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Abstract

The sum secure degrees of freedom (s.d.o.f.) of two fundamental multi-user network

structures, the K-user Gaussian multiple access (MAC) wiretap channel and the K-

user interference channel (IC) with secrecy constraints, have been determined recently

as K(K−1)
K(K−1)+1 [1,2] and K(K−1)

2K−1 [3,4], respectively. In this paper, we determine the entire

s.d.o.f. regions of these two channel models. The converse for the MAC follows from a

middle step in the converse of [1,2]. The converse for the IC includes constraints both

due to secrecy as well as due to interference. Although the portion of the region close

to the optimum sum s.d.o.f. point is governed by the upper bounds due to secrecy

constraints, the other portions of the region are governed by the upper bounds due

to interference constraints. Different from the existing literature, in order to fully

understand the characterization of the s.d.o.f. region of the IC, one has to study the

4-user case, i.e., the 2 or 3-user cases do not illustrate the generality of the problem. In

order to prove the achievability, we use the polytope structure of the converse region.

In both MAC and IC cases, we develop explicit schemes that achieve the extreme points

of the polytope region given by the converse. Specifically, the extreme points of the

MAC region are achieved by an m-user MAC wiretap channel with K−m helpers, i.e.,

by setting K − m users’ secure rates to zero and utilizing them as pure (structured)

cooperative jammers. The extreme points of the IC region are achieved by a (K −m)-

user IC with confidential messages, m helpers, andN external eavesdroppers, form ≥ 1

and a finite N . A byproduct of our results in this paper is that the sum s.d.o.f. is

achieved only at one extreme point of the s.d.o.f. region, which is the symmetric-rate

extreme point, for both MAC and IC channel models.

∗This work was supported by NSF Grants CNS 09-64632, CCF 09-64645, CCF 10-18185 and CNS 11-
47811, and presented in part at the Asilomar Conference on Signals, Systems and Computers, Pacific Grove,
CA, November 2013.
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1 Introduction

In this paper, we consider two fundamental multi-user network structures under secrecy

constraints: K-user multiple access channel (MAC) and K-user interference channel (IC).

Information-theoretic security of communication was first considered by Shannon in [5] via

a noiseless wiretap channel. Noisy wiretap channel was introduced by Wyner who showed

that information-theoretically secure communication was possible if the eavesdropper was

degraded with respect to the legitimate receiver [6]. Csiszar and Korner generalized Wyner’s

result to arbitrary, not necessarily degraded, wiretap channels, and showed that information-

theoretically secure communication was possible even when the eavesdropper was not de-

graded [7]. Leung-Yan-Cheong and Hellman extended Wyner’s setting to a Gaussian channel,

which is degraded [8]. This line of research has been extended to many multi-user scenarios,

for both general and Gaussian channel models, see e.g., [9–30]. The secrecy capacity regions

of most of these multi-user channels remain open problems even in simple Gaussian settings.

In the absence of exact secrecy capacity regions, the behaviour of the secrecy rates at high

signal-to-noise ratio (SNR) regimes have been studied by focusing on the secure degrees of

freedom (s.d.o.f.), which is the pre-log of the secrecy rates, in [1–4, 31–45]. In this paper,

we focus on the K-user Gaussian MAC wiretap channel and the K-user Gaussian IC with

secrecy constraints. The secrecy capacity regions of both of these models remain open. The

sum s.d.o.f. of both of these models have been determined recently as K(K−1)
K(K−1)+1

[1, 2] and
K(K−1)
2K−1

[3, 4], respectively. In this paper, we determine the entire s.d.o.f. regions of these

channel models.

We start with the MAC wiretap channel, where multiple legitimate transmitters wish to

have secure communication with a legitimate receiver in the presence of an eavesdropper; see

Figure 1. The converse for the sum s.d.o.f. is developed in [1,2] using two lemmas: the secrecy

penalty lemma and the role of a helper lemma, which, respectively, quantify the rate penalty

due to the existence of an eavesdropper, and quantify the impact of a helper (interferer) on

the rate of another legitimate transmitter. The achievability for the sum s.d.o.f. in [1, 2] is

based on real interference alignment [46,47] and structured cooperative jamming [18] with an

emphasis on simultaneous alignments at both the legitimate receiver and the eavesdropper.

We develop the converse for the entire region by starting from a middle step in the converse

proof of [1, 2]. While [1, 2] developed asymmetric upper bounds for the secure rates, since

the sum s.d.o.f. was achieved by symmetric rates, [1, 2] summed up the asymmetric upper

bounds to get a single symmetric upper bound to match the achievability. We revisit the

converse proof in [1,2] and develop a converse for the entire region by keeping the developed

asymmetric upper bounds. Therefore, the converse proofs developed in [1, 2] to obtain a

converse for the sum s.d.o.f. suffice to obtain a tight converse for the entire region.

The converse region for the s.d.o.f. problem has a general polytope structure, as opposed

to the non-secrecy counterpart for the MAC which has a polymatroid structure [48]. Polytope

is a bounded polyhedron, which is an intersection of a finite number of half-spaces. Such
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Figure 1: K-user multiple access (MAC) wiretap channel.

definition is called a half-space representation, which is exactly the way our converse is

expressed. In order to show the achievability of the polytope region, we need to show the

achievability of boundaries of all of the half-spaces, which is inefficient. We use Minkowski

theorem [49, Theorem 2.4.5] which states that the polytope region discussed in this paper

can be represented by the convex hull of all of its extreme points, which there are only finitely

many. We, therefore, first determine the extreme points of this converse (polytope) region,

and then develop an achievable scheme for each extreme point of the converse region; the

achievability of the entire region then follows from time-sharing. In particular, each extreme

point of the converse region is achieved by an m-user MAC wiretap channel with K − m

helpers, for m = 1, . . . , K, i.e., by setting K − m users’ secure rates to zero and utilizing

them as pure (structured) cooperative jammers.

We then consider the IC with secrecy constraints; see Figure 2. In particular, we con-

sider three different secrecy constraints in a unified framework as in [3, 4]: 1) K-user IC

with one external eavesdropper (IC-EE), where K transmitter-receiver pairs wish to have

secure communication against an external eavesdropper. 2) K-user IC with confidential

messages (IC-CM), where there are no external eavesdroppers, but each transmitter-receiver

pair wishes to secure its communication against the remaining K − 1 receivers. 3) K-user

IC with confidential messages and one external eavesdropper (IC-CM-EE), which is a com-

bination of the previous two cases, where each transmitter-receiver pair wishes to secure

its communication against the K − 1 receivers and the external eavesdropper. The con-

verse for the sum s.d.o.f. (the sum s.d.o.f. is the same for all three models) was developed

in [3,4] by using the secrecy penalty lemma and the role of a helper lemma in a certain way,

and then by summing up the obtained asymmetric upper bounds into a single symmetric

upper bound. The achievability for the sum s.d.o.f. in [3, 4] is based on asymptotical real

interference alignment [46] to enable simultaneous alignment at multiple receivers.

In order to develop a converse for the entire region for the IC case, similar to the MAC

3
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Y2 Ŵ2
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Figure 2: K-user interference channel (IC) with secrecy constraints.

case, we start by re-examining the converse proof in [3,4] for the sum s.d.o.f. However, unlike

the MAC case, the original steps used for the sum s.d.o.f. are not tight for the characteriza-

tion of the entire region. There are two reasons for this: First, in the case of the MAC wiretap

channel, since there is a single legitimate receiver, each transmitter (helper/interferer) im-

pacts the total rate of all other legitimate transmitters at the legitimate receiver, and there-

fore, there is a single manner in which the role of a helper lemma is applied. In the IC case,

there are many different ways in which the role of a helper lemma can be invoked as there are

multiple receivers. In this case, by pairing up helpers (interferers) and the receivers we obtain

(K − 1)K upper bounds; even after removing the redundancies, we get
((

K

K−1

))
=
(
2K−2
K−1

)

upper bounds. In order to obtain the tightest subset of these upper bounds, we choose the

most binding pairing of the helpers/interferers and the receivers. In particular, we do not

apply the next one (i.e., k = i− 1 and k = i+ 1) selection of helpers/interferers as we have

done in [3, Eqns. (24) and (45)]. Instead, we choose all of the transmitters as interfering

with a single transmitter-receiver pair; see (112) and (128) in this paper. This yields the

tightest upper bounds. Second, we observe that, when we study the s.d.o.f. region, we need

to consider the non-secrecy upper bounds for the underlying IC [50, 51] as additional upper

bounds. We note that such upper bounds are not binding for the case of MAC wiretap

channel s.d.o.f. region, or the MAC and IC sum s.d.o.f. converses. In fact, such non-secrecy

upper bounds for the IC are not binding even for the cases of K = 2 or K = 3. We observe

that these upper bounds are needed for the IC with secrecy constraints starting with K ≥ 4.

To the best of our knowledge, this is the first time in network information theory that K = 2

or K = 3 do not capture the most generality of the problem, and we need to study K = 4

to observe a certain multi-user phenomenon to take effect.

The converse region for the IC with secrecy constraints has a polytope structure as well,

and similar to the MAC wiretap channel case, we need to determine the extreme points of

this polytope region. However, different from the MAC wiretap channel case, the converse

region consists of two classes of upper bounds, due to secrecy and due to interference. This

makes it difficult to identify the extreme points of the converse polytope. Finding the

extreme points is related to finding full-rank sub-matrices from an overall matrix of size

4



2K+K(K−1)/2. Since there are approximately KK such matrices, an exhaustive search is

intractable, and therefore we investigate the consistency of the upper bounds, which reduces

the possible number of sub-matrices to examine. After determining the extreme points of the

converse polytope, we develop an achievable scheme for each extreme point. In particular,

each extreme point of the converse region is achieved by a (K − m)-user IC-CM with m

helpers and N independent external eavesdroppers, for m ≥ 1 and finite N .

Finally, after characterizing the entire s.d.o.f. regions of the MAC and IC with secrecy

constraints, as a byproduct of our results in this paper, we note that the sum s.d.o.f. is

achieved only at one extreme point of the s.d.o.f. region, which is the symmetric-rate extreme

point, for both MAC and IC channel models.

2 System Model, Definitions and the Result

2.1 K-user Gaussian MAC Wiretap Channel

The K-user Gaussian MAC wiretap channel (see Figure 1) is:

Y1 =

K∑

i=1

hiXi +N1 (1)

Y2 =

K∑

i=1

giXi +N2 (2)

where Y1 is the channel output of the legitimate receiver, Y2 is the channel output of the

eavesdropper, Xi is the channel input of transmitter i, hi and gi are the channel gains

of transmitter i to the legitimate receiver and the eavesdropper, respectively, and N1 and

N2 are independent Gaussian random variables with zero-mean and unit-variance. All the

channel gains are independently drawn from continuous distributions, and are time-invariant

throughout the communication session. We further assume that all hi and gi are non-zero.

All channel inputs satisfy average power constraints, E [X2
i ] ≤ P , for i = 1, . . . , K.

Each transmitter i has a message Wi intended for the legitimate receiver. For each i,

message Wi is uniformly and independently chosen from set Wi. The rate of message i is

Ri
△
= 1

n
log |Wi|. Transmitter i uses a stochastic function fi : Wi → Xi where the n-length

vector Xi
△
= Xn

i denotes the ith user’s channel input in n channel uses. All messages are

needed to be kept secret from the eavesdropper. A secrecy rate tuple (R1, . . . , RK) is said

to be achievable if for any ǫ > 0 there exist n-length codes such that the legitimate receiver

can decode the messages reliably, i.e., the probability of decoding error is less than ǫ

Pr
[

(W1, . . . ,WK) 6= (Ŵ1, . . . , ŴK)
]

≤ ǫ (3)
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and the messages are kept information-theoretically secure against the eavesdropper

1

n
H(W1, . . . ,WK |Y2) ≥

1

n
H(W1, . . . ,WK)− ǫ (4)

where Ŵ1, . . . , ŴK are the estimates of the messages based on observation Y1, where Y1
△
=

Y n
1 and Y2

△
= Y n

2 .

The s.d.o.f. region is defined as:

D =
{

d : (R1, . . . , RK) is achievable and di
△
= lim

P→∞

Ri

1
2
logP

, i = 1, . . . , K
}

(5)

The sum s.d.o.f. is defined as:

Ds,Σ
△
= lim

P→∞
sup

∑K

i=1Ri

1
2
logP

(6)

where the supremum is over all achievable secrecy rate tuples (R1, . . . , RK). The sum

s.d.o.f. of the K-user Gaussian MAC wiretap channel is characterized in the following theo-

rem.

Theorem 1 ([1, Theorem 1]) The sum s.d.o.f. of the K-user Gaussian MAC wiretap

channel is K(K−1)
K(K−1)+1

for almost all channel gains.

In this paper, we characterize the s.d.o.f. region of the K-user Gaussian MAC wiretap

channel in the following theorem.

