. Repeating any of them on the next 2(nA1 − nA2) + n2B lower levels (i.e.,

on block 4 in Figure 38) does not affect the decoding because node B decodes the upper nA2 − nA1

levels (an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1)) first and cancel the effect of the repeated signals.
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If an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) is repeated on the next nA2 − nA1 lower levels (i.e., on

block 5 in Figure 38), it does not affect the decoding because as it was explained in the definition of the

strategies, in case that the repetitions of some streams from two relays are from the same levels and are

supposed to be repeated on the same level, the repeating relay (R1) does not do the repeating for those

levels and repeats those streams only one time. If any of them is repeated in any lower level by R1, it is

out of range and does not have effect on decoding of forward channel.

2. (u1, v2, r1): Figure 39 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0. The actual repetitions will be described below

to show that messages can be decoded with the proposed strategies.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m2, n1 = 0. In this case, R1 repeats in favor of the forward channel (uses Relay

Strategy (6, 0)) and R2 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
by R2 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels of

the received signal from the other relay (R1) (i.e., on block 1 in Figure 39) where there is no interference

from R2. Also, repeating the a1, ..., anA2−nA1
by R2 within the top nA2 − nA1 streams (i.e., on blocks 2

and 3 in Figure 39) does not affect the decoding since the signals can be decoded from top and their

effect can be cancelled. Repeating any of them on the next n2B−2(nA2−nA1) lower levels (i.e., on block

4 in Figure 39) by R2 does not affect the decoding because we can decode those upper nA2− nA1 levels

(a1, ..., anA2−nA1
) first and cancel the effect of the repeated signals. If a1, ..., anA2−nA1

is repeated by R2

on the next lower levels (i.e., on blocks 5 and 6 in Figure 39), in case that the repetitions of some streams

from two relays are from the same level and are repeated on the same level, i.e., they create an equation

as higher levels, R1 does not do the repeating for those levels as was explained in the definition of the

strategies, so there is no problem in decoding of forward direction channel. If any of them is repeated in

any lower level by R2, it is out of range and does not have effect on decoding of forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R1), i.e., (m2, n2) = (0, 0). In this case, R1 repeats in favor of both directions ((m1,m1) ∈

{(6, 2), (6, 6)}) and R2 uses Relay Strategy (0, 0). Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
in favor

of the backward channel does not affect the achievability of the forward channel because these signals

have been decoded from the top levels of the received signal from the same relay. Also, repeating the
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an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) in the same level range that they are located (i.e., on blocks

2 and 3 in Figure 39) does not affect the decoding since the signals can be decoded from top and

their effect can be cancelled. Repeating any of them on the next 2(nA1 − nA2) + n2B lower levels (i.e.,

on block 4 in Figure 39) does not affect the decoding because node B decodes the upper nA2 − nA1

levels (an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1)) first and cancel the effect of the repeated signals. If

an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) is repeated on the next nA2−nA1 lower levels (i.e., on blocks

5 and 6 in Figure 39), it does not affect the decoding because as it was explained in the definition of

the strategies, in case that the repetitions of some streams from two relays are from the same levels

and are supposed to be repeated on the same level, the repeating relay (R1) does not do the repeating

for those levels and repeats those streams only one time. If a2(nA2−nA1)+n1B−n2B+1, ..., an1B
is repeated

within the range that they are located (i.e., on block 4 in Figure 39), it does not affect the decoding

since the signals can be decoded from highest level of it and their effect can be cancelled. Also if

a2(nA2−nA1)+n1B−n2B+1, ..., an1B
is repeated on the lower levels, it does not affect the decoding since they

are decoded first from upper block. If any of them is repeated in any lower level by R1, it is out of range

and does not have effect on decoding of forward channel.

3. (u1, v2, r2, s1, q1): Figure 40 depicts the received signal at node B (ignoring the effect of transmitted

signal from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m2, n1 = 0. In this case, R1 repeats in favor of the forward channel (uses Relay

