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Abstract—In this paper, we study the number of different
interference alignment (IA) solutions in a K-user multiple-input
multiple-output (MIMO) interference channel, when the align-
ment is performed via beamforming and no symbol extensions are
allowed. We focus on the case where the number of IA equations
matches the number of variables. In this situation, the number of
IA solutions is finite and constant for any channel realization out
of a zero-measure set and, as we prove in the paper, it is given by
an integral formula that can be numerically approximated using
Monte Carlo integration methods. More precisely, the number
of alignment solutions is the scaled average of the determinant
of a certain Hermitian matrix related to the geometry of the
problem. Interestingly, while the value of this determinant at
an arbitrary point can be used to check the feasibility of the
IA problem, its average (properly scaled) gives the number of
solutions. For single-beam systems the asymptotic growth rate of
the number of solutions is analyzed and some connections with
classical combinatorial problems are presented. Nonetheless, our
results can be applied to arbitrary interference MIMO networks,
with any number of users, antennas and streams per user.

Index Terms—Interference Alignment, MIMO Interference
Channel, Polynomial Equations, Algebraic Geometry
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I. INTRODUCTION

Interference alignment (IA) has received a lot of attention
in recent years as a key technique to achieve the maximum
degrees of freedom (DoF) of wireless networks in the presence
of interference. Originally proposed in [1], [2], the basic idea
of IA consists of designing the transmitted signals in such
a way that the interference at each receiver falls within a
lower-dimensional subspace, therefore leaving a subspace free
of interference for the desired signal [3]. This idea has been
applied in different forms (e.g., ergodic interference alignment
[4], signal space alignment [1], or signal scale alignment
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[5], [6]), and adapted to various wireless networks such as
interference networks [1], X channels [2], downlink broadcast
channels in cellular communications [7] and, more recently,
to two-hop relay-aided networks in the form of interference
neutralization [8].

In this paper we consider the linear IA problem (i.e., signal
space alignment by means of linear beamforming) for the
K-user multiple-input multiple-output (MIMO) interference
channel with constant channel coefficients. Moreover, the
MIMO channels are considered to be generic, without any
particular structure, which happens, for instance, when the
channel matrices have independent entries drawn from a
continuous distribution. This setup has also been the preferred
option for recent experimental studies on IA [9], [10], [11].

The feasibility of linear IA for MIMO interference net-
works, which amounts to study the solvability of a set of
polynomial equations, has been an active research topic during
the last years [12], [13], [14], [15], [16]. Combining algebraic
geometry tools with differential topology, it has been recently
proved in [17] that an IA problem with any number of users,
antennas and streams per user, is feasible iff the linear mapping
given by the projection from the tangent space of V (the
solution variety, whose elements are the triplets formed by the
channels, decoders and precoders satisfying the IA equations)
to the tangent space of H (the complex space of MIMO
interference channels) at some element of V is surjective. Note
that this implies, in particular, that the dimension of V must
be larger than or equal to the dimension of H [13], [14].

Exploiting this result, a general IA feasibility test with
polynomial complexity has also been proposed in [17]. This
test reduces to check whether the determinant of a given square
Hermitian matrix is zero (meaning infeasible almost surely) or
not (feasible).

In this paper we build on the results in [17] to study the
problem of how many different alignment solutions exist for
a given IA scenario. While the number of solutions is known
for some particular cases (e.g the 3-user interference channel
[18]), a general result is not available yet. In [17] it was proved
that systems for which the algebraic dimension of the solution
variety is strictly larger than that of the input space can have
either zero or an infinite number of alignment solutions. In
plain words, these are MIMO interference networks for which
the number of variables is larger than the number of equations
in the polynomial system. On the other hand, systems with
less variables than equations are always infeasible [13], [14],
[17]. Herein we will focus on the case in between, where the
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dimensions of V and H are exactly the same (identical number
of variables and equations), and consequently, the number of
IA solutions is finite (it may be even zero) and constant out of
a zero measure set of H as also proved in [17]. In summary,
rather than just characterizing feasible or infeasible system
configurations, we seek to provide a more refined answer to
the feasibility problem.

The number of solutions for single-beam MIMO networks
(i.e., all users wish to transmit a single stream of data) fol-
lows directly from a classical result from algebraic geometry,
Bernstein’s Theorem, as shown in [12]. More specifically,
the number of alignment solutions coincides with the mixed
volume of the Newton polytopes that support each equation of
the polynomial system. Although this solves theoretically the
problem for single-beam networks, in practice the computation
of the mixed volume of a set of IA equations using the
available software tools [19] can be very demanding. As a
consequence, only a few cases have been solved so far. For
single-beam networks, some upper bounds on the number of
solutions using Bezout’s Theorem have also been proposed in
[12], [20]. For multi-beam scenarios, however, the genericity
of the polynomials system of equations is lost and it is not
possible to resort to mixed volume calculations to find the
number of solutions. Furthermore, the existing bounds in
multi-beam cases are very loose.

The main contribution of this paper is an integral formula
for the number of IA solutions for arbitrary feasible net-
works. More specifically, we prove that while the feasibility
problem is solved by checking the determinant of a certain
Hermitian matrix, the number of IA solutions is given by
the integral of the same determinant over a subset of the
solution variety scaled by an appropriate constant. Although
the integral, in general, is hard to compute analytically, it can
be easily estimated using Monte Carlo integration. To speed
up the convergence of the Monte Carlo integration method, we
specialize the general integral formula for square symmetric
multi-beam cases (i.e., equal number of transmit and receive
antennas and equal number of streams per user). Analogously,
in the particular case of single-beam networks, we provide a
combinatorial counting procedure that allows us to compute
the exact number of solutions and analyze its asymptotic
growth rate.

In addition to being of theoretical interest, the results proved
in this work might also have some practical implications. For
instance, finding scaling laws for the number of solutions with
respect to the number of users could serve to analyze the
asymptotic performance of linear IA, as discussed in [20],
where information about the number of solutions is used to
predict system performance when the best solution (or the best
out of N) solutions is picked. Recent results [21] also suggest
that the number of solutions is related to the computational
complexity of designing the precoders and decoders satisfying
the IA conditions.

The paper is organized as follows. In Section II, the system
model and the IA feasibility problem are briefly reviewed,
paying special attention to the feasibility test in [17] which
is the starting point of this work. The main results of the
paper are presented in Section III, where an integral formula,

valid for arbitrary networks, for the number of IA solutions
is given. Two special cases, square symmetric and single-
beam networks, are analyzed in Section IV. A short review
on Riemmanian manifolds and other mathematical results that
will also be used during the derivations as well as the proofs of
the main theorems in Section III are relegated to appendices.
Numerical results are included in Section V.

II. SYSTEM MODEL AND BACKGROUND MATERIAL

In this section we describe the system model considered in
the paper, introduce the notation, define the main algebraic
sets used throughout the paper, and briefly review the feasi-
bility conditions of linear IA problems for arbitrary wireless
networks.

A. Linear IA

We consider the K-user MIMO interference channel with
transmitter k having Mk ≥ 1 antennas and receiver k having
Nk ≥ 1 antennas. Each user k wishes to send dk ≥ 0 streams
or messages. We adhere to the notation used in [12] and denote
this (fully connected) asymmetric interference channel as∏K
k=1 (Mk ×Nk, dk) = (M1 ×N1, d1) · · · (MK ×NK , dK).

The symmetric case in which all users transmit d streams
and are equipped with M transmit and N receive antennas
is denoted as (M ×N, d)

K . In the square symmetric case
all users have the same number of antennas at both sides
of the link M = N . In this paper we focus on the fully
connected interference channel and, consequently, the number
of interfering links will be K(K − 1).

User j encodes its message using an Mj × dj precoding
matrix Vj and the received signal is given by

yj = HjjVjxj +
∑
i6=j

HjiVixi + nj , 1 ≤ j ≤ K (1)

where xj is the dj × 1 transmitted signal and nj is the
zero mean unit variance circularly symmetric additive white
Gaussian noise vector. The MIMO channel from transmitter l
to receiver k is denoted as Hkl and assumed to be flat-fading
and constant over time. Each Hkl is an Nk × Ml complex
matrix with independent entries drawn from a continuous
distribution. The first term in (1) is the desired signal, while
the second term represents the interference space. The receiver
j applies a linear decoder Uj of dimensions Nj × dj , i.e.,

UTj yj = UTj HjjVjxj +
∑
i6=j

UTj HjiVixi + UTj nj , (2)

where superscript T denotes transpose.
The interference alignment (IA) problem is to find the

decoders and precoders, Vj and Uj , in such a way that
the interfering signals at each receiver fall into a reduced-
dimensional subspace and the receivers can then extract the
projection of the desired signal that lies in the interference-
free subspace. To this end it is required that the polynomial
equations

UTk HklVl = 0, k 6= l, (3)
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are satisfied, while the signal subspace for each user must
be linearly independent of the interference subspace and must
have dimension dk, that is

rank(UTk HkkVk) = dk, ∀ k. (4)

We recall that all matrices Hkl (including direct link matrices,
Hkk) are generic, that is, their entries are independently drawn
from a continuous probability distribution. Consequently, once
(3) holds, (4) is satisfied almost surely if Uk and Vk are of
maximal rank.

B. Feasibility of IA: a brief review

The IA feasibility problem amounts to study the relationship
between dj ,Mj , Nj ,K such that the linear alignment problem
is feasible. If the problem is feasible, the tuple (d1, . . . , dK)
defines the degrees of freedom (DoF) of the system, that is
the maximum number of independent data streams that can
be transmitted without interference in the channel. The IA
feasibility problem and the closely related problem of finding
the maximum DoF of a given network have attracted a lot
of research over the last years. For instance, the DoF for the
2-user and, under some conditions, for the symmetric K-user
MIMO interference channel have been found in [22] and [23],
respectively. In this work we make the following assumptions:

1 ≤ dk ≤ Nk, ∀ k, 1 ≤ dl ≤Ml, ∀ l, (5)

and
dkdl < NkMl, ∀ k 6= l, (6)

which are necessary conditions for feasibility which arise from
the fact that two users of an interference channel cannot reach
their point-to-point bounds simultaneously since they have to
leave at least a one-dimensional subspace for the interference.

The IA feasibility problem has also been intensively inves-
tigated in [12]–[16]. In the following we make a short review
of the main feasibility result presented in [17], which forms
the starting point of this work.

We start by describing the three main algebraic sets involved
in the feasibility problem which were first introduced in [14]:
• Input space formed by the MIMO matrices, which is

formally defined as

H =
∏
k 6=l

MNk×Ml
(7)

where
∏

holds for Cartesian product, and MNk×Ml
is

the set of Nk ×Ml complex matrices. Note that in [17],
[24], we let H be the product of projective spaces instead
of the product of affine spaces. The use of affine spaces
is more convenient for the purposes of root counting.

• Output space of precoders and decoders (i.e., the set
where the possible outputs exist)

S =

(∏
k

Gdk,Nk

)
×
(∏

l

Gdl,Ml

)
, (8)

where Ga,b is the Grassmannian formed by the linear
subspaces of (complex) dimension a in Cb.

• The solution variety, which is given by

V = {(H,U, V ) ∈ H × S : (3) holds} (9)

where H is the collection of all matrices Hkl and, simi-
larly, U and V denote the set of Uk and Vl, respectively.
The set V is given by certain polynomial equations, linear
in each of the Hkl, Uk, Vl and therefore is an algebraic
subvariety of the product space H × S . Let us remind
here that the IA equations given by (3) hold or do
not hold independently of the particular chosen affine
representatives of U, V .

The following diagram, illustrating the sets and the main
projections involved in the feasibility problem, was considered
in [14]:

V
π1 ↙ ↘ π2

H S
(10)

Note that, given H ∈ H, the set π−1
1 (H) is a copy of the

set of U, V such that (3) holds, that is the solution set of
the linear interference alignment problem. On the other hand,
given (U, V ) ∈ S , the set π−1

2 (U, V ) is a copy of the set of
H ∈ H such that (3) holds.

The feasibility question can then be restated as, is
π−1

1 (H) 6= ∅ for a generic H? Following this formulation,
the problem was first tackled in [14] and [13] where some
necessary and sufficient conditions were given. Analytical
expressions were limited to some symmetric scenarios of
interest. In [17], a solution to this problem was given by
proposing a probabilistic polynomial time feasibility test for
completely arbitrary interference channels. The test exploited
the fact that system is feasible if and only if two conditions
are fulfilled:

1) The algebraic dimension of V must be larger than or
equal to the dimension of H, i.e.,

s =

(∑
k

dk(Nk +Mk − 2dk)

)
−

∑
k 6=l

dkdl

 ≥ 0.

(11)
In other words this condition means that, for the problem
of polynomial equations to have a solution, the total
number of variables must be larger than or equal to the
total number of equations (s ≥ 0). We recall that a more
general version of this condition was first established in
[12]. In that work, an interference channel was classified
as proper when the number of variables was larger than
or equal to the number of equations for every subset
of equations. Otherwise, it was classified as improper.
More recently, in [13] it was rigorously proved that
improper systems are always infeasible which implies
that a system with s < 0 is infeasible.

