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Fast Numerical Nonlinear Fourier Transforms

Sander Wahls, Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract—The nonlinear Fourier transform, which is also
known as the forward scattering transform, decomposes a pe-
riodic signal into nonlinearly interacting waves. In contrast to
the common Fourier transform, these waves no longer have to
be sinusoidal. Physically relevant waveforms are often available
for the analysis instead. The details of the transform depend
on the waveforms underlying the analysis, which in turn are
specified through the implicit assumption that the signal is
governed by a certain evolution equation. For example, water
waves generated by the Korteweg-de Vries equation can be
expressed in terms of cnoidal waves. Light waves in optical
fiber governed by the nonlinear Schrodinger equation (NSE) are
another example. Nonlinear analogs of classic problems such as
spectral analysis and filtering arise in many applications, with
information transmission in optical fiber, as proposed by Yousefi
and Kschischang, being a very recent one. The nonlinear Fourier
transform is eminently suited to address them — at least from
a theoretical point of view. Although numerical algorithms are
available for computing the transform, a “fast” nonlinear Fourier
transform that is similarly effective as the fast Fourier transform
is for computing the common Fourier transform has not been
available so far. The goal of this paper is to address this problem.
Two fast numerical methods for computing the nonlinear Fourier
transform with respect to the NSE are presented. The first
method achieves a runtime of O(D?) floating point operations,
where D is the number of sample points. The second method
applies only to the case where the NSE is defocusing, but it
achieves an O(Dlog? D) runtime. Extensions of the results to
other evolution equations are discussed as well.

Index Terms—Nonlinear Fourier Transform, Forward Scatter-
ing Transform, Nonlinear Schrodinger Equation, Fast Algorithms

I. INTRODUCTION

Consider a smooth signal ¢ : R x R>q —+ C governed by
the nonlinear Schrodinger equation (NSE ﬂ

101 + p0q + 2wq[?q = 0 M
subject to a periodic boundary condition

q(z,t) = qlx + £,t), £>0. 2)

The constant x € {1} determines whether the NSE is called
focusing (+) or defocusing (—). The NSE describes several
physically relevant phenomena. The complex envelope of a
waveform in an optical fiber with perfect loss compensation
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ISometimes, the NSE ll is given in the form i9iu = Ozzu + 2k|ul?u.
This form is equivalent to (I) whenever v = ¢. Furthermore, the roles of the
arguments x and ¢ are sometimes interchanged, e.g., when the NSE describes
optical fiber. The spatial variable is then commonly denoted by z instead of
T.

evolves according to the NSE [1, Ch. 6.1]. The focusing case
corresponds to a fiber with anomalous dispersion and admits
bright solitons (“particle-like waves”) as solutions [1, Ch. 5.1].
Bright solitons are localized waves that remain unchanged
after interactions with other bright solitons. They are often
employed to encode information in optical communications
[1, Ch. 4]. The defocusing case, which describes a fiber
with normal dispersion, cannot be solved by bright solitons.
However, it admits solutions in the form of “moving holes” in
an otherwise constant signal, so-called dark solitons [1, Ch.
5.4]. The use of dark solitons for optical communications has
been investigated much less than for bright solitons, but the
possibility of using them for optical communications has been
demonstrated experimentally [2], [3, p. 153ff]. The NSE also
provides a model for the evolution of deep water waves [4]].
It was a pleasant surprise when Zakharov and Shabat [5]
showed that the NSE (for non-periodic signals that decay
sufficiently rapidly as || — oo) can be solved in closed form
using what is known as the inverse scattering method. This
method was initially developed by Gardner et al. [6] for the
solution of the Korteweg-de Vries equation. Not much later,
Ablowitz et al. [7] extended the inverse scattering method to
a wide range of evolution equations. The method is usually
called the inverse scattering method because the main tools
used in its derivation have their roots in physics, where they
are used to analyze how particles behave based on their
interactions with a scatterer. However, it can also be interpreted
as a generalization of the Fourier method for the solution of
linear evolution equations [7]. The direct time-evolution of
signals governed by such equations can be complicated, but
the time-evolution of their Fourier transforms often is simple.
The inverse scattering method exploits the same principle:

Nonlinear evol. eq.

q(z, to) - q(z,t1)
| T
Forward scattering Inverse scattering
transform transform
" |
Scattering data — Scattering data
of q(z, o) Simple(r) of q(z,t1)

The forward scattering transform, which represents the signal
in an equivalent form called scattering data, can be seen as a
generalization of the Fourier transform because the scattering
data essentially reduces to the Fourier transform of the signal
whenever the amplitude of the signal, and hence the nonlinear
term in the NSE, becomes small. Therefore it is also known
as the nonlinear Fourier transform (NFT) in the literature.
Our interest in the NFT stems from three recent papers
of Yousefi and Kschischang on optical fiber communications
[8], [9], [LO]. The optical fiber channel suffers from several
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nonlinearities, most of which are captured by the NSE. Current
optical communication systems treat the interference between
multiple users that is caused by the nonlinearities in a fiber
as random noise. Motivated by the fact that the data rates
in current optical communication systems are close to the
capacity of that approach [[L1], [12], Kschischang and Yousefi
proposed a new methocﬂ called nonlinear frequency division
multiplexing (NFDM) [8]. NFDM can be interpreted as a
nonlinear variant of common orthogonal frequency-division
multiplexing (OFDM) [10]. The basic idea is to generate the
information-bearing signal in the scattering domain in order
to exploit the fact that the spatial evolution of the scattering
data is simpler than that of the original signal in the time
domain. One particular advantage of NFDM is that multi-user
interference can be avoided. At the receiver, the NFT is used to
recover the information. Yousefi and Kschischang investigated
several numerical methods in order to realize the NFT [9]], but
found that a computationally efficient fast NFT is still lacking
[9, Sec. VII]. The goal of this paper is to address this problem.

The authors have recently established the first fast nonlinear
Fourier transform for non-periodic signals governed by the
focusing NSE that decay sufficiently rapidly as |z| — oo [L3].
The same boundary conditions have been used by Yousefi and
Kschischang, but periodic boundary condition actually seem
to be more appropriate because one may use a cyclic prefix
[16, p. 156]. In this paper, fast NFTs for signals governed
by the periodic NSE will be developed. While NFTs can be
derived for signals governed by many other different evolution
equations as well [7]], we will mainly restrain ourselves to the
NSE for the sake of clarity. (Extensions to non-periodic signals
and other evolution equations will also be discussed, but only
briefly.) Finally, let us note that fast NFTs are of interest also
in other areas. For example, they have been used to analyze
and filter water waves [17]], [18], [[19], [20]. Measurements of
oceanic data often contain up to 10.000 data points [17, p.
95]. The high complexity of the nonlinear Fourier transform
has also been bemoaned in the analysis of plasma waves [21,
Sec. 8].

The contributions of this paper are as follows. In Secs.
and finite band solutions to the NSE are introduced and a
comprehensive survey of the relevant theoretical results on the
nonlinear Fourier transform, which is a method for extracting
the parameters of a finite band solution from measured data, is
given. The so-called monodromy matrix, which is an analytic
matrix-valued function, turns out to be the main tool in the
derivation of the nonlinear Fourier transform. The fast algo-
rithms in this paper will require a rational approximation of
the monodromy matrix. The authors have recently proposed a
framework for obtaining rational approximations of the analog
of the monodromy matrix in the case of rapidly decaying
signals [15]. In Sec. this framework is carried over to the
periodic case and extended by the introduction of some new
coordinate transforms. Then, in Sec. E the fast algorithms
presented in [15] are carried over to the periodic case and

2Hasegawa [13] had proposed to embed data exlusively in the solitonic part
of the nonlinear Fourier spectrum already in 1993, but his proposal did not
receive much attention. Recently, Prilepsky et al. [14] proposed a system that
utilizes exclusively the non-solitonic part of the spectrum.

compared to other current numerical approaches to find the
nonlinear Fourier transform. In Sec. a new alternative
fast algorithm for the defocusing NSE is introduced and
compared. Some numerical examples are presented in Sec.
Extensions of our results to non-periodic signals and
signals governed by other evolution equations are discussed
in the Secs. and respectively. Finally, the paper is
concluded in Sec.

Notation

Real numbers: R; R>g := {r € R : x > 0}; Complex
numbers: C; Integers: Z; /-: Canonical square root (i.e., pos-
itive signs are preferred); i := v/—1; Euler’s number: e; Real
part: Re(+); Imaginary part: Im(-); Complex conjugate: (-);
Natural logarithm: In(-); Floor function: |-|; Absolute value:
||; Adjoint matrix: (-)*; Matrix trace: tr -; Matrix exponential:
expm(+); Matrix product: Hszl A=A A 1 x---xAq;
Matrix element in the ith column and jth row: [-]; ;; Derivative
w.r.t. a variable u: Oy; Oy, := 0,0,; Equal for all arguments:
=; Absolute value of the largest coefficient of a C™*"-valued
polynomial p(z) = Zi(:o prz": |largest coefficient(p)| =
max{|[pk]i7j| ck=1,...,K,i=1,....m,j=1,...,n};
Degree of p: deg(p) = max{k=1,...,K : py # 0}

II. FINITE BAND SOLUTIONS

In this section, the theory of so-called finite-band solutions
to the NSE will be reviewed [22]. Finite-band solutions
have explicit descriptions which rely only on a finite number
of parameters. These parameters will constitute the scattering
data, and finding those parameters from an initial condition
q(x,to) will constitute the non-linear Fourier transform as
discussed in the following section. Finite-band solutions can
be loosely thought of as the nonlinear analog to a conventional
Fourier series expansion with only finitely many non-zero
terms. By restricting the exposition to finite-band solutions,
many questions regarding convergence can be avoided. We
remark that this means no significant loss of generality since
any sufficiently smooth periodic solution to the NSE can be
approximated arbitrarily well on any fixed finite time interval
by a periodic finite-band solution [23]]. In the literature, two
different types of finite band solutions can be found. Since
each type has its own advantages and disadvantages, both of
them will be reviewed in the following.