Strategy (6, 0)) and R2 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
by R2 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels of

the received signal from the other relay (R1) where there is no interference from R2. Also, repeating the

a1, ..., anA2−nA1
by R2 within the top nA2−nA1 streams (i.e., on block 2 in Figure 40) does not affect the

decoding since the signals can be decoded from top and their effect can be cancelled. Repeating any of

them on the next n1B−n2B lower levels by R2 (i.e., on block 3 in Figure 40) does not affect the decoding

because we can decode those upper nA2 − nA1 levels (a1, ..., anA2−nA1
) first and cancel the effect of the

repeated signals. If a1, ..., anA2−nA1
is repeated by R2 on the next lower levels, in case that the repetitions

of some streams from two relays are from the same level and are repeated on the same level, i.e., they

create an equation as higher levels, R1 does not do the repeating for those levels as was explained in the
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definition of the strategies, so there is no problem in decoding of forward direction channel. If any of

them is repeated in any lower level by R2, it is out of range and does not have effect on decoding of

forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R1), i.e., (m2, n2) = (0, 0). In this case, R1 repeats in favor of both directions ((m1,m1) ∈

{(6, 2), (6, 6)}) and R2 uses Relay Strategy (0, 0). Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
in favor

of the backward channel does not affect the achievability of the forward channel because these signals

have been decoded from the top levels of the received signal from the same relay. Also, repeating the

an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) in the same level range that they are located (i.e., on block 2

in Figure 40) does not affect the decoding since the signals can be decoded from top and their effect can be

cancelled. Repeating any of them on the next 2(nA1−nA2)+n2B lower levels does not affect the decoding

because node B decodes the upper nA2 − nA1 levels (an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1)) first

and cancel the effect of the repeated signals. If an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) is repeated

on the lowest nA2 − nA1 levels (i.e., on block 8 in Figure 40), it does not affect the decoding because as

it was explained in the definition of the strategies, in case that the repetitions of some streams from two

relays are from the same levels and are supposed to be repeated on the same level, the repeating relay

(R1) does not do the repeating for those levels and repeats those streams only one time. If any of them

is repeated in any lower level by R1, it is out of range and does not have effect on decoding of forward

channel.

4. (u1, v2, r2, s1, q2): Figure 41 depicts the received signal at node B (ignoring the effect of transmitted

signal from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m2, n1 = 0. In this case, R1 repeats in favor of the forward channel (uses Relay

Strategy (6, 0)) and R2 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
by R2 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels

of the received signal from the other relay (R1) where there is no interference from R2. Also, repeating

the a1, ..., anA2−nA1
by R2 within the top nA2 − nA1 streams (i.e., on blocks 2 and 3 in Figure 41) does

not affect the decoding since the signals can be decoded from top and their effect can be cancelled.

Repeating any of them on the next n1B − n2B lower levels by R2 (i.e., on block 4 in Figure 41) does
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not affect the decoding because we can decode those upper nA2 − nA1 levels (a1, ..., anA2−nA1
) first and

cancel the effect of the repeated signals. If a1, ..., anA2−nA1
is repeated by R2 on the next lower levels, in

case that the repetitions of some streams from two relays are from the same level and are repeated on the

same level, i.e., they create an equation as higher levels, R1 does not do the repeating for those levels as

was explained in the definition of the strategies, so there is no problem in decoding of forward direction

channel. If any of them is repeated in any lower level by R2, it is out of range and does not have effect

on decoding of forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R1), i.e., (m2, n2) = (0, 0). In this case, R1 repeats in favor of both directions ((m1,m1) ∈

{(6, 2), (6, 6)}) and R2 uses Relay Strategy (0, 0). Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
in favor of

the backward channel does not affect the achievability of the forward channel because these signals have

been decoded from the top levels of the received signal from the same relay (R1). Also, repeating the

an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) in the same level range that they are located (i.e., on blocks

2 and 3 in Figure 41) does not affect the decoding since the signals can be decoded from top and their

effect can be cancelled. Repeating any of them on the next 2(nA1 − nA2) + n2B lower levels (i.e., on

blocks 4 and 5 in Figure 41) does not affect the decoding because node B decodes the upper nA2 − nA1

levels (an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1)) first and cancel the effect of the repeated signals. If

an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) is repeated on the lowest nA2 − nA1 levels (i.e., on blocks 8

and 9 in Figure 41), it does not affect the decoding because as it was explained in the definition of the

strategies, in case that the repetitions of some streams from two relays are from the same levels and are

supposed to be repeated on the same level, the repeating relay (R1) does not do the repeating for those

levels and repeats those streams only one time. If any of them is repeated in any lower level by R1, it is

out of range and does not have effect on decoding of forward channel.

