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Abstract

This work considers space-time block coding for the Rayleigh fading multiple-input multiple-output (MIMO)

multiple access channel (MAC). If we suppose that the receiver is performing joint maximum-likelihood (ML)

decoding, optimizing a MIMO MAC code against a fixed error event leads to a situation where the joint codewords

of the users in error can be seen as a single user MIMO code. In such a case pair-wise error probability (PEP) based

determinant criterion of Tarokh et al. can be used to upper bound the error probability.

It was already proven by Lahtonen et al. that irrespective of the used codes the determinants of the differences

of codewords of the overall codematrices will decay as a function of the rates of the users.

This work will study this decay phenomenon further and derive upper bounds for the decay of determinants

corresponding any error event. Lower bounds for the optimal decay are studied by constructions based on algebraic

number theory and Diophantine approximation. For some error profiles the constructed codes will be proven to be

optimal.

While the perspective of the paper is that of PEP, the final part of the paper proves how the achieved decay

results can be turned into statements about the diversity-multiplexing gain trade-off (DMT).

I. INTRODUCTION

Assume that we are to design a system for U simultaneously transmitting synchronized users, each transmitting

with nt transmit antennas and, for simplicity so that we end up with square matrices, over Unt channel uses. We

can describe each user’s signals as nt × Unt complex matrices. A multiuser MIMO signal is then viewed as a
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Unt × Unt matrix obtained by using the signals of the individual users as blocks. So each user is occupying nt

rows in this overall transmission matrix.

We are not interested on the scenario, where single users have fixed finite codes, but of coding schemes, where

each user has a family of growing codes. A natural source for such schemes is to assume that each user has a lattice

and that the finite codes of individual users are carved out of these user specific lattices. We are then interested on

the asymptotic behavior of error probabilities when we let the rates of each user grow.

In the Rayleigh fading multiple-input multiple-output (MIMO) multiple access channel (MAC) it is a natural idea

to develop a code design criteria by splitting the whole error probability space to separate error events based on

which users are in error. If we suppose that the receiver is performing joint maximum-likelihood (ML) decoding,

optimizing a MIMO MAC code against a fixed error event leads to a situation where the joint codewords of the

users in error can be seen as a single user MIMO code. In such a case pair-wise error probability based determinant

criterion from [16] can be applied to upper bound the error probability. This approach was first taken in [17] and

was developed further in [3] and [14].

The approach was also suggested for reaching the MAC DMT [2] in [3]. Unfortunately in [7] it was proved that

the criteria given in [3] is too tight, at least in the case where the codes of the single users are lattice space-time

codes. The pigeon hole bound in [7] proves that, irrespective of the code design, the determinants of the overall

code matrices will decay with a polynomial speed with respect to the code-size and methods, similar to those used

in [21], to prove the DMT optimality for single user MIMO codes do not work.

In this paper we will study this decay phenomenon further and will give general upper and lower bounds for the

decay of determinants corresponding any error event. The achieved results are then used to draw conclusions of

the DMT of the analyzed codes.

The upper bounds we derive will be functions of rates of each users and are independent of the used codes.

These results will reveal a trade-off between the rate and protection against error. It is possible to design a MAC

code in such a way that the codewords corresponding each error event will have maximal possible rank. If we have

such a code, then in each error event the code is protected by maximal possible diversity. However, in the spirit

of DMT, our bounds will reveal that when the rates of users of the corresponding error events are growing the

determinants of the matrices offering the maximal diversity will decay. This interplay creates a trade-off between

the coding gain and rate, which is close relative to DMT, but not the same concept.

The proofs of the upper bounds are based on using pigeon hole principle, projection mappings and properties

of the determinant function. The results are purely algebraic corresponding all lattice codes with certain properties.

Only in the statement of the problem we are using Rayleigh fading MIMO MAC as a motivation.

While the first part of the paper provides upper bounds for the decay of the determinants in MIMO MAC, the

second part of the paper concentrates on giving code constructions where we have tried to optimize the codes from

the decay point of view. In [5] it was proved that the two user single antenna code (BB-code) given in [14] has in

some sense the best possible decay. In this paper we are now giving a wast generalization of this code to general

MIMO MAC. The codes we will build fulfill the so called generalized rank criterion and do reach the pigeon hole
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bound. Our method will share the basic structure with the original generalization of BB-code given in [13].

The single user codes we are using are based on the multi-block codes from division algebras [8] and [9]. This

approach has been taken in several recent papers on MIMO MAC. However, in these papers the full rank criterion

has been achieved by using either transcendental elements [13] (with exception of nt = 2 case, which is dealt with

algebraic elements having low degree) or algebraic elements with high degree [6]. Both of these methods make

it extremely difficult to measure the decay of the codes and can lead to bad decay. For a survey of these recent

results, we refer the reader to thesis of Maya Badr [15].

Instead of the usual algebraic independence strategy we will use valuation theory to achieve the full rank condition.

This technical tool allows us to use algebraic elements with low degree. By applying Galois theoretic method of

Lu et al. [7] and methods from Diophantine approximation, originally introduced by Lahtonen et al. in [5], we will

prove that our codes achieve good decay and in particular reach the pigeon hole bound.

In Section IV we will show how the lower bounds for the decay of our codes can be translated to lower bounds

for the DMT. This analysis will reveal that in many cases the constructed codes do achieve the optimal diversity-

multiplexing gain trade-off for low multiplexing gains.

A. Multi-user codes, error events and corresponding decay functions

In this section we will show how the decay functions appear as a natural generalization of the minimum

determinant criterion used in the design of single user MIMO space-time block codes.

Let us suppose that we have U users, each having nt antennas and that the receiver has nr antennas and

complete channels state information. We also suppose that the fading for each user stays stable for k time units,

where k ≥ Unt. Let us refer to the channel matrix of the ith user with Hi ∈ Mnr×nt(C) and let us suppose that

each of these have i.i.d complex Gaussian random variables with zero mean and unit variance as coefficients. In

this scenario the base station receives

Y =

U∑
i=1

HiXi +W,

where, Xi ∈ Mnt×k(C), is the transmitted codeword from the ith user, and W ∈ Mnr×k(C) presents the noise

having i.i.d complex Gaussian random variables as coefficients. In this scenario multiuser MIMO signal is a Unt×k

matrix where the rows (j − 1)nt + 1, (j − 1)nt + 2, . . . , (j − 1)nt + nt represent jth user’s signal (j = 1, . . . , U ).

In order to keep the analysis in the paper streamlined and clean, we will assume that the single user space-time

codes are always of the following type.

Definition 1.1: A matrix lattice L ⊆Mnt×k(C) has the form

L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBr,

where the matrices B1, . . . , Br are linearly independent over R, i.e., form a lattice basis, and r is called the rank

or the dimension of the lattice.

Let us suppose that xi are matrices in Mnt×k(C). Throughout the paper we will use the notation

R(x1, . . . , xj) = Rx1 + · · ·+ Rxj .
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If L is a lattice we also write

R(L) = RB1 ⊕ RB2 ⊕ · · · ⊕ RBr.

The finite single user codes used in the actual transmission are of form

L(M) =

{
r∑
i=1

biBi|bi ∈ Z,−M ≤ bi ≤M

}
,

where M is a given positive number.

In the single user MIMO transmission the usual pairwise error probability based design criteria [16], leads to

maximizing

min
X,Y ∈L(M),X 6=Y

det((X − Y )(X − Y )†).

As X − Y ∈ L(2M), we can just as well try to maximize

min
X∈L(M),X 6=0

det(XX†). (1)

The first step is of course that this value should always be non-zero. This is the rank criterion. Maximizing the

value is called the minimum determinant criterion. Let us now show how this criterion can be generalized to MIMO

MAC context.

In the rest of the paper we suppose that each user applies a lattice space-time code Lj ⊆Mnt×k(C), j = 1, . . . , U .

We also assume that each user’s lattice is of full rank r = 2ntk, and denote the basis of the lattice Lj by

Bj,1, . . . , Bj,r. Now the code associated with the jth user is a restriction of lattice Lj

Lj(Nj) =

{
r∑
i=1

biBj,i|bi ∈ Z,−Nj ≤ bi ≤ Nj

}
,

where Nj is a given positive number.

