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Abstract

Traditionally paired with impulsive communications, Time-Hopping CDMA (TH-CDMA) is a multiple access
technique that separates users in time by coding their transmissions into pulses occupying a subset of Ns chips
out of the total N included in a symbol period, in contrast with traditional Direct-Sequence CDMA (DS-CDMA)
where Ns = N . This work analyzes TH-CDMA with random spreading, by determining whether peculiar theoretical
limits are identifiable, with both optimal and sub-optimal receiver structures, in particular in the archetypal case of
sparse spreading, that is, Ns = 1. Results indicate that TH-CDMA has a fundamentally different behavior than DS-
CDMA, where the crucial role played by energy concentration, typical of time-hopping, directly relates with its intrinsic
“uneven” use of degrees of freedom.

Index Terms
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I. Introduction

WHILE Direct-Sequence CDMA (DS-CDMA) is widely adopted and thoroughly analyzed in the literature,
Time-Hopping CDMA (TH-CDMA) remains a niche subject, often associated with impulsive ultra-wideband

communications; as such, it has been poorly investigated in its information-theoretical limits. This paper attempts to
fill the gap, by addressing a reference basic case of synchronous, power-controlled systems, with random hopping.

Time-hopping systems transmit pulses over a subset of chips of cardinality Ns out of the N chips composing a
symbol period. In contrast to common DS-CDMA, where each chip carries one pulse, and therefore the number of
transmitted pulses per symbol is equal to the number of chips, i.e., Ns = N , time-hopping signals may contain much
fewer nonzero chips, in which pulses are effectively used, i.e., Ns � N . Asymptotically, as the number of chips in a
symbol period grows, the fraction of filled-in chips in TH vanishes, i.e., Ns/N → 0, making TH intrinsically different,
the performance of which cannot be derived from that of DS. TH vs. DS reflect “sparse” vs. “dense” spreading, where
degrees of freedom, that is, dimensions of the signal space, are “unevenly” vs. “evenly” used [1]–[5]. In our setting,
as further explored in the paper, degrees of freedom coincide with chips; while DS “evenly” uses chips, TH adopts
the opposite strategy. In this regard, it is evident that DS and TH represent two contrasting approaches, that will be
compared, under the assumption of same bandwidth and same per-symbol energy, in terms of spectral efficiency.

A. Related Work

Although we will show that there exist peculiar theoretical limits for TH-CDMA, their derivation can be carried
out within the framework developed by Verdú and Shamai [6] and Shamai and Verdú [7], providing a methodology
that is valid for investigating general CDMA with random spreading in the so-called large-system limit (LSL), where
K → ∞, N → ∞, while K/N → β finite; in particular, [6] provides expressions of spectral efficiency for DS power-
controlled systems using optimum as well as linear receivers, while [7] removes the power-control assumption and
introduces fading. Other seminal contributions towards the understanding of random DS-CDMA, although limited to
linear receivers, are those of Tse and Hanly [8], and Tse and Zeitouni [9]. Aside from DS-CDMA, the same framework
is aptly used for analyzing other CDMA channels, such as multi-carrier CDMA [10].

The analysis of optimum decoders relies, in general, on the study of the eigenvalue distribution of random matrices
describing random spreading. Consolidated results on the statistical distribution of such eigenvalues of DS matrices [11]
form the basis for a tractable analysis of theoretical limits in terms of spectral efficiency. In particular, it is shown in [6]
that a fixed loss, that depends upon the load, i.e., the ratio β between the number of users K and chips N , is incurred
with DS vs. orthogonal multiple-access. This loss becomes negligible with optimum decoding when β � 1 while, for
β � 1, even a linear receiver such as MMSE is sufficient for achieving this negligible loss; however, this is no longer the

Manuscript received November 18, 2013; revised November 25, 2014; September 27, 2015. The associate editor coordinating the review
was Prof. R. Sundaresan.

G. C. Ferrante was with the Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome,
00184 Rome, Italy, and the Department of Telecommunications, CentraleSupélec, 91192 Gif-sur-Yvette, France. He is now with Singapore
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case for simpler linear receivers, such as the single-user matched filter (SUMF), that is shown to be limited in spectral
efficiency at high SNR. As a matter of fact, the above findings on spectral efficiency of DS-CDMA strongly depend on
the statistical properties of the eigenvalue distribution, and as such on the cross-correlation properties of the spreading
sequences. By changing the spreading strategy from DS to TH, it can be predicted that different theoretical limits
will hold, as will be investigated below. In particular, TH matrices, as rigorously defined in this paper, are a special
subset of sparse matrices, where the number of nonzero entries is small compared to the total number of elements.
Previous work on sparse CDMA relies on non-rigorous derivations based on replica methods, which are analytical tools
borrowed from statistical physics, as pioneered by Tanaka [12], who provides an expression of capacity when inputs
are binary. Montanari and Tse [13] propose a rigorous argument for Ns →∞, proving Tanaka’s formula, that is valid
up to a maximum load, called spinodal (βs ≈ 1.49). Above the spinodal load, Tanaka’s formula remains unproved.
Binary sparse CDMA is also analyzed in terms of detection algorithms, in particular in the so-called belief propagation
[13]–[15]. More recently, capacity bounds for binary sparse CDMA are derived in [16], [17]. Still relying on replica
methods, [18] and [19] analyze two different regimes, where Ns is either finite or random with fixed mean.

B. Main Contribution and Novelties

The main contribution of the present work is to provide rigorous information-theoretical limits of time-hopping
communications, by inscribing this particular time-domain sparse multiple access scheme into the random matrix
framework developed by Verdú and Shamai in [6], for analyzing random spreading. The present analysis allows
comparing TH vs. DS with same energy per symbol and same bandwidth constraints, and, therefore, highlights the
effect of the energy “concentration,” that is typical of TH. A first contribution consists in providing a closed form
expression for spectral efficiency of TH with optimum decoding when Ns = 1. A second contribution is to prove that
the spectral efficiency formula for a bank of single-user matched filter obtained by Verdú and Shamai in [6] for DS
systems (Ns = N) remains valid if Ns → ∞, N → ∞, and Ns/N → α ∈ (0, 1]. A third contribution is to provide
understanding of when TH performs better than DS.

Based on the above contributions, we are able to present a novel interpretation of TH-CDMA against DS-CDMA,
that offers a better understanding of the effect of sparsity in time.

C. Paper Organization

The paper is organized as follows: in Section II we describe the model of the synchronous CDMA channel adopted
throughout the paper, and particularized to the special case of time-hopping. Section III contains the derivation of
spectral efficiency of TH-CDMA for different receiver structures, in particular optimum decoding as well as sub-optimal
linear receivers, and a comparison with traditional DS-CDMA limits [6]. Conclusions are drawn in Section IV.

D. Notations

Boldface letters denotes vectors when lowercase, and matrices when uppercase. The ith vector of the standard basis
of Rn is denoted by ei. The jth element of a vector v is denoted by [v]j and the Kronecker delta is denoted by
δij , hence, for example, [ei]j = δij . The set of integers {1, . . . , N} is denoted by [N ]. The cardinality of a set A is
denoted by |A|. Gaussian distributions with mean µ and variance σ2 are indicated by N(µ, σ2) and CN(µ, σ2) when
referring to real and complex random variables (RVs), respectively; we denote by N(x;µ, σ2) and CN(z;µ, σ2) their
PDFs, by expliciting the argument x ∈ R and z ∈ C, respectively. The notation is straightforwardly generalized to
multivariate distributions. Binomial distribution when the number of trials is n and the success probability is p is
denoted by Binomial(n, p). Poisson distribution with mean β is denoted by Poisson(β). Convergence in distribution
of a sequence of RVs (Xn)n>0 to X with distribution PX is denoted Xn

d−−→PX , while convergence in probability is
denoted Xn

p−−−→ X. The differential entropy of X is denoted either h(X) or h(PX), where PX is the distribution of
X.

II. Reference Model

Consider the traditional discrete complex-valued code-division multiple access channel model without fading and
with power control [7], [20]:

y = Sb+ n, (1)

where y ∈ CN is the received signal vector with N chips, b=[b1, . . . , bK ]T ∈ CK is the vector of symbols transmitted by
the K users, S = [s1, · · · , sK ] ∈ RN×K is the spreading matrix, where its kth column is the spreading sequence sk of
the kth user, and n∈CN is a circularly symmetric Gaussian vector with zero mean and covariance N0I. Here, spreading
sequences {sk}Kk=1 have unit norm, ‖sk‖ = 1, and users are subject to a common power constraint, E

[
|bk|2

]
6 E,



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 2

1√
N

− 1√
N

User k

0 Ts =NTc

Tc

(a) DS-CDMA: N = 8.
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(b) TH-CDMA: N = 8, Ns = 4, Nh = 2.

Fig. 1: DS-CDMA vs. TH-CDMA time-axis structure. The symbol period is divided into N = 8 chips in both figures. In DS-
CDMA (Fig. 1a), each chip is used for transmitting one pulse, hence eight pulses are transmitted per symbol period. The
signature sequence shown on figure is sk = 1√

8
[1,−1,−1, 1, 1,−1, 1, 1]T. In TH-CDMA (Fig. 1b) the symbol period is

divided into Ns = 4 subgroups of Nh = 2 contiguous chips: one pulse only per subgroup is transmitted, that is four pulses
in total. The signature sequence shown on figure is sk = 1

2
[1, 0, 0, 1,−1, 0, 0, 1]T. Total energy per symbol is identical in

both cases, and equal to one.

1 6 k 6 K. It is assumed, as is common (e.g. [21]), that symbols of different users are independent; this, with the
power constraint, leads to:

E [bb† ] = EI. (2)

Different CDMA systems can be studied by specifying the spreading matrix: in particular, random CDMA systems
are described by random spreading matrices. For example, in random DS-CDMA, spreading sequences may be binary
sequences, with elements typically modeled as Bernoulli random variables, [sk]i ∈ {−1/

√
N,+1/

√
N}, i = 1, . . . , N ,

drawn with equal probability, or spherical sequences, with sk a unitarily invariant unit-norm vector [6].
In order to cast TH-CDMA in the model described by eq. (1), let N = Ns ·Nh, i.e., the N chips are divided into Ns

subgroups, and each of these Ns subgroups is made of Nh contiguous chips. The generic element of a signature sequence
can take values in {1/√Ns, 0,+1/

√
Ns}, and the structure of each sequence sk is such that there is one and only one

nonzero element within each of the Ns subgroups. Therefore, the number of nonzero elements of each signature sequence
is fixed to Ns. We formally introduce the new structure of spreading sequences by the two following definitions.