A. The Finite-Band Solutions of Kotlyarov and Its

A solution g(x,t) to the NSE (1)) is called a finite-band
solution in the sense of Kotlyarov and Its [24], [25] (also
see [26], [27]) if there exist finitely many of the following
parameters:

Main spectrum: MAi,...,Aan € C, 3)

Initial auxiliary spectrum: p;(zo,ty) € C, @)
Initial amplitudﬂ' q(zo,1t0) € R>o, 5)
Riemann sheet indices: 0;(xo,to) € {£1}, (6)

j=1,...,N—1;



such that g(x,t) is generated through the following system of
coupled partial differential equations: E]

N-1 1 2N
O, Ing =2i }:,“-§§:Ak , (7)
Jj=1 k=1
2N 5 (2N 2
Olng=2i| Y Na—3 (ZAk>
J, k=1 4 k=1
i>k
1 N-1 N-1
5 (Z /\k> My | — Z ek
Jj=1 k=1
>k
®)
~2i05\/ T2, (g — Ae)
6@”] = N—_1 ) (9)
H:’;;; (/’6.7' - Mm)
N-1 1 2N
Oy ==2| D pm =5 Y Ak | Dty (10)
m=1 k=1

m#j

The generated functions p;(x,t) are known as the auxiliary
spectrum. The associated Riemann sheet indices o;(x,t) stay
constant most of the time. Changes of sign occur if a u;(z, t)
reaches one of the /\kE] These changes of sign result in a
wave-like motion of the y;(x,t) that will oscillate between a
pair of main spectral points Ay and X;, k # I. The p;(x,t)
are also known as hyperelliptic modes in the literature [19]]. It
may happen that a hyperelliptic mode is constant because it is
trapped between two repeating points in the main spectrum:
wi(z,t) = A\, = A for k # [. The contributions of p;, Ak
and )\; to (7)-(I0) cancel each other out in that case, which
implies these parameters do not contribute to the shape of the
function ¢(z,t). Such parameters are called degenerate.

Remark 1 (An assumption). The representation (7)—(I0) is not
unique because it is possible to add degenerate parameters
without changing the solution. In order to simplify the later
exposition, we shall therefore assume (like, e.g, in [29]]) that
no point in the main spectrum appears more than once:

k#£1= A\ # AL (11

This condition in particular precludes the existence of degen-
erate points in the main spectrum.

At this point, it is interesting to note that ¢(z,¢) generated
through (7)—(I0) does not depend on whether the NSE is
defocusing or focusing (i.e., Kk = —1 or +1). This suggests
that not every choice of the parameters (B)-(5) will lead
to a solution of the NSE, and this is indeed the case. The
following theorem can be used to check whether a given set
of parameters results in a (probably non-periodic) solution to
the NSE.

because if ¢ solves the NSE H then so does e' ¥ ¢ for any ¢ € [0, 27).
4For N = 1, empty sums in H imply zeros and empty products ones.
STechnically, the 45 evolve on a two-sheeted Riemann surface specified by

the A [28) Apdx.]. The sheet index indicates the current sheet.

3The restriction of ¢(zo, to) to be non-negative incurs no loss of generality

Theorem 2 ([26[]; [27], Thm. 2.1). The function q generated
by the Egs. (7)—(10) solves the NSE (), not necessarily subject
to the boundary condition ({2)), if and only if the functions

N-1
g (z, 1) —1qxtHz—qut (12)
N—
h(z,t) —1qutHz—uja:t (13)
2N
P(z) = H(z — k) (14)
k=1
are such that the “function-valued function”
2 fo(x,t) = \/P(2) + g.(x, t)h.(z,1) (15)

is a polynomial of finite degree.

The functions (12), and are known as the squared
eigenfunctions in the literature [29]], [28]. They play a funda-
mental role in the analysis of finite band signals because their
spatial and temporal evolution is remarkably simpleE] Theorem
[2) can also serve as a starting point for generating solutions to
the NSE. This will be discussed later in Sec. [I:=Cl

Let us now illustrate the concepts introduced in this section
so far with a simple example.

Example 3 (Periodic one-band solution, N = 1). Theorem
shows that g(z,t) will solve the NSE if and only if f2 =
P(z)+g.h. for some unknown polynomial z — f, = Sz —~:

(B2 —7)* =

By comparing the coefficients of the polynomials (with respect
to z) on both sides of , one finds = 41 and v = B(\1 +
A2)/2. For both choices of v, a comparison of the constant
terms in (T6) results in the condition

DY A

5 =

Since we are in the one-band case, this condition can also
be obtained directly. Solving (7) and (8) for N = 1 leads to

(z— M) (z = A2) — kg% (16)

—rlq|?. a7

4(. 1) = qlao, to) e~ IV E—a0) 2i(Ada=F0w ) -t0)
Direct substitution of this function into (I)) shows again that
it solves the NSE if and only if is satisfied. Also note
that the function is periodic in z with period ¢ [see (2)] if and
only if e~ iMHA2)0 = 1 or, equivalently, 5= (A + /\2) cZ.

Finally, we note that finite-band solutions have a closed-
form expression which closely resembles the expression which
arises when Hirota’s method is used to solve the NSE with
vanishing boundary conditions [10, Sec. IIL.B].

OThere exist matrices @, (z,t) and ¥, (x,t), independent of 87 :=
[ fz g2 hz ], such that 9,0, = ©.,0, and 0:0, = V.0, [24], [26|
Egs. 9+12]. An interesting consequence is that a finite band signal q(z,t)
satisfies the NSE (I)) if and only 0:t0. = 0t20 [29].



Remark 4 (Closed-form solution). Finite-band solutions of the
form (7)—(I0) can be given in closed form [25]. The Riemann
theta function with respect to a d X d matrix T is given by

. T . T
@T(Z) = E eQﬂ’lm z+mim ‘rm’ z € (Cd.
meZd

The series converges absolutely for all z whenever 7 is sym-
metric with positive definite imaginary part. With a suitably
chosen 7, vectors k, w, and di, and scalars k¢ and wy, any
finite band solution can be written as [28, Eq. (A31)]

O, (Z(ka +wt+57))

ik?o:v—iwot T

O-(Z(kz+wt+6"))

The parameters (3)—(6) are the starting point if one wants
to compute this representation [28, Apdx.] (also see [19],
[27].) A large family of parameters such that (I8)) leads to
periodic solutions of the NSE (I) has been given in [30].
An explicit parametrization of all parameters that result in
a periodic solution is given in [31, Ch. 3]. A necessary and
sufficient condition for periodic solutions with respect to a
discrete version of the NSE can be found in [32, Thm. 5.2]. It
should be mentioned that the naive evaluation of (I8 becomes
infeasible for larger d due to the curse of dimensionality.
Numerical methods for the efficient evaluation of (certain)
theta functions have been discussed in [19]], [33], [34].

q(z,t) = q(zo,t0) e . (18)

B. The Finite Band Solutions of Ma and Ablowitz

Finite band solutions as defined in Ma and Ablowitz [35]
(also see [36]) are specified through the following parameters:

Main spectrum: Ai,..., an € C, (19)

Initial auxiliary spectra: 0j(zo,to) € C, (20)
&i(zo,t0) € C, 21

Riemann sheet indices: v;(xg,t9) € {£1}, (22)
¥ (zo,10) € {£1}, 23)

j=1,...,N.

The auxiliary spectra evolve according to the following system
of coupled differential equations:

2iv;\/ [T (05 — M)

N
[T:=:(0j —0i)

PN T2, (& — M)

I | SR

There are also differential equations that govern the temporal
evolution of the auxiliary spectra [35, Eqgs. (4.2)+(8.4)], but
they are quite complicated and will therefore not be given here.
As before, the auxiliary spectra change their sheet indices if
and only if one of them reaches a point in the main spectrum.
The corresponding finite-band signal is given by

K}—f—l 2N N N
= Z)\k_ﬁ\/jﬁzgj_\/gzgj-
k=1

81Qj =

N 1 2N
dooi—5d M| @
i=1 k=1

i#i

N 1 2N
DR D IRV R
i=1 k=1

i#]

(26)

j=1 j=1

Again, not every choice of initial parameters will lead
to a solution of the NSE. In contrast to the finite-band
solutions of Kotlyarov and Its, no condition for that seems
to be known. The reconstruction formula @[) is now simpler,
but the evolution of the auxiliary spectra (20), (ZI) is more
complicated. The main spectrum coincides with that in Sec.