2) For some element (H,U, V ) ∈ V , the linear mapping

θ :

(∏
k

MNk×dk

)
×
(∏

l

MMl×dl

)
→
∏
k 6=l

Mdk×dl

({U̇k}, {V̇l}) 7→
{
U̇Tk HklVl + UTk HklV̇l

}
k 6=l

(12)
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is surjective, i.e., it has maximal rank equal to∑
k 6=l dkdl. This condition amounts to saying that the

projection from the tangent plane at an arbitrary point
of the solution variety to the tangent plane of the input
space must be surjective: that is, one tangent plane must
cover the other. Moreover, in this case, the mapping (12)
is surjective for almost every (H,U, V ) ∈ V .

We recall that these conditions were essentially found in
[13] and [14] by using different mathematical tools than the
ones used in [17]. In this paper we will build on the results
in [17] using as a starting point the result stating that, when
a system is feasible and s = 0, the number of IA solutions is
finite and constant for almost all channel realizations. This is
formally stated in the following lemma.

Lemma 1 (See Th. 1 in [17]): For a feasible scenario and
for almost every H , the solution set is a smooth complex
algebraic submanifold of dimension s. If s = 0, then there
is constant C ≥ 1 such that for every choice of Hkl out of
a proper algebraic subvariety (thus, for every choice out of a
zero measure set) the system has exactly C aligment solutions.

Proof: See [17, Section V].

III. THE NUMBER OF SOLUTIONS OF FEASIBLE IA
PROBLEMS

A. Preliminaries

As shown in [17], [24], the surjectivity of the mapping θ
in (12) can easily checked by a polynomial-complexity test
that can be applied to arbitrary K-user MIMO interference
channels. The test basically consists of two main steps: i) to
find an arbitrary point in the solution variety and ii) to check
the rank of a matrix constructed from that point. As a solution
to the first step we follow [17, Sec. IV] and choose a simple
solution to the IA equations. Specifically, we take structured
channel matrices given by

Hkl =

(
0dk×dl Akl
Bkl Ckl

)
, (13)

with precoders and decoders given by

Vl =

(
Idl

0(Ml−dl)×dl

)
, Uk =

(
Idk

0(Nk−dk)×dk

)
, (14)

which trivially satisfy UTk HklVl = 0 and therefore belong to
the solution variety. We claim that essentially all the useful
information about V can be obtained from the subset of V
consisting of the triples (Hkl, Uk, Vl) where its elements have
the form (13) and (14). In order to see this, we pick any other
element (H̃kl, Ũk, Ṽl) ∈ V . Without loss of generality we can
assume Ũk and Ṽl lie in the Stiefel manifold i.e. they satisfy
Ũ∗k Ũk = I and Ṽ ∗l Ṽl = I where the superscript ∗ denotes
Hermitian (conjugate transpose). Now, we will show how this
element of V can be converted into one of the form (13) and
(14). First, we compute a QR decomposition of Ũk and Ṽl,
that is

Ũk = Pk

(
Idk

0(Nk−dk)×dk

)
= PkUk,

Ṽl = Ql

(
Idl

0(Ml−dl)×dl

)
= QlVl.

where Pk and Ql are unitary matrices. Then, the IA condition
can be written as

ŨTk H̃klṼl = UTk P
T
k H̃klQlVl = 0.

It is now clear that the transformed channels Hkl = PTk H̃klQl
have the form (13), and the transformed precoders Vl and
decoders Uk have the form (14). We have just described an
isometry that sends (H̃kl, Ũk, Ṽl) to (Hkl, Uk, Vl). The situa-
tion is thus similar to that of a torus: every point can be sent
to some predefined vertical circle through a rotation, thus the
torus is essentially understood by “moving” a circumference
and keeping track of the visited places. The same way, V can
be thought of as moving the set of triples of the form (13)
and (14), and keeping track of the visited places. Technically,
V is the orbit of the set of triples of the form (13) and (14)
under the isometric action of a product of unitary groups.

In [17] this idea is rigorously exploited, proving that, for
the purpose of checking feasibility or counting solutions, we
can replace the set of arbitrary complex matrices H by the set
of structured matrices

HI =
∏
k 6=l

(
0dk×dl Akl
Bkl Ckl

)

≡ π−1
2

({(
Idk

0(Nk−dk)×dk

)}
k

,

{(
Idl

0(Ml−dl)×dl

)}
l

)
.

(15)

The mapping θ in (12) has a simpler form for triples of the
form (13) and (14), and can be replaced by a new mapping Ψ
defined as

Ψ :

(∏
k

M(Nk−dk)×dk

)
×
(∏

l

M(Ml−dl)×dl

)
→
∏
k 6=l

Mdk×dl

({U̇k}k, {V̇l}l) 7→
(
U̇Tk Bkl +AklV̇l

)
k 6=l

. (16)

We remark that, since the mapping (16) is linear in both U̇k
and V̇l, it can be represented by a matrix. With a slight abuse of
notation we will use the symbol Ψ to refer to both the mapping
and the matrix representing that mapping. In this paper, we
will be interested in the function det(ΨΨ∗), which depends
on the channel realization H through the blocks Akl and Bkl
only. The dimensions of Ψ are

∑
k 6=l dkdl×

∑K
k=1(Mk+Nk−

2dk)dk. In the particular case of s = 0, the one of interest
for this paper, Ψ is a square matrix of size

∑
k 6=l dkdl and,

therefore, det(ΨΨ∗) = |det(Ψ)|2. The interested reader can
find additional details on the structure of the matrix Ψ in [17]
and in the example in Section III-C below.

B. Main results

We use the following notation: given a Riemannian manifold
X with total finite volume denoted as V ol(X) (the volume of
the manifolds used in this paper are reviewed in Appendix A),
let

−
∫
x∈X

f(x) dx =
1

V ol(X)

∫
x∈X

f(x) dx

be the average value of a integrable function f : X→R. Fix
dj ,Mj , Nj and Φ satisfying (5) and (6) and let s be defined
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as in (11). The main results of the paper are Theorems 1 and
2 below, which give integral expressions for the number of
IA solutions when s = 0 which is denoted as #(π−1

1 (H0)).
For the sake of rigorousness, we denote a generic channel
realization as H0. Recall that the particular choice of H0 is
irrelevant since the number of solutions is the same for all
channel realizations out of some zero-measure set.

Theorem 1: Assume that s = 0, and let Hε ⊆ H be any
open set such that the following holds: if H = (Hkl) ∈ Hε
and Pk, Qk, 1 ≤ k ≤ K are unitary matrices of respective
sizes Nk,Mk, then

(PTk HklQl) ∈ Hε.

(We may just say that Hε is invariant under unitary transfor-
mations). Then, for every H0 ∈ H out of some zero–measure
set, we have:

#(π−1
1 (H0)) = C

∫
H∈HI∩Hε

det(ΨΨ∗) dH, (17)

where

C =
V ol(S)

V ol(Hε)
,

with S being the output space (Cartesian product of Grasman-
nians) in Eq. (8) and HI defined in (15).

Proof: See Appendix B.
If we take Hε to be the set

{(Hkl) : ‖Hkl‖F ∈ (1− ε, 1 + ε)}

(with ‖ · ‖F denoting Frobenius norm) and we let ε → 0 we
get:

Theorem 2: For an interference channel with s = 0, and
for every H0 ∈ H out of some zero–measure set, we have:

#(π−1
1 (H0)) = C−

∫
H∈HI ,‖Hkl‖F=1

det(ΨΨ∗) dH,

where

C =
∏
k 6=l

(
Γ(NkMl)

Γ(NkMl − dkdl)

)
×

∏
k

(
Γ(2) · · ·Γ(dk) · Γ(2) · · ·Γ(Nk − dk)

Γ(2) · · ·Γ(Nk)

)
×

∏
l

(
Γ(2) · · ·Γ(dl) · Γ(2) · · ·Γ(Ml − dl)

Γ(2) · · ·Γ(Ml)

)
Proof: See Appendix C.

Remark 1: As proved in [17], if the system is infeasible
then det(ΨΨ∗) = 0 for every choice of H,U, V and hence
Theorem 1 still holds. On the other hand, if the system is
feasible and s > 0 then there is a continuous of solutions for
almost every Hkl and hence it is meaningless to count them
(the value of the integrals in our theorems is not related to the
number of solutions in that case). Note also that the equality
of Theorem 1 holds for every unitarily invariant open set Hε,
which from Lemma 1 implies that the right–hand side of (17)
has the same value for all such Hε.

C. Example: the (2× 2, 1)3 system

In this example we specialize Theorem 2 to the (2× 2, 1)3

scenario. Although the number of IA solutions for this network
is known to be 2 from the seminal work [1], this example
will serve to illustrate the main steps followed to find the
solution of the integral equation, and the difficulties to extend
this analysis to more complex scenarios.

Let us start by considering structured (2 × 2) matrices of
the form

H̄kl =

(
0 Akl
Bkl Ckl

)
, (18)

whose entries, without loss of generality, can be taken as
independent complex normal random variables with zero mean
and variance 2: Akl ∼ CN(0, 2), Bkl ∼ CN(0, 2) and
Ckl ∼ CN(0, 2)1. Each one of these random matrices is now
normalized to get

Hkl =

(
0 Akl/‖H̄kl‖F

Bkl/‖H̄kl‖F Ckl/‖H̄kl‖F

)
. (19)

The collection of matrices generated in this way is uniformly
distributed on the set {HI

⋂ ‖Hkl‖F = 1} in Theorem 2.
Therefore, the integral formula given in Theorem 2 yields:

](π−1
1 (H0)) = C E [det(ΨΨ∗)] = C E

[
|det(Ψ)|2

]
, (20)

where C = 36 = 729.
Choosing a natural order in the image space, the 6×6 matrix

Ψ defining the mapping for the (2× 2, 1)3 scenario is

Ψ =



B12

‖H̄12‖F
0 0 0 A12

‖H̄12‖F
0

B13

‖H̄13‖F
0 0 0 0 A13

‖H̄13‖F
0 B21

‖H̄21‖F
0 A21

‖H̄21‖F
0 0

0 B23

‖H̄23‖F
0 0 0 A23

‖H̄23‖F
0 0 B31

‖H̄31‖F
A31

‖H̄31‖F
0 0

0 0 B32

‖H̄32‖F
0 A32

‖H̄32‖F
0


.

It is easy to compute the determinant of this matrix expanding
it along the first column:

det(Ψ) =
B12A13A32B23B31A21

‖H̄12‖F ‖H̄13‖F ‖H̄32‖F ‖H̄23‖F ‖H̄31‖F ‖H̄21‖F
− B13A12A23B21A31B32

‖H̄13‖F ‖H̄12‖F ‖H̄23‖F ‖H̄21‖F ‖H̄31‖F ‖H̄32‖F
.

Therefore,

|det(Ψ)|2 =

∣∣∣∣ B12A13A32B23B31A21

‖H̄12‖F ‖H̄13‖F ‖H̄32‖F ‖H̄23‖F ‖H̄31‖F ‖H̄21‖F

∣∣∣∣2
+

∣∣∣∣ B13A12A23B21A31B32

‖H̄13‖F ‖H̄12‖F ‖H̄23‖F ‖H̄21‖F ‖H̄31‖F ‖H̄32‖F

∣∣∣∣2
−2Re

(
B12A13A32B23B31A21B13A12A23B21A31B32

(‖H̄12‖F ‖H̄13‖F ‖H̄32‖F ‖H̄23‖F ‖H̄31‖F ‖H̄21‖F )2

)
.

1The real and imaginary parts of each entry are independent real Gaussian
random variables with zero mean and variance 1
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The first two of these quantities are the product of 6 i.i.d.
random variables, thus

E

[∣∣∣∣ B12A13A32B23B31A21

‖H̄12‖F ‖H̄13‖F ‖H̄32‖F ‖H̄23‖F ‖H̄31‖F ‖H̄21‖F

∣∣∣∣2
]

=

E

[∣∣∣∣ B13A12A23B21A31B32

‖H̄13‖F ‖H̄12‖F ‖H̄23‖F ‖H̄21‖F ‖H̄31‖F ‖H̄32‖F

∣∣∣∣2
]

=

E

[∣∣∣∣ B12

‖H̄12‖F

∣∣∣∣2
]6

.

Finally,

E

[
B12A13A32B23B31A21B13A12A23B21A31B32

(‖H̄12‖F ‖H̄13‖F ‖H̄32‖F ‖H̄23‖F ‖H̄31‖F ‖H̄21‖F )2

]
= 0,

because B12 has the same distribution as −B12. That is, the
isometry B12 7→ −B12 changes the sign of the function inside
the expectation symbol but the expectation is unchanged when
multiplied by −1. Hence, the expectation is 0. We have thus
proved that

](π−1
1 (H0)) = 2 · 36E

[∣∣∣∣ B12

‖H̄12‖F

∣∣∣∣2
]6

.

We now compute the last term using the fact that
∣∣∣ B12

‖H̄12‖F

∣∣∣2 ∼
Beta(1, 2), where Beta(1, 2) denotes a beta-distributed ran-
dom variable with shape parameters 1 and 2.

Consequently,

](π−1
1 (H0)) = 2 · 36

(
1

3

)6

= 2,

as desired.