Definition 1 (Sparse vector). A vector s = [s1, . . . , sN ]T ∈ CN is S-sparse if the subset of its nonzero elements has
cardinality S, i.e., |{si 6= 0: i = 1, . . . , N}| = S. �

Definition 2 ((Ns, Nh)-sequence, TH and DS sequences and matrices). A vector s = [s1, . . . , sN ]T∈ CN×1 is a (Ns, Nh)-
sequence when:

1) N = Ns ·Nh, with Ns ∈ N and Nh ∈ N;
2) for all 1 6 m 6 Ns, the vector [s1+(m−1)Nh

, . . . , smNh
]T is 1-sparse, where the nonzero element is either −1/

√
Ns

or 1/
√
Ns with equal probability, and is drawn uniformly at random.

A (Ns, Nh)-sequence with Ns < N is a Time-Hopping (TH) sequence; the special case Ns = N , i.e., (N, 1)-sequences
corresponds to binary DS sequences, that will be referred to below simply as DS sequences. A matrix S is called TH
vs. DS matrix when its columns correspond to TH vs. DS sequences. The set of all possible TH vs. DS matrices is
indicated as TH vs. DS ensemble. �

Figure 1 shows the organization of the time axis for DS-CDMA (Fig. 1a) and compares this time pattern against TH-
CDMA (Fig. 1b). Note that, for Ns =N , TH-CDMA reduces to DS-CDMA. The unit-norm assumption on spreading
sequences implies that the ensuing comparison of TH-CDMA vs. DS-CDMA is drawn under the constraint of same
energy per sequence. Note that the Ns = 1 case models a strategy of maximum energy concentration in time, while
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maximum energy spreading in time corresponds to making Ns = N , as in DS. Also note that the two systems operate
under same bandwidth constraint.

III. Spectral Efficiency of TH-CDMA

In this section, spectral efficiency of TH-CDMA is derived for different receiver structures, and compared against
consolidated results for DS-CDMA [6].

The section is organized as follows: we first analyze the case of optimum decoding (Section III-A), then proceed to
linear receivers in sections III-B and III-C for single-user matched filters (SUMF), and decorrelator/MMSE receivers,
respectively. Finally, Section III-D contains a synposis.

A. Optimum decoding

1) Theoretical framework: In general terms, a key performance measure in the coded regime is spectral efficiency
Copt (b/s/Hz) as a function of either signal-to-noise ratio γ or energy per bit Eb-to-noise-N0, Eb/N0.

Referring to model of eq. (1), where the dimension of the observed process is N , spectral efficiency is indicated as
Copt
N (γ) and is the maximum mutual information between b and y knowing S over distributions of b, normalized to N .

Under constraint (2), Copt
N (γ) (b/s/Hz) is achieved with Gaussian distributed b, and it is expressed by [6], [22]–[25]:

Copt
N (γ) =

1

N
log2 det(I + γSST), (3)

where noise has covariance Σn = N0I and γ is given by [21]:

γ :=
1
K E

[
‖b‖2

]
1
N E[ ‖n‖2 ]

=
1
K · bEb
1
N ·NN0

=
1

β
· b
N
· EbN0

=
1

β
· Copt

N · η, (4)

where β := K/N is the load, η := Eb/N0, b is the number of bits encoded in b for a capacity-achieving system,
and therefore b/N coincides with spectral efficiency Copt

N of eq. (3). Since N is equal to the number of possible
complex dimensions, spectral efficiency can, therefore, be interpreted as the maximum number of bits per each complex
dimension. Note that the number of complex dimensions coincides in our setting with the degrees of freedom of the
system, that is, with the dimension of the observed signal space.

Eq. (3) can be equivalently rewritten in terms of the set of eigenvalues {λn(SST) : n = 1, . . . , N} of the Gram matrix
SST as follows:

Copt
N (γ) =

1

N

N∑
n=1

log2(1 + λnγ) =

∫ ∞
0

log2(1 + λγ) dFSS
T

N (λ), (5)

where FSS
T

N (x) is the so called empirical spectral distribution (ESD) defined as [23]:

FSS
T

N (x) :=
1

N

N∑
n=1

1{λn(SST) 6 x}, (6)

that counts the fraction of eigenvalues of SST not larger than x. Being S random, so is the function FSS
T

N . The limit

distribution of the sequence {FSST

N : N > 1}, when it exists, is called limiting spectral distribution (LSD) and denoted

F; it turns out that F, differently from FSS
T

N , is usually nonrandom [26]. In particular, the regime of interest, referred to
as large-system limit (LSL), is that of both N →∞ and K →∞ while keeping K/N → β finite. In the LSL, spectral
efficiency Copt

N (γ), that is a random variable, may converge to

Copt(γ) :=

∫ ∞
0

log2(1 + λγ) dF(λ), (7)

where the convergence mode has to be specified. In general, convergence of FSS
T

N to F does not imply convergence of
Copt
N to Copt, that must be proved.

Therefore, finding the spectral efficiency of CDMA systems with random spreading in the LSL regime reduces to
finding the LSD F(λ), that depends on the spreading sequence family only; hence, in the rest of this section, we find the
LSD of TH-CDMA with Ns = 1, which corresponds to a maximum energy concentration in time, as well as asymptotic
behaviors of TH-CDMA systems with generic Ns.



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 4

2) LSD and spectral efficiency of TH-CDMA systems with Ns = 1: While for DS-CDMA, spectral efficiency can be
computed directly from Marc̆enko and Pastur result on the ESD of matrices with i.i.d. elements [11], it appears that
no analog result is available for neither TH-CDMA matrices nor dual matrices describing frequency-hopping.

We hereby derive the LSD and properties of the ESD of synchronous TH-CDMA when Ns = 1 by means of the
method of moments. In Theorem 1 we derive properties of the Lth moment of the ESD FSS

T

N with Ns = 1, denoted by:

mL :=
1

N
tr(SST)L =

∫ ∞
0

λL dFSS
T

N (λ),

in particular a closed form expression of E[mL ] for TH matrices with Ns = 1 for finite K and N , and we prove
convergence in probability to moments of a Poisson distribution with mean β in the LSL.

Theorem 1. Suppose that S ∈ RN×βN is a time-hopping matrix with Ns = 1. Then, in the LSL, mL converges in
probability to the Lth moment of a Poisson distribution with mean β, i.e.:

mL
p−−−→ m̄L :=

L∑
`=1

{
L

`

}
β`,

where
{
L
`

}
denotes a Stirling number of the second kind.

Proof: See Appendix A. �

In general, the Carleman condition guarantees that the set of moments uniquely defines the probability distribution.
For the sake of completeness, it is verified in Appendix B. Hence, the set of moments {m̄L}L>1 uniquely defines the
Poisson distribution, and Theorem 1 implies that the LSD is a Poisson law with mean β:

Corollary 1. Suppose that S ∈ RN×βN is a time-hopping matrix, as specified in Definition 2, with Ns = 1. Then, the
ESD of {SST: N > 1} converges in probability to the distribution function F of a Poisson law with mean β:

FSS
T

N (x) p−−−→ F(x) =
∑
k>0

βke−β

k!
1{k 6 x}. (8)

In terms of measures, TH-CDMA is thus characterized by the purely atomic measure given by:

µTH :=
∑
k>0

βke−β

k!
δk =

∑
k>0

fk(β)δk, (9)

being fk(β) := βke−β/k!, and δk the point mass distribution, i.e., δk(A) = 1 if k ∈ A, and δk(A) = 0 otherwise. Whence,
F(x) = µTH((−∞, x]) = µTH([0, x]). The above implies peculiar properties of TH-CDMA when compared against DS-
CDMA. For convenience, we report here the Marc̆enko-Pastur law, that is the LSD of eigenvalues of DS-CDMA matrices
(see Definition 2), which has measure:

µDS = (1− β)+ δ0 + µDS
ac , (10)

where (x)+ := max
{

0, x
}

, and µDS
ac is the absolutely continuous part of µDS with density (Radon-Nikodym derivative

with respect to the Lebesgue measure m):

dµDS
ac

dm
(x) =

1

2πx

√
−(x− `+)(x− `−) 1{x ∈ [`−, `+]} =: fMP(x), (11)

where `± = (1±√β)2.
Fig. 2 shows Marc̆enko-Pastur and Poisson laws for β = 1/2. The Marc̆enko-Pastur law has, in general, an absolute

continuous part with probability density function showed in solid line and an atomic part formed by a point mass at
the origin showed with a cross at height 1/2. The Poisson law has a purely atomic (also known as discrete, or counting)
measure with point masses at nonnegative integers showed by dots with heights given by fk(β) (envelope showed in
dashed line).

We use the Poisson LSD to find the spectral efficiency of TH-CDMA with Ns = 1 in the LSL, i.e. (see eq. (5)):∫ ∞
0

log2(1 + λγ) dFSS
T

N (λ) p−−−→
∫ ∞
0

log2(1 + λγ) dF(λ). (12)

It is important to remark that the above convergence in probability does not follow immediately; in fact, convergence
in law does only imply convergence of bounded functionals, but log2(1 + λγ) is not bounded on the support of F(λ).
We prove eq. (12) in Appendix C, and thus:

Copt
N (γ) p−−−→ Copt(γ) =

∑
k>0

βke−β

k!
log2(1 + kγ). (13)
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λ

Fig. 2: Density function of the LSD for DS-CDMA in solide line, and infinitesimal masses of atomic measures of DS-CDMA
and TH-CDMA (Poisson law) for β = 1/2 in cross and dots, respectively. DS-CDMA and TH-CDMA with Ns = 1 are
governed by Marc̆enko-Pastur and Poisson laws, respectively.