5. (u1, v2, r2, s2): Figure 42 depicts the received signal at node B (ignoring the effect of transmitted

signal from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen

in different relays, i.e., m2, n1 = 0. In this case, R1 repeats in favor of the forward channel (uses

Relay Strategy (6, 0)) and R2 repeats in favor of backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
by R2 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels of
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the received signal from the other relay (R1) where there is no interference from R2. Also, repeating the

a1, ..., anA2−nA1
by R2 within the top nA2 − nA1 streams (i.e., on blocks 2 and 3 in Figure 42) does not

affect the decoding since the signals can be decoded from top and their effect can be cancelled. Repeating

any of them on the next n1B − n2B lower levels by R2 (i.e., on blocks 4 and 5 in Figure 42) does not

affect the decoding because we can decode those upper nA2−nA1 levels (a1, ..., anA2−nA1
) first and cancel

the effect of the repeated signals. If a1, ..., anA2−nA1
is repeated by R2 on the next lower levels, in case

that the repetitions of some streams from two relays are from the same level and are repeated on the

same level, i.e., they create an equation as higher levels, R1 does not do the repeating for those levels as

was explained in the definition of the strategies, so there is no problem in decoding of forward direction

channel. If any of them is repeated in any lower level by R2, it is out of range and does not have effect

on decoding of forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R1), i.e., (m2, n2) = (0, 0). In this case, R1 repeats in favor of both directions ((m1,m1) ∈

{(6, 2), (6, 6)}) and R2 uses Relay Strategy (0, 0). Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
in favor

of the backward channel does not affect the achievability of the forward channel because these signals

have been decoded from the top levels of the received signal from the same relay. Also, repeating the

an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) in the same level range that they are located (i.e., on blocks 2

and 3 in Figure 42) does not affect the decoding since the signals can be decoded from top and their effect

can be cancelled. Repeating any of them on the next 2(nA1−nA2)+n2B lower levels does not affect the de-

coding because node B decodes the upper nA2−nA1 levels (an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1))

first and cancel the effect of the repeated signals. If an1B−n2B+nA2−nA1+1, ..., an1B−n2B+2(nA2−nA1) is repeated

on the next nA2−nA1 levels, it does not affect the decoding because as it was explained in the definition

of the strategies, in case that the repetitions of some streams from two relays are from the same levels

and are supposed to be repeated on the same level, the repeating relay (R1) does not do the repeating for

those levels and repeats those streams only one time. If any of them is repeated in any lower level by

R1, it is out of range and does not have effect on decoding of forward channel.

6. (u2, w1): Figure 43 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m2, n1 = 0. In this case, R1 repeats in favor of the forward channel (uses Relay
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Strategy (6, 0)) and R2 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA2−nA1+1, ..., an2B
by R2 in favor of the backward direction communication does not affect

the achievability of the forward channel because they have been decoded from the top levels of the

received signal from the other relay (R1) where there is no interference from R2. Also, repeating the

a1, ..., an2B+nA1−nA2
by R2 within the top n2B−nA2 +nA1 streams (i.e., on block 2 in Figure 43) does not

affect the decoding since the signals can be decoded from top and their effect can be cancelled. Repeating

any of them on the next 2(nA2 − nA1)− n2B lower levels by R2 (i.e., on block 3 in Figure 43) does not

affect the decoding because node B decodes those upper n2B+nA1−nA2 levels (a1, ..., an2B+nA1−nA2
) first

and cancel the effect of the repeated signals. If a1, ..., an2B+nA1−nA2
is repeated by R2 on the next lower

n2B+nA1−nA2 levels (i.e., on block 4 in Figure 43), in case that the repetitions of some streams from two

relays are from the same level and are repeated on the same level, i.e., they create an equation as higher

levels, R1 does not do the repeating for those levels as was explained in the definition of the strategies,

so there is no problem in decoding of forward direction channel. If an2B−(nA2−nA1)+1, ..., anA2−nA1
is

repeated within the range that they are located (i.e., on block 3 in Figure 43), it does not affect the

decoding since the signals can be decoded from highest level of it and their effect can be cancelled. Also

if an2B−(nA2−nA1)+1, ..., anA2−nA1
is repeated on the n2B − (nA2 − nA1) lower levels (i.e., on block 4 in

Figure 43), it does not affect the decoding since they are decoded first from upper block. If any of them

is repeated in any lower level by R2, it is out of range and does not have effect on decoding of forward

channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R1), i.e., (m2, n2) = (0, 0). In this case, R1 repeats in favor of both directions ((m1,m1) ∈

{(6, 2), (6, 6)}) and R2 uses the Relay Strategy (0, 0). Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
in favor

of the backward channel does not affect the achievability of the forward channel because these signals

have been decoded from the top levels of the received signal from the same relay. Also, repeating the

an1B−n2B+nA2−nA1+1, ..., an1B
in the same level range that they are located (i.e., on block 2 in Figure 43)

does not affect the decoding since the signals can be decoded from top and their effect can be cancelled.