[-Al

Example 5 (One band; [35], Sec. 2.4). In the Ma-Ablowitz
case, finding the auxiliary spectra o; and &; is complicated
even in the one-band case N = 1. The general form of ¢(z,t)

for N =1 again turns out to be [35, p. 133ff]
gz, 1) = Ae™ T o &) +2mA%)t

The free parameters A, cg,c; are related to the spectral pa-
rameters as follows:

M=o TRA, A= 2 4 TRA,
2cq 2c1
o1(z,t) =9/ TkAsin (Cox + (—/@(CO)2 + 2A2) t) ,
2cq C1 C1
&1(z,t) =0 /“rAcos (COJ: + (—/ﬁ(co)2 + 2A2> t) .
2cq C1 C1

C. Construction of Finite-Band Solutions for Information
Transmission in Optical Fiber

The efficient construction of signals with prescribed scat-
tering data is fundamental in optical communication systems
based on nonlinear Fourier transforms, where this problem
corresponds to generating the input to the fiber on the trans-
mitter side. The first papers addressing this problem have
been published only very recently [1O], [37], [38], [39], [L4],
[40], [41], [42], all for the NSE with vanishing boundary
conditions. We remark that in all these works, not all available
degrees of freedom are exploited in order to reduce the
computational complexity of the problem. It has also been
observed that some degrees of freedom seem to be ill-suited
for information transmission due to sensitivity issues [9, VIII].
Another problem in these works arises due to the chosen
boundary conditions: it is difficult to control the temporal
spread of the generated signals. The only established method
so far seems to be pruning of the signal set [10, Sec. V.C],
[I37, Sec. III], which is only feasible if the number of degrees
of freedom is small.

It seems that the construction of periodic solutions to the
NSE with prescribed scattering data for optical communication
has not yet been discussed in the literature. We therefore
now review quickly a few potential starting points. The con-
struction of periodic finite-band signals appears at first more
complicated than for vanishing boundary conditions because
the parameters (3)—(6) are coupled through the condition in
Theorem [2] However, they offer the important advantage that
their temporal support is fixed. Theorem [2] can serve as a
starting point for the construction of parameters (3)—(€) such
that the function ¢(z,t) generated by (7)—(10) actually solves
the NSE (I) [26], [27], but it seems difficult to enforce the
periodic boundary condition (2), especially if a specific period



is desired. However, several methods based on the Darboux-
Bicklund transforms (which have also been employed for
vanishing boundary conditions [10]) are available for the
construction of periodic finite-gap solutions to the NSE with
pre-specified (complex) main spectrum: see [43]], [44, Ch. 3.1]
and [45) Sec. 4.2], and [46, Thm. 6.15]. The theta function
representation discussed in Remark [ offers another potential
way to generate finite-band solutions. The advantage of these
approaches it that the period of the constructed solution, and
therefore its temporal spread, can be controlled.

III. THE NONLINEAR FOURIER TRANSFORM

The NFT of a periodic finite-band solution ¢, taken at a
reference time ¢y and with respect to a reference point x, is
the mapping from ¢(-, o) and z; to the scattering data, which
is given by either (3)—(6), or (I9)—(23). In this section, the
computation of the scattering data is reviewed as a preparation
for the derivation of the numerical algorithms. First, the main
points of the Lax pair formalism are explained in order to
motivate the spectral analysis of the differential operator

d
. - )
L, —i| e 90T 27
to K Q(', tO) _ % ( )
Second, the spectral theory for the operator L., will be
reviewed. In particular, the monodromy matrix and the Floquet
discriminant will be introduced. Finally, the relation between
the spectrum of L., and the scattering data will be established.

Remark 6. In the literature, L, is sometimes replaced with

1 1 -t . 1% %q(',to)
Y R Y B PP e

All these operators are similar. Their eigenvalues coincide.

A. The Lax Pair Formalism

The relation between the operator L;, and the NSE (1) is as
follows. One can find a second differential operator B, which
also depends on ¢, such that the condition

0y, Ly, = BLy, — L;,B (28)

is equivalent to g being a solution to the NSE [5]]. The details
of how to find a suitable operator B will not be given here
because this procedure is not important in this paper. See [47,
Ch. 6.1] for an in-depth derivation. Any two operators L, and
B that satisfy the condition (28) are said to form a Lax pair.
The main point about Lax pairs is that the eigenvalues of Ly,
are independent of ¢y [48]]. Furthermore, the time-evolution of
any eigenfunction ¢, (z) of Ly, is simply 0y, ¢, = By, .
This relation is the reason why the time-evolution of the
scattering data, which will be derived from the eigenstructure
of L, is usually simpler than that of the original signal.

B. Monodromy Matrix and Floquet Discriminant

The eigenproblem L;,v = zv can be rearranged to

d —iz _q(ato)

dz " K4+, to) iz 29

Equation (29) has a unique non-trivial solution for any initial
condition of the form v(xg) = vg # 0 [49, Thm. 3.9]. How-
ever, although the coefficients in @]) are periodic, solutions
to (29) will not be periodic in general. The choice ¢ = 0 and
z = i, for example, leads to v(z)T = [ ¢* e |. In the
following, only eigenvalues that admit bounded quasi-periodic
eigenfunctions (i.e., v(z +¢) = mov(z) with |m| = 1) will be
of interest. The analysis of differential equations with periodic
coefficients is the subject of Floquet theory [49, Ch. 3.6].
Following [28, Apdx.], we now outline how Floquet theory
allows us to identify these eigenvalues in a way that is similar
to how eigenvalues with finite-energy eigenfunctions are found
for vanishing boundary conditions [8].
Let ¢, 1. and (}dbxo,tw denote the solutions of Eq.
with respect to the canonical initial conditions
0
[ 1 ] (30)

1 ~
¢x0,to,z(x0) = |: 0 :| ) ¢ac0,t0,z(x0) =
and the argument z. The monodromy matrix

Mwo,to (Z) = [ ¢z0,t0,z(330 +£) ¢$0,t0,z(’r0 + é) } (3D
captures the evolution of these two solutions over one period.
It can be thought of as the equivalent of the transfer matrix
used with vanishing boundary conditions [8]. The monodromy
matrix allows us to identify the z that admit quasi-periodic
eigenfunctions with desired period transitions as follows.

Lemma 7 ([28]], p. 831f.). Fix two arbitrary complex constants
z,m € C. Then, the eigenproblem L, v = zv admits a quasi-
periodic eigenfunction v # 0 in the sense that v(xz + () =
muv(z) if and only if A(z) := L tr M, 4, (2) satisfies

2

m? —2mA(z) +1=0. (32)

The function A is known as Floquet discriminant in the
literature. As the notation suggests, A indeed does not depend
on the reference points zy and %g.

Lemma 8 ([35]], Egs. (3.8)+(8.3)). The Floquent discriminant
A is independent of the reference points xq and t.

The determinant of the monodromy matrix is also invariant.

Lemma 9 ([35], Eqgs. (1.5)+(6.3¢)). The monodromy matrix
satisfies det My, +,(2) = 1 for all xo and to.

The monodromy matrix possesses some symmetries.

Lemma 10 ([33], Secs. L.1+I1.1). We have [M,V.Oﬂgo(z)]l2 =

[Miﬁmtu (2)]1’1 and [M&l’mto (Z)]271 =K [Mﬂco,to (2)] 1,2°

C. Connection between Kotlyarov-Its Finite-Band Solutions
and the Monodromy Matrix

In this subsection, we assume that ¢(z, t) is a periodic finite-
band solution in the sense of Kotlyarov and Its. We develop
expressions which allow us to compute the corresponding
parameters (3)—(6) with the help of the monodromy matrix.



1) Squared Eigenfunctions in Terms of the Monodromy
Matrix: The following theorem will enable us to evaluate
the squared eigenfunctions given in Egs. (I2)), (I3) and (I5)
indirectly through evaluations of the monodromy matrix up to
an unknown but commonly shared non-zero factor.

Theorem 11 ([24]; [27]], Sec. 4.2, Apdx. I; [50Q], Sec. 4.6).

Fix any choice of squared eigenfunctions (I2)), and
such that the associated parameters —(@) generate q(x,t).

Then, there exists a function C : C — C such that
C(2)f=(0,t0) = = 1(A(2) = [Mag 10 (2)]; 1),
C(2)g=(x0,t0) = My t0(2)] 5
C(2)h= (0, to) = [Maq 1, (2)],; -

Proof: We only sketch the main idea. One defines

i - .

f~z (l‘,t) = 5([¢m,t,z]1[¢z,t,z}2 + [¢m,t,z]2[¢m,t,z]1)’
gz(l',t) ::[d)z,t,z]l[&sx,t,z]l? BZ = _ﬁ[d)m,t,zb[&m,t,z]?
Then, one uses the fact that ¢, , . and q?)wmto’z are eigen-

functions of Ly, to show that the spatio-temporal evolution of

= [ fz Gz h. ] is also governed by same differential
equations that were mentioned earlier for 6, in Footnote [6]
Uniqueness arguments then show that 6, and 0. differ only
by a normalization factor. Eventually, one connects f,, . and
h. to the monodromy matrix using ]
2) Main Spectrum : Solving for m = :tl in Eq. shows
that the operator L;, admits an (anti-)periodic eigenfunction
for some z if and only if the Floquet discriminant satisfies
A(z) € {£1}. Under some weak assumptions, Theorem
[ implies that the main spectrum of a finite-band solution
corresponds to the simple (anti-)periodic eigenvalues of Ly, .