The capacity of a TH-CDMA system with Ns = 1 can be interpreted as follows. Rewrite eq. (13) as follows:

Copt(γ) =
∑
k>0

fk(β)Ck(γ), (14)

where Ck(γ) := log2(1 + kγ). Hence, Copt(γ) is a sum of channel capacities Ck(γ), k ∈ N, weighted by probabilities
fk(β). Since Ck(γ) is the capacity of a complex AWGN channel with signal-to-noise ratio kγ, k ∈ N, Copt(γ) is equal
to the capacity of an infinite set of complex AWGN channels with increasing signal-to-noise ratio kγ paired with
decreasing probability of being used fk(β). Therefore, TH-CDMA has the same behavior of an access scheme that
splits the multiaccess channel into independent channels, each corrupted by noise only, with power gain equal to k,
and excited with probability fk(β). Since fk(β) is also the probability that k signatures have their nonzero element in
the same dimension, that is for TH-CDMA associated with the event of waveforms having their pulse over the same
chip, for small β, that is, β 6 1, channels with high capacity (for a fixed γ), that is, with k � 1, are less frequently
used than channels with low capacity; in general, channels with k in a neighborhood of β are used most frequently.

One noticeable difference between DS and TH matrices is that in the former the maximum eigenvalue λmax
a.s.−−−→ (1+√

β)2 [27], and thus also λmax
p−−→ (1 +

√
β)2, while in the latter λmax

p−−→∞.

Moreover, there exists a nonzero probability f0(β) = e−β such that, also for β > 1, the zero-capacity channel (k = 0)
is excited. This probability, that is the amplitude of the Dirac mass at λ = 0, is equal to F(0); it equals the probability
that a chip is not chosen by any user or, equivalently, the average fraction of unused chips; and, finally, it equals the
high-SNR slope penalty, as we will detail below.

It is interesting to analyze the behavior of rN := rankS/N , that is a random variable for finite N . Figure 3 shows
with marks r̄N := E[ rN ] for TH-CDMA with Ns = 1 and Ns = 2, and for DS-CDMA, when N = 50: Monte-Carlo
simulations provide point data, represented by marks, with error bars showing one standard deviation of rN . Solid lines
represent the limiting value r of rN as N →∞. We will show in the below Theorem 2 that, for Ns = 1, rN

p−−→ 1−e−β .
Almost sure convergence does hold for the Marc̆enko-Pastur law, hence for DS-CDMA one has rN

a.s.−−−→ min{1, β}.
For TH-CDMA with increasing Ns, one might expect r of TH-CDMA to tend to that of DS-CDMA, also suggested
by the behavior of the Ns = 2 case shown on figure. In the general Ns > 1 case, we are able to find the upper bound
r 6 1 − e−Nsβ only, holding in probability, that is derived in the below Corollary 2, and shown with the dashed line
on Fig. 3.

Corollary 2. Under the same assumptions of Theorem 1, it results rN := 1
N rankS p−−→ 1− e−β .

Proof: When Ns = 1, rankS is equal to the number of nonempty rows of S. Therefore, rN
p−−→ 1− e−β .

Remark 1. From the definition of ESD, NFSS
T

N (0) is equal to the number of zero eigenvalues, that also provides the
dimension of the nullity subspace of SST. Since, from the Rank-Nullity Theorem, dim KerSST = N − dim ImSST =
N − rankSST = N − rankS, it results FSS

T

N (0) = 1
N rankS p−−→ 1− e−β .

Theorem 2. Let Ns > 1. An upper bound to r is given by r 6 min{β, 1− e−Nsβ}, which holds in probability.
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Fig. 3: Normalized rank r (solid lines) vs. load β. The dashed line represents an upper bound of r for TH-CDMA with Ns = 2.
Crosses, circles, and squares (generally referred to as marks), are obtained by evaluating E[ rankS/N ] by Monte-Carlo
simulations of a finite-dimensional system with N = 50, for TH-CDMA with Ns = 1, TH-CDMA with Ns = 2, and
DS-CDMA, respectively. Error bars represent one standard deviation of rankS/N .

Proof: Rewrite S as follows: S = [ST
1, · · · ,ST

Ns
]T, where {Si}Ns

i=1 are Nh × K matrices, Nh = N/Ns. Using the

inequality rank(A + B) 6 rankA + rankB, we can upper bound rankS as follows: rankS 6
∑Ns

i=1 rankSi. Since
{Si}Ns

i=1 are independent, by Theorem 2 one has r 6 1− e−Nsβ in probability. Moreover, since rankS/N 6 min{1, β}
surely, we also have r̄ 6 β. �

3) Asymptotics: In the following, spectral efficiency, when expressed as a function of η := Eb/N0, will be indicated
by1 C (b/s/Hz), as suggested in [21], rather than C (b/s/Hz), that denotes spectral efficiency as a function of γ. While
an expression of C can be found in terms of the LSD, the same is more difficult for C, given the nonlinear relation
between C and C: C = C(ηC/β) (c.f. eq. (4)).

In order to understand the asymptotic behavior of C in the low-SNR and high-SNR regimes, i.e., as η → ηmin :=
infC>0 η(C) and η → ∞, respectively, Shamai and Verdú [7] and Verdú [21] introduced the following four relevant
parameters:

ηmin: the minimum energy per bit over noise level required for reliable communication;
S0: the wideband slope (b/s/Hz/(3 dB));
S∞: the high-SNR slope (b/s/Hz/(3 dB));
L∞: the high-SNR decibel offset.

In our setting, the low-SNR and high-SNR regimes also correspond to C→ 0 (so called wideband regime [21]) and
C→∞.

The minimum energy-per-bit ηmin and the wideband slope S0 (b/s/Hz/(3 dB)) characterize the affine approximation
of C vs. ηdB := 10 log10 η as C→ 0:

ηdB = ηdBmin +
10 log10 2

S0
C + o(C), C→ 0. (15)

From eq.s (15) and (4), one can find ηmin and S0 as follows:

ηmin = lim
γ↓0

βγ

C(γ)
=

β

C ′(0)
=

β

E[λ ]
ln 2, (16)

S0 = −2 ln 2
(C ′(0))2

C ′′(0)
= 2

(E[λ ])2

E[λ2 ]
, (17)

where the expression in the last equality of both eqs. (16) and (17) is obtained by differentiating log2(1 + λγ) with
respect to λ under the integral sign.

The high-SNR slope S∞ (b/s/Hz/(3 dB)) and high-SNR decibel offset L∞ characterize the affine approximation of
C vs. η as C→∞:

ηdB =
10 log10 2

S∞
C + L∞ 10 log10 2 +O(log10 C), C→∞.

1In this subsection, we drop the superscript “opt” for ease of notation.
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Fig. 4: Spectral efficiency Copt (b/s/Hz) of TH-CDMA vs. DS-CDMA with optimum decoding as a function of Eb/N0 (dB) with
load β = 1/2. Orthogonal multiple access is reported for comparison (gray solid line). The Ns = 1 TH-CDMA case is
plotted for theoretical-values (blue solid line) vs. simulated data (blue triangles). The Ns = 2 TH-CDMA case reports
only simulated data (blue dots). DS-CDMA is shown with red solid line. Note on figure that TH-CDMA with Ns = 1 and
Ns = 2 have both similar performance as DS in the wideband regime (Eb/N0 → ln 2), while departing from it for high
SNR when Ns = 1. Note on figure that the loss incurred with TH drops to a very small value with as early as Ns = 2.

Equivalently, the following relation holds in terms of C vs. γ:

C(γ) = S∞
[

log2(βγ)− L∞
]

+ o(1), γ →∞,

from which S∞ and L∞ are derived as:

S∞ = lim
η↑∞

C(η)

ln η
ln 2 = lim

η↑∞
η C′(η) ln 2 = lim

γ↑∞
γC ′(γ) ln 2 = 1− F(0) (18)

L∞ = log2 β + lim
γ↑∞

[
log2 γ −

C(γ)

S∞

]
, (19)

where the last equality in eq. (18) is obtained by differentiating log2(1 + λγ) with respect to γ and applying the
dominated convergence theorem to pass the limit under the integral sign.

For TH-CDMA with Ns = 1, it can be shown by direct computations that the four above parameters are given by:

ηmin = ln 2, (20)

S0 = 2
β

1 + β
, (21)

S∞ = 1− e−β , (22)

L∞ = log2 β −
1

1− e−β
∑
k>1

βke−β

k!
log2 k. (23)
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For the generic case Ns > 1, one can show that asymptotics in the wideband regime are the same as above (see
eq. (20) and (21)). More precisely, we show in Appendix D that E[λ ] = β surely for any matrix ensemble where

columns of S are normalized, and that 1
N

∑N
i=1 λ

2
i

p−→ β(β+ 1). Therefore, from eqs. (16) and (17), one has ηmin = ln 2
surely for any Ns and S0 in probability as in eq. (21), respectively.

Comparing eqs. (20)-(23) with DS-CDMA results [6], shows that TH-CDMA has same wideband asymptotic
parameters, ηmin and S0, as DS-CDMA, while different high-SNR parameters, S∞ and L∞. In particular, in the high-
SNR regime, DS-CDMA achieves S∞ = min{1, β} while TH-CDMA achieves S∞ = 1−e−β , that is, TH-CDMA incurs
in a slope penalty given by e−β . At very high loads, β � 1, this penalty becomes negligible, and TH-CDMA high-SNR
slope tends to that of DS-CDMA.

Figure 4 shows spectral efficiency C (b/s/Hz) of TH-CDMA with Ns = 1 (blue solid line) vs. DS-CDMA (red solid
line) as a function of Eb/N0 (dB) with load β = 1/2; simulated data for TH with Ns = 1 are also represented on
figure (blue triangles) to highlight agreement with theoretical values. Orthogonal multiple access is also reported for
comparison (gray solid line) and represents an upper bound on the sum-rate of a multiuser communication scheme. In
the wideband regime, where C→ 0, both TH-CDMA and DS-CDMA achieve ηmin = ln 2 and same wideband slope S0.
At the high-SNR regime, where Eb/N0 →∞, DS achieves larger high-SNR slope than TH. A simulated case of Ns = 2
was also considered in order to understand the effect on C of increased Ns for TH-CDMA (see blue dots on figure).
While for any finite Ns the spectral efficiency gap between DS-CDMA and TH-CDMA grows as Eb/N0 increases, figure
shows that for common values of Eb/N0, e.g. Eb/N0 < 20 dB, Ns = 2 pulses only are sufficient to reduce the gap to
very small values. Figure 5 shows spectral efficiency Copt (b/s/Hz) for TH with Ns = 1 (blue solid line) and Ns = 2
(dotted line), and for DS (red solid line), for Eb/N0 = 10 dB. It is shown that TH achieves lower spectral efficiency with
respect to DS. However, the loss is negligible for both β � 1 and β � 1. The gap between the two spectral efficiencies
can be almost closed with increased, yet finite, Ns. Simulations suggest that Ns = 2 is sufficient to significantly reduce
the gap.