Using these definitions the U -user MIMO MAC code is (L1(N1),L2(N2), . . . ,LU (NU )). Let Iu = {i1, . . . , iu} ⊆

{1, . . . , U} be of size u > 0. We will then use the notation M(Xi1 , . . . , Xiu) ∈Munt×k(C), where we have stacked

the codewords Xij from the users {i1, . . . , iu} on top of each other.

The following example shows how the different error events leads to different code design criteria.

Example 1.1: Let us suppose that we have three user MIMO MAC channel. The channel equation can now be

written as

[H1, H2, H3]


X1

X2

X3

+W = H1X1 +H2X2 +H3X3 +W.

Let us suppose that the receiver manages to decode the message X1 of the first user. As we supposed that the

receiver has perfect channel state information we can simply subtract the matrix H1X1 from the channel equation.

Therefore, if we like to design the code against an error event where exactly the second and the third user are in

error, we can consider simply the code (L2,L3) and try to maximize

min
06=Xi∈Li(M)

det(M(X2, X3)M(X2, X3)†), (2)
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with the assumption Xi 6= 0. Here we again took a benefit of the fact that L2 and L3 are lattices and therefore

additively closed. Similar analysis obviously provides us with a minimum determinant criterion for any error event.

The previous example reveal that we should aim at maximizing the minimum determinants of subcodes corre-

sponding to any error events. The design criterion for each error event is then the usual minimum determinant

criterion, but with an extra assumption that the code matrices of the users in error are non-zero.

Definition 1.2: Let CU,nt = (L1,L2, . . . ,LU ) and Iu = {i1, . . . , iu} and write CIuU,nt = (Li1 ,Li2 , . . . ,Liu).

Define the decay function for CIuU,nt by setting

DIu(Ni1 , . . . , Niu) = min
Xij∈Lij (Nij )\{0}

√
det(MM†),

where M = M(Xi1 , . . . , Xiu).

For a special case N1 = · · · = NU = N we write

DIu(N) = DIu(Ni1 = N, . . . , Niu = N).

We also use notion

D(N1, . . . , NU ) = D{1,...,U}(N1, . . . , NU )

and similarly as above

D(N) = D{1,...,U}(N1 = N, . . . , NU = N).

If we have a U -user code with decay function D(N1, . . . , NU ), such that D(N1, . . . , NU ) 6= 0 for all N1, . . . , NU ∈

Z+, we say that the code satisfies (generalized) rank criterion.

II. UPPER BOUNDS FOR THE DECAY OF DETERMINANTS

There are several single user MIMO codes L ⊆Mn×k(C) that satisfy

inf
0 6=X∈L

det(XX†) > 0.

Such a lattice code is said to have the non-vanishing determinant (NVD) property. This is obviously a guarantee

that the minimum determinants of all the finite codes L(M) are lower bounded and from the PEP point of view

such a property is very desirable.

It is tempting to try to build such MIMO MAC code CU,nt that for any subset of user Iu = {i1, . . . , iu} ⊂ I

the decay function would satisfy

DIu(Ni1 , . . . , Niu) ≥ ε,

for some fixed ε > 0, irrespective of the code sizes of the users ij . Unfortunately this is not possible. Already in

[7] it was proved that no matter how we build the codes, the function D(N) will decay as a function of N . In this

section we will give upper bounds for DIu(Ni1 , . . . , Niu) for any subset Iu of user. The bounds will depend on

the size of the code of each user and will reveal a trade-off between rate and diversity.

In order to keep the paper easy to understand we delay the proof of Theorem 2.5 to the end of the paper.

However, in order to give some idea of the proof, we introduce some concepts and results that are most crucial

and demonstrate the basic ideas in Example 2.1.
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A. The pigeon hole principle in a subspace

Let us consider the space Mn×k(C), where k ≥ n over the real numbers. It is 2nk-dimensional real vector space

with a real inner product

< X,Y >= <(Tr(XY †)),

where Tr is the matrix trace. This inner product also naturally defines a metric on the space Mn×k(C), when

setting ||X|| =
√
< X,X >.

Definition 2.1: Let us suppose that A is a subspace of Mn×k(C) . We then have that

A⊥ := {x |x ∈Mn×k(C), < x, a >= 0∀ a ∈ A},

is an R-linear subspace of Mn×k(C).

The following lemma is a collection of well known results from basic linear algebra.

Lemma 2.1: Let us suppose that A is a k-dimensional subspace of Mn×k(C). Then

Mn×k(C) = A⊕A⊥,

dimR(A⊥) = 2nk − dimR(A) = v and A⊥ has a v-dimensional orthonormal basis {e1, . . . , ev} with respect to

the real inner product of Mn×k(C).

Let us suppose that x is an element of Mn×k(C) and A a subspace. According to Lemma 2.1 we can now write

x uniquely in the form

x = a1 + a2, (3)

where a1 ∈ A and a2 ∈ A⊥. This decomposition gives us a well defined R-linear mapping πA⊥ : Mn×k(C) 7→ A⊥,

where

πA⊥(x) = a2. (4)

Lemma 2.2 (Pigeon hole principle in a subspace): Let us suppose that we have a set of matrices S = {x1, . . . , xs} ⊂

Mn×k(C), where ||xl|| ≤ M, ∀ l and a subspace A ⊂ Mn×k(C). Then the set S includes matrices xi and xj ,

where xi 6= xj such that

||πA⊥(xi)− πA⊥(xj)|| ≤ 4h
M

s1/h
,

where h is the real dimension of the subspace A⊥.

Proof: If the set S includes such elements xi and xj that πA⊥(xi) = πA⊥(xj), we are done. We can now

suppose that πA⊥(S) has s different elements. The space A⊥ has an orthonormal basis E = {e1, . . . , eh} ⊆

Mn×k(C). We can now define a cube

C(M) =

{
h∑
l=1

blel | bl ∈ R,−M ≤ bl ≤M

}
,

which has volume (2M)k. The projection is a shrinking map and therefore πA⊥(S) ⊂ C(M).
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The cube C(M) can be divided into smaller cubes of side length 4M/s1/h. The C(M) gets now partitioned to

(2M)h/(4M/s1/h)h = s/2h small cubes. As πA⊥(S) has s elements, there must be at least two that are in the

same cube of side length 4M/s1/h.

Corollary 2.3: Let us suppose that we have an l-dimensional lattice L ⊂ Mn×k(C), where each of the basis

elements yi has norm less than a constant K, and a subspace A ⊂ Mn×k(C). The subset L(M) has such a non

zero matrix z that

||πA⊥(z)|| ≤ 2l/h+2hKM
h−l
h ,

where h is the real dimension of the space A⊥ and M ≥ 4.

Proof: Let us suppose that y1, . . . , yl is the basis of the lattice L. Every element of L is a Z-linear combination

of the basis elements and we have the inequality

||n1y1 + · · ·+ nlyl|| ≤
l∑
i=1

|ni|||yi||.

Therefore, for any element x ∈ L(M), we have

||x|| ≤ KM.

The set L(M/2) has now at least (M/2)l elements. According to Lemma 2.2 there is then a pair of elements xi

and xj such that

||πA⊥(xi)− πA⊥(xj)|| ≤ 4hK2l/h
M

M l/h
.

As πA⊥ is linear we have that ||πA⊥(xi − xj)|| ≤ 2l/h+2hK M
M l/h . Both xi and xj belong to L(M/2) and

therefore xi − xj ∈ L(M) and we are done.

B. Upper bounds for the decay

Let us give one more tool before stating the main result of the section.

Let us suppose that X is a matrix in Mn×k(C). Let the set of row indices J = {1, . . . , n} be partitioned to

subset J1, . . . , Jr. If we stack the rows in Ji, we will get a matrix in M|Ji|×k(C). Let us denote it with Xi. We

then have the following.

Lemma 2.4: Let us suppose that X ∈Mn×k(C) and write |Ji| = ji. We then have

det(XX†) ≤ det(X1X
†
1) · · · det(XrX

†
r ) ≤

r∏
i=1

||Xi||F 2ji

jjii
.

Proof: The first inequality is the generalized Hadamard inequality [4] page 254. The second inequality is then

an application of Hadamard inequality to the rows of Xi’s and AM-GM inequality.