D. Estimating the number of solutions via Monte Carlo inte-
gration

Given the complexity of analytically computing the integral
in Theorem 2 for general scenarios (as illustrated with a
simple example in Section III-C), we will provide, in this
section, a method to approximate its value using Monte Carlo
integration. Our main reference here is [25]. The Crude Monte
Carlo method for computing the average

EX(f) = −
∫
x∈X

f(x) dx

of a function f defined on a finite-volume manifold X consists
just in choosing many points at random, say x1, . . . , xn for
n >> 1, uniformly distributed in X , and approximating

−
∫
x∈X

f(x) dx ≈ En =
1

n

n∑
j=1

f(xj). (21)

The most reasonable way to implement this in a com-
puter program is to write down an iteration that computes
E1, E2, E3, . . . The key question to be decided is how many
such xj we must choose to get a reasonably good approxima-
tion of the integral. To do so, we follow the ideas in [25, Sec.
5]: first note that the random variable Yn =

√
n(EX(f)−En)

approaches, by the Central Limit Theorem, a Normal distribu-
tion, that is the density function of Yn can be approximated
by

1

σ
√

2π
e−

t2

2σ2 ,

for some σ which is actually the standard deviation of f , given
by

σ2 = −
∫
x∈X

(f(x)− EX(f))
2
dx.

Now note that

1

σ
√

2π

∫ 2σ

−2σ

e−
t2

2σ2 dt =
t=sσ

1√
2π

∫ 2

−2

e−
s2

2 dt = 0.9544 . . .

Namely, for any random variable Y following a normal
distribution N(0, σ), we have |Y | ≤ 2σ with probability
greater than 0.95. Note that the reasoning above is not a
formal proof but a heuristic argument. First, Yn is not exactly
normal but, for a large n, our approximation will still serve
its purpose. Second, there exists no way to guarantee that the
integral of a generic function is correctly computed by Monte
Carlo methods, see [25, Sec. 5].

In order to get an estimate, we need to approximate σ. The
unbiased estimator of σ is

σn =

 1

n− 1

n∑
j=1

(f(xj)− En)2

1/2

. (22)

We thus have that, with probability greater than 0.95,

|EX(f)− En| .
2σn√
n
.

If we stop the iteration when σn√
nEn

≤ ε, then, with a
probability of 0.95 on the set of random sequences of n terms,
the relative error satisfies

|EX(f)− En|
|En|

. 2ε.

For example, if we stop the iteration when σn√
nEn

≤ 0.05,
then, we can expect to be making an error of about 10 percent
in our calculation of EX(f). The whole procedure for a
general system is illustrated in Algorithm 1, which is based
on Theorem 2.

IV. ALGORITHMIC ASPECTS AND SPECIAL CASES

We have shown how Theorem 2 can be used to approximate
the number of IA solutions of a given interference channel
using Monte Carlo integration. Nevertheless, our numerical
experiments demonstrate that the convergence of the integral
is, in general, slow. In this section, with the aim of mitigating
this problem, we provide specializations for two cases of
interest: square symmetric and single-beam scenarios.
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Algorithm 1: Computing the number of IA solutions for
general scenarios

∏K
k=1 (Mk ×Nk, dk).

Input: Relative error, ε; number of antennas, {Ml} and
{Nk}; streams, dk; and users, K.

Output: Approximate number of IA solutions, En.
n = 1
repeat

Generate a set of random matrices {Akl}, {Bkl} and
{Ckl} with i.i.d. CN(0, 2) entries.
Build channel matrices {Hkl} according to (13).
Normalize every channel matrix Hkl such that
‖Hkl‖F = 1.
Build the matrix Ψ defining (16).
Compute Dn = C det(ΨΨ∗) where C is taken from
Theorem 2.
Calculate En and σn according to (21) and (22),
respectively, where f(xj) is now Dj .
n = n+ 1.

until σn√
nEn

< ε

A. The square symmetric case

The so-called square symmetric case is that in which all the
dk and all the Nk and Mk are equal for all k. Furthermore,
we are restricted to s = 0 (for the solution counting to be
meaningful) and to K ≥ 3 (for IA to make sense); which
implies N = M ≥ 2d. Under these assumptions, we can
write another integral such that Monte Carlo integration has
been experimentally observed to converge faster:

Theorem 3: Let us consider a symmetric square interfer-
ence channel (Nk = Mk = N and dk = d, ∀k) with s = 0.
Assuming additionally that K ≥ 3, then for every H0 ∈ H
out of some zero–measure set, we have:

#π−1
1 (H0) = C−

∫
(A∗kl,Bkl)∈U

2
(N−d)×d

det(ΨΨ∗) dH,

where

C =

(
2d

2

V ol(UN−d)2

V ol(UN )V ol(UN−2d)

)K(K−1)

V ol(S),

Ψ is again defined by (16), and the input space of MIMO
channels where we have to integrate are now

Hkl =

(
0d×d Akl
Bkl 0(N−d)×(N−d)

)
,

whose blocks, A∗kl and Bkl, are matrices in the complex
Stiefel manifold, denoted as U(N−d)×d, and formed by all the
(ordered) collections of d orthonormal vectors in C(N−d). On
the other hand, Ua denotes the unitary group of dimension a,
whose volume can be found in Appendix A.

Proof: See Appendix D.
Remark 2: The value of the constant preceding the integral

in Theorem 3 is (using that 2N − dK − d = 0 when s = 0):

C =

(
2d

2

V ol(UN−d)2

V ol(UN )V ol(UN−2d)

)K(K−1)

V ol(S) =

(
Γ(N − d+ 1) · · ·Γ(N)

Γ(N − 2d+ 1) · · ·Γ(N − d)

)K(K−1)(
Γ(2) · · ·Γ(d)

Γ(N − d+ 1) · · ·Γ(N)

)2K

Example 1: In this example we will use Theorem 3 to
calculate the number of solutions for the scenario (2× 2, 1)3

again. First, we calculate the value of the constant C which
happens to be equal to 1 and, consequently, the number of
solutions is directly given by the average of the determinant.
2

Subsequent calculations are similar to those in the example
in Section III-C. The main difference is that, in this case, Akl
and Bkl are restricted to be elements of the complex Stiefel
manifold, in this case, the unit-circle. Then,

#(π−1(H0)) = 2E[|A12|2]6 = 2.

From Example 1 it is clear that Theorem 3 has remarkably
simplified the calculation of the integral by reducing the
dimensionality of the integration domain. However, for larger
scenarios we may still need to resort to the Monte Carlo
integration procedure in Section III-D to approximate the
integral in Theorem 3. Algorithm 2 summarizes the proposed
method.

Algorithm 2: Computing the number of IA solutions for
symmetric square scenarios (N ×N, d)K .

Input: Relative error, ε; number of antennas, N ; streams,
d; and users, K.

Output: Approximate number of IA solutions, En.
n = 1
repeat

Generate a set of (N − d)× d matrices {A∗kl} and
{Bkl}, independently and uniformly distributed in the
Stiefel manifold.
Build the matrix Ψ defining (16).
Compute Dn = C det(ΨΨ∗) where C is taken from
Theorem 3.
Calculate En and σn according to (21) and (22),
respectively, where f(xj) is now Dj .
n = n+ 1.

until σn√
nEn

< ε

B. The single-beam case

The results of Theorems 1, 2 and 3 are general and can
be applied to systems where each user wishes to transmit an
arbitrary number of streams. This subsection is devoted to
specialize Theorem 2 to the particular case of single-beam
MIMO networks (i.e. dk = 1, ∀ k). First, we should mention
that, from a theoretical point of view, the single-beam case
was solved in [12], where it was shown that the number of IA
solutions for single-beam feasible systems matches the mixed
volume of the Newton polytopes that support each equation
of the system3. However, from a practical point of view, the
computation of the mixed volume of a set of bilinear equations

2Indeed, C = 1 for all systems whenever N = 2d or, equivalently, K = 3.
3This is not true for multibeam cases because, in this case, the genericity

of the system of equations is lost.
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using the available software tools [19] can be very demanding.
As a consequence, the exact number of IA solutions is only
known for some particular cases [12], [20].

Theorem 4: The number of IA solutions for an arbitrary
single beam scenario with s = 0 is given by

#(π−1
1 (H0)) =

per(T )∏
k(Nk − 1)!

∏
l(Ml − 1)!

(23)

where T is the matrix built by replacing the non-zero elements
of Ψ by ones and per(T ) denotes its permanent.

Equivalently,

#(π−1
1 (H0)) = #A∗(R,C) (24)

where R = (K−N1, . . . ,K−NK), C = (M1−1, . . . ,MK−
1) and #A∗(R,C) denotes the number of elements in
A∗(R,C) which is defined as the class of zero-trace K ×K
binary matrices with row sums R and column sums C.

Proof: See Appendix E.
In spite of its apparent simplicity, evaluating (23) may be very
hard. In fact, computing the permanent is, in general, proven
to be #P-complete [26] even for (0,1)-matrices where #P is
defined as the class of functions that count the number of
solutions in an NP problem.

On the other hand, (24) establishes an equivalence between
the problem of computing the number of solutions of single-
beam scenarios and the problem of counting the number of
zero-trace binary matrices with prescribed rows and column
sums. From a practical point of view, the result in (24) suggests
that the IA problem can be interpreted as transmitters and
receivers collaborating to cancel every single interfering link.
A transmitter zero-forcing a link is encoded as a one in S
whereas a receiver zero-forcing a link is encoded as a zero.
The total number of possible collaboration strategies gives the
number of IA solutions.

Unfortunately, calculating #A∗(R,C) is a non-trivial par-
ticular case of a problem which is also known to be #P-
complete [27, Theorem 9.1]. For the interested reader, we have
computed several exact values which are compiled in Table
I. Our algorithm performs a recursive tree search, commonly
known as backtracking [28] and is summarized in Algorithm
3.

1) Connections with graph theory problems: For the par-
ticular case of symmetric (M × N, 1)K scenarios, the IA
solution counting problem can be restated as several well-
studied combinatorial and graph theory problems. Most of
these problems have been of historical interest and hence a
lot of research has been done on them. Specifically, when the
matrices in A∗(R,C) are seen as the adjacency matrix of a
graph some connections to graph theory problems arise. It is
natural, then, to find out that the number of solutions for some
scenarios have already been computed in the literature:
• The number of solutions for (2× (K− 1), 1)K scenarios

is given by the number of derangements (permutations
of K elements with no fixed points), also known as
rencontres numbers or subfactorial. It is also the number
of simple loop-free labeled 1-regular digraphs with K
nodes. Interestingly, as demonstrated in [29] [30, p.195],

Algorithm 3: Backtracking procedure for counting the
number of IA solutions for arbitrary single-beam scenarios∏K
k=1 (Mk ×Nk, 1).

Input: Number of antennas, {Mk} and {Nk}; and users,
K.

Output: Number of solutions, S.
S = 0 // No solutions found yet
table = 0 // Empty K×K table to fill with
1s
row = 0, col = 0 // Row and column indexes
S = backtrack(table, row, col, S)

function S = backtrack(table, row, col, S)
if table is a valid solution then

S = S + 1 // Valid solution found
else

foreach (row, col) in
get_candidates(table,row,col) do

table(row, col) = 1 // Fill the cell
with a 1
backtrack(table, row, col, S)
// Recursive call
table(row, col) = 0 // Remove the 1

return S

function ((crow1, ccol1), . . . , (crowN , ccolN )) =
get_candidates(table,row,col)

return list of candidate cells to store the next 1

a closed-form solution is available:

round

(
K!

e

)
.

• The number of solutions for (3× (K − 2), 1)K systems
matches the number of simple loop-free labeled 2-regular
digraphs with K nodes. In this case, a closed-form
expression is also available [29]:

K∑
k=0

k∑
s=0

K−k∑
j=0

(−1)k+j−sK!(K − k)!(2K − k − 2j − s)!
s!(k − s)!((K − k − j)!)2j!22K−2k−j .

• In general, the number of solutions for the (M×(K−M+
1), 1)K scenario matches the number of simple loop-free
labeled (M−1)-regular digraphs with K nodes. However,
as far as we are aware, additional closed-form expressions
do not exist.

2) Bounds and asymptotic rate of growth: In order to derive
appropriate bounds for the number of solutions it is convenient
to go back to (23) and apply some classical combinatorial
results to bound the value of per(T ). Herein, we will focus
on symmetric systems: (M×N, 1)K . Bérgman’s Theorem [31,
Theorem 7.4.5] gives an upper bound for the permanent of an
arbitrary matrix as a function of its row sums, ri. In our case,
every row (and column) sum is K−1 and the bound simplifies
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quite notably:

per(T ) ≤
K(K−1)∏

i

(ri!)
1/ri = ((K − 1)!)K . (25)

Additionally, we can use the fact that T ′ = T/(K − 1) is
doubly stochastic to apply van der Waerden’s conjecture (now
proven) [32], [33], i.e. per(T ′) ≥ n!/nn, where n denotes the
size of the matrix:

per(T ) = (K − 1)K(K−1) per(T ′) ≥ (K(K − 1))!

KK(K−1)
. (26)

From the previous bounds and (23), the number of solutions
is shown to be bounded above and below as follows:

L ≤ #(π−1
1 (H0)) ≤ U, (27)

where

L =
(K(K − 1))!

((M − 1)!)K((N − 1)!)KKK(K−1)
,

and U =
(
K−1
M−1

)K
.