B. Single-User Matched Filter

The output of a bank of SUMF is given by eq. (1), that is, y = Sb+ n. Focusing on user 1, one has:

y1 = sT1y

= b1 +

K∑
k=2

ρ1kbk + n1 (24)

= b1 + z1,
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Fig. 6: Probability density function of the real (or imaginary) component of the noise-plus-interference term of eq. (24) for TH
sequences with γ = 13 dB, β = 1, and Ns = 1 (blue solid line), and comparison against a Gaussian PDF with same mean
and variance (red dashed line). This example shows that, contrary to DS-CDMA, P sumf

Z as given in eq. (33) may be, in
general, far from Gaussian.

where ρ1k := sT1sk. As shown in [6], spectral efficiency for binary or spherical DS-CDMA when each SUMF is followed
by an independent single-user decoder knowing S is [6], [7]:

Csumf
DS (β, γ) = β log2

(
1 +

γ

1 + βγ

)
(b/s/Hz). (25)

This result is general, and in particular it does not assume that the distribution of neither input nor interference terms
is Gaussian. Note, however, that, in this case, Gaussian inputs are optimal. In fact, for long spreading sequences, by
virtue of the strong laws of large numbers, one has

∑K
k=2 ρ

2
1k

a.s.−−−−→ β, and therefore the mutual information per user
in bits per channel use is:

I(y1; b1|S) = I
(
y1; b1

∣∣ρ12, . . . , ρ1K)
= E

[
log2

(
1 +

γ

1 + γ
∑K
k=2 ρ

2
1k

)]
a.s.−−−−→ log2

(
1 +

γ

1 + γβ

)
. (26)

A similar result does hold for I(y1; b1) as well.

When interference is not Gaussian, we may expect spectral efficiency to assume a very different form than above.
This will prove to be the case for the mutual information of TH-CDMA assuming Gaussian inputs, with finite Ns, as
investigated below.

Theorem 3. Suppose that S ∈ RN×βN is a time-hopping matrix with generic Ns <∞, and that the receiver is a bank
of single-user matched filters followed by independent decoders, each knowing S. Assuming Gaussian inputs, mutual
information Isumf

TH (b/s/Hz) is given by:

Isumf
TH (β, γ,Ns) := βI(y1; b1|S) = β ·

∑
k>0

(N2
s β)k

k!
e−N

2
s β log2

(
1 +

γ

1 + k
N2

s
γ

)
. (27)

Proof: See Appendix E.
In particular, for the Ns = 1 case, mutual information is:

Isumf
TH (β, γ) = β ·

∑
k>0

βk

k!
e−β log2

(
1 +

γ

1 + kγ

)
, (28)

that can be compared to, and interpreted similarly to, eq. (13).
Note that eq. (28) provides the mutual information of TH-CDMA with Ns = 1, and not the spectral efficiency,

since Gaussian inputs, rather than optimal ones, are considered. Hence, we know that spectral efficiency will be larger
than or equal to Isumf

TH (β, γ). This mutual information expression is, however, sufficient to catch a significant difference



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 10

between DS-CDMA and TH-CDMA. By comparing eqs. (25) and (28), we can claim that, while spectral efficiency for
DS is bounded at high γ, being:

lim
γ→∞

Csumf
DS (β, γ) = β log2

(
1 +

1

β

)
, (29)

spectral efficiency for TH is unbounded. We can indeed derive the below stronger result:

Corollary 3. Under the hypotheses of Theorem 3, the high-SNR slope of the mutual information (27) of TH is:

S sumf
∞,TH = βe−N

2
s β . (30)

Remark 2. The maximum slope as a function of β is achieved at β = 1/N2
s , for which S sumf

∞,TH = 1/(eN2
s ). Since

Ns > 1, the global maximum is 1/e, and the optimum load is β = 1. This behavior directly provides an insight from
a design standpoint: at high-SNR, the number of chips such that an increase in Eb/N0 yields a maximum increase in
terms of mutual information is equal to the number of users. As a comparison, for optimum decoding, S∞ increases
monotonically with β, and its supremum is supS∞ = 1.

Differently from DS, when each user decoder does not have knowledge about cross-correlations of signature sequences
of other users, mutual information assumes a very different form, as derived in the following theorem.

Theorem 4. Suppose that S ∈ RN×βN is a time-hopping matrix with generic Ns <∞, and that the receiver is a bank
of single-user matched filters followed by independent decoders, each knowing the signature sequence of the user to
decode only. Assuming Gaussian inputs, mutual information Isumf

TH?(β, γ,Ns) (bits/s/Hz) is given by:

Isumf
TH?(β, γ,Ns) := βI(y1; b1) = β · [h(P sumf

Y )− h(P sumf
Z ) ], (31)

where P sumf
Y and P sumf

Z are the two following Poisson-weighted linear combinations of Gaussian distributions:

P sumf
Y =

∑
k>0

(βN2
s )k

k!
e−βN

2
s CN(0, 1 + γ + kγ/N2

s ), (32)

P sumf
Z =

∑
k>0

(βN2
s )k

k!
e−βN

2
s CN(0, 1 + kγ/N2

s ). (33)

Proof: See Appendix F.
Despite decoders partial knowledge of S, a same high-SNR slope as that achieved when decoders have knowledge of

S is verified in the Ns = 1 case:

Corollary 4. Under the hypotheses of Theorem 4, the high-SNR slope of the mutual information Isumf
TH?(β, γ, 1) is:

S sumf
∞,TH? = βe−β . (34)

Based on eq. (33), it can be easily checked that the kurtosis of the interference-plus-noise z1, that we denote Z since
it is independent of the user, is:

κZ :=
E
[
|Z|4

]
E[ |Z|2 ]

2 = 2 +
2

N2
s

· βγ2

(1 + βγ)2
, (35)

that is always greater than 2, hence showing non-Gaussianity of Z for any β, γ and Ns. This non-Gaussian nature
is represented on Fig. 6, that shows the interference-plus-noise PDF P sumf

Z (solid blue line on figure), as given by
eq. (33) when β = 1, γ = 13 dB and Ns = 1, vs. a Gaussian distribution with same mean and variance (red dashed
line on figure). As shown by figure, P sumf

Z , that is a linear combination, or “mixture,” of Gaussian distributions with
Poisson weights, cannot be reasonably approximated with a single Gaussian distribution; hence, the Standard Gaussian
Approximation does not hold in general. This is the reason for the mutual information gap between DS and TH.

The wideband regime is not affected by decoders’ knowledge about crosscorrelations between signature sequences,
as summarized by the below corollary, which proof is omitted for brevity.

Corollary 5. The wideband regime parameters derived from either eq. (28) or eq. (31) are ηmin = ln 2 and:

Ssumf
0,TH =

2β

1 + 2β
. (36)

Differently from above, where Ns is finite and does not depend on N , we now investigate the case Ns = αN with
α ∈ (0, 1), while N → ∞. We show, using an approach similar to that developed in [6], that spectral efficiency of a
TH channel with Ns = αN , α ∈ (0, 1), is equal to that of a DS system, irrespectively of α ∈ (0, 1).

Theorem 5. Suppose that S ∈ RN×βN is a time-hopping matrix with Ns = αN , α ∈ (0, 1), and that the receiver is a
bank of single-user matched filters followed by independent decoders knowing cross-correlations and input distributions
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Fig. 7: Spectral efficiency Csumf vs. Isumf (b/s/Hz) as a function of Eb/N0 (dB) with load β = 1. Closed form expressions of spectral
efficiency vs. mutual information are plotted in solid vs. dashed lines. Simulated mutual information is represented by
dotted lines. On figure: SUMF, TH-CDMA, Ns = 1, Ns = 2 and Ns = 5, blue dashed lines; SUMF, TH-CDMA?, Ns = 1,
blue dashed line; DS-CDMA, red solid line; TH-CDMA with Ns = αN when N → ∞, blue solid line, coinciding with
red solid line; TH-CDMA? with Ns = 2 and Ns = 5, blue dotted lines. Note on figure the crossover of SUMF, TH-
CDMA, Ns = 2 and SUMF, TH-CDMA?, Ns = 2, that shows an example of mutual information becoming greater than
conditional mutual information. For reference, orthogonal multiple-access in gray line.

of interfering users. Capacity Csumf(ρ12, . . . , ρ1K , Pb2 , . . . , PbK ) of the single-user channel of eq. (24), expressed in bits
per user per channel use, converges almost surely to:

Csumf(ρ12, . . . , ρ1K , Pb2 , . . . , PbK ) a.s.−−−−→ log2

(
1 +

γ

1 + βγ

)
, (37)

irrespective of α.

Proof: See Appendix H.

Based on eq. (37), spectral efficiency coincides with that of DS sequences, as given by eq. (25). As a matter of fact,
Theorem 5 is the generalization of a result of Verdú and Shamai [6] to TH matrices where the fraction of nonzero
entries is α, to which it reduces for α = 1.

