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Abstract—Mrs. Gerber’s Lemma lower bounds the entropy at
the output of a binary symmetric channel in terms of the entropy
of the input process. In this paper, we lower bound the output
entropy via a different measure of input uncertainty, pertaining
to the minimum mean squared error (MMSE) prediction cost
of the input process. We show that in many cases our bound is
tighter than the one obtained from Mrs. Gerber’s Lemma. As
an application, we evaluate the bound for binary hidden Markov
processes, and obtain new estimates for the entropy rate.

I. I NTRODUCTION

Mrs. Gerber’s Lemma [1] lower bounds the entropy of the
output of a binary symmetric channel (BSC) in terms of the
entropy of the input to the channel. More specifically, ifX ∈
{0, 1}n is ann-dimensional binary random vector with entropy
H(X), Z ∈ {0, 1}n is ann-dimensional binary random vector
with i.i.d. Bernoulli(α) components, statistically independent
of X, andY = X⊕ Z, Mrs. Gerber’s Lemma states that

1

n
H(Y) ≥ h

(

α ∗ h−1

(

1

n
H(X)

))

, (1)

whereh(p) , −p log(p) − (1 − p) log(1 − p) is the binary
entropy function,h−1(·) is its inverse function restricted to
[0, 12 ] and a ∗ b , a(1 − b) + b(1 − a) denotes the binary
convolution between two numbersa, b ∈ [0, 1]. For X i.i.d.,
the inequality (1) is tight.

The inequality (1) is in fact a simple consequence of the
conditional scalar Mrs. Gerber’s Lemma, which states the
following: If U is some random variable,X |U = u ∼
Bernoulli(Pu), and Z ∼ Bernoulli(α) is statistically inde-
pendent of(X,U), we have that

H(X ⊕ Z|U) ≥ h
(

α ∗ h−1 (H(X |U))
)

, (2)

or alternatively,

Eh(α ∗ PU ) ≥ h
(

α ∗ h−1 (Eh(PU ))
)

. (3)

Since the publication of [1], many extensions, generaliza-
tions and results of a similar flavor have been found, see
e.g., [2]–[5]. In this paper, we derive a lower bound on entropy
of the outputY in terms of theminimum mean squared error
predictability of the inputX, as we define next.

Let π be some permutation of the coordinates{1, 2, . . . , n}.
We define the minimum mean squared error (MMSE) pre-
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dictability of a binary vectorX w.r.t. the permutationπ as

MMSEπ(X)

,

n
∑

i=1

MMSE
(

Xπ(i)|Xπ(i−1), Xπ(i−2), . . . , Xπ(1)

)

,

n
∑

i=1

E
(

Var
(

Xπ(i)|Xπ(i−1), Xπ(i−2), . . . , Xπ(1)

))

,

n
∑

i=1

E (P π
i (1− P π

i )) , (4)

where the random variableP π
i is defined as

P π
i , Pr

(

Xπ(i) = 1|Xπ(i−1), Xπ(i−2), . . . , Xπ(1)

)

. (5)

The worst-case MMSE predictability of a binary vectorX is
defined as

MMSE(X) , max
π

MMSEπ(X). (6)

Our main result is the following.

Theorem 1: Let X,Z be two statistically independentn-
dimensional random binary vectors, whereX is arbitrary and
Z is i.i.d. Bernoulli(α). Let Y = X⊕ Z. Then

1

n
H(Y) ≥ h(α) + (1− h(α)) 4

MMSE(X)

n
, (7)

with equality if and only ifX is memoryless withPr(Xi =
1) ∈ {0, 12 , 1} for every i = 1, . . . , n.

In Section II we prove an MMSE version of the conditional
scalar Mrs. Gerber Lemma (2), which implies Theorem 1 as
a simple corollary. In Section III we derive several MMSE-
based extensions of Theorem 1, including a lower bound on
H(Y) for the setting whereZ is not i.i.d. as well as an
upper bound onH(Y). Section IV compares our new bound
to Mrs. Gerber’s Lemma. As an application of Theorem 1,
in Section V we develop a lower bound on the entropy rate
of a binary hidden Markov process, which is shown to be
considerably stronger than Mrs. Gerber’s Lemma in certain
scenarios. Furthermore, our MMSE-based scalar lower bound
derived is combined with a bounding technique developed
in [6] to obtain new estimates on the entropy rate of binary
hidden Markov processes.