Theorem 2 The s.d.o.f. region D of the K-user Gaussian MAC wiretap channel is the set

of all d satisfying

Kdi + (K − 1)

K∑

j=1,j 6=i

dj ≤ K − 1, i = 1, . . . , K (7)

di ≥ 0, i = 1, . . . , K (8)

for almost all channel gains.
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2.2 K-user Gaussian IC with Secrecy Constraints

The K-user Gaussian IC with secrecy constraints (see Figure 2) is:

Yi =
K∑

j=1

hjiXj +Ni, i = 1, . . . , K (9)

Z =

K∑

j=1

gjXj +NZ (10)

where Yi is the channel output of receiver i, Z is the channel output of the external eaves-

dropper (if there is any), Xi is the channel input of transmitter i, hji is the channel gain of

the jth transmitter to the ith receiver, gj is the channel gain of the jth transmitter to the

eavesdropper (if there is any), and {N1, . . . , NK , NZ} are mutually independent zero-mean

unit-variance Gaussian random variables. All the channel gains are independently drawn

from continuous distributions, and are time-invariant throughout the communication ses-

sion. We further assume that all hji are non-zero, and all gj are non-zero if there is an

external eavesdropper. All channel inputs satisfy average power constraints, E [X2
i ] ≤ P , for

i = 1, . . . , K.

Each transmitter i intends to send a message Wi, uniformly chosen from a set Wi, to

receiver i. The rate of message i is Ri
△
= 1

n
log |Wi|, where n is the number of channel uses.

Transmitter i uses a stochastic function fi : Wi → Xi to encode the message, where Xi
△
= Xn

i

is the n-length channel input of user i. The legitimate receiver j decodes the message as

Ŵj based on its observation Yj. A secrecy rate tuple (R1, . . . , RK) is said to be achievable

if for any ǫ > 0, there exist joint n-length codes such that each receiver j can decode the

corresponding message reliably, i.e., the probability of decoding error is less than ǫ for all

messages,

max
j

Pr
[

Wj 6= Ŵj

]

≤ ǫ (11)

and the corresponding secrecy requirement is satisfied. We consider three different secrecy

requirements:

1) In IC-EE, Figure 3(a), all of the messages are kept information-theoretically secure

against the external eavesdropper,

1

n
H(W1, . . . ,WK |Z) ≥

1

n
H(W1, . . . ,WK)− ǫ (12)

2) In IC-CM, Figure 3(b), all unintended messages are kept information-theoretically

secure against each receiver,

1

n
H(WK

−i|Yi) ≥
1

n
H(WK

−i)− ǫ, i = 1, . . . , K (13)
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Figure 3: The receiver sides of the three channel models: (a) K-user IC-EE, (b) K-user

IC-CM, and (c) K-user IC-CM-EE, where WK
−i

△
= {W1, . . . ,Wi−1,Wi+1, . . . ,WK}.

where WK
−i

△
= {W1, . . . ,Wi−1,Wi+1, . . . ,WK}.

3) In IC-CM-EE, Figure 3(c), all of the messages are kept information-theoretically secure

against both the K−1 unintended receivers and the eavesdropper, i.e., we impose both

secrecy constraints in (12) and (13).

The s.d.o.f. region and the sum s.d.o.f. are defined as in (5) and (6). The sum s.d.o.f. of

the K-user IC-EE, IC-CM, and IC-CM-EE is characterized in the following theorem.

Theorem 3 ([3, Theorem 1]) The sum s.d.o.f. of the K-user Gaussian IC-EE, IC-CM,

and IC-CM-EE is K(K−1)
2K−1

for almost all channel gains.

In this paper, we characterize the s.d.o.f. region of the K-user IC-EE, IC-CM, and IC-

CM-EE in the following theorem.

Theorem 4 The s.d.o.f. region D of K-user IC-EE, IC-CM, and IC-CM-EE is the set of

all d satisfying

Kdi +

K∑

j=1,j 6=i

dj ≤ K − 1, i = 1, . . . , K (14)

∑

i∈V

di ≤ 1, ∀ V ⊆ {1, . . . , K}, |V | = 2 (15)

di ≥ 0, i = 1, . . . , K (16)

for almost all channel gains.
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3 Preliminaries

3.1 Polytope Structure and Extreme Points

Let X ⊆ Rn. The convex hull of X , Co(X), is the set of all convex combinations of the

points in X :

Co(X)
△
=

{
∑

i

λixi | xi ∈ X,
∑

i

λi = 1, λi ∈ R, and λi ≥ 0, ∀i
}

(17)

A set P ⊆ Rn is a polyhedron if there is a system of finitely many inequalities Hx ≤ h such

that

P =
{
x ∈ Rn | Hx ≤ h

}
(18)

A set P ⊆ Rn is a polytope if there is a finite set X ⊆ Rn such that P = Co(X). Then, we

have the following theorem.

Theorem 5 ([49, Theorem 3.1.3]) Let P ⊆ Rn. Then, P is a bounded polyhedron if only

if P is a polytope.

Therefore, if P ⊆ Rn is a polytope, then it is a convex hull of some finite set X . By the

properties of the convex hull of a finite set X , P is a bounded, closed, convex set. Since P

is a subset of the Euclidean space, P is a compact convex set. An extreme point is formally

defined as follows.

Definition 1 (Extreme point) Let P ⊆ Rn. An x ∈ P is an extreme point if there are

no y, z ∈ P \ {x} such that x = λy + (1− λ)z for any λ ∈ (0, 1). Then, Ex(P ) is the set of

all extreme points of P .

Theorem 6 (Minkowski, 1910. [49, Theorem 2.4.5]) Let P ⊆ Rn be a compact convex

set. Then,

P = Co(Ex(P )). (19)

Minkowski theorem plays an important role in this paper, since it tells that, instead of

studying the polytope P itself, for certain problems, e.g., achievability proofs, we can simply

concentrate on all extreme points Ex(P ). Finally, the following theorem helps us find all

extreme points of a polytope P efficiently: We select any n linearly independent active/tight

boundaries and check whether they give a point in the polytope P .

Theorem 7 ([52, Theorem 7.2(b)]) x ∈ Rn is an extreme point of polyhedron P (H,h)

if and only if Hx ≤ h and H′x = h′ for some n× (n+ 1) sub-matrix (H′,h′) of (H,h) with

rank(H′) = n.

9



3.2 Real Interference Alignment

In this subsection, we review pulse amplitude modulation (PAM) and real interference align-

ment [46, 47], similar to the review in [39, Section III]. The purpose of this subsection is to

illustrate that by using real interference alignment, the transmission rate of a PAM scheme

can be made to approach the Shannon achievable rate at high SNR. This provides a universal

and convenient way to design capacity-achieving signalling schemes at high SNR by using

PAM for different channel models as will be done in later sections.

3.2.1 Pulse Amplitude Modulation

For a point-to-point scalar Gaussian channel,

Y = X + Z (20)

with additive Gaussian noise Z of zero-mean and variance σ2, and an input power constraint

E [X2] ≤ P , assume that the input symbols are drawn from a PAM constellation,

C(a,Q) = a {−Q,−Q + 1, . . . , Q− 1, Q} (21)

where Q is a positive integer and a is a real number to normalize the transmit power. Note

that, a is also the minimum distance dmin(C) of this constellation, which has the probability

of error

Pr(e) = Pr
[

X 6= X̂
]

≤ exp

(

−d2min

8σ2

)

= exp

(

− a2

8σ2

)

(22)

where X̂ is an estimate for X obtained by choosing the closest point in the constellation

C(a,Q) based on observation Y .

The transmission rate of this PAM scheme is

R = log(2Q+ 1) (23)

since there are 2Q + 1 signalling points in the constellation. For any small enough δ > 0, if

we choose Q = P
1−δ
2 and a = γP

δ
2 , where γ is a constant independent of P , then

Pr(e) ≤ exp

(

−γ2P δ

8σ2

)

and R ≥ 1− δ

2
logP (24)

and we can have Pr(e) → 0 and R → 1
2
logP as P → ∞. That is, we can have reliable

communication at rates approaching 1
2
logP .

Note that the PAM scheme has small probability of error (i.e., reliability) only when P

goes to infinity. For arbitrary P , the probability of error Pr(e) is a finite number. Similar

to the steps in [46, 53], we connect the PAM transmission rate to the Shannon rate in the

10



following derivation. We note that Shannon rate of I(X ; Y ) is achieveable with arbitrary

reliability using a random codebook:

R′ = I(X ; Y ) (25)

≥ I(X ; X̂) (26)

= H(X)−H(X|X̂) (27)

= log(2Q+ 1)−H(X|X̂) (28)

≥ log(2Q+ 1)− 1− Pr(e) log(2Q+ 1) (29)

≥
[

1− Pr(e)
]1− δ

2
logP − 1 (30)

where we use the Markov chain X → Y → X̂ and bound H(X|X̂) using Fano’s inequality.

Therefore, we can achieve the rate in (30) with arbitrary reliability, where for any fixed

P , Pr(e) in (30) is the probability of error of the PAM scheme given in (24), which is a

well-defined function of P . For a finite P , while Pr(e) may not be arbitrarily small, the

rate achieved in (30), which is smaller than the rate of PAM in (23), is achieved arbitrarily

reliably. We finally note that as P goes to infinity Pr(e) goes to zero exponentially, and

from (30), both PAM transmission rate and the Shannon achievable rate have the same

asymptotical performance, i.e., PAM transmission rate has 1 Shannon d.o.f.

3.2.2 Real Interference Alignment

This PAM scheme for the point-to-point scalar channel can be generalized to multiple data

streams. Let the transmit signal be

x = aTb =

L∑

i=1

aibi (31)

where a1, . . . , aL are rationally independent real numbers1 and each bi is drawn independently

from the constellation C(a,Q) in (21). The real value x is a combination of L data streams,

and the constellation observed at the receiver consists of (2Q+ 1)L signal points.

By using the Khintchine-Groshev theorem of Diophantine approximation in number the-

ory, [46,47] bounded the minimum distance dmin of points in the receiver’s constellation: For

any δ > 0, there exists a constant kδ, such that

dmin ≥ kδa

QL−1+δ
(32)

for almost all rationally independent {ai}Li=1, except for a set of Lebesgue measure zero. Since

1 a1, . . . , aL are rationally independent if whenever q1, . . . , qL are rational numbers then
∑L

i=1
qiai = 0

implies qi = 0 for all i.

11



the minimum distance of the receiver constellation is lower bounded, with proper choice of

a and Q, the probability of error can be made arbitrarily small, with rate R approaching
1
2
logP . This result is stated in the following lemma, as in [39, Proposition 3].

Lemma 1 ([46, 47]) For any small enough δ > 0, there exists a positive constant γ, which

is independent of P , such that if we choose

Q = P
1−δ

2(L+δ) and a = γ
P

1
2

Q
(33)

then the average power constraint is satisfied, i.e., E [X2] ≤ P , and for almost all {ai}Li=1,

except for a set of Lebesgue measure zero, the probability of error is bounded by

Pr(e) ≤ exp
(
−ηγP

δ
)

(34)

where ηγ is a positive constant which is independent of P .

Furthermore, as a simple extension, if bi are sampled independently from different con-

stellations Ci(a,Qi), the lower bound in (32) can be modified as

dmin ≥ kδa

(maxiQi)L−1+δ
(35)

4 S.d.o.f. Region of K-User MAC Wiretap Channel

In this section, we study the K-user MAC wiretap channel defined in Section 2.1 and prove

the s.d.o.f. region stated in Theorem 2. We first illustrate the regions for K = 2 and K = 3

cases as examples. We then provide the converse in Section 4.1, investigate the converse

region in terms of its extreme points in Section 4.2, and show the achievability of each

extreme point in Section 4.3.

For K = 2, the s.d.o.f. region in Theorem 2 becomes

D =
{

d : 2d1 + d2 ≤ 1,

d1 + 2d2 ≤ 1,

d1, d2 ≥ 0
}

(36)

and is shown in Figure 4. The extreme points of this region are: (0, 0), (1
2
, 0), (0, 1

2
), and (1

3
, 1
3
).

In order to provide the achievability of the region, it suffices to provide the achievability of

these extreme points. In fact the achievabilities of (1
2
, 0), (0, 1

2
) were proved in [40] in the

helper setting and the achievability of (1
3
, 1
3
) was proved in [1,2]. Note that (1

3
, 1
3
) is the only

sum s.d.o.f. optimum point.
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Figure 4: The s.d.o.f. region of the K = 2-user MAC wiretap channel.

For K = 3, the s.d.o.f. region in Theorem 2 becomes

D =
{

d : 3d1 + 2d2 + 2d3 ≤ 2,

2d1 + 3d2 + 2d3 ≤ 2,

2d1 + 2d2 + 3d3 ≤ 2,

d1, d2, d3 ≥ 0
}

(37)

and is shown in Figure 5. The extreme points of this region are:

(0, 0, 0)
(
2

3
, 0, 0

)

,

(

0,
2

3
, 0

)

,

(

0, 0,
2

3

)

(
2

5
,
2

5
, 0

)

,

(
2

5
, 0,

2

5

)

,

(

0,
2

5
,
2

5

)

(
2

7
,
2

7
,
2

7

)

(38)

which correspond to the maximum individual s.d.o.f. (see Gaussian wiretap channel with

two helpers [40]), the maximum sum of pair of s.d.o.f. (see two-user Gaussian MAC wiretap

channel with one helper, proved in Section 4.3), and the maximum sum s.d.o.f. (see three-user

Gaussian MAC wiretap channel [1, 2]). Note that (2
7
, 2
7
, 2
7
) is the only sum s.d.o.f. optimum
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Figure 5: The s.d.o.f. region of the K = 3-user MAC wiretap channel.

point.

