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Abstract—Mrs. Gerber's Lemma lower bounds the entropy at dictability of a binary vectoiX w.r.t. the permutationr as
the output of a binary symmetric channel in terms of the entrqpy

of the input process. In this paper, we lower bound the output MMSE,(X)

entropy via a different measure of input uncertainty, pertaining n

to the minimum mean squared error (MMSE) prediction cost 2 MMSE (X | Xortiz 1), Xor(i—2)s - - - s X1
of the input process. We show that in many cases our bound is ; ( W(Z)| mli=1) S(i=2) w( ))
tighter than the one obtained from Mrs. Gerber's Lemma. As n

an application, we evaluate the bound for binary hidden Markov
processes, and obtain new estimates for the entropy rate.

[I>

ZE (Var (X | Xn(i=1), Xn(iz2)s - - -» Xx(1)))

=1

L

-

E (P (1= Ff)), (4)

I. INTRODUCTION i=1

where the random variablB" is defined as
Mrs. Gerber's Lemma_[1] lower bounds the entropy of the

output of a binary symmetric channel (BSC) in terms of the Pl &Pr (Xﬂ(i) = 1 Xa(im1), Xn(i-2),- - ’Xﬂ(l)) )
entropy of the input to the channel. More specificallyXif€  The worst-case MMSE predictability of a binary vectoX is
{0, 1}" is ann-dimensional binary random vector with entropyyefined as
H(X), Z € {0,1}" is ann-dimensional binary random vector

with i.i.d. Bernoulli(o) components, statistically independent MMSE(X) £ max MMSE(X). (6)
of X, andY = X @ Z, Mrs. Gerber's Lemma states that

Our main result is the following.

lH(Y) >h (a « h L <1H(X)>> 7 1) Theorem 1. Let X,Z be two statistically independent-
n n dimensional random binary vectors, whéeis arbitrary and
Z is i.i.d. Bernoulli(«). LetY = X @ Z. Then

A

whereh(p) = —plog(p) — (1 — p)log(1l — p) is the binary

entropy function,h=1(-) is its inverse function restricted to 1 MMSE(X)
: —H(Y)>h 1-h 4———= 7

[0,1] anda b £ a(1 — b) + b(1 — a) denotes the binary n (Y) 2 h(e) +( (2)) n ’ (")

convolution between two numbetst € [0,1]. For X i.i.d., with equality if and only if X is memoryless wittPr(X; =

the inequality [(1L) is tight. 1) € {0, %’ 1} for everyi=1,...,n.

The inequality [(1) is in fact a simple consequence of the |n Sectior{T) we prove an MMSE version of the conditional
conditional scalar Mrs. Gerber's Lemma, which states th@alar Mrs. Gerber Lemma&l(2), which implies Theofém 1 as

following: If U is some random variableX|U = u ~ a simple corollary. In Sectiof Il we derive several MMSE-
Bernoulli(P,), and Z ~ Bernoulli(«) is statistically inde- pased extensions of Theorém 1, including a lower bound on
pendent of(X, U), we have that H(Y) for the setting whereZ is not i.i.d. as well as an

upper bound orf{ (Y). Sectior IV compares our new bound
to Mrs. Gerber's Lemma. As an application of Theorgn 1,
in Section[\¥ we develop a lower bound on the entropy rate
of a binary hidden Markov process, which is shown to be

1 considerably stronger than Mrs. Gerber's Lemma in certain
Bh(acs Puy) 2 h(ax h™" (BA(Py))) 3 scenarios. Furthermore, our MMSE-based scalar lower bound
derived is combined with a bounding technique developed
i) [6] to obtain new estimates on the entropy rate of binary
Hftlden Markov processes.