II. PROOFS

Mrs. Gerber’s Lemma is proved by first deriving the condi-
tional scalar inequality (2) and then invoking the chain rule for
entropy and convexity of the functiong(u) = h(α ∗ h−1(u))
to arrive at (1), see [1], [7]. Similarly, we begin by proving
an MMSE version of (2) below, from which Theorem 1 will
follow as a simple corollary.

http://arxiv.org/abs/1506.00253v1
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Lemma 1: Let U be a random variable and letX |U = u ∼
Bernoulli(Pu). Denote the MMSE in estimatingX from U
by

MMSE(X |U) , E (Var(X |U)) = E (PU (1 − PU )) . (8)

Let Z ∼ Bernoulli(α) be statistically independent of(X,U).
Then

H(X ⊕ Z|U) ≥ h(α) + (1− h(α)) 4MMSE(X |U),

with equality if and only ifPu ∈ {0, 12 , 1} for any value ofu.

Proof: SinceZ is statistically independent of(X,U) we
have

H(X ⊕ Z|U) = Eh(PU ∗ α). (9)

Let VU , PU − 1
2 and note that

PU ∗ α =

(

1

2
+ VU

)

(1− α) + α

(

1

2
− VU

)

=
1

2
+ (1− 2α)VU . (10)

Recall that the Taylor series expansion of the binary entropy
function around12 is

h

(

1

2
+

p

2

)

= 1−
∞
∑

k=1

log(e)

2k(2k − 1)
p2k, (11)

and therefore, by (10) we have

h(PU ∗ α) = 1−
∞
∑

k=1

log(e)

2k(2k − 1)
(1− 2α)2k(2VU )

2k

≥ 1− 4V 2
U

∞
∑

k=1

log(e)

2k(2k − 1)
(1− 2α)2k (12)

= 1− 4V 2
U + 4V 2

U

(

1−
∞
∑

k=1

log(e)

2k(2k − 1)
(1 − 2α)2k

)

= 1− 4V 2
U + 4V 2

U · h
(

1

2
+

1− 2α

2

)

= 1− 4V 2
U (1− h(α)) , (13)

where (12) follows from the fact that|2VU | ≤ 1, and is
satisfied with equality if and only ifVU ∈ {− 1

2 , 0,
1
2}, which

implies thatPU ∈ {0, 12 , 1}. Substituting (13) into (9) gives

H(X ⊕ Z|U) ≥ 1− (1− h(α)) 4E(V 2
U )

= 1− (1− h(α)) 4E

(

1

2
− PU

)2

= h(α) + (1− h(α)) 4E (PU (1− PU )) ,

as desired.

Remark 1: Note that the only property of the binary entropy
function used in the proof above is that all coefficients of
(nonzero) even order in its Taylor expansion around1

2 are
negative, whereas all odd coefficients are zero. It follows that
for any functiong : [0, 1] 7→ R whose Taylor expansion around
1
2 is of the form

g

(

1

2
+

p

2

)

= c0 −
∞
∑

k=1

ck(p)
2k,

whereck ≥ 0 for all positivek we have

Eg (α ∗ PU ) ≥ g(α) + (c0 − g(α)) 4MMSE(X |U).

Theorem 1 now follows as a straightforward corollary of
Lemma 1.

Proof of Theorem 1: By the chain rule for entropy, for
any permutationπ we have

H(Y) =
n
∑

i=1

H
(

Yπ(i)|Yπ(i−1), . . . , Yπ(1)

)

=

n
∑

i=1

H
(

Xπ(i) ⊕ Zπ(i)|Yπ(i−1), . . . , Yπ(1)

)

(14)

≥
n
∑

i=1

h(α) + (1− h(α)) 4MMSE
(

Xπ(i)|Yπ(i−1), . . . , Yπ(1)

)

.

(15)

Clearly

MMSE
(

Xπ(i)|Yπ(i−1), . . . , Yπ(1)

)

≥ MMSE
(

Xπ(i)|Yπ(i−1), . . . , Yπ(1), Zπ(i−1), . . . , Zπ(1)

)

= MMSE
(

Xπ(i)|Xπ(i−1), . . . , Xπ(1), Zπ(i−1), . . . , Zπ(1)

)

= MMSE
(

Xπ(i)|Xπ(i−1), . . . , Xπ(1)

)

, (16)

where the last equality follows since the random variables
{Zi}ni=1 are statistically independent of{Xi}ni=1. Thus, for
any permutationπ we have

H(Y) ≥ nh(α)

+ (1− h(α)) 4

n
∑

i=1

MMSE
(

Xπ(i)|Xπ(i−1), . . . , Xπ(1)

)

,

(17)

and (7) follows by maximizing (17) w.r.t. π. By
Lemma 1, the inequality (15) is tight if and only if
Pr
(

Xπ(i) = 1|Yπ(i−1), . . . , Yπ(1)

)

∈ {0, 12 , 1} for everyi and
every realization of the vector

(

Yπ(i−1), . . . , Yπ(1)

)

, whereas
for 0 < α < 1 the inequality (16) is tight if and only ifX
is memoryless. Thus, (7) holds with equality if and only if
X is memoryless withPr(Xi = 1) ∈ {0, 12 , 1} for every
i = 1, . . . , n.