Now, we study the growth rate of the number of solutions
when the number of users increases. As a first step, we
approximate every factorial in both bounds applying Stirling’s
formula, i.e. log(n!) ≈ n log n for large n. Interestingly, this
approximation demonstrates that both upper and lower bounds
are asymptotically equivalent

logL ≈ logU ≈ K(K−1) log
K − 1

K −M+K(M−1) log
K −M
M − 1

,

(28)
and the actual number of solutions, which is bounded above
and below by these bounds, will be asymptotically equivalent
as well. In order to calculate the rate of growth, we distinguish
two different scenarios of interest. First, a scenario where
we fix the number of antennas at one side of each link, for
example M , and let the number of users, K, grow to infinity.
Under this assumption, it is clear that the growth rate of (28)
will be dominated by the second addend, K(M−1) log K−M

M−1 ,
and, thus

log(#(π−1
1 (H0))) ∈ Θ(K logK), (29)

where Θ(K logK) represents the class of functions that are
asymptotically bounded both above and below by K logK.
Equivalently, c1K logK ≤ log(#(π−1

1 (H0))) ≤ c2K logK
for some positive c1 and c2. Note that Θ(K logK) denotes a
polynomial rate of growth which is faster than linear, Θ(K),
but slower than quadratic, Θ(K2). Consequently, it can be
said that the logarithm of the number of solutions grows as
K1+c where c ∈ (0, 1), i.e. the number of solutions grows
exponentially with K1+c.

Now, we consider a second scenario where the ratio γ =
M/N is fixed. Given that M + N = K + 1, we have that
both M and N will grow as fast as K, i.e. N = K+1

γ+1 and
M = γ

γ+1 (K + 1). Taking this into account, it is trivial to
see that both terms on the right hand side of (28) grow as K2

and, consequently

log(#(π−1
1 (H0))) ∈ Θ(K2). (30)

In summary, the logarithm of the number of solutions is
quadratic in K or, in other words, the number of solutions
grows exponentially with K2. Note that this rate is asymptoti-
cally equivalent to that obtained from Bézout’s Theorem which
bounds the number of solutions by 2K(K−1). Despite being
asymptotically equivalent, the upper bound proposed herein is
remarkably tighter.

V. NUMERICAL EXPERIMENTS

In this section we present some results obtained by means of
the integral formulae in Theorem 2 (for arbitrary interference
channels) and Theorem 3 (for square symmetric interference
channels). We first evaluate the accuracy provided by the
approximation of the integrals by Monte Carlo methods. To
this end, we focus initially on single-beam systems, for which
the procedure described in Section IV-B allows us to efficiently
obtain the exact number of IA solutions for a given scenario.
The true number of solutions can thus be used as a benchmark
to assess the accuracy of the approximation.

Table I compares the number of solutions given by both
the exact and the approximate procedures. To simplify the
analysis, we have considered (M × (K −M + 1), 1)K sym-
metric single-beam networks for increasing values of M and
K. As shown in Section IV-B1, counting IA solutions for this
scenario is equivalent to the well-studied graph theory problem
of counting siple loop-free labeled (M − 1)-regular digraphs
with K nodes. Thus, additional terms and further information
can be retrieved from integer sequences databases such as [29]
from its corresponding A-number given in the last row of Table
I. Percentages represent the estimated relative error, 2ε · 100,
for each scenario (see Section III-D). Figure 1 depicts the
evolution of the exact number of solutions with a growing K,
and the area between the proposed upper and lower bounds,
for different values of M (form top to bottom, M = 2, 3, 4). It
shows that all three are asymptotically equivalent, as proved
in Section IV-B2. The exact number of solutions has been
obtained from the A-sequences mentioned in Table I. For the
case M = 4, the solid line corresponds to the values which
are available at the time of writing in [29, Seq. A007105],
i.e. K ≤ 14. Beyond that point, the dashed line extrapolates
new values following the model aK log(K) + bK + c. The
coefficients a, b and c are those providing the best least squares
fit of the available data for K ≤ 14.

Now we move to multi-beam scenarios, for which the
exact number of solutions is only know for a few scenarios.
Table II shows the results obtained for some instances of the
(M × (2K −M + 2), 2)K network. These results have been
obtained using the integral formula in Theorem 2, except the
square cases (M = N ), for which we used the expression
in Theorem 3. For instance, we can mention that the system
(5× 5, 2)4 has, with a high confidence level, about 3700 dif-
ferent solutions (this result has been independently confirmed
in [21]). As numerical results show, the integral formula in
Theorem 3 can be approximated much faster than that of
Theorem 2, thus allowing us to get smaller relative errors. For
the sake of completeness, Table III shows the approximate
number of solutions for some additional square symmetric
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Fig. 1. Growth rate of the number of IA solutions in single beam systems,
(M × (K − 1), 1)K , for M = 2, 3, 4.

multi-beam scenarios. For some of them the exact number
of solutions was already known, as indicated in the table. For
others (those indicated as N/A in the table) the exact number
of solutions was unknown.

Although these results have a mainly theoretical interest,
they might also have some important practical implications.
In the following, we illustrate this point with a numerical
experiment. Let us assume that we have a moderate-size
network for which the total number of solutions is relatively
small. One such example could be the (4×6, 2)4 system which,
according to the results in Table II, has a number solutions
in the interval [904, 1042] (95% confidence interval). It is
obvious that, since the exact number of solutions is unknown, a
systematic way to compute all interference alignment solutions
for a given channel realization does not exist. Still, one may
try to compute them by repeatedly running some iterative
algorithm such as the ones in [34], [35] or [36] from different
initialization points.4 This idea is illustrated in Figure 2, where
the sum-rate performance associated to 973 different solutions
is shown. The fact that we have been able to find 973 solutions
only demonstrates that, at least, 973 solutions exist. The actual
number may be even larger and presumably below 1042, but it
seems hard to be determined by means of the algorithm in [34].
In Figure 2, the maximum sum-rate solution is represented
with a thicker solid line, while the average sum-rate of all
solutions is represented with a dashed line. Interestingly, the
relative performance improvement provided by the maximum
sum-rate solution over the average is substantial, i.e. it is
always above 10 % for SNR values below 40 dB, and more
than 20 % for SNR=20 dB. We note that this improvement
is comparable to the one provided by sum-rate optimization

4Note that the last one is restricted to single-beam scenarios and, conse-
quently, cannot be applied to the scenario at hand.

algorithms which take into account additional information in
the optimization procedure such as direct channels and noise
variance.
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Fig. 2. Comparison of the sum rate achieved by 973 different solutions for
the system (4 × 6, 2)4.
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M = 2 M = 3 M = 4

(2 × (K − 1), 1)K (3 × (K − 2), 1)K (4 × (K − 3), 1)K

Exact / Approx. Exact / Approx. Exact / Approx.

K = 2 1 / 1 ± 0.0 % – –
K = 3 2 / 2 ± 1.0 % 1 / 1 ± 0.5 % –
K = 4 9 / 9 ± 1.6 % 9 / 9 ± 1.6 % 1 / 1 ± 0.6 %
K = 5 44 / 44 ± 2.6 % 216 / 216 ± 1.5 % 44 / 44 ± 2.6 %
K = 6 265 / 266 ± 3.3 % 7 570 / 7 291 ± 5.5 % 7 570 / 7 291 ± 5.5 %
K = 7 1 854 / 1 868 ± 9.6 % 357 435 / 361 762 ± 8.7 % 1 975 560 / 1 936 679 ± 7.0 %
K = 8 14 833 / 13 144 ± 20.6 % 22 040 361 / 22 419 610 ± 11.3 % 749 649 145 / 739 668 504 ± 14.1 %

...
...

...
K > 8 [29, Seq. A000166] [29, Seq. A007107] [29, Seq. A007105]

TABLE I
COMPARISON OF EXACT AND APPROXIMATE NUMBER OF IA SOLUTIONS FOR SEVERAL SYMMETRIC SINGLE-BEAM SCENARIOS,

(M × (K −M + 1), 1)K .

M = 3 M = 4 M = 5 M = 6

(3 × (2K − 1), 2)K (4 × (2K − 2), 2)K (5 × (2K − 3), 2)K (6 × (2K − 4), 2)K

K = 2 0 ± 0.0 % 1 ± 4.1 % – –
K = 3 1 ± 4.2 % 6 ± 0.0 % 1 ± 4.8 % 1 ± 5.2 %
K = 4 9 ± 5.8 % 973 ± 7.0 % 3 700 ± 0.1 % 973 ± 7.0 %
K = 5 223 ± 14.8 % 530 725 ± 11.3 % 72 581 239 ± 17.8 % 387 682 648 ± 0.7 %

TABLE II
APPROXIMATE NUMBER OF IA SOLUTIONS FOR SEVERAL SYMMETRIC 2-BEAM SCENARIOS, (M × (2K −M + 2), 2)K .

K d Scenario Exact Ref. Approximate

3 1 (2 × 2, 1)3 2 [1] 2 ± 0.9 %
3 2 (4 × 4, 2)3 6 [1] 6 ± 0.9 %
3 3 (6 × 6, 3)3 20 [1] 20 ± 1.4 %
4 2 (5 × 5, 2)4 N/A N/A 3 700 ± 0.1 %
4 4 (10 × 10, 4)4 N/A N/A 13 887 464 893 004 ± 6.8 %
5 1 (3 × 3, 1)5 216 [20] 216 ± 0.6 %
5 2 (6 × 6, 2)5 N/A N/A 387 724 347 ± 0.7 %

TABLE III
APPROXIMATE NUMBER OF IA SOLUTIONS FOR SELECTED SQUARE SYMMETRIC SCENARIOS, (K+1

2
d× K+1

2
d, d)K .
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VI. CONCLUSION

In this paper we have provided two integral formulae to
compute the finite number of IA solutions in MIMO inter-
ference channels, including multi-beam (dk > 1) systems.
The first one can be applied to arbitrary K-user interference
channels, whereas the second one solves the symmetric square
case. Both integrals can be estimated by means of Monte Carlo
methods. We have also specialized our results to single-beam
networks, leading to a combinatorial counting procedure that
allows to obtain the exact number of solutions and interesting
connections with well-known graph counting problems.

APPENDIX A
MATHEMATICAL PRELIMINARIES

To facilitate reading, in this section we recall the mathe-
matical results used in this paper. Firstly, we provide a short
review on mappings between Riemannian manifolds and the
main mathematical result used to derive the number of IA
solutions, which is the Coarea formula. Secondly, we review
the volume of the Grassmanian manifolds and the volume of
the unitary group, which are also used throughout the paper.

A. Tubes in Riemannian manifolds and the Coarea formula
A general result about tubes states that the volume of a

tubular neighborhood about a compact embedded submanifold
is essentially given by the intrinsic volume of the submanifold
times the volume of a ball of the appropiate dimension. We
write down a simplified version of [37, Th. 9.23]:

Theorem 5: Let X be a compact, embedded, (real) codi-
mension c submanifold of the Riemannian manifold Y . Then,
for sufficiently small ε > 0,

V ol(y ∈ Y : d(y,X) < ε) =

V ol(X)V ol(r ∈ Rc : ‖r‖ ≤ 1)εc +O(εc+1).

Here, V ol(X) is the volume of X w.r.t. its natural Riemannian
structure inherited from that of Y .
One of our main tools is the so–called Coarea Formula. The
most general version we know may be found in [38], but for
our purposes a smooth version as used in [39, p. 241] or [40]
suffices. We first need a definition.

Definition A.1: Let X and Y be Riemannian manifolds, and
let ϕ : X −→ Y be a C1 surjective map. Let k = dim(Y )
be the real dimension of Y . For every point x ∈ X such that
the differential mapping Dϕ(x) is surjective, let vx1 , . . . , v

x
k

be an orthogonal basis of Ker(Dϕ(x))⊥. Then, we define
the Normal Jacobian of ϕ at x, NJϕ(x), as the volume in
the tangent space Tϕ(x)Y of the parallelepiped spanned by
Dϕ(x)(vx1 ), . . . , Dϕ(x)(vxk). In the case that Dϕ(x) is not
surjective, we define NJϕ(x) = 0.

Theorem 6 (Coarea formula): Let X,Y be two Rieman-
nian manifolds of respective dimensions k1 ≥ k2. Let ϕ :
X −→ Y be a C∞ surjective map, such that the differential
mapping Dϕ(x) is surjective for almost all x ∈ X . Let
ψ : X −→ R be an integrable mapping. Then, the following
equality holds:∫
x∈X

ψ(x)NJϕ(x) dX =

∫
y∈Y

∫
x∈ϕ−1(y)

ψ(x) dx dy. (31)

Note that from the Preimage Theorem and Sard’s Theorem
(see [41, Ch. 1]), the set ϕ−1(y) is a manifold of dimension
equal to dim(X) − dim(Y ) for almost every y ∈ Y . Thus,
the inner integral of (31) is well defined as an integral in a
manifold. Moreover, if dim(X) = dim(Y ) then ϕ−1(y) is a
finite set for almost every y, and then the inner integral is just
a sum with x ∈ ϕ−1(y).

The following result, which follows from the Coarea for-
mula, is [39, p. 243, Th. 5].

Theorem 7: Let X,Y and V ⊆ X × Y be smooth Rie-
mannian manifolds, with dim(V) = dim(X) and Y compact.
Assume that π2 : V → Y is regular (i.e. Dπ2 is every-
where surjective) and that Dπ1(x, y) is surjective for every
(x, y) ∈ V out of some zero measure set. Then, for every
open set U ⊆ X contained in some compact set K ⊆ X ,∫
x∈U

#(π−1
1 (x)) dx =

∫
y∈Y

∫
x∈U :(x,y)∈V

DET (x, y)−1 dx dy,

(32)
where DET (x, y) = det(DGx,y(x)DGx,y(x)∗) and Gx,y is
the (locally defined) implicit function of π1 near x = π1(x, y).
That is, close to (x, y) the sets V and {(x,Gx,y(x))} coincide.