4.1 Converse

The converse simply follows from a key inequality in the proof in [1]. We re-examine [1,

Eqn. (41)]:

nRi + (K − 1)
K∑

j=1

nRj ≤ (K − 1)h(Y1) + nci, i = 1, . . . , K (39)

where all {ci} in this paper are constants independent of P .

Clearly, (39) is not symmetric. However, the lower bound derived in [1] was achieved

by a symmetric scheme. Therefore, in [1], in order to obtain a matching upper bound, we
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summed up (39) for all i to obtain:

[K(K − 1) + 1]
K∑

j=1

nRj ≤ K(K − 1)h(Y1) + nc′ (40)

≤ K(K − 1)
n

2
logP + nc′′ (41)

which provided the desired upper bound for the sum s.d.o.f.

Ds,Σ ≤ K(K − 1)

K(K − 1) + 1
(42)

which is the converse for Theorem 1.

In fact, (39) provides more information than what is needed for the sum s.d.o.f. only. In

this paper, we start from (39)

nRi + (K − 1)
K∑

j=1

nRj ≤ (K − 1)
(n

2
logP

)

+ nci, i = 1, . . . , K (43)

divide by n
2
logP and take the limit P → ∞ on both sides to obtain,

di + (K − 1)

K∑

j=1

dj ≤ K − 1, i = 1, . . . , K (44)

that is,

Kdi + (K − 1)
K∑

j=1,j 6=i

dj ≤ K − 1, i = 1, . . . , K (45)

which concludes the converse proof of Theorem 2.

4.2 Polytope Structure and Extreme Points

To prove that the region D in Theorem 2 is tight (i.e., achievable), we first express it in

terms of its extreme points, explicitly characterize all of its extreme points, and develop a

scheme to achieve each of its extreme points.

The region in Theorem 2 is a polytope, which is a convex hull of some finite set X ,

as discussed in Section 3.1. By the properties of the convex hull of a finite set X , D is a

bounded, closed, convex set. Since D ⊂ RK , D is a compact convex set. From Minkowski

theorem, the polytope D in Theorem 2 is a convex hull of its extreme points. Then, in order

to prove that D is tight, it suffices to prove that each extreme point of D is achievable.

Then, from convexification through time-sharing, all points in D are achievable.
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In order to speak of the polytope, we re-write the constraints in (7) and (8) as

Kdi + (K − 1)
K∑

j=1,j 6=i

dj ≤ K − 1, i = 1, . . . , K (46)

−di ≤ 0 i = 1, . . . , K (47)

Then, we write all the left hand sides of (46) and (47) as an N × K matrix H with cor-

responding right hand sides forming an N -length column vector h, i.e., all points d in D

satisfy

Hd ≤ h (48)

where N
△
= 2K. By Theorem 7, exploring all extreme points of D is equivalent to finding

all sub-matrices (HJ ,hJ) of (H,h), such that

rank(HJ) = K (49)

and

HJd = hJ , and Hd ≤ h (50)

where HJ is a sub-matrix ofH with rows indexed by the index set J , and hJ is the sub-vector

of h with rows indexed by J .

Let d ∈ D be a non-zero extreme point of D. Define a subset S ⊆ {1, . . . , N} as

S
△
=
{

si
△
= s(i) : Hsid = hsi is Kdi + (K − 1)

K∑

j=1,j 6=i

dj = K − 1, i = 1, . . . , K
}

(51)

where s(i) is a function of the coordinate i with the value as the row index ofH corresponding

to the active boundaries in (46). Similarly, define the set Z ⊆ {1, . . . , N} as

Z
△
=
{

zi
△
= z(i) : Hzid = hzi is di = 0, i = 1, . . . , K

}

(52)

where z(i) is a function of the coordinate i with the value as the row index ofH corresponding

to the active boundaries in (47). Clearly, S and Z are disjoint, i.e.,

S ∩ Z = φ (53)

For any row index set J , which corresponds to a set of active boundaries for d, we have

J = S ∪ Z (54)

For example, for the three-user case, K = 3, according to (46) and (47), we have H and
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h as

H =













3 2 2

2 3 2

2 2 3

−1 0 0

0 −1 0

0 0 −1













, h =













2

2

2

0

0

0













(55)

If the equalities with i = 1, 2 hold in (46) and the equality with i = 3 holds in (47), then the

corresponding sets S, Z, J are

S = {s1, s2} = {1, 2}, Z = {z3} = {6}, J = S ∪ Z = {1, 2, 6} (56)

with the row-index functions

si = s(i) = i (57)

zi = z(i) = i+ 3 (58)

In this example, it is easy to check that

rank(HJ) = rank











3 2 2

2 3 2

0 0 −1









 = 3 = K (59)

and the solution given by HJd = hJ is

d =

(
2

5
,
2

5
, 0

)

(60)

which satisfies (50). Therefore, this is an extreme point.

For the general case, we have the following theorem.

Theorem 8 A point d ∈ D of Theorem 2 is an extreme point if and only if it is equal to,

up to element reordering,

(

∆, . . . ,∆
︸ ︷︷ ︸

m items

, 0, . . . , 0
︸ ︷︷ ︸

(K−m) items

)

, 0 ≤ m ≤ K (61)

where

∆ =
K − 1

m(K − 1) + 1
(62)

Proof: First, for any m, 0 ≤ m ≤ K, let the point d be as in (61). It is easy to check that
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the sub-matrix (HJ ,hJ), where

J =
{

si : 1 ≤ i ≤ m
}

∪
{

zj : m+ 1 ≤ j ≤ K
}

(63)

satisfies all the conditions in Theorem 7, which means that d is an extreme point.

In order to show the other direction, we need to show that any extreme point d has the

structure in (61) for some m, 0 ≤ m ≤ K. To this end, we find the sub-matrix in Theorem

7.

If |Z| = K, due to (47), the sub-matrix HZ is simply a diagnoal matrix with −1s on the

diagonal, and consequently, rank(HZ) = K. Then, the solution of HZd = hZ is 0, which

satisfies (50). This extreme point corresponds to the case m = 0 in Theorem 8.

In the rest of the proof, we focus on non-zero extreme points, i.e., |Z| < K. Due to (46),

it is easy to verify that HS has |S| rows with rank(HS) = |S| where S is defined in (51). In

order to make rank(HJ) = rank(HS∪Z) = K, we need at least K − |S| more rows from H,

i.e., |Z| ≥ K − |S|. If S is empty, then |Z| ≥ K, which contradicts the assumption |Z| < K.

Therefore, S is non-empty, i.e., |S| ≥ 1.

First, we claim that

di = dk, ∀si, sk ∈ S (64)

If |S| = 1, there is nothing to prove, and we are done with the proof of (64). If |S| > 1,

consider any si, sk ∈ S, i 6= k. By the definition of S, we have

(K − 1)dk +Kdi + (K − 1)
∑

l 6=i,k

dl = K − 1 (65)

(K − 1)di +Kdk + (K − 1)
∑

l 6=i,k

dl = K − 1 (66)

which implies that di = dk for any si, sk ∈ S, proving (64) for |S| ≥ 1.

Next, we claim

di > 0, ∀si ∈ S (67)

If |S| = K, due to (64), (67) is trivially true since we are focusing on a non-zero extreme

point. If |S| < K, then we observe that

di ≥ dj, ∀si ∈ S, sj 6∈ S (68)

which indicates that for any si ∈ S the corresponding element in vector d is the largest one,

i.e., di = maxk dk, which implies (67). Hence, it now suffices to show (68). We prove it by

contradiction. Assume that there exists a coordinate j such that sj 6∈ S and dj is strictly
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larger than di for any si ∈ S. By the definition of S in (51), we have

K − 1 = Kdi + (K − 1)dj + (K − 1)
K∑

l=1,l 6=i,j

dl (69)

< Kdi + (K − 1)dj + (K − 1)

K∑

l=1,l 6=i,j

dl + (dj − di) (70)

= Kdj + (K − 1)di + (K − 1)
K∑

l=1,l 6=i,j

dl (71)

= Kdj + (K − 1)

K∑

l=1,l 6=j

dl (72)

which contradicts the constraint (46). Therefore, we must have (68) and consequently (67).

Finally, denote m
△
= |S|, and, without loss of generality, assume that S = {si : 1 ≤

i ≤ m}. By (67) and the definition of Z in (52), we note that zj ∈ Z only if sj 6∈ S.

Together with the constraint |Z| ≥ K − |S| = K − m, we conclude that we must have

Z = {zj : m+ 1 ≤ j ≤ K}, i.e., dj = 0 for m+ 1 ≤ j ≤ K. Thus, rank(HS∪Z) = K, and, by

(64), the solution given by the corresponding equations can be characterized as (61), which

satisfies (50), completing the proof. �

4.3 Achievability

The previous section showed that the converse region is a polytope with extreme points which

have m coordinates all equal to ∆ given in (62), and the remaining K −m coordinates all

equal to zero. It is clear that zero vector is an extreme point in D and is trivially achievable.

The rest of the achievability proof focuses on non-zero extreme points. In this section, we

prove that each of these extreme points is achievable. Without loss of generality, we prove

that the s.d.o.f. point of

d =
(

∆, . . . ,∆
︸ ︷︷ ︸

m items

, 0, . . . , 0
︸ ︷︷ ︸

(K−m) items

)

(73)

is achievable for all 1 < m < K with ∆ in (62). By symmetry, this proves the achievability

of all extreme points. Note that m = K is shown in [1, 2], and m = 1 is shown in [40].

Theorem 9 The extreme point d ∈ D given in (73) is achieved by m-user Gaussian MAC

wiretap channel with K −m helpers for almost all channel gains.

Proof: Consider the m-user Gaussian MAC wiretap channel with K − m helpers where

transmitter i, i = 1, . . . , m, has confidential message Wi intended for the legitimate receiver

and the remaining K − m transmitters serve as independent helpers without messages of

their own.
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In order to achieve the extreme point d in (73), transmitter i, i = 1, . . . , m, divides its

message into K − 1 mutually independent sub-messages. Each transmitter sends a linear

combination of signals that carry the sub-messages. In addition to message carrying signals,

all transmitters also send cooperative jamming signals Ui, i = 1, . . . , K, respectively. The

messages are sent in such a way that all of the cooperative jamming signals are aligned in

a single dimension at the legitimate receiver, occupying the smallest possible space at the

legitimate receiver, and hence allowing for the reliable decodability of the message carrying

signals. In addition, each cooperative jamming signal is aligned with at most K−1 message

carrying signals at the eavesdropper to limit the information leakage rate to the eavesdropper.

An example of K = 3, m = 2, and K −m = 1 is given in Figure 6.

More specifically, we use a total of m(K−1)+K mutually independent random variables

Vij, i ∈ {1, . . . , m}, j ∈ {1, · · · , K} \ {i} (74)

Uk, k ∈ {1, · · · , K} (75)

where {Vij}j 6=i denote the message carrying signals and Ui denotes the cooperative jamming

signal sent from transmitter i. In particular, Vij carries the jth sub-message of transmitter

i. Each of these random variables is uniformly and independently drawn from the same

discrete constellation C(a,Q) given in (21), where a and Q will be specified later. We choose

the input signals of the transmitters as

Xi =

K∑

j=1,j 6=i

gj
hjgi

Vij +
1

hi

Ui, i ∈ {1, . . . , m} (76)

Xj =
1

hj

Uj , j ∈ {m+ 1, . . . , K} (77)

With these input selections, observations of the receivers are

Y1 =

[
m∑

i=1

K∑

j=1,j 6=i

gjhi

hjgi
Vij

]

+

(
K∑

k=1

Uk

)

+N1 (78)

and

Y2 =
K∑

j=1

gj
hj

(

Uj +
m∑

i=1,i 6=j

Vij

)

+N2 (79)

where the terms inside the parentheses (·) in (78) and (79) are aligned.

By [36, Theorem 1], we can achieve the following sum secrecy rate for the m users

sup

m∑

i=1

Ri ≥ I(V; Y1)− I(V; Y2) (80)
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Figure 6: Illustration of secure interference alignment for the s.d.o.f. triple (2
5
, 2
5
, 0) for the

two-user MAC wiretap channel with one helper; K = 3 and m = 2. Here, we define

Vi
△
= {Vij : j = 1, 2, 3, j 6= i} for i = 1, 2.

where V
△
= {Vij : i ∈ {1, . . . , m}, j ∈ {1, · · · , K} \ {i}}.

By Lemma 1, for any δ > 0, if we choose Q = P
1−δ

2(m(K−1)+1+δ) and a = γP
1
2/Q, where γ is

a constant independent of P to meet the average power constraint, then

Pr
[

V 6= V̂
]

≤ exp
(
−βP δ

)
(81)

for some constant β > 0 (independent of P ), where V̂ is the estimate of V by choosing the

closest point in the constellation based on observation Y1. This means that we can have

Pr[V 6= V̂] → 0 as P → ∞.