III. E XTENSIONS

In this section we derive several simple extensions of our
main results. Since the proofs are quite similar to those of
Lemma 1 and Theorem 1, we omit the full details and only
sketch the differences instead.

We begin with a straightforward extension of Theorem 1
to the conditional entropyH(Y|W ) whereX may depend on
W , while Z andW are statistically independent.

Theorem 2: Let W be some random variable, and letX,Z
be two n-dimensional random binary vectors, whereX is
arbitrary andZ is i.i.d. Bernoulli(α). Assume that(X,W )
is mutually independent ofZ, and letY = X⊕ Z. Then

1

n
H(Y|W ) ≥ h(α) + (1− h(α)) 4

MMSE(X|W )

n
,
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with equality if and only ifX|W = w is memoryless with
Pr(Xi = 1|W = w) ∈ {0, 12 , 1} for every i = 1, . . . , n and
everyw.

Proof: The proof is omitted as it follows the exact same
steps as in the proof of Theorem 1, where the conditioning on
W is added where relevant.

Next, we show that our lower bound can also be extended to
the case of a binary noisy channel with memory. To that end,
we first need to derive a simple generalization of Lemma 1.

Lemma 2: Let U = (T,W ), whereT andW are statisti-
cally independent. LetX andZ be conditionally independent
givenU , such thatX |U = (t, w) ∼ Bernoulli(Pt) andZ|U =
(t, w) ∼ Bernoulli(αw). Let MMSE(X |U) = MMSE(X |T )
be as defined in (8). Then

H(X ⊕ Z|U) ≥ H(Z|W ) + (1−H(Z|W )) 4MMSE(X |T ),
with equality if and only ifPt ∈ {0, 12 , 1} for any value oft.

Sketch of proof: The proof follows the same lines as
the proof of Lemma 1. SinceT and W are statistically
independent, we haveH(X⊕Z|U) = Eh(PT ∗αW ). By (13)
we have that

h(PT ∗ αW ) ≥ 1− 4

(

1

2
− PT

)2

(1− h(αW )) ,

We therefore have

EUh(PT ∗ αW ) ≥ EU

(

1− 4

(

1

2
− PT

)2

(1− h(αW ))

)

= 1− 4ET

(

1

2
− PT

)2

(1− EWh(αW )) ,

and the lemma follows by recalling that4ET

(

1
2 − PT

)2
=

1− 4MMSE(X |T ) and thatEWh(αW ) = H(Z|W ).

As a simple corollary, we obtain the following.

Theorem 3: Let X,Z be two statistically independentn-
dimensional random binary vectors, and letY = X⊕Z. Then

H(Y) ≥ max
π

{

H(Z) + 4MMSEπ(X)

− 4
n
∑

i=1

H
(

Zπ(i)|Zπ(i−1), . . . , Zπ(1)

)

·MMSE
(

Xπ(i)|Xπ(i−1), . . . , Xπ(1)

)

}

,

with equality if and only ifZ is memoryless andX is mem-
oryless withPr(Xi = 1) ∈ {0, 12 , 1} for every i = 1, . . . , n.

Proof: By the chain rule for entropy, for any permutation
π we have

H(Y) =

n
∑

i=1

H
(

Yπ(i)|Yπ(i−1), . . . , Yπ(1)

)

≥
n
∑

i=1

H
(

Yπ(i)|Xπ(i−1), . . . , Xπ(1), Zπ(i−1), . . . , Zπ(1)

)

(18)

=

n
∑

i=1

H
(

Xπ(i) ⊕ Zπ(i)|T i
π,W

i
π

)

(19)

where the random variables

T i
π ,

(

Xπ(i−1), . . . , Xπ(1)

)

W i
π ,

(

Zπ(i−1), . . . , Zπ(1)

)

are statistically independent, andXπ(i) and Zπ(i) are con-
ditionally independent given(T i

π,W
i
π), sinceX and Z are

statistically independent. The inequality (18) is tight ifand
only if X andY are both memoryless. Now, by Lemma 2 we
have that

H

(

Xπ(i) ⊕ Zπ(i)|T i
π,W

i
π

)

≥ H(Zπ(i)|W i
π) +

(

1−H(Zπ(i)|W i
π)
)

4MMSE
(

Xπ(i)|T i
π

)

.