H(X @ Z|U) > h(axh " (H(X|U))), 2

or alternatively,

Since the publication of [1], many extensions, generaliz
tions and results of a similar flavor have been found, s
e.g., [2]H5]. In this paper, we derive a lower bound on eoyro
of the outputY in terms of theminimum mean squared error
predictability of the inputX, as we define next. Il. PROOFS

Let 7 be some permutation of the coordinafés2, ..., n}. Mrs. Gerber’'s Lemma is proved by first deriving the condi-
We define the minimum mean squared error (MMSE) préional scalar inequality {2) and then invoking the chairerfar
entropy and convexity of the functiop(u) = h(a * h=1(u))
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Lemma 1: Let U be a random variable and I1&t|U = u ~
Bernoulli(P,). Denote the MMSE in estimating from U

by

MMSE(X|U) £ E (Var(X|U)) =E(Py(1 — Py)). (8)
Let Z ~ Bernoulli(a) be statistically independent ¢, U).
Then

H(X @ Z|U) > h(a) + (1 — h(a)) AMMSE(X|U),

with equality if and only ifP, € {0, §,1} for any value ofu.

Proof: SinceZ is statistically independent ¢fX, U) we
have

H(X & Z|U) = Eh(Py * ). 9)
Let Vi £ Py — 3 and note that
1 1
PU*Oé: <§+VU) (1—0&)+O[<§—VU>
= % +(1—2a)Vy. (10)

wherecy, > 0 for all positive k we have
Eg (a * Py) > g(a) + (co — g(a)) 4AMMSE(X|U).

Theorem[]L now follows as a straightforward corollary of
Lemma[1.

Proof of Theorem[Il By the chain rule for entropy, for
any permutationr we have

H(Y) = Z H (Yﬁ(i)|yﬂ(i71)a cee an(l))
i=1

= Z H (Xr(i) @ Zn@y[Yriim1)s - Y1) (14)
=1
> " h(e) + (1= h(a)) AMMSE (X ()| Va(im1)s - - Ya()) -
=1
(15)

Clearly

MMSE (er(i)|Y7T(i71)7 ey Yﬂ(l))

Recall that the Taylor series expansion of the binary egtrop > MMSE (Xﬁ(i)|Y,,(i,1), o Yoy Zr(i=1)s - -+ Zﬁ(l))

function around; is

L p\_. — log(e) 2k
h<2+2) =1 ;2k(2k—1)p ’ (11)
and therefore, by (10) we have
1 — log(e) _ 2k 2k
h(Py xa) =1 ; Rk T) (1 —20)%*(2Vy)
= log(e) 12)

>1-4V2S 289 (1 9q)%
= U;%(%—n( @)

= log(e
=1-—4VZ +4V3 <1 -y W(_)l)(l — 2a)2k>
k=1

1 1-2
_1—4V§+4V§~h<§+ 20‘)
=1-4V7 (1 - n(a), (13)

where [I2) follows from the fact thaVy| < 1, and is
satisfied with equality if and only it € {—3,0, 3}, which
implies thatP; € {0, 3, 1}. Substituting[(IB) into[(9) gives

H(X® Z|U)>1-(1—h(a)) 4E(V7)
1 2
:1—(1—h(a)) 4E(§_PU>
= h(a) + (1 — h(a)) 4E (Py(1 — Py)),
as desired.

Remark 1: Note that the only property of the binary entropy, +he conditional entropyl (Y| W)
function used in the proof above is that all coefficients qfv

(nonzero) even order in its Taylor expansion arouéﬂldare

negative, whereas all odd coefficients are zero. It follonat t
for any functiong : [0, 1] — R whose Taylor expansion aroun

1 is of the form

L p\ _ - 2%
o(5+5) =0 L™

= MMSE (X ()| Xr(i—1): - - -
= MMSE (X ()| Xr(i=1), - - -

s X (1) Zn(i=1)s - - -+ Zn(1))
aer(l)) ) (16)

where the last equality follows since the random variables
{Z;}, are statistically independent d¢fX;}” ,. Thus, for
any permutationr we have

H(Y) > nh(a)