The following theorem states that if the single user codes are large the overall code corresponding to each error

event will automatically include matrices with small determinants. This can be seen as a trade-off between rate and

coding gain.
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Theorem 2.5 (Generalized pigeon hole bound): Let us suppose we have a MIMO MAC code (L1(N1),L2(N2), . . . ,LU (NU ))

of U users. Let us also suppose that each user has nt transmission antennas and that the individual codes Li are

2knt-dimensional lattice codes in Mnt×k(C), where k ≥ Unt. We then have that

DIu(Ni1 , . . . , Niu) ≤ K
u−1∏
l=1

N
− n2

t (u−l)
k−nt(u−l)

il

and in particular

DIu(N) ≤ K

Nα
,

where α =
∑u−1
l=1

n2
t (u−l)

k−nt(u−l) and K is a fixed constant.

The proof of the previous theorem is given only in the Appendix, but let us describe the proof in a simple case

of three users in the following example.

Example 2.1: Let us suppose we have U = 3 users, each transmitting with nt = 1 antenna, and that the code

length is k = Unt = 3. For simplicity, let us also assume that N1 = N2 = N3 = N . Let us now study the behavior

of the decay function D(N) in this scenario.

Let us first fix some small C3 ∈ L3(N). Hence ||C3|| = O(1). Let W3 = R(C3) and let V3 = W⊥3 be its

orthogonal complement. The corresponding orthogonal projection is π3 : M1×3(C)→ V3.

A subspace V3 has dimR(V3) = 2ntk−dimR(W3) = 6−2 = 4 so the image π3(L2(N)) falls into a 4-dimensional

hypercube with side length of size O(N). We also have |L2(N)| = θ(N6) and therefore by pigeon hole principle,

we have such C2 ∈ L2(N)) that

π3(C2) = O(
4

√
N4

N6
) = O(N−

1
2 ).

Now similarly build V2 = W⊥2 by setting W2 = R(C2, C3). This gives dimR(V2) = 2. And again we find such

C1 that

π2(C1) = O(

√
N2

N6
) = O(N−2)

with π2 : M1×3(C)→ V2 being an orthogonal projection.

Hence we have a matrix A in our code such that the determinant det(AA†) is by Lemmas 7.1 and 2.4 of size

O(N2·(− 1
2 ) ·N2·(−2))) = O(N−5)

and hence D(N) = O(N−
5
2 ).

Note that in the special case of this example A is a square matrix and hence it is not necessary to use Lemma

7.1. It is enough to notice that det(AA†) = |det(A)|2 and

det(A) =


C1

C2

C3

 =


π2(C1)

C2

C3

 =


π2(C1)

π3(C2)

C3


and then use Lemma 2.4 to estimate the size of the determinant det(AA†).
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III. LOWER BOUNDS FOR THE DECAY BY EXPLICIT CONSTRUCTIONS

Due to the strongly algebraic nature of our constructions in Section V-B, we will only preview the results of that

section here and give a simple example of our approach.

The main result in V-B is a completely general construction for MIMO MAC codes where each of the U

single users with nt antennas, will have a lattice code Li in Mnt×Unt(C) and where the overall MAC code

CU,nt = (L1,L2, . . . ,LU ) has the generalized full rank property and promising decay properties. The goal of these

constructions is to give a general construction of MIMO MAC codes that would have as good as possible decay in

every error event.

The natural comparison for the following result is the upper bound of Theorem 2.5. Let CU,nt be a MAC code

build in Section V-B. We then have the following two results.

Result 1 (Theorem 6.5): For a code CU,nt there exists a constant K > 0 such that

DIu(Ni1 , . . . , Niu) ≥


K

(Ni1 ···Niu )(U−1)nt
if u > 1

K if u = 1.

In particular we have

DIu(N) ≥

 K
Nu(U−1)nt

if u > 1

K if u = 1.

The following result proves that in the case where we let only the rate of a fixed single user grow we achieve

the optimal decay.

Result 2 (Corollary 6.6): For a code CU,nt there exists constants k > 0 and K > 0 such that

k

N (U−1)nt
≤ D(N1 = N,N2 = . . . = NU = 1) ≤ K

N (U−1)nt
.

Let us now give an example of our constructions.

Example 3.1: Let us suppose that we have U users, each having a single antenna.

We can now find a degree U cyclic extension L/Q(i) and have the Minkowski embedding ψ : L 7→ CU , where

ψ(x) = (x, σ(x), . . . , σn−1(x)),

for x ∈ L. If we concentrate on the ring of algebraic integers OL, we have that ψ(OL) is a 2n-dimensional lattice

in OL.

Let us now suppose that p is a prime number which is totally inert in the extension L/Q. We can then modify

the embedding ψ to get U single user lattice codes ψi,p−1(OL), where

ψi,p−1(x) = (x, σ(x), . . . p−1σi−1(x) . . . , σU−1(x)).

A U user MAC code CU,1 can now be defined by

(ψ1,p−1(OL), ψ2,p−1(OL) . . . , ψU,p−1(OL)),

where each of the single user codes are previously defined 2U -dimensional lattices in CU .
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The overall code matrices in this MAC code then have the form

p−1x1 σ(x1) σ2(x1) . . . σU−1(x1)

x2 p−1σ(x2) σ2(x2) . . . σU−1(x2)

x3 σ(x3) p−1σ2(x3) . . . σU−1(x3)
...

...
...

...

xU σ(xU ) σ2(xU ) . . . p−1σU−1(xU )


. (5)

The key to the generalized rank criteria is the choice of the element p. By analyzing the p-adic valuation of the

determinant of the overall code matrix (5), we find that when all the rows are non-zero, the valuation of the

determinant can not be ∞ and therefore the determinant can not be zero.

We could have also used for example transcendental element on place of p−1, but as we will later see, from the

decay point of view it is crucial that the element p−1 is from the field L. By such choice of the diagonal element,

all the elements in codematrices are from a low degree number field L and we can effectively use results from

Diophantine approximation to prove results about the decay.

If we suppose that U = 3 Theorem 6.5 gives us that

D{1,2,3}(N,N,N) ≥ K

N6
,

for some constant K.

IV. LOWER BOUNDS FOR THE DMT OF OUR CONSTRUCTIONS

It was proved in [21] and [12] that if a 2ntk dimensional lattice code L ⊂ Mnt×k(C) has the NVD property,

then it is DMT optimal in the single user nt×nr MIMO channel. It is a natural idea to see what can be said about

the DMT of the codes constructed in this paper based on the lower bounds for the decay of determinants.

Having obtained in Theorem 8.3 a lower bound on the minimum determinant among all the nonzero code matrices

in code CU,nt , in this section we will apply this bound to investigate the diversity-multiplexing gain tradeoff (DMT)

achieved by CU,nt . We note that in this section the analyzed codes CU,nt are the MAC codes we constructed in

Section V-B.

A. Some Preliminaries

We first introduce a power constraint on the transmitted signal matrices and reformulate the MIMO multiple-access

channel as

Y =

U∑
i=1

κiHiXi +W,

where Hi ∈ Mnr×nt(C) is the channel matrix of the ith user, and W ∈ Mnr×k(C) is the white noise matrix;

both are defined as before. Realizations of Hi are known perfectly to the receiver but are unknown to the users.

Xi ∈ Li (Ni) ⊂Mnt×k(C) is the signal matrix transmitted by the ith user. κi ∈ R+ is an amplification factor such
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that the average signal-to-noise power ratio (SNR) of the ith user equals SNR, i.e.,

κ2
i

1

|Li (Ni) |
∑

Xi∈Li(Ni)

‖Xi‖2 = SNR.

Having specified Ni, the transmission rate, in bits per channel use, of the ith user is

Ri =
1

k
log2 |Li (Ni) |.

By increasing the rate Ri as a linear function of log2 SNR as SNR → ∞, following [18], we say the ith user

transmits at multiplexing gain ri if

lim
SNR→∞

Ri
log2 SNR

= ri.

Equivalently, we shall adopt the dotted-equality notation 1 introduced in [18] to rewrite the above as

|Li (Ni) |
.
= SNRkri .

As Li (Ni) =
{∑2ntk

j=1 bjBi,j |bj ∈ Z, |bj | ≤ Ni
}

and |Li (Ni) | = (2Ni + 1)
2ntk, transmitting at multiplexing gain

ri implies that

Ni
.
= SNR

ri
2nt . (6)

On the other hand, note that the basis matrices Bi,1, . . . , Bi,2ntk are constant matrices and are independent of SNR.

It can be shown that for Ni>̇SNR0

1

|Li (Ni) |
∑

Xi∈Li(Ni)

‖Xi‖2
.
= N2

i .