Repeating any of them on the next 2(nA2−nA1)−n2B lower levels (i.e., on block 3 in Figure 43) does not

affect the decoding because node B decodes the upper n2B+nA1−nA2 levels (an1B−n2B+nA2−nA1+1, ..., an1B
)

first and cancel the effect of the repeated signals. If an1B−n2B+nA2−nA1+1, ..., an1B
is repeated on the next

n2B + nA1 − nA2 lower levels (i.e., on block 4 in Figure 43), it does not affect the decoding because as
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it was explained in the definition of the strategies, in case that the repetitions of some streams from two

relays are from the same level and are supposed to be repeated on the same level, the repeating relay

(R1) does not do the repeating for those levels and repeats those streams only one time. If any of them

is repeated in any lower level by R1, it is out of range and does not have effect on decoding of forward

channel.

7. (u2, w2): Figure 44 depicts the received signal at node B (ignoring the effect of transmitted signal

from B) assuming that both relays use Relay Strategy 0.

First, consider the case that the repetitions in favor of the forward and backward channels happen in

different relays, i.e., m2, n1 = 0. In this case, R1 repeats in favor of the forward channel (uses Relay

Strategy (6, 0)) and R2 repeats in favor of the backward channel (uses Relay Strategy (0, 2) or (0, 6)).

Repeating anA2−nA1+1, ..., anA2−nA1+n1B−n2B
by R2 in favor of the backward direction communication does

not affect the achievability of the forward channel because they have been decoded from the top levels

of the received signal from the other relay (R1) where there is no interference from R2. Also, repeating

the a1, ..., an2B+nA1−nA2
by R2 within the top n2B − nA2 + nA1 streams (i.e., on blocks 2 and 3 in Figure

44) does not affect the decoding since the signals can be decoded from top and their effect can be

cancelled. Repeating any of them on the next 2(nA2 − nA1) − n2B lower levels by R2 (i.e., on block 4

in Figure 44) does not affect the decoding because node B decodes the upper n2B + nA1 − nA2 levels

(a1, ..., an2B+nA1−nA2
) first and cancel the effect of the repeated signals. If a1, ..., an2B+nA1−nA2

is repeated

by R1 on the next n1B − n2B lower levels (i.e., on block 5 in Figure 44), in case that the repetitions

of some streams from two relays are from the same level and are repeated on the same level, i.e., they

create an equation as higher levels, R1 does not do the repeating for those levels as was explained in the

definition of the strategies, so there is no problem in decoding of forward direction channel. If any of

them is repeated in any lower level by R2, it is out of range and does not have effect on decoding of

forward channel.

Now, take the case that the repetitions in favor of the forward and backward channels happen in the

same relay (R1), i.e., (m2, n2) = (0, 0). In this case, R1 repeats in favor of both directions ((m1,m1) ∈

{(6, 2), (6, 6)}) and R2 uses the Relay Strategy (0, 0). Repeating anA2−nA1+1, ..., an1B−n2B+nA2−nA1
in favor

of the backward channel does not affect the achievability of the forward channel because these signals

have been decoded from the top levels of the received signal from the same relay. Also, repeating the

an1B−n2B+nA2−nA1+1, ..., an1B
in the same level range that they are located does not affect the decoding
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since the signals can be decoded from top and their effect can be cancelled. Repeating any of them on

the next 2(nA2 − nA1) − n2B lower levels (i.e., on block 4 in Figure 44), does not affect the decoding

because node B decodes the upper n2B +nA1−nA2 levels (an1B−n2B+nA2−nA1+1, ..., an1B
) first and cancel

the effect of the repeated signals. If an1B−n2B+nA2−nA1+1, ..., an1B
is repeated on the next n1B−n2B lower

levels (i.e., on block 5 in Figure 44), it does not affect the decoding because as it was explained in the

definition of the strategies, in case that the repetitions of some streams from two relays are from the

same levels and are supposed to be repeated on the same level, the repeating relay (R1) does not do the

repeating for those levels and repeats those streams only one time. If any of them is repeated in any lower

level by R1, it is out of range and does not have effect on decoding of forward channel.
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