+ (1= h(@) 4 MMSE (Xr()| Xn(i-1)- - Xn(1)
i=1
17)

and [T) follows by maximizing [(17) w.rt.w. By
Lemma [1, the inequality[(15) is tight if and only if
Pr (X ) = 1Yr4-1),---, Y1) €{0,3,1} for everyi and
every realization of the vectoY,(;_1), ..., Y1), whereas
for 0 < a < 1 the inequality [(IB) is tight if and only iX
is memoryless. Thus[](7) holds with equality if and only if
X is memoryless withPr(X; = 1) € {0,%,1} for every

DR
1=1,...,n. |

IIl. EXTENSIONS

In this section we derive several simple extensions of our
main results. Since the proofs are quite similar to those of
Lemmall and Theorefd 1, we omit the full details and only
sketch the differences instead.

We begin with a straightforward extension of Theorein 1
whereX may depend on
, while Z and W are statistically independent.

Theorem 2: Let W be some random variable, and It Z

dbe two n-dimensional random binary vectors, wheke is

arbitrary andZ is i.i.d. Bernoulli(cr). Assume thatX, W)
is mutually independent df, and letY = X & Z. Then

, MMSE(X W)

n

%H(Y|W) > h(a) + (1 - h())

3



with equality if and only ifX|W = w is memoryless with where the random variables

Pr(X; = 1|W = w) € {0,4,1} for everyi = 1,...,n and _
everyw. Ty & (Xngiz1)s-- s Xn(1))
Proof: The proof is omitted as it follows the exact same W,ﬁ £ (Z,r(i_l), e Z,T(l))
steps as in the proof of Theorém 1, where the conditioning on
W is added where relevant. m are statistically independent, and,;) and Z.; are con-

Next, we show that our lower bound can also be extended%Ionally independent giver{T7, W7), sinceX and Z are
the case of a binary noisy channel with memory. To that en %tatlstlcally independent. The inequalify (18) is tightaifid

we first need to derive a simple generalization of Leniina nIy if X and are both memoryless. Now, by Lemifia 2 we

nave that
Lemma 2: Let U = (T, W), whereT and W are statisti-
cally independent. LeX andZ be conditionally independent _ i T
givenU, such thatX |U = (¢, w) ~ Bernoulli(P;) and Z|U = A\ Xr(i) © Za(o) [ Ts W
(t,w) ~ Bernoulli(av,). Let MMSE(X|U) = MMSE(X|T) > H(Zn()|WE) + (1 = H(Z(sy|W2)) AMMSE (X (3| T2) -
be as defined if{8). Then
H(X & Z|U) > H(Z|W) + (1 — H(Z|W)) 4MMSE(X |T), Summing over gives the desired result. [ ]
A simple consequence of Theoréin 3 is thaKifandZ are
120 _ statistically independent binary symmetric first-orderrkéey
Sketch of proof: The proof follows the same lines aSprocesses with transition probabilities and ¢, respectively,
the proof of Lemma]l. Sincg” and W are statistically then L1 LH(Y) > h(g1) + 4¢2(1 — g2)(1 — h(q1)). This bound
independent, we havll (X & Z|U) = Eh(Pr«aw). By ([3) uses the identity permutation= (1,...,n). We note that a
we have that more clever choice of, as used in Sectidn]V, can result in a
P ot p 2 - better bound.
(Prxaw) 2 1= (5 B T) (1= hlaw)), We end this section by deriving an upper bound@(Y’)
We therefore have in terms of the best-case MMSE predictability Xf from Y

with equality if and only if P, € {0, 3,1} for any value oft.

2 n
Eyh(Pr + aw) > Ey <1 —4 <% — PT> (1- h(aw))> MMSE(X|Y) £ min Y MMSE (X Y1), -, V) -
. 9 i=1
=1-4Ep (5 - PT) (1 -Ewh(aw)),  To that end, we first upper bount (X @ Z|U) in terms of
MMSE(X|).
and the lemma follows by recalling thar (5 — Pr)” = | emma3; Let U be some random variable and U =
1 — AMMSE(X|T) and thatRw h(aw) = H(Z|W). ® 4 ~ Bernoulli(P,). Let Z ~ Bernoulli(er) be statistically
As a simple corollary, we obtain the following. independent of X, U). Then

Theorem 3: Let X,Z be two statistically independent- 11
dimensional random binary vectors, and¥t= X @ Z. Then H(X @ Z|U)<h <5 4

4MMSE(X|U)> ,

H(Y) > H(Z) + 4AMMSE (X . o .
(Y) 2 mfx{ 2) X) with equality if and only if| P, — 1| does not depend oa.