Summing overi gives the desired result.

A simple consequence of Theorem 3 is that ifX andZ are
statistically independent binary symmetric first-order Markov
processes with transition probabilitiesq1 andq2, respectively,
then 1

nH(Y) ≥ h(q1) + 4q2(1 − q2)(1 − h(q1)). This bound
uses the identity permutationπ = (1, . . . , n). We note that a
more clever choice ofπ, as used in Section V, can result in a
better bound.

We end this section by deriving an upper bound onH(Y)
in terms of the best-case MMSE predictability ofX from Y

MMSE(X|Y) , min
π

n
∑

i=1

MMSE
(

Xπ(i)|Yπ(i−1), . . . , Yπ(1)

)

.

To that end, we first upper boundH(X ⊕ Z|U) in terms of
MMSE(X |U).

Lemma 3: Let U be some random variable and letX |U =
u ∼ Bernoulli(Pu). Let Z ∼ Bernoulli(α) be statistically
independent of(X,U). Then

H(X ⊕ Z|U) ≤ h

(

1

2
+

1− 2α

2

√

1− 4MMSE(X |U)

)

,

with equality if and only if
∣

∣Pu − 1
2

∣

∣ does not depend onu.

Proof: Define the functionQ(t) , h
(

1
2 +

√
t
)

and note
that it is concave over[0, 1

4 ]. By (9) and (10) we have

H(X ⊕ Z|U) = Eh

(

1

2
+ (1− 2α)

(

PU − 1

2

))

= Eh





1

2
+

√

(1− 2α)2
(

PU − 1

2

)2




≤ h





1

2
+

√

√

√

√

E

[

(1 − 2α)2
(

PU − 1

2

)2
]





= h

(

1

2
+ (1− 2α)

√

E

(

1

4
− Pu(1− PU )

)

)

= h

(

1

2
+

1− 2α

2

√

1− 4MMSE(X |U)

)

,

as desired.
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Remark 2: In the special case whereα = 0, Lemma 3
reduces to the inequality

Eh(PU ) ≤ h

(

1

2
+

√

E

(

1

2
− PU )2

)

)

,

which was obtained by Wyner in [8, eq. (3.11)]

The functionFα(x) , h
(

1
2 + 1−2α

2

√
1− 4x

)

is concave
and monotone non-decreasing forx ∈ [0, 14 ] and any value of
α ∈ [0, 12 ]. Combining this with (14) and with Lemma 3 gives
the following.

Theorem 4: Let X,Z be two statistically independentn-
dimensional random binary vectors, whereX is arbitrary and
Z is i.i.d. Bernoulli(α). Let Y = X⊕ Z. Then

1

n
H(Y) ≤ h

(

1

2
+

1− 2α

2

√

1− 4
MMSE(X|Y)

n

)

,

with equality if and only ifX is i.i.d.

IV. COMPARISON WITH MRS. GERBER’ S LEMMA

In this section we compare the performance of our MMSE-
based bound to Mrs. Gerber’s Lemma. First, we consider
the family of random vectors with fixedMMSE(X). Clearly,
the bound from Theorem 1 is the same for all members of
this family. However, the entropyH(X) may vary within
the family, and hence applying Mrs. Gerber’s Lemma results
in a range of bounds, which can be juxtaposed with the
bound of Theorem 1. Similarly, we fixH(X) and juxtapose
Mrs. Gerber’s Lemma with the range of bounds obtained by
applying Theroem 1.

For the special case ofα = 0, Theorem 1 reads

H(X) ≥ 4MMSE(X). (20)

and Theorem 4 reads

H(X) ≤ nh

(

1

2
+

1

2

√

1− 4
MMSE(X)

n

)

≤ nh





1

2
+

1

2

√

1− 4
MMSE(X)

n



 . (21)

Denote the RHS of (3) by

MGL (α, PX) , h

(

α ∗ h−1

(

H(X)

n

))

.

and the RHS of (7) by

NEW (α, PX) , h(α) + (1− h(α)) 4
MMSE(X)

n
,

By (21) and (20) it follows that

h

(

α∗h−1

(

4
MMSE(X)

n

))

≤ MGL (α, PX)

≤ h



α ∗





1

2
+

1

2

√

1− 4
MMSE(X)

n







 (22)

Figure 1a depicts the lower and upper bound onMGL (α, PX)
from (22) as a function of MMSE(X) along with
NEW (α, PX), for α = 0.11. It is seen that for all val-
ues of MMSE(X) our bound is quite close to the upper
bound onMGL (α, PX), and is often significantly stronger
than the lower bound onMGL (α, PX). In general, for small
values ofα, NEW (α, PX) will be close to the lower bound
on MGL (α, PX) and will approach the upper bound on
MGL (α, PX) as α increases. Figure 1b demonstrates this
phenomenon for4MMSE(X) = 0.5.