Corollary 1: In addition to the hypotheses of Theorem 7,
assume that there exists y0 ∈ Y such that for every y ∈ Y
there exists an isometry ϕy : Y → Y with ϕy(y) = y0 and an
associated isometry χy : X → X such that χy(U) = U and
(χy × ϕy)(V) = V . Then,∫
x∈U

#(π−1
1 (x)) dx = V ol(Y )

∫
x∈U :(x,y0)∈V

DET (x, y0)−1 dx.

Proof: Let y ∈ Y and let ϕy, χy as in the hypotheses.
Then, consider the mapping

χy : {x ∈ U : (x, y) ∈ V} : → {x ∈ U : (x, y0) ∈ V}
x 7→ χy(x),

which is the restriction of an isometry, hence an isometry. Let
Gx,y be the local inverse of π1 close to (x, y) ∈ V . The change
of variables formula then implies:∫

x∈U :(x,y)∈V
DET (x, y)−1 dx =∫
x∈U :(x,y0)∈V

DET (χ−1
y (x), y)−1 dx. (33)

Note that the following diagram is commutative:

V ∩ π−1
1 (U)

χ−1
y ×ϕ

−1
y−→ V ∩ π−1

1 (U)
π1 ↓↑ Gx,y0 ↓ π1

X
χ−1
y−→ X

Thus, the mapping (χ−1
y ×ϕ−1

y )◦Gx,y0 ◦χy is a local inverse
of π1 near (χ−1

y (x), y), that is

Gχ−1
y (x),y = (χ−1

y × ϕ−1
y ) ◦Gx,y0 ◦ χy,

and the composition rule for the derivative gives:

DGχ−1
y (x),y(χ−1

y (x)) =

D(χ−1
y × ϕ−1

y )(Gx,y0(x))DGx,y0(x)Dχ−1
y (χy(x)).
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Now, χy , ϕy and χy × ϕy are isometries of their respective
spaces. Thus, we conclude:

det(DGχ−1
y (x)(χ

−1
y (x))DGχ−1

y (x),y(χ−1
y (x))∗) =

det(DGx,y0(x)DGx,y0(x)∗),

that is DET (χ−1
y (x), y) = DET (x, y0). Then, (33) reads∫

x∈U :(x,y)∈V
DET (x, y)−1 dx =∫

x∈U :(x,y0)∈V
DET (x, y0)−1 dx.

That is, the inner integral in the right–hand side term (32) is
constant. The corollary follows.

B. The volume of classical spaces

Some helpful formulas are collected here:

V ol(S(Ca)) = V ol(S(R2a)) =
2πa

Γ(a)
(34)

is the volume of the complex sphere of dimension a (cf. [37,
p. 248]).

V ol(Ua) =
(2π)

a(a+1)
2

Γ(1) · · ·Γ(a)
, (35)

is the volume of the unitary group of dimension a (cf. [42, p.
54]). Note that, as pointed out in [42, p. 55] there are other
conventions for the volume of unitary groups. Our choice here
is the only one possible for Theorem 5 to hold: the volume of
Ua is the one corresponding to its Riemannian metric inherited
from the natural Frobenius metric in Ma(C).

We finally recall the volume of the complex Grassmannian.
Let 1 ≤ a ≤ b; then,

V ol(Ga,b) = πa(b−a) Γ(2) · · ·Γ(a) · Γ(2) · · ·Γ(b− a)

Γ(2) · · ·Γ(b)
. (36)

APPENDIX B
PROOF OF THEOREM 1

We will apply Corollary 1 to the double fibration given by
(10). In the notations of Corollary 1, we consider X = H,
Y = S, V the solution variety and

y0 =

((
Idk

0Nk−dk

)
,

(
Idk

0Mk−dk

))
= (U0, V0) ∈ S.

Given any other element y = (Uk, Vk) ∈ S, let Pk and Qk be
unitary matrices of respective sizes Nk and Mk such that

Uk = Pk

(
Idk

0Nk−dk

)
, Vk = Qk

(
Idk

0Mk−dk

)
.

Then consider the mapping

ϕy(Ũk, Ṽk) = (P ∗k Ũk, Q
∗
kṼk),

which is an isometry of S and satisfies ϕy(y) = y0 as
demanded by Corollary 1. We moreover have the associated
mapping χy : H → H given by

χy((Hkl)k 6=l) = (PTk HklQl)k 6=l

which is an isometry of H. Moreover, χy(Hε) = Hε and
χy×ϕy(V) = V . We can thus apply Corollary 1 which yields∫

H∈Hε
#(π−1

1 (x)) dx =

vol(S)

∫
H∈HI∩Hε

det(DG(H)DG(H)∗)−1 dH, (37)

where G is the local inverse of π1 close to H at (H,U0, V0).
We now compute det(DG(H)DG(H)∗)−1. From the defini-
tion of G we have

T(H,U,V )V = {(Ḣ,DG(H)Ḣ) : Ḣ ∈ THH}.
On the other hand, from the defining equations (3) and
considering H ∈ HI and Ḣ ∈ THH as block matrices

H =

(
0dk×dl A
B C

)
, Ḣ =

(
Ṙkl Ȧkl
Ḃkl Ċkl

)
we can identify

T(H,y0)V =

{(
Ḣ,

(
0

U̇

)
,

(
0

V̇

))
: U̇Tk Bkl + Ṙkl +AklV̇l = 0, k 6= l

}
= {(Ḣ, U̇ , V̇ ) : (U̇ , V̇ ) = −Ψ−1

H (Ṙkl)}.
Hence5,

DG(H)Ḣ = −Ψ−1
H (Ṙkl) = −Ψ−1

H (U∗0 ḢklV0).

A straight–forward computation shows that:

DG(H)∗(U̇ , V̇ ) = (−U0Ψ−∗H (U̇ , V̇ )V ∗0 )k 6=l.

Thus, writing Ψ = ΨH , we have:

DG(H)DG(H)∗(U̇ , V̇ ) = Ψ−1Ψ−∗(U̇ , V̇ ).

Therefore, (DG(H)DG(H)∗)−1 = Ψ∗Ψ and

det(DG(H)DG(H)∗)−1 = det(Ψ∗Ψ) = |det(Ψ)|2 = det(ΨΨ∗).

From this last equality and (37) we have:∫
H∈Hε

#(π−1
1 (H)) dH = V ol(S)

∫
H∈HI∩Hε

det(ΨΨ∗) dH.

Theorem 1 follows dividing both sides of this equation by
V ol(Hε) and using the fact that for every choice of H out
of a zero measure set, the number of elements in π−1

1 (H) is
constant (see Lemma 1).

APPENDIX C
PROOF OF THEOREM 2

Let ε < 1 and let Hε be the product for k 6= l of the sets

{Hkl : d(Hkl, {R ∈MNk×Ml
: ‖R‖F = 1}) < ε}.

From Theorem 5, each of these sets have volume equal to

2V ol({R ∈MNk×Ml
: ‖R‖F = 1})ε+O(ε2) =

(34)

4πNkMl

Γ(NkMl)
ε+O(ε2)

5Note that in the appendices we will sometimes refer to Ψ as ΨH to make
the dependence on H explicit.
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Thus,

V ol(Hε) =

∏
k 6=l

4πNkMl

Γ(NkMl)

 εK(K−1) +O(εK(K−1)+1).

On the other hand, consider the smooth mapping

f : HI → HI ∩
∏
k 6=l{‖Hkl‖F = 1}

(Hkl)k,l →
(

Hkl
‖Hkl‖F

)
k,l

and apply Theorem 6 to get∫
H∈HI∩Hε

det(ΨHΨ∗H) dH =

∫
H∈HI∩

∏
k 6=l{‖Hkl‖F=1}∫

~t=(tkl)∈[−ε,ε]K(K−1)

det(ΨĤΨ∗
Ĥ

)NJf(Ĥ) d~t dH,

where Ĥkl = Hkl(1 + tkl). Note that the function inside
the inner integral is smooth and hence for any H ∈ HI ∩∏
k 6=l{‖Hkl‖F = 1} we have

det(ΨĤΨ∗
Ĥ

)NJf(Ĥ) = det(ΨHΨ∗H)NJf(H) +O(ε).

We have thus proved (using ≈ for equalities up to O(ε)):∫
H∈HI∩Hε

det(ΨHΨ∗H) dH ≈

(2ε)K(K−1)

∫
H∈HI∩

∏
k 6=l{‖Hkl‖F=1}

det(ΨHΨ∗H)NJf(H) dH,

It is very easy to see that NJf(H) = 1 if H = (Hkl) with
‖Hkl‖F = 1. Thus, we have∫

H∈HI∩Hε
det(ΨHΨ∗H) dH ≈

(2ε)K(K−1)

∫
H∈HI∩

∏
k 6=l{‖Hkl‖F=1}

det(ΨHΨ∗H) dH.

From Theorem 1 and taking limits we then have that for almost
every H0 ∈ H,

#(π−1
1 (H0)) = C−

∫
H∈HI∩

∏
k 6=l{‖Hkl‖F=1}

det(ΨΨ∗) dH,

(38)
where

C =
2K(K−1)V ol

(
H ∈ HI ∩

∏
k 6=l{‖Hkl‖F = 1}

)
∏
k 6=l

4πNkMl
Γ(NkMl)

V ol(S)

Now, HI ∩
∏
k 6=l{Hkl : ‖Hkl‖F = 1} is a product of spheres

and thus from (34)

V ol

HI ∩∏
k 6=l

{‖Hkl‖F = 1}

 =
∏
k 6=l

2πNkMl−dkdl

Γ(NkMl − dkdl)
.

Finally, S = (
∏
k Gdk,Nk) × (

∏
lGdl,Ml

) is a product of
complex Grassmannians, and its volume is thus the product

of the respective volumes, given in (36). That is,

V ol(S) =(∏
k

πdk(Nk−dk) Γ(2) · · ·Γ(dk) · Γ(2) · · ·Γ(Nk − dk)

Γ(2) · · ·Γ(Nk)

)
×(∏

l

πdl(Ml−dl) Γ(2) · · ·Γ(dl) · Γ(2) · · ·Γ(Ml − dl)
Γ(2) · · ·Γ(Ml)

)
.

Putting these computations together, and using s = 0, we get
the value of C claimed in Theorem 2.

APPENDIX D
PROOF OF THEOREM 3

The proof of this theorem is quite long and nontrivial. We
will apply Theorem 1 to the sets

Hε = {(Hkl) : d(Hkl,UNk) ≤ ε, k 6= l}. (39)

Then, because (17) holds for every ε, one can take limits and
conclude that for almost every H0 ∈ H,

#(π−1
1 (H0)) = lim

ε→0

V ol(HI ∩Hε)V ol(S)

V ol(Hε)
−
∫
H∈HI∩Hε

det(ΨΨ∗) dH.

(40)
The claim of Theorem 3 will follow from the (difficult)
computation of that limit. We organize the proof in several
subsections.

A. Unitary matrices with some zeros

In this section we study the set of unitary matrices of size
N ≥ 2d which have a principal d×d submatrix equal to 0, and
the set of closeby matrices. For simplicity of the exposition,
the notations of this section are inspired in, but different from,
the notations of the rest of the paper. Let

T = TN,d =

{
H =

(
0d×d A
B C

)}
⊆MN×N (C).

Note that T is a vector space of complex dimension N2−d2.
Our three main results are:

Proposition 1: The set UN∩T is a manifold of codimension
N2 inside T . Moreover,

V ol(UN ∩ T ) =
V ol(UN−d)2

V ol(UN−2d)
.

Proposition 2: The following equality holds:

lim
ε→0

V ol(H ∈ T : d(H,UN ) ≤ ε)
εN2 =

2d
2

V ol(UN ∩ T )V ol(x ∈ RN
2

: ‖x‖ ≤ 1).

Proposition 3: Let ψ : T → R be a smooth mapping
defined on T and such that ψ(H) depends only on the A and
B part of H , but not on the part C. Denote ψ(H) = ψ(A,B).
Then,

lim
ε→0

∫
H∈T :d(H,UN )≤ε ψ(H) dH

V ol(H ∈MN (C) : d(H,UN ) ≤ ε) =

2d
2

V ol(UN−d)2

V ol(UN )V ol(UN−2d)
−
∫

(A∗,B)∈U(N−d)×d
ψ(A,B) d(A,B).
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1) Proof of Proposition 1: Let

ξ : U2
N−d → UN ∩ T

(U, V ) 7→
(
Id 0
0 U

)
J

(
Id 0
0 V ∗

)
(41)

where

J =

 0 Id 0
Id 0 0
0 0 IN−2d

 .

We claim that ξ is surjective. Indeed, let

H =

(
0 A
B C

)
∈ UN ∩ T .