_ _ _ Proof: Define the functiorQ( ) £ h (% + Vt) and note
4;“’{ (Zn) Znti-1ys-- > Zn ) that it is concave ovel0, 1]. By (@) and [ID) we have
- MMSE (X (o) [ X(i-1), -+ X)) } H(X @ Z|U) = Eh (% 4 (1-2) (P - %))
with equality if and only ifZ is memoryless an&X is mem- 5
oryless withPr(X; = 1) € {0,4,1} for everyi =1,...,n. N \/(1 ~ %) (PU _ l)
Proof: By the chain rule for entropy, for any permutation 2 2

(1 -2a)? <PU - %)2

- 1 1
> ZH(Yﬁ(i)|Xﬂ.(i,1),...,Xﬂ.(l),Zﬂ.(i,l),...,Zﬂ.(l)) h (— +(1 -2« \/E (Z - P,(1 —PU)>>
i=1

m we have
n 1
<h|=4+,E
H(Y) = E H (Yﬂ(i)|yﬂ(i71)a .. -7Y7'r(1)) - 2 \J

[\)

(18) )

+

n % \/1 - 4MMSE(X|U))
=" H (Xn(s) & Zan)| T2, WE) (19)
i=1 as desired. [ |



Remark 2: In the special case where = 0, Lemmal[8 Figure[1a depicts the lower and upper boundw@l (o, Px)

reduces to the inequality from (22) as a function of MMSE(X) along with
NEW («, Px), for & = 0.11. It is seen that for all val-

Eh(Py) < h 1+ E (1 —PU)2> 7 ues of MMSE(X) our bound is quite close to the upper

2 2 bound onMGL («, Px), and is often significantly stronger

. . . than the lower bound oMGL («, Px). In general, for small
which was obtained by Wyner in[8, eq. (3.11)] values ofa, NEW («, Px) Will(be clgse to the lower bound

The function F,,(z) £ h (3 + +22v/1 —4x) is concave on MGL (o, Px) and will approach the upper bound on
and monotone non-decreasing foe [0, ;] and any value of MGL (o, Px) as a increases. Figuré b demonstrates this
a € [0, 3]. Combining this with[(T4) and with Lemnia 3 givesphenomenon fodM MSE(X) = 0.5.

the following. Equivalently, by [2D) and(21), we also have that
Theorem 4: Let X,Z be two statistically independent-
dimensional random binary vectors, whéeis arbitrary and A1 (H(X)) (1 _ 1 (H(X)))
Z is i.i.d. Bernoulli(«). LetY = X ¢ Z. Then n n
< AMMSE(X) < H(X). (23)
lH(Y) nlly 1—2a\/1 _ MMSE(X]Y)
n - 2 2 n ’ In fact, (23) holds fodMMSE . (X) with any permutationr,
. o e and implies
with equality if and only ifX is i.i.d.
h(a)+(1 — h(a)4h™! (@> <1 —hnt (@»
IV. COMPARISON WITHMRS. GERBER S LEMMA n "

< NEW (a, Px) < h(a) + (1 - h(a)H(X)  (24)
In this section we compare the performance of our MMSE-

based bound to Mrs. Gerber's Lemma. First, we considerFigyre [2& depicts the lower and upper bound on

the family of random vectors with fixeMMSE(X). Clearly, nNgw (a, Px) from (24) as a function off (X) along with

the bound from Theorein 1 is the same for all members RfGL (o, Px), for & = 0.11. It is seen that for all values

this family. However, the entropyd(X) may vary within of f(X), MGL (o, Px) is quite close to the lower bound

the family, and hence applying Mrs. Gerber's Lemma resulgy NEW (o, Px), and is often significantly weaker than the

in a range of bounds,.vv.hich can .be juxtapos_ed with thehper bound onNEW (o, Px). In general, for small val-