Equivalently, by (20) and (21), we also have that

4nh−1

(

H(X)

n

)(

1− h−1

(

H(X)

n

))

≤ 4MMSE(X) ≤ H(X). (23)

In fact, (23) holds for4MMSEπ(X) with any permutationπ,
and implies

h(α)+(1− h(α)4h−1

(

H(X)

n

)(

1− h−1

(

H(X)

n

))

≤ NEW (α, PX) ≤ h(α) + (1− h(α)H(X) (24)

Figure 2a depicts the lower and upper bound on
NEW (α, PX) from (24) as a function ofH(X) along with
MGL (α, PX), for α = 0.11. It is seen that for all values
of H(X), MGL (α, PX) is quite close to the lower bound
on NEW (α, PX), and is often significantly weaker than the
upper bound onNEW (α, PX). In general, for small val-
ues of α, MGL (α, PX) will be close to the upper bound
on NEW (α, PX) and will approach the lower bound on
NEW (α, PX) as α increases. Figure 2b demonstrates this
phenomenon forH(X) = 0.5.

V. A PPLICATION: LOWER BOUND ON THE ENTROPY RATE

OF A BINARY HIDDEN MARKOV PROCESS

In this section we apply Theorem 1 to derive a simple
lower bound on the entropy rate of a binary hidden Markov
process. LetX1 ∼ Bernoulli

(

1
2

)

and for m = 2, 3, . . . let
Xm = Xm−1 ⊕ Wm where{Wm} is an i.i.d.Bernoulli(q)
process statistically independent ofX1. Clearly, the process
{Xn} is a symmetric first-order Markov Process. We define
the hidden Markov processYn = Xn ⊕ Zn, where{Zn} is
an i.i.d.Bernoulli(α) process statistically independent of the
process{Xn}. Our goal in this section is to derive a lower
bound on the entropy rate of{Yn} defined as

H(Y ) , lim
n→∞

H(Y1, . . . , Yn)

n
. (25)

One very simple bound can be obtained by noting that
H(X) = h(q) and applying Mrs. Gerber’s Lemma (1) which
gives

H(Y ) ≥ h(α ∗ q). (26)

We will see that in many cases our MMSE-based bound from
Theorem 1 provides tighter bounds.
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Fig. 2. Comparison between the lower and upper bounds onNEW (α, PX) from (24) andMGL (α, PX).

Note that for anyπ it holds thatMMSE(X) ≥ MMSEπ(X)
and therefore Theorem 1 implies that for any choice ofπ

1

n
H(Y) ≥ h(α) + (1− h(α)) 4

MMSEπ(X)

n
. (27)

Thus, in order to apply Theorem 1 we need to choose some
π and evaluateMMSEπ(X). A trivial choice is the identity
π = {1, 2, . . . , n}, for which MMSEπ(X)

n = q(1 − q) and
our bound yieldsH(Y ) ≥ h(α) + (1 − h(α))4q(1 − q). It
is easy to see that this choice ofπ yields the lower bound
on NEW (α, PX) from (24), and is therefore strictly weaker
than (26). We would therefore like to choose a permutation
π that will incur a higher value ofMMSEπ(X). Assume that
logn is an integer. A natural candidate is the following

π =

(

n,
n

2
,
n

4
,
3n

4
,
n

8
,
3n

8
,
5n

8
,
7n

8
,
n

16
,
3n

16
, . . .

)

. (28)

With this choice ofπ we have that ifπ(i) = rn/2k, for r =

1, 3, . . . , 2k − 1, we have that

MMSE
(

Xπ(i)|Xπ(i−1), Xπ(i−2), . . . , Xπ(1)

)

≥ MMSE
(

X rn

2k
|X rn

2k
− n

2k
, X rn

2k
+ n

2k

)

= MMSE
(

Xm|Xm− n

2k
, Xm+ n

2k

)

, MMSE
( n

2k

)

,

where the inequality follows from the Markovity of{Xn}
which implies that the conditional distribution ofXm given
multiple samples from the past and the future of the process
depends only on the nearest sample from the past and the
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nearest sample from the future. We therefore have

MMSEπ(X)

n
≥

log n
∑

k=1

1

2

2k

n
MMSE

( n

2k

)