From HH∗ = IN we have that A satisfies AA∗ = Id, i.e. the
rows of A can be completed to form a unitary basis of CN−d.
Namely, there exists V ∈ UN−d such that A = (Id 0)V .
Similarly, there exists U ∈ UN−d such that B = U

(
Id
0

)
. Then,

H =

(
Id 0
0 U

) 0 Id 0
Id R1 R2

0 R3 R4

(Id 0
0 V

)
,

where
R =

(
R1 R2

R3 R4

)
satisfies URV = C. Now, this implies that the matrix 0 Id 0

Id R1 R2

0 R3 R4


is unitary, which forces R1 = 0, R2 = 0, R3 = 0 and R4

unitary. That is

H =

(
Id 0
0 U

) 0 Id 0
Id 0 0
0 0 R4

(Id 0
0 V

)
=

(
Id 0
0 U

)
J

Id 0 0
0 Id 0
0 0 R4

(Id 0
0 V

)
,

that is

H = ξ

(
U, V ∗

(
Id 0
0 R4

)∗)
,

and the surjectivity of ξ is proved. Moreover, this construction
describes UN ∩T as the orbit of J under the action in T given
by

((U, V ), X) 7→
(
Id 0
0 U

)
X

(
Id 0
0 V ∗

)
.

Then, UN ∩ T is a smooth manifold diffeomorphic to the
quotient space

U2
N−d/SJ ,

where SJ is the stabilizer of J . Now, (U, V ) ∈ SJ if and only
if Id 0 0

0 U1 U2

0 U3 U4

 0 Id 0
Id 0 0
0 0 IN−2d

Id 0 0
0 V ∗1 V ∗3
0 V ∗2 V ∗4

 =

 0 Id 0
Id 0 0
0 0 IN−2d

 ,

which implies U1 = Id, U2 = 0, U3 = 0, V1 = Id, V2 = 0,
V3 = 0 and U4 = V4. Thus,

SJ =

{((
Id 0
0 U4

)
,

(
Id 0
0 U4

))
: U4 ∈ UN−2d

}
. (42)

Then,

dim(UN ∩ T ) = dim(U2
N−d/SJ) =

2 dim(UN−d)2−dim(SJ) = 2(N−d)2−(N−2d)2 = N2−2d2.

On the other hand, dim(T ) = 2N2 − 2d2 and thus

codimT (UN ∩ T ) = 2N2 − 2d2 − (N2 − 2d2) = N2,

as claimed. We now apply the Coarea formula to ξ to compute
the volume of UN ∩ T . Note that by unitary invariance the
Normal Jacobian of ξ is constant, and so is V ol(ξ−1(H)).
We can easily compute

V ol(ξ−1(H)) =
∀ H

V ol(ξ−1(J)) =

V ol(SJ) =
(42)

√
2

(N−2d)2

V ol(UN−2d).

For the Normal Jacobian of ξ, writing

U̇ =

(
U̇1 U̇2

U̇3 U̇4

)
,

for an element in the tangent space to UN−d at IN−d (and
similarly for V̇ ), note that

Dξ(IN−d, IN−d)(U̇ , V̇ ) =

 0 V̇ ∗1 −V̇2

U̇1 0 U̇2

−U̇∗2 V̇ ∗2 U̇4 + V̇ ∗4

 .

Thus, Dξ(IN−d, IN−d) preserves the orthogonality of the
natural basis of TUUN−d × TV UN−d but for the elements
such that U̇4 6= 0 or V̇4 6= 0. We then conclude that
NJ(ξ)(IN−d, IN−d) = NJ(η) where

η : {M : M +M∗ = 0}2 → {M : M +M∗ = 0}
(U̇4, V̇4) 7→ U̇4 + V̇ ∗4 ,

and M ∈ MN−2d. It is a routine task to see that η∗(L) =
(L,L∗) which implies ηη∗(L) = 2L, that is

det(ηη∗) = 2dim({M∈MN−2d(C):M+M∗=0}) = 2(N−2d)2 .

Hence, NJ(η) =
√

det(ηη∗) =
√

2
(N−2d)2

. As we have
pointed out above, the value of the Normal Jacobian of ξ is
constant. Thus, for every U, V ,

NJ(ξ)(U, V ) = NJ(η) =
√

2
(N−2d)2

.

The Coarea formula applied to ξ then yields:

V ol(U2
N−d) =

∫
(U,V )∈U2

N−d

1 d(U, V ) =∫
H∈UN∩T

V ol(ξ−1(H))

NJ(ξ)
dH = V ol(UN ∩T )V ol(UN−2d).

The value of V ol(UN ∩ T ) is thus as claimed in Proposition
1.
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2) Some notations: Given a matrix of the form

H =

0 σ 0
α C1 C2

0 C3 C4

 , (43)

(α and σ are d×d diagonal matrices with real positive ordered
entries) we denote by H̃ the associated matrix

H̃ =

α C1 C2

0 σ 0
0 U∗0C3 U∗0C4

 ,

where U0 is some unitary matrix which minimizes the distance
from C4 to UN−2d. Note that

H̃ =

0 I 0
I 0 0
0 0 U∗0

H,

and hence
d(H,UN ) = d(H̃,UN ).

We also let

T1(H) = ‖α− Id‖2 + ‖σ − Id‖2 + ‖C4 − U0‖2+

‖C1‖2 + ‖C2‖2 + ‖C3‖2
2

,

T2(H) = ‖α− Id‖2 + ‖σ − Id‖2 + ‖C4 −U0‖2 + ‖C1‖2+

‖C2‖2 + ‖C3‖2
2

= T1(H) +
‖C1‖2

2
.

Note that

T2(H) ≥ T1(H) ≥ ‖H̃ − IN‖
2

2
≥ d(H̃,UN )2

2
=
d(H,UN )2

2
(44)

3) Approximate distance to UN and UN∩T : In this section
we prove that for small values,

d(H,UN ) ≈ T1(H)1/2, d(H,UN ∩ T ) ≈ T2(H)1/2.

More precisely:
Proposition 4: For sufficiently small ε > 0, if d(H,UN ) ≤

ε then,
|d(H,UN )− T1(H)1/2| ≤ O(ε2),∣∣∣d (H,UN ∩ T )− T2(H)1/2

∣∣∣ ≤ O(ε2).

Here, we are writing O(ε2) for some function of the form
c(d)ε2.
Before proving Proposition 4 we state the following interme-
diate result.

Lemma 2: There is an ε0 > 0 such that ‖H̃−IN‖ ≤ ε < ε0
implies:

T1(H)1/2 − 9ε2 ≤ d(H,UN ) ≤ T1(H)1/2 + 9ε2,

T2(H)1/2 − 30ε2 ≤ d (H,UN ∩ T ) ≤ T2(H)1/2 + 30ε2.

Proof: We will use the concept of normal coordinates (see
for example [37, p. 14]). Consider the exponential mapping in
UN , which is given by the matrix exponential

TIUN = {R ∈MN : R+R∗ = 0} → UN

R 7→ eR = I +R+
∑
k≥2

Rk

k!
,

which is an isometry from a neighborhood of 0 ∈ TIUN to a
neighborhood of I ∈ UN and defines the normal coordinates.
Thus, for sufficiently small ε1 > 0 there exists ε0 > 0 such that
if U ∈ UN , ‖U − I‖ < ε0 then there exists a skew–symmetric
matrix R such that

U = eR, ‖R‖ = dUN (U, I), ‖R‖ ≤ ε1.
Let R ∈MN be a skew–Hermitian matrix such that

‖H̃−eR‖ = d(H̃,UN ) = δ ≤ ε, ‖R‖ = dUN (eR, I), ‖R‖ ≤ ε1.
Let S =

∑
k≥2R

k/k!. Then, eR = I +R+ S and

‖S‖ ≤
∑
k≥2

‖R‖k
k!
≤ ‖R‖2.

If we denote a = ‖eR− I‖ = ‖R+S‖ and b = dUN (eR, I) =
‖R‖, we have proved that

b− 2b2 ≤ a ≤ b+ 2b2.

Assuming that ε1 < 1/3 (so b < 1/3) and doing some
arithmetic, this implies

a+ 6a2 ≥ b, that is ‖R‖ ≤ ‖eR − I‖+ 6‖eR − I‖2.
Now,

‖eR − I‖ ≤ ‖eR − H̃‖+ ‖H̃ − I‖ ≤ 2ε,

which implies
‖R‖ ≤ 2ε+ 24ε2 ≤ 3ε.

In particular, ‖S‖ ≤ 9ε2. We conclude:

d(H,UN ) = d(H̃,UN ) =

‖H̃−eR‖ ≥ ‖H̃− (I+R)‖−‖S‖ ≥ ‖H̃− (I+R)‖−9ε2.

We now solve the following elementary minimization problem:

min
R:R+R∗=0

‖H̃ − (I +R)‖.

Let

R =

 R1 R2 R3

−R∗2 R5 R6

−R∗3 −R∗6 R9

 ,

with

R1 +R∗1 = 0, R5 +R∗5 = 0, R9 +R∗9 = 0.

Then, ‖H̃ − (I + R)‖ is minimized when R1 = 0, R5 = 0,
R9 = 0 and

R2 =argmin(‖C1 −R2‖2 + ‖R2‖2)

R3 =argmin(‖C2 −R3‖2 + ‖R3‖2)

R6 =argmin(‖U∗0C3 +R∗6‖2 + ‖R6‖2).
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It is easily seen that the solutions to these problems are:

R2 =
C1

2
→ ‖C1 −R2‖2 + ‖R2‖2 =

‖C1‖2
2

,

R3 =
C2

2
→ ‖C2 −R3‖2 + ‖R3‖2 =

‖C2‖2
2

R6 =− C∗3U0

2
→ ‖U∗0C3 +R∗6‖2 + ‖R6‖2 =

‖C3‖2
2

.

We have then proved

min
R:R+R∗=0

‖H̃ − (I +R)‖ = T1(H̃)1/2,

and the minimum is reached at

R =

 0 C1/2 C2/2
−C∗1/2 0 −C3U

∗
0 /2

−C∗2/2 U0C
∗
3/2 0

 (45)

Hence,
d(H,UN ) ≥ T1(H̃)1/2 − 9ε2,

and the first lower bound claimed in the lemma follows. For
the upper bound let R be defined by (45) and note that
(following a similar reasoning to the one above)

d(H,UN ) = d(H̃,UN ) ≤ ‖H̃ − eR‖ ≤ ‖H̃ − (I +R)‖+

∑
k≥2

‖R‖k
k!

= T1(H̃)1/2 +
∑
k≥2

(
‖C1‖2+‖C2‖2+‖C3‖2

2

)k/2
k!

.

Now, ‖H̃ − IN‖ ≤ ε in particular implies ‖C1‖2 + ‖C2‖2 +
‖C3‖2 ≤ ε2 and then we have

d(H,UN ) ≤ T1(H̃)1/2 +
∑
k≥2

(
ε2

2

)k/2
k!

≤ T1(H̃)1/2 + 2ε2,

as wanted. Now, for the second claim of the lemma, the same
argument is used but now R is such that eR minimizes ‖H̃ −
eR‖ and

eR =

∗ ∗ ∗0 ∗ ∗
∗ ∗ ∗

 .

Now, from the equality

I +R = eR − S,

and arguing as above we have that ‖R2‖ ≤ ‖S‖ ≤ 9ε2, which
implies

‖R− R̃‖ =
√

2‖R2‖ ≤ 20ε2,

where we denote by R̃ the matrix resulting from letting R2 =
0. Thus,

|‖H̃−eR‖−‖H̃−(I+R̃)‖| ≤ |‖H̃−I−R‖−‖H̃−I−R̃‖|+
‖S‖ ≤ ‖R̃−R‖+ 9ε2 ≤ 30ε2.

We have then proved∣∣∣∣d (H,UN ∩ T )− min
R:R+R∗=0,R2=0

‖H̃ − (I +R)‖
∣∣∣∣ ≤ 30ε2,

and as before we can easily see that the minimum is reached
when R1 = 0, R2 = 0, R5 = 0, R9 = 0, R3 = C2/2 and
R6 = C∗3U0/2 which proves that

min
R:R+R∗=0,R2=0

‖H̃ − (I +R)‖ = T2(H).

This finishes the proof of the lemma.
Proof of Proposition 4

Let E be a matrix such that ‖E‖ ≤ ε < 1 and H = U +E
for some unitary matrix U . Then,

‖HH∗ − I‖ = ‖UU∗ + UE∗ + EU∗ + EE∗ − I‖ =

‖UE∗ + EU∗ + EE∗‖ ≤ 2ε+ ε2 ≤ 3ε.

On the other hand,

HH∗ − I =

σ2 − I σC∗1 σC∗3
C1σ X X
C3σ X C3C

∗
3 + C4C

∗
4 − I

 ,

where the entries X are terms which we do not need to
compute. In particular, we have ‖C1σ‖ ≤ 3ε and

‖σ2 − I‖ ≤ 3ε, (46)

which implies ‖σ−2‖ = ‖σ−2− I + I‖ ≤
√
d+ 4ε and hence

‖C1‖ = ‖C1σσ
−1‖ ≤ ‖C1σ‖‖σ−1‖ ≤ 3ε

√√
d+ 3ε ≤ 4

√
dε.