Mrs. Gerber's Lemma with the range of bounds obtained iy, NEW (, Px) and will approach the lower bound on

applying Theroen]1. NEW (a, Px) as o increases. FigurE_2b demonstrates this
For the special case ef = 0, Theoren{]L reads phenomenon fof (X) = 0.5.
H(X) > 4MMSE(X). (20)

V. APPLICATION: LOWERBOUND ON THE ENTROPY RATE

and Theoreml4 reads
i OF A BINARY HIDDEN MARKOV PROCESS

H(X) <nh <% +% 1—4%&}()) In this section we apply Theorefd 1 to derive a simple
lower bound on the entropy rate of a binary hidden Markov
1 1 MMSE(X) process. LetX; ~ Bernoulli (3) and form = 2,3,... let
< nh 5+s 1- 4? (1) X,, = X,n_1 & W,, where{W,,} is an i.i.d. Bernoulli(q)
process statistically independent &f,. Clearly, the process

{X,} is a symmetric first-order Markov Process. We define
Denote the RHS of{3) by the hidden Markov procesg, = X, & Z,, where{Z,} is
N ., (H(X) an i.i.d. Bernoulli(«) process statistically independent of the
MGL (a, Px) = h (O‘ *h <T)> ‘ process{ X, }. Our goal in this section is to derive a lower

and the RHS of{7) by bound on the entropy rate 4f/;,} defined as

s . HY,..Y)
NEW (o, Px) £ h(a) + (1 — h(a)) 47MMSE(X), HY) = lim ———— (25)
n
By (1) and [2D) it follows that One vsry simple bouqd can be obte}lned by noting .that
H(X) = h(q) and applying Mrs. Gerber's Lemma] (1) which
h<om<h1 (4ME(X)> ) < MGL (a, Px) olves
n —
H(Y) > h(a*q). (26)
11 MMSE(X)
<h|ax ) + D) 1- 4T (22)  we will see that in many cases our MMSE-based bound from
TheorenL provides tighter bounds.
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------------- Lower bound on MGL («, Px)
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Fig. 1. Comparison between the lower and upper boundMGih. (o, Px) from (22) andNEW (o, Px).
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Fig. 2. Comparison between the lower and upper bounddBW («, Px) from {24) andMGL (o, Px).

Note that for anyr it holds thatMMSE(X) > MMSE, (X)
and therefore Theoreld 1 implies that for any choicerof

1
n

Thus, in order to apply Theoreld 1 we need to choose some
7w and evaluatetMMSE(X). A trivial choice is the identity
...,n}, for whic
our bound yieldsH (Y) > h(a) + (1 — h(a))4q(1 — q). It
is easy to see that this choice ofyields the lower bound

m = {1,2,

—H(Y) = h(e) + (1 = h(a))

h MMSE.(X)

 MMSE, (X)
—

= ¢(1 —¢) and

1,3,...,25 — 1, we have that

on NEW (a, Px) from (24), and is therefore strictly weaker
than [26). We would therefore like to choose a permutation

w that will incur a higher value oMMSE,(X). Assume that
logn is an integer. A natural candidate is the following

w=(n

With this choice ofr we have that ifr(i) = rn/2¥, for r =

nnidnmn3ndbn Tn n 3n

2747478 87878716°16"

MMSE (X ()| X r(i—1)s Xr(i—2) - -

X))