Lemma 12. Assume that there is a finite-band representation
Sor q(x,t) that satisfies , and fix it. Furthermore, assume
that the roots of 1 — A? are at most double. The main spectrum
then corresponds exactly to the simple roots of 1 — A2:

{Ak}zﬂ:{cec:me{ﬂ} <¢o} 33)

Proof: The main spectrum corresponds to the simple roots
of P = f2 — g.h, [cf. (1), (14) and (15)]. With the help of
Lemma [9] Theorem [11] can be used to show that C?P =
(1— A?). Now, every simple root of 1 — A2 must be a root of
P because the roots of C? are at least double. On the other
hand, if P has a root then C? cannot have a root because the
roots of 1 — A? are at most double. Thus, every simple root
of P is also a simple root of 1 — A2, [ |

A natural question arising at this point is whether the
non-simple roots of 1 — A? are of any importance. The
answer is yes; they are essential for analyzing the impact of
perturbations.

Remark 13 (Non-simple roots). The non-simple root{] of
1 — A? can be interpreted as “canonical” degenerate points
in the main spectrum of a finite-band solution. Since these
roots are eigenvalues of the operator Ly, perturbation theory

Tie., ¢ € C such that A(¢) € {£1} and 92(¢) = 0.

shows that double-roots will in general split up into two
simple roots, leading to new non-degenerate points in the
main spectrum. The corresponding hyperelliptic mode p; is
no longer trapped. Although the impact of small perturbations
on the roots themselves is small, they can nevertheless change
the trajectories of the formerly trapped hyperelliptic mode
significantly [27]], [28]], [29], [31]. As the solution evolves, this
can lead to instabilities known as rogue (or freak) waves [34],
[51]]. Whether or not a double root can lead to an instability
depends on its location in the complex plane. We note that
real double roots cannot cause instabilities [29, Thm. 5.3].

Let us now illustrate matters with another example.

Example 14 (Plane wave; e.g. [28], Sec. II.A). Consider the
following periodic solution to the focusing NSE:

q(z,t) = goe? %, gy > 0.

This is a special case of Ex.[3] We therefore know that a one-
band representation for ¢(z,t) that satisfies exists, and
can use Lem. [I2] to analyze th1s particular representatron The
Floquet discriminant is A(z) = cos( E \/ 2% + ¢3), which leads
to infinitely many roots f0r A( )+

(= 4y/n2n2/02 —¢¢, neN.

By taking the limit ¢ — ;& with respect to

sin (A/CQ + q%)
V@

one finds that only the roots at Co = £ iqp are simple. Thus,
the main spectrum is \; = Co and Ay = (; . The non-simple
roots correspond to the (& with n > 1. They are imaginary if
n < gof/m and real otherwise. The effect of perturbations on
the non-simple roots is discussed e.g. in [28], [29].

dA

E(O = =20

In this example, it is interesting to note that the non-
degenerate main spectrum is symmetric with respect to the
real axis, and that the number of non-real double roots is finite.
These two properties can be generalized as follows.

Lemma 15 ([29], [36]). If the main spectrum is given by
(33), it must consist of complex conjugate pairs. Furthermore,
{A; 12N, C R in the defocusing case k = —1.

Proof: Lemma [10| implies A(Z) = A(z), and thus
is symmetric with respect to the real axis. The \; are real
if K = —1 because Ly, then is self-adjoint with respect to

(@.0) = [ Ppla) p(x)da. m

Lemma 16 ([28], [29]). The functions A(z) £ 1 have only

finitely many non-simple non-real roots. That is, 1 — A(¢)? =

%(() = 0 for only finitely many complex points { ¢ R.

Lemma is important because, as mentioned in Remark
@ only non-real double roots can lead to instabilities [28]],
[29]. Thus, only finitely many degenerate points have to be
taken into account during a stability analysis.



3) Auxiliary Spectrum : Next, consider the z for which the
first element of the canonical eigenfunction ¢ vanishes
at xg and xg + £:

[ngo,to,z(%)] = [ém,to,z(wo + E)} =0

By definition of the monodromy matrix, this condition cor-
responds to the upper right element of the monodromy ma-
trix being zero. The following lemma implies that these z
constitute the auxiliary spectrum discussed in Sec. up to
degenerate parts which can be canceled as follows.

Lemma 17. Let g(xo,to) # 0, and assume and that the
roots of 1—A? are at most double. Furthermore, set n(¢) := 1
if ¢ € C is a double root of 1 — A? and n(¢) := 0 otherwise.

Then, the auxiliary spectrum is
[Mﬂﬁoyto(z)h,z o O}

¢)n©)

Proof: In the proof of Lem. [12] it was shown that C? =
(1—A2)/P and that the roots of P are exactly the simple roots
of 1 — A2, Thus, the roots of C? = (1 — A?%)/P are exactly
the remaining double roots of 1 — A2, The claim follows from

because Cg. = [My, 1, (2)]; , by Thm. [ |

0,%0,2

{Hj(xo,to)}éy:_ll = {C € C: lim

z—C (Z —

D. Connection between Ma-Ablowitz Finite-Band Solutions
and the Monodromy Matrix

In this subsection, the approach in Ma and Ablowitz [33] is
reviewed and some expressions that will be convenient later
are derived. Ma and Ablowitz assume that a solution ¢(z, )
to the periodic NSE (1)-(2) is given such that 1 — A? has
only finitely many simple roots. In the focusing case, it is
furthermore assumed that [35, p. 129f]

1) all real roots of 1 — A? are double,
2) all non-real roots of 1 — A? are simple,
3) all roots of the terms defining the auxiliary spectra [i.e.,
(34) and (33) below] are simple, and
4) all real roots of the terms defining the auxiliary spectra
coincide with a root of 1 — A2,
Under these conditions, Ma and Ablowitz prove that the
following finite-band solution coincides with ¢(z,t) [35].
The (non-degenerate) main spectrum of the finite-band
representation of ¢(x,t) has been defined as the simple roots
of 1 — A2, i.e., again via I35 p. 116f+129]. The corre-
sponding auxiliary spectra (20)—(21) have been defined as the
solutions (with respect to ¢ and &) of [35, p. 116f+129]

j[(ﬁaco,to,g,l(xo + 2)] - i\/Ej[(bwo,to,g,Q(xO + é)} = 07 (34)
j[¢$o,t07§,1(x0 + E)] - i\/Em[¢x07t0,§,2($o + 6)} =0, (35)
where R[¢(2)] == 5(¢(2) + 6(2)) and I[é(2)] == 57(¢(2) —

¢(2)). These conditions can be rewritten using the functions
\Iji(z) =1 [MImto (Z)]272 —i [Mwoﬂfo (Z)]Ll (36)
-V i1\/E([1\/Iﬂvoﬂfo (Z)]QJ tk [Mftoﬂfo (Z)]LQ)'

8These assumptions are quite strong. The function in Example e.g., has
non-real double roots and therefore violates them.

Lemma 18. The auxiliary spectra 20)—21) satisfy
{Qj(xo,to)}jyzl ={z € C\R: ¥U*(z) =0},
{fj(xoato)};v:l ={z e C\R: ¥~ (2) =0}.

We have U+ (z) € R whenever k = —1 and z € R.

Proof: We only discuss U+, Lemma implies 1t =
T My t0]1,1 — 1vVET[ My, 10]2,1. Hence, U7 (2) € R if k =
—1 and z € R. Eq. follows with (31). [

The next lemma will turn out to be essential at a later point.

Lemma 19 ([36]], p. 113f). The auxiliary spectra 20)—21)

are real in the defocusing case Kk = —1.

(37
(38)

IV. RATIONAL APPROXIMATIONS OF THE MONODROMY
MATRIX

In the previous section, the scattering data has been ex-
pressed in terms of the monodromy matrix. The fast NFT
algorithms that will be given later require a numerically
tractable approximation of the monodromy matrix. Hence, in
this section, rational approximations

~ S(w)

M(z) = w= ¢ (2), (39)

d(w)
of the monodromy matrix are derived given D equidistant
samples of the signal ¢. That is, S(w) is a matrix-valued
polynomial and d(w) is a scalar-valued polynomial, respec-
tively. The function ¢ denotes a coordinate transform. Unless
specified otherwise, we shall use a Mdobius transform

_dz—b _pi(w)  aw+b

-1 o

Here, a,b,c,d € C with ad — bc # 0. This transform has
no influence on the results with respect to exact arithmetic
operations, but it can be used to improve the numerical
properties of the problem in finite precision. Specific choices
will be discussed at the end of the section.

~ M:L’o,to (Z)’

a—cz’

A. Ansatz

The monodromy matrix has been defined in terms of the
two solutions to the differential equation in Eq. that arise
from the initial conditions in Eq. (30). Define the quantity

A —iz _q(‘xa to)
P = ) i “
The two solutions can be joined into the single equation
d
—V.,=P,V,, V, =1 42
. (o) 42)
The monodromy matrix can now be written as
M(z) = V., (zg + 0). (43)

The general idea will be to replace the differential equation
(@2) with a difference equation which is then solved for an
approximation of V(x4 ¢). The difference equation will be
based on given samples of ¢(-, o) taken at the sample points

14
Ty = Xg +NE, €:= 5,
where n € {0, ..., D—1}. Knowing that P, (zo+¢) = P, (x0)
because ¢(-,to) is periodic, also set zp := xg.