A similar argument works for C3 as well, and using a
symmetric argument for H∗H we get the same bound for C2

and an equivalent bound for α to that of (46). Summarizing
these bounds, we have:

‖C1‖2 + ‖C2‖2 + ‖C3‖2 ≤ 48dε2 (47)

Moreover, we also have

‖C4C
∗
4−I‖ ≤ ‖C3C

∗
3‖+‖C3C

∗
3 +C4C

∗
4−I‖ ≤ 16dε2+4ε ≤ 20dε,

which implies
N−d∑
j=0

(β2
j − 1)2 = ‖C4C

∗
4 − I‖2 ≤ 400d2ε2

where the βj are the singular values of C4. In particular,

‖U∗0C4 − IN−d‖2 = d(C4, UN−d)
2 =

N−d∑
j=1

(βj − 1)2 ≤

N−d∑
j=1

(βj − 1)2(βj + 1)2 =

N−d∑
j=1

(β2
j − 1)2 ≤ 400d2ε2,

and we conclude that

‖U∗0C4 − IN−d‖ ≤ 20dε. (48)

Using (46), (47) and (48) above we get:

‖H̃ − IN‖2 = ‖σ − Id‖2 + ‖α− Id‖2 + ‖C1‖2 + ‖C2‖2+

‖C3‖2 + ‖U∗0C4 − IN−d‖2 ≤ c(d)2ε2,

where c(d) depends only on d. Let ε be small enough for
c(d)ε to satisfy the hypotheses of Lemma 2. The Proposition
4 follows from applying that lemma.
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4) How the sets of closeby matrices to UN and UN ∩ T
compare: Our main result in this section is the following.

Proposition 5: Let α > 1. For sufficiently small ε > 0, we
have:

2d
2

V ol
(
H ∈ T : d(H,UN ∩ T ) ≤ ε

α

)
≤

V ol(H ∈ T : d(H,UN ) ≤ ε) ≤
2d

2

V ol(H ∈ T : d(H,UN ∩ T ) ≤ αε)
Before the proof we state two technical lemmas.

Lemma 3: Let σ, α be as in (43). Then,

V ol

C : T1

0 σ 0
α C1 C2

0 C3 C4

 ≤ ε
 =

2d
2

V ol

C : T2

0 σ 0
α C1 C2

0 C3 C4

 ≤ ε
 .

Proof: Let

Si(C) = Ti

(
0 A
B C

)
, i = 1, 2,

where A = (σ 0) and BT = (α 0). The claim of the lemma
is that

V ol(C : S1(C) ≤ ε) = 2d
2

V ol(C : S2(C) ≤ ε).
Indeed, consider the mapping

ϕ

(
C1 C2

C3 C4

)
=

(√
2C1 C2

C3 C4

)
,

which has Jacobian equal to
√

2
2d2

= 2d
2

. The change of
variables theorem yields:

2d
2

V ol(C : S1(ϕ(C)) ≤ ε) = V ol(ϕ(C) : S1(ϕ(C)) ≤ ε) =

V ol(C : S1(C) ≤ ε).
The lemma follows from the fact that S1(ϕ(C)) = S2(C).

Lemma 4: Let α > 1 and let A,B be complex matrices
of respective sizes d × (N − d) and (N − d) × d. Then, for
sufficiently small ε > 0 we have

2d
2

V ol

(
C : d

((
0 A
B C

)
,UN ∩ T

)
≤ ε

α

)
≤

V ol

(
C : d

((
0 A
B C

)
,UN

)
≤ ε
)
≤

2d
2

V ol

(
C : d

((
0 A
B C

)
,UN ∩ T

)
≤ αε

)
.

Proof: Let UA, VA, UB , VB be such that

A = UA(σ 0)V ∗A, B = UB

(
α

0

)
V ∗B

are singular value decompositions of A and B respectively.
Then,

V ol

(
C : d

((
0 A
B C

)
,UN

)
≤ ε
)

=

V ol

(
C : d

((
U∗A 0
0 U∗B

)(
0 A
B C

)(
VB 0
0 VA

)
,UN

)
≤ ε
)

=

V ol

(
C : d

((
0 (σ 0)(
α
0

)
UBCV

∗
A

)
,UN

)
≤ ε
)

=

V ol

(
C : d

((
0 (σ 0)(
α
0

)
C

)
,UN

)
≤ ε
)
,

where the last inequality follows from unitary invariance of
the volume. Let H be as in (43). From Proposition 4, we
conclude:

V ol (C : d(H,UN ) ≤ ε) ≤ V ol(C : T1(H)1/2 ≤ ε+c(d)ε2) =

V ol(C : T1(H) ≤ (ε+ c(d)ε2)2) =
Lemma 3

2d
2

V ol(C : T2(H) ≤ (ε+ c(d)ε2)2).

From (44), for sufficiently small ε > 0, T2(H) ≤ (ε+c(d)ε2)2

implies d(H,UN ) is as small as wanted. Hence, from Propo-
sition 4, for sufficiently small ε > 0 we have

V ol(C : T2(H) ≤ (ε+ c(d)ε2)2) = V ol(C : T2(H)1/2 ≤
ε+ c(d)ε2) ≤ V ol

(
C : d (H,UN ∩ T ) ≤ ε+ 2c(d)ε2

)
.

In particular, for every α > 1 and for sufficiently small ε > 0
we have proved that

V ol (C : d(H,UN ) ≤ ε) ≤ 2d
2

V ol (C : d (H,UN ∩ T ) ≤ αε) .

This proves the upper bound of the lemma. The lower bound
is proved with a symmetric argument, using the opposite
inequalities of Proposition 4.

Proof of Proposition 5 Let α > 1. From Fubini’s Theorem,

V ol(H ∈ T : d(H,UN ) ≤ ε) =∫
A∈Md×(N−d),B∈M(N−d)×d

V ol(C : d(H,UN ) ≤ ε) d(A,B).

From Lemma 4, for sufficiently small ε > 0 this is at most∫
A∈Md×(N−d),B∈M(N−d)×d

2d
2

V ol(C : d(H,UN∩T ) ≤ αε) d(A,B).

Again from Fubini’s Theorem, this last equals

2d
2

V ol(H : d(H,UN ∩ T ) ≤ αε),

proving the upper bound of the proposition. The lower bound
follows from a symmetrical argument.

5) Proof of Proposition 2: Let α > 1. From Proposition 5,
we have

lim
ε→0

V ol(H ∈ T : d(H,UN ) ≤ ε)
εN2 ≤

2d
2

lim
ε→0

V ol(H ∈ T : d(H,UN ∩ T ) ≤ αε)
εN2 .

Note that N2 is the (real) codimension of UN ∩ T inside T .
Thus, from Theorem 5,

lim
ε→0

V ol(H ∈ T : d(H,UN ∩ T ) ≤ αε)
εN2 =

V ol(UN ∩ T )αN
2

V ol(x ∈ RN
2

: ‖x‖ ≤ 1).
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We have thus proved that for every α > 1 we have

lim
ε→0

V ol(H ∈ T : d(H,UN ) ≤ ε)
εN2 ≤

2d
2

V ol(UN ∩ T )αN
2

V ol(x ∈ RN
2

: ‖x‖ ≤ 1).

This implies:

lim
ε→0

V ol(H ∈ T : d(H,UN ) ≤ ε)
εN2 ≤

2d
2

V ol(UN ∩ T )V ol(x ∈ RN
2

: ‖x‖ ≤ 1).

The reverse inequality is proved the same way using the other
inequality of Proposition 5.

6) Integrals of functions of the subset of matrices in T
which are close to UN : We are now close to the proof of
Proposition 3, but we still need some preparation. We state
two lemmas.

Lemma 5: Let ψ : T → [0,∞) be a smooth mapping.
Then,

lim
ε→0

1

εN2

∫
H∈T :d(H,UN )≤ε

ψ(H) dH =

2d
2

V ol(UN∩T )V ol(x ∈ RN
2

: ‖x‖ ≤ 1)−
∫
U∈UN∩T

ψ(U) dU

Proof: For sufficiently small ε > 0, given H ∈ T such
that d(H,UN ) < ε, there is a unique U ∈ U ∩T such that the
distance d(H,U ∩ T ) is minimized (see for example [37, p.
32]). Let π(H) be such U . Moreover, π is a smooth mapping.
From Theorem 6 we thus have∫

H∈T :d(H,UN )≤ε
ψ dH =∫

U∈UN∩T

∫
H∈T :d(H,UN )≤ε,π(H)=U

NJπ(H)ψ(H) dH dU.

Now, ψ is smooth and hence ψ(H) = Ψ(U) +O(ε). We thus
have∫

H∈T :d(H,UN )≤ε
ψ dH =∫

U∈UN∩T
ψ(U)

∫
H∈T :d(H,UN )≤ε,π(H)=U

NJπ(H) dH dU

+O(ε)V ol(H ∈ T : d(H,UN ) ≤ ε).

The integral inside this last expression is unitary invariant and
thus its value is a constant cε. Moreover, the same argument
applied to ψ ≡ 1 yields

V ol(H ∈ T : d(H,UN ) ≤ ε) =

∫
U∈UN∩T

cε dU.

That is,

cε =
V ol(H ∈ T : d(H,UN ) ≤ ε)

V ol(UN ∩ T )
.

We have then proved∫
H∈T :d(H,UN )≤ε

ψ dH =

V ol(H ∈ T : d(H,UN ) ≤ ε)
V ol(UN ∩ T )

(∫
U∈UN∩T

ψ(U) dU +O(ε)

)
=

V ol(H ∈ T : d(H,UN ) ≤ ε)
(
−
∫
U∈UN∩T

Ψ(U) dU +O(ε)

)
.

The lemma follows from Proposition 2.
Lemma 6: Let ψ be a smooth mapping. Then,

lim
ε→0

∫
H∈T :d(H,UN )≤ε ψ(H) dH

V ol(H ∈MN : d(H,UN ) ≤ ε) =

2d
2

V ol(UN ∩ T )

V ol(UN )
−
∫
U∈UN∩T

ψ(U) dU

Proof: From Theorem 5 and using that the codimension
of UN in MN (C) is N2 we know that

V ol(H ∈MN (C) : d(H,UN ) ≤ ε) =

V ol(UN )εN
2

V ol(x ∈ RN
2

: ‖x‖ ≤ 1)(1 +O(ε)),

where limε→0O(ε) = 0. The lemma now follows from Lemma
5.

7) Proof of Proposition 3: This result is almost inmediate
from Lemma 6 and Proposition 1. Let ξ be the mapping
defined in (41). We have computed the Normal Jacobian of
ξ and the volume of the preimage of ξ in Section D-A1. From
Theorem 6,∫

(U,V )∈U2
N−d

Ψ(ξ(U, V )) d(U, V ) =∫
H∈UN∩T

Ψ(H)
V ol(ξ−1(H))

NJξ
dH =

V ol(UN−2d)

∫
H∈UN∩T

Ψ(H) dH.

Hence, as Ψ does not depend on C, and writing Ψ(H) =
Ψ(A,B) (note the abuse of notation),∫

H∈UN∩T
Ψ(H) dH =

1

V ol(UN−2d)

∫
(U,V )∈U2

N−d

Ψ

(
(Id 0)V ∗, U

(
Id
0

))
d(U, V ).

Normalizing we get

−
∫
H∈UN∩T

Ψ(H) dH = −
∫

(U,V )∈U2
N−d

Ψ

(
(Id 0)V ∗, U

(
Id
0

))
d(U, V ).

Now, generating at random unitary matrices U, V and then tak-
ing (Id 0)V ∗, U

(
Id
0

)
is the same as generating at random two

elements in the Stiefel manifold U(N−d)×d. The proposition
is proved.
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B. Proof of Theorem 3

Recall that we have defined Hε in (39), and we want to
compute the limit (40):

lim
ε→0

V ol(HI ∩Hε)V ol(S)

V ol(Hε)
−
∫
H∈HI∩Hε

det(ΨΨ∗) dH =

lim
ε→0

V ol(S)

V ol(Hε)

∫
H∈HI∩Hε

det(ΨΨ∗) dH.

Now, we use Fubini’s theorem to convert the last integral into
an iterated integral∫

H(k1,l1)∈T ,d(H(k1,l1),UN )<ε

· · ·∫
H(k1,l1)∈T ,d(H(kr,lr),UN )<ε

det(ΨΨ∗) dH(kr,lr) · · · dH(k1,l1),

where (k1, l1), . . . , (kr, lr), r = K(K − 1) are all the pairs
(k, l) with k 6= l, ordered with respect to some (irrelevant)
criterion. From Proposition 3, the last inner integral satisfies:∫

H(k1,l1)∈T ,d(H(kr,lr),UN )<ε

det(ΨΨ∗) dH(kr,lr) =

O(ε∗) + V ol(H ∈MN : d(H,UN ) ≤ ε)×
2d

2

V ol(UN−d)2

V ol(UN )V ol(UN−2d)
−
∫

(A∗,B)∈U(N−d)×d
det(ΨΨ∗) d(A,B),

where Ψ is computed for

H(kr,lr) =

(
0d×d A
B 0(N−d)×(N−d)

)
.

Here, O(ε∗) is an expression such that

lim
ε→0

O(ε∗)

V ol(H ∈MN : d(H,UN ) ≤ ε) = 0.

By repeating the procedure and using Fubini’s theorem again
to convert the iterated integral into a unique multiple integral,
we conclude:∫

H∈HI∩Hε
det(ΨΨ∗) dH =

O(ε∗) + V ol(H ∈MN : d(H,UN ) ≤ ε)K(K−1)×(
2d

2

V ol(UN−d)2

V ol(UN )V ol(UN−2d)

)K(K−1)

×

−
∫

(A∗kl,Bkl)∈U(N−d)×d,k 6=l
det(ΨΨ∗) d(Akl, Bkl),

where Ψ is computed for

Hkl =

(
0d×d Akl
Bkl 0(N−d)×(N−d)

)
.