> MMSE (XM|XM_L,XM+L)
ok ok ok T3k

(1>

ok

MMSE (X X 3+ Xons 3, )
MMSE (2%)

where the inequality follows from the Markovity ofX,,}
which implies that the conditional distribution of,,, given
multiple samples from the past and the future of the process
depends only on the nearest sample from the past and the



nearest sample from the future. We therefore have Substituting [(3b) into[(ZQ) gives

t+1
MMSEA(X) _ X 12¢ n . MMSE,( 11— (1 —2¢)
el n lim 4——2 > 2” —t
0 5 e (3 > e
logn 2Q)2r
1 —(logn—k logn—k el 2” t T /1 o ot (36)
=§k_12 (logn=R)MMSE (2'°8™~*) Z 1+ 2)?
L] ;n and consequently we get the following theorem.
=5 Z 27'MMSE (2) . (29) Theorem5: Let {X,} be a first-order Markov process
with parameterq, {Z,} be an i.i.d. Bernoulli(cr) process
It now only remains to calculate statistically independent ofX,,} andY;,, = X,, ® Z,,. Then
MMSE (£) = MMSE(X,,| X ¢ X, - 1 - 29)*
()= WMSELE o) FO) 2 o)+ (1= b 32
=E (Pl (Xn-l—fa Xn—@)PO (Xn-l—fa Xn—@))) (30) q

- . .
where the random variable/ (Xn-¢, X,¢) is defined as Remark 3: For everya € (0,1/2) there exist &, > 0 such

Pf(:z:nH,xn,g) L2 Pr(X, =i|Xn ¢t =20 ¢,Xnie =2,y that the bound from Theorefd 5 outperforms Mrs. Gerber’s
P(Xpit = Tty Xn =i, Xn—t = Tny) Lemma for allg € (0,¢,). For examplego.11 ~ 0.212. As
— I GRS eap— discussed in the previous sectiop, increases witho and
P(Xnss = Tt X = ) P(Xn = i| Xp_s = 2n_0) appro_ache_s/2 as?z —1/2. |
= TEI0 Py eap— ; It will be instructive to study the behavior of the RHS [of((36)

in the limit of ¢ — 0. To this end we write, for some < v < 1
for ¢ = 0,1. Let Py £ PI’(Xn+k 7é Xn) With this notation such that_f-)/ logq is an integer
we have that ifr,,4 ¢ # x,_¢ then

. MMSE,( _ - 2q)2t
Py(1 - P, lim 4——~ =
Pf(iC,H_g, :En—f) = Pg(xn-i-éa xn—é) = ATZZ) (31) n—o0 Z 1 + 1 - 2q)
lo, t
On the other hand, if,, ., = x,,_, we have S It gq2_t - 2q)2
. P (1-P)? - Z
P n b) n— P n b) n— 32
(@t Tnt) Py (e, Tn—e) = — B, 1-B, &2 g ot y
It therefore follows that = Z D I Z(— ( ) )"
P(1-P)\> = =
MMSE (¢) = Pr(Xpn1¢ # Xn—r) (ATZU) —7logq 2°
P P’ > >, |2 3e et
+Pr(Xne = Xnp) ( Zl 2 ’ > =1 k=2
o1 ESE - k
—(t+1 t+1
= (P(1 = Pp))* <_ + ) > Z q—2 > (2")" (37)
Py 1— Py t=1 k=2
2 m
_ (1= F))" (33) Usingthe factthab ;" , 7 b= 2o < forg < < 1,
Poy(1 — Pyy) we further bound[(37) as
— lo, 2
Note that . MI\/ISE > 'i:gq . (2t+1q)
Pk = PI"(Xn+k 75 Xn) n—)oo 1-— 2t+1q
ntk — lo
= Pr << H (_1)W1> — _1> _ ’ngqq 3 2t+1q2
i=n+1 st 1—2tg
_ ntk 1 \W; 1—y
B 1-E (Hi:n-‘rl( 1) ) > —yqlogq <1 - 2(171) . (38)
- 2 1-— 2q -
1-(1- 2¢)" (34) For g — 0 we can takey = 1 — 1//—1logq such that
- 2 _ MMSE,(X) '
Substituting [(34) into[(33) gives Jim 4 o > —qlog(q) (1 - &)
(L (1= (1=29)%))" = h(q) (1 — &) (39)
MMSE (£) = % (1—(1—2¢)2%) (14 (1 —2¢)%) wheres;, e, — 0 asq — 0. We have therefore obtained that
1 1—(1-2¢9)% .. MMSE(X) . . MMSE.(X)
= 35 1 lim 4——— =1 lim 4————= > 1.
1 1T+ (1-297 (35)  liy T nh(q) doonse T H(X)  ©