(44)



B. Forward Euler Method

This method is arguably the simplest way to solve Eq. (#2)
for V,(zp) = M(z). Although it is rarely used in practice,
it is a nice and simple means to illustrate the general rational
approximation in Eq. (39). The discretized version of Eq.
in this scheme is

Vz[n + 1] — Vz[n]

5 =P.(z,)V.[n], V0] =
Solving for V. [n + 1] results in
V.n+1] = A+ eP.(z,)) V.[n]. (45)

Eq. suggests the approximatimﬂ

M(2) =V () [D]

D
H I + €PLP(IU) :L'n))

n=1
_ ﬁ 1- 15%0 —&q(n; to)
N - eng xn,to 1+iep(w)
n=

:1

D {@2( w) —iepr(w)
=1 erpr(w)q(wn, to)

pa(w)

—epa(w)q(zn, to) }
p2(w) +iepi(w)

At this point, note that S(w) and d(w) are indeed polynomials.
The coordinate transform ¢(w) has been incorporated into
them.

C. Crank-Nicolson
The Crank-Nicolson method is a quite popular finite differ-
ence scheme that is used in practice. The right side of Eq.
is now approximated with a central difference:
V.n+1-V.[n] P.(2,:1)V.[n+1]+P.(2,)V

€ 2
Solving for V[n + 1] results in

-1
V.n+1) = (I - gpz(xn+1)) (1 n gPZ(xn)) V.[n].
(46)
As before, the monodromy matrix will be approximated using
the following ansatz suggested by Eq. {@3):

M(z) == V() [D] =V.[D], V0] :=1

=[] .

The determinant of T — SP () (Tn41) is

2
+ T (PH(w) + w%(w)\q(:cn+1,to)l2) _
3 (w) 3 (w)
and the ansatz expands to

03 (w)

M(z) = (w) [D]
D -1
=TI (I - §P¢<U)>(xn+1)) (I + %Pwm (xn))

9Please note the order to the matrix product: ]_[5:1 Ap = A x---XA;.

AS

D .
“T1 5w) [ 1—isp(w) —5q(zni,to)
dn U) %Ii(j(l’n_;,.l,to) 1+1%gp(w)

[ 1-15e(w) )] S0
E/Qq(xn,to) 1+1i5e(w) d

" (w)’
dp,(w) and

where d(w) = [[?

n=1

D -
_ p2(w) —i5p1(w)  —5Fp2(w)q(znt1,to)
_};[1 | 5re2(w)q(Tni1,to) P2 +i5p1(w) }
% { p2(w) —i5p1(w) —5p2(w)q(zn,to) }
Skpa(w)q(Tn,to)  p2(w) +igp1(w) |-

D. Ablowitz-Ladik Scheme

The following scheme is known as the Ablowitz-Ladik
scheme [52]]:

Qp :\/1 + K52|q(xn7t0)‘2a
efiez *€q(l'n,t0) J
ekq(zn,to) e'e? V:nl.
Note that it is equivalent to the forward Euler method {@3)) up
to an error of O(g?) because eT1¢* = 1 Fiez + O(e?) and

V.n+1] =a;?

a, = 1+ O(g?). The coordinate transform
_ ez log w
w=gTl )= o pw) = 222, @)
leads to the final form of the iteration:
¥ -1 w 75(](:1771,7 to) ¥
Vuln+1]=a, |: k(2 to) w1 } Vun].
(48)
The monodromy matrix will be approximated using the ansatz
M(2) := Vy[D] » VIIID], - V[0l =1, (49)

in which V") (D] is given by Eq. (45). This fits into the
general framework of Eq. if one chooses d(w) := w?
and
. —1 w? —ewq(Tn—1,t0)
T | i |

Remark 20. The normalization by «,, is not always given in
the literature, but it has been reported to improve the numerical
properties of the scheme in some cases [S3].

Remark 21. The discretization (48) is amenable to a discrete
version of the inverse scattering formalism [[54]].

E. Heuristic for Choosing The Coordinate Transform

Many polynomial operations such as root-finding or even
simple evaluation are known to be problematic in finite pre-
cision arithmetic. Often problems arise if the coefficients of a
polynomial cover a range that is too large for the commonly
used IEEE 754 double precision floating point numbers. The
problem can become even worse when a polynomial of a very
high degree is evaluated at arguments x with absolute values
|| that are not close enough to one. In this case, the powers
|z|%, |z|*, |z|?, |z, . .. will cover a large range. Consider the
following example, which illustrates the difficulties for the
example of polynomial evaluation: pp(z) = S35 102 gd,




[ Degree D [ 128 [ 256 [ 512 [ 1024 [ 2048 ]
Naive approach 1 1 NaN NaN NaN
Horner’s method 1 1 0.60156 | 0.30078 | 0.15039
Reverse Horner 1 1 NaN NaN NaN

Table T

NUMERICAL EVALUATION OF Pp(z) AT x = 10. THE EXACT RESULT IS
Pp(10) = 1 FOR ANY D. NAN IS SHORT FOR “NOT A NUMBER” (E.G.,
0 x oo = NAN IN IEEE 754). HORNER’S METHOD IS THE
RECOMMENDED METHOD FOR THE NUMERICAL EVALUATION OF
POLYNOMIALS IF |z| > 1. OTHERWISE, THE REVERSE HORNER’S METHOD
SHOULD BE USED [55]]. THAT IS, EVALUATE Pp (u)/u AT u = z~ .

It is pp(10) = 1 for any D, but as is illustrated in Tab. [I| the
numerical evaluation fails spectacularly for larger degrees.

The coordinate transform z = ¢(w) is a crucial factor in
alleviating such problems when implementing fast NFTs, but
finding good transforms remains a black art for now. Motivated
by the issues just discussed, we wish to find transforms
that will map the region of interest close to the unit circle.
The coordinate transform of the Ablowitz-Ladik scheme
achieves this. For the other schemes, we use the Mobius
transform with a = —M/e, b = —a, c =i, d =i
where M = 1 for the Euler scheme and M = 2 for Crank-
Nicolson, respectively. These transforms map the real line to
the unit circle. At the same time, they cancel several terms in
the rational approximations.

V. FAST NUMERICAL NONLINEAR FOURIER TRANSFORM
BASED ON FINITE-DIMENSIONAL EIGENPROBLEMS

In this section, a fast numerical NFT will be proposed that is
based on approximating the main and auxiliary spectra through
solutions of finite-dimensional eigenproblems. Its complexity
is an order of magnitude lower than that of similar known
algorithms based on matrix eigenproblems. This section con-
sists of two parts. First, the algorithm is introduced. Then, it
is compared with some other methods from the literature.

A. Description of the Algorithm

The input to this algorithm consists of the samples
q(z0,t0), - -.,q(xp_1,t0), where the z,, are given in Eq. (44).
The user has to decide for a rational approximation M(z) =
S(w)/d(w), z = @(w), of the monodromy matrix that fits into
Eq. (39). Several such schemes have been described in Sec.
The output of the algorithm will be the numerical main
spectrum ;\j and the numerical auxiliary spectra [i;(zo,to),
6i(x0,to) and &;(xo,to). The algorithm proceeds as follows.

1) Find the Monomial Basis Expansion: The polynomials
S(w) and d(w) have mostly been given in product forms
S(w) = Hle S, (w) and d(w) = Hfb):l d,,(w), respectively,
where the S,,(w) and d,,(w) are polynomials of a low degree
K. However, in the following, the coefficients of the poly-
nomials S(w) and d(w) with respect to the usual monomial
basis w”, w!, w?, ... will be required. Algorithm|[lis a simple
method that can find the coefficients of a polynomial in
product form performing only O(Dlog2 D) floating point
operations (flops). It computes coefficients S*) e C2%2,

d®) € C and normalization constants Ws, W4 € Z such that

deg(S) & &
M (w) = S(w) _ 2Ws Zke:go( ' §®ph —. 9Ws—Wu S(w)
dlw)  9wa Zze:géd) (k) ok

d(w)
(50
The normalization constants arise from an effort to avoid
overflows in Algorithm (I} They also ensure that the largest
coefficients among the [S(k)]i,j and d®) are of similar mag-
nitude. The basis two was chosen for the normalization factor
because multiplication and division by two can be carried out
without loss of precision in IEEE 754 floating point numbers.