Figure 7 shows spectral efficiency Csumf vs. mutual information Isumf (b/s/Hz) as a function of Eb/N0 (dB) for DS-
CDMA (eq. (25), red solid line on figure), TH-CDMA knowning cross-correlations between users (eq. (28), blue large-
dashed lines) and TH-CDMA without knowing cross-correlations between users, indicated as TH-CDMA? (eq. (31),
blue small-dashed line), with unit load β = 1. Spectral efficiency of TH-CDMA when Ns = αN , α ∈ (0, 1), as N →∞,
is equal to that of DS (c.f. eq. (37), red solid line). As previously, the orthogonal case (gray solid line) is shown for
reference. Note that spectral efficiency is bounded in DS-CDMA and in TH-CDMA when Ns = αN , α ∈ (0, 1), as
N → ∞; the value of the limit is 1 on figure (c.f. eq. (29)). On the contrary, mutual information is not bounded for
both TH-CDMA and TH-CDMA?; in particular, when Ns = 1, both TH-CDMA and TH-CDMA? grow with similar
slope as Eb/N0 increases. Mutual information of systems using multiple pulses per symbol is shown for TH-CDMA?

with Ns = 2 (small-dashed line) and for TH-CDMA with Ns = 2 (eq. (27), large-dashed line). These Ns 6= 1 cases show
that mutual information decreases with respect to the one pulse per symbol case. Figure 8 shows spectral efficiency
Csumf (b/s/Hz) as a function of β for fixed Eb/N0 = 10 dB. Similarly as on fig. 7, TH with Ns = 1 outperforms other



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 12

O
rth

og
on

al

No spreading

Ns = 1

Ns = 2

Ns = 1

Ns = 2
Ns/N → α ∈ (0, 1]

1 2 3 4 5 6

1

2

3

4

5

6

β

Csumf vs. Isumf

(b/s/Hz)

Corth/ns

Isumf
TH?

Isumf
TH

Csumf

Fig. 8: Spectral efficiency Csumf vs. mutual information Isumf as a function of β for fixed Eb/N0 = 10 dB. DS and TH with
Ns/N → α ∈ (0, 1) are shown in red solid line, and represent the worst performance on figure. Dashed lines correponds
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schemes, with and without complete knowledge of S. As β → ∞, interference becomes increasingly Gaussian, and
mutual information of TH reduces to that of DS, tending to the same limit 1/ ln 2.

C. Decorrelator and MMSE

The output of a bank of decorrelators, following the discrete channel y = Sb+ n (c.f. eq. (1)), is given by:

r = S+y = S+Sb+ S+n, (38)

where S+ denotes the Moore-Penrose pseudoinverse; if R = STS is invertible, then S+ = (STS)−1ST, otherwise S+,
according to the Tikhonov regularization, exists and can be computed as the limit (STS + αI)−1ST as α→ 0+.

In DS-CDMA, for any fixed β ∈ (0, 1), S is almost surely full rank as N → ∞, and therefore, R is almost surely
invertible, in which case eq. (38) becomes:

r = b+ z, (39)

where z ∼ CN(0,R−1N0). Assuming independent single-user decoders, spectral efficiency is [6]:

Cdeco
DS (β, γ) = β log2(1 + γ(1− β)). (40)

The output of a bank of MMSE filters observing y = Sb+ n (c.f. eq. (1)) is:

r = W Ty = W TSb+W Tn

= Gb+ ν, (41)

where W T is defined as follows:

W T :=

(
STS +

1

γ
I

)−1
ST = ST

(
SST+

1

γ
I

)−1
. (42)

Note that, as well known, MMSE and decorrelator coincide as γ → ∞. In DS-CDMA, for any fixed β > 0, it was
shown in [6] that:

Cmmse
DS (β, γ) = β log2

(
1 + γ − 1

4
F(β, γ)

)
, (43)

where:

F(β, γ) =
[√

1 + γ`+ −
√

1 + γ`−
]2
,

being `± = (1±√β)2 as in eq. (11).
We can treat both decorrelator and MMSE as special cases of the linear operator

W T(α) := (STS + αI)−1ST = ST(SST+ αI)−1,
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for α→ 0+ and α = 1/γ, respectively. Similarly as eq. (41), one has:

r(α) = W T(α)y = G(α)b+ ν(α), (44)

where dependence on α is now made explicit, and the output for user 1 is:

r1 = G11b1 +

K∑
k=2

G1kbk + ν1. (45)

For Ns = 1, a closed form expression for the generic element of G(α) is derived in Appendix I, and reads as:

Gij(α) = ρij ·
1

α+ vi
, (46)

where vi is:

vi =

K∑
k=1

1{ρik 6= 0} =

K∑
k=1

|ρik| =
K∑
k=1

|ρki|. (47)

Denote with Jj the following set: Jj := {k ∈ [1 : K] : ρjk 6= 0}. Hence, vj = |Jj | is the cardinality of Jj . Denote with
J ′j := Jj\{j}. Since j ∈ Jj , one has v′j := |J ′j | = vj − 1. We can rewrite eq. (45) as follows:

r1 =
1

α+ v1
b1 +

1

α+ v1

∑
k∈J ′

1

ρ1kbk + ν1. (48)

Note that ρ1kbk for ρ1k 6= 0 is distributed as bk, and ν1 given v1 is complex Gaussian with zero mean and conditional
variance:

Var
[
ν1
∣∣ v1 ] = N0 ·

1

(α+ v1)2
.

Since the distribution of both r1 conditioned on S and r1 conditioned on b1 and S is complex Gaussian, I(b1; r1|S)
expressed in bits per user per channel use is:

I(b1; r1|S) = I(b1; r1|v′1) = E

[
log2

(
1 +

E/(α+ v′1)2

(v′1E+N0)/(α+ v′1)2

)]

= E

[
log2

(
1 +

γ

v′1γ + 1

)]
,

Since v′1 ∼ Binomial(K − 1, 1/N), in the LSL one has v′1
d−→ Poisson(β). Therefore, we proved the following:

Theorem 6. Suppose that S ∈ RN×βN is a time-hopping matrix with Ns = 1, and that the receiver is a bank of
either decorrelators (α = 0) or MMSE filters (α = 1/γ) followed by independent decoders, each knowing S. Assuming
Gaussian inputs, mutual information IαTH (b/s/Hz) is given by:

IαTH(β, γ) := βI(b1; r1|S) = β
∑
k>0

βke−β

k!
log2

(
1 +

γ

kγ + 1

)
. (49)

Since eq. (49) does not depend on α and is equal to eq. (28) for SUMF, one explicitly has IαTH = Isumf
TH = Immse

TH = IdecoTH .
With minor modifications of the above argument, it is possible to show that a similar result does hold for any linear
receiver W T(α), α > 0, under the assumption Ns = 1. Therefore, results for SUMF can be extended verbatim to both
decorrelator and MMSE receivers, when Ns = 1. This result suggests a striking difference with respect to DS, where
spectral efficiency depends on the adopted linear receiver: In TH with Ns = 1, SUMF, decorrelator and MMSE all
result in the same mutual information.

In order to compare DS and TH for decorrelator and MMSE, we separate the analysis for systems with β < 1 and
β > 1, referred to as underloaded and overloaded systems, respectively.

Underloaded system (β < 1).
Decorrelation in DS allows to achieve the maximum high-SNR slope, Sdeco∞,DS = β, that is equal to that of orthogonal

multiple access. On the contrary, TH does not fully exploit the capabilities of CDMA in the high-SNR regime, since
Sdeco∞,TH = S sumf

∞,TH = βe−β 6 β. This behavior follows directly from cross-correlation properties of signature sequences
of DS vs. TH: In DS, the almost sure linear independence of signature sequences, that holds for any β ∈ (0, 1), makes
R = STS almost sure invertible, and thus interference can be mostly removed, which is not the case of TH (c.f. Fig. 3
and Theorem 2). However, the optimal high-SNR slope in DS comes at the expense of a minimum Eb/N0 equal to
(ln 2)/(1−β), that can be much larger than that achieved by TH, namely ln 2; in particular, as β → 1−, the minimum
energy-per-bit for DS with decorrelator grows without bound. Therefore, decorrelation with DS should to be considered
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Fig. 9: Spectral efficiency Cmmse vs. mutual information Immse and Cdeco vs. Ideco (b/s/Hz) as a function of Eb/N0 (dB) with load
β = 0.9. Mutual information of TH-CDMA with Ns = 1 (blue dashed line) vs. spectral efficiency of DS-CDMA (red solid
lines), for decorrelator and MMSE receivers, is shown. It is also shown orthogonal access (gray line) for reference.

in a very low load, high-SNR regime only: in this region, it outperforms TH. It can be shown, by comparing eqs. (43)
and (40), that in DS spectral efficiency of MMSE is always larger than that of decorrelator. In particular, it achieves
a minimum energy-per-bit equal to ln 2, which is optimal, and also an optimal high-SNR slope.

Overloaded system (β > 1).
Spectral efficiency of TH and DS with MMSE is similar in the low-SNR regime, with same minimum energy-per-bit

and wideband slope. At high-SNR, mutual information of TH is unbounded, while spectral efficiency of DS is bounded,
as in the SUMF case. In particular, while the high-SNR slope of TH is equal to Ssumf

∞,TH(β) = βe−β for any β, the
high-SNR slope of DS with MMSE is:

Smmse
∞,DS(β) = β 1{β ∈ [0, 1)}+

1

2
1{β = 1}+ 0 · 1{β > 1},

which implies that, as Eb/N0 →∞, Cmmse
DS is infinite for β 6 1, while it is finite for β > 1, and equal to (c.f. eq. (43))

[6]:

lim
γ→∞

Cmmse
DS (β, γ) = β log2

β

β − 1
. (50)

By comparing this result with eq. (29), that refers to SUMF, one also notes that the two limits are different, although
as β →∞ both tend to 1/ ln 2.