By Fano’s inequality and the Markov chain V → Y1 → V̂, we know that

H(V|Y1) ≤ H(V|V̂) (82)

≤ 1 + exp
(
−βP δ

)
log(2Q + 1)m(K−1) (83)

= o(logP ) (84)

where o(·) is the little-o function. This means that

I(V; Y1) = H(V)−H(V|Y1) (85)

= log(2Q+ 1)m(K−1) −H(V|Y1) (86)

≥ log(2Q+ 1)m(K−1) − o(logP ) (87)
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On the other hand, we can bound the second term in (80) as

I(V; Y2) ≤ I (V; Y2 −N2) (88)

=
K∑

j=1

H

(

Uj +
m∑

i=1,i 6=j

Vij

)

−H (U1, . . . , UK) (89)

≤ K log
2KQ + 1

2Q + 1
(90)

≤ K logK (91)

= o(logP ) (92)

where (90) is due to the fact that entropy of each Uj +
∑m

i=1,i 6=j Vij is maximized by the

uniform distribution which takes values over a set of cardinality 2KQ+ 1.

Combining (87) and (92), we obtain

sup

m∑

i=1

Ri ≥ I(V; Y1)− I(V; Y2) (93)

≥ log(2Q+ 1)m(K−1) − o(logP ) (94)

=
m(K − 1)(1− δ)

m(K − 1) + 1 + δ

(
1

2
logP

)

+ o(logP ) (95)

By choosing δ arbitrarily small, we can achieve the sum s.d.o.f. of m(K−1)
m(K−1)+1

for almost all

channel gains, which implies that the s.d.o.f. tuple of

(

(K − 1)

m(K − 1) + 1
, . . . ,

(K − 1)

m(K − 1) + 1
︸ ︷︷ ︸

m item(s)

, 0, . . . , 0
︸ ︷︷ ︸

(K−m) item(s)

)

(96)

is achievable by symmetry, which is (73). �

5 S.d.o.f. Region of K-User IC with Secrecy Con-

straints

In this section, we study the K-user IC with secrecy constraints defined in Section 2.2

and prove the s.d.o.f. region stated in Theorem 4. To this end, we consider both IC-CM

and IC-EE and their combination IC-CM-EE in a unified framework. We first illustrate

the regions for K = 2, 3, 4 cases as examples. The purpose of presenting K = 4 as an

example is to show that, unlike the MAC case, starting with K = 4 interference constraints

become effective and binding. We then provide converses separately for IC-EE and IC-CM in

Section 5.1 and Section 5.2, respectively, which imply a converse for IC-CM-EE. Finally, we
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show the achievability for IC-CM-EE, which implies the achievability for IC-EE and IC-CM.

Specifically, we investigate the converse region in terms of its extreme points in Section 5.3

and show the general achievability in Section 5.4.

For K = 2, the s.d.o.f. region in Theorem 4 becomes

D =
{

d : 2d1 + d2 ≤ 1,

d1 + 2d2 ≤ 1,

d1, d2 ≥ 0
}

(97)

which is the same as (36), and is shown in Figure 4. Note that (15) is not necessary for the

two-user case, since summing the bounds 2d1 + d2 ≤ 1 and d1 + 2d2 ≤ 1 up gives a new

bound

d1 + d2 ≤
2

3
(98)

which is the result in Theorem 3 and makes the constraint in (15) strictly loose.

In order to provide the achievability, it suffices to check that the extreme points (0, 0),

(1
2
, 0), (0, 1

2
), and (1

3
, 1
3
) are achievable. In fact the achievabilities of (1

2
, 0), (0, 1

2
) are similar

to [40] and will be shown in Section 5.3. The achievability of (1
3
, 1
3
) was proved in [3,4]. Note

that (1
3
, 1
3
) is the only sum s.d.o.f. optimum point.

For K = 3, the s.d.o.f. region in Theorem 4 becomes

D =
{

d : 3d1 + d2 + d3 ≤ 2,

d1 + 3d2 + d3 ≤ 2,

d1 + d2 + 3d3 ≤ 2,

d1, d2, d3 ≥ 0
}

(99)

and (15) is not necessary for the three-user case, either. This is because, due to the posi-

tiveness of each element in d, from the first two inequalities in (99), we have

3d1 + d2 ≤ 3d1 + d2 + d3 ≤ 2 (100)

d1 + 3d2 ≤ d1 + 3d2 + d3 ≤ 2 (101)

Summing the left hand sides up of (100) and (101) gives us

d1 + d2 ≤ 1 (102)

which is (15) with V = {1, 2}, and we have (15) for free from (99).

23



The extreme points of this region are:

(0, 0, 0)
(
2

3
, 0, 0

)

,

(

0,
2

3
, 0

)

,

(

0, 0,
2

3

)

(
1

2
,
1

2
, 0

)

,

(
1

2
, 0,

1

2

)

,

(

0,
1

2
,
1

2

)

(
2

5
,
2

5
,
2

5

)

(103)

which correspond to the maximum individual s.d.o.f. (see Gaussian wiretap channel with two

helpers [40] and Section 5.3), the maximum sum of pair of s.d.o.f. (proved in Section 5.3), and

the maximum sum s.d.o.f. (see three-user Gaussian IC-CM-EE in [3,4]). Note that, (1
2
, 1
2
) is

the maximum sum d.o.f. for a two-user IC without secrecy constraints, and (2
5
, 2
5
, 2
5
) is the

only sum s.d.o.f. optimum point. Finally, note the difference of the extreme points of the 3-

user IC in (103) from the corresponding 3-user MAC in (38), even though the s.d.o.f. regions

and the extreme points of the 2-user IC and 2-user MAC in (97) and (36) were the same.

For K = 4, the s.d.o.f. region in Theorem 4 becomes

D =
{

d : 4d1 + d2 + d3 + d4 ≤ 3,

d1 + 4d2 + d3 + d4 ≤ 3,

d1 + d2 + 4d3 + d4 ≤ 3,

d1 + d2 + d3 + 4d4 ≤ 3,

d1 + d2 ≤ 1,

d1 + d3 ≤ 1,

d1 + d4 ≤ 1,

d2 + d3 ≤ 1,

d2 + d4 ≤ 1,

d3 + d4 ≤ 1,

d1, d2, d3, d4 ≥ 0
}

(104)
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The extreme points of this region are:

(0, 0, 0)
(
3

4
, 0, 0, 0

)

,

(

0,
3

4
, 0, 0

)

,

(

0, 0,
3

4
, 0

)

,

(

0, 0, 0,
3

4

)

(
2

3
,
1

3
, 0, 0

)

up to element reordering

(
1

2
,
1

2
,
1

2
, 0

)

,

(
1

2
,
1

2
, 0,

1

2

)

,

(
1

2
, 0,

1

2
,
1

2

)

,

(

0,
1

2
,
1

2
,
1

2

)

(
3

7
,
3

7
,
3

7
,
3

7

)

(105)

Here, in contrast to the two-user and three-user cases, (15) is absolutely necessary. For

example, the point (3
5
, 3
5
, 0, 0) satisfies (14), but not (15). In fact, it cannot be achieved, and

(15) is strictly needed to enforce that fact.

Regarding the region in Theorem 4, as illustrated in the examples above, we provide a

few general comments here:

1) Although (15) only states the constraints for all pairs of rates, due to the same argument

in [51], it can equivalently be stated as
∑

i∈V di ≤ |V |
2

for all |V | ≥ 2. We note that,

when |V | = K, the corresponding upper bound is strictly loose due to Theorem 1

in [3,4], and that is why such bounds were not needed in [3,4], where sum s.d.o.f. was

characterized.

2) As shown in the examples, when K = 2 or 3, (15) is not necessary. When K ≥ 4,

we need both (14) and (15) to completely characterize the region D. Neither of them

can be removed from the theorem. For example, the all 1
2
vector, (1

2
, 1
2
, . . . , 1

2
), satisfies

(15), but not (14). On the other hand, the point (K−1
K+1

, K−1
K+1

, 0, 0, . . ., 0), which has

only two non-zero elements, satisfies (14), but not (15) for any K ≥ 4. Therefore, (15)

emerges only when K ≥ 4. To the best of our knowledge, this is the first time that

K = 2 or K = 3 do not represent the most generality of a multi-user problem, and we

need to go up to K = 4 for this phenomenon to appear.

3) Different portions of the region D are governed by different upper bounds. To see this,

we can study the structure of the extreme points of D, since D is the convex hull of

them. The sum s.d.o.f. tuple, which is symmetric and has no zero elements, is governed

by the upper bounds in (14) due to secrecy constraints. However, as will be shown

in Theorem 10 in Section 5.3, all other extreme points have zeros as some elements,

and therefore are governed by the upper bounds in (15) due to interference constraints

in [50,51]. An explanation can be provided as follows: When some transmitters do not

have messages to transmit, we may employ them as “helpers”. Even though secrecy

constraint is considered in our problem, with the help of the “helpers”, the effect due
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to the existence of the eavesdropper in the network can be eliminated. Hence, this

portion of the s.d.o.f. region is dominated by the interference constraints.

5.1 Converse for K-User IC-EE

The constraint in (15) follows from the non-secrecy constraints on the K-user IC in [50,51].

We note that this same constraint is valid for the converse proof of IC-CM in the next section

as well.

In order to prove (14) in Theorem 4, we re-examine [3, Eqn. (23)]. Originally, we applied

[40, Lemma 2] in [3] by treating the signal from transmitter j as the unintended noise to its

neighboring transmitter-receiver pair j − 1, i.e., for any i = 1, . . . , K,

n
K∑

j=1

Rj ≤
K∑

j=1,j 6=i

h(X̃j) + nc1 (106)

≤ [h(YK)− nRK ] + [h(Y1)− nR1] + · · ·+ [h(Yi−2)− nRi−2]

+ [h(Yi)− nRi] + · · ·+ [h(YK−1)− nRK−1] + nc2 (107)

By noting that h(Yj) ≤ n
2
logP + nc′j for each j, we have

2n

K∑

j=1

Rj ≤ (K − 1)
n

2
logP + nRi + nc3 (108)

Therefore, we have a total of K bounds for i = 1, . . . , K. Summing these K bounds, we

obtained:

(2K − 1)n

K∑

j=1

Rj ≤ K(K − 1)
n

2
logP + nc4 (109)

which gave

Ds,Σ ≤ K(K − 1)

2K − 1
(110)

completing the converse proof for the sum s.d.o.f. of IC-EE in [3] (also Theorem 3 in this

paper).
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Here, we continue from [3, Eqn. (23)] and re-interpret it as:

n
K∑

j=1

Rj ≤
K∑

j=1,j 6=i

h(X̃j) + nc5 (111)

≤ [h(Yi)− nRi] + · · ·+ [h(Yi)− nRi]
︸ ︷︷ ︸

K−1 items

+nc6 (112)

= (K − 1)h(Yi)− (K − 1)nRi + nc6 (113)

≤ (K − 1)
(n

2
logP

)

− (K − 1)nRi + nc7 (114)

where i ∈ {1, . . . , K} is arbitrary. Here, the second inequality means that we apply [40,

Lemma 2] by treating the signal from all transmitters j 6= i as the unintended noise to the

transmitter-receiver pair i.

Rearranging the terms in (114), dividing both sides by n
2
logP , and taking the limit

P → ∞ on both sides, we obtain

Kdi +
K∑

j=1,j 6=i

dj ≤ K − 1, i = 1, . . . , K (115)

which is (14) in Theorem 4, completing the converse proof for IC-EE.

5.2 Converse for K-User IC-CM

When we studied the sum s.d.o.f. of IC-CM, we applied [40, Lemma 2] to [3, Eqn. (44)] by

treating the signal from transmitter j as the unintended noise to its neighbor transmitter-

receiver pair j + 1, i.e., for any i = 1, . . . , K

n

K∑

j=1,j 6=i

Rj ≤
K∑

j=1

h(X̃j)− h(Yi) + nc8 (116)

≤
[
K−1∑

j=1

[
h(Yj+1)− nRj+1

]

]

+
[
h(Y1)− nR1

]
− h(Yi) + nc9 (117)

=
K∑

j=1

[
h(Yj)− nRj

]
− h(Yi) + nc9 (118)

By noting that h(Yj) ≤ n
2
logP + nc′j for each j, we have

nRi + 2n
K∑

j=1,j 6=i

Rj ≤
K∑

j=1,j 6=i

h(Yj) + nc9 (119)

≤ (K − 1)
n

2
logP + nc10 (120)
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Therefore, we have a total of K bounds for i = 1, . . . , K. Summing these K bounds, we

obtained

(2K − 1)n

K∑

j=1

Rj ≤ K(K − 1)
n

2
logP + nc11 (121)

which gave

Ds,Σ ≤ K(K − 1)

2K − 1
(122)

completing the converse proof for the sum s.d.o.f. of IC-CM in [3] (also Theorem 3 in this

paper).