Hence, the amplification factor associated with a fixed multiplexing gain ri is

κ2
i

.
= SNR1− ri

nt . (7)

Finally, we say the code CU,nt achieves diversity gain d(r1, . . . , rU ) if the codeword error probability Pcwe(r1, . . . , rU )

subject to the joint maximal-likelihood decoding of (X1, . . . , XU ) at the receiver satisfies

Pcwe(r1, . . . , rU )
.
= SNR−d(r1,...,rU ).

The function d(r1, . . . , rU ) is also termed the MIMO MAC DMT for code CU,nt . It is known [2], [7] that

d(r1, . . . , rU ) is upper bounded by

d(r1, . . . , rU ) ≤ min

d∗unt,nr
(∑
i∈I

ri

)
|
I ⊆ {1, 2, . . . , U},

|I| = u, u = 1, . . . , U

 (8)

where the RHS represents the best possible diversity gain that can be achieved by any MIMO MAC codes when

transmitted at multiplexing gains r1, . . . , rU , respectively. The function d∗m,n(r) is the optimal DMT for a point-

to-point MIMO channel with m transmitting and n receiving antennas and transmitting at multiplexing gain r.

In particular, d∗m,n(r) is a piecewise linear function obtained by joining the points (r, (m − r)(n − r)) for r =

0, 1, . . . ,min{m,n}.

1Let f(SNR) and g(SNR) be two functions of SNR. We say f(SNR) .= g(SNR) if limSNR→∞
f(SNR)
log2 SNR = limSNR→∞

g(SNR)
log2 SNR . The dotted

inequalities such as ≥̇, ≤̇, >̇, and <̇ are defined similarly.
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B. Lower Bounds on d(r1, . . . , rU )

To analyze d(r1, . . . , rU ) for code CU,nt , let EI denote the event that only the signals of users in set I, I ⊆

U = {1, 2, . . . , U}, are erroneously decoded. Clearly, the overall error event is E =
⋃
I⊆U EI , and the codeword

error probability is upper bounded by

Pcwe(r1, . . . , rU ) = Pr{E} ≤
∑
I⊆U

Pr {EI} . (9)

To further upper-bound the probability of error event EI we employ the bounded-distance decoder introduced in

[21]. Specifically, given the channel matrices Hi, i = 1, . . . , U , the bounded-distance decoder searches for code

matrices (X1, . . . , XU ) such that
∥∥∥Y −∑U

i=1 κiHiXi

∥∥∥ < 1
2dmin(H1, . . . ,HU ), where dmin(H1, . . . ,HU ) is the

minimum distance among matrices
∑U
i=1 κiHiXi for all Xi ∈ Li(Ni), that is,

dmin(H1, . . . ,HU ) = min


∥∥∥∥∥
U∑
i=1

κiHi∆Xi

∥∥∥∥∥ | ∆Xi ∈ Li(2Ni) and

not all ∆Xi = 0

 .

It should be noted that as the matrices H1, . . . ,HU are random, the minimum distance dmin(H1, . . . ,HU ) is indeed

a nonnegative random variable. Furthermore, it is clear that

Pr{E} ≤ Pr

{
‖W‖ ≥ 1

2
dmin(H1, . . . ,HU )

}
where W is the noise matrix, and the RHS represents an upper bound on the probability of decoding error/failure

of such bounded distance decoder. Now focusing on the error event EI , where only the signals of users in set

I = {i1, . . . , iu} and |I| = u are decoded in error. We define the corresponding minimum distance in this case by

dmin(Hi1 , . . . ,Hiu) = min


∥∥∥∥∥∑
i∈I

κiHi∆Xi

∥∥∥∥∥ | ∆Xi ∈ Li(2Ni) and

not all ∆Xi = 0

 .

Similarly, it can be shown that

Pr{EI} ≤ Pr

{
‖W‖ ≥ 1

2
dmin(Hi1 , . . . ,Hiu)

}
. (10)

The lower bound on the minimal determinant given in Theorem 8.3 then allows us to obtain a lower bound on

dmin(Hi1 , . . . ,Hiu) and therefore leads to a further upper bound on the error probability Pr{EI}. The proof of the

following Theorem will be given in Appendix.

Theorem 4.1: For a MIMO MAC code CU,nt ⊂ MUnt×k(C) of U users defined as before, assume the users

transmit at multiplexing gains r1, . . . , rU , respectively. The probability of event EI that only the signals of users

in set I, I ⊆ U , are erroneously decoded is upper bounded by

Pr{EI} ≤̇

 SNR−d
∗
unt,nr

(U
∑
i∈I ri), if |I| = u > 1,

SNR−d
∗
nt,nr

(ri), if I = {i}.
(11)

Applying Theorem 4.1 to the union bound of Pr{E} in (9) we immediately arrive at the following corollary.

This gives a lower bound on the MAC DMT for code CU,nt .
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Corollary 4.2 (Lower bound on d(r1, . . . , rU )): For a MIMO MAC code CU,nt ⊂ MUnt×k(C) of U users

defined as before, the corresponding MAC DMT is lower bounded by

d(r1, . . . , rU ) ≥ min

 d∗unt,nr
(
U
∑
i∈I ri

)
, d∗nt,nr (rj)|

I ⊆ U , |I| = u > 1, j ∈ U

 . (12)

In particular, for the symmetric MIMO MAC where r1 = r2 = · · · = rU = r, we have

d(r, . . . , r) ≥ min
{
d∗unt,nr (Uur) , d∗nt,nr (r)|u = 2, . . . , U

}
=

 min{d∗2nt,nr (2Ur) , d∗nt,nr (r)}, if r ∈ [0, θ]

min{d∗Unt,nr
(
U2r

)
, d∗nt,nr (r)} if r ∈ [θ, ntU ]

, (13)

where θ = min{ntU ,
nr

U(U+2)}.

Proof: It simply follows from (9), after noting that when SNR→∞ we have

Pcwe(r1, . . . , rU ) ≤
∑
I⊆U

Pr {EI}
.
= max
I⊆U

Pr {EI} .

The second equality in (13) can be shown by arguing similarly as in [2, Sec. VIII] that

min
{
d∗unt,nr (uγ) |u = 2, . . . , U

}
=

 d∗2nt,nr (2γ) if γ ∈ [0, θ′]

d∗Unt,nr (Uγ) if γ ∈ [θ′, nt]

where θ′ = min{nt, nr
U+2} and by setting γ = Ur.

To summarize, in this section we have presented a general lower bound (12) on the DMT performance of code

CU,nt . The lower bound for the symmetric case is given in (13). While the optimal MAC DMT [2] for all possible

MIMO MAC codes is given by

d∗U,nt,nr (r1, . . . , rU ) = min

 d∗unt,nr
(∑

i∈I ri
)
, d∗nt,nr (rj)|

I ⊆ U , |I| = u > 1, j ∈ U

 . . (14)

Below we apply the bounds to study the DMT performance of code CU,nt over some MIMO MACs. For

simplicity, we will focus only on the symmetric case. In Fig. 1 we present the bounds on the DMT performance

of CU,nt for nt = 2, nr = 4 and U = 3. The “optimal” DMT curve represents the optimal MIMO MAC

DMT d∗U,nt,nr (r1, . . . , rU ) given in (14). It is known [2] that the maximal possible multiplexing gain for this

channel is min{Unt,nr}
U = 4

3 . This means that whenever r > 4
3 the corresponding diversity gain must be zero, and

communications over this channel cannot be reliable. Furthermore, Tse et al. [2] show that for r ≤ min{Unt,nr}
U+1 = 1

the optimal DMT is dominated by the single-user performance. The remaining region where 1 ≤ r ≤ 4
3 is termed

the “antenna pooling” region [2] and the DMT performance is dominated by the case when all user’s signals are

erroneously decoded. From Fig. 1 we see that the code Cu,nt is in fact MAC-DMT optimal for r ≤ 0.24.

In Fig. 2 we present the bounds on the DMT performance of code CU,nt for nt = 2, nr = 8 and U = 3,

corresponding to the case without antenna pooling region. The optimal MAC-DMT is completely dominated by

the single-user performance. It is seen from Fig. 2 that the code CU,nt remains to be DMT optimal whenever

r ≤ 23
45 ≈ 0.311. Fig. 3 shows the bounds on the DMT performance of code CU,nt for nt = 3, nr = 6 and U = 2.