Thus, we have seen that while the trivial choieé = where the auto-regressive procégs is defined as
{1,2....,n} yields MMSE,.(X) that meets the lower bound

from (23), the more clever choice of given in [28) yields Wi=R; In . &S (Wisy) (42)
MMSE (X) that meets the upper bound from{23) in the Iimitfor

Remark 4: The permutationr from (28) can be found by .
a greedy algorithm that constructs the permutation vector f(t) :mw (43)
sequentially by choosing in th#h step ge' +(1—q)

and i.i.d. processefR;} and{S;} statistically independent of

m(i) = argmax MMSE (X;|Xn (1), - Xnii-n) W, with distributions

J€N\{m(1),...,m(i—1)}
where [n] £ {1,...,n}. The asymptptic optimality ofr R; = L wp l-a .S, = I wp 1- q (44)
from (28) for symmetric Markov chains may suggest that -1 wp «a -1 wp.q

such a greedy algorithm will always yield the permutat|or|1he expectation i (41) is taken under the assumptionithat

vector that maximizeMMSE,(X). This is, unfortunately, s gisyributed according to the (unique) stationary disttion
not true in general. As a counterexample consider the VeCcK iha process{W;}, and is therefore well-defined. If1[6],

X = (X1, X2) with upper and lower bounds ol (Y) were derived by analyzing

1 the support of the proceq$V;}. Here, we apply Lemmid 1 in
Pr(X; =0,X=0)=5; Pr(X;1 =0,X=1)=0 order to derive a lower bounds d(Y). To this end, we set
Pr(X;=1,Xo=0)=¢c; Pr(X; =1, Xo=1) = % _.  X|W;~ Bernoulli (1+ e ) and find a lower bounds on
Wi
for which Var(X;) > Var(X,) but MMSE(X|W;) =E [ —" ).
(X1) (X2) SE(X|W;) (HeWi)Q
Var(X MMSE(X; | X Var(X MMSE( X2 | X
ar(Xs) + (X1|Xz) > Var(Xy) + (XelX1) ot & prvin) andn = =2, such thate"i = pRiFSi,
for e small enough. We have
Substituting [(3P) into Theorefd 5 gives that for small eWi nkF
_ E\agemplf) =000 -9q 05
H(Y) = h(a) + (1 = h(a))h(q)(1 —g4).  (40) 0/ F
. o . + (1 -
Note that this bound has an infinite slope ¢qat= 0. This ( a)q(l +n/F)?

is always better than the Cover-Thomas type of bounds F/n (1/(nF)
H(Y) > H(Y;m|Ym_1,...,Y1,Xo) derived in [9, Theorem +a(l - q)(l ¥ F/n)? +°‘q(1 F1/(F))?
4.5.1] which are always smaller thah(¢*™ * «), where nkF
¢*™ denotes convolving with itself m times. Both bounds =((1-a)(l —q)+aq) m
evaluate toh(a) at ¢ = 0, but the derivative of the latter is F/n
finite for any finitem. Thus, for smallg our bound is better + (1= a)g+a(l—9q)) TR (45)
than the Cover-Thomas bound of any order. 7 (L+F/n) 7

The bound[{40) is weaker than the best known lower bounds =(1—-ax q)(lfiF)? + (a % q)ﬁ
on H(Y) in the rare transition reglme For example,[inl[10] it N K K
is shown thal () > h(a) — 12220 4 log g, whereas in[[11] = 9(F), (46)

this was improved taH (Y) > h( ) + h(q) — Cq for some where we have used the fact thélf: /(1+e":)? = =W /(1+