Here, O(ε∗) is an expression such that

lim
ε→0

O(ε∗)

V ol(H ∈MN : d(H,UN ) ≤ ε)K(K−1)
= 0.

On the other hand, also from Fubini’s theorem we have

V ol(Hε) = V ol(H ∈MN : d(H,UN ) ≤ ε)K(K−1).

The claim of the Theorem 3 follows.

APPENDIX E
PROOF OF THEOREM 4

The proof of this theorem is a generalization of the com-
putation in Section III-C. From Theorem 2, the number of
solutions is given by

#(π−1
1 (H0)) = C E

[
|det(Ψ)|2

]
, (49)

where C is the constant defined in Theorem 2 and Ψ is a
square matrix of size L = K(K − 1). The expectation of the
square absolute value of the determinant is

E[|det(Ψ)|2] = E

[∑
σ∈SL

L∏
i=1

Ψσ(i)i

∑
δ∈SL

L∏
i=1

Ψ∗δ(i)i

]
=

E

∑
σ∈SL
δ∈SL

L∏
i=1

Ψσ(i)iΨ
∗
δ(i)i

 , (50)

where σ, δ ∈ SL are permutations of the set (1, . . . , L), and
Ψij is the ij-th entry of the matrix Ψ. We note that if δ 6=
σ then

∏L
i=1 Ψσ(i)iΨ

∗
δ(i)i equals the product of a Gaussian

random variable times a non-negative quantity and a quantity
depending on other Gaussian variables. By the same argument
as in Section III-C, we conclude:

E

[
L∏
i=1

Ψσ(i)iΨ
∗
δ(i)i

]
= 0, σ 6= δ.

Thus,

E[|det(Ψ)|2] = E

 ∑
σ∈SK(K−1)

K(K−1)∏
i=1

|Ψσ(i)i|2
 (1)

=

∑
σ∈SK(K−1)

K(K−1)∏
i=1

E[|Ψσ(i)i|2]
(2)
=

∏
k 6=l

1

(NkMl − 1)

 ∑
σ∈SK(K−1)

K(K−1)∏
i=1

1[Ψσ(i)i 6= 0]
(3)
=

∏
k 6=l

1

(NkMl − 1)
per(T ). (51)

A brief explanation of each step follows:
(1) Independence among different Ψσ(i)i for a given σ.
(2) Every non-zero addend in the sum is the product of

K(K−1) independent Beta-distributed random variables.
In fact, we note that

|Ψσ(i)i|2 =
|z1|2

|z1|2 + |z2|2 + · · ·+ |zNkMl−1|2
,

where each zi is a complex Gaussian random variable,
whose real and complex parts are N(0, 1) variables (i.e.
zi is a CN(0, 2) variable). The distribution of the quotient
above is then well known: |Ψσ(i)i|2 ∼ Beta(1, NkMl−2)
is a beta distribution with parameters 1 and NkMl−2, and
its expected value equals E[|Ψσ(i)i|2] = 1/(NkMl − 1)
where the values of k and l depend uniquely the row σ(i).
Therefore,

∏K(K−1)
i=1 E[|Ψσ(i)i|2] =

∏
k 6=l

1
(NkMl−1) .
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The notation 1[P ] denotes the indicator function which
equals 1 if the predicate P is true and 0 otherwise.

(3) The sum can be identified as a Leibniz-like expansion
of the permanent of a (0,1)-matrix T which is built by
replacing the non-zero elements of Ψ by ones. More
specifically, the matrix T will always have Nk +Ml − 2
ones per row and K − 1 ones per column.

Combining (49) and (51), the compact closed-form expression
for the number of solutions in (23) is obtained.

For the second part of the theorem we note that T , with the
appropriate row and column ordering, is almost exactly equal
to the matrix A obtained by setting m = n = K, wij = 1[i 6=
j], ci = Ni − 1 and ri = K −Mi in the notations of [43,
Lemma 9]. To obtain matrix A of [43, Lemma 9] from our
matrix T one just adds K rows containing Ml ones each and
K columns containing K ones each. A detailed inspection of
the matrices shows that per(A) = per(T )

∏
lMl and then [43,

Lemma 9] implies the second claim of the theorem.

REFERENCES

[1] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of
freedom region of the k-user interference channel,” IEEE Trans. on Inf.
Theory, vol. 54, no. 8, pp. 3425–3441, 2008.

[2] M. Maddah-Ali, A. Motahari, and A. Khandani, “Communications
over MIMO X channels: Interference alignment, decomposition, and
performance analysis,” IEEE Trans. on Inf. Theory, vol. 54, no. 8, pp.
3457–3470, 2008.

[3] S. A. Jafar, “Interference alignment: A new look at signal dimensions in
a communication network,” Foundations and Trends in Communications
and Information Theory, vol. 7, no. 1, pp. 1–136, 2011.

[4] B. Nazer, M. Gastpar, S. A. Jafar, and S. Viswanath, “Ergodic inter-
ference alignment,” IEEE Trans. on Inf. Theory, vol. 58, no. 10, pp.
6355–6371, 2012.

[5] G. Bresler, A. Parekh, and D. Tse, “The approximate capacity of the
many-to-one and one-to-many gaussian interference channels,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4566–4592, 2010.

[6] V. R. Cadambe, S. A. Jafar, and S. Shamai (Shitz), “Interference
alignment on the deterministic channel and application to Gaussian
networks,” IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 269–274, 2009.

[7] C. Suh, M. Ho, and D. Tse, “Downlink interference alignment,” IEEE
Trans. on Communications, vol. 59, no. 9, pp. 2616–2626, 2011.

[8] T. Gou, S. A. Jafar, C. Wang, S.-W. Jeon, and S.-Y. Chung, “Aligned
interference neutralization and the degrees of freedom of the 2x2x2
interference channel,” IEEE Trans. on Inf. Theory, vol. 58, no. 7, pp.
4381–4395, 2012.

[9] S. Gollakota, S. D. Perli, and D. Katabi, “Interference alignment and
cancellation,” SIGCOMM Comput. Commun. Rev., vol. 39, pp. 159–170,
2009.

[10] O. El Ayach, S. Peters, and R. W. J. Heath, “The feasibility of
interference alignment over measured MIMO-OFDM channels,” IEEE
Trans. on Vehicular Technology, vol. 59, pp. 4309–4321, 2010.

[11] Ó. González, D. Ramirez, I. Santamaria, J. A. Garcia-Naya, and
L. Castedo, “Experimental validation of interference alignment tech-
niques using a multiuser MIMO testbed,” 2011, international ITG
Workshop on Smart Antennas (WSA).

[12] C. M. Yetis, , T. Gou, S. A. Jafar, and A. H. Kayran, “On feasibility
of interference alignment in MIMO interference networks,” IEEE Trans.
on Signal Processing, vol. 58, no. 9, pp. 4771–4782, 2010.

[13] M. Razaviyayn, G. Lyubeznik, and Z.-Q. Luo, “On the degrees of free-
dom achievable through interference alignment in a MIMO interference
channel,” IEEE Trans. on Signal Processing, vol. 60, no. 2, pp. 812–821,
2012.

[14] G. Bresler, D. Cartwright, and D. Tse, “Settling the feasibility of in-
terference alignment for the MIMO interference channel: the symmetric
square case,” ArXiv preprint available: http://arxiv.org/abs/1104.0888v1,
2011.

[15] F. Negro, S. P. Shenoy, I. Ghauri, and D. T. M. Slock, “Interference
alignment feasibility in constant coefficient MIMO interference chan-
nels,” 2010, IEEE Int.l Workshop on Signal Processing Advances on
Wireless Communications, (SPAWC).

[16] L. Ruan, V. Lau, and M. Z. Win, “The feasibility conditions of
interference alignment for MIMO interference networks,” pp. 2496–
2500, 2012, IEEE International Symposium on Information Theory,
(ISIT).

[17] Ó. González, C. Beltrán, and I. Santamaria, “A feasibility test for linear
interference alignment in mimo channels with constant coefficients,”
IEEE Trans. on Inf. Theory, vol. 60, no. 3, pp. 1840–1856, 2014.

[18] G. Bresler, D. Cartwright, and D. Tse, “Geometry of the 3-user MIMO
interference channel,” in Proceedings of Forty-Ninth Annual Allerton
Conference, Allerton, Illinois, USA, 2011, pp. 1264–1271.

[19] T. L. Lee and T. Y. Li, “Mixed volume computation, a revisit,” 2007.
[20] D. Schmidt, W. Utschick, and M. L. Honig, “Large system performance

of interference alignment in single-beam MIMO networks,” in GLOBE-
COM, 2010.

[21] G. Bresler, D. Cartwright, and D. Tse, “Feasibility of interference
alignment for the MIMO interference channel,” IEEE Trans. Inf. Theory,
vol. 60, no. 9, pp. 5573–5587, Sept. 2014.

[22] S. A. Jafar and M. Fakhereddin, “Degrees of freedom for MIMO
interference channel,” IEEE Trans. on Inf. Theory, vol. 53, no. 7, pp.
2637–2642, 2007.

[23] T. Gou and S. A. Jafar, “Degrees of freedom of the K user m×n MIMO
interference channel,” IEEE Trans. on Inf. Theory, vol. 56, no. 2, pp.
6040–6057, 2010.

[24] Ó. González, I. Santamaria, and C. Beltrán, “A general test to check the
feasibility of linear interference alignment,” pp. 2491–2495, 2012, IEEE
International Symposium on Information Theory, (ISIT).

[25] J. M. Hammersley and D. C. Handscomb, Monte Carlo methods.
London: Methuen & Co. Ltd., 1965.

[26] L. Valiant, “The complexity of computing the permanent,” Theoretical
Computer Science, vol. 8, no. 2, pp. 189–201, Jan. 1979.

[27] P. Diaconis and A. Gangolli, “Rectangular arrays with fixed margins,”
in Discrete Probability and Algorithms, ser. The IMA Volumes in
Mathematics and its Applications, D. Aldous, P. Diaconis, J. Spencer,
and J. M. Steele, Eds. New York, NY, USA: Springer New York, 1995,
vol. 72, pp. 15–41.

[28] S. W. Golomb and L. D. Baumert, “Backtrack programming,” J. ACM,
vol. 12, no. 4, pp. 516–524, 1965.

[29] “The On-Line Encyclopedia of Integer Sequences,” published electron-
ically at http://oeis.org, 2012.

[30] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics:
a foundation for computer science, 2nd ed. Addison-Wesley, 1994.

[31] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, ser.
Encyclopedia of Mathematics and its Applications. New York, NY,
USA: Cambridge University Press, 1991.

[32] G. P. Egorychev, “Reshenie problemy van-der-Vardena dlya permanen-
tov,” Akad. Nauk SSSR Sibirsk. Otdel. Inst. Fiz., p. 12, 1980.

[33] D. Falikman, “Proof of the van der Waerden conjecture on the permanent
of a doubly stochastic matrix,” Akademiya Nauk Soyuza SSR, vol. 6,
no. 29, pp. 931–938, 1981.

[34] K. S. Gomadam, V. R. Cadambe, and S. A. Jafar, “A distributed nu-
merical approach to interference alignment and applications to wireless
interference networks,” IEEE Trans. on Inf. Theory, vol. 57, no. 6, pp.
3309–3322, 2011.

[35] Ó. González, J. Fanjul, and I. Santamaría, “Homotopy Continuation
for Vector Space Interference Alignment in MIMO X Networks,” in
2014 IEEE International Conference on Acoustic, Speech and Signal
Processing (ICASSP), Florence, Italy, May 2014, pp. 6232–6236.

[36] Ó. González and I. Santamaria, “Interference Alignment in Single-
Beam MIMO Networks via Homotopy Continuation,” in 2011 IEEE
International Conference on Acoustic, Speech and Signal Processing
(ICASSP), Prague, Czech Republic, May 2011, pp. 3344–3347.

[37] A. Gray, Tubes, 2nd ed., ser. Progress in Mathematics. Basel:
Birkhäuser Verlag, 2004, vol. 221, with a preface by Vicente Miquel.

[38] H. Federer, Geometric measure theory, ser. Die Grundlehren der mathe-
matischen Wissenschaften, Band 153. Springer-Verlag New York Inc.,
New York, 1969.

[39] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real
Computation. New York: Springer-Verlag, 1998.

[40] R. Howard, “The kinematic formula in Riemannian homogeneous
spaces,” Mem. Amer. Math. Soc., vol. 106, no. 509, pp. vi+69, 1993.

[41] V. Guillemin and A. Pollack, Differential topology. Englewood Cliffs,
N.J.: Prentice-Hall Inc., 1974.

[42] L. K. Hua, Harmonic analysis of functions of several complex variables
in the classical domains, ser. Translations of Mathematical Monographs.
Providence, R.I.: American Mathematical Society, 1979, vol. 6, trans-
lated from the Russian, which was a translation of the Chinese original,



22

by Leo Ebner and Adam Korányi, With a foreword by M. I. Graev,
Reprint of the 1963 edition.

[43] A. Barvinok, “On the number of matrices and a random matrix with
prescribed row and column sums and 0-1 entries,” Advances in Mathe-
matics, vol. 224, no. 1, pp. 316–339, 2010.

[44] Ó. González, I. Santamaria, and C. Beltrán, “Finding the number of
feasible solutions for linear interference alignment problems,” in IEEE
International Symposium on Information Theory, Istanbul, Turkey, July
2013, pp. 384–388.