We see that the code CU,nt is DMT optimal whenever r ≤ 0.6.
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Fig. 1. Bounds on the DMT performance of code CU,nt for nt = 2, nr = 4 and U = 3

V. CONSTRUCTIONS

In this section we are giving our general constructions, having properties discussed in Section III. As explained

there the main idea is to build codes having as good as possible decay. Unfortunately we are forced to use several

techniques from different parts of number theory and will assume that the reader has working knowledge on the

topic. We will also skip some of the proofs as they are purely number theoretical and rather standard.

First in Subsection V-A we analyze the single antenna two user case thoroughly. Then in Subsection V-B we

will generalize this construction for U users with nt transmit antennas.

A. A 2-user code

In [14] Badr and Belfiore introduced a 2-user single antenna MAC code where the matrix coefficients were

from the field Q(i,
√

5) and had the generalized full rank property. It was proved in [5] that their construction

had particularly good decay behavior and that the key to this behavior was that the algebraic elements in the code

matrices were from a numberfield of low degree (4 to be exact). We will now study a general version of their
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Fig. 2. Bounds on the DMT performance of code CU,nt for nt = 2, nr = 8 and U = 3

construction and study under which conditions it is possible to achieve the full rank condition under the extra

condition that the coefficients of the codematrices are from a degree 4 number field.

Let us now suppose we have a complex quadratic field K and a degree two extension L/K and denote the

Galois group G(L/K) with < σ >.

If a and b are non zero elements from L, we can define an embedding ψa,b : OK 7→ C2 where

ψa,b(x) = (ax, bσ(x)),

for x ∈ OL. The following is then a standard result.

Proposition 5.1: We have that ψa,b(OL) is a 4-dimensional lattice in C2, has NVD property and is therefore

DMT optimal in 1× 1 MIMO channel.

Let us now suppose we have chosen elements a, b, c and d from the field L and that the first user has code

ψa,b(OL) and the second user has code ψc,d(OL). The joint codewords in the MAC code (ψa,b(OL), ψc,d(OL))
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Fig. 3. Bounds on the DMT performance of code CU,nt for nt = 3, nr = 6 and U = 2

now have form ax bσ(x)

cy dσ(y)

 .

We are now interested in when this construction will yield codes with generalized full rank property.

We will denote with O∗L the ring of integers of L without zero element.

Theorem 5.2: Let K/Q and L/K be two field extensions of degree 2 and a, b, c, d ∈ L. Let also σ be the

non-trivial element in the Galois group Gal(L/K). Define

C =


 ax bσ(x)

cy dσ(y)

 |x, y ∈ O∗L
 .

There exists a matrix in C with zero determinant if and only if∣∣∣∣∣∣ N(a) N(b)

N(c) N(d)

∣∣∣∣∣∣ = 0, (15)

where the function N = NL/K denotes the norm of extension L/K.
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Proof: Assume first that we have a matrix  ax bσ(x)

cy dσ(y)


with zero determinant. This means that adxσ(y) = bcσ(x)y, which gives N(a)N(d)N(x)N(σ(y)) = N(b)N(c)N(σ(x))N(y).

Continuing we get N(a)N(d) = N(b)N(c) i.e. N(a)N(d)−N(b)N(c) = 0.

Assume then that N(a)N(d)−N(b)N(c) = 0. If b or c is zero then N(a)N(d) = 0 i.e. a or d is zero and then

for all x, y ∈ OL we have ∣∣∣∣∣∣ ax bσ(x)

cy dσ(y)

∣∣∣∣∣∣ = 0.

Otherwise N(adbc ) = 1. Then by Hilbert 90 we have some z ∈ L such that ad
bc = σ(z)

z . Then write z = w
n with

w ∈ O∗L and n ∈ Z. This gives ad
bc = σ(w)

w i.e. adw − bcσ(w) = 0. This means that the determinant of aw bσ(w)

c1 dσ(1)


is zero.

Let us now summarize the properties of the codes of previous type.

• The single user codes are DMT optimal lattice codes.

• The MAC code has generalized full rank property.

• The overall MAC code matrices have coefficients from a number field of low degree.

In the next section we will generalize these properties for the MAC codes. The reader can check Equation (18)

to see that when restricting to a single antenna case our general construction has indeed the form described in this

section.

B. Construction of multi access codes with several transmission antennas

From now on we concentrate on the scenario where we have U ∈ Z+ users and each user has nt ∈ Z+

transmission antennas. Throughout this section we assume K to be an imaginary quadratic extension of Q with

class number 1. The field L is a cyclic Galois extension of K of degree Unt, such that L = K(α) with α ∈ R, σ

a generating element in Gal(L/K) and p ∈ OK an inert prime in L/K. We also define τ = σU and F to be the

fixed field of τ . So we have [L : F ] = nt, [F : K] = U , Gal(L/F ) =< τ >, and Gal(F/K) =< σF > where

σF is a restriction of σ in F . Let v = vp be the p-adic valuation of the field L. In this section, when we say that

L/K, p, and σ are suitable we mean that they are as above.

We skip the proof of the following proposition.

Proposition 5.3: For every complex quadratic field K, having class number 1, and for any U and for any nt we

have a suitable degree ntU extension L/K, prime p ∈ OK and automorphism σ ∈ Gal(L/K).

We are now ready to begin to build our MAC codes.
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We can define an associative F -algebra

D = (L/F, τ, p) = L⊕ uL⊕ u2L⊕ · · · ⊕ unt−1L,

where u ∈ A is an auxiliary generating element subject to the relations xu = uτ(x) for all x ∈ L and unt = p.

The choice of p and fields L and F guarantees that D is a division algebra.

The OL-module

Λ = OL ⊕ uOL ⊕ · · · ⊕ unt−1OL,

where OL is the ring of integers, is a subring in the algebra (L/F, τ, p). We refer to this ring as the natural order.

Let us now suppose that we have an element x ∈ Λ. It can be written as
∑nt−1
i=0 xiu

i, where xj ∈ OL for all

j = 1, . . . , nt. We now have the left regular representation ψ : Λ 7→Mnt(OL), where ψ(x) =

x1 pτ(xnt) pτ2(xnt−1) . . . pτnt−1(x2)

x2 τ(x1) pτ2(xnt) . . . pτnt−1(x3)

x3 τ(x2) τ2(x1) . . . pτn−1(x4)
...

...
...

...

xnt−1 τ(xnt−2) τ2(xnt−3) . . . pτnt−1(xnt)

xnt τ(xnt−1) τ2(xnt−2) . . . τnt−1(x1)


. (16)

If the context is clear we can also use the notation M(x1, · · · , xnt) = ψ(x).

Let us suppose we consider U user MAC scenario, where each of the single users has nt transmit antennas. Note

that in this definition we are using the notation M(x1, . . . , xnt) = ψ(x1 + x2u+ · · ·+ xntu
nt−1).

Definition 5.1 (MAC code): Define Mj = M(xj,1, xj,2, . . . , xj,nt) for all j = 1, . . . , U . In our multi access

system the code Cj of jth user consists of nt × Unt matrices Bj =(
Mj , σ(Mj), σ

2(Mj), . . . , p
−mσj−1(Mj), . . . , σ

U−1(Mj)
)

where m is any rational integer strictly greater than U(nt−1)
2 and xj,l 6= 0 for some l. Here m is same for all the

users. Then the whole code CU,nt consists of matrices

A =


B1

B2

...

BU

 ,

where Bj ∈ Cj for all j = 1, . . . , U . This means that the matrices A ∈ CU,nt have form
p−mM1 σ(M1) . . . σU−1(M1)

M2 p−mσ(M2) . . . σU−1(M2)
...

...
...

MU σ(MU ) . . . p−mσU−1(MU )

 . (17)
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The code depends on how we did choose L/K, p, σ, and m, so to be precise, we can also refer to CU,nt with

CU,nt(L/K, p, σ,m). Let us call the family of all such codes CU,nt(L/K, p, σ,m) (i.e. codes constructed with any

suitable L/K, p, σ, and m) by CU,nt . That is

CU,nt =
⋃

L/K,p,σ,m

{CU,nt(L/K, p, σ,m)}

where L/K, p, σ, and m are any suitable ones.

According to Proposition 5.3 we can always find suitable L/K, p, σ, and m for any U ∈ Z+ and nt ∈ Z+. We

therefore have the following theorem.

Theorem 5.4: For any choice of U ∈ Z+ and nt ∈ Z+ we have CU,n 6= ∅.

We will skip the proof of the following proposition, stating that each of the single user codes satisfies the NVD

condition and are therefore DMT optimal as a single user MIMO code.