2) Find the Main Spectrum: Lemma|l2|suggests to approx-
imate the main spectrum by the roots of'

Alz)+1 ;:% ([M(w)h,l n [M(w)]m) +1
_owe 1 8w + [S(w)}ga & 2WaWetld(w)

d(w)
(S

The roots of these rational functions correspond to the roots of
the two numerators [S(w)]1.1 + [S(w)]a.p 4 2We=WsH14d(w)
that are not canceled by a root of the denominator ci(w) It is
a well-known fact that the roots of a polynomial correspond
to the eigenvalues of an associated companion matrix that can
be constructed from its monomial basis expansion. Companion
matrices are highly structured, and recently several algorithms
have been proposed that can find the eigenvalues of an R x R
companion matrix with only O(R?) flops. See, e.g., [57],
[58], [59], [60] and the references therein. We propose to
find the roots of the two polynomials [S(w)]; 1 + [S(w)]2.2 +
oWa=Ws+1((1) using this method. Therefore, one requires
the monomial basis expansion of these two polynomials. Since
the expansion (50) is already known, it can be computed
in only O(KD) flops. The roots of d(w) can often be
found in closed form, or otherwise, if a product expansion
d(w) = Hr?:l dy(w) is known, numerically using at most
O(K?2D) flops. Denote the roots of the two numerators that
are not being canceled by a root of cf(w) by w;. The worst-
case complexity of finding them is O(K?2D?) because for each
root of the numerators one has to check whether that root is
in the set of roots of the denominator. Often, this step can be
simplified when d(w) has only a few distinct roots. We finally
apply the coordinate transform in order to find the numerical
main spectrum, ;\j = @(w;). Adding up the complexities of
the single steps, we see that the overall complexity of finding
the numerical main spectrum is O(K2D?) flops.

3) Find the Kotlyarov-Its Auxiliary Spectrum: The replace-
ment of the monodromy matrix in Lemma [T7] with the rational

approximation results iﬂ
S(w))1,2

[M(w)]1 2 = 2"~ Blwlha

- =0.
’ d(w)

(52)

10We do not check whether the roots are simple. Multiple roots will be
detected by the root-finding algorithm and can be removed in Step 5, if
desired.

"TWe do not check whether the found roots belong to the degenerated modes
at this point. Such roots can be removed later in Step 5, if desired.



Algorithm 1 Fast product of N polynomials py,...
(probably matrix-valued) with degree at most K.

Let us first illustrate the basic idea before the algorithm is
given. The idea is to form the product in a tree-wise fashion,
as is illustrated below for the case N = 8:

y PN

P1
> P1P2
P2 ¢
P1P2P3P4
Ps3 /
> P3P4 N\
P4
p
Ps
3 Pspo /
P6 N
P5P6P7Ps
ol S
> P7Ps
Ps

Assume for a moment that N = 2". Then, the algo-
rithm will form £ products in the i-th level of the tree
with degrees that are less than 2'K. If the FFT is used
to multiply polynomials fast [56, p. 204ff], this leads to
a complexity of O(32°K log(2'K)) flops for level i [I3].
The tree has O(log N) levels, thus the overall complexity
is O(NKlog?(NK)). A detailed implementation that also
works for N # 2™ is given below. Note that the intermediate
products are normalized in order to avoid over-/underflows.

Input: N polynomials pq,...,pn of degree at most K
Output: W,p=2"pip2 X - X pn
e W<+0

e while N > 2 do:
- Np < N mod 2
- N« ¥l 4 N,
- forn=1,...,N — N, do:
* Pn < P2n—1P2n
a + |largest coefficient(p,,)|
if a > 0 then a + [log, a
Pn < 27pn
* W+ W+a
- if Nm 7é 0 then: PN < P2N-1

e P P1

* X ¥

The roots in this equation are an approximation of the auxiliary
spectrum. They correspond to the roots of the numerator
[S(w)]1.2 that are not canceled by the roots of d(w). De-
note the remaining roots of [S(w)]12 by ;. The numer-
ical auxiliary spectrum (of Kotlyarov-Its type) is given by
fj(zo,to) = (w;). If the same root finder as in Sec.

is used, it can be computed using O(K?2D?) flops.

4) Find the Ma-Ablowitz Auxiliary Spectra: Now, the idea
is to exploit Lemma [T8] The replacement of the monodromy

matrix in Eq. (36) with (50) results in
Ut (z) := 2Ws=Way (53)

i[S(w)]2,2 — i[S(2)]11 — @ﬁ([s(w)]z,l + K[S(w)]m)'
d(w)

The roots uA)ji of the numerators of W+ that are not canceled
by the denominators define the numerical auxiliary spectra
(of Ma-Ablowitz type) ;(xo,to) 1= <p(u§j+) and &;(xo,to) :=
@(w; ). The auxiliary spectra can be computed in O(K>D?)
flops if the same root finder as in Sec. is used.

5) Filter the Numerical Spectra: The numerical spectra will
often contain artifacts that arise because of the discretization
procedure. These artifacts will usually be well-separated from
the real spectrum. Whenever there is some a-priori knowledge
about the spectrum, it should be used to remove all other points
in the numerical spectra that contradict this knowledge. The
detected main spectrum may contain double roots indicating
degenerate points in the main spectrum. These can be removed
if desired. If a pair of degenerate points is removed from the
main spectrum, then the same point should also be removed
from the auxiliary spectra in order to remove the correspond-
ing degenerate hyperelliptic modes as well.

Remark 22 (Root Cancellations). Depending on the discretiza-
tion scheme, it is not always necessary to perform the root
cancellations in the algorithm. The discretization schemes
discussed in Sec. mlead to denominators d(w) with roots that
are usually well separated from the spectrum. The denominator
in the Ablowitz-Ladik scheme has no finite roots at all. In
the Euler and Crank-Nicolson schemes, when used with the
Mobius transforms from Sec. the roots of d(w) cluster
around w = —1 as the step-size £ becomes small. In original
coordinates, they will cluster around z = ¢(1) = co. The root
cancellation steps will therefore usually not be necessary with
the discretization schemes from Sec. [Vl

B. Comparison With Other Finite-Dimensional Eigenmethods

Another way to compute the scattering data is by direct
discretization of the eigenrelation L;,v = zv. Let us illustrate
this approach with an example. The main spectrum consists
of the eigenvalues of L, that possess (anti-)periodic eigen-

vectors. The eigenrelation
I[e]=+12]
=z
v v

d .
Lt0|:u:|l|: _d:r q(720)
v Hq('7t0) “dz
(54)
can be discretized using Euler’s method. With the sample

points x,, and step size ¢ given in Eq. (#4), this becomes

i u(Tnt1) — u(wn)
e

+ig(@n, to)v(zn) = zu(zn), (55

i V(Tny1) — v(2n)

iﬁq(xnvtO)u(xn) - = Zv(mn)a (56)

where n € {0,...,D — 1}. The signal ¢ is periodic in z
and the eigenfunctions are supposed to be (anti-)periodic.
Hence, q(zp,to) = q(x0,t0) and u(zp) = £u(wo), v(zp) =
+v(z0). The 2D linear equations in Egs. (55)-(56) can be
collected into a single (generalized) matrix eigenproblem that



can be solved with standard numerical methods such as the
QZ algorithm. Each sign + results in a separate eigenproblem,
and the collected eigenvalues of both problems can be used
as an approximation of the true main spectrum. The same
approach can be used to approximate auxiliary spectra if the
boundary conditions are modified appropriately. See, e.g., [61}
Ch. 3.4]. Of course, methods other than Euler’s can be used in
order to discretize Eq. (54) including such where Eq. (54) is
discretized in the Fourier domain. Several such methods have
been proposed in the literature [9]], [S3]], [62], [63], but so far
no way of exploiting the structure of the resulting matrices
seems to be known. Instead, standard eigenvalue solvers with
O(D?) complexity had to be used. This is in contrast to our
proposed algorithm, which requires only O(D?) flops.

Remark 23 (Floquet-Fourier-Hill Method). Deconinck and
Kutz [64]] proposed a novel approach to the numerical ap-
proximation of the spectrum of periodic differential operators
like L;,. Although their method is quite different from the
ones discussed above, it still has a complexity of O(D?).

C. Comparison With Search Methods

Search methods are among the oldest methods for comput-
ing the nonlinear Fourier transform [65]]. Let us illustrate the
basic idea for the main spectrum. As before, the roots of the
function A(z):l:l will be used as the numerical approximations
of the main spectrum. The difference is that this time, an
iterative search method such as Newton’s method will be used
in order to locate the roots. Let r[0] denote an estimate for a
root of A(z) + 1. The derivative with respect to a complex
variable z = u + iv, u,v € R, is d% = % (Oy —10y).
Therewith, the complex Newton’s method can be written as
166]

A+1

z=r[n]

[Mh,l + [M}gg +2
[%M]l,l + [%M]Q’Q

=r[i] + (57)

z=rli]

The derivative of the approximated monodromy matrix M (z)
is required in order to perform this iteration. The exact
formulas for this derivative depend on the discretization
method. For Euler’s method, e.g., it is M(z) = V,[D] where
\A/'[D} is determined through the iteration l| Consequently,
d%M(z) = d—dzvz [D]. Taking the derivative of results in

A 41] = (14 P ()

v,
dz dz ]
d N
+e <dsz(xn)) V.[n]. (58)
Differentiation of the initial condition V. [0] = I gives the
missing initial condition for the derivative: -£V[0] = 0.

In summary, given an initial guess 7[0] of a root of A + 1,
one iterates the Newton step until some stopping criterion
is fulfilled. For example, one may stop whenever the differ-
ence between two consecutive iterates falls below a certain
threshold [9]]. That is, |r[i + 1] — r[i]] < 8 for some 3 > 0.

The monodromy matrix and its derivative, which are required
for each Newton step, can be found by using and (58).

There are two remaining issues that have to be solved for
any search method:

1) How does one choose the initial guesses for the roots?

2) How does one know that all roots of interest have been
found? Newton’s method does not return the multiplic-
ities of the found roots.