C > 0. However, the two bounds mentioned above are “tailoe=":)2 in (@5). LetS be the support of the random variable
made” to hidden Markov models, whereas|(40) follows fromr. Clearly,

applying our generic bound from Theordrh 1 to the special
case of a hidden Markov model. In the next subsection we
will show that the scalar version of our MMSE-based boun
stated in Lemm@l1 can be used to enhance such a “tailor-ma

MMSE(X|W;) = Eg(F) > ming(s) ~ (47)

[6l, eq. (44-45)] it is shown tha$ C [1/Fmax, Fmad, Where

bound for Markov chains. A (=11 —¢q)+/4n¢2 + (n — 1)2(1 — ¢)?
Frmax = 9 : (48)
nq
A. Bound based on the Ordentilch-Weissman Method Let g;(F) 2 - FF)2 and go(F) £ % and note that
E and thatg(F) = (1 —a*q)g1 (F) + (o *

In [6], E. Ordentlich and T. Weissman cleverly observe e%gl/F =qn(F

that the entropy rate of a binary symmetric first-order hidd o1 W:ﬁ;\i ?h;gv (e h)ale;h(ay;( Sl)n(?efll(?:k;\ghiriji;?r
1 2 - =
Markov process can be expressed as (recall that we assume, ¢ < 1/2), we must have that

_ eWi
HY)=E(—0 41 i = 49
(Y) <1+erv *q*a), (41) seuf?mlﬁfmax}g(s) Join ]g( s). (49)



Straightforward algebra gives

1 e
sign (¢/(s)) - 7
. 1—ax L e i
—sign (= )1+ = -0 s -+ o) O
a*xq > 0851 , / --------- Lower Bound from [6] 1
Note thatsign(¢/(1)) = —1, and therefore if the equation = 4| L = = onerBound fom Teorem ) |
sign (¢’(s)) = 0 does not have any real solution i, Fray) 2 os | ,{,.f |
then we must have g Pt
2 o7t s 1
i = g(Fmax)- 50 £ 1 ¢
el o g I17) = 9 (Fin) (50) 2ol /s ,
s
Otherwise,min,e1 r,., Frad 9(5) iS Obtained either in one of 06 14 ]
the solutions ofign (¢’(s)) = 0 in the interval[l, Finax), OF 0.55 ,' 1
in Fnax. The equatiorsign (¢'(s)) = 0 is equivalent to osF ‘ ‘ | ‘
1 1 ’ 0.1 0.2 03 0.4 05
— Q*x
77(7‘14_772)51_’_<3772__774_77>83 q
axq a xq
3 1- 2(a * Q) 2 _1)g2 Fig. 3. Comparison between the lower bound from Thedrkm &laetbwer
+ 91 axq (77 o )S bound from [6, Corollary 4.8 and Lemma 4.10] far= 0.11 and g ranging
1 9 ) between0 and 3.
— X X — Xk
+ <7q774—|—1—3 1 )5_77(14_7%72) =0,
a x q a x q ok
(51)

[71
Let S* be the set of solutions to the equatibnl(51)1linFiax)- (8]

We conclude thaMMSE(X |W;) > g(F*) where

F* = (52) 19

10
and this combined witH (41) and Lemrh 1 yields the follovv[- ]
ing.

Theorem 6: Let {X,} be a first-order Markov process[
with parameterq, {Z,} be an i.i.d. Bernoulli(cr) process
statistically independent ofX,,} andY,, = X,, & Z,,. Then

H(Y) = h(axq) + (1= h(a*q) g(F*),
where F* is defined by [(4B),[(31) and(b2)(-) is defined
in (@8), andp = =<,

In Figure[3 we plot the bound from Theoréin 6 foe= 0.11
andq € [0,0.5]. For comparison, we also plot the lower bound
from [6, Corollary 4.8 and Lemma 4.10], and it is seen that for
small values of; our new bound improves upon that of [6].

argmin  g(s).
SE(S*UFmax)

11]
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