Here, we continue from [3, Eqn. (44)] and re-interpret it as follows: For any i ∈ {1, . . . , K},
we select

k
△
=

{

i− 1, if i ≥ 2

K, if i = 1
(123)

and then have

n

K∑

j=1,j 6=i

Rj ≤
[

K∑

j=1

h(X̃j)

]

− h(Yi) + nc12 (124)

≤ h(X̃k) +

[
K∑

j=1,j 6=k

h(X̃j)

]

− h(Yi) + nc13 (125)

≤ h(Yi)− nRi +

[
K∑

j=1,j 6=k

h(X̃j)

]

− h(Yi) + nc14 (126)

=

[
K∑

j=1,j 6=k

h(X̃j)

]

− nRi + nc14 (127)

≤ [h(Yk)− nRk] + · · ·+ [h(Yk)− nRk]
︸ ︷︷ ︸

K−1 items

−nRi + nc15 (128)

= (K − 1)h(Yk)− (K − 1)nRk − nRi + nc15 (129)

≤ (K − 1)
(n

2
logP

)

− (K − 1)nRk − nRi + nc15 (130)

which is

(K − 1)nRk + n

K∑

j=1

Rj ≤ (K − 1)
(n

2
logP

)

+ nc15 (131)

Here, inequality (126) means that we apply [40, Lemma 2] by treating the signal from
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transmitter k as the unintended noise to the transmitter-receiver pair i. Similarly, inequality

(128) means that we apply [40, Lemma 2] by treating the signal from transmitter j 6= k as

the unintended noise to the transmitter-receiver pair k.

Rearranging the terms in (131), dividing both sides by n
2
logP , and taking the limit

P → ∞ on both sides, we obtain

Kdk +

K∑

j=1,j 6=k

dj ≤ K − 1, k = 1, . . . , K (132)

which is (14) in Theorem 4, completing the converse proof for IC-CM.

5.3 Polytope Structure and Extreme Points

Similar to the discussion and approach in the MAC problem in Section 4.2, it is easy to see

that the region D characterized by Theorem 4 is a polytope, which is equal to the convex

combinations of all extreme points of D due to Theorem 6. Therefore, in order to show the

tightness of region D, it suffices to prove that all extreme points of D are achievable.

We first assume that K ≥ 3, and determine the structure of all extreme points of D in

the following theorem.

Theorem 10 For the K-dimensional region D, K ≥ 3, in Theorem 4, any extreme point

must be a point with one of the following structures:

(0, 0, . . . , 0), (133)
(K − 1− p

K − p
,

1

K − p
, . . . ,

1

K − p
︸ ︷︷ ︸

p items

, 0, . . . , 0
︸ ︷︷ ︸

m items

)

, K − 2 ≥ p ≥ 0, m = K − 1− p ≥ 1

(134)
( 1

2
, . . . ,

1

2
︸ ︷︷ ︸

p′ items

, 0, . . . , 0
︸ ︷︷ ︸

m′ items

)

, K − 2 ≥ p′ ≥ 3, m′ ≥ 1, p′ +m′ = K ≥ 5

(135)
( K − 1

2K − 1
,
K − 1

2K − 1
, . . . ,

K − 1

2K − 1

)

(136)

up to element reordering.

The proof of Theorem 10 is provided in Appendix A.

Now, in order to show the tightness of region D, it suffices to show the achievability

for each structure in Theorem 10. Clearly, the zero vector in (133) is trivially achievable.

The symmetric tuple in (136) is achievable due to [3, 4]. Therefore, it remains to show the

achievability of the structures in (134) and (135).
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In order to address the achievabilities of (134) and (135), we formulate a new channel

model as a (p+1)-user IC-CM-EE channel with m independent helpers and N independent

external eavesdroppers. The formal definition of this channel model is given in Section 5.4.

Then, we have the following theorem.

Theorem 11 For the (p + 1)-user IC-CM-EE channel with m independent helpers and N

independent external eavesdroppers, as far as p ≥ 0, m ≥ 1, and N is finite, the following

s.d.o.f. tuple is achievable:

( m

m+ 1
,

1

m+ 1
,

1

m+ 1
, . . . ,

1

m+ 1
︸ ︷︷ ︸

p items

)

(137)

for almost all channel gains.

The proof of Theorem 11 is provided in Section 5.4.

Here, we provide a few comments about Theorem 11. Theorem 11 provides quite general

results, and subsumes some other known cases:

1) The result in [40] is a special case of Theorem 11 with p = 0, m ≥ 1, N = 1.

2) (134) is a special case of Theorem 11 with p ≥ 0, m = K − 1− p ≥ 1, N = m+ 1.

3) (135) is a byproduct of Theorem 11: By choosing p = p′ − 1, m = 1, N = m′ + 1, we

know that with just one helper, the following s.d.o.f. tuple is achievable:

( 1

2
,
1

2
, . . . ,

1

2
︸ ︷︷ ︸

p′ items

, 0
)

(138)

Now, if we addm′−1 more independent helpers into the network, (135) can be achieved

trivially.

Therefore, with the help of Theorem 11, each structure in Theorem 10 can be achieved,

which provides the achievability proof for Theorem 4 for K ≥ 3.

Finally, we address the K = 2 case. In this case, the region D characterized by (14)-(16)

in Theorem 4 is given by (97). In order to provide the achievability, it suffices to prove that

the extreme points (1
2
, 0), (0, 1

2
), and (1

3
, 1
3
) are achievable. The achievability of (1

3
, 1
3
) was

proved in [3, 4]. The achievabilities of (1
2
, 0), (0, 1

2
) are the special cases of Theorem 11 with

p = 0, m = 1, N = 2.
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5.4 Achievability

The (p+1)-user IC-CM-EE channel withm independent helpers and N independent external

eavesdroppers is

Yi =

p+1+m
∑

j=1

hjiXj +Ni, i = 1, . . . , p+ 1 (139)

Zk =

p+1+m
∑

j=1

gjkXj +Nzk , k = 1, . . . , N (140)

where Yi is the channel output of receiver i, Zk is the channel output of external eavesdropper

k, Xj is the channel input of transmitter j, hji is the channel gain of the jth transmitter to

the ith receiver, gjk is the channel gain of the jth transmitter to the kth eavesdropper, and

{N1, . . . , Np+1, Nz1, . . . , NzN} are mutually independent zero-mean unit-variance Gaussian

random variables. All the channel gains are independently drawn from continuous distri-

butions, and are time-invariant throughout the communication session. We further assume

that all hji and gjk are non-zero. All channel inputs satisfy average power constraints,

E
[
X2

j

]
≤ P , for j = 1, . . . , p+ 1 +m.

Transmitter j, j = p+2, . . . , p+1+m, is an independent helper in the network. On the

other hand, each transmitter i, i = 1, . . . , p+ 1, has a message Wi intended for the receiver

Yi. A rate tuple (R1, . . . , Rp+1) is said to be achievable if for any ǫ > 0, there exist joint

n-length codes such that each receiver i can decode the corresponding message reliably, i.e.,

the probability of decoding error is less than ǫ for all messages,

max
i

Pr
[

Wi 6= Ŵi

]

≤ ǫ (141)

where Ŵi is the estimation based on its observation Yi. The secrecy constraints are defined

as follows:

1

n
H(W p+1

−i |Yi) ≥
1

n
H(W p+1

−i )− ǫ, i = 1, . . . , p+ 1 (142)

1

n
H(W1, . . . ,Wp+1|Zk) ≥

1

n
H(W1, . . . ,Wp+1)− ǫ, k = 1, . . . , N (143)

where W p+1
−i

△
= {W1, . . . ,Wp+1}\{Wi}. A s.d.o.f. tuple, (d1, . . . , dp+1), is achievable if there

exists an achievable rate tuple (R1, . . . , Rp+1) such that

di = lim
P→∞

Ri

1
2
logP

(144)

for i = 1, . . . , p+ 1.

Now, we prove Theorem 11, i.e., for p ≥ 0, m ≥ 1, and N is finite, the following
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s.d.o.f. tuple is achievable:

( m

m+ 1
,

1

m+ 1
,

1

m+ 1
, . . . ,

1

m+ 1
︸ ︷︷ ︸

p items

)

(145)

for almost all channel gains.

The purpose of Theorem 11 is to prove the achievability of the structure (134) in Theorem

10. As shown in (134), we partition the transmitters into three groups: 1) the first group

consists of only one transmitter with the largest s.d.o.f., K−1−p

K−p
, which is no smaller than 1

2
, 2)

the second group consists of p ≥ 0 transmitters with the same s.d.o.f., 1
K−p

, which is no larger

than 1
2
, and 3) the third group consists of m ≥ 1 transmitters serving as independent helpers.

Therefore, in (145), we consider the (p + 1)-user IC with m helpers where K = p + 1 +m.

Therefore, (145) and Theorem 11 show the achievability of (134). We know from remark 2)

above that the achievability of (135) is a byproduct of Theorem 11. Also, (133) is trivially

achieved, and the achievability of (136) is shown in [3, 4]. Therefore, we focus on Theorem

11, from this point on.

The technique we use in the proof of Theorem 11 is asymptotical interference alignment

[46] and structured cooperative jamming [18]. The alignment scheme is illustrated in Figure 7

withm = 3, p = 2, N = 1. In Figure 7, we partition the transmitters into three groups, which

are {X1} as the first group, p = 2 other transmitters {X2, X3} as the second group, and

m = 3 helpers as the third group. From the perspective of Y1 and the eavesdropper Z, due

to the existence of independent helpers, the alignment signaling design is similar to that in

wiretap channel with helpers in [40, Fig. 4]. However, from the perspective of Y2, Y3, and the

eavesdropper Z, the alignment signaling design is similar to that in the interference channel

in [3, Fig. 2] (see the details of the corresponding design in [4]). This suggests that the

signalling scheme that achieves on arbitrary extreme point of the s.d.o.f. region is in between

the signalling scheme that achieves the sum s.d.o.f. of IC-CM-EE in [3,4] and the signalling

scheme used in the helper network in [40]. Furthermore, if we let p = 0, the signaling scheme

in Figure 7 would be almost identical to [40, Fig. 4]. However, we cannot let m be equal to

0. As far as the number of independent helper(s) in Figure 7, m, is non-zero, in contrast to

the scheme in [3, Fig. 2], the legitimate transmitters in the first and second groups do not

send cooperative jamming signals by themselves, however, in [3, 4] for IC-CM-EE without

helpers, each legitimate transmitter needed to send both message signals and a cooperative

signal. Note that in Figure 7 here, legitimate transmitters {X1, X2, X3} do not send any

cooperative jamming signals (no shaded boxes).

Here, we give the general achievable scheme. Let l be a large constant. Let us define a
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Figure 7: Illustration of secure interference alignment of Theorem 11 with m = 3, p = 2, N =
1.

set T1 which will represent dimensions as follows:

T1
△
=










∏

(j,k)∈L

h
rjk
jk





(
N∏

k=1

p+1+m
∏

j=1

g
sjk
jk

)

: rjk, sjk ∈ {1, . . . , l}






(146)

where L contains almost all pairs corresponding to the cross-link channel gains

L =
{

(j, k) : j ∈ {2, . . . , p+ 2}, k = 1
}

∪
{

(j, k) : j ∈ {1, . . . , p+ 1 +m}, k ∈ {2, . . . , p+ 1}, j 6= k
}

(147)

Clearly, starting from the second helper Xp+3, if there exists any, the cross-link channel gains

to the first legitimate receiver Y1 are not in the set L. Therefore, we define the sets {Tj}mj=2

Tj =
1

hp+1+j,1

T1, j = 2, . . . , m (148)

Let Mi be the cardinality of Ti, i = 1, . . . , m. Note that all Mi are the same, thus we denote
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them as M ,

M
△
= l|L|+N(p+1+m) = lθ (149)

where θ
△
= (p+ 1 +m)p + p+N(p+ 1 +m) + 1.

Let tij and t(j) be the vector containing all the elements in the set Tj for any possible i.

Therefore, tij and t(j) are M-dimensional vectors containing M rationally independent real

numbers in Tj. The sets tij and t(j) will represent the dimensions along which message signals

are transmitted. In particular, as illustrated in Figure 7, for each legitimate transmitter

i, i = 1, . . . , p + 1, the message signal Vi1 is transmitted in dimensions ti1. In order to

asymptotically align U1 from the first helper Xp+2 with all Vi1s, the cooperative jamming

signal U1 is transmitted in dimensions t(1). Similarly, for the first transmitter X1, the

message signal V1j , j = 2, . . . , m, is transmitted in dimensions t1j. Since we want to align

the cooperative jamming signal Uj from the helper Xp+1+j with V1j one by one, the jamming

signal Uj is transmitted in dimensions t(j).

Let us define an mM dimensional vector b1 by stacking ti1s as

bT
1 =

[
tT11, t

T
12, . . . , t

T
1m

]
(150)

Then, transmitter 1 generates a vector a1, which contains a total of mM discrete signals

each identically and independently drawn from C(a,Q) given in (21). For convenience, we

partition this transmitted signal as

aT
1 =

[
vT
11,v

T
12, . . . ,v

T
1m

]
(151)

where v1j represents the information symbols in V1j . Each of these vectors has length M ,

and therefore, the total length of a1 is mM . The channel input of transmitter 1 is

x1 = aT
1 b1 (152)

Similarly, for the second group transmitters Xi, i = 2, . . . , p + 1, let bi be bi = ti1.