Proposition 5.5: Let CU,nt ∈ CU,nt and Cj be the jth users code in the system CU,nt for some j ∈ 1, . . . , U .

Then the code Cj is a 2Un2
t -dimensional lattice code with the NVD property.

Note that the code CU,1 = CU,1(L/K, p, σ, 1) ∈ CU,1, a code for U users each having one transmission antenna,

consists of matrices of form



p−1x1 σ(x1) σ2(x1) . . . σU−1(x1)

x2 p−1σ(x2) σ2(x2) . . . σU−1(x2)

x3 σ(x3) p−1σ2(x3) . . . σU−1(x3)
...

...
...

...

xU σ(xU ) σ2(xU ) . . . p−1σU−1(xU )


. (18)

Note also that the code C1,nt = C1,nt(L/K, p, σ,m) ∈ C1,nt is a usual single user code multiplied by p−m.

Let us now prove that the defined MAC code satisfies the generalized rank criterion. We need first the following

Lemma.

Lemma 5.6: Let xj ∈ OL for all j = 1, . . . , nt such that xl 6= 0 for some l and min(v(x1), . . . , v(xnt)) = 0.

We then have

det(M(x1, x2, . . . , xnt)) 6= 0

and

v(det(M(x1, x2, . . . , xnt))) ≤ nt − 1.

Proof: The first inequality follows as according to equation (16) M(x1, x2, . . . , xnt) is a matrix representation

of a nonzero element in a division algebra D and determinant of M(x1, x2, . . . , xnt) is the reduced norm. Write M =

M(x1, x2, . . . , xnt) and N = NL/F . Assume first that v(x1) = 0. Then the determinant is N(x1)+py for some y ∈

OL and hence we have v(det(M)) = min(v(N(x1)), v(py)) = 0. Assume then that v(x1), v(x2), . . . , v(xl−1) > 0

and v(xl) = 0 with 1 < l ≤ nt. Notice that in this case all the other elements a of matrix M , than those in the left

lower corner block of side length nt− l+ 1, have v(a) > 0. Either they have coefficient p or they are automorphic
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images of elements x1, x2, . . . , xl−1. Now det(M) = ±pl−1N(xl)+plz for some z ∈ OL since all the other terms

except ±pl−1N(xl) have at most nt − l factors from this left lower corner and hence at least nt − (nt − l) = l

terms have factor p. This gives that v(det(M)) = min(v(pl−1N(xl)), v(plz)) = l − 1 ≤ nt − 1.

Theorem 5.7: Let CU,nt ∈ CU,nt . The code CU,nt is a full rate code and satisfies the generalized rank criterion.

Proof: Let A ∈ CU,nt = CU,nt(L/K, p, σ,m). We may assume that min(v(xj,1), . . . , v(xj,nt)) = 0, for all

j = 1, . . . , U , because otherwise we can divide extra p’s off. That does not have any impact on whether det(A) = 0

or not. The determinant of A is

p−mUnt
U∏
l=1

det(σl−1(Ml)) + y

where v(y) ≥ −m(Unt − 2). We know that v(σl−1(det(Ml))) = v(det(Ml)) because p is from K, i.e. from the

fixed field of σ, and det(Ml) 6= 0 for all l. Therefore

v(p−mUnt
U∏
l=1

det(σl−1(Ml))) = −kUn+

U∑
l=1

v(det(Ml))

that is less or equal to −mUnt + U(nt − 1) = U(nt − 1−mnt) by 5.6. But if we would have det(A) = 0 then

v(y) = v(p−mUnt
U∏
l=1

det(σl−1(Ml)))

and hence v(y) ≤ U(nt − 1−mnt) implying −m(Unt − 2) ≤ U(nt − 1−mnt). This gives 2m ≤ U(nt − 1) i.e.

m ≤ U(nt−1)
2 a contradiction.

Remark 5.1: Using multiblock codes from division algebras as single user codes in the MIMO MAC scenario has

been done before for example in [14], [6] and [7]. In [14] the full rank condition for codes with nt > 1 is achieved

by using transcendental elements. In [6] the same effect is achieved with algebraic elements of high degree.

C. Examples

Let us now give a few examples of our general code constructions. In Table 1 we have collected some examples

of suitable fields K and L and inert primes p, fulfilling the conditions of Proposition 5.3. If K = Q(i) then piOK
refers to the inert prime and if K = Q(

√
−3) then p√−3OK is inert. The inert primes and fields L are found by

looking at totally real subfields of Q(ζh)/Q and then composing them with the field K.

TABLE I

[L : K] L pi p√−3

3 K(ζ7 + ζ−1
7 ) 2 + i

√
−3

4 K(ζ17 + ζ417 + ζ−4
17 + ζ−1

17 ) 2 + i
√
−3

5 K(ζ11 + ζ−1
11 ) 1 + i 2 +

√
−3

6 K(ζ13 + ζ−1
13 ) 1 + i 2 +

√
−3

7 K(ζ29 + ζ1229 + ζ−12
29 + ζ−1

29 ) 1 + i
√
−3
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We get a code C3,1 = C3,1(Q(i, ζ7 +ζ−1
7 ), 2+ i, σ, 1) i.e. 3-user code with each user having 1 antenna by setting

L = K(ζ7 + ζ−1
7 ), K = Q(i), p = 2 + i, and Gal(L/K) =< σ >. Now the actual code consists of matrices

p−1x σ(x) σ2(x)

y p−1σ(y) σ2(y)

z σ(z) p−1σ2(z)


where x, y, z ∈ O∗L.

We get a code C2,2 = C2,2(Q(
√
−3, ζ17 + ζ4

17 + ζ−4
17 + ζ−1

17 ),
√
−3, σ, 2) i.e. 2-user code with each user having

2 antennas by setting L = K(ζ17 + ζ4
17 + ζ−4

17 + ζ−1
17 ), K = Q(

√
−3), p =

√
−3, m = 2 > U(nt−1)

2 , and

Gal(L/K) =< σ >. Now the actual code consists of matrices
p−2x1 p−1σ2(x2) σ(x1) pσ3(x2)

p−2x2 p−2σ2(x1) σ(x2) σ3(x1)

y1 pσ2(y2) p−2σ(y1) p−1σ3(y2)

y2 σ2(y1) p−2σ(y2) p−2σ3(y1)


where x1, x2, y1, y2 ∈ OL and x1 6= 0 or x2 6= 0 and y1 6= 0 or y2 6= 0.

VI. ON THE DECAY FUNCTION OF CODES IN CU,nt

In this section we will prove an asymptotic lower bound for the decay function of codes from CU,nt . In [5] the

authors give a general asymptotic upper bound for a decay function in the case that only one user is properly using

the code i.e. N1 can be anything but N2 = · · · = NU = 1 are restricted. We will see that in this special case our

codes have asymptotically the best possible decay.

Lemma 6.1: [22, Theorem 7.8.8] If A,B ∈Mn(C) are positive definite, we have

(det(A+B))1/n ≥ det(A)1/n + det(B)1/n,

where n is an integer.

Lemma 6.2: Let us suppose that F is an algebraic number field, D = (L/F, τ, γ) an index n F -central division

algebra and that ψ is a left regular representation of D. If A is block matrix

A =


A1,k · · · A1,k

...
...

An,1 · · · Ak,k


where Ai,j = ψ(xi,j) for some elements xi,j ∈ D, we then have that

det(A) ∈ F.

Proof: The matrix A can be considered as an element in the central simple algebra Mk(D) and the determinant

is then simply the reduced norm of this element. The theory of central simple algebras gives that reduced norm of

any element of Mk(D) belongs to the center.

In the following we use the notation of (17).
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Lemma 6.3: Let CU,nt = CU,nt(L/K, p, σ,m) ∈ CU,nt , A ∈ CU,nt , and let F be the center of the used division

algebra D = (L/F, τ, p). Then for any square matrix A that consists of blocks of form σj(Mi) or p−mσj(Mi) we

have that det(A) ∈ F .

Proof: Each of the matrices Mi in (17) are left regular representation ψ of elements x in D. If ψ(x) = Mi,

then ψ(p−mx) = p−mMi. The isomorphisms σj are elements in Gal(L/Q) and we can therefore see that for any

pair i, j we have p−mσj(Mi) = ψ(y1) and σj(Mi) = ψ(y2), for some y1, y2 ∈ D. The final result is then a direct

consequence of Lemma 6.2.