Figure 9 shows spectral efficiency Cmmse and Cdeco vs. mutual information Immse and Ideco (b/s/Hz) as a function of
Eb/N0 (dB) for DS (red solid lines) and TH (blue dashed line), when β = 0.9. Orthogonal access is also shown for
reference (gray solid line). The choice of β = 0.9 represents a scenario with high interference where eq. (40) is still valid,
and DS with decorrelation still comparable. MMSE and decorrelator receivers achieve a same mutual information for
TH: in the low-SNR regime, Immse

TH = IdecoTH and Cmmse
DS have similar behavior, that departs as Eb/N0 increases. Decorrelator

with DS achieves the maximum high-SNR slope, which is equal to that of the orthogonal access: note that the two
curves on figure are, in fact, translated. This is not the case for TH, for S is not full rank with high probability, and
the high-SNR slope is indeed lower. It is shown on figure that DS with MMSE outperforms linear receivers with TH:
this is due to the particular choice of β. Figure 10 shows spectral efficiency Cmmse

DS and Cdeco
DS (red solid lines) vs. mutual

information Isumf
TH = IdecoTH = Immse

TH (blue dashed line) as a function of β, when Eb/N0 = 10 dB. This figure shows that
MMSE with DS is outperformed by TH for large β: in particular, there exists a minimum value of β, say β̄, in general
depending on Eb/N0, beyond which the mutual information of TH is higher than the spectral efficiency of DS, although
both tending to a same limit as β → ∞, that is, 1/ ln 2. While it is difficult to study β̄ as a function of Eb/N0, the
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Fig. 10: Spectral efficiency Cmmse
DS and Cdeco

DS vs. mutual information Isumf
TH (b/s/Hz) as a function of β for DS-CDMA (red solid

lines) and TH-CDMA (blue dashed line), when Eb/N0 = 10 dB. Orthogonal access is reported for reference (gray solid
line).
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Fig. 11: Spectral efficiency Cmmse
DS vs. mutual information Isumf

TH (b/s/Hz) as a function of β for DS-CDMA (red solid lines) and
TH-CDMA (blue dashed lines), for values of ηdB := Eb/N0 ∈ {10, 30, 50} dB. Asymptotic value of Cmmse

DS for ηdB → ∞
is also shown for reference (thin solid black line).

above discussion on the high-SNR slope of DS suggest that β = 1 marks a transition in DS behavior as Eb/N0 →∞.
Figure 11 shows Cmmse

DS (red solid lines) and Isumf
TH = IdecoTH = Immse

TH (blue dashed line) as a function of β, for different
values of ηdB = 10 log10(Eb/N0). Figure shows that, as ηdB increases, spectral efficiency of DS grows linearly for β � 1,
and at about β = 1 quickly drops towards the limit value given by eq. (50), while spectral efficiency of TH remains
smooth for any load in the neighborhood of β = 1 and increases monotonically with ηdB.

D. Synopsis of the TH-CDMA case

Figure 12 shows spectral efficiency C or mutual information I (b/s/Hz) vs. Eb/N0 (dB) for the two extreme cases of
optimum decoding and SUMF receivers, when β = 1. Curves derived from closed form expressions of spectral efficiency
are shown for optimum decoding when Ns = 1 (top blue solid line), and SUMF when Ns = αN as N →∞ and α ∈ (0, 1)
(bottom blue solid line). Curves derived from closed form expressions of mutual information assuming Gaussian inputs
are shown for SUMF, TH-CDMA (blue dashed line, see label on figure) and SUMF, TH-CDMA? (blue dashed line, see
label on figure), when Ns = 1 and Ns = 2. Finding closed form expressions of spectral efficiency of optimum decoding
with generic Ns > 1 finite remains an open problem. Simulations provide, however, insights into the behavior of spectral
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Fig. 12: Spectral efficiency C vs. mutual information I (b/s/Hz) as a function of Eb/N0 (dB) with load β = 1. Optimum vs.
linear receivers are shown. Top curve shows Copt

DS for optimum decoding in DS-CDMA (red solid line). Bottom curve
shows C for SUMF, DS-CDMA (red solid line) coinciding with TH-CDMA when Ns goes to infinity proportionally to
N , i.e., limN→∞Ns/N = α ∈ (0, 1) (red solid line). In between these two extremes: Copt

TH curve for optimum decoding,
TH-CDMA, Ns = 2, simulated values (dotted blue line); Copt

TH curve for optimum TH-CDMA, Ns = 1 (blue solid line);
ITH curve for linear receivers, TH-CDMA, Ns = 1 (blue large-dashed line); Isumf

TH? curve for SUMF, TH-CDMA?, Ns = 1
and Ns = 2 (blue small-dashed line).

efficiency for this particular case, as shown by Copt
TH with Ns = 2 (blue dotted line). TH behavior is delimited by DS

curves, with optimum decoding vs. SUMF (top and bottom red lines). Both upper and lower curves are approached
by TH as Ns increases; in particular, we showed that the lower curve describes, in fact, TH when Ns = αN , α ∈ (0, 1),
as N →∞. In between these two extremes lie TH curves with optimum vs. linear receivers. In particular, for Ns = 1
(maximum energy concentration), mutual information of a receiver as simple as SUMF is not bounded, and also close
to optimum decoding with Ns = 1. Furthermore, a lack of knowledge in cross-correlations of spreading codes provokes
a drop of performance that is, however, not sufficient to degrade mutual information to DS spectral efficiency, with
any finite Ns.

Figure 13 compares either spectral efficiency C or mutual information I (b/s/Hz), as a function of β, for DS and
TH, when Eb/N0 = 10 dB. Both DS and TH have similar behaviors when β � 1, for linear and optimum receivers.
Irrespective of β, spectral efficiency of DS with optimum decoding is larger than that achieved by TH, the gap being
almost closed when Ns > 1 finite. Conversely, among linear receivers and access schemes, it is shown that DS with
SUMF has the lowest spectral efficiency, which is equal to that of TH when the number of pulses is asymptotically
a nonzero fraction of the number of chips. The largest spectral efficiency in DS is obtained with MMSE, which is
greater than the mutual information of TH when load is lower than a threshold β̄(Eb/N0), depending in general on
Eb/N0. At higher load, mutual information of TH is larger than spectral efficiency of DS. This analysis is intrinsically
conservative, since spectral efficiency of TH will be, in general, larger than or equal to the mutual information obtained
assuming Gaussian inputs. Therefore, one should expect that the gap in spectral efficiency between DS and TH with
linear receivers is smaller and larger than that showed on figure when β < β̄ and β > β̄, respectively.
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Fig. 13: Spectral efficiency C or mutual information I (b/s/Hz) as a function of β for DS and TH, when Eb/N0 = 10 dB, with
optimum and SUMF receivers. Orthogonal access and DS with MMSE receiver are reported for reference.

IV. Conclusions

Verdú and Shamai showed in [6] that optimum decoding provides a substantial gain over linear decoding in DS-
CDMA, with random spreading. In particular, a bank of single-user matched filters followed by independent decoders
is bounded in spectral efficiency at high-SNR, and linear multiuser detectors are needed in order to recover a nonzero
spectral efficiency high-SNR slope. This behavior is partly due to the “even” use of degrees of freedom—coinciding in
our setting with chips—that is intrisic of DS-CDMA [1].

The object of this paper was to analyze TH-CDMA with random hopping, and compare its behavior against DS-
CDMA; we interpreted time-hopping in the general framework developed in [6], [7]. The present analysis allowed
comparison of TH vs. DS with same energy per symbol and same bandwidth constraints, and, therefore, showed the
effect of the energy “concentration,” that is typical of TH. The degree of “unevenness” in TH-CDMA is directly related
to the number of pulses Ns representing each symbol. At one extreme, one has maximum “unevenness,” where all energy
is concentrated in one pulse (Ns = 1), while the other extreme corresponds to maximum “evenness,” Ns = N , where
TH coincides with DS. Particular emphasis has been put on the archetypal case of “unevennes,” that is Ns = 1, and
partial results showing the general behavior when Ns > 1 have been derived.

A first result of our analysis was to derive a closed form expression for spectral efficiency of TH-CDMA with optimum
decoding when Ns = 1, showing that, in this case, DS-CDMA outperforms TH-CDMA, in particular in the high-SNR
regime. Same wideband behavior, but lower high-SNR slope, was observed for TH-CDMA vs. DS-CDMA, that is
min{1, β} = S∞,DS > S∞,TH = 1 − e−β . A closed form expression for generic Ns remains an open problem; results
based on simulations suggested, however, that the spectral efficiency loss at high-SNR may be considerably reduced
while maintaining the number of pulses finite, and we provided evidences that the gap is reduced to a very small
value with as low as two pulses per symbol (Ns = 2). This result indicates that the spectral efficiency gap may be
substantially reduced while only using a fraction Ns/N of degrees of freedom per user, that asymptotically vanishes as
N grows.

A different behavior of TH-CDMA with respect to DS-CDMA was observed with linear receivers. Contrarily to
DS, spectral efficiency of SUMF for TH with Ns = 1 was unbounded. As suggested, this asymptotic behavior may
be traced back to the non-Gaussian distribution of the interference-plus-noise variable observed by each independent
single-user decoder, that, in turn, depends on cross-correlation properties of spreading sequences. The same high-SNR
slope Ssumf

∞,TH = βe−β was achieved by TH irrespectively of the knowledge that each single-user decoder had about
spreading sequences of all other users. It was interesting to note that the maximum slope for TH, providing a hint on
greatest energy efficiency, was reached when the number of users K was equal to the number of chips N , i.e., β = 1,
leading to Ssumf

∞,TH = 1/e ≈ 0.367879. On the contrary, for Ns = αN , α ∈ (0, 1), same spectral efficiency as DS-CDMA
(α = 1) was obtained irrespectively of α for N →∞.

The bounded nature of spectral efficiency with a SUMF bank in DS-CDMA is overcome, as well known, by using
more complex linear receivers, that also account for interference, such as MMSE and decorrelator. Conversely, we
showed that, in TH-CDMA, mutual information assuming Gaussian inputs has the same expression, irrespective of
the linear receiver used, due to the peculiar structure of TH spreading sequences. TH sequences are indeed “more”
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likely to be linearly dependent than DS ones, in agreement with the intuition based on the cardinality of binary DS
vs. TH codes, that is 2N vs. 2N . This lack of independence led to the impossibility of removing interference, which
is instead almost surely feasible for DS, e.g. with either decorrelator or MMSE receivers, as long as the load β < 1.
Therefore, in a low load, high-SNR scenario, DS outperforms TH. The opposite is true when β > 1. In fact, while
spectral efficiency in DS with MMSE rapidly drops, in particular with large Eb/N0, as soon as β becomes larger than
one, mutual information of TH decays softly when one keeps overloading the system, and tends to the same MMSE
DS limit. The absence of a spectral efficiency “transition” in the neighborhood of the unit load, that is typical of DS,
allows TH to outperform DS with any load larger than β = 1 for sufficiently high Eb/N0.