=
1

2

logn
∑

k=1

2−(logn−k)MMSE
(

2logn−k
)

=
1

2

logn−1
∑

t=0

2−tMMSE
(

2t
)

. (29)

It now only remains to calculate

MMSE (ℓ) = MMSE(Xn|Xn−ℓXn+ℓ)

= E
(

P ℓ
1 (Xn+ℓ, Xn−ℓ)P

ℓ
0 (Xn+ℓ, Xn−ℓ))

)

(30)

where the random variableP ℓ
i (Xn+ℓ, Xn−ℓ) is defined as

P ℓ
i (xn+ℓ, xn−ℓ) , Pr(Xn = i|Xn−ℓ = xn−ℓ, Xn+ℓ = xn+ℓ)

=
P (Xn+ℓ = xn+ℓ, Xn = i,Xn−ℓ = xn−ℓ)

P (Xn−ℓ = xn−ℓ, Xn+ℓ = xn+ℓ)

=
P (Xn+ℓ = xn+ℓ|Xn = i)P (Xn = i|Xn−ℓ = xn−ℓ)

P (Xn+ℓ = xn+ℓ|Xn−ℓ = xn−ℓ)
,

for i = 0, 1. Let Pk , Pr(Xn+k 6= Xn). With this notation
we have that ifxn+ℓ 6= xn−ℓ then

P ℓ
1 (xn+ℓ, xn−ℓ) = P ℓ

0 (xn+ℓ, xn−ℓ) =
Pℓ(1 − Pℓ)

P2ℓ
. (31)

On the other hand, ifxn+ℓ = xn−ℓ we have

P ℓ
1 (xn+ℓ, xn−ℓ)P

ℓ
0 (xn+ℓ, xn−ℓ) =

P 2
ℓ

1− P2ℓ

(1 − Pℓ)
2

1− P2ℓ
. (32)

It therefore follows that

MMSE(ℓ) = Pr(Xn+ℓ 6= Xn−ℓ)

(

Pℓ(1− Pℓ)

P2ℓ

)2

+ Pr(Xn+ℓ = Xn−ℓ)

(

Pℓ(1− Pℓ)

1− P2ℓ

)2

= (Pℓ(1− Pℓ))
2

(

1

P2ℓ
+

1

1− P2ℓ

)

=
(Pℓ(1− Pℓ))

2

P2ℓ(1 − P2ℓ)
. (33)

Note that

Pk = Pr(Xn+k 6= Xn)

= Pr

((

n+k
∏

i=n+1

(−1)Wi

)

= −1

)

=
1− E

(

∏n+k
i=n+1(−1)Wi

)

2

=
1− (1− 2q)

k

2
(34)

Substituting (34) into (33) gives

MMSE(ℓ) =

(

1
4

(

1− (1 − 2q)2ℓ
))2

1
4 (1− (1− 2q)2ℓ) (1 + (1− 2q)2ℓ)

=
1

4
· 1− (1− 2q)2ℓ

1 + (1− 2q)2ℓ
. (35)

Substituting (35) into (29) gives

lim
n→∞

4
MMSEπ(X)

n
≥

∞
∑

t=0

2−(t+1) 1− (1− 2q)2
t+1

1 + (1− 2q)2t+1

≥
∞
∑

t=1

2−t 1− (1− 2q)2
t

1 + (1− 2q)2t
, (36)

and consequently we get the following theorem.

Theorem 5: Let {Xn} be a first-order Markov process
with parameterq, {Zn} be an i.i.d.Bernoulli(α) process
statistically independent of{Xn} andYn = Xn ⊕ Zn. Then

H(Y ) ≥ h(α) + (1− h(α))

∞
∑

t=1

2−t 1− (1− 2q)2
t

1 + (1− 2q)2t
.

Remark 3: For everyα ∈ (0, 1/2) there exist aqα > 0 such
that the bound from Theorem 5 outperforms Mrs. Gerber’s
Lemma for all q ∈ (0, qα). For example,q0.11 ≈ 0.212. As
discussed in the previous section,qα increases withα and
approaches1/2 asα → 1/2.