For the next theorem we need few definitions. Let p(x) = p0 + p1x+ · · ·+ plx
l ∈ Z[x] be a polynomial. Then

we say that H(p(x)) = max{|pj |} is the height of the polynomial p(x) and for an algebraic number α we define

H(α) = H(φα) where φα is the minimal polynomial of α. The next generalization of Liouville’s theorem can be

found from [11, p. 31].

Theorem 6.4: Let α ∈ R be an algebraic number of degree κ, H(α) ≤ h, H(P ) ≤ H and deg(P (x)) = l ∈ Z+.

Then either P (α) = 0 or

|P (α)| ≥ cl

Hκ−1

with c = 1
3κ−1hκ .

Now we are ready to give a lower bound for the decay function of our codes. The proof can be seen as an

extension to the analysis given for BB-code in [5].

Theorem 6.5: For a code CU,nt ∈ CU,nt there exists constant K > 0 such that

DIu(Ni1 , . . . , Niu) ≥


K

(Ni1 ...Niu )(U−1)nt
if u > 1

K if u = 1

Especially

DIu(N) ≥

 K
Nu(U−1)nt

if u > 1

K if u = 1

Proof: If u = 1 then the claim is true by Proposition 5.5. Next we will prove the claim in detail in the case

that u = U and at the end of the proof it is explained how the proof is extended for the case 1 < u < U .

Let CU,nt = CU,nt(L/K, p, σ,m). Field extension L/Q has a basis S1∪S2 where S1 = {1, δ, δ2, . . . , δU−1, β, βδ, βδ2, . . . , βδU−1}

is a basis of F/Q with δ ∈ R, K = Q(β) and β =
√
−w for some positive integer w. Notice that if L = F then

S2 = ∅.

The ring OL has a Z-basis {γ1, . . . , γ2Unt}. Each of these basis elements can be presented as

γl =
∑

a∈S1∪S2

sl,aa,

where sl,a ∈ Q for all l = 1, . . . , 2Unt and a ∈ S1 ∪ S2.
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Let A ∈ CU,n be 
p−mM1 σ(M1) . . . σU−1(M1)

M2 p−mσ(M2) . . . σU−1(M2)
...

...
...

MU σ(MU ) . . . p−mσU−1(MU )


and Mj = M(xj,1, xj,2, . . . , xj,nt) be

xj,1 pτ(xj,nt) pτ2(xj,nt−1) . . . pτnt−1(xj,2)

xj,2 τ(xj,1) pτ2(xj,nt) . . . pτnt−1(xj,3)

xj,3 τ(xj,2) τ2(xj,1) . . . pτnt−1(xj,4)
...

...
...

...

xj,nt τ(xj,nt−1) τ2(xj,nt−2) . . . τnt−1(xj,1)


as usual.

Now for any j = 0, . . . , Unt − 1 we have

σj(xi,h) =

2Unt∑
l=1

ui,h,lσ
j(γl)

where ui,h,l ∈ Z and |ui,h,l| ≤ Ni for all i, h and l.

Then the determinant det(A) is a sum consisting of Unt! elements of form

p−f
Unt∏
j=0

σj(xij ,hj ) = p−f
Unt∏
j=0

(

2Unt∑
l=1

uij ,hj ,lσ
j(γl))

where f ≤ kUnt and ij gets exactly nt times all the values 1, . . . , U and hj gets values from {1, . . . , nt}.

Now substituting γl =
∑
a∈S1∪S2

sl,aa gives that the determinant is a sum consisting of elements of form

p−f
Unt∏
j=0

(

2Unt∑
l=1

uij ,hj ,l
∑

a∈S1∪S2

sl,aσ
j(a)).

We also write

σj(a) =
∑

a∈S1∪S2

tj,aa

where tj,a ∈ Q for all j, a and find that p−f
∏Unt
j=0(

∑2Unt
l=1 uij ,hj ,l

∑
a∈S1∪S2

sl,aσ
j(a)) can be written as a sum

of elements of form

K1p
−f

∑
a∈S1∪S2

uaa

where K1 ∈ Q is some constant, ua ∈ Z, and ua = O((N1 . . . NU )nt).

Writing also p using basis S1∪S2 we see that the whole determinant det(A) can be written as a sum of elements

of form ∑
a∈S1∪S2

u′aa

multiplied by some constant K2 and here we have u′a ∈ Z, and u′a = O((N1 . . . NU )nt).
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On the other hand we know that det(A) ∈ F so by uniqueness of basis representation we know that det(A) is

a sum consisting of elements of form ∑
a∈S1

u′aa =

U−1∑
i=0

u′δiδ
i + β

U−1∑
i=0

u′δiβδ
i

and hence

|det(A)| = |K2||
U−1∑
l=0

Hlδ
l + β

U−1∑
l=0

Jlδ
l|,

where Hl, Jl ∈ Z and |Hl|, |Jl| are of size O((N1 · · ·NU )nt) for all l = 0, . . . , U − 1.

Using the fact that δ is real we get

|det(A)| ≥ K2

2
(|
U−1∑
l=0

Hlδ
l|+ |

U−1∑
l=0

Jlδ
l|).

Now using 6.4 and noticing that deg(δ) = U we have

|det(A)| ≥ K

(N1 · · ·NU )(U−1)nt
,

where K is some positive constant.

Assume now that 1 < u < U . Write M = M(Xi1 , . . . , Xiu). It is well known that

rank(MM†) = rank(M) = unt

and hence the determinant of MM† is nonzero.

By Lemma 6.3 we see that det(MM†) ∈ F . MM† is a matrix where the element in the place (̂i, ĵ) where

(i− 1)nt < î ≤ int and (j − 1)nt < ĵ ≤ jnt, is of size O(NiNj). Using these facts we get the wanted result.

Corollary 6.6: For a code CU,nt ∈ CU,nt there exists constants k > 0 and K > 0 such that

k

N (U−1)nt
≤ D(N1 = N,N2 = . . . = NU = 1) ≤ K

N (U−1)nt
.

VII. APPENDIX

In this section we will give proofs of some results that were earlier postponed.

Lemma 7.1: Let c1, c2, . . . , ck, e1, e2, . . . , ek−1 ∈ Cn, and ci−ei ∈ R(ci+1, ci+2, . . . , ck) for i = 1, . . . , k− 1.

Write also

A =



c1

c2

...

ck−1

ck


and B =



e1

e2

...

ek−1

ck


.

Then we have det(AA†) = det(BB†).
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Proof: If k > n then det(AA†) = 0 = det(BB†). If k = n then det(A) is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1

c2

...

ck−1

ck

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1

c2

...

ck−1

ck

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1

e2

...

ck−1

ck

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= · · · =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1

e2

...

ek−1

ck

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
i.e. det(B) and hence det(AA†) = det(BB†).

Assume k < n. Let v1, . . . ,vn−k ∈ Cn be such that v1 ∈ R(c1, c2, . . . , ck, )
⊥\{0}, v2 ∈ R(v1, c1, c2, . . . , ck)⊥\

{0}, ..., vn−k ∈ R(v1,v2, . . .vn−k−1, c1, c2, . . . , ck)⊥ \ {0}. Now (as in the case n = k) we have

det(



c1

...

ck−1

ck

v1

...

vn−k


) = det(



e1

...

ek−1

ck

v1

...

vn−k


)

and hence ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1c
∗
1 . . . c1c

∗
k c1v

∗
1 . . . c1v

∗
n−k

...
...

...
...

ckc
∗
1 . . . ckc

∗
k ckv

∗
1 . . . ckv

∗
n−k

v1c
∗
1 . . . v1c

∗
k v1v

∗
1 . . . v1v

∗
n−k

...
...

...
...

vn−kc
∗
1 . . . vn−kc

∗
k vn−kv

∗
1 . . . vn−kv

∗
n−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is equal to ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1e
∗
1 . . . e1c

∗
k e1v

∗
1 . . . e1v

∗
n−k

...
...

...
...

cke
∗
1 . . . ckc

∗
k ckv

∗
1 . . . ckv

∗
n−k

v1e
∗
1 . . . v1c

∗
k v1v

∗
1 . . . v1v

∗
n−k

...
...

...
...

vn−kc
∗
1 . . . vn−kc

∗
k vn−kv

∗
1 . . . vn−kv

∗
n−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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And since the way we chose v1, . . . ,vn−k this means that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1c
∗
1 . . . c1c

∗
k 0 . . . 0

...
...