Then, transmitter i generates a vector ai = vi1, which contains a total of M discrete signals

each identically and independently drawn from C(a,Q) given in (21). The channel input of

transmitter i is

xi = aT
i bi = vT

i1ti1, i = 2, . . . , p+ 1 (153)

Finally, for the third group transmitters Xk, k = p + 2, . . . , p + 1 + m, serving as the

helpers, let bk be bk = t(k−p−1). Then, helper k generates a vector uk−p−1 representing

the cooperative jamming signal in Uk−p−1, which contains a total of M discrete signals

each identically and independently drawn from C(a,Q) given in (21). The channel input of

transmitter k is

xk = uT
k−p−1bk = uT

k−p−1t(k−p−1), k = p+ 2, . . . , p+ 1 +m (154)
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Before we investigate the performance of this signalling scheme, we analyze the structure

of the received signals at the receivers. To see the detailed dimension structure of the received

signals at the receivers, let us define T̃i as a superset of Ti, as follows

T̃1
△
=










∏

(j,k)∈L

h
rjk
jk





(
N∏

k=1

p+1+m
∏

j=1

g
sjk
jk

)

: rjk, sjk ∈ {1, . . . , l + 1}






(155)

T̃j =
1

hp+1+j,1

T̃1, j = 2, 3, . . . , m (156)

where L is defined in (147) and the cardinalities of all Ti sets are the same and are denoted

as M̃ = (l+1)θ. Also, it is easy to check that since pair (p+1+ j, 1) 6∈ L for j ≥ 2, we must

have

T̃i ∩ T̃j = φ (157)

for all i 6= j.

We first focus on receiver 1, which has the channel output

y1 =

p+1+m
∑

i=1

hi1x1 + n1 (158)

Substituting (152), (153) and (154) into (158), we get

y1 = h11x1 +

p+1∑

j=2

hj1xj +

p+1+m∑

k=p+2

hk1xk + n1 (159)

= h11

(
m∑

i=1

vT
1it1i

)

+

(
p+1
∑

j=2

hj1v
T
j1tj1

)

+

(
p+1+m
∑

k=p+2

hk1u
T
k−p−1t(k−p−1)

)

+ n1 (160)

=
(

vT
11h11t11

)

+
(

vT
12h11t12

)

+ . . .+
(

vT
1mh11t1m

)

+
( p+1
∑

j=2

hj1v
T
j1tj1 +

p+1+m
∑

k=p+2

hk1u
T
k−p−1t(k−p−1)

)

+ n1 (161)

Since vij and uk−p−1 are integer signals in C(a,Q), it suffices to study their dimensions. In

addition, note that tij and t(j) represent the same dimensions in Tj defined in (146) and

(148). It is easy to verify that

hj1T1 ⊆ T̃1, j = 2, . . . , p+ 1 (162)

hk1Tk−p−1 ⊆ T̃1, k = p+ 2, . . . , p+ 1 +m (163)

which implies that except the intended message signals v1i, i = 1, . . . , m, all unintended
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signals including message signals and cooperative jamming signals are all transmitted in the

dimensions belonging to T̃1. On the other hand, for intended signals,

h11T1 ⊂ h11T̃1 (164)

h11Ti ⊆ h11T̃i =
h11

hp+1+i,1

T̃1, i = 2, . . . , m (165)

Note that the pair (p+ 1 + i, 1) 6∈ L for i ≥ 2 which implies that

h11T̃i ∩ h11T̃j = φ (166)

for all i, j ∈ {1, . . . , m}, i 6= j. Furthermore, (1, 1) 6∈ L either, which implies that

h11T̃i ∩ T̃1 = φ, i ∈ {1, . . . , m} (167)

Together with (166), this indicates that the dimensions are separable as suggested by the

parentheses in (161) and also the Y1 side of Figure 7, which further implies that all the

elements in the set

R1
△
=

(
m⋃

j=1

h11T̃j

)

∪ T̃1 (168)

are rationally independent, and thereby the cardinality of R1 is

MR
△
= |R1| = (m+ 1)M̃ = (m+ 1)(l + 1)θ (169)

For the legitimate receivers Yi, i = 2, . . . , p + 1, without loss of generality, we focus on

receiver 2; by symmetry, a similar structure will exist at all other receivers. We observe that

y2 = h12x1 +

p+1
∑

j=2

hj2xj +

p+1+m
∑

k=p+2

hk2xk + n2 (170)

= h12

(
m∑

i=1

vT
1it1i

)

+

(
p+1
∑

j=2

hj2v
T
j1tj1

)

+

(
p+1+m
∑

k=p+2

hk2u
T
k−p−1t(k−p−1)

)

+ n2 (171)

=
(

h22v
T
21t21

)

+
(

vT
11h12t11 +

p+1
∑

j=3

vT
j1hj2tj1 + uT

1 hp+2,2t(1)

)

+
(
vT
12h12t12 + uT

2 hp+3,2t(2)
)
+ . . .+

(
vT
1mh12t1m + uT

mhp+1+m,2t(m)

)
+ n2 (172)

Similarly, we observe that in the second set of parentheses of (172), since ti1 and t(1) represent

the same dimensions in T1 for all i, we have

hi2T1 ⊆ T̃1, i ∈ {1, . . . , p+ 2}, i 6= 2 (173)
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Starting from the third set of parentheses of (172), we have

h12Tj ⊆ T̃j (174)

hp+1+j,2Tj ⊆ T̃j (175)

for all j = 2, . . . , m. In addition, since the pair (2, 2) 6∈ L, we can infer that

h22T1 ⊆ h22T̃1 (176)

and

h22T̃1 ∩ T̃j (177)

for j = 1, . . . , m. Together with (157), this indicates that the dimensions are separable as

suggested by the parentheses in (172) and also the Y2 side of Figure 7, which further implies

that all the elements in the set

R2
△
=

(
m⋃

j=1

T̃j

)

∪ h22T̃1 (178)

are rationally independent, and thereby the cardinality of R2 is MR in (169).

For the external eavesdropper Zk, we note that

zk = g1kx1 +

p+1
∑

j=2

gjkxj +

p+1+m
∑

i=p+2

gikxi + nzk (179)

= g1k

(
m∑

i=1

vT
1it1i

)

+

(
p+1
∑

j=2

gjkv
T
j1tj1

)

+

(
p+1+m
∑

i=p+2

giku
T
i−p−1t(i−p−1)

)

+ nzk (180)

=
(

vT
11g1kt11 +

p+1
∑

j=2

vT
j1gjktj1 + uT

1 gp+2,kt(1)

)

+
(
vT
12g1kt12 + uT

2 gp+3,kt(2)
)
+ . . .+

(
vT
1mg1kt1m + uT

mgp+1+m,kt(m)

)
+ nzk (181)

In the first set of parentheses of (181), since ti1 and t(1) represent the same dimensions in T1

for all i, we have

gikT1 ⊆ T̃1, i ∈ {1, . . . , p+ 2} (182)

Starting from the second set of parentheses of (181), we have

g1kTj ⊆ T̃j (183)

gp+1+j,kTj ⊆ T̃j (184)

for all j = 2, . . . , m. Due to (157), this indicates that the dimensions are separable as
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suggested by the parentheses in (181) and also the Z side of Figure 7, which further implies

that all the elements in the set

RZ
△
=

(
m⋃

j=1

T̃j

)

(185)

are rationally independent, and thereby the cardinality of RZ is MRZ

MRZ

△
= |RZ| = mM̃ = m(l + 1)θ (186)

We will compute the secrecy rates achievable with the asymptotic alignment based scheme

proposed above by using the following theorem.

Theorem 12 ([4, Theorem 2]) For K ′-user interference channels with confidential mes-

sages, the following rate region is achievable

Ri ≥ I(Vi; Yi)− max
j∈K′

−i

I(Vi; Y
′
j |V K ′

−i ), i = 1, . . . , K ′ (187)

where V K ′

−i

△
= {Vj}K ′

j=1,j 6=i and K′
−i = {1, . . . , i − 1, i + 1, . . . , K ′}. The auxiliary random

variables {Vi}K
′

i=1 are mutually independent, and for each i, we have the following Markov

chain Vi → X ′
i → (Y ′

1 , . . . , Y
′
K ′).

We can reinterpret Theorem 12 as follows: For the (p+1)-user IC-CM-EE with m helpers

and N external eavesdroppers, since each independent helper’s contribution is the same as

noise to both items in (187), which depend only on marginal distributions, we can treat the

(p+1)-user IC-CM-EE channel as a (p+1+N)-user IC-CM with N new transmitters which

keep silent, i.e., Vi and X ′
i, i = p+ 2, . . . , p+ 1 +N , are equal to zero, and

p(y′1, . . . , y
′
p+1+N |x′

1, . . . , x
′
p+1+N) = p(y1, . . . , yp+1, z1, . . . , zN |x1, . . . , xp+1) (188)

where x′ and y′ are the transmitter and receiver of the (p + 1 + N)-user IC-CM and x, y, z

are the entities of the original (p+1)-user IC-CM-EE with m helpers and N external eaves-

dropper.

We thereby first select Vi as

V1
△
= a1 (189)

Vi
△
= vi1, i = 2, . . . , p+ 1 (190)

where a1 is defined in (151). Then, we evaluate the (187) for i = 1, . . . , p+ 1.

For i = 1, by Lemma 1, for any δ > 0, if we choose Q = P
1−δ

2(MR+δ) and a = γ1P
1
2

Q
, the

probability of error of estimating V1 as Ṽ1 based on Y1 can be upper bounded by

Pr(e1) ≤ exp
(
−ηγ1P

δ
)

(191)
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Furthermore, by Fano’s inequality, we can conclude that

I(V1; Y1) ≤ I(V1; Ṽ1) (192)

= H(V1)−H(V1|Ṽ1) (193)

≥ mM(1 − δ)

MR + δ

(
1

2
logP

)

+ o(logP ) (194)

=
m(1− δ)

(m+ 1)
(
1 + 1

l

)θ
+ δ

lθ

(
1

2
logP

)

+ o(logP ) (195)

where o(·) is the little-o function. This provides a lower bound for the first term in (187)

with i = 1.

Next, we need to derive an upper bound for the second item in (187), i.e, the secrecy

penalty, for i = 1. For and j ∈ {2, . . . , p+ 1}, by the Markov chain,

V1 →
(

p+1
∑

k=1

hkjXkj, V
p+1
2

)

→ Yj (196)

we have

I(V1; Yj|V p+1
2 ) ≤ I

(

V1;

p+1
∑

k=1

hkjXk

∣
∣
∣V

p+1
2

)

(197)

= H

(
p+1
∑

k=1

hkjXk

∣
∣
∣V

p+1
2

)

−H

(
p+1
∑

k=1

hkjXk

∣
∣
∣V

p+1
1

)

(198)

The first term in (198) can be rewritten as

H

(
p+1
∑

k=1

hkjXk

∣
∣
∣V

p+1
2

)

= H

[
m∑

i=k

(

vT
1kh1jt1k + uT

k hp+1+k,jt(k)

)
]

(199)

Note that there are in total mMR rational dimensions each taking value from C(a, 2Q). Re-

gardless of the distribution in each rational dimension, the entropy is maximized by uniform

distribution, i.e.,

H

(
p+1
∑

k=1

hkjXk

∣
∣
∣V

p+1
2

)

≤ log
[

(2Q+ 1)mM̃
]

=
mM̃(1− δ)

MR + δ

(
1

2
logP

)

+ o(logP ) (200)
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The second term in (198) is

H

(
p+1
∑

k=1

hkjXk

∣
∣
∣V

p+1
1

)

= H

[
m∑

i=k

(

uT
k hp+1+k,jt(k)

)
]

= log
[
(2Q+ 1)mM

]
(201)

=
mM(1 − δ)

MR + δ

(
1

2
logP

)

+ o(logP ) (202)

Substituting (200) and (202) into (198), we get

I(V1; Yj|V p+1
2 ) ≤ m(M̃ −M)(1 − δ)

MR + δ

(
1

2
logP

)

+ o(logP ) (203)

We note that

ξ
△
=

m(M̃ −M)(1− δ)

MR + δ
=

m(M̃ −M)(1− δ)

(m+ 1)M̃ + δ
(204)

=
m
[
(l + 1)θ − lθ

]
(1− δ)

(m+ 1)(l + 1)θ + δ
(205)

=
m
[
∑θ−1

k=0

(
θ

k

)
lk
]

(1− δ)

(m+ 1)(l + 1)θ + δ
(206)

The maximum power of l in the numerator is θ − 1 and is less than the power θ of l in

the denominator. This implies that when m and δ are fixed, by choosing l large enough,

the factor before the 1
2
logP term in (203), ξ, can be made arbitrarily small. Due to the

non-perfect (i.e., only asymptotical) alignment, the upper bound for the information leakage

rate is not a constant as in [2], but a function which can be made to approach zero d.o.f.