These issues have been discussed in [9] for the NFT with non-
periodic signals that vanish at infinity. In the communication
scenario of [10], in which there are only finitely many possible
locations for the roots, solving these problems is simple.
It was proposed in [9] to use a few random perturbations
of each potential root as initial guesses. Since Newton’s
method converges quickly for initial guesses that are close
to a potential root, one can assume that all roots have been
found after each potential root has been tested. The cost of
performing one Newton step using the iterations and
is O(D) flops. The number of iterations per root can be as
high as O(D) as well [67, p. 936]. Thus, in a communication
scenario with P possible values for the spectral points, the
worst-case complexity is at least O(PD?) flops. (The average
complexity usually will be better, though.)

The situation becomes more involved in situations without
precise a-priori knowledge. It was proposed in [9] to define
a fixed region in which the spectrum is expected to be, and
to choose initial guesses for the roots uniformly at random
from this region. Regarding the stopping criterion, the authors
of [9] proposed to check whether the spectrum found so far
satisfies an energy conservation law. In the non-periodic case,
the energy conservation law only involves the evaluation of
an integral over the real line (see, e.g., [8, Apdx. B]). The
corresponding law for the periodic case however involves other
roots that also have to be found [50, Eq. (4.27)]. Hence, this
stopping criterion seems to be less appropriate in the periodic
case. Even very recent results on the initialization of Newton’s
method like [68] and [69] do not achieve O(D?) complexity.

In summary, search methods seem to be a good choice only
if there is precise a-priori knowledge, and the number of roots
P is low compared to the number of sample points D.

VI. FAST NUMERICAL NONLINEAR FOURIER TRANSFORM
FOR THE DEFOCUSING NSE BASED ON SAMPLING

In this section, an especially fast numerical NFT that finds
the main spectrum as well as the Ma-Ablowitz auxiliary
spectra for the defocusing NSE () will be proposed. The idea
is to exploit the fact that these spectra are always real in the
defocusing case. The Kotlyarov-Its auxiliary spectrum does not
have to be real and cannot be found with the method described
in the following. The section is structured as follows. First,
the algorithm is described. Then, its connection to a related
approach from the literature is discussed.

A. Description of the Algorithm

The inputs and outputs are the same as in Sec. with the
exception that additionally a lower bound A € R and an upper
bound B € R, A < B, on the spectra have to be provided.



Algorithm 2 The root finding procedure for Sec[VI-A2} The
evaluations of A(z) have to implemented using the non-
equidistant Fourier transform [70] in order to obtain an
O(LGDlog(GD)) algorithm.

Input: Bounds A, B € R, oversampling factor G € N,
number of bisection iterations L € N
Output: Numerical main spectrum Aq,..., AR
o forn=0,....GD - 1: w, = <p*1(A+n(];35_A1),
A g n S n
Uy A((,D(wn» _ QWS—Wd—l[ (w )]1,} +[ (w )]2,2
d(wy)

e« R —1
o forn=0,...,GD — 2
— if sign(Re(vp4+1) — 1)) # sign(Re(vy,) — 1):
* R R+1,ar < zp, bp < zp11
¥ Sp — +1, ugp < v,
— if sign(Re(vp+1) + 1) # sign(Re(vy,) + 1):
* R R+1,ar < zp, bp < 2zp11
¥ Sp < —1, ug < v,
o forl=1,...,L:
— fori=1,...,R: u, + A(p~(%tbe))
—fori=1,...,R:
« if sign(Re(u,) — s,-) = sign(Re(v,) — s;.):
ap < By, 0,
* else: b, < %

- Y ar+b,
. fOI'Z—l,...,R. )\TFT

1) Find the Monomial Basis Expansion: One starts as in
Sec. [V-Al First, the monomial basis expansions in Eq. (50)
are computed. All other expansions that will be required in
this algorithm can be found from this information with O(D)
flops.

2) Find the Main Spectrum: As in Sec. the numerical
main spectrum will be found from the roots of (5I)). However,
this time Lemma |10| ensures that A(z) £ 1 is real-valued on
the real axis. Additionally, all roots are real by Lemma [T3]
This makes the root finding problem much easier. Algorithm
shows a straight-forward three-step method to isolate the
roots. First, A(z) is sampled on an equidistant grid. Second,
the adjacent sample points where any of the two functions
A(z) £+ 1 changes its sign are located. The midpoint of any
such pair of adjacent sample points forms an estimate of a root.
In the third step, these estimates are refined using bisection.

The costs of Algorithm [2] are dominated by the evaluations
of A(z) With naive evaluations of , , etc., the overall
costs of the algorithm are O(LG?2D?). However, note that the
coordinate transforms w = ¢~ !(z) in Sec. as well as the
transform map the real axis to the complex unit circle.
Therefore, the non-equidistant fast Fourier transform (NFFT)
[70] can be used in order to evaluate A(z) efficiently. For
example, the vg,...,vgp—1 can be found as follows. First,
one uses the NFFT to evaluate [S(w)]11 + [S(w)]2.2 at the
G D points w,, := ¢~ 1(2,) using only O(GDlog(GD)) flops
because |w,| = 1 for all n. Second, one uses the NFFT to

evaluate d(w) at the w,,. Finally, the values of A(z) are given
by

v, = 9Ws—Wa-1 [S(wn)]11 + [S(wn)]z,z.

d(wn,)

Both NFFTs require O(GDlog(GD)) flops. The last step
requires another O(GD) flops. In total, one can thus find
Vo, .- -, Vap—1 using only O(GDlog(GD)) flops. Similarly,
the uq, ... up can be found using only O(GD log(GD)) flops
because R < GD. The costs of the remaining operations are
negligible, so that the overall costs of Algorithm [2] amount to
O(LGDlog(GD)) flops if the NFFT is utilized.

3) Find the Ma-Ablowitz Auxiliary Spectra: The roots of
the function W*(2) defined in constitute the auxiliary
spectra. These roots are real by Lemma [I9] Furthermore,
Lemma [18] shows that ¥ (z) is real for real z. The auxiliary
spectra can therefore be found with the same method as the
main spectrum, using only O(LGD log(GD)) flops. One only
has to replace A +1 with UF as defined in Eq. .

4) Filter the Numerical Spectra: As in Sec. [V-A] The
spectra of the defocusing NSE have a special band structure
[35) p. 117], which can help to identify numerical artifacts.

Remark 24 (Root Refinements). In Algorithm bisection
has been used to refine the roots. Of course, more advanced
methods like the secant method, Muller’s method [71]], or
Ridders’ method [72]] could be used as well. Since derivatives
are easily found in the Fourier domain, the NFFT can also
be used the compute the derivative of A(z) efficiently. Thus,
even the use of Newton’s method should be possible.

Remark 25 (Root Cancellations). In contrast to the fast eigen-
method from Sec. [V-A] the algorithm in this section did
not contain any root cancellation procedures. Root-finding
methods based on sampling do not indicate the multiplicities of
the found roots. Hence, one cannot detect, e.g., whether a root
of [S(w)]1,1 + [S(w)]2,2 will been canceled by a root of d(w)

unless it is assumed that the roots of [S(w)]1,1+ [S(w)]2,2 are
simple. Fortunately, Remark 22] applies in this case as well.

B. Comparison With A Similar Approach

Algorithm[2is quite similar to a numerical NFT proposed by
Christov in the context of the Korteweg-de Vries equation [[18]],
whose associated Lax operator has a real spectrum as well.
There are some differences in terms of the root refinement, but
the main difference to our approach, which actually is the key
to obtaining a fast algorithm, however is that rational approx-
imations of the monodromy matrix are used in this paper. In
contrast, an irrational approximation of the monodromy matrix
has been used in [18]]. Since an evaluation of the monodromy
matrix in [I8] takes O(GD) flops, the overall runtime of the
algorithm in [18] is about O(LD?G?) flops. This is about an
order of magnitude higher than for our implementation, which
has runtime of O(LG'D log(G D)+ K Dlog?(K D)). Here, the
second term is due to Algorithm [T}

VII. NUMERICAL EXAMPLES

In this section, two numerical examples are investigated
in order to demonstrate that the new proposed algorithms



can improve significantly over the existing ones in terms of
runtimes without sacrificing numerical reliability. The first
example evaluates the finite eigenmethod from Sec. [V-A]
while the second example investigates the performance of the
specialized method from Sec. for the defocusing NSE.
The results presented here should be understood as proof-of-
concept. A comprehensive numerical or analytical study of the
new algorithms remains a topic for future research.

Remark 26. The numerical examples have been carried out us-
ing MATLAB R2012a, but for the most time-consuming parts
of the algorithms external implementations have been used.
In order to realize the root-finding algorithm in Sec. [V-AZ]
a Fortran implementation of the algorithm in [59]], which
is available at http://www.unilim.fr/pages_perso/paola.boito/
software.html, has been interfaced. For the non-equidistant
fast Fourier transform required in Sec. version 3.2.3
of the NFFT3 library [70], which is available at http://www.
tu-chemnitz.de/~potts/nfft, has been used. Specifically, the
included example given in the file test_nfft1d.mhas been
adapted to our needs. Algorithm [I] and the direct evaluation
of (48) have been implemented in C. The FFT in Algorithm [I]
has been realized using version 1.3.0 of the KISS FFT routine,
which is available at http://sourceforge.net/projects/kisstft/.
Root cancellations have not been implemented.