It will be instructive to study the behavior of the RHS of (36)
in the limit of q → 0. To this end we write, for some0 < γ < 1
such that−γ log q is an integer

lim
n→∞

4
MMSEπ(X)

n
≥

∞
∑

t=1

2−t 1− (1− 2q)2
t

1 + (1− 2q)2t

≥
−γ log q
∑

t=1

2−t 1− (1− 2q)2
t

2

=

−γ log q
∑

t=1

2−(t+1)



2t+1q −
2t
∑

k=2

(−1)k
(

2t

k

)

(2q)k





≥
−γ log q
∑

t=1

2−(t+1)



2t+1q −
2t
∑

k=2

(2t)k(2q)k





≥
−γ log q
∑

t=1

q − 2−(t+1)
2t
∑

k=2

(

2t+1q
)k

. (37)

Using the fact that
∑m

k=2 r
k = r2−rm+1

1−r ≤ r2

1−r for 0 < r < 1,
we further bound (37) as

lim
n→∞

4
MMSEπ(X)

n
≥

−γ log q
∑

t=1

q − 2−(t+1)

(

2t+1q
)2

1− 2t+1q

=

−γ log q
∑

t=1

q − 2t+1q2

1− 2t+1q

≥ −γq log q

(

1− 2q1−γ

1− 2q1−γ

)

. (38)

For q → 0 we can takeγ = 1− 1/
√
− log q such that

lim
n→∞

4
MMSEπ(X)

n
≥ −q log(q)

(

1− ε′q
)

= h(q) (1− εq) (39)

whereε′q, εq → 0 asq → 0. We have therefore obtained that

lim
q→0

lim
n→∞

4
MMSEπ(X)

nh(q)
= lim

q→0
lim
n→∞

4
MMSEπ(X)

H(X)
≥ 1.
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Thus, we have seen that while the trivial choiceπ′ =
{1, 2. . . . , n} yieldsMMSEπ′(X) that meets the lower bound
from (23), the more clever choice ofπ given in (28) yields
MMSEπ(X) that meets the upper bound from (23) in the limit.

Remark 4: The permutationπ from (28) can be found by
a greedy algorithm that constructs the permutation vector
sequentially by choosing in theith step

π(i) = argmax
j∈[n]\{π(1),...,π(i−1)}

MMSE
(

Xj |Xπ(1), . . . , Xπ(i−1)

)

,

where [n] , {1, . . . , n}. The asymptotic optimality ofπ
from (28) for symmetric Markov chains may suggest that
such a greedy algorithm will always yield the permutation
vector that maximizesMMSEπ(X). This is, unfortunately,
not true in general. As a counterexample consider the vector
X = (X1, X2) with

Pr(X1 = 0, X2 = 0) =
1

2
; Pr(X1 = 0, X2 = 1) = 0

Pr(X1 = 1, X2 = 0) = ε ; Pr(X1 = 1, X2 = 1) =
1

2
− ε

for which Var(X1) > Var(X2) but

Var(X2) + MMSE(X1|X2) > Var(X1) + MMSE(X2|X1)

for ǫ small enough.

Substituting (39) into Theorem 5 gives that for smallq

H(Y) ≥ h(α) + (1− h(α))h(q)(1 − εq). (40)

Note that this bound has an infinite slope atq = 0. This
is always better than the Cover-Thomas type of bounds
H(Y ) ≥ H(Ym|Ym−1, . . . , Y1, X0) derived in [9, Theorem
4.5.1] which are always smaller thanh(q∗m ∗ α), where
q∗m denotes convolvingq with itself m times. Both bounds
evaluate toh(α) at q = 0, but the derivative of the latter is
finite for any finitem. Thus, for smallq our bound is better
than the Cover-Thomas bound of any order.

The bound (40) is weaker than the best known lower bounds
onH(Y ) in the rare transition regime. For example, in [10] it
is shown thatH(Y ) ≥ h(α)− (1−2α)2

1−α q log q, whereas in [11]
this was improved toH(Y ) ≥ h(α) + h(q) − Cq for some
C > 0. However, the two bounds mentioned above are “tailor-
made” to hidden Markov models, whereas (40) follows from
applying our generic bound from Theorem 1 to the special
case of a hidden Markov model. In the next subsection we
will show that the scalar version of our MMSE-based bound,
stated in Lemma 1 can be used to enhance such a “tailor-made”
bound for Markov chains.

A. Bound based on the Ordentilch-Weissman Method

In [6], E. Ordentlich and T. Weissman cleverly observed
that the entropy rate of a binary symmetric first-order hidden
Markov process can be expressed as

H(Y) = E

(

eWi

1 + eWi

∗ q ∗ α
)

, (41)

where the auto-regressive processWi is defined as

Wi = Ri ln
1− α

α
+ Sif(Wi−1) (42)

for

f(t) = ln
et(1− q) + q

qet + (1− q)
(43)

and i.i.d. processes{Ri} and{Si} statistically independent of
W0, with distributions

Ri =

{

1 w.p. 1− α

−1 w.p. α
; Si =

{

1 w.p. 1− q

−1 w.p. q
. (44)

The expectation in (41) is taken under the assumption thatW0

is distributed according to the (unique) stationary distribution
of the process{Wi}, and is therefore well-defined. In [6],
upper and lower bounds onH(Y) were derived by analyzing
the support of the process{Wi}. Here, we apply Lemma 1 in
order to derive a lower bounds onH(Y). To this end, we set

X |Wi ∼ Bernoulli
(

eWi

1+eWi

)

and find a lower bounds on

MMSE(X |Wi) = E

(

eWi

(1 + eWi)2

)

.