Similarly, we can derive the following

I(V1;Zk|V p+1
2 ) ≤ ξ

(
1

2
logP

)

+ o(logP ) (207)

where Zk, k = 1, . . . , N , is the external eavesdropper. Substituting (195), (203) and (207)

into (187), we obtain a lower bound for the achievable secrecy rate R1 as

R1 ≥
[

m(1− δ)

(m+ 1)
(
1 + 1

l

)θ
+ δ

lθ

− ξ

](
1

2
logP

)

+ o(logP ) (208)

Similarly, it is easy to derive that

Ri ≥
[

(1− δ)

(m+ 1)
(
1 + 1

l

)θ
+ δ

lθ

− ξ′

](
1

2
logP

)

+ o(logP ) (209)

for i = 2, . . . , p+1 and ξ′ can be made arbitrarily small. By choosing l → ∞ and δ → 0, we
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can achieve a s.d.o.f. tuple arbitrarily close to

( m

m+ 1
,

1

m+ 1
, . . . ,

1

m+ 1
︸ ︷︷ ︸

p items

,
)

(210)

which is (137), completing the proof of Theorem 11.

6 Conclusions

In this paper, we determined the entire s.d.o.f. regions of K-user MAC wiretap channel, K-

user IC-EE, K-user IC-CM, and K-user IC-CM-EE. The converse for MAC directly followed

from the results in [1, 2]. The converse for IC was shown to be dominated by secrecy

constraints and interference constraints in different parts. To show the tightness and achieve

the regions characterized by the converses, we provided a general method to investigate

this class of channels, whose s.d.o.f. regions have a polytope structure. We provided an

equivalence between the extreme points in the polytope structure and the rank of sub-

matrices containing all active upper bounds associated with each extreme point. Then, we

achieved each extreme point by relating it to a specific channel model. More specifically,

the extreme points of the MAC region can be achieved by an m-user MAC wiretap channel

with K −m helpers, i.e., by setting K −m users’ secure rates to zero and utilizing them as

pure (structured) cooperative jammers. On the other hand, the asymmetric extreme points

of the IC region can be achieved by a (p + 1)-user IC-CM with m helpers, and N external

eavesdroppers.

A Proof of Theorem 10

Regarding Theorem 10, first, we have few comments:

1) (135) will not be possible until K ≥ 5 due to the constraint K − 2 ≥ p′ ≥ 3.

2) The point in (135) with p′ = K − 1, i.e., (1
2
, 1
2
, . . . , 1

2
, 0), is actually an extreme point,

but since (134) with p = K − 2 also includes it, we classify it as (134) here.

3) Assume that we allow p′ = 2 in (135) with K ≥ 5. Then, the point becomes

d1 =

(
1

2
,
1

2
, 0, 0, . . . , 0

)

(211)

However, this is just the middle point of two points in (134). More specifically, by choos-

ing p = 1 in (134), we have d′
1 = (K−2

K−1
, 1
K−1

, 0, 0, . . . , 0) and d′′
1 = ( 1

K−1
, K−2
K−1

, 0, 0, . . . , 0)

(by swapping the first two elements in d′
1). Here d′

1 6= d′′
1 due to K ≥ 5, and also it

41



is easy to check that d1 = 1
2
(d′

1 + d′′
1), which means that d1 is not an extreme point.

Therefore, in (135) p′ must satisfy p′ ≥ 3.

Now, we start the proof of Theorem 10. In order to speak of a polytope, we re-write (16)

as

−di ≤ 0, i = 1, . . . , K (212)

Then, we can write all the left hand sides of (14), (15), (212) as an N ×K matrix H with

corresponding right hand sides forming an N -length column vector h, i.e., all points d in D

satisfy

Hd ≤ h (213)

where N
△
= 2K +

(
K

2

)
= 2K +K(K − 1)/2. For any extreme point d ∈ D, let J(d) be a set

such that

J(d) =
{

l : Hld = hl, l ∈ {1, . . . , N}
}

(214)

where Hl is the lth row of H and hl is the lth element of h. Therefore, J(d) represents all

active boundaries. The remaining rows satisfy

Hld < hl (215)

for l 6∈ J .

For convenience, denote by HJ the sub-matrix of H with rows indexed by J
△
= J(d).

Similarly denote by hJ the sub-vector of h with rows indexed by J . In order to find all

extreme points in D, by Theorem 7 in Section 3.1, we need to find all K × (K + 1) sub-

matrices (H′,h′) of (H,h) with rank(H′) = K such that Hd ≤ h and H′d = h′, which

is also equivalent to finding all index sets J representing the active boundaries such that

Hd ≤ h, HJd = hJ , and rank(HJ) = K.

For convenience of presentation, we always partition the set J as a union of mutually

exclusive sets S, P and Z, i.e.,

J = S ∪ P ∪ Z (216)

We denote by S the row indices representing the active boundaries in (14)

S
△
=
{

si
△
= s(i) : Hsid = hsi is (K − 1)di +

K∑

j=1

dj = K − 1, i = 1, . . . , K
}

(217)

where si stands for the function s(i) of the coordinate i with the value as the row index of

H corresponding to the active boundaries (K − 1)di +
∑K

j=1 dj = K − 1. Thus, we have a
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one-to-one mapping between the row index and the function si
△
= s(i), i.e., if the row index

si ∈ J , we know exactly the ith upper bound in (14) is active; on the other hand, if we

know the coordinate i, we can determine the unique corresponding row index in H by the

mapping s : i 7→ si.

Similarly, we denote by P the row indices representing the active boundaries in (15)

P
△
=
{

pV
△
= p(V ) : HpV d = hpV is

∑

i∈V

di = 1, V ⊆ {1, . . . , K}, |V | = 2
}

(218)

where the value of pV is the corresponding row index of H.

Finally, we denote by Z the row indices representing the active boundaries in (212)

Z
△
=
{

zi
△
= z(i) : Hzid = hzi is di = 0, i = 1, . . . , K

}

(219)

where the value of zi is the corresponding row index of H.

There are approximately in total

(
N

K

)

≈
(
K+2
2

)K
eK√

2πK
(220)

possible selections of K equations in (213) for large K. In order for this search to have a

reasonable complexity, we need to investigate the structure of D more carefully. We identify

the following simple properties for the extreme points in the following lemmas.

Lemma 2 Let d be a non-zero extreme point in D. Then, it must satisfy the following

properties:

1) maxk dk ≤ K−1
K

.

2) At most one element, if there is any, in d is strictly larger than 1
2
.

3) If there exists an element, say di, which is equal to 1
2
, then, dj ≤ di =

1
2
for all j.

4) If |S| ≥ 2 and ∀si, sj ∈ S, where i 6= j, then 0 < di = dj ≤ 1
2
.

5) If si ∈ S, then dj ≤ di for all j. Equivalently, if |S| ≥ 1 and si ∈ S, then di =

maxj=1,...,K dj. Equivalently, if |S| ≥ 1 and di = maxj=1,...,K dj, then si ∈ S.

6) If maxi di >
1
2
, then |S| ≤ 1.

The proof of Lemma 2 is provided in Appendix B. In addition to the properties of

the elements of the extreme points, we also need some results regarding the rank of the

sub-matrices. It is easy to verify that a trivial necessary condition for rank(HJ) = K is

|S|+ |P |+ |Z| ≥ K. More formally, we have the following lemma.

Lemma 3 For an extreme point d, rank(HJ) = K only if

rank(HS∪P ) + |Z| ≥ K (221)
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Lemma 4 Let d be a non-zero extreme point of D. If |P | ≥ 1 and maxk dk >
1
2
, then there

exists a coordinate i∗ such that

K − 1

K
≥ di∗ = max

k
dk >

1

2
(222)

and a non-empty set

U ′ △
=
{

j : dj = 1− di∗ > 0
}

(223)

with cardinality m′ △
= |U ′| = |P | and

P = P ′ △
=
{

pV : V = {i∗, j}, j ∈ U ′
}

(224)

In addition, S is either empty or

S = {si∗} (225)

Futhermore,

rank(HS∪P ) = |P |+ 1{|S|≥1} (226)

where 1{·} is the indicator function.

Lemma 5 Let d be a non-zero extreme point of D. If |P | ≥ 1 and maxk dk ≤ 1
2
, then there

exists a non-empty set

U ′′ =
{

i : di =
1

2

}

(227)

with cardinality m′′ △
= |U ′′|, 2 ≤ m′′ ≤ K − 1, and

P = P ′′ △
=
{

pV : V = {k, j}, k 6= j, and k, j ∈ U ′′
}

(228)

with rank

rank(HP ) =

{

m′′, |P | > 1

1, |P | = 1
(229)

In addition, S is either empty or

S =
{

si : i ∈ U ′′
}

(230)

Futhermore,

rank(HS∪P ) =

{

1, |P | = 1 and |S| = 0

m′′ + 1{|S|≥1}, o.w.
(231)

where 1{·} is the indicator function.

The proofs of Lemmas 3, 4, and 5 are provided in Appendix B.

Now, we are ready to prove Theorem 10.
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Case: |Z| = K. Clearly, rank(HZ) = K and only the zero vector satisfies

H0 ≤ h (232)

HZ0 = hZ (233)

Thus, 0 is an extreme point of D, which is (133). Therefore, in the remaining discussion we

focus on non-zero points and |Z| < K.

Case: |P | = 0. Since |Z| < K, by Lemma 3, |S| ≥ 1.

If |S| = 1, then again by Lemma 3, |Z| = K − 1. By property 5) of Lemma 2, S = {si}
for some i and Z = {zj : j 6= i}. The extreme point d has the structure (134) with p = 0.

If |S| = K, then by property 4) of Lemma 2, Z = φ, and the corresponding extreme

point is (136).

If 2 ≤ |S| ≤ K − 1, due the positiveness implied by property 4) of Lemma 2 and

the cardinality constraint by Lemma 3, the only consistent Z, which gives a solution for

HJd = hJ , is

Z =
{

zj : sj 6∈ S
}

(234)

Denote by x any di for si ∈ S. Then, we have

Kx+ (|S| − 1)x = K − 1 (235)

which implies that

x =
K − 1

K − 1 + |S| (236)

Since P is empty, x must satisfy x < 1
2
due to |S| ≥ 2 and property 4) of Lemma 2.

Substituting (236) into x < 1
2
gives |S| > K − 1, which contradicts the assumption |S| < K.

Therefore, the solution given by HJd = hJ , where J = S ∪ Z, violates (215).

Case: |P | ≥ 1 and maxk dk > 1
2
. First of all, due to the positiveness implied by (222) and

(223), the consistent set Z must satisfy

Z ⊆
{

zk : k 6∈ {i∗} ∪ U ′
}

(237)

which implies |Z| ≤ K − |U ′| − 1 = K − |P | − 1.

If S is empty, by Lemma 4, rank(HS∪P ) = |P |, which implies

rank(HS∪P ) + |Z| < K (238)

which implies that rank(HJ) < K, which does not give any extreme point, by Lemma 3.

Therefore, S is non-empty and determined by (225). In addition, Lemma 4 gives

rank(HS∪P ) = |P |+ 1 (239)
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If |P | = K − 1, due to (223) and (225), we have the equality in (14) hold for i∗, i.e.,

Kdi∗ + (K − 1)(1− di∗) = K − 1 (240)

which leads to di∗ = 0 contradicting (222).

Therefore, |P | < K − 1. Then, the consistent set Z satisfying Lemma 3 is

Z =
{

zk : k 6∈ {i∗} ∪ U ′
}

(241)

In addition, due to (223) and (225), we have the equality in (14) hold for i∗, i.e.,

Kdi∗ + |P |(1− di∗) = K − 1 (242)

which implies that

di∗ =
K − 1− |P |
K − |P | (243)

Since di∗ = maxk dk >
1
2
, we have

|P | < K − 2 (244)

The solution of this choice is exactly (134) with 1 ≤ p < K − 2, and it satisfies (213).

Case: |P | ≥ 1 and maxk dk ≤ 1
2
. If S is empty, then by Lemma 5,

rank(HS∪P ) =

{

m′′, |P | > 1

1, |P | = 1
(245)

wherem′′ is the cardinality of U ′′ defined in (227). Sincem′′ ≥ 2, for both cases, rank(HS∪P ) ≤
m′′. Due to the positiveness of the elements in U ′′, |Z| ≤ K −m′′. Therefore, by Lemma 3,

the cardinality of Z can only take the value |Z| = K −m′′, i.e.,

dj = 0, ∀j 6∈ U ′′ (246)

Also, Lemma 3 implies that |P | > 1 and m′′ > 2; otherwise, rank(HS∪P ) + |Z| = 1 + |Z| ≤
1 +K −m′′ ≤ K − 1 < K.

Therefore, the elements in d are either 1
2
or 0, and the number of 1

2
s is m′′. Note that S

is empty. Therefore, for any i ∈ U ′′, we must have the equality in (14) not hold, i.e.,

K

2
+ (m′′ − 1)

1

2
< K − 1 (247)

which indicates that

m′′ < K − 1 (248)
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Combining with the condition m′′ > 2 gives an extreme point that has the structure (135).