A. The Focusing Case

The first example is the initial condition q(x,tg) = g e!#%,
which has been discussed e.g. in [53]]. The main spectrum with

iy flgol? - 22,

n € N, where all eigenvalues except (gt are double. Similar
to Example [I4] there is thus one non-degenerate band.

First, the runtimes of the new fast numerical NFT from
Sec. will be compared with finite difference methods
as described in Sec. [V=Bl Two discretizations will be consid-
ered: the Ablowitz-Ladik (“AL”) discretization and the Crank-
Nicolson (“CN”) discretization. The signal parameters are
go = ¢ = 3 and ¢ = 2m. The first plot in Fig. [T] shows
the minimum runtime per sample point, taken over three
runs, versus the number of sample points D. The per-sample
runtimes of the fast algorithms grow approximately linearly
with D as expected, while the per-sample runtimes of the
standard algorithms grow quadratically. This corresponds to
quadratic and cubic overall runtimes, respectively.

Next, the numerical accuracy of these algorithm is com-
pared. Since the signal has infinitely many degenerate modes,
only the errors with respect to a finite subset of the spectrum
will be considered. Denote the rectangle spanned by two
complex numbers X,Y € C by Q(X,Y). The error between
the true spectrum {\F}, and the numerical spectrum {\;};
with respect to 2(X,Y) can be measured by

respect to the focusing NSE is ¢(F =

e:= max{ max ~ min IAE— N,
AE st ateq(x,Y) Aj st X, eQ(X,Y)
~ max min IAE - )\j|}.
X st A EQX,Y) AE st AFeQ(x,Y)

Note that the first term in the outer maximum grows large if
an algorithm fails to approximate a part of the true spectrum

within Q(X,Y"), while the second term becomes large if an
algorithm creates spurious terms within Q(X,Y") that have
no correspondence in the true spectrum. The second plot
in Fig. [I| depicts the error for Q(—5 + 1,5 + 5i). That is,
only the non-real spectrum is considered. All four errors
decrease approximately linearly (i.e., doubling D halves the
error), but the errors of the fast algorithms interestingly are
lower than those of the standard algorithms although the same
discretizations are used. (This is only an apparent discrepancy
as the standard algorithms approximate the Lax operator (27)),
while the fast algorithms approximate the monodromy matrix
(31).) Fig. 2] illustrates the different accuracies by comparing
the exact and the numerical spectra for D = 32. The errors
for Q(—5+1,5+51) are all much higher (not shown) because
all algorithms have problems with the approximation of the
eigenvalue at zero. However, the errors still decrease linearly
in that case and the relative performance of the algorithms
with respect to each other remains the same.

B. The Defocusing Case

1) First Example: One-band Solution: The next example is
the q(z,t9) = 3 €'37, where the period is ¢ = 2. This initial
condition corresponds to a one-band solution as derived in
Example [3| with A\; = —3 and Ay = 0.The first plot in Fig.
depicts the per-sample runtime of the fast NFT from Sec.
with that of a naive implementation where the monodromy
matrix is evaluated directly through (@8). In each case, L = 5
bisection steps have been carried out. The oversampling factor
was G = 1. The per-sample runtime of the fast algorithm
grows only very slowly with the number of samples, while it
grows linearly for the standard implementation. The second
plot in Fig. [] shows the same error as in Sec. where
now {)\;j} = {-3,0}, X = —10 and Y = 10. We can see
that the fast algorithm gives exactly the same errors as the
naive implementation. The first plot in Fig. [] finally shows
the Floquet diagram (i.e., a plot of A(z) where the scale is
linear if |A(z)| < 1 and logarithmic otherwise) computed by
the fast algorithm.

2) Second Example: Gaussgan Wavepacket: The last exam-
ple is q(z,t9) = qoe'** e~ ", which has been discussed in
[17]. The parameters considered here are gy = 1.9, pu = 1,
o = 2, { = 10. We do not show the runtime plot because it
is very similar to the one in Fig. [3| The second plot in Fig.
[] shows the Floquet diagram computed by the fast algorithm.
While the exact error cannot be quantified in this case because
the analyical NFT seems to be unknown, a comparison of the
Floquet diagram to that in [17, Fig. 2b] confirms the result
found by the fast algorithm.

VIII. RAPIDLY DECAYING SIGNALS

The fast transforms derived in this paper can also be carried
over to rapidly decaying non-periodic signals on the line.
Details on the necessary modifications can be found in [15],
where a preliminary form of the eigenmethod in Sec. |V| has
been presented for rapidly decaying signals. Alternatively, the
new algorithms for the periodic case may be used directly if
the decaying signal is truncated and extended periodically for
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Figure 2. Exact main spectrum (0) vs. numerical main spectra found by the the new fast eigenmethod (+) and the conventional eigenmethod (x)

a large enough period ¢ > 0 [[73]]. This however requires some
additional transformations of the found spectra.

IX. OTHER INTEGRABLE EVOLUTION EQUATIONS

The new fast NFTs presented in this paper have been devel-
oped for signals that are governed by the NSE (T). However,
the approach extends to signals governed by other evolution
equations as well. In this section, the extension of our results
will be discussed for the Ablowitz-Kaup-Newell-Segur (AKNS)
Lax pair [7]. (The Lax pair formalism has been introduced
in Sec. [[M-A]) The authors did not investigate extensions to
other Lax pairs so far, although they feel that such extensions
should be possible along lines similar to those outlined below.
Finally, please note that the proposed extensions have not been
investigated in numerical experiments so far. Their numerical
accuracy remains to be examined.

A. The AKNS Lax Pair

In Sec. [[lI-A] it was mentioned that the NLS (I)) arises from
the compatibility condition (28) for certain Lax pairs. Ablowitz
et al. [7]] have established that many other important evolution

equations can be expressed through the condition (28) for Lax
pairs with .

. - )

L, = dx q( » L0
P )

for suitably chosen signals ¢,  and operator B. The standard
examples of evolution equations that fall into this framework
(other than the NSE) are the following [7} p. 258]:

o The Korteweg-de Vries equation: r = 1,

(59)

0tq + 6902q + Opzzq = 0.
o The modified KdV equation: r = £q,
g £ 6¢°02q + Oranq = 0.
o The sine-Gordon equation: r = q = %&CU,
Optt = sinu.
o The sinh-Gordon equation: r = —q = %(%cu,
Optu = sinh u.

Either under additional transformations, or by considering
matrix-valued signals q and r, many more equations can be
fit into the AKNS framework [[74]], [75], [76ll, [77], [78l, [79].
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B. Finite-Band Solutions for the AKNS Lax Pair

Tracy has presented finite-band solutions for the AKNS Lax
pair in [27, Ch. 2.2]. (An even more general case has been
discussed in [80].) One starts with exactly the same form as
in Sec. |m Then, one adds a second set of N — 1 auxiliary
variables 7;(z,t) and Riemann sheet indices 0;(z,t) € {£1},
respectively. The 7; are governed by the differential equations

. 2N
o 2105/ ITh=1(n; — M)
xllj = N—1
Hm:? (nj - nm)
m#j
N— 1 2N
8157]]' =—2 Z Tim — 5 Z Ak axnj~
m= k=1
m#j

The signal r evolves according to

Oy Inr = =21

N-1 L2
Z g Z Ak
j=1 k=1

The squared eigenfunction (T3 has to be replaced with

N—
hz(xtflrxtn —n;(z,t)).

Then, one has that ¢ and r solve the system

10,4 + Duaq + 2¢°r = 0,
— 10 + Oger + 2r2q =0
if and only if (I3) is a polynomial [27, Thm. 2.1].

C. Fast NFTs for the AKNS Lax Pair

The algorithms presented in this paper can easily be ex-
tended to general AKNS Lax pairs. All results except Lemma
[T0] Lemma [I5] and Sec. on the computation of the
scattering data in Sec. [l carry over to the general AKNS case
if the operator Ly, in (27) is replaced with (59) and Eq. (29)
is updated accordingly. The scattering data has to be extended
by the initial conditions 7;(zo,to), which turn out to be the
roots of [Ma, 1, (2)]y ;-

Numerically, only minor changes are necessary in the de-
velopment of Sec. [[V]in order to adapt the rational approxima-
tions of the monodromy matrix if the operator L;, is changed.



Basically, only the matrix P, defined in (1) has to be changed
such that the eigenproblem L, v = zv is again equivalent to
4y =P,v. Using , one finds that P is given by

dx
iV _ —iz _Q(7t0)
dx r(-,to) iz
Of course, consecutive terms that involve P, have to be
reevaluated. Then, our proposed fast algorithms in Secs. [V-A]

and [VI-Al can be run as before. The methods used to find the
(o, to) can be used to find the n;(xo,to) as well.

} v=P,v. (60)

X. CONCLUSION

In this paper, two fast numerical nonlinear Fourier trans-
forms for the periodic nonlinear Schrodinger equation have
been proposed. The first algorithm has a complexity of O(D?)
flops, where D denotes the number of sample points. The
second algorithm applies only to the defocusing nonlinear
Schrédinger equation, but its complexity is only O (D log? D)
flops. In both cases, this is about an order of magnitude better
than what other comparable algorithms achieve so far. The
feasibility of the fast transforms has been demonstrated in
several numerical examples. Extensions to other cases have
been discussed as well.
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