Beyond the natural extension of the present work to channels with fading, where the effect of an “uneven” use of
degrees of freedom typical of TH should be investigated, we do stress that, from the single-user perspective, TH is a
particular instance of impulsive signal. As such, the present theoretical setting, if appropriately adapted to asynchronous
links, may serve as a basis for refining the understanding of the limits of impulsive communications.
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Appendix A
Proof of Theorem 1

This Appendix is split in two parts. In the first part, we will find average moments E[mL ] for finite dimensional
systems, where both K and N are finite. In the second part, we will prove that Var[mL ]→ 0, hence showing convergence
in probability of mL to the Lth moment of a Poisson distribution in the LSL.

Part 1: Average Moments of TH-CDMA matrices with Ns = 1.

Denote πk ∈ [N ] the nonzero element of the kth column sk of S. Then:

SST =

K∑
k=1

sks
T
k =

K∑
k=1

eπke
T
πk
,

where [ei]j = δij , being δij the Kronecker symbol. Hence, SST is diagonal, and the nth element on the diagonal,
denoted νnN := [SST]nn, is equal to:

νnN = |{k ∈ [K] : πk = n}| ∈ [K].

The Lth moment of the ESD is:

mL =
1

N
tr(SST)L =

1

N

∑
i6N

[SST]Lii =
1

N

∑
i6N

νLiN . (51)

Now note that (νiN )Ni=1 is distributed according to a multinomial distribution with βN trials and N equally
probable categories, that is, (ν1N , . . . , νNN ) ∼ Multinomial(βN,N−11N ). The marginal distribution of each νiN is
Binomial(βN,N−1), thus:

E[mL ] =
1

N

∑
i6N

E [ νLiN ]

=

L∑
`=1

{
L

`

}
K!

(K − `)!
1

N `
. (52)

In the LSL, one has:

E[mL ]→
L∑
`=1

{
L

`

}
β`, (53)

that is exactly the Bell polynomial of order L, that provides the Lth moment of a Poisson distribution with mean β.
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Remark 3. Interestingly, the Lth moment of the Marc̆enko-Pastur law (c.f. eq. (11)) can be expressed as follows (see
e.g. [23], [27]):

mMP
L =

L∑
`=1

N`β`, N` =
1

L

(
L

`

)(
L

`− 1

)
, (54)

where N` is the number of non-crossing partitions of the set [L] into ` blocks, also known as Narayana number. As a
remark, the sum of Narayana numbers over [L] is the Lth Catalan number, that has many combinatorial interpretations
(see e.g. [28], [29]).

Also note that eq. (53) is formally similar to eq. (54), with Stirling number of the second kind in place of Narayana
numbers: While the latter enumerate non-crossing partitions only, the former enumerate all partitions, both crossing
and non-crossing ones.

Part 2: Var[mL ] → 0. Exploiting the diagonal structure of SST yields the following expression for the second

noncentral moment:

E [m2
L ] =

1

N2

∑
i6N

∑
j6N

E [ νLiNν
L
jN ] (55)

=
1

N
E [ ν2L1N ] +

(
1− 1

N

)
E [ νL1Nν

L
2N ]. (56)

The term E [ ν2L1N ] = O(1), therefore N−1 E [ ν2L1N ] contributes O(N−1) to the sum. The term E [ νL1Nν
L
2N ] can be

handled as follows. Since the probability generating function (PGF) of the multinomial distribution describing νN =
(ν1N , . . . , νNN ) is:

GνN (z) =
(
N−1

∑
m6N

zm

)K
, (57)

it follows that the PGF of the pair (ν1N , ν2N ) is:

Gν1Nν2N (z1, z2) =
(
N−1

(
z1 + z2 + (N − 2)

))K
= eβ(z1−1)eβ(z2−1) +O(N−1),

(58)

showing that νiN is asymptotically independent on νjN , i 6= j, and distributed as a Poisson distribution with mean β.
Therefore:

Var[mL ] = E [m2
L ]− E [mL ]2 = O(N−1). (59)

Appendix B
Verifying the Carleman condition

Lemma 1. The sequence of moments (m̄L)L>0 verifies the Carleman condition, i.e.,
∑
k>1 m̄

−1/2k
2k =∞.

Proof: We upper bound m̄2k as follows:

m̄2k

(a)
<

2k∑
`=1

{
2k

`

}
β`

(b)

6
2k−1∑
`=1

1

2

(
2k

`

)
`2k−`β` + β2k

(c)

6
1

2
(2k − 1)2k−1

2k−1∑
`=1

(
2k

`

)
β` + β2k

(d)
<

1

2
(2k − 1)2k−1(1 + β)2k + β2k

< (1 + β)2k(1 + (2k)2k)

where: (a) follows from the elementary inequality (2k)!/(2k − `)! = (2k)(2k − 1) · · · (2k − `+ 1) < (2k)`; (b) from the
inequality

{
n
`

}
6 U(n, `) := 1

2

(
n
`

)
`n−`; (c) from upper bounding the term `2k−` with (2k − 1)2k−1; (d) from extending

the summation over ` = 0, . . . , 2k. From elementary relations between p-norms, one has (1+(2k)2k)1/2k = ‖(1, 2k)‖2k 6
‖(1, 2k)‖1 = 1 + 2k, thus m̄

1/2k
2k < (1 + β)(1 + 2k), and therefore:∑

k>1

m̄
−1/2k
2k >

1

1 + β

∑
k>1

1

1 + 2k
=∞,

which verifies the Carleman condition. �
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Appendix C
Proof of Copt

N (γ) p−−→Copt(γ)

In this Appendix we show that P( |Copt
N (γ)− Copt(γ)| > ε )→ 0, for all ε > 0. It is sufficient to prove that

Var[AN ]→ 0, AN =

∫
h(x)dFSS

T

N (x), (60)

when h(x) is a concave, monotonically increasing function with sufficiently slow growth. (The case of interest is that
of h(x) with logarithmic growth.)

We use same notations as in Appendix A. Define the random measure:

µN (x) =
1

N

N∑
i=1

1{νiN = x}. (61)

The ESD FSS
T

N (x) is thus:

FSS
T

N (x) = µN ([0, x]) =
∑
k6x

µN (k), (62)

hence AN in (60) is

AN =

∫
h(x) dFSS

T

N (x) =
∑
x6N

h(x)µN (x). (63)

The first moment of AN is:

E [AN ] =
∑
x6N

h(x)E [µN (x) ] (64)

=
∑
x6N

h(x)
1

N

∑
i6N

E [ 1{νiN = x} ] (65)

=
∑
x6N

h(x)P( ν1N = x ). (66)

In order to compute the second moment of AN it is useful to preliminarily note that:∑
i6N

∑
j6N

E [ 1{νiN = x}1{νjN = x′} ] = NP( ν1N = x ) δxx′

+N(N − 1)P( {ν1N = x} ∩ {ν2N = x′} ).

(67)

For brevity, we denote p1N (x) = P( ν1N = x ) and p2N (x, x′) = P( {ν1N = x}∩{ν2N = x′} ). Hence, the second moment
of AN is:

E [A2
N ] =

∑
x6N

∑
x′6N

h(x)h(x′)E [µN (x)µN (x′) ] (68)

=
∑
x6N

∑
x′6N

h(x)h(x′)
1

N2

∑
i6N

∑
j6N

E [ 1{νiN = x}1{νjN = x′} ] (69)

=
∑
x6N

∑
x′6N

h(x)h(x′)

{
1

N
p1N (x)δxx′ +

(
1− 1

N

)
p2N (x, x′)

}
. (70)

Therefore, the LHS of (60) is

Var[AN ] =
∑
x6N

∑
x′6N

h(x)h(x′)

{
1

N
p1N (x)δxx′ +

(
1− 1

N

)
p2N (x, x′)− p1N (x)p1N (x′)

}
(71)

6 h(N)2
∑
x6N

∑
x′6N

1

N
p1N (x)δxx′ +

(
1− 1

N

)
p2N (x, x′)− p1N (x)p1N (x′) (72)

= h(N)2
∑
x6N

∑
x′6N

1

N
p1N (x)δxx′ +

(
1− 1

N

)[
p1N (x)p1N (x′) +O

( 1

N

)]
− p1N (x)p1N (x′) (73)

= h(N)2O
( 1

N

)
. (74)
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Appendix D
Asymptotics in the wideband regime for Ns > 1

1) Minimum energy-per-bit.

We will show that: Denote eigenvalues empirical average with λ̄N ,

λ̄N :=
1

N

N∑
i=1

λi.

Since

λ̄N =
1

N

N∑
i=1

λi =
1

N
tr(SST) =

1

N
tr(STS) =

1

N

K∑
i=1

sTisi =
1

N
·K = β

surely, it results λ̄N = E[λ ] = β, hence the minimum energy-per-bit is:

ηmin =
β

E[λ ]
ln 2 = ln 2.

2) Wideband slope S0.

Denote the empirical second moment of eigenvalues with SN ,

SN :=
1

N

N∑
i=1

λ2i ,

and let Rij = (STS)ij . Since:

1

N

N∑
i=1

λ2i =
1

N
tr(SST)2 =

1

N
tr(STS)2 =

1

N

K∑
i=1

K∑
j=1

R2
ij = β +

1

N

K∑
i=1

K∑
j=1
j 6=i

R2
ij , (75)

one has:

E[SN ] = β +
1

N
K(K − 1)E

[
R2

12

]
.

Denote

ρ := R12 = sT1s2 =

Ns∑
m=1

sT1ms2m =

Ns∑
m=1

ρm,

where sk = [sTk1, . . . , s
T
kNs

]T is an (Ns, Nh)-sequence (see Definition 2) and ρm := sT1ms2m. The moment generating
function (MGF) of ρ is:

Mρ(t) := E
[
etρ
]

= E
[
et(ρ1+···+ρNs )

]
=
(
E
[
etρ1

] )Ns
=

(∫
etξµ(dξ)

)Ns

,

where:

µ =
1

2Nh
δ− 1

Ns
+
(

1− 1

Nh

)
δ0 +

1

2Nh
δ 1
Ns
,

that is, explicitly,

Mρ(t) =

[(
1− 1

Nh

)
+

1

Nh
cosh

( t

Ns

)]Ns

. (76)

Hence E
[
ρ2
]

= M ′′ρ (0) = 1/N , and

E [SN ] = β + β
K − 1

N
→ β(1 + β).