It remains to discuss the case where S is non-empty. By Lemma 5, S is determined by

(230) and

rank(HS∪P ) = m′′ + 1 (249)

If m′′ = K − 1, then the only solution is given by choosing Z = {zj : j 6∈ U ′′} with

|Z| = 1, which is the structure in (134) with p = K − 2.

If m′′ < K − 1, then rank(HS∪P ) < K. By Lemma 3 and the positiveness implied by U ′′

with cardinality m′′, Z must satisfy

K −m′′ ≥ |Z| ≥ K − rank(HS∪P ) = K −m′′ − 1 > 0 (250)

i.e., Z is not empty and the extreme point d has either K−m′′−1 or K−m′′ zero(s). On the

other hand, d also has in total m′′ 1
2
s due to the definition of U ′′ in (227). If |Z| = K −m′′,

then the extreme point d has the following form

di =

{
1
2
, i ∈ U ′′

0, i 6∈ U ′′
(251)

and we must have the equality in (14) hold for some i ∈ U ′′, i.e.,

K

2
+ (m′′ − 1)

1

2
= K − 1 (252)

which is not valid since m′′ < K−1. Therefore, the equations corresponding to the selection

of J are inconsistent. On the other hand, if |Z| = K −m′′ − 1, then the extreme point d

has the following form

di =







1
2
, i ∈ U ′′

0, zi ∈ Z

x, o.w.

(253)

where 0 < x < 1
2
. Again, we must have the equality in (14) hold for some i ∈ U ′′, i.e.,

K

2
+ (m′′ − 1)

1

2
+ x = K − 1 (254)

which implies that

x =
K − 1−m′′

2
(255)

Substituting this formula into 0 < x < 1
2
leads to

K − 2 < m′′ < K − 1 (256)

which is not possible since m′′ is an integer, which completes the proof of Theorem 10.
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B Proofs of Lemma 2 through 5

B.1 Proof of Lemma 2

We prove all the properties one by one.

1) The constraint (14) and the positiveness constraint in (16) imply that for any coordinate

i, we have

Kdi ≤ Kdi +
∑

j 6=i

dj = K − 1 (257)

i.e., di ≤ K−1
K

for any i. Therefore, maxk dk ≤ K−1
K

.

2) We prove by contradiction. Assume that we have distinct coordinates, i, j, such that

di, dj > 1
2
in d. Then, the set V

△
= {i, j} with |V | = 2 violates the constraint in (15).

Therefore, this contradiction implies that at most one element, if any, in d is strictly larger

than 1
2
.

3) Similarly, assume that there exists a j such that dj > 1
2
. Since di =

1
2
by assumption,

di + dj > 1, which violates constraint (15). This implies that dj ≤ di =
1
2
for all j.

4) Let i, j ∈ S and i 6= j. Due to the definition of S, si, sj ∈ S, i.e., from (217)

Kdi + dj +
K∑

k=1,k 6=i,j

dk = K − 1 (258)

Kdj + di +

K∑

k=1,k 6=i,j

dk = K − 1 (259)

which implies (K − 1)di = (K − 1)dj. Since K − 1 > 0, di = dj. Furthermore, due to

property 2), both are no larger than 1
2
, and due to property 3), for any k, dk ≤ di. If di = 0,

then the point d is the zero vector, which contradicts the assumption that d is a non-zero

extreme point in D. Therefore, di = dj > 0.

5) The three equivalent statements in this property are simply from three different per-

spectives addressing the same fact that the coordinates of d, which are associated with the

elements in S, are the most significant coordinates. We will prove the first statement and

then prove the equivalence of all three statements.

We prove the first statement of property 5) by contraction. Assume that there exists a j
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such that dj > di. Then, consider the following expression (for K ≥ 3)

Kdj + di +
K∑

k=1,k 6=i,j

dk = dj + di + (K − 1)dj +
K∑

k=1,k 6=i,j

dk (260)

> dj + di + (K − 1)di +

K∑

k=1,k 6=i,j

dk (261)

= Kdi +
K∑

k=1,k 6=i

dk (262)

= K − 1 (263)

where the last equality is due to the assumption si ∈ S. This result violates the constraint

(14). Therefore, for all j, dj ≤ di.

Next, we prove the second statement of property 5) using the first statement. This is

trivially true because the assumption |S| ≥ 1 and si ∈ S imply that, by the first statement,

di ≥ dj for all j, i.e., di = maxj dj.

Then, we prove the third statement of property 5) using the second statement. By

assumption, let di = maxk dk. However, assume that si 6∈ S. This implies that there exists

another coordinate j, j 6= i such that sj ∈ S (since |S| ≥ 1) and thereby by the second

statement dj = maxk dk = di. Then, consider

Kdi + dj +
K∑

k=1,k 6=i,j

dk = Kdj + di +
K∑

k=1,k 6=i,j

dk = K − 1 (264)

where the last equality is due to sj ∈ S. This implies that si must belong to S by definition

in (217), i.e., si ∈ S, which contradicts the assumption that si 6∈ S.

Finally, we prove the first statement of property 5) using the third statement. We prove

this by contradiction as well. As stated in the condition of the first statement, si ∈ S,

this means |S| ≥ 1. Assume that there exists at least one element which is strictly larger

than di. Choose the largest one among them and denote it by dj. Clearly, j 6= i and

dj = maxk dk > di. By the third statement, sj ∈ S. Then, |S| ≥ 2 and by property 4)

di = dj, which contradicts the assumption dj > di.

6) We prove |S| ≤ 1 by contraction. Assume that |S| ≥ 2. Due to property 4) and the second

statement of property 5), we have two distinct j, k ∈ S such that 1
2
≥ dj = dk = maxi di >

1
2
,

which leads to a contradiction. Thus, |S| ≤ 1.

B.2 Proof of Lemma 3

It is straightforward that

rank(HZ) = |Z| (265)
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since there are in total |Z| 1s in the sub-matrix HZ and the row index and column index of

any two 1s are different. Since (S ∪ P ) ∩ Z = φ, we have

K = rank(HJ) = rank(HS∪P∪Z) ≤ rank(HS∪P ) + rank(HZ) (266)

B.3 Proof of Lemma 4

If |P | = 1, then P = {pV } for a unique V = {i, j} with |V | = 2. If di = dj, then

di = dj = 1
2
and maxk dk ≤ 1

2
due to property 3) of Lemma 2, which contradicts the

condition maxk dk > 1
2
. Therefore, di 6= dj. Without loss of generality, let di > dj, then

di >
1
2
and i is the i∗ required in Lemma 4 due to property 2) of Lemma 2. By property 1) of

Lemma 2, dj = 1− di∗ > 0, thus j ∈ U ′. If there exists any k, k 6= j, such that dk = 1− di∗ ,

then clearly V ′ △
= {i∗, k} 6= V , but pV ′ ∈ P , which contradicts the condition |P | = 1. Hence,

U ′ = {j} and P satisfies (224).

If |P | ≥ 2, assume that V1 = {i, j}, V2 = {x, y}, V1 6= V2, and pV1 , pV2 ∈ P . Without loss

of generality, let di = maxk∈{i,j,x,y} dk. If di <
1
2
, then dj + di < 1, which contradicts pV1 ∈ P .

If di =
1
2
, then due to property 3) of Lemma 2, maxk dk ≤ 1

2
, which contradicts the condition

maxk dk > 1
2
. Therefore, di = maxk∈{i,j,x,y} dk > 1

2
and i is the i∗ required in Lemma 4. For

any pV ∈ P , let V = {a, b} and assume da ≥ db. If da = 1
2
, this leads to a contradiction of

di∗ >
1
2
due to property 3) of Lemma 2. Thus, da >

1
2
. Due to property 2) of Lemma 2, the

coordinate a must be i∗, i.e., a = i∗. Then, db = 1 − di∗ > 0 and that is true for any pV .

Hence, |P | = |U ′| and (224) are trivially true.

If S is empty, we have a sub-matrix which has the form (by removing all columns con-

taining all zeros and rearranging the columns)

HS∪P = HP
·
=









1 1 0 0 . . . 0

1 0 1 0 . . . 0
...

...
...

...
. . .

...

1 0 0 0 . . . 1









(267)

where the number of rows is |P | = |U ′|, the number of columns is |P |+ 1, and the index of

the first column corresponds to i∗ and the indices of other columns correspond to U ′ defined

in (223). Therefore, rank(HS∪P ) = |P | and we are done.

If S is not empty, due to (222) and property 6) of Lemma 2, |S| = 1. Furthermore, due

to property 5) of Lemma 2, si∗ ∈ S, which is (225). Note that HS is a K-length row vector

containing no zeros. If |P |+ 1 < K, then HS has more columns than the sub-matrix on the
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right hand side of (267). HS∪P = |P |+ 1 is true. If |P |+ 1 = K, then

HP∪S =











1 1 0 0 . . . 0

1 0 1 0 . . . 0
...

...
...

...
. . .

...

1 0 0 0 . . . 1

K 1 1 1 . . . 1











△
= M(K) (268)

where M(n) is n× n square matrix as in (268), where n ≥ 2. Therefore, HP∪S = M(K). If

we denote f(n)
△
= det[M(n)], then it is easy to write the recursive formula as

f(n) = (−1)n − f(n− 1), n ≥ 3 (269)

f(2) = 1−K (270)

which gives that f(n) = (−1)n(n−K − 1), i.e., detHP∪S = detM(K) = (−1)K+1 6= 0 and

rank(HP∪S) = |P |+ 1 = K, which completes the proof.

B.4 Proof of Lemma 5

If maxk dK < 1
2
, then |P | = 0, which contradicts the assumption |P | ≥ 1. Therefore,

maxk dK = 1
2
, which implies |U ′′| ≥ 1. Assume that i∗ ∈ U ′′. Due to property 3) of Lemma

2, dj ≤ di∗ =
1
2
for all j. If maxk 6=i∗ dk <

1
2
, then we cannot find a set V such that |V | = 2 and

∑

k∈V dk = 1, i.e., |P | = 0, which contradicts the assumption |P | ≥ 1. Thus, m′′ △
= |U ′′| ≥ 2.

On the other hand, if m′′ = K, by definition of U ′′, all elements in d are 1
2
, which violates

the constraint (14). Therefore, m′′ ≤ K − 1.

Next, P ′′ defined in (228) satisfies P ′′ ⊆ P . On the other hand, for any coordinate pair

(k′, j′) such that k′ 6= j′ and p{k′,j′} ∈ P , since dk′, dj′ ≤ 1
2
, we must have dk′ = dj′ =

1
2
, and

by definition of U ′′, k′, j′ ∈ U ′′, which implies p{k′,j′} ∈ P ′′. Therefore, P = P ′′.

If S is empty, then HP = 1 if |P | = 1 and we are done. If S is empty but |P | > 1,

the index set of the columns of HP , which contains nonzero elements, is U ′′ due to (228).

Therefore, rank(HP ) ≤ |U ′′| = m′′. In order to study the rank, we remove the columns

containing all zeros and rearrange the columns. Assume that

U ′′ =
{

i1, i2, . . . , im′′

}

(271)
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where i1 = i∗. Then, consider a m′′ ×m′′ sub-matrix of HP

HJ ′′

·
=














1 1 0 0 0 . . . 0

1 0 1 0 0 . . . 0

1 0 0 1 0 . . . 0
...

...
...

...
...

. . .
...

1 0 0 0 0 . . . 1

0 1 1 0 0 . . . 0














(272)

where

J ′′ △
= {pV : V = {i∗, ij}, j = 2, . . . , m′′} ∪ {p{i2,i3}} ⊆ P (273)

It is easy to verify that detHJ ′′ = (−1)m
′′ × 2 6= 0, therefore rank(HJ ′′) = m′′, i.e.,

rank(HP ) = m′′. This completes the proof of the case where S is empty.

Assume that |S| ≥ 1, by property 5) of Lemma 2, S must have the form of (230). If

|P | = 1, m′′ = |U ′′| = 2. Then, the 3×K matrix HP∪S must have the structure

HP∪S=






1 1 0 0 0 . . . 0

K 1 1 1 1 . . . 1

1 K 1 1 1 . . . 1




 (274)

where the indices of the first two columns belong to U ′′. Clearly, HP∪S = 3 = m′′ + 1 since

m′′ = 2.

If |P | > 1, by using the J ′′ in (273) and the condition m′′ ≤ K − 1, we have

HJ ′′∪S =
























1 1 0 0 . . . 0 0 0 0 . . . 0

1 0 1 0 . . . 0 0 0 0 . . . 0
...

...
...

...
. . .

...
...

...
...

. . .
...

1 0 0 0 . . . 0 1 0 0 . . . 0

0 1 1 0 . . . 0 0 0 0 . . . 0

K 1 1 1 . . . 1 1 1 1 . . . 1

1 K 1 1 . . . 1 1 1 1 . . . 1
...

...
...

...
. . .

...
...

...
...

. . .
...

1 1 1 1 . . . K 1 1 1 . . . 1

1 1 1 1 . . . 1 K 1 1 . . . 1
























(275)

Due to [54, Section 2.2, Problem 7],

rank(HP∪S) = rank(HJ ′′∪S) = rank(HJ ′′) + 1 = m′′ + 1 (276)

which completes the proof.
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