...
...

ckc
∗
1 . . . ckc

∗
k 0 . . . 0

0 . . . 0 v1v
∗
1 . . . 0

...
...

...
...

0 . . . 0 0 . . . vn−kv
∗
n−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is equal to ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1e
∗
1 . . . e1c

∗
k 0 . . . 0

...
...

...
...

cke
∗
1 . . . ckc

∗
k 0 . . . 0

0 . . . 0 v1v
∗
1 . . . 0

...
...

...
...

0 . . . 0 0 . . . vn−kv
∗
n−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
because if we write ei = ci−xi where xi ∈ L(ci+1, . . . , ck) then vje

∗
i = vj(ci−xi)∗ = vjc

∗
i −vjx∗i = 0−0 = 0

for all i = 1, . . . , n− 1 and j = 1, . . . , n− k. This gives that

|v1|2 . . . |vn−k|2 det(AA†) = |v1|2 . . . |vn−k|2 det(BB†)

and hence det(AA†) = det(BB†).

The proof of Theorem 2.5: Let us use the notation Cl = (c>l,1, . . . , c
>
l,nt

)> for l = i1, . . . , iu.

Let us first fix some small Ciu ∈ Liu(Niu). Now |Ciu | = O(1). Then write

Wiu = {(x>1 , . . . ,x>nt)
>|xi ∈ R(ciu,1, . . . , ciu,nt)}.

Then let πW⊥iu : Mnt×k(C)→W⊥iu be an orthogonal projection as before.

A subspace W⊥iu has dimR(W⊥iu) = 2ntk− dimR(Wiu) = 2ntk− 2n2
t = 2nt(k− nt). By corollary 2.3 we have

some Ciu−1
∈ Liu−1

(Niu−1
) such that

||πW⊥iu (Ciu−1)|| = O(N

dimR(W⊥iu )−dimR(Liu−1
)

dimR(W⊥
iu

)

iu−1
) = O(N

− nt
k−nt

iu−1
).

Now similarly build Wiu−l for l = 0, . . . , u− 2 by setting

Wiu−l = {(x>1 , . . . ,x>nt)
>|xi ∈ R(ciu,1, . . . , ciu,nt , ciu−1,1,

. . . , ciu−1,nt , . . . , ciu−l,1, . . . , ciu−l,nt)}
(19)
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This gives dimR(W⊥iu−l) = 2ntk − dimR(Wiu−l) = 2ntk − 2n2
t (l + 1) = 2nt(k − ntl − nt). And again, by

corollary 2.3 we find Ciu−l−1
∈ Liu−l−1

(Niu−l−1
) such that

||πW⊥iu−l (Ciu−l−1
)|| = O(N

dimR(W⊥iu−l
)−dimR(Liu−1

)

dimR(W⊥
iu−l

iu−l−1
)

= O(N
− ntl+nt
k−ntl−nt

iu−l−1
)

where πW⊥iu−l
: Mnt×k(C)→W⊥iu−l is an orthogonal projection as before.

Lemma 7.1 gives that if A = (C>i1 , . . . , C
>
iu

)> and B = (πi2(Ci1)>, . . . , πiu(Ciu−1
)>, C>iu)> then det(AA†) =

det(BB†) that is of size

O((

u−2∏
l=0

N
− ntl+nt
k−ntl−nt

iu−l−1
)2nt) = O(

u−1∏
l=1

N
− 2n2

t (u−l)
k−nt(u−l)

il
).

The proof of Theorem 4.1: Given I = {i1, . . . , iu}, we first derive a lower bound on dmin(Hi1 , . . . ,Hiu). Let

HI = [Hi1 · · · Hiu ], AI = diag (κi1Int , · · · , κiuInt), ∆XI = [∆X>i1 · · · ∆X>iu ]>, and ∆X̃I = AI∆XI . Note

that ∥∥∥∥∥∑
i∈I

κiHi∆Xi

∥∥∥∥∥
2

= Tr
(
H†IHI∆X̃I∆X̃†I

)
.

Let λi and `j be respectively the eigenvalues of H†IHI and ∆X̃I∆X̃†I that are ordered as

0 = λ1 = · · · = λunt−Ku < λunt−Ku+1 ≤ · · · ≤ λunt
`1 ≥ `2 · · · ≥ `unt

where Ku = min{unt, nr}. For each t ∈ Z, 1 ≤ t ≤ Ku, we have

dmin(Hi1 , . . . ,Hiu) = min
∆XI 6=0

Tr
(
H†IHI∆X̃I∆X̃†I

)
(a)
≥ min

∆XI 6=0

unt∑
i=unt−Ku+1

λi`i ≥ min
∆XI 6=0

unt∑
i=unt−t+1

λi`i

(b)

≥̇ min
∆XI 6=0

[
unt∏

i=unt−t+1

λi`i

] 1
t (c)
≥ min

∆XI 6=0

[
unt∏

i=unt−t+1

λi

] 1
t
[

(det(AI)DI(Ni1 , . . . , Niu))
2∏unt−t

i=1 `i

] 1
t

(d)

≥̇

[
unt∏

i=unt−t+1

λi

] 1
t
[

(det(AI)DI(Ni1 , . . . , Niu))
2

SNRunt−t

] 1
t

where (a) follows from the mis-match inequality [23], (b) is due to the AM-GM inequality, (c) follows from the

definition of DI(Ni1 , . . . , Niu) and that
∏unt
i=1 `i = det

(
AI∆XI∆X†IA

†
I

)
≥ (det(AI)DI(Ni1 , . . . , Niu))

2, and

(d) is again from the AM-GM inequality and

unt−t∏
i=1

`i≤̇

(
unt−t∑
i=1

`i

)unt−t
≤
∥∥∥∆X̃I

∥∥∥2(unt−t)
≤ SNRunt−t.

Set λi+unt−Ku = SNR−αi for i = 1, . . . ,Ku. Below we below distinguish two cases.
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1) If u > 1, then setting Nij = SNR
rij
2nt , κ2

ij
= SNR1−

rij
nt , and replacing DI(Ni1 , . . . , Niu) by the lower bound

in Theorem 8.3 gives

dmin(Hi1 , . . . ,Hiu)≥̇ max
1≤t≤Ku

SNR−
1
t

∑Ku
i=Ku−t+1 αiSNR

1
t

∑u
j=1(nt−rij )×SNR−

(U−1)
t

∑u
j=1 rij SNR−

unt−t
t .

(20)

2) If u = 1 and I = {i1}, then similarly we have

dmin(Hi1) ≥̇ max
1≤t≤Ku

SNR−
1
t

∑Ku
i=Ku−t+1 αi × SNR

1
t (nt−ri1 )SNR−

nt−t
t ,

as DI(Ni1) ≥̇ 1 from Theorem 8.3.

For simplicity, below we focus only on the case u > 1 as the analysis of the other case follows the same approach.

Note that the norm ‖W‖2 of the noise matrix is a χ2 random variable with 2nrk degrees of freedom. Continuing

from (10), we have

Pr {EI}

≤ Pr

{
‖W‖ ≥ 1

2
dmin(Hi1 , . . . ,Hiu)

}
.
= Pr

{
dmin(Hi1 , . . . ,Hiu) ≤̇ 1

}
(a).
= Pr

 max
1≤t≤Ku


Ku∑

i=Ku−t+1

(1− αi)− U
u∑
j=1

rij

 ≤ 0


= Pr


Ku∑

i=Ku−t+1

(1− αi) ≤ U
u∑
j=1

rij , t = 1, 2, . . . ,Ku


(b).
= SNR−d

∗
unt,nr

(U
∑
i∈I ri),

where (a) follows from the lower bound on dmin(Hi1 , . . . ,Hiu) in (20), and to establish (b) a similar derivation

can be found for example in [19, p.3313].

VIII. CONCLUSION

While this paper concentrated on building and analyzing codes for MIMO-MAC the mathematical methods we

used and developed can hopefully be applied to varied problems related to wireless communication.

Here we have collected some of the main tools we used in this work to the following list.

• Pigeon hole principle in subspace (Section II-A).

• Use of valuation theory to achieve linear independence ( Lemma 5.6).

• Use of Diophantine approximation to achieve Euclidean separation beyond linear independence (Theorem 6.5).

Besides MIMO-MAC these methods might be useful in the study of single user MIMO and interference channels.
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