It is shown below that Var[SN ] = O(1/N), that implies SN
p−−→β + β2. From eq. (75), one has:

E [S2
N ] = β2 +

2β

N
K · K − 1

N
+

1

N2

K∑
i=1

K∑
q=1

K∑
j=1
j 6=i

K∑
r=1
r 6=q

E [R2
ijR

2
qr ]

= β2 +
2β

N
K · K − 1

N
+

1

N2
K(K − 1)

(
E [ ρ4 ] + (K(K − 1)− 1)E [ ρ2 ]2

)
= β2 + 2β3 + β4 +O

( 1

N

)
hence Var[S2

N ] = O(1/N).
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Appendix E
Mutual Information of SUMF when single-user decoders have knowledge on cross-correlations.

The SUMF channel for user 1, as given by eq. (24), is:

y1 = b1 +

K∑
k=2

ρ1kbk + n1.

Assuming Gaussian inputs, bi ∼ CN(0, E), the conditional mutual information on {ρ12, . . . , ρ1K} expressed in bits per
channel use per user is:

I(y1; b1|ρ12, . . . , ρ1K) = E

[
log2

(
1 +

γ

1 + ςγ

)]
, (77)

where expectation is over {ρ12, . . . , ρ1K}, and ς :=
∑K
k=2 ρ

2
1k. We find below the PDF of ς in the LSL.

From eq. (76), the characteristic function (CF) of the generic RV ρ := ρ1k is:

ϕρ(t) := E [ eitρ ] =

[
1− Ns

N

(
1− cos

( t

Ns

))]Ns

=

Ns∑
m=0

(
Ns

m

)
(−1)m

Nm
s

Nm

[
1− cos

( t

Ns

)]m
= 1− N2

s

N

[
1− cos

( t

Ns

)]
+O

( 1

N2

)
, (78)

and the CF of ς is:

ϕς(t) = E [ eitς ] = E [ eitρ
2

]K−1. (79)

The last expectation can be computed as:

E
[
eitρ

2
]

=
1

2π

∫
R

dω ϕρ(ω)

∫
R

dx eitx
2

e−iωx =
1

2π

∫
R

dω ϕρ(ω)

√
i
π

t
e−i

ω2

4t = 1 +
N2

s

N

[
eit/N

2
s − 1

]
+O

( 1

N2

)
,

hence, in the LSL, eq. (79) becomes:

ϕς(t)→ eβN
2
s (e

it/N2
s −1),

which is the CF of a Poisson RV with measure:

µς =
∑
k>0

(βN2
s )k

k!
e−βN

2
s δk/N2

s
.

Therefore, from eq. (77), mutual information converges to:

I(y1; b1|ρ12, . . . , ρ1K)→
∑
k>0

(βN2
s )k

k!
e−βN

2
s log2

(
1 +

γ

1 + k
N2

s
γ

)
.

Appendix F
Proof of Theorem 4

Consider the output of the SUMF of user 1, that is given by eq. (24), divided by
√N0:

Y1 = b1 +

K∑
k=2

ρ1kbk +N1 = b1 + J1 +N1 = b1 + Z1,

where N1 ∼ CN(0, 1) and we assume bk ∼ CN(0, γ). Since I(Y1; b1) = h(Y1) − h(Z1), it is sufficient to find PY1
and

PZ1
, both of which easily follow from PJ1 . From eq. (78), one can write the CF of each term ρ1kbk as:

ϕρb(t) = E[ϕρ(bt) ] = 1− N2
s

N

(
1− e−

γ

2N2
s
t2
)

+O
( 1

N2

)
,

and, therefore, the CF of J in the LSL is:

ϕJ(t) = ϕρb(t)
K−1 → exp

[
βN2

s

(
e
− γ

2N2
s
t2 − 1

)]
=
∑
k>0

(βN2
s )k

k!
e−βN

2
s e
− kγ

2N2
s
t2

,

which is the CF of:

PJ =
∑
k>0

(βN2
s )k

k!
e−βN

2
s CN(0, kγ/N2

s ).
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Therefore, Z1 and Y1 are distributed as:

PZ =
∑
k>0

(βN2
s )k

k!
e−βN

2
s CN(0, 1 + kγ/N2

s ). (80)

and:

PY =
∑
k>0

(βN2
s )k

k!
e−βN

2
s CN(0, 1 + γ + kγ/N2

s ). (81)

Appendix G
Proof of Eq. (34)

The goal is to find the quantity S sumf
∞,TH? := limγ↑∞ γdI/dγ, where I (nats/s/Hz) is given in Theorem 4. Assuming

that a limit does exist, we will upper and lower bound h(P ) with bounds having the same first derivative as γ →∞.
Here P is a generic linear combination of Gaussian distributions with weights wk > 0, as follows:

P :=
∑
k>0

wk CN(µk, σ
2
k ).

Upper bound. Applying the elementary inequality (x1 + x2) ln(x1 + x2) > x1 ln x1 + x2 ln x2 with x1 > 0 and x2 > 0,
properly generalized, to the differential entropy of P yields:

h(P ) = −
∫
C

dz

(∑
k>0

wk CN(z;µk, σ
2
k )

)
ln

(∑
i>0

wi CN(z;µi, σ
2
i )

)

6 −
∫
C

dz
∑
k>0

wk CN(z;µk, σ
2
k ) ln

[
wk CN(z;µk, σ

2
k )
]

=
∑
k>0

−wk lnwk +
∑
k>0

wk ln(πeσ2
k ) =: hP(P ) + hG(P ),

where hP(P ) is constant in γ.

Lower bound. From Gibb’s inequality,

h(P ) =
∑
k>0

wk

∫
C

−dz CN(z;µk, σ
2
k ) ln

(∑
i>0

wi CN(z;µi, σ
2
i )

)
>
∑
k>0

wk log(πeσ2
k ) =: hG(P ). (82)

Bounds. From above bounds, it follows that hG(P ) 6 h(P ) 6 hG(P ) + hP(P ), and since hP(P ) is constant in γ, one
has:

lim
γ→∞

γ
dh(P )

dγ
= lim
γ→∞

γ
dhG(P )

dγ
, (83)

provided that the limit on the LHS does exist. Setting wk := e−ββk/k! and P equal to either PY or PZ (c.f. eqs. (32)-
(33)) yields:

Ssumf
∞,TH? = β · lim

γ→∞
γ
d

dγ

{
hG(PY )− hG(PZ)

}
; (84)

by direct computations, it follows that:

dhG(PZ)

dγ
=

1− e−β
γ

+O
( 1

γ2

)
, (85)

dhG(PY )

dγ
=

1

γ
+O

( 1

γ2

)
, (86)

hence Ssumf
∞,TH? = βe−β .
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Appendix H
Spectral Efficiency of SUMF for Ns = αN , α ∈ (0, 1], As N →∞.

In this appendix we will show that spectral efficiency of the single-user SUMF channel, given by eq. (24), is same
as that of DS-CDMA for TH-CDMA with Ns = αN , α ∈ (0, 1], therefore generalizing a previous result of Verdú and
Shamai [6] to which we reduce when α = 1. The result that follows extends the validity of the proof developed in [6]
to TH sequences with Ns = αN , α ∈ (0, 1]. The reader is referred to [6] for a detailed exposition, while we limit the
below derivation to our contribution, which reduces to verifying a Lindeberg-Feller condition for the interference term:

lim
K→∞

K∑
k=2

E
[
ρ21kb

2
k 1{ρ21kb2k > ξ}

∣∣ ρ1k ] = 0, ∀ξ > 0,

that is equivalent to the following condition [6]:

lim
N→∞

E
[
Nρ212 1{Nρ212 > h}

]
= 0, (87)

for some arbitrary h > 0. Since the MGF of ρ12 is given by eq. (76), one has, in the LSL with Ns = αN and
Nh = N/Ns = 1/α, the following pointwise convergence of the MGF of X :=

√
Nρ:

MX(t) =
[
1 + α

(
cosh

( t√
Nα

)
− 1
)]αN

−→ e
1
2 t

2

,

hence X d−−→N(0, 1). Therefore, as h→∞, it results E [X2 1{X2 > h} ]→ 0.

Appendix I
Closed form expression of eq. (44) for a General Class of Linear Receivers.

The discrete synchronous multiple-access channel considered is (c.f. eq. (1)):

y = Sb+ n.

The output of a generic linear receiver W T is as follows:

r := W Ty = W TSb+W Tn

= Gb+ ν, (88)

where G = W TS and ν ∼ CN(0,N0W
TW ). We consider the following linear receiver structure parametrized by α and

η:
W T = ST(ηSST+ αI)−1; (89)

by setting η = 1, decorrelator and MMSE receivers are obtained as special cases for α→ 0 and α = 1/γ, respectively;
by setting η = 0 and α 6= 0, one obtains SUMF.

By focusing on user 1, the output of channel of (88) can be written as eq. (90), which is reported here for reference:

r1 = G11b1 +

K∑
k=2

G1kbk + ν1. (90)

As in the proof of Theorem 1, we say that s users are in chip i when the ith diagonal element of SST is equal to s.
Since SST is diagonal, one can write: [

(ηSST+ αI)−1
]
ii

=
1

α+ ηui
,

where ui is the number of users in chip i; since si ∈ {±en}Nn=1, one has si = (−1)aieπi for some ai ∈ {0, 1} and
πi ∈ [N ], and therefore ui can be formally expressed as ui = |{k ∈ [K] : πk = i}|. The generic element Gij in eq. (90)
is explicitly given by:

Gij = sTi (ηSS
T+ αI)−1sj

= (−1)aieTπi(ηSS
T+ αI)−1eπj (−1)aj

= (−1)ai+ajδπi,πj ·
1

α+ ηuπi
= ρij ·

1

α+ ηvi
,

where we denoted by vi := uπi , that is also equal to the number of spreading sequences equal to either si or −si, i.e.:

vi =

K∑
k=1

|ρik| =
K∑
k=1

|ρki|.
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With similar computations, the generic element of the conditional covariance matrix of the noise vector in eq. (88)
given {vi}, and, therefore, given S, is:

[Σν|S ]ij = E [W Tnn†W
∣∣S ]

ij
= N0[W

TW ]ij = N0ρij ·
1

(α+ ηvi)2
.
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