Let F , ef(Wi−1) and η = 1−α
α , such thateWi = ηRiFSi .

We have

E

(

eWi

(1 + eWi)2
|F
)

= (1 − α)(1 − q)
ηF

(1 + ηF )2

+ (1− α)q
η/F

(1 + η/F )2

+ α(1 − q)
F/η

(1 + F/η)2
+ αq

(1/(ηF )

(1 + 1/(ηF ))2

= ((1 − α)(1 − q) + αq)
ηF

(1 + ηF )2

+ ((1 − α)q + α(1− q))
F/η

(1 + F/η)2
(45)

= (1− α ∗ q) ηF

(1 + ηF )2
+ (α ∗ q) F/η

(1 + F/η)2

, g(F ), (46)

where we have used the fact thateWi/(1+eWi)2 = e−Wi/(1+
e−Wi)2 in (45). LetS be the support of the random variable
F . Clearly,

MMSE(X |Wi) = Eg(F ) ≥ min
s∈S

g(s) (47)

In [6, eq. (44-45)] it is shown thatS ⊆ [1/Fmax, Fmax], where

Fmax ,
(η − 1)(1− q) +

√

4ηq2 + (η − 1)2(1− q)2

2ηq
. (48)

Let g1(F ) ,
ηF

(1+ηF )2 and g2(F ) ,
F/η

(1+F/η)2 , and note that
g2(1/F ) = g1(F ) and thatg(F ) = (1 − α ∗ q)g1(F ) + (α ∗
q)g2(F ). ForF ≥ 1 we have thatg2(F ) ≥ g1(F ), whereas for
F < 1 we have thatg1(F ) > g2(F ). Since(1−α∗q) ≥ (α∗q)
(recall that we assumeα, q ≤ 1/2), we must have that

min
s∈[1/Fmax,Fmax]

g(s) = min
s∈[1,Fmax]

g(s). (49)
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Straightforward algebra gives

sign (g′(s))

= sign

(

(η − s)(1 + ηs)3 − 1− α ∗ q
α ∗ q (ηs− 1)(η + s)3

)

.

Note that sign(g′(1)) = −1, and therefore if the equation
sign (g′(s)) = 0 does not have any real solution in[1, Fmax)
then we must have

min
s∈[1/Fmax,Fmax]

g(s) = g(Fmax). (50)

Otherwise,mins∈[1/Fmax,Fmax] g(s) is obtained either in one of
the solutions ofsign (g′(s)) = 0 in the interval[1, Fmax), or
in Fmax. The equationsign (g′(s)) = 0 is equivalent to

η

(

1− α ∗ q
α ∗ q + η2

)

s4 +

(

3η2
1

α ∗ q − η4 − η

)

s3

+ 3η
1− 2(α ∗ q)

α ∗ q (η2 − 1)s2

+

(

1− α ∗ q
α ∗ q η4 + 1− 3

η2

α ∗ q

)

s− η

(

1 +
1− α ∗ q
α ∗ q η2

)

= 0,

(51)

Let S∗ be the set of solutions to the equation (51) in[1, Fmax).
We conclude thatMMSE(X |Wi) ≥ g(F ∗) where

F ∗ = argmin
s∈(S∗∪Fmax)

g(s). (52)

and this combined with (41) and Lemma 1 yields the follow-
ing.

Theorem 6: Let {Xn} be a first-order Markov process
with parameterq, {Zn} be an i.i.d.Bernoulli(α) process
statistically independent of{Xn} andYn = Xn ⊕ Zn. Then

H(Y ) ≥ h(α ∗ q) + (1− h(α ∗ q)) g(F ∗),

whereF ∗ is defined by (48), (51) and (52),g(·) is defined
in (46), andη = 1−α

α .

In Figure 3 we plot the bound from Theorem 6 forα = 0.11
andq ∈ [0, 0.5]. For comparison, we also plot the lower bound
from [6, Corollary 4.8 and Lemma 4.10], and it is seen that for
small values ofq our new bound improves upon that